xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision ce004fb4f2e64650c37ac057dc18934b379a6016)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/CodeGenCommonISel.h"
36 #include "llvm/CodeGen/FunctionLoweringInfo.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <cstddef>
101 #include <iterator>
102 #include <limits>
103 #include <tuple>
104 
105 using namespace llvm;
106 using namespace PatternMatch;
107 using namespace SwitchCG;
108 
109 #define DEBUG_TYPE "isel"
110 
111 /// LimitFloatPrecision - Generate low-precision inline sequences for
112 /// some float libcalls (6, 8 or 12 bits).
113 static unsigned LimitFloatPrecision;
114 
115 static cl::opt<bool>
116     InsertAssertAlign("insert-assert-align", cl::init(true),
117                       cl::desc("Insert the experimental `assertalign` node."),
118                       cl::ReallyHidden);
119 
120 static cl::opt<unsigned, true>
121     LimitFPPrecision("limit-float-precision",
122                      cl::desc("Generate low-precision inline sequences "
123                               "for some float libcalls"),
124                      cl::location(LimitFloatPrecision), cl::Hidden,
125                      cl::init(0));
126 
127 static cl::opt<unsigned> SwitchPeelThreshold(
128     "switch-peel-threshold", cl::Hidden, cl::init(66),
129     cl::desc("Set the case probability threshold for peeling the case from a "
130              "switch statement. A value greater than 100 will void this "
131              "optimization"));
132 
133 // Limit the width of DAG chains. This is important in general to prevent
134 // DAG-based analysis from blowing up. For example, alias analysis and
135 // load clustering may not complete in reasonable time. It is difficult to
136 // recognize and avoid this situation within each individual analysis, and
137 // future analyses are likely to have the same behavior. Limiting DAG width is
138 // the safe approach and will be especially important with global DAGs.
139 //
140 // MaxParallelChains default is arbitrarily high to avoid affecting
141 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
142 // sequence over this should have been converted to llvm.memcpy by the
143 // frontend. It is easy to induce this behavior with .ll code such as:
144 // %buffer = alloca [4096 x i8]
145 // %data = load [4096 x i8]* %argPtr
146 // store [4096 x i8] %data, [4096 x i8]* %buffer
147 static const unsigned MaxParallelChains = 64;
148 
149 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
150                                       const SDValue *Parts, unsigned NumParts,
151                                       MVT PartVT, EVT ValueVT, const Value *V,
152                                       Optional<CallingConv::ID> CC);
153 
154 /// getCopyFromParts - Create a value that contains the specified legal parts
155 /// combined into the value they represent.  If the parts combine to a type
156 /// larger than ValueVT then AssertOp can be used to specify whether the extra
157 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
158 /// (ISD::AssertSext).
159 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
160                                 const SDValue *Parts, unsigned NumParts,
161                                 MVT PartVT, EVT ValueVT, const Value *V,
162                                 Optional<CallingConv::ID> CC = None,
163                                 Optional<ISD::NodeType> AssertOp = None) {
164   // Let the target assemble the parts if it wants to
165   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
166   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
167                                                    PartVT, ValueVT, CC))
168     return Val;
169 
170   if (ValueVT.isVector())
171     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
172                                   CC);
173 
174   assert(NumParts > 0 && "No parts to assemble!");
175   SDValue Val = Parts[0];
176 
177   if (NumParts > 1) {
178     // Assemble the value from multiple parts.
179     if (ValueVT.isInteger()) {
180       unsigned PartBits = PartVT.getSizeInBits();
181       unsigned ValueBits = ValueVT.getSizeInBits();
182 
183       // Assemble the power of 2 part.
184       unsigned RoundParts =
185           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
186       unsigned RoundBits = PartBits * RoundParts;
187       EVT RoundVT = RoundBits == ValueBits ?
188         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
189       SDValue Lo, Hi;
190 
191       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
192 
193       if (RoundParts > 2) {
194         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
195                               PartVT, HalfVT, V);
196         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
197                               RoundParts / 2, PartVT, HalfVT, V);
198       } else {
199         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
200         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
201       }
202 
203       if (DAG.getDataLayout().isBigEndian())
204         std::swap(Lo, Hi);
205 
206       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
207 
208       if (RoundParts < NumParts) {
209         // Assemble the trailing non-power-of-2 part.
210         unsigned OddParts = NumParts - RoundParts;
211         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
212         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
213                               OddVT, V, CC);
214 
215         // Combine the round and odd parts.
216         Lo = Val;
217         if (DAG.getDataLayout().isBigEndian())
218           std::swap(Lo, Hi);
219         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
220         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
221         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
222                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
223                                          TLI.getShiftAmountTy(
224                                              TotalVT, DAG.getDataLayout())));
225         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
226         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
227       }
228     } else if (PartVT.isFloatingPoint()) {
229       // FP split into multiple FP parts (for ppcf128)
230       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
231              "Unexpected split");
232       SDValue Lo, Hi;
233       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
234       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
235       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
236         std::swap(Lo, Hi);
237       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
238     } else {
239       // FP split into integer parts (soft fp)
240       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
241              !PartVT.isVector() && "Unexpected split");
242       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
243       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
244     }
245   }
246 
247   // There is now one part, held in Val.  Correct it to match ValueVT.
248   // PartEVT is the type of the register class that holds the value.
249   // ValueVT is the type of the inline asm operation.
250   EVT PartEVT = Val.getValueType();
251 
252   if (PartEVT == ValueVT)
253     return Val;
254 
255   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
256       ValueVT.bitsLT(PartEVT)) {
257     // For an FP value in an integer part, we need to truncate to the right
258     // width first.
259     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
260     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
261   }
262 
263   // Handle types that have the same size.
264   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
265     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
266 
267   // Handle types with different sizes.
268   if (PartEVT.isInteger() && ValueVT.isInteger()) {
269     if (ValueVT.bitsLT(PartEVT)) {
270       // For a truncate, see if we have any information to
271       // indicate whether the truncated bits will always be
272       // zero or sign-extension.
273       if (AssertOp)
274         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
275                           DAG.getValueType(ValueVT));
276       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
277     }
278     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
279   }
280 
281   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
282     // FP_ROUND's are always exact here.
283     if (ValueVT.bitsLT(Val.getValueType()))
284       return DAG.getNode(
285           ISD::FP_ROUND, DL, ValueVT, Val,
286           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
287 
288     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
289   }
290 
291   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
292   // then truncating.
293   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
294       ValueVT.bitsLT(PartEVT)) {
295     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
296     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
297   }
298 
299   report_fatal_error("Unknown mismatch in getCopyFromParts!");
300 }
301 
302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
303                                               const Twine &ErrMsg) {
304   const Instruction *I = dyn_cast_or_null<Instruction>(V);
305   if (!V)
306     return Ctx.emitError(ErrMsg);
307 
308   const char *AsmError = ", possible invalid constraint for vector type";
309   if (const CallInst *CI = dyn_cast<CallInst>(I))
310     if (CI->isInlineAsm())
311       return Ctx.emitError(I, ErrMsg + AsmError);
312 
313   return Ctx.emitError(I, ErrMsg);
314 }
315 
316 /// getCopyFromPartsVector - Create a value that contains the specified legal
317 /// parts combined into the value they represent.  If the parts combine to a
318 /// type larger than ValueVT then AssertOp can be used to specify whether the
319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
320 /// ValueVT (ISD::AssertSext).
321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
322                                       const SDValue *Parts, unsigned NumParts,
323                                       MVT PartVT, EVT ValueVT, const Value *V,
324                                       Optional<CallingConv::ID> CallConv) {
325   assert(ValueVT.isVector() && "Not a vector value");
326   assert(NumParts > 0 && "No parts to assemble!");
327   const bool IsABIRegCopy = CallConv.has_value();
328 
329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
330   SDValue Val = Parts[0];
331 
332   // Handle a multi-element vector.
333   if (NumParts > 1) {
334     EVT IntermediateVT;
335     MVT RegisterVT;
336     unsigned NumIntermediates;
337     unsigned NumRegs;
338 
339     if (IsABIRegCopy) {
340       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
341           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
342           NumIntermediates, RegisterVT);
343     } else {
344       NumRegs =
345           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
346                                      NumIntermediates, RegisterVT);
347     }
348 
349     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
350     NumParts = NumRegs; // Silence a compiler warning.
351     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
352     assert(RegisterVT.getSizeInBits() ==
353            Parts[0].getSimpleValueType().getSizeInBits() &&
354            "Part type sizes don't match!");
355 
356     // Assemble the parts into intermediate operands.
357     SmallVector<SDValue, 8> Ops(NumIntermediates);
358     if (NumIntermediates == NumParts) {
359       // If the register was not expanded, truncate or copy the value,
360       // as appropriate.
361       for (unsigned i = 0; i != NumParts; ++i)
362         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
363                                   PartVT, IntermediateVT, V, CallConv);
364     } else if (NumParts > 0) {
365       // If the intermediate type was expanded, build the intermediate
366       // operands from the parts.
367       assert(NumParts % NumIntermediates == 0 &&
368              "Must expand into a divisible number of parts!");
369       unsigned Factor = NumParts / NumIntermediates;
370       for (unsigned i = 0; i != NumIntermediates; ++i)
371         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
372                                   PartVT, IntermediateVT, V, CallConv);
373     }
374 
375     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
376     // intermediate operands.
377     EVT BuiltVectorTy =
378         IntermediateVT.isVector()
379             ? EVT::getVectorVT(
380                   *DAG.getContext(), IntermediateVT.getScalarType(),
381                   IntermediateVT.getVectorElementCount() * NumParts)
382             : EVT::getVectorVT(*DAG.getContext(),
383                                IntermediateVT.getScalarType(),
384                                NumIntermediates);
385     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
386                                                 : ISD::BUILD_VECTOR,
387                       DL, BuiltVectorTy, Ops);
388   }
389 
390   // There is now one part, held in Val.  Correct it to match ValueVT.
391   EVT PartEVT = Val.getValueType();
392 
393   if (PartEVT == ValueVT)
394     return Val;
395 
396   if (PartEVT.isVector()) {
397     // Vector/Vector bitcast.
398     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
399       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400 
401     // If the element type of the source/dest vectors are the same, but the
402     // parts vector has more elements than the value vector, then we have a
403     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
404     // elements we want.
405     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
406       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
407               ValueVT.getVectorElementCount().getKnownMinValue()) &&
408              (PartEVT.getVectorElementCount().isScalable() ==
409               ValueVT.getVectorElementCount().isScalable()) &&
410              "Cannot narrow, it would be a lossy transformation");
411       PartEVT =
412           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
413                            ValueVT.getVectorElementCount());
414       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
415                         DAG.getVectorIdxConstant(0, DL));
416       if (PartEVT == ValueVT)
417         return Val;
418     }
419 
420     // Promoted vector extract
421     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
422   }
423 
424   // Trivial bitcast if the types are the same size and the destination
425   // vector type is legal.
426   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
427       TLI.isTypeLegal(ValueVT))
428     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
429 
430   if (ValueVT.getVectorNumElements() != 1) {
431      // Certain ABIs require that vectors are passed as integers. For vectors
432      // are the same size, this is an obvious bitcast.
433      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
434        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435      } else if (ValueVT.bitsLT(PartEVT)) {
436        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
437        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
438        // Drop the extra bits.
439        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
440        return DAG.getBitcast(ValueVT, Val);
441      }
442 
443      diagnosePossiblyInvalidConstraint(
444          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
445      return DAG.getUNDEF(ValueVT);
446   }
447 
448   // Handle cases such as i8 -> <1 x i1>
449   EVT ValueSVT = ValueVT.getVectorElementType();
450   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
451     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
452       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
453     else
454       Val = ValueVT.isFloatingPoint()
455                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
456                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
457   }
458 
459   return DAG.getBuildVector(ValueVT, DL, Val);
460 }
461 
462 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
463                                  SDValue Val, SDValue *Parts, unsigned NumParts,
464                                  MVT PartVT, const Value *V,
465                                  Optional<CallingConv::ID> CallConv);
466 
467 /// getCopyToParts - Create a series of nodes that contain the specified value
468 /// split into legal parts.  If the parts contain more bits than Val, then, for
469 /// integers, ExtendKind can be used to specify how to generate the extra bits.
470 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
471                            SDValue *Parts, unsigned NumParts, MVT PartVT,
472                            const Value *V,
473                            Optional<CallingConv::ID> CallConv = None,
474                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
475   // Let the target split the parts if it wants to
476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
477   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
478                                       CallConv))
479     return;
480   EVT ValueVT = Val.getValueType();
481 
482   // Handle the vector case separately.
483   if (ValueVT.isVector())
484     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
485                                 CallConv);
486 
487   unsigned PartBits = PartVT.getSizeInBits();
488   unsigned OrigNumParts = NumParts;
489   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
490          "Copying to an illegal type!");
491 
492   if (NumParts == 0)
493     return;
494 
495   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
496   EVT PartEVT = PartVT;
497   if (PartEVT == ValueVT) {
498     assert(NumParts == 1 && "No-op copy with multiple parts!");
499     Parts[0] = Val;
500     return;
501   }
502 
503   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
504     // If the parts cover more bits than the value has, promote the value.
505     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
506       assert(NumParts == 1 && "Do not know what to promote to!");
507       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
508     } else {
509       if (ValueVT.isFloatingPoint()) {
510         // FP values need to be bitcast, then extended if they are being put
511         // into a larger container.
512         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
513         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
514       }
515       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
516              ValueVT.isInteger() &&
517              "Unknown mismatch!");
518       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
519       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
520       if (PartVT == MVT::x86mmx)
521         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
522     }
523   } else if (PartBits == ValueVT.getSizeInBits()) {
524     // Different types of the same size.
525     assert(NumParts == 1 && PartEVT != ValueVT);
526     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
528     // If the parts cover less bits than value has, truncate the value.
529     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
530            ValueVT.isInteger() &&
531            "Unknown mismatch!");
532     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
533     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
534     if (PartVT == MVT::x86mmx)
535       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
536   }
537 
538   // The value may have changed - recompute ValueVT.
539   ValueVT = Val.getValueType();
540   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
541          "Failed to tile the value with PartVT!");
542 
543   if (NumParts == 1) {
544     if (PartEVT != ValueVT) {
545       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
546                                         "scalar-to-vector conversion failed");
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548     }
549 
550     Parts[0] = Val;
551     return;
552   }
553 
554   // Expand the value into multiple parts.
555   if (NumParts & (NumParts - 1)) {
556     // The number of parts is not a power of 2.  Split off and copy the tail.
557     assert(PartVT.isInteger() && ValueVT.isInteger() &&
558            "Do not know what to expand to!");
559     unsigned RoundParts = 1 << Log2_32(NumParts);
560     unsigned RoundBits = RoundParts * PartBits;
561     unsigned OddParts = NumParts - RoundParts;
562     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
563       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
564 
565     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
566                    CallConv);
567 
568     if (DAG.getDataLayout().isBigEndian())
569       // The odd parts were reversed by getCopyToParts - unreverse them.
570       std::reverse(Parts + RoundParts, Parts + NumParts);
571 
572     NumParts = RoundParts;
573     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
574     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
575   }
576 
577   // The number of parts is a power of 2.  Repeatedly bisect the value using
578   // EXTRACT_ELEMENT.
579   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
580                          EVT::getIntegerVT(*DAG.getContext(),
581                                            ValueVT.getSizeInBits()),
582                          Val);
583 
584   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
585     for (unsigned i = 0; i < NumParts; i += StepSize) {
586       unsigned ThisBits = StepSize * PartBits / 2;
587       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
588       SDValue &Part0 = Parts[i];
589       SDValue &Part1 = Parts[i+StepSize/2];
590 
591       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
592                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
593       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
594                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
595 
596       if (ThisBits == PartBits && ThisVT != PartVT) {
597         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
598         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
599       }
600     }
601   }
602 
603   if (DAG.getDataLayout().isBigEndian())
604     std::reverse(Parts, Parts + OrigNumParts);
605 }
606 
607 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
608                                      const SDLoc &DL, EVT PartVT) {
609   if (!PartVT.isVector())
610     return SDValue();
611 
612   EVT ValueVT = Val.getValueType();
613   ElementCount PartNumElts = PartVT.getVectorElementCount();
614   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
615 
616   // We only support widening vectors with equivalent element types and
617   // fixed/scalable properties. If a target needs to widen a fixed-length type
618   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
619   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
620       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
621       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
622     return SDValue();
623 
624   // Widening a scalable vector to another scalable vector is done by inserting
625   // the vector into a larger undef one.
626   if (PartNumElts.isScalable())
627     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
628                        Val, DAG.getVectorIdxConstant(0, DL));
629 
630   EVT ElementVT = PartVT.getVectorElementType();
631   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
632   // undef elements.
633   SmallVector<SDValue, 16> Ops;
634   DAG.ExtractVectorElements(Val, Ops);
635   SDValue EltUndef = DAG.getUNDEF(ElementVT);
636   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
637 
638   // FIXME: Use CONCAT for 2x -> 4x.
639   return DAG.getBuildVector(PartVT, DL, Ops);
640 }
641 
642 /// getCopyToPartsVector - Create a series of nodes that contain the specified
643 /// value split into legal parts.
644 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
645                                  SDValue Val, SDValue *Parts, unsigned NumParts,
646                                  MVT PartVT, const Value *V,
647                                  Optional<CallingConv::ID> CallConv) {
648   EVT ValueVT = Val.getValueType();
649   assert(ValueVT.isVector() && "Not a vector");
650   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
651   const bool IsABIRegCopy = CallConv.has_value();
652 
653   if (NumParts == 1) {
654     EVT PartEVT = PartVT;
655     if (PartEVT == ValueVT) {
656       // Nothing to do.
657     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
658       // Bitconvert vector->vector case.
659       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
660     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
661       Val = Widened;
662     } else if (PartVT.isVector() &&
663                PartEVT.getVectorElementType().bitsGE(
664                    ValueVT.getVectorElementType()) &&
665                PartEVT.getVectorElementCount() ==
666                    ValueVT.getVectorElementCount()) {
667 
668       // Promoted vector extract
669       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
670     } else if (PartEVT.isVector() &&
671                PartEVT.getVectorElementType() !=
672                    ValueVT.getVectorElementType() &&
673                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
674                    TargetLowering::TypeWidenVector) {
675       // Combination of widening and promotion.
676       EVT WidenVT =
677           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
678                            PartVT.getVectorElementCount());
679       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
680       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
681     } else {
682       if (ValueVT.getVectorElementCount().isScalar()) {
683         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
684                           DAG.getVectorIdxConstant(0, DL));
685       } else {
686         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
687         assert(PartVT.getFixedSizeInBits() > ValueSize &&
688                "lossy conversion of vector to scalar type");
689         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
690         Val = DAG.getBitcast(IntermediateType, Val);
691         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
692       }
693     }
694 
695     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
696     Parts[0] = Val;
697     return;
698   }
699 
700   // Handle a multi-element vector.
701   EVT IntermediateVT;
702   MVT RegisterVT;
703   unsigned NumIntermediates;
704   unsigned NumRegs;
705   if (IsABIRegCopy) {
706     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
707         *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT,
708         NumIntermediates, RegisterVT);
709   } else {
710     NumRegs =
711         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
712                                    NumIntermediates, RegisterVT);
713   }
714 
715   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
716   NumParts = NumRegs; // Silence a compiler warning.
717   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
718 
719   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
720          "Mixing scalable and fixed vectors when copying in parts");
721 
722   Optional<ElementCount> DestEltCnt;
723 
724   if (IntermediateVT.isVector())
725     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
726   else
727     DestEltCnt = ElementCount::getFixed(NumIntermediates);
728 
729   EVT BuiltVectorTy = EVT::getVectorVT(
730       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
731 
732   if (ValueVT == BuiltVectorTy) {
733     // Nothing to do.
734   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
735     // Bitconvert vector->vector case.
736     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
737   } else {
738     if (BuiltVectorTy.getVectorElementType().bitsGT(
739             ValueVT.getVectorElementType())) {
740       // Integer promotion.
741       ValueVT = EVT::getVectorVT(*DAG.getContext(),
742                                  BuiltVectorTy.getVectorElementType(),
743                                  ValueVT.getVectorElementCount());
744       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
745     }
746 
747     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
748       Val = Widened;
749     }
750   }
751 
752   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
753 
754   // Split the vector into intermediate operands.
755   SmallVector<SDValue, 8> Ops(NumIntermediates);
756   for (unsigned i = 0; i != NumIntermediates; ++i) {
757     if (IntermediateVT.isVector()) {
758       // This does something sensible for scalable vectors - see the
759       // definition of EXTRACT_SUBVECTOR for further details.
760       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
761       Ops[i] =
762           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
763                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
764     } else {
765       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
766                            DAG.getVectorIdxConstant(i, DL));
767     }
768   }
769 
770   // Split the intermediate operands into legal parts.
771   if (NumParts == NumIntermediates) {
772     // If the register was not expanded, promote or copy the value,
773     // as appropriate.
774     for (unsigned i = 0; i != NumParts; ++i)
775       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
776   } else if (NumParts > 0) {
777     // If the intermediate type was expanded, split each the value into
778     // legal parts.
779     assert(NumIntermediates != 0 && "division by zero");
780     assert(NumParts % NumIntermediates == 0 &&
781            "Must expand into a divisible number of parts!");
782     unsigned Factor = NumParts / NumIntermediates;
783     for (unsigned i = 0; i != NumIntermediates; ++i)
784       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
785                      CallConv);
786   }
787 }
788 
789 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
790                            EVT valuevt, Optional<CallingConv::ID> CC)
791     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
792       RegCount(1, regs.size()), CallConv(CC) {}
793 
794 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
795                            const DataLayout &DL, unsigned Reg, Type *Ty,
796                            Optional<CallingConv::ID> CC) {
797   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
798 
799   CallConv = CC;
800 
801   for (EVT ValueVT : ValueVTs) {
802     unsigned NumRegs =
803         isABIMangled()
804             ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT)
805             : TLI.getNumRegisters(Context, ValueVT);
806     MVT RegisterVT =
807         isABIMangled()
808             ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT)
809             : TLI.getRegisterType(Context, ValueVT);
810     for (unsigned i = 0; i != NumRegs; ++i)
811       Regs.push_back(Reg + i);
812     RegVTs.push_back(RegisterVT);
813     RegCount.push_back(NumRegs);
814     Reg += NumRegs;
815   }
816 }
817 
818 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
819                                       FunctionLoweringInfo &FuncInfo,
820                                       const SDLoc &dl, SDValue &Chain,
821                                       SDValue *Flag, const Value *V) const {
822   // A Value with type {} or [0 x %t] needs no registers.
823   if (ValueVTs.empty())
824     return SDValue();
825 
826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
827 
828   // Assemble the legal parts into the final values.
829   SmallVector<SDValue, 4> Values(ValueVTs.size());
830   SmallVector<SDValue, 8> Parts;
831   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
832     // Copy the legal parts from the registers.
833     EVT ValueVT = ValueVTs[Value];
834     unsigned NumRegs = RegCount[Value];
835     MVT RegisterVT =
836         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
837                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
838                        : RegVTs[Value];
839 
840     Parts.resize(NumRegs);
841     for (unsigned i = 0; i != NumRegs; ++i) {
842       SDValue P;
843       if (!Flag) {
844         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
845       } else {
846         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
847         *Flag = P.getValue(2);
848       }
849 
850       Chain = P.getValue(1);
851       Parts[i] = P;
852 
853       // If the source register was virtual and if we know something about it,
854       // add an assert node.
855       if (!Register::isVirtualRegister(Regs[Part + i]) ||
856           !RegisterVT.isInteger())
857         continue;
858 
859       const FunctionLoweringInfo::LiveOutInfo *LOI =
860         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
861       if (!LOI)
862         continue;
863 
864       unsigned RegSize = RegisterVT.getScalarSizeInBits();
865       unsigned NumSignBits = LOI->NumSignBits;
866       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
867 
868       if (NumZeroBits == RegSize) {
869         // The current value is a zero.
870         // Explicitly express that as it would be easier for
871         // optimizations to kick in.
872         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
873         continue;
874       }
875 
876       // FIXME: We capture more information than the dag can represent.  For
877       // now, just use the tightest assertzext/assertsext possible.
878       bool isSExt;
879       EVT FromVT(MVT::Other);
880       if (NumZeroBits) {
881         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
882         isSExt = false;
883       } else if (NumSignBits > 1) {
884         FromVT =
885             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
886         isSExt = true;
887       } else {
888         continue;
889       }
890       // Add an assertion node.
891       assert(FromVT != MVT::Other);
892       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
893                              RegisterVT, P, DAG.getValueType(FromVT));
894     }
895 
896     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
897                                      RegisterVT, ValueVT, V, CallConv);
898     Part += NumRegs;
899     Parts.clear();
900   }
901 
902   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
903 }
904 
905 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
906                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
907                                  const Value *V,
908                                  ISD::NodeType PreferredExtendType) const {
909   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
910   ISD::NodeType ExtendKind = PreferredExtendType;
911 
912   // Get the list of the values's legal parts.
913   unsigned NumRegs = Regs.size();
914   SmallVector<SDValue, 8> Parts(NumRegs);
915   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
916     unsigned NumParts = RegCount[Value];
917 
918     MVT RegisterVT =
919         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
920                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
921                        : RegVTs[Value];
922 
923     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
924       ExtendKind = ISD::ZERO_EXTEND;
925 
926     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
927                    NumParts, RegisterVT, V, CallConv, ExtendKind);
928     Part += NumParts;
929   }
930 
931   // Copy the parts into the registers.
932   SmallVector<SDValue, 8> Chains(NumRegs);
933   for (unsigned i = 0; i != NumRegs; ++i) {
934     SDValue Part;
935     if (!Flag) {
936       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
937     } else {
938       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
939       *Flag = Part.getValue(1);
940     }
941 
942     Chains[i] = Part.getValue(0);
943   }
944 
945   if (NumRegs == 1 || Flag)
946     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
947     // flagged to it. That is the CopyToReg nodes and the user are considered
948     // a single scheduling unit. If we create a TokenFactor and return it as
949     // chain, then the TokenFactor is both a predecessor (operand) of the
950     // user as well as a successor (the TF operands are flagged to the user).
951     // c1, f1 = CopyToReg
952     // c2, f2 = CopyToReg
953     // c3     = TokenFactor c1, c2
954     // ...
955     //        = op c3, ..., f2
956     Chain = Chains[NumRegs-1];
957   else
958     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
959 }
960 
961 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
962                                         unsigned MatchingIdx, const SDLoc &dl,
963                                         SelectionDAG &DAG,
964                                         std::vector<SDValue> &Ops) const {
965   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
966 
967   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
968   if (HasMatching)
969     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
970   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
971     // Put the register class of the virtual registers in the flag word.  That
972     // way, later passes can recompute register class constraints for inline
973     // assembly as well as normal instructions.
974     // Don't do this for tied operands that can use the regclass information
975     // from the def.
976     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
977     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
978     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
979   }
980 
981   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
982   Ops.push_back(Res);
983 
984   if (Code == InlineAsm::Kind_Clobber) {
985     // Clobbers should always have a 1:1 mapping with registers, and may
986     // reference registers that have illegal (e.g. vector) types. Hence, we
987     // shouldn't try to apply any sort of splitting logic to them.
988     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
989            "No 1:1 mapping from clobbers to regs?");
990     Register SP = TLI.getStackPointerRegisterToSaveRestore();
991     (void)SP;
992     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
993       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
994       assert(
995           (Regs[I] != SP ||
996            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
997           "If we clobbered the stack pointer, MFI should know about it.");
998     }
999     return;
1000   }
1001 
1002   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1003     MVT RegisterVT = RegVTs[Value];
1004     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1005                                            RegisterVT);
1006     for (unsigned i = 0; i != NumRegs; ++i) {
1007       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1008       unsigned TheReg = Regs[Reg++];
1009       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1010     }
1011   }
1012 }
1013 
1014 SmallVector<std::pair<unsigned, TypeSize>, 4>
1015 RegsForValue::getRegsAndSizes() const {
1016   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1017   unsigned I = 0;
1018   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1019     unsigned RegCount = std::get<0>(CountAndVT);
1020     MVT RegisterVT = std::get<1>(CountAndVT);
1021     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1022     for (unsigned E = I + RegCount; I != E; ++I)
1023       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1024   }
1025   return OutVec;
1026 }
1027 
1028 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1029                                AssumptionCache *ac,
1030                                const TargetLibraryInfo *li) {
1031   AA = aa;
1032   AC = ac;
1033   GFI = gfi;
1034   LibInfo = li;
1035   Context = DAG.getContext();
1036   LPadToCallSiteMap.clear();
1037   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1038 }
1039 
1040 void SelectionDAGBuilder::clear() {
1041   NodeMap.clear();
1042   UnusedArgNodeMap.clear();
1043   PendingLoads.clear();
1044   PendingExports.clear();
1045   PendingConstrainedFP.clear();
1046   PendingConstrainedFPStrict.clear();
1047   CurInst = nullptr;
1048   HasTailCall = false;
1049   SDNodeOrder = LowestSDNodeOrder;
1050   StatepointLowering.clear();
1051 }
1052 
1053 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1054   DanglingDebugInfoMap.clear();
1055 }
1056 
1057 // Update DAG root to include dependencies on Pending chains.
1058 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1059   SDValue Root = DAG.getRoot();
1060 
1061   if (Pending.empty())
1062     return Root;
1063 
1064   // Add current root to PendingChains, unless we already indirectly
1065   // depend on it.
1066   if (Root.getOpcode() != ISD::EntryToken) {
1067     unsigned i = 0, e = Pending.size();
1068     for (; i != e; ++i) {
1069       assert(Pending[i].getNode()->getNumOperands() > 1);
1070       if (Pending[i].getNode()->getOperand(0) == Root)
1071         break;  // Don't add the root if we already indirectly depend on it.
1072     }
1073 
1074     if (i == e)
1075       Pending.push_back(Root);
1076   }
1077 
1078   if (Pending.size() == 1)
1079     Root = Pending[0];
1080   else
1081     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1082 
1083   DAG.setRoot(Root);
1084   Pending.clear();
1085   return Root;
1086 }
1087 
1088 SDValue SelectionDAGBuilder::getMemoryRoot() {
1089   return updateRoot(PendingLoads);
1090 }
1091 
1092 SDValue SelectionDAGBuilder::getRoot() {
1093   // Chain up all pending constrained intrinsics together with all
1094   // pending loads, by simply appending them to PendingLoads and
1095   // then calling getMemoryRoot().
1096   PendingLoads.reserve(PendingLoads.size() +
1097                        PendingConstrainedFP.size() +
1098                        PendingConstrainedFPStrict.size());
1099   PendingLoads.append(PendingConstrainedFP.begin(),
1100                       PendingConstrainedFP.end());
1101   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1102                       PendingConstrainedFPStrict.end());
1103   PendingConstrainedFP.clear();
1104   PendingConstrainedFPStrict.clear();
1105   return getMemoryRoot();
1106 }
1107 
1108 SDValue SelectionDAGBuilder::getControlRoot() {
1109   // We need to emit pending fpexcept.strict constrained intrinsics,
1110   // so append them to the PendingExports list.
1111   PendingExports.append(PendingConstrainedFPStrict.begin(),
1112                         PendingConstrainedFPStrict.end());
1113   PendingConstrainedFPStrict.clear();
1114   return updateRoot(PendingExports);
1115 }
1116 
1117 void SelectionDAGBuilder::visit(const Instruction &I) {
1118   // Set up outgoing PHI node register values before emitting the terminator.
1119   if (I.isTerminator()) {
1120     HandlePHINodesInSuccessorBlocks(I.getParent());
1121   }
1122 
1123   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1124   if (!isa<DbgInfoIntrinsic>(I))
1125     ++SDNodeOrder;
1126 
1127   CurInst = &I;
1128 
1129   // Set inserted listener only if required.
1130   bool NodeInserted = false;
1131   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1132   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1133   if (PCSectionsMD) {
1134     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1135         DAG, [&](SDNode *) { NodeInserted = true; });
1136   }
1137 
1138   visit(I.getOpcode(), I);
1139 
1140   if (!I.isTerminator() && !HasTailCall &&
1141       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1142     CopyToExportRegsIfNeeded(&I);
1143 
1144   // Handle metadata.
1145   if (PCSectionsMD) {
1146     auto It = NodeMap.find(&I);
1147     if (It != NodeMap.end()) {
1148       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1149     } else if (NodeInserted) {
1150       // This should not happen; if it does, don't let it go unnoticed so we can
1151       // fix it. Relevant visit*() function is probably missing a setValue().
1152       errs() << "warning: loosing !pcsections metadata ["
1153              << I.getModule()->getName() << "]\n";
1154       LLVM_DEBUG(I.dump());
1155       assert(false);
1156     }
1157   }
1158 
1159   CurInst = nullptr;
1160 }
1161 
1162 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1163   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1164 }
1165 
1166 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1167   // Note: this doesn't use InstVisitor, because it has to work with
1168   // ConstantExpr's in addition to instructions.
1169   switch (Opcode) {
1170   default: llvm_unreachable("Unknown instruction type encountered!");
1171     // Build the switch statement using the Instruction.def file.
1172 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1173     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1174 #include "llvm/IR/Instruction.def"
1175   }
1176 }
1177 
1178 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1179                                                DebugLoc DL, unsigned Order) {
1180   // We treat variadic dbg_values differently at this stage.
1181   if (DI->hasArgList()) {
1182     // For variadic dbg_values we will now insert an undef.
1183     // FIXME: We can potentially recover these!
1184     SmallVector<SDDbgOperand, 2> Locs;
1185     for (const Value *V : DI->getValues()) {
1186       auto Undef = UndefValue::get(V->getType());
1187       Locs.push_back(SDDbgOperand::fromConst(Undef));
1188     }
1189     SDDbgValue *SDV = DAG.getDbgValueList(
1190         DI->getVariable(), DI->getExpression(), Locs, {},
1191         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1192     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1193   } else {
1194     // TODO: Dangling debug info will eventually either be resolved or produce
1195     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1196     // between the original dbg.value location and its resolved DBG_VALUE,
1197     // which we should ideally fill with an extra Undef DBG_VALUE.
1198     assert(DI->getNumVariableLocationOps() == 1 &&
1199            "DbgValueInst without an ArgList should have a single location "
1200            "operand.");
1201     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1202   }
1203 }
1204 
1205 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1206                                                 const DIExpression *Expr) {
1207   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1208     const DbgValueInst *DI = DDI.getDI();
1209     DIVariable *DanglingVariable = DI->getVariable();
1210     DIExpression *DanglingExpr = DI->getExpression();
1211     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1212       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1213       return true;
1214     }
1215     return false;
1216   };
1217 
1218   for (auto &DDIMI : DanglingDebugInfoMap) {
1219     DanglingDebugInfoVector &DDIV = DDIMI.second;
1220 
1221     // If debug info is to be dropped, run it through final checks to see
1222     // whether it can be salvaged.
1223     for (auto &DDI : DDIV)
1224       if (isMatchingDbgValue(DDI))
1225         salvageUnresolvedDbgValue(DDI);
1226 
1227     erase_if(DDIV, isMatchingDbgValue);
1228   }
1229 }
1230 
1231 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1232 // generate the debug data structures now that we've seen its definition.
1233 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1234                                                    SDValue Val) {
1235   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1236   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1237     return;
1238 
1239   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1240   for (auto &DDI : DDIV) {
1241     const DbgValueInst *DI = DDI.getDI();
1242     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1243     assert(DI && "Ill-formed DanglingDebugInfo");
1244     DebugLoc dl = DDI.getdl();
1245     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1246     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1247     DILocalVariable *Variable = DI->getVariable();
1248     DIExpression *Expr = DI->getExpression();
1249     assert(Variable->isValidLocationForIntrinsic(dl) &&
1250            "Expected inlined-at fields to agree");
1251     SDDbgValue *SDV;
1252     if (Val.getNode()) {
1253       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1254       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1255       // we couldn't resolve it directly when examining the DbgValue intrinsic
1256       // in the first place we should not be more successful here). Unless we
1257       // have some test case that prove this to be correct we should avoid
1258       // calling EmitFuncArgumentDbgValue here.
1259       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
1260                                     FuncArgumentDbgValueKind::Value, Val)) {
1261         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1262                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1263         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1264         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1265         // inserted after the definition of Val when emitting the instructions
1266         // after ISel. An alternative could be to teach
1267         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1268         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1269                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1270                    << ValSDNodeOrder << "\n");
1271         SDV = getDbgValue(Val, Variable, Expr, dl,
1272                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1273         DAG.AddDbgValue(SDV, false);
1274       } else
1275         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1276                           << "in EmitFuncArgumentDbgValue\n");
1277     } else {
1278       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1279       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1280       auto SDV =
1281           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1282       DAG.AddDbgValue(SDV, false);
1283     }
1284   }
1285   DDIV.clear();
1286 }
1287 
1288 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1289   // TODO: For the variadic implementation, instead of only checking the fail
1290   // state of `handleDebugValue`, we need know specifically which values were
1291   // invalid, so that we attempt to salvage only those values when processing
1292   // a DIArgList.
1293   assert(!DDI.getDI()->hasArgList() &&
1294          "Not implemented for variadic dbg_values");
1295   Value *V = DDI.getDI()->getValue(0);
1296   DILocalVariable *Var = DDI.getDI()->getVariable();
1297   DIExpression *Expr = DDI.getDI()->getExpression();
1298   DebugLoc DL = DDI.getdl();
1299   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1300   unsigned SDOrder = DDI.getSDNodeOrder();
1301   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1302   // that DW_OP_stack_value is desired.
1303   assert(isa<DbgValueInst>(DDI.getDI()));
1304   bool StackValue = true;
1305 
1306   // Can this Value can be encoded without any further work?
1307   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1308     return;
1309 
1310   // Attempt to salvage back through as many instructions as possible. Bail if
1311   // a non-instruction is seen, such as a constant expression or global
1312   // variable. FIXME: Further work could recover those too.
1313   while (isa<Instruction>(V)) {
1314     Instruction &VAsInst = *cast<Instruction>(V);
1315     // Temporary "0", awaiting real implementation.
1316     SmallVector<uint64_t, 16> Ops;
1317     SmallVector<Value *, 4> AdditionalValues;
1318     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1319                              AdditionalValues);
1320     // If we cannot salvage any further, and haven't yet found a suitable debug
1321     // expression, bail out.
1322     if (!V)
1323       break;
1324 
1325     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1326     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1327     // here for variadic dbg_values, remove that condition.
1328     if (!AdditionalValues.empty())
1329       break;
1330 
1331     // New value and expr now represent this debuginfo.
1332     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1333 
1334     // Some kind of simplification occurred: check whether the operand of the
1335     // salvaged debug expression can be encoded in this DAG.
1336     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1337                          /*IsVariadic=*/false)) {
1338       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1339                         << *DDI.getDI() << "\nBy stripping back to:\n  " << *V);
1340       return;
1341     }
1342   }
1343 
1344   // This was the final opportunity to salvage this debug information, and it
1345   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1346   // any earlier variable location.
1347   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1348   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1349   DAG.AddDbgValue(SDV, false);
1350 
1351   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << *DDI.getDI()
1352                     << "\n");
1353   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1354                     << "\n");
1355 }
1356 
1357 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1358                                            DILocalVariable *Var,
1359                                            DIExpression *Expr, DebugLoc dl,
1360                                            DebugLoc InstDL, unsigned Order,
1361                                            bool IsVariadic) {
1362   if (Values.empty())
1363     return true;
1364   SmallVector<SDDbgOperand> LocationOps;
1365   SmallVector<SDNode *> Dependencies;
1366   for (const Value *V : Values) {
1367     // Constant value.
1368     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1369         isa<ConstantPointerNull>(V)) {
1370       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1371       continue;
1372     }
1373 
1374     // Look through IntToPtr constants.
1375     if (auto *CE = dyn_cast<ConstantExpr>(V))
1376       if (CE->getOpcode() == Instruction::IntToPtr) {
1377         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1378         continue;
1379       }
1380 
1381     // If the Value is a frame index, we can create a FrameIndex debug value
1382     // without relying on the DAG at all.
1383     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1384       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1385       if (SI != FuncInfo.StaticAllocaMap.end()) {
1386         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1387         continue;
1388       }
1389     }
1390 
1391     // Do not use getValue() in here; we don't want to generate code at
1392     // this point if it hasn't been done yet.
1393     SDValue N = NodeMap[V];
1394     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1395       N = UnusedArgNodeMap[V];
1396     if (N.getNode()) {
1397       // Only emit func arg dbg value for non-variadic dbg.values for now.
1398       if (!IsVariadic &&
1399           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
1400                                    FuncArgumentDbgValueKind::Value, N))
1401         return true;
1402       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1403         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1404         // describe stack slot locations.
1405         //
1406         // Consider "int x = 0; int *px = &x;". There are two kinds of
1407         // interesting debug values here after optimization:
1408         //
1409         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1410         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1411         //
1412         // Both describe the direct values of their associated variables.
1413         Dependencies.push_back(N.getNode());
1414         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1415         continue;
1416       }
1417       LocationOps.emplace_back(
1418           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1419       continue;
1420     }
1421 
1422     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1423     // Special rules apply for the first dbg.values of parameter variables in a
1424     // function. Identify them by the fact they reference Argument Values, that
1425     // they're parameters, and they are parameters of the current function. We
1426     // need to let them dangle until they get an SDNode.
1427     bool IsParamOfFunc =
1428         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1429     if (IsParamOfFunc)
1430       return false;
1431 
1432     // The value is not used in this block yet (or it would have an SDNode).
1433     // We still want the value to appear for the user if possible -- if it has
1434     // an associated VReg, we can refer to that instead.
1435     auto VMI = FuncInfo.ValueMap.find(V);
1436     if (VMI != FuncInfo.ValueMap.end()) {
1437       unsigned Reg = VMI->second;
1438       // If this is a PHI node, it may be split up into several MI PHI nodes
1439       // (in FunctionLoweringInfo::set).
1440       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1441                        V->getType(), None);
1442       if (RFV.occupiesMultipleRegs()) {
1443         // FIXME: We could potentially support variadic dbg_values here.
1444         if (IsVariadic)
1445           return false;
1446         unsigned Offset = 0;
1447         unsigned BitsToDescribe = 0;
1448         if (auto VarSize = Var->getSizeInBits())
1449           BitsToDescribe = *VarSize;
1450         if (auto Fragment = Expr->getFragmentInfo())
1451           BitsToDescribe = Fragment->SizeInBits;
1452         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1453           // Bail out if all bits are described already.
1454           if (Offset >= BitsToDescribe)
1455             break;
1456           // TODO: handle scalable vectors.
1457           unsigned RegisterSize = RegAndSize.second;
1458           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1459                                       ? BitsToDescribe - Offset
1460                                       : RegisterSize;
1461           auto FragmentExpr = DIExpression::createFragmentExpression(
1462               Expr, Offset, FragmentSize);
1463           if (!FragmentExpr)
1464             continue;
1465           SDDbgValue *SDV = DAG.getVRegDbgValue(
1466               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1467           DAG.AddDbgValue(SDV, false);
1468           Offset += RegisterSize;
1469         }
1470         return true;
1471       }
1472       // We can use simple vreg locations for variadic dbg_values as well.
1473       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1474       continue;
1475     }
1476     // We failed to create a SDDbgOperand for V.
1477     return false;
1478   }
1479 
1480   // We have created a SDDbgOperand for each Value in Values.
1481   // Should use Order instead of SDNodeOrder?
1482   assert(!LocationOps.empty());
1483   SDDbgValue *SDV =
1484       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1485                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1486   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1487   return true;
1488 }
1489 
1490 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1491   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1492   for (auto &Pair : DanglingDebugInfoMap)
1493     for (auto &DDI : Pair.second)
1494       salvageUnresolvedDbgValue(DDI);
1495   clearDanglingDebugInfo();
1496 }
1497 
1498 /// getCopyFromRegs - If there was virtual register allocated for the value V
1499 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1500 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1501   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1502   SDValue Result;
1503 
1504   if (It != FuncInfo.ValueMap.end()) {
1505     Register InReg = It->second;
1506 
1507     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1508                      DAG.getDataLayout(), InReg, Ty,
1509                      None); // This is not an ABI copy.
1510     SDValue Chain = DAG.getEntryNode();
1511     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1512                                  V);
1513     resolveDanglingDebugInfo(V, Result);
1514   }
1515 
1516   return Result;
1517 }
1518 
1519 /// getValue - Return an SDValue for the given Value.
1520 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1521   // If we already have an SDValue for this value, use it. It's important
1522   // to do this first, so that we don't create a CopyFromReg if we already
1523   // have a regular SDValue.
1524   SDValue &N = NodeMap[V];
1525   if (N.getNode()) return N;
1526 
1527   // If there's a virtual register allocated and initialized for this
1528   // value, use it.
1529   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1530     return copyFromReg;
1531 
1532   // Otherwise create a new SDValue and remember it.
1533   SDValue Val = getValueImpl(V);
1534   NodeMap[V] = Val;
1535   resolveDanglingDebugInfo(V, Val);
1536   return Val;
1537 }
1538 
1539 /// getNonRegisterValue - Return an SDValue for the given Value, but
1540 /// don't look in FuncInfo.ValueMap for a virtual register.
1541 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1542   // If we already have an SDValue for this value, use it.
1543   SDValue &N = NodeMap[V];
1544   if (N.getNode()) {
1545     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1546       // Remove the debug location from the node as the node is about to be used
1547       // in a location which may differ from the original debug location.  This
1548       // is relevant to Constant and ConstantFP nodes because they can appear
1549       // as constant expressions inside PHI nodes.
1550       N->setDebugLoc(DebugLoc());
1551     }
1552     return N;
1553   }
1554 
1555   // Otherwise create a new SDValue and remember it.
1556   SDValue Val = getValueImpl(V);
1557   NodeMap[V] = Val;
1558   resolveDanglingDebugInfo(V, Val);
1559   return Val;
1560 }
1561 
1562 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1563 /// Create an SDValue for the given value.
1564 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1565   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1566 
1567   if (const Constant *C = dyn_cast<Constant>(V)) {
1568     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1569 
1570     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1571       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1572 
1573     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1574       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1575 
1576     if (isa<ConstantPointerNull>(C)) {
1577       unsigned AS = V->getType()->getPointerAddressSpace();
1578       return DAG.getConstant(0, getCurSDLoc(),
1579                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1580     }
1581 
1582     if (match(C, m_VScale(DAG.getDataLayout())))
1583       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1584 
1585     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1586       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1587 
1588     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1589       return DAG.getUNDEF(VT);
1590 
1591     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1592       visit(CE->getOpcode(), *CE);
1593       SDValue N1 = NodeMap[V];
1594       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1595       return N1;
1596     }
1597 
1598     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1599       SmallVector<SDValue, 4> Constants;
1600       for (const Use &U : C->operands()) {
1601         SDNode *Val = getValue(U).getNode();
1602         // If the operand is an empty aggregate, there are no values.
1603         if (!Val) continue;
1604         // Add each leaf value from the operand to the Constants list
1605         // to form a flattened list of all the values.
1606         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1607           Constants.push_back(SDValue(Val, i));
1608       }
1609 
1610       return DAG.getMergeValues(Constants, getCurSDLoc());
1611     }
1612 
1613     if (const ConstantDataSequential *CDS =
1614           dyn_cast<ConstantDataSequential>(C)) {
1615       SmallVector<SDValue, 4> Ops;
1616       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1617         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1618         // Add each leaf value from the operand to the Constants list
1619         // to form a flattened list of all the values.
1620         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1621           Ops.push_back(SDValue(Val, i));
1622       }
1623 
1624       if (isa<ArrayType>(CDS->getType()))
1625         return DAG.getMergeValues(Ops, getCurSDLoc());
1626       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1627     }
1628 
1629     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1630       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1631              "Unknown struct or array constant!");
1632 
1633       SmallVector<EVT, 4> ValueVTs;
1634       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1635       unsigned NumElts = ValueVTs.size();
1636       if (NumElts == 0)
1637         return SDValue(); // empty struct
1638       SmallVector<SDValue, 4> Constants(NumElts);
1639       for (unsigned i = 0; i != NumElts; ++i) {
1640         EVT EltVT = ValueVTs[i];
1641         if (isa<UndefValue>(C))
1642           Constants[i] = DAG.getUNDEF(EltVT);
1643         else if (EltVT.isFloatingPoint())
1644           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1645         else
1646           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1647       }
1648 
1649       return DAG.getMergeValues(Constants, getCurSDLoc());
1650     }
1651 
1652     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1653       return DAG.getBlockAddress(BA, VT);
1654 
1655     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1656       return getValue(Equiv->getGlobalValue());
1657 
1658     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1659       return getValue(NC->getGlobalValue());
1660 
1661     VectorType *VecTy = cast<VectorType>(V->getType());
1662 
1663     // Now that we know the number and type of the elements, get that number of
1664     // elements into the Ops array based on what kind of constant it is.
1665     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1666       SmallVector<SDValue, 16> Ops;
1667       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1668       for (unsigned i = 0; i != NumElements; ++i)
1669         Ops.push_back(getValue(CV->getOperand(i)));
1670 
1671       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1672     }
1673 
1674     if (isa<ConstantAggregateZero>(C)) {
1675       EVT EltVT =
1676           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1677 
1678       SDValue Op;
1679       if (EltVT.isFloatingPoint())
1680         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1681       else
1682         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1683 
1684       if (isa<ScalableVectorType>(VecTy))
1685         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1686 
1687       SmallVector<SDValue, 16> Ops;
1688       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1689       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1690     }
1691 
1692     llvm_unreachable("Unknown vector constant");
1693   }
1694 
1695   // If this is a static alloca, generate it as the frameindex instead of
1696   // computation.
1697   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1698     DenseMap<const AllocaInst*, int>::iterator SI =
1699       FuncInfo.StaticAllocaMap.find(AI);
1700     if (SI != FuncInfo.StaticAllocaMap.end())
1701       return DAG.getFrameIndex(SI->second,
1702                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1703   }
1704 
1705   // If this is an instruction which fast-isel has deferred, select it now.
1706   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1707     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1708 
1709     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1710                      Inst->getType(), None);
1711     SDValue Chain = DAG.getEntryNode();
1712     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1713   }
1714 
1715   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1716     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1717 
1718   if (const auto *BB = dyn_cast<BasicBlock>(V))
1719     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1720 
1721   llvm_unreachable("Can't get register for value!");
1722 }
1723 
1724 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1725   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1726   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1727   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1728   bool IsSEH = isAsynchronousEHPersonality(Pers);
1729   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1730   if (!IsSEH)
1731     CatchPadMBB->setIsEHScopeEntry();
1732   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1733   if (IsMSVCCXX || IsCoreCLR)
1734     CatchPadMBB->setIsEHFuncletEntry();
1735 }
1736 
1737 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1738   // Update machine-CFG edge.
1739   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1740   FuncInfo.MBB->addSuccessor(TargetMBB);
1741   TargetMBB->setIsEHCatchretTarget(true);
1742   DAG.getMachineFunction().setHasEHCatchret(true);
1743 
1744   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1745   bool IsSEH = isAsynchronousEHPersonality(Pers);
1746   if (IsSEH) {
1747     // If this is not a fall-through branch or optimizations are switched off,
1748     // emit the branch.
1749     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1750         TM.getOptLevel() == CodeGenOpt::None)
1751       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1752                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1753     return;
1754   }
1755 
1756   // Figure out the funclet membership for the catchret's successor.
1757   // This will be used by the FuncletLayout pass to determine how to order the
1758   // BB's.
1759   // A 'catchret' returns to the outer scope's color.
1760   Value *ParentPad = I.getCatchSwitchParentPad();
1761   const BasicBlock *SuccessorColor;
1762   if (isa<ConstantTokenNone>(ParentPad))
1763     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1764   else
1765     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1766   assert(SuccessorColor && "No parent funclet for catchret!");
1767   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1768   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1769 
1770   // Create the terminator node.
1771   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1772                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1773                             DAG.getBasicBlock(SuccessorColorMBB));
1774   DAG.setRoot(Ret);
1775 }
1776 
1777 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1778   // Don't emit any special code for the cleanuppad instruction. It just marks
1779   // the start of an EH scope/funclet.
1780   FuncInfo.MBB->setIsEHScopeEntry();
1781   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1782   if (Pers != EHPersonality::Wasm_CXX) {
1783     FuncInfo.MBB->setIsEHFuncletEntry();
1784     FuncInfo.MBB->setIsCleanupFuncletEntry();
1785   }
1786 }
1787 
1788 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1789 // not match, it is OK to add only the first unwind destination catchpad to the
1790 // successors, because there will be at least one invoke instruction within the
1791 // catch scope that points to the next unwind destination, if one exists, so
1792 // CFGSort cannot mess up with BB sorting order.
1793 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1794 // call within them, and catchpads only consisting of 'catch (...)' have a
1795 // '__cxa_end_catch' call within them, both of which generate invokes in case
1796 // the next unwind destination exists, i.e., the next unwind destination is not
1797 // the caller.)
1798 //
1799 // Having at most one EH pad successor is also simpler and helps later
1800 // transformations.
1801 //
1802 // For example,
1803 // current:
1804 //   invoke void @foo to ... unwind label %catch.dispatch
1805 // catch.dispatch:
1806 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1807 // catch.start:
1808 //   ...
1809 //   ... in this BB or some other child BB dominated by this BB there will be an
1810 //   invoke that points to 'next' BB as an unwind destination
1811 //
1812 // next: ; We don't need to add this to 'current' BB's successor
1813 //   ...
1814 static void findWasmUnwindDestinations(
1815     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1816     BranchProbability Prob,
1817     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1818         &UnwindDests) {
1819   while (EHPadBB) {
1820     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1821     if (isa<CleanupPadInst>(Pad)) {
1822       // Stop on cleanup pads.
1823       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1824       UnwindDests.back().first->setIsEHScopeEntry();
1825       break;
1826     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1827       // Add the catchpad handlers to the possible destinations. We don't
1828       // continue to the unwind destination of the catchswitch for wasm.
1829       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1830         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1831         UnwindDests.back().first->setIsEHScopeEntry();
1832       }
1833       break;
1834     } else {
1835       continue;
1836     }
1837   }
1838 }
1839 
1840 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1841 /// many places it could ultimately go. In the IR, we have a single unwind
1842 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1843 /// This function skips over imaginary basic blocks that hold catchswitch
1844 /// instructions, and finds all the "real" machine
1845 /// basic block destinations. As those destinations may not be successors of
1846 /// EHPadBB, here we also calculate the edge probability to those destinations.
1847 /// The passed-in Prob is the edge probability to EHPadBB.
1848 static void findUnwindDestinations(
1849     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1850     BranchProbability Prob,
1851     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1852         &UnwindDests) {
1853   EHPersonality Personality =
1854     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1855   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1856   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1857   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1858   bool IsSEH = isAsynchronousEHPersonality(Personality);
1859 
1860   if (IsWasmCXX) {
1861     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1862     assert(UnwindDests.size() <= 1 &&
1863            "There should be at most one unwind destination for wasm");
1864     return;
1865   }
1866 
1867   while (EHPadBB) {
1868     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1869     BasicBlock *NewEHPadBB = nullptr;
1870     if (isa<LandingPadInst>(Pad)) {
1871       // Stop on landingpads. They are not funclets.
1872       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1873       break;
1874     } else if (isa<CleanupPadInst>(Pad)) {
1875       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1876       // personalities.
1877       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1878       UnwindDests.back().first->setIsEHScopeEntry();
1879       UnwindDests.back().first->setIsEHFuncletEntry();
1880       break;
1881     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1882       // Add the catchpad handlers to the possible destinations.
1883       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1884         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1885         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1886         if (IsMSVCCXX || IsCoreCLR)
1887           UnwindDests.back().first->setIsEHFuncletEntry();
1888         if (!IsSEH)
1889           UnwindDests.back().first->setIsEHScopeEntry();
1890       }
1891       NewEHPadBB = CatchSwitch->getUnwindDest();
1892     } else {
1893       continue;
1894     }
1895 
1896     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1897     if (BPI && NewEHPadBB)
1898       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1899     EHPadBB = NewEHPadBB;
1900   }
1901 }
1902 
1903 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1904   // Update successor info.
1905   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1906   auto UnwindDest = I.getUnwindDest();
1907   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1908   BranchProbability UnwindDestProb =
1909       (BPI && UnwindDest)
1910           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1911           : BranchProbability::getZero();
1912   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1913   for (auto &UnwindDest : UnwindDests) {
1914     UnwindDest.first->setIsEHPad();
1915     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1916   }
1917   FuncInfo.MBB->normalizeSuccProbs();
1918 
1919   // Create the terminator node.
1920   SDValue Ret =
1921       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1922   DAG.setRoot(Ret);
1923 }
1924 
1925 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1926   report_fatal_error("visitCatchSwitch not yet implemented!");
1927 }
1928 
1929 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1930   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1931   auto &DL = DAG.getDataLayout();
1932   SDValue Chain = getControlRoot();
1933   SmallVector<ISD::OutputArg, 8> Outs;
1934   SmallVector<SDValue, 8> OutVals;
1935 
1936   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1937   // lower
1938   //
1939   //   %val = call <ty> @llvm.experimental.deoptimize()
1940   //   ret <ty> %val
1941   //
1942   // differently.
1943   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1944     LowerDeoptimizingReturn();
1945     return;
1946   }
1947 
1948   if (!FuncInfo.CanLowerReturn) {
1949     unsigned DemoteReg = FuncInfo.DemoteRegister;
1950     const Function *F = I.getParent()->getParent();
1951 
1952     // Emit a store of the return value through the virtual register.
1953     // Leave Outs empty so that LowerReturn won't try to load return
1954     // registers the usual way.
1955     SmallVector<EVT, 1> PtrValueVTs;
1956     ComputeValueVTs(TLI, DL,
1957                     F->getReturnType()->getPointerTo(
1958                         DAG.getDataLayout().getAllocaAddrSpace()),
1959                     PtrValueVTs);
1960 
1961     SDValue RetPtr =
1962         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1963     SDValue RetOp = getValue(I.getOperand(0));
1964 
1965     SmallVector<EVT, 4> ValueVTs, MemVTs;
1966     SmallVector<uint64_t, 4> Offsets;
1967     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1968                     &Offsets);
1969     unsigned NumValues = ValueVTs.size();
1970 
1971     SmallVector<SDValue, 4> Chains(NumValues);
1972     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1973     for (unsigned i = 0; i != NumValues; ++i) {
1974       // An aggregate return value cannot wrap around the address space, so
1975       // offsets to its parts don't wrap either.
1976       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1977                                            TypeSize::Fixed(Offsets[i]));
1978 
1979       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1980       if (MemVTs[i] != ValueVTs[i])
1981         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1982       Chains[i] = DAG.getStore(
1983           Chain, getCurSDLoc(), Val,
1984           // FIXME: better loc info would be nice.
1985           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1986           commonAlignment(BaseAlign, Offsets[i]));
1987     }
1988 
1989     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1990                         MVT::Other, Chains);
1991   } else if (I.getNumOperands() != 0) {
1992     SmallVector<EVT, 4> ValueVTs;
1993     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1994     unsigned NumValues = ValueVTs.size();
1995     if (NumValues) {
1996       SDValue RetOp = getValue(I.getOperand(0));
1997 
1998       const Function *F = I.getParent()->getParent();
1999 
2000       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2001           I.getOperand(0)->getType(), F->getCallingConv(),
2002           /*IsVarArg*/ false, DL);
2003 
2004       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2005       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2006         ExtendKind = ISD::SIGN_EXTEND;
2007       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2008         ExtendKind = ISD::ZERO_EXTEND;
2009 
2010       LLVMContext &Context = F->getContext();
2011       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2012 
2013       for (unsigned j = 0; j != NumValues; ++j) {
2014         EVT VT = ValueVTs[j];
2015 
2016         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2017           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2018 
2019         CallingConv::ID CC = F->getCallingConv();
2020 
2021         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2022         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2023         SmallVector<SDValue, 4> Parts(NumParts);
2024         getCopyToParts(DAG, getCurSDLoc(),
2025                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2026                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2027 
2028         // 'inreg' on function refers to return value
2029         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2030         if (RetInReg)
2031           Flags.setInReg();
2032 
2033         if (I.getOperand(0)->getType()->isPointerTy()) {
2034           Flags.setPointer();
2035           Flags.setPointerAddrSpace(
2036               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2037         }
2038 
2039         if (NeedsRegBlock) {
2040           Flags.setInConsecutiveRegs();
2041           if (j == NumValues - 1)
2042             Flags.setInConsecutiveRegsLast();
2043         }
2044 
2045         // Propagate extension type if any
2046         if (ExtendKind == ISD::SIGN_EXTEND)
2047           Flags.setSExt();
2048         else if (ExtendKind == ISD::ZERO_EXTEND)
2049           Flags.setZExt();
2050 
2051         for (unsigned i = 0; i < NumParts; ++i) {
2052           Outs.push_back(ISD::OutputArg(Flags,
2053                                         Parts[i].getValueType().getSimpleVT(),
2054                                         VT, /*isfixed=*/true, 0, 0));
2055           OutVals.push_back(Parts[i]);
2056         }
2057       }
2058     }
2059   }
2060 
2061   // Push in swifterror virtual register as the last element of Outs. This makes
2062   // sure swifterror virtual register will be returned in the swifterror
2063   // physical register.
2064   const Function *F = I.getParent()->getParent();
2065   if (TLI.supportSwiftError() &&
2066       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2067     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2068     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2069     Flags.setSwiftError();
2070     Outs.push_back(ISD::OutputArg(
2071         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2072         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2073     // Create SDNode for the swifterror virtual register.
2074     OutVals.push_back(
2075         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2076                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2077                         EVT(TLI.getPointerTy(DL))));
2078   }
2079 
2080   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2081   CallingConv::ID CallConv =
2082     DAG.getMachineFunction().getFunction().getCallingConv();
2083   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2084       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2085 
2086   // Verify that the target's LowerReturn behaved as expected.
2087   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2088          "LowerReturn didn't return a valid chain!");
2089 
2090   // Update the DAG with the new chain value resulting from return lowering.
2091   DAG.setRoot(Chain);
2092 }
2093 
2094 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2095 /// created for it, emit nodes to copy the value into the virtual
2096 /// registers.
2097 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2098   // Skip empty types
2099   if (V->getType()->isEmptyTy())
2100     return;
2101 
2102   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2103   if (VMI != FuncInfo.ValueMap.end()) {
2104     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2105     CopyValueToVirtualRegister(V, VMI->second);
2106   }
2107 }
2108 
2109 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2110 /// the current basic block, add it to ValueMap now so that we'll get a
2111 /// CopyTo/FromReg.
2112 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2113   // No need to export constants.
2114   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2115 
2116   // Already exported?
2117   if (FuncInfo.isExportedInst(V)) return;
2118 
2119   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2120   CopyValueToVirtualRegister(V, Reg);
2121 }
2122 
2123 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2124                                                      const BasicBlock *FromBB) {
2125   // The operands of the setcc have to be in this block.  We don't know
2126   // how to export them from some other block.
2127   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2128     // Can export from current BB.
2129     if (VI->getParent() == FromBB)
2130       return true;
2131 
2132     // Is already exported, noop.
2133     return FuncInfo.isExportedInst(V);
2134   }
2135 
2136   // If this is an argument, we can export it if the BB is the entry block or
2137   // if it is already exported.
2138   if (isa<Argument>(V)) {
2139     if (FromBB->isEntryBlock())
2140       return true;
2141 
2142     // Otherwise, can only export this if it is already exported.
2143     return FuncInfo.isExportedInst(V);
2144   }
2145 
2146   // Otherwise, constants can always be exported.
2147   return true;
2148 }
2149 
2150 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2151 BranchProbability
2152 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2153                                         const MachineBasicBlock *Dst) const {
2154   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2155   const BasicBlock *SrcBB = Src->getBasicBlock();
2156   const BasicBlock *DstBB = Dst->getBasicBlock();
2157   if (!BPI) {
2158     // If BPI is not available, set the default probability as 1 / N, where N is
2159     // the number of successors.
2160     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2161     return BranchProbability(1, SuccSize);
2162   }
2163   return BPI->getEdgeProbability(SrcBB, DstBB);
2164 }
2165 
2166 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2167                                                MachineBasicBlock *Dst,
2168                                                BranchProbability Prob) {
2169   if (!FuncInfo.BPI)
2170     Src->addSuccessorWithoutProb(Dst);
2171   else {
2172     if (Prob.isUnknown())
2173       Prob = getEdgeProbability(Src, Dst);
2174     Src->addSuccessor(Dst, Prob);
2175   }
2176 }
2177 
2178 static bool InBlock(const Value *V, const BasicBlock *BB) {
2179   if (const Instruction *I = dyn_cast<Instruction>(V))
2180     return I->getParent() == BB;
2181   return true;
2182 }
2183 
2184 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2185 /// This function emits a branch and is used at the leaves of an OR or an
2186 /// AND operator tree.
2187 void
2188 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2189                                                   MachineBasicBlock *TBB,
2190                                                   MachineBasicBlock *FBB,
2191                                                   MachineBasicBlock *CurBB,
2192                                                   MachineBasicBlock *SwitchBB,
2193                                                   BranchProbability TProb,
2194                                                   BranchProbability FProb,
2195                                                   bool InvertCond) {
2196   const BasicBlock *BB = CurBB->getBasicBlock();
2197 
2198   // If the leaf of the tree is a comparison, merge the condition into
2199   // the caseblock.
2200   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2201     // The operands of the cmp have to be in this block.  We don't know
2202     // how to export them from some other block.  If this is the first block
2203     // of the sequence, no exporting is needed.
2204     if (CurBB == SwitchBB ||
2205         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2206          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2207       ISD::CondCode Condition;
2208       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2209         ICmpInst::Predicate Pred =
2210             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2211         Condition = getICmpCondCode(Pred);
2212       } else {
2213         const FCmpInst *FC = cast<FCmpInst>(Cond);
2214         FCmpInst::Predicate Pred =
2215             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2216         Condition = getFCmpCondCode(Pred);
2217         if (TM.Options.NoNaNsFPMath)
2218           Condition = getFCmpCodeWithoutNaN(Condition);
2219       }
2220 
2221       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2222                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2223       SL->SwitchCases.push_back(CB);
2224       return;
2225     }
2226   }
2227 
2228   // Create a CaseBlock record representing this branch.
2229   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2230   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2231                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2232   SL->SwitchCases.push_back(CB);
2233 }
2234 
2235 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2236                                                MachineBasicBlock *TBB,
2237                                                MachineBasicBlock *FBB,
2238                                                MachineBasicBlock *CurBB,
2239                                                MachineBasicBlock *SwitchBB,
2240                                                Instruction::BinaryOps Opc,
2241                                                BranchProbability TProb,
2242                                                BranchProbability FProb,
2243                                                bool InvertCond) {
2244   // Skip over not part of the tree and remember to invert op and operands at
2245   // next level.
2246   Value *NotCond;
2247   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2248       InBlock(NotCond, CurBB->getBasicBlock())) {
2249     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2250                          !InvertCond);
2251     return;
2252   }
2253 
2254   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2255   const Value *BOpOp0, *BOpOp1;
2256   // Compute the effective opcode for Cond, taking into account whether it needs
2257   // to be inverted, e.g.
2258   //   and (not (or A, B)), C
2259   // gets lowered as
2260   //   and (and (not A, not B), C)
2261   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2262   if (BOp) {
2263     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2264                ? Instruction::And
2265                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2266                       ? Instruction::Or
2267                       : (Instruction::BinaryOps)0);
2268     if (InvertCond) {
2269       if (BOpc == Instruction::And)
2270         BOpc = Instruction::Or;
2271       else if (BOpc == Instruction::Or)
2272         BOpc = Instruction::And;
2273     }
2274   }
2275 
2276   // If this node is not part of the or/and tree, emit it as a branch.
2277   // Note that all nodes in the tree should have same opcode.
2278   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2279   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2280       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2281       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2282     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2283                                  TProb, FProb, InvertCond);
2284     return;
2285   }
2286 
2287   //  Create TmpBB after CurBB.
2288   MachineFunction::iterator BBI(CurBB);
2289   MachineFunction &MF = DAG.getMachineFunction();
2290   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2291   CurBB->getParent()->insert(++BBI, TmpBB);
2292 
2293   if (Opc == Instruction::Or) {
2294     // Codegen X | Y as:
2295     // BB1:
2296     //   jmp_if_X TBB
2297     //   jmp TmpBB
2298     // TmpBB:
2299     //   jmp_if_Y TBB
2300     //   jmp FBB
2301     //
2302 
2303     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2304     // The requirement is that
2305     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2306     //     = TrueProb for original BB.
2307     // Assuming the original probabilities are A and B, one choice is to set
2308     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2309     // A/(1+B) and 2B/(1+B). This choice assumes that
2310     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2311     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2312     // TmpBB, but the math is more complicated.
2313 
2314     auto NewTrueProb = TProb / 2;
2315     auto NewFalseProb = TProb / 2 + FProb;
2316     // Emit the LHS condition.
2317     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2318                          NewFalseProb, InvertCond);
2319 
2320     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2321     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2322     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2323     // Emit the RHS condition into TmpBB.
2324     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2325                          Probs[1], InvertCond);
2326   } else {
2327     assert(Opc == Instruction::And && "Unknown merge op!");
2328     // Codegen X & Y as:
2329     // BB1:
2330     //   jmp_if_X TmpBB
2331     //   jmp FBB
2332     // TmpBB:
2333     //   jmp_if_Y TBB
2334     //   jmp FBB
2335     //
2336     //  This requires creation of TmpBB after CurBB.
2337 
2338     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2339     // The requirement is that
2340     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2341     //     = FalseProb for original BB.
2342     // Assuming the original probabilities are A and B, one choice is to set
2343     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2344     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2345     // TrueProb for BB1 * FalseProb for TmpBB.
2346 
2347     auto NewTrueProb = TProb + FProb / 2;
2348     auto NewFalseProb = FProb / 2;
2349     // Emit the LHS condition.
2350     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2351                          NewFalseProb, InvertCond);
2352 
2353     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2354     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2355     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2356     // Emit the RHS condition into TmpBB.
2357     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2358                          Probs[1], InvertCond);
2359   }
2360 }
2361 
2362 /// If the set of cases should be emitted as a series of branches, return true.
2363 /// If we should emit this as a bunch of and/or'd together conditions, return
2364 /// false.
2365 bool
2366 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2367   if (Cases.size() != 2) return true;
2368 
2369   // If this is two comparisons of the same values or'd or and'd together, they
2370   // will get folded into a single comparison, so don't emit two blocks.
2371   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2372        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2373       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2374        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2375     return false;
2376   }
2377 
2378   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2379   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2380   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2381       Cases[0].CC == Cases[1].CC &&
2382       isa<Constant>(Cases[0].CmpRHS) &&
2383       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2384     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2385       return false;
2386     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2387       return false;
2388   }
2389 
2390   return true;
2391 }
2392 
2393 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2394   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2395 
2396   // Update machine-CFG edges.
2397   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2398 
2399   if (I.isUnconditional()) {
2400     // Update machine-CFG edges.
2401     BrMBB->addSuccessor(Succ0MBB);
2402 
2403     // If this is not a fall-through branch or optimizations are switched off,
2404     // emit the branch.
2405     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2406       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2407                               MVT::Other, getControlRoot(),
2408                               DAG.getBasicBlock(Succ0MBB)));
2409 
2410     return;
2411   }
2412 
2413   // If this condition is one of the special cases we handle, do special stuff
2414   // now.
2415   const Value *CondVal = I.getCondition();
2416   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2417 
2418   // If this is a series of conditions that are or'd or and'd together, emit
2419   // this as a sequence of branches instead of setcc's with and/or operations.
2420   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2421   // unpredictable branches, and vector extracts because those jumps are likely
2422   // expensive for any target), this should improve performance.
2423   // For example, instead of something like:
2424   //     cmp A, B
2425   //     C = seteq
2426   //     cmp D, E
2427   //     F = setle
2428   //     or C, F
2429   //     jnz foo
2430   // Emit:
2431   //     cmp A, B
2432   //     je foo
2433   //     cmp D, E
2434   //     jle foo
2435   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2436   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2437       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2438     Value *Vec;
2439     const Value *BOp0, *BOp1;
2440     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2441     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2442       Opcode = Instruction::And;
2443     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2444       Opcode = Instruction::Or;
2445 
2446     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2447                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2448       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2449                            getEdgeProbability(BrMBB, Succ0MBB),
2450                            getEdgeProbability(BrMBB, Succ1MBB),
2451                            /*InvertCond=*/false);
2452       // If the compares in later blocks need to use values not currently
2453       // exported from this block, export them now.  This block should always
2454       // be the first entry.
2455       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2456 
2457       // Allow some cases to be rejected.
2458       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2459         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2460           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2461           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2462         }
2463 
2464         // Emit the branch for this block.
2465         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2466         SL->SwitchCases.erase(SL->SwitchCases.begin());
2467         return;
2468       }
2469 
2470       // Okay, we decided not to do this, remove any inserted MBB's and clear
2471       // SwitchCases.
2472       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2473         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2474 
2475       SL->SwitchCases.clear();
2476     }
2477   }
2478 
2479   // Create a CaseBlock record representing this branch.
2480   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2481                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2482 
2483   // Use visitSwitchCase to actually insert the fast branch sequence for this
2484   // cond branch.
2485   visitSwitchCase(CB, BrMBB);
2486 }
2487 
2488 /// visitSwitchCase - Emits the necessary code to represent a single node in
2489 /// the binary search tree resulting from lowering a switch instruction.
2490 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2491                                           MachineBasicBlock *SwitchBB) {
2492   SDValue Cond;
2493   SDValue CondLHS = getValue(CB.CmpLHS);
2494   SDLoc dl = CB.DL;
2495 
2496   if (CB.CC == ISD::SETTRUE) {
2497     // Branch or fall through to TrueBB.
2498     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2499     SwitchBB->normalizeSuccProbs();
2500     if (CB.TrueBB != NextBlock(SwitchBB)) {
2501       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2502                               DAG.getBasicBlock(CB.TrueBB)));
2503     }
2504     return;
2505   }
2506 
2507   auto &TLI = DAG.getTargetLoweringInfo();
2508   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2509 
2510   // Build the setcc now.
2511   if (!CB.CmpMHS) {
2512     // Fold "(X == true)" to X and "(X == false)" to !X to
2513     // handle common cases produced by branch lowering.
2514     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2515         CB.CC == ISD::SETEQ)
2516       Cond = CondLHS;
2517     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2518              CB.CC == ISD::SETEQ) {
2519       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2520       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2521     } else {
2522       SDValue CondRHS = getValue(CB.CmpRHS);
2523 
2524       // If a pointer's DAG type is larger than its memory type then the DAG
2525       // values are zero-extended. This breaks signed comparisons so truncate
2526       // back to the underlying type before doing the compare.
2527       if (CondLHS.getValueType() != MemVT) {
2528         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2529         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2530       }
2531       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2532     }
2533   } else {
2534     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2535 
2536     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2537     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2538 
2539     SDValue CmpOp = getValue(CB.CmpMHS);
2540     EVT VT = CmpOp.getValueType();
2541 
2542     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2543       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2544                           ISD::SETLE);
2545     } else {
2546       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2547                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2548       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2549                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2550     }
2551   }
2552 
2553   // Update successor info
2554   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2555   // TrueBB and FalseBB are always different unless the incoming IR is
2556   // degenerate. This only happens when running llc on weird IR.
2557   if (CB.TrueBB != CB.FalseBB)
2558     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2559   SwitchBB->normalizeSuccProbs();
2560 
2561   // If the lhs block is the next block, invert the condition so that we can
2562   // fall through to the lhs instead of the rhs block.
2563   if (CB.TrueBB == NextBlock(SwitchBB)) {
2564     std::swap(CB.TrueBB, CB.FalseBB);
2565     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2566     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2567   }
2568 
2569   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2570                                MVT::Other, getControlRoot(), Cond,
2571                                DAG.getBasicBlock(CB.TrueBB));
2572 
2573   setValue(CurInst, BrCond);
2574 
2575   // Insert the false branch. Do this even if it's a fall through branch,
2576   // this makes it easier to do DAG optimizations which require inverting
2577   // the branch condition.
2578   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2579                        DAG.getBasicBlock(CB.FalseBB));
2580 
2581   DAG.setRoot(BrCond);
2582 }
2583 
2584 /// visitJumpTable - Emit JumpTable node in the current MBB
2585 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2586   // Emit the code for the jump table
2587   assert(JT.Reg != -1U && "Should lower JT Header first!");
2588   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2589   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2590                                      JT.Reg, PTy);
2591   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2592   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2593                                     MVT::Other, Index.getValue(1),
2594                                     Table, Index);
2595   DAG.setRoot(BrJumpTable);
2596 }
2597 
2598 /// visitJumpTableHeader - This function emits necessary code to produce index
2599 /// in the JumpTable from switch case.
2600 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2601                                                JumpTableHeader &JTH,
2602                                                MachineBasicBlock *SwitchBB) {
2603   SDLoc dl = getCurSDLoc();
2604 
2605   // Subtract the lowest switch case value from the value being switched on.
2606   SDValue SwitchOp = getValue(JTH.SValue);
2607   EVT VT = SwitchOp.getValueType();
2608   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2609                             DAG.getConstant(JTH.First, dl, VT));
2610 
2611   // The SDNode we just created, which holds the value being switched on minus
2612   // the smallest case value, needs to be copied to a virtual register so it
2613   // can be used as an index into the jump table in a subsequent basic block.
2614   // This value may be smaller or larger than the target's pointer type, and
2615   // therefore require extension or truncating.
2616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2617   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2618 
2619   unsigned JumpTableReg =
2620       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2621   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2622                                     JumpTableReg, SwitchOp);
2623   JT.Reg = JumpTableReg;
2624 
2625   if (!JTH.FallthroughUnreachable) {
2626     // Emit the range check for the jump table, and branch to the default block
2627     // for the switch statement if the value being switched on exceeds the
2628     // largest case in the switch.
2629     SDValue CMP = DAG.getSetCC(
2630         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2631                                    Sub.getValueType()),
2632         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2633 
2634     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2635                                  MVT::Other, CopyTo, CMP,
2636                                  DAG.getBasicBlock(JT.Default));
2637 
2638     // Avoid emitting unnecessary branches to the next block.
2639     if (JT.MBB != NextBlock(SwitchBB))
2640       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2641                            DAG.getBasicBlock(JT.MBB));
2642 
2643     DAG.setRoot(BrCond);
2644   } else {
2645     // Avoid emitting unnecessary branches to the next block.
2646     if (JT.MBB != NextBlock(SwitchBB))
2647       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2648                               DAG.getBasicBlock(JT.MBB)));
2649     else
2650       DAG.setRoot(CopyTo);
2651   }
2652 }
2653 
2654 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2655 /// variable if there exists one.
2656 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2657                                  SDValue &Chain) {
2658   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2659   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2660   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2661   MachineFunction &MF = DAG.getMachineFunction();
2662   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2663   MachineSDNode *Node =
2664       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2665   if (Global) {
2666     MachinePointerInfo MPInfo(Global);
2667     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2668                  MachineMemOperand::MODereferenceable;
2669     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2670         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2671     DAG.setNodeMemRefs(Node, {MemRef});
2672   }
2673   if (PtrTy != PtrMemTy)
2674     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2675   return SDValue(Node, 0);
2676 }
2677 
2678 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2679 /// tail spliced into a stack protector check success bb.
2680 ///
2681 /// For a high level explanation of how this fits into the stack protector
2682 /// generation see the comment on the declaration of class
2683 /// StackProtectorDescriptor.
2684 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2685                                                   MachineBasicBlock *ParentBB) {
2686 
2687   // First create the loads to the guard/stack slot for the comparison.
2688   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2689   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2690   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2691 
2692   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2693   int FI = MFI.getStackProtectorIndex();
2694 
2695   SDValue Guard;
2696   SDLoc dl = getCurSDLoc();
2697   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2698   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2699   Align Align =
2700       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2701 
2702   // Generate code to load the content of the guard slot.
2703   SDValue GuardVal = DAG.getLoad(
2704       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2705       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2706       MachineMemOperand::MOVolatile);
2707 
2708   if (TLI.useStackGuardXorFP())
2709     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2710 
2711   // Retrieve guard check function, nullptr if instrumentation is inlined.
2712   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2713     // The target provides a guard check function to validate the guard value.
2714     // Generate a call to that function with the content of the guard slot as
2715     // argument.
2716     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2717     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2718 
2719     TargetLowering::ArgListTy Args;
2720     TargetLowering::ArgListEntry Entry;
2721     Entry.Node = GuardVal;
2722     Entry.Ty = FnTy->getParamType(0);
2723     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2724       Entry.IsInReg = true;
2725     Args.push_back(Entry);
2726 
2727     TargetLowering::CallLoweringInfo CLI(DAG);
2728     CLI.setDebugLoc(getCurSDLoc())
2729         .setChain(DAG.getEntryNode())
2730         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2731                    getValue(GuardCheckFn), std::move(Args));
2732 
2733     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2734     DAG.setRoot(Result.second);
2735     return;
2736   }
2737 
2738   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2739   // Otherwise, emit a volatile load to retrieve the stack guard value.
2740   SDValue Chain = DAG.getEntryNode();
2741   if (TLI.useLoadStackGuardNode()) {
2742     Guard = getLoadStackGuard(DAG, dl, Chain);
2743   } else {
2744     const Value *IRGuard = TLI.getSDagStackGuard(M);
2745     SDValue GuardPtr = getValue(IRGuard);
2746 
2747     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2748                         MachinePointerInfo(IRGuard, 0), Align,
2749                         MachineMemOperand::MOVolatile);
2750   }
2751 
2752   // Perform the comparison via a getsetcc.
2753   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2754                                                         *DAG.getContext(),
2755                                                         Guard.getValueType()),
2756                              Guard, GuardVal, ISD::SETNE);
2757 
2758   // If the guard/stackslot do not equal, branch to failure MBB.
2759   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2760                                MVT::Other, GuardVal.getOperand(0),
2761                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2762   // Otherwise branch to success MBB.
2763   SDValue Br = DAG.getNode(ISD::BR, dl,
2764                            MVT::Other, BrCond,
2765                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2766 
2767   DAG.setRoot(Br);
2768 }
2769 
2770 /// Codegen the failure basic block for a stack protector check.
2771 ///
2772 /// A failure stack protector machine basic block consists simply of a call to
2773 /// __stack_chk_fail().
2774 ///
2775 /// For a high level explanation of how this fits into the stack protector
2776 /// generation see the comment on the declaration of class
2777 /// StackProtectorDescriptor.
2778 void
2779 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2781   TargetLowering::MakeLibCallOptions CallOptions;
2782   CallOptions.setDiscardResult(true);
2783   SDValue Chain =
2784       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2785                       None, CallOptions, getCurSDLoc()).second;
2786   // On PS4/PS5, the "return address" must still be within the calling
2787   // function, even if it's at the very end, so emit an explicit TRAP here.
2788   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2789   if (TM.getTargetTriple().isPS())
2790     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2791   // WebAssembly needs an unreachable instruction after a non-returning call,
2792   // because the function return type can be different from __stack_chk_fail's
2793   // return type (void).
2794   if (TM.getTargetTriple().isWasm())
2795     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2796 
2797   DAG.setRoot(Chain);
2798 }
2799 
2800 /// visitBitTestHeader - This function emits necessary code to produce value
2801 /// suitable for "bit tests"
2802 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2803                                              MachineBasicBlock *SwitchBB) {
2804   SDLoc dl = getCurSDLoc();
2805 
2806   // Subtract the minimum value.
2807   SDValue SwitchOp = getValue(B.SValue);
2808   EVT VT = SwitchOp.getValueType();
2809   SDValue RangeSub =
2810       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2811 
2812   // Determine the type of the test operands.
2813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2814   bool UsePtrType = false;
2815   if (!TLI.isTypeLegal(VT)) {
2816     UsePtrType = true;
2817   } else {
2818     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2819       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2820         // Switch table case range are encoded into series of masks.
2821         // Just use pointer type, it's guaranteed to fit.
2822         UsePtrType = true;
2823         break;
2824       }
2825   }
2826   SDValue Sub = RangeSub;
2827   if (UsePtrType) {
2828     VT = TLI.getPointerTy(DAG.getDataLayout());
2829     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2830   }
2831 
2832   B.RegVT = VT.getSimpleVT();
2833   B.Reg = FuncInfo.CreateReg(B.RegVT);
2834   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2835 
2836   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2837 
2838   if (!B.FallthroughUnreachable)
2839     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2840   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2841   SwitchBB->normalizeSuccProbs();
2842 
2843   SDValue Root = CopyTo;
2844   if (!B.FallthroughUnreachable) {
2845     // Conditional branch to the default block.
2846     SDValue RangeCmp = DAG.getSetCC(dl,
2847         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2848                                RangeSub.getValueType()),
2849         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2850         ISD::SETUGT);
2851 
2852     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2853                        DAG.getBasicBlock(B.Default));
2854   }
2855 
2856   // Avoid emitting unnecessary branches to the next block.
2857   if (MBB != NextBlock(SwitchBB))
2858     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2859 
2860   DAG.setRoot(Root);
2861 }
2862 
2863 /// visitBitTestCase - this function produces one "bit test"
2864 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2865                                            MachineBasicBlock* NextMBB,
2866                                            BranchProbability BranchProbToNext,
2867                                            unsigned Reg,
2868                                            BitTestCase &B,
2869                                            MachineBasicBlock *SwitchBB) {
2870   SDLoc dl = getCurSDLoc();
2871   MVT VT = BB.RegVT;
2872   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2873   SDValue Cmp;
2874   unsigned PopCount = countPopulation(B.Mask);
2875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2876   if (PopCount == 1) {
2877     // Testing for a single bit; just compare the shift count with what it
2878     // would need to be to shift a 1 bit in that position.
2879     Cmp = DAG.getSetCC(
2880         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2881         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2882         ISD::SETEQ);
2883   } else if (PopCount == BB.Range) {
2884     // There is only one zero bit in the range, test for it directly.
2885     Cmp = DAG.getSetCC(
2886         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2887         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2888         ISD::SETNE);
2889   } else {
2890     // Make desired shift
2891     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2892                                     DAG.getConstant(1, dl, VT), ShiftOp);
2893 
2894     // Emit bit tests and jumps
2895     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2896                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2897     Cmp = DAG.getSetCC(
2898         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2899         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2900   }
2901 
2902   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2903   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2904   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2905   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2906   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2907   // one as they are relative probabilities (and thus work more like weights),
2908   // and hence we need to normalize them to let the sum of them become one.
2909   SwitchBB->normalizeSuccProbs();
2910 
2911   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2912                               MVT::Other, getControlRoot(),
2913                               Cmp, DAG.getBasicBlock(B.TargetBB));
2914 
2915   // Avoid emitting unnecessary branches to the next block.
2916   if (NextMBB != NextBlock(SwitchBB))
2917     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2918                         DAG.getBasicBlock(NextMBB));
2919 
2920   DAG.setRoot(BrAnd);
2921 }
2922 
2923 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2924   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2925 
2926   // Retrieve successors. Look through artificial IR level blocks like
2927   // catchswitch for successors.
2928   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2929   const BasicBlock *EHPadBB = I.getSuccessor(1);
2930 
2931   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2932   // have to do anything here to lower funclet bundles.
2933   assert(!I.hasOperandBundlesOtherThan(
2934              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2935               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2936               LLVMContext::OB_cfguardtarget,
2937               LLVMContext::OB_clang_arc_attachedcall}) &&
2938          "Cannot lower invokes with arbitrary operand bundles yet!");
2939 
2940   const Value *Callee(I.getCalledOperand());
2941   const Function *Fn = dyn_cast<Function>(Callee);
2942   if (isa<InlineAsm>(Callee))
2943     visitInlineAsm(I, EHPadBB);
2944   else if (Fn && Fn->isIntrinsic()) {
2945     switch (Fn->getIntrinsicID()) {
2946     default:
2947       llvm_unreachable("Cannot invoke this intrinsic");
2948     case Intrinsic::donothing:
2949       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2950     case Intrinsic::seh_try_begin:
2951     case Intrinsic::seh_scope_begin:
2952     case Intrinsic::seh_try_end:
2953     case Intrinsic::seh_scope_end:
2954       break;
2955     case Intrinsic::experimental_patchpoint_void:
2956     case Intrinsic::experimental_patchpoint_i64:
2957       visitPatchpoint(I, EHPadBB);
2958       break;
2959     case Intrinsic::experimental_gc_statepoint:
2960       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2961       break;
2962     case Intrinsic::wasm_rethrow: {
2963       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2964       // special because it can be invoked, so we manually lower it to a DAG
2965       // node here.
2966       SmallVector<SDValue, 8> Ops;
2967       Ops.push_back(getRoot()); // inchain
2968       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2969       Ops.push_back(
2970           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2971                                 TLI.getPointerTy(DAG.getDataLayout())));
2972       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2973       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2974       break;
2975     }
2976     }
2977   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2978     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2979     // Eventually we will support lowering the @llvm.experimental.deoptimize
2980     // intrinsic, and right now there are no plans to support other intrinsics
2981     // with deopt state.
2982     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2983   } else {
2984     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2985   }
2986 
2987   // If the value of the invoke is used outside of its defining block, make it
2988   // available as a virtual register.
2989   // We already took care of the exported value for the statepoint instruction
2990   // during call to the LowerStatepoint.
2991   if (!isa<GCStatepointInst>(I)) {
2992     CopyToExportRegsIfNeeded(&I);
2993   }
2994 
2995   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2996   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2997   BranchProbability EHPadBBProb =
2998       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2999           : BranchProbability::getZero();
3000   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3001 
3002   // Update successor info.
3003   addSuccessorWithProb(InvokeMBB, Return);
3004   for (auto &UnwindDest : UnwindDests) {
3005     UnwindDest.first->setIsEHPad();
3006     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3007   }
3008   InvokeMBB->normalizeSuccProbs();
3009 
3010   // Drop into normal successor.
3011   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3012                           DAG.getBasicBlock(Return)));
3013 }
3014 
3015 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3016   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3017 
3018   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3019   // have to do anything here to lower funclet bundles.
3020   assert(!I.hasOperandBundlesOtherThan(
3021              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3022          "Cannot lower callbrs with arbitrary operand bundles yet!");
3023 
3024   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3025   visitInlineAsm(I);
3026   CopyToExportRegsIfNeeded(&I);
3027 
3028   // Retrieve successors.
3029   SmallPtrSet<BasicBlock *, 8> Dests;
3030   Dests.insert(I.getDefaultDest());
3031   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3032 
3033   // Update successor info.
3034   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3035   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3036     BasicBlock *Dest = I.getIndirectDest(i);
3037     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3038     Target->setIsInlineAsmBrIndirectTarget();
3039     Target->setMachineBlockAddressTaken();
3040     Target->setLabelMustBeEmitted();
3041     // Don't add duplicate machine successors.
3042     if (Dests.insert(Dest).second)
3043       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3044   }
3045   CallBrMBB->normalizeSuccProbs();
3046 
3047   // Drop into default successor.
3048   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3049                           MVT::Other, getControlRoot(),
3050                           DAG.getBasicBlock(Return)));
3051 }
3052 
3053 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3054   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3055 }
3056 
3057 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3058   assert(FuncInfo.MBB->isEHPad() &&
3059          "Call to landingpad not in landing pad!");
3060 
3061   // If there aren't registers to copy the values into (e.g., during SjLj
3062   // exceptions), then don't bother to create these DAG nodes.
3063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3064   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3065   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3066       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3067     return;
3068 
3069   // If landingpad's return type is token type, we don't create DAG nodes
3070   // for its exception pointer and selector value. The extraction of exception
3071   // pointer or selector value from token type landingpads is not currently
3072   // supported.
3073   if (LP.getType()->isTokenTy())
3074     return;
3075 
3076   SmallVector<EVT, 2> ValueVTs;
3077   SDLoc dl = getCurSDLoc();
3078   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3079   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3080 
3081   // Get the two live-in registers as SDValues. The physregs have already been
3082   // copied into virtual registers.
3083   SDValue Ops[2];
3084   if (FuncInfo.ExceptionPointerVirtReg) {
3085     Ops[0] = DAG.getZExtOrTrunc(
3086         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3087                            FuncInfo.ExceptionPointerVirtReg,
3088                            TLI.getPointerTy(DAG.getDataLayout())),
3089         dl, ValueVTs[0]);
3090   } else {
3091     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3092   }
3093   Ops[1] = DAG.getZExtOrTrunc(
3094       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3095                          FuncInfo.ExceptionSelectorVirtReg,
3096                          TLI.getPointerTy(DAG.getDataLayout())),
3097       dl, ValueVTs[1]);
3098 
3099   // Merge into one.
3100   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3101                             DAG.getVTList(ValueVTs), Ops);
3102   setValue(&LP, Res);
3103 }
3104 
3105 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3106                                            MachineBasicBlock *Last) {
3107   // Update JTCases.
3108   for (JumpTableBlock &JTB : SL->JTCases)
3109     if (JTB.first.HeaderBB == First)
3110       JTB.first.HeaderBB = Last;
3111 
3112   // Update BitTestCases.
3113   for (BitTestBlock &BTB : SL->BitTestCases)
3114     if (BTB.Parent == First)
3115       BTB.Parent = Last;
3116 }
3117 
3118 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3119   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3120 
3121   // Update machine-CFG edges with unique successors.
3122   SmallSet<BasicBlock*, 32> Done;
3123   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3124     BasicBlock *BB = I.getSuccessor(i);
3125     bool Inserted = Done.insert(BB).second;
3126     if (!Inserted)
3127         continue;
3128 
3129     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3130     addSuccessorWithProb(IndirectBrMBB, Succ);
3131   }
3132   IndirectBrMBB->normalizeSuccProbs();
3133 
3134   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3135                           MVT::Other, getControlRoot(),
3136                           getValue(I.getAddress())));
3137 }
3138 
3139 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3140   if (!DAG.getTarget().Options.TrapUnreachable)
3141     return;
3142 
3143   // We may be able to ignore unreachable behind a noreturn call.
3144   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3145     const BasicBlock &BB = *I.getParent();
3146     if (&I != &BB.front()) {
3147       BasicBlock::const_iterator PredI =
3148         std::prev(BasicBlock::const_iterator(&I));
3149       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3150         if (Call->doesNotReturn())
3151           return;
3152       }
3153     }
3154   }
3155 
3156   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3157 }
3158 
3159 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3160   SDNodeFlags Flags;
3161   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3162     Flags.copyFMF(*FPOp);
3163 
3164   SDValue Op = getValue(I.getOperand(0));
3165   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3166                                     Op, Flags);
3167   setValue(&I, UnNodeValue);
3168 }
3169 
3170 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3171   SDNodeFlags Flags;
3172   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3173     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3174     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3175   }
3176   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3177     Flags.setExact(ExactOp->isExact());
3178   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3179     Flags.copyFMF(*FPOp);
3180 
3181   SDValue Op1 = getValue(I.getOperand(0));
3182   SDValue Op2 = getValue(I.getOperand(1));
3183   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3184                                      Op1, Op2, Flags);
3185   setValue(&I, BinNodeValue);
3186 }
3187 
3188 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3189   SDValue Op1 = getValue(I.getOperand(0));
3190   SDValue Op2 = getValue(I.getOperand(1));
3191 
3192   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3193       Op1.getValueType(), DAG.getDataLayout());
3194 
3195   // Coerce the shift amount to the right type if we can. This exposes the
3196   // truncate or zext to optimization early.
3197   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3198     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3199            "Unexpected shift type");
3200     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3201   }
3202 
3203   bool nuw = false;
3204   bool nsw = false;
3205   bool exact = false;
3206 
3207   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3208 
3209     if (const OverflowingBinaryOperator *OFBinOp =
3210             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3211       nuw = OFBinOp->hasNoUnsignedWrap();
3212       nsw = OFBinOp->hasNoSignedWrap();
3213     }
3214     if (const PossiblyExactOperator *ExactOp =
3215             dyn_cast<const PossiblyExactOperator>(&I))
3216       exact = ExactOp->isExact();
3217   }
3218   SDNodeFlags Flags;
3219   Flags.setExact(exact);
3220   Flags.setNoSignedWrap(nsw);
3221   Flags.setNoUnsignedWrap(nuw);
3222   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3223                             Flags);
3224   setValue(&I, Res);
3225 }
3226 
3227 void SelectionDAGBuilder::visitSDiv(const User &I) {
3228   SDValue Op1 = getValue(I.getOperand(0));
3229   SDValue Op2 = getValue(I.getOperand(1));
3230 
3231   SDNodeFlags Flags;
3232   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3233                  cast<PossiblyExactOperator>(&I)->isExact());
3234   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3235                            Op2, Flags));
3236 }
3237 
3238 void SelectionDAGBuilder::visitICmp(const User &I) {
3239   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3240   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3241     predicate = IC->getPredicate();
3242   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3243     predicate = ICmpInst::Predicate(IC->getPredicate());
3244   SDValue Op1 = getValue(I.getOperand(0));
3245   SDValue Op2 = getValue(I.getOperand(1));
3246   ISD::CondCode Opcode = getICmpCondCode(predicate);
3247 
3248   auto &TLI = DAG.getTargetLoweringInfo();
3249   EVT MemVT =
3250       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3251 
3252   // If a pointer's DAG type is larger than its memory type then the DAG values
3253   // are zero-extended. This breaks signed comparisons so truncate back to the
3254   // underlying type before doing the compare.
3255   if (Op1.getValueType() != MemVT) {
3256     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3257     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3258   }
3259 
3260   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3261                                                         I.getType());
3262   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3263 }
3264 
3265 void SelectionDAGBuilder::visitFCmp(const User &I) {
3266   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3267   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3268     predicate = FC->getPredicate();
3269   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3270     predicate = FCmpInst::Predicate(FC->getPredicate());
3271   SDValue Op1 = getValue(I.getOperand(0));
3272   SDValue Op2 = getValue(I.getOperand(1));
3273 
3274   ISD::CondCode Condition = getFCmpCondCode(predicate);
3275   auto *FPMO = cast<FPMathOperator>(&I);
3276   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3277     Condition = getFCmpCodeWithoutNaN(Condition);
3278 
3279   SDNodeFlags Flags;
3280   Flags.copyFMF(*FPMO);
3281   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3282 
3283   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3284                                                         I.getType());
3285   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3286 }
3287 
3288 // Check if the condition of the select has one use or two users that are both
3289 // selects with the same condition.
3290 static bool hasOnlySelectUsers(const Value *Cond) {
3291   return llvm::all_of(Cond->users(), [](const Value *V) {
3292     return isa<SelectInst>(V);
3293   });
3294 }
3295 
3296 void SelectionDAGBuilder::visitSelect(const User &I) {
3297   SmallVector<EVT, 4> ValueVTs;
3298   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3299                   ValueVTs);
3300   unsigned NumValues = ValueVTs.size();
3301   if (NumValues == 0) return;
3302 
3303   SmallVector<SDValue, 4> Values(NumValues);
3304   SDValue Cond     = getValue(I.getOperand(0));
3305   SDValue LHSVal   = getValue(I.getOperand(1));
3306   SDValue RHSVal   = getValue(I.getOperand(2));
3307   SmallVector<SDValue, 1> BaseOps(1, Cond);
3308   ISD::NodeType OpCode =
3309       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3310 
3311   bool IsUnaryAbs = false;
3312   bool Negate = false;
3313 
3314   SDNodeFlags Flags;
3315   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3316     Flags.copyFMF(*FPOp);
3317 
3318   // Min/max matching is only viable if all output VTs are the same.
3319   if (all_equal(ValueVTs)) {
3320     EVT VT = ValueVTs[0];
3321     LLVMContext &Ctx = *DAG.getContext();
3322     auto &TLI = DAG.getTargetLoweringInfo();
3323 
3324     // We care about the legality of the operation after it has been type
3325     // legalized.
3326     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3327       VT = TLI.getTypeToTransformTo(Ctx, VT);
3328 
3329     // If the vselect is legal, assume we want to leave this as a vector setcc +
3330     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3331     // min/max is legal on the scalar type.
3332     bool UseScalarMinMax = VT.isVector() &&
3333       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3334 
3335     Value *LHS, *RHS;
3336     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3337     ISD::NodeType Opc = ISD::DELETED_NODE;
3338     switch (SPR.Flavor) {
3339     case SPF_UMAX:    Opc = ISD::UMAX; break;
3340     case SPF_UMIN:    Opc = ISD::UMIN; break;
3341     case SPF_SMAX:    Opc = ISD::SMAX; break;
3342     case SPF_SMIN:    Opc = ISD::SMIN; break;
3343     case SPF_FMINNUM:
3344       switch (SPR.NaNBehavior) {
3345       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3346       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3347       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3348       case SPNB_RETURNS_ANY: {
3349         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3350           Opc = ISD::FMINNUM;
3351         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3352           Opc = ISD::FMINIMUM;
3353         else if (UseScalarMinMax)
3354           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3355             ISD::FMINNUM : ISD::FMINIMUM;
3356         break;
3357       }
3358       }
3359       break;
3360     case SPF_FMAXNUM:
3361       switch (SPR.NaNBehavior) {
3362       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3363       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3364       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3365       case SPNB_RETURNS_ANY:
3366 
3367         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3368           Opc = ISD::FMAXNUM;
3369         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3370           Opc = ISD::FMAXIMUM;
3371         else if (UseScalarMinMax)
3372           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3373             ISD::FMAXNUM : ISD::FMAXIMUM;
3374         break;
3375       }
3376       break;
3377     case SPF_NABS:
3378       Negate = true;
3379       [[fallthrough]];
3380     case SPF_ABS:
3381       IsUnaryAbs = true;
3382       Opc = ISD::ABS;
3383       break;
3384     default: break;
3385     }
3386 
3387     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3388         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3389          (UseScalarMinMax &&
3390           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3391         // If the underlying comparison instruction is used by any other
3392         // instruction, the consumed instructions won't be destroyed, so it is
3393         // not profitable to convert to a min/max.
3394         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3395       OpCode = Opc;
3396       LHSVal = getValue(LHS);
3397       RHSVal = getValue(RHS);
3398       BaseOps.clear();
3399     }
3400 
3401     if (IsUnaryAbs) {
3402       OpCode = Opc;
3403       LHSVal = getValue(LHS);
3404       BaseOps.clear();
3405     }
3406   }
3407 
3408   if (IsUnaryAbs) {
3409     for (unsigned i = 0; i != NumValues; ++i) {
3410       SDLoc dl = getCurSDLoc();
3411       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3412       Values[i] =
3413           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3414       if (Negate)
3415         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3416                                 Values[i]);
3417     }
3418   } else {
3419     for (unsigned i = 0; i != NumValues; ++i) {
3420       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3421       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3422       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3423       Values[i] = DAG.getNode(
3424           OpCode, getCurSDLoc(),
3425           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3426     }
3427   }
3428 
3429   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3430                            DAG.getVTList(ValueVTs), Values));
3431 }
3432 
3433 void SelectionDAGBuilder::visitTrunc(const User &I) {
3434   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3435   SDValue N = getValue(I.getOperand(0));
3436   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3437                                                         I.getType());
3438   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3439 }
3440 
3441 void SelectionDAGBuilder::visitZExt(const User &I) {
3442   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3443   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3444   SDValue N = getValue(I.getOperand(0));
3445   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3446                                                         I.getType());
3447   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3448 }
3449 
3450 void SelectionDAGBuilder::visitSExt(const User &I) {
3451   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3452   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3453   SDValue N = getValue(I.getOperand(0));
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3457 }
3458 
3459 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3460   // FPTrunc is never a no-op cast, no need to check
3461   SDValue N = getValue(I.getOperand(0));
3462   SDLoc dl = getCurSDLoc();
3463   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3464   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3465   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3466                            DAG.getTargetConstant(
3467                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3468 }
3469 
3470 void SelectionDAGBuilder::visitFPExt(const User &I) {
3471   // FPExt is never a no-op cast, no need to check
3472   SDValue N = getValue(I.getOperand(0));
3473   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3474                                                         I.getType());
3475   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3476 }
3477 
3478 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3479   // FPToUI is never a no-op cast, no need to check
3480   SDValue N = getValue(I.getOperand(0));
3481   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3482                                                         I.getType());
3483   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3484 }
3485 
3486 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3487   // FPToSI is never a no-op cast, no need to check
3488   SDValue N = getValue(I.getOperand(0));
3489   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3490                                                         I.getType());
3491   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3492 }
3493 
3494 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3495   // UIToFP is never a no-op cast, no need to check
3496   SDValue N = getValue(I.getOperand(0));
3497   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3498                                                         I.getType());
3499   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3500 }
3501 
3502 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3503   // SIToFP is never a no-op cast, no need to check
3504   SDValue N = getValue(I.getOperand(0));
3505   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3506                                                         I.getType());
3507   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3508 }
3509 
3510 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3511   // What to do depends on the size of the integer and the size of the pointer.
3512   // We can either truncate, zero extend, or no-op, accordingly.
3513   SDValue N = getValue(I.getOperand(0));
3514   auto &TLI = DAG.getTargetLoweringInfo();
3515   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3516                                                         I.getType());
3517   EVT PtrMemVT =
3518       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3519   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3520   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3521   setValue(&I, N);
3522 }
3523 
3524 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3525   // What to do depends on the size of the integer and the size of the pointer.
3526   // We can either truncate, zero extend, or no-op, accordingly.
3527   SDValue N = getValue(I.getOperand(0));
3528   auto &TLI = DAG.getTargetLoweringInfo();
3529   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3530   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3531   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3532   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3533   setValue(&I, N);
3534 }
3535 
3536 void SelectionDAGBuilder::visitBitCast(const User &I) {
3537   SDValue N = getValue(I.getOperand(0));
3538   SDLoc dl = getCurSDLoc();
3539   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3540                                                         I.getType());
3541 
3542   // BitCast assures us that source and destination are the same size so this is
3543   // either a BITCAST or a no-op.
3544   if (DestVT != N.getValueType())
3545     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3546                              DestVT, N)); // convert types.
3547   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3548   // might fold any kind of constant expression to an integer constant and that
3549   // is not what we are looking for. Only recognize a bitcast of a genuine
3550   // constant integer as an opaque constant.
3551   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3552     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3553                                  /*isOpaque*/true));
3554   else
3555     setValue(&I, N);            // noop cast.
3556 }
3557 
3558 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3560   const Value *SV = I.getOperand(0);
3561   SDValue N = getValue(SV);
3562   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3563 
3564   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3565   unsigned DestAS = I.getType()->getPointerAddressSpace();
3566 
3567   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3568     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3569 
3570   setValue(&I, N);
3571 }
3572 
3573 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3575   SDValue InVec = getValue(I.getOperand(0));
3576   SDValue InVal = getValue(I.getOperand(1));
3577   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3578                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3579   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3580                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3581                            InVec, InVal, InIdx));
3582 }
3583 
3584 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3585   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3586   SDValue InVec = getValue(I.getOperand(0));
3587   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3588                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3589   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3590                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3591                            InVec, InIdx));
3592 }
3593 
3594 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3595   SDValue Src1 = getValue(I.getOperand(0));
3596   SDValue Src2 = getValue(I.getOperand(1));
3597   ArrayRef<int> Mask;
3598   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3599     Mask = SVI->getShuffleMask();
3600   else
3601     Mask = cast<ConstantExpr>(I).getShuffleMask();
3602   SDLoc DL = getCurSDLoc();
3603   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3604   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3605   EVT SrcVT = Src1.getValueType();
3606 
3607   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3608       VT.isScalableVector()) {
3609     // Canonical splat form of first element of first input vector.
3610     SDValue FirstElt =
3611         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3612                     DAG.getVectorIdxConstant(0, DL));
3613     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3614     return;
3615   }
3616 
3617   // For now, we only handle splats for scalable vectors.
3618   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3619   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3620   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3621 
3622   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3623   unsigned MaskNumElts = Mask.size();
3624 
3625   if (SrcNumElts == MaskNumElts) {
3626     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3627     return;
3628   }
3629 
3630   // Normalize the shuffle vector since mask and vector length don't match.
3631   if (SrcNumElts < MaskNumElts) {
3632     // Mask is longer than the source vectors. We can use concatenate vector to
3633     // make the mask and vectors lengths match.
3634 
3635     if (MaskNumElts % SrcNumElts == 0) {
3636       // Mask length is a multiple of the source vector length.
3637       // Check if the shuffle is some kind of concatenation of the input
3638       // vectors.
3639       unsigned NumConcat = MaskNumElts / SrcNumElts;
3640       bool IsConcat = true;
3641       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3642       for (unsigned i = 0; i != MaskNumElts; ++i) {
3643         int Idx = Mask[i];
3644         if (Idx < 0)
3645           continue;
3646         // Ensure the indices in each SrcVT sized piece are sequential and that
3647         // the same source is used for the whole piece.
3648         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3649             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3650              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3651           IsConcat = false;
3652           break;
3653         }
3654         // Remember which source this index came from.
3655         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3656       }
3657 
3658       // The shuffle is concatenating multiple vectors together. Just emit
3659       // a CONCAT_VECTORS operation.
3660       if (IsConcat) {
3661         SmallVector<SDValue, 8> ConcatOps;
3662         for (auto Src : ConcatSrcs) {
3663           if (Src < 0)
3664             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3665           else if (Src == 0)
3666             ConcatOps.push_back(Src1);
3667           else
3668             ConcatOps.push_back(Src2);
3669         }
3670         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3671         return;
3672       }
3673     }
3674 
3675     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3676     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3677     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3678                                     PaddedMaskNumElts);
3679 
3680     // Pad both vectors with undefs to make them the same length as the mask.
3681     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3682 
3683     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3684     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3685     MOps1[0] = Src1;
3686     MOps2[0] = Src2;
3687 
3688     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3689     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3690 
3691     // Readjust mask for new input vector length.
3692     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3693     for (unsigned i = 0; i != MaskNumElts; ++i) {
3694       int Idx = Mask[i];
3695       if (Idx >= (int)SrcNumElts)
3696         Idx -= SrcNumElts - PaddedMaskNumElts;
3697       MappedOps[i] = Idx;
3698     }
3699 
3700     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3701 
3702     // If the concatenated vector was padded, extract a subvector with the
3703     // correct number of elements.
3704     if (MaskNumElts != PaddedMaskNumElts)
3705       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3706                            DAG.getVectorIdxConstant(0, DL));
3707 
3708     setValue(&I, Result);
3709     return;
3710   }
3711 
3712   if (SrcNumElts > MaskNumElts) {
3713     // Analyze the access pattern of the vector to see if we can extract
3714     // two subvectors and do the shuffle.
3715     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3716     bool CanExtract = true;
3717     for (int Idx : Mask) {
3718       unsigned Input = 0;
3719       if (Idx < 0)
3720         continue;
3721 
3722       if (Idx >= (int)SrcNumElts) {
3723         Input = 1;
3724         Idx -= SrcNumElts;
3725       }
3726 
3727       // If all the indices come from the same MaskNumElts sized portion of
3728       // the sources we can use extract. Also make sure the extract wouldn't
3729       // extract past the end of the source.
3730       int NewStartIdx = alignDown(Idx, MaskNumElts);
3731       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3732           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3733         CanExtract = false;
3734       // Make sure we always update StartIdx as we use it to track if all
3735       // elements are undef.
3736       StartIdx[Input] = NewStartIdx;
3737     }
3738 
3739     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3740       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3741       return;
3742     }
3743     if (CanExtract) {
3744       // Extract appropriate subvector and generate a vector shuffle
3745       for (unsigned Input = 0; Input < 2; ++Input) {
3746         SDValue &Src = Input == 0 ? Src1 : Src2;
3747         if (StartIdx[Input] < 0)
3748           Src = DAG.getUNDEF(VT);
3749         else {
3750           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3751                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3752         }
3753       }
3754 
3755       // Calculate new mask.
3756       SmallVector<int, 8> MappedOps(Mask);
3757       for (int &Idx : MappedOps) {
3758         if (Idx >= (int)SrcNumElts)
3759           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3760         else if (Idx >= 0)
3761           Idx -= StartIdx[0];
3762       }
3763 
3764       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3765       return;
3766     }
3767   }
3768 
3769   // We can't use either concat vectors or extract subvectors so fall back to
3770   // replacing the shuffle with extract and build vector.
3771   // to insert and build vector.
3772   EVT EltVT = VT.getVectorElementType();
3773   SmallVector<SDValue,8> Ops;
3774   for (int Idx : Mask) {
3775     SDValue Res;
3776 
3777     if (Idx < 0) {
3778       Res = DAG.getUNDEF(EltVT);
3779     } else {
3780       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3781       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3782 
3783       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3784                         DAG.getVectorIdxConstant(Idx, DL));
3785     }
3786 
3787     Ops.push_back(Res);
3788   }
3789 
3790   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3791 }
3792 
3793 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3794   ArrayRef<unsigned> Indices = I.getIndices();
3795   const Value *Op0 = I.getOperand(0);
3796   const Value *Op1 = I.getOperand(1);
3797   Type *AggTy = I.getType();
3798   Type *ValTy = Op1->getType();
3799   bool IntoUndef = isa<UndefValue>(Op0);
3800   bool FromUndef = isa<UndefValue>(Op1);
3801 
3802   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3803 
3804   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3805   SmallVector<EVT, 4> AggValueVTs;
3806   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3807   SmallVector<EVT, 4> ValValueVTs;
3808   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3809 
3810   unsigned NumAggValues = AggValueVTs.size();
3811   unsigned NumValValues = ValValueVTs.size();
3812   SmallVector<SDValue, 4> Values(NumAggValues);
3813 
3814   // Ignore an insertvalue that produces an empty object
3815   if (!NumAggValues) {
3816     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3817     return;
3818   }
3819 
3820   SDValue Agg = getValue(Op0);
3821   unsigned i = 0;
3822   // Copy the beginning value(s) from the original aggregate.
3823   for (; i != LinearIndex; ++i)
3824     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3825                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3826   // Copy values from the inserted value(s).
3827   if (NumValValues) {
3828     SDValue Val = getValue(Op1);
3829     for (; i != LinearIndex + NumValValues; ++i)
3830       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3831                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3832   }
3833   // Copy remaining value(s) from the original aggregate.
3834   for (; i != NumAggValues; ++i)
3835     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3836                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3837 
3838   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3839                            DAG.getVTList(AggValueVTs), Values));
3840 }
3841 
3842 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3843   ArrayRef<unsigned> Indices = I.getIndices();
3844   const Value *Op0 = I.getOperand(0);
3845   Type *AggTy = Op0->getType();
3846   Type *ValTy = I.getType();
3847   bool OutOfUndef = isa<UndefValue>(Op0);
3848 
3849   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3850 
3851   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3852   SmallVector<EVT, 4> ValValueVTs;
3853   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3854 
3855   unsigned NumValValues = ValValueVTs.size();
3856 
3857   // Ignore a extractvalue that produces an empty object
3858   if (!NumValValues) {
3859     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3860     return;
3861   }
3862 
3863   SmallVector<SDValue, 4> Values(NumValValues);
3864 
3865   SDValue Agg = getValue(Op0);
3866   // Copy out the selected value(s).
3867   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3868     Values[i - LinearIndex] =
3869       OutOfUndef ?
3870         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3871         SDValue(Agg.getNode(), Agg.getResNo() + i);
3872 
3873   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3874                            DAG.getVTList(ValValueVTs), Values));
3875 }
3876 
3877 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3878   Value *Op0 = I.getOperand(0);
3879   // Note that the pointer operand may be a vector of pointers. Take the scalar
3880   // element which holds a pointer.
3881   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3882   SDValue N = getValue(Op0);
3883   SDLoc dl = getCurSDLoc();
3884   auto &TLI = DAG.getTargetLoweringInfo();
3885 
3886   // Normalize Vector GEP - all scalar operands should be converted to the
3887   // splat vector.
3888   bool IsVectorGEP = I.getType()->isVectorTy();
3889   ElementCount VectorElementCount =
3890       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3891                   : ElementCount::getFixed(0);
3892 
3893   if (IsVectorGEP && !N.getValueType().isVector()) {
3894     LLVMContext &Context = *DAG.getContext();
3895     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3896     if (VectorElementCount.isScalable())
3897       N = DAG.getSplatVector(VT, dl, N);
3898     else
3899       N = DAG.getSplatBuildVector(VT, dl, N);
3900   }
3901 
3902   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3903        GTI != E; ++GTI) {
3904     const Value *Idx = GTI.getOperand();
3905     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3906       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3907       if (Field) {
3908         // N = N + Offset
3909         uint64_t Offset =
3910             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3911 
3912         // In an inbounds GEP with an offset that is nonnegative even when
3913         // interpreted as signed, assume there is no unsigned overflow.
3914         SDNodeFlags Flags;
3915         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3916           Flags.setNoUnsignedWrap(true);
3917 
3918         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3919                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3920       }
3921     } else {
3922       // IdxSize is the width of the arithmetic according to IR semantics.
3923       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3924       // (and fix up the result later).
3925       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3926       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3927       TypeSize ElementSize =
3928           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3929       // We intentionally mask away the high bits here; ElementSize may not
3930       // fit in IdxTy.
3931       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3932       bool ElementScalable = ElementSize.isScalable();
3933 
3934       // If this is a scalar constant or a splat vector of constants,
3935       // handle it quickly.
3936       const auto *C = dyn_cast<Constant>(Idx);
3937       if (C && isa<VectorType>(C->getType()))
3938         C = C->getSplatValue();
3939 
3940       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3941       if (CI && CI->isZero())
3942         continue;
3943       if (CI && !ElementScalable) {
3944         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3945         LLVMContext &Context = *DAG.getContext();
3946         SDValue OffsVal;
3947         if (IsVectorGEP)
3948           OffsVal = DAG.getConstant(
3949               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3950         else
3951           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3952 
3953         // In an inbounds GEP with an offset that is nonnegative even when
3954         // interpreted as signed, assume there is no unsigned overflow.
3955         SDNodeFlags Flags;
3956         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3957           Flags.setNoUnsignedWrap(true);
3958 
3959         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3960 
3961         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3962         continue;
3963       }
3964 
3965       // N = N + Idx * ElementMul;
3966       SDValue IdxN = getValue(Idx);
3967 
3968       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3969         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3970                                   VectorElementCount);
3971         if (VectorElementCount.isScalable())
3972           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3973         else
3974           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3975       }
3976 
3977       // If the index is smaller or larger than intptr_t, truncate or extend
3978       // it.
3979       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3980 
3981       if (ElementScalable) {
3982         EVT VScaleTy = N.getValueType().getScalarType();
3983         SDValue VScale = DAG.getNode(
3984             ISD::VSCALE, dl, VScaleTy,
3985             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3986         if (IsVectorGEP)
3987           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3988         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3989       } else {
3990         // If this is a multiply by a power of two, turn it into a shl
3991         // immediately.  This is a very common case.
3992         if (ElementMul != 1) {
3993           if (ElementMul.isPowerOf2()) {
3994             unsigned Amt = ElementMul.logBase2();
3995             IdxN = DAG.getNode(ISD::SHL, dl,
3996                                N.getValueType(), IdxN,
3997                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3998           } else {
3999             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4000                                             IdxN.getValueType());
4001             IdxN = DAG.getNode(ISD::MUL, dl,
4002                                N.getValueType(), IdxN, Scale);
4003           }
4004         }
4005       }
4006 
4007       N = DAG.getNode(ISD::ADD, dl,
4008                       N.getValueType(), N, IdxN);
4009     }
4010   }
4011 
4012   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4013   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4014   if (IsVectorGEP) {
4015     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4016     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4017   }
4018 
4019   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4020     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4021 
4022   setValue(&I, N);
4023 }
4024 
4025 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4026   // If this is a fixed sized alloca in the entry block of the function,
4027   // allocate it statically on the stack.
4028   if (FuncInfo.StaticAllocaMap.count(&I))
4029     return;   // getValue will auto-populate this.
4030 
4031   SDLoc dl = getCurSDLoc();
4032   Type *Ty = I.getAllocatedType();
4033   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4034   auto &DL = DAG.getDataLayout();
4035   TypeSize TySize = DL.getTypeAllocSize(Ty);
4036   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4037 
4038   SDValue AllocSize = getValue(I.getArraySize());
4039 
4040   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4041   if (AllocSize.getValueType() != IntPtr)
4042     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4043 
4044   if (TySize.isScalable())
4045     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4046                             DAG.getVScale(dl, IntPtr,
4047                                           APInt(IntPtr.getScalarSizeInBits(),
4048                                                 TySize.getKnownMinValue())));
4049   else
4050     AllocSize =
4051         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4052                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4053 
4054   // Handle alignment.  If the requested alignment is less than or equal to
4055   // the stack alignment, ignore it.  If the size is greater than or equal to
4056   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4057   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4058   if (*Alignment <= StackAlign)
4059     Alignment = None;
4060 
4061   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4062   // Round the size of the allocation up to the stack alignment size
4063   // by add SA-1 to the size. This doesn't overflow because we're computing
4064   // an address inside an alloca.
4065   SDNodeFlags Flags;
4066   Flags.setNoUnsignedWrap(true);
4067   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4068                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4069 
4070   // Mask out the low bits for alignment purposes.
4071   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4072                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4073 
4074   SDValue Ops[] = {
4075       getRoot(), AllocSize,
4076       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4077   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4078   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4079   setValue(&I, DSA);
4080   DAG.setRoot(DSA.getValue(1));
4081 
4082   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4083 }
4084 
4085 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4086   if (I.isAtomic())
4087     return visitAtomicLoad(I);
4088 
4089   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4090   const Value *SV = I.getOperand(0);
4091   if (TLI.supportSwiftError()) {
4092     // Swifterror values can come from either a function parameter with
4093     // swifterror attribute or an alloca with swifterror attribute.
4094     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4095       if (Arg->hasSwiftErrorAttr())
4096         return visitLoadFromSwiftError(I);
4097     }
4098 
4099     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4100       if (Alloca->isSwiftError())
4101         return visitLoadFromSwiftError(I);
4102     }
4103   }
4104 
4105   SDValue Ptr = getValue(SV);
4106 
4107   Type *Ty = I.getType();
4108   SmallVector<EVT, 4> ValueVTs, MemVTs;
4109   SmallVector<uint64_t, 4> Offsets;
4110   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4111   unsigned NumValues = ValueVTs.size();
4112   if (NumValues == 0)
4113     return;
4114 
4115   Align Alignment = I.getAlign();
4116   AAMDNodes AAInfo = I.getAAMetadata();
4117   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4118   bool isVolatile = I.isVolatile();
4119   MachineMemOperand::Flags MMOFlags =
4120       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4121 
4122   SDValue Root;
4123   bool ConstantMemory = false;
4124   if (isVolatile)
4125     // Serialize volatile loads with other side effects.
4126     Root = getRoot();
4127   else if (NumValues > MaxParallelChains)
4128     Root = getMemoryRoot();
4129   else if (AA &&
4130            AA->pointsToConstantMemory(MemoryLocation(
4131                SV,
4132                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4133                AAInfo))) {
4134     // Do not serialize (non-volatile) loads of constant memory with anything.
4135     Root = DAG.getEntryNode();
4136     ConstantMemory = true;
4137     MMOFlags |= MachineMemOperand::MOInvariant;
4138   } else {
4139     // Do not serialize non-volatile loads against each other.
4140     Root = DAG.getRoot();
4141   }
4142 
4143   if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(),
4144                                          &I, AC, nullptr, LibInfo))
4145     MMOFlags |= MachineMemOperand::MODereferenceable;
4146 
4147   SDLoc dl = getCurSDLoc();
4148 
4149   if (isVolatile)
4150     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4151 
4152   // An aggregate load cannot wrap around the address space, so offsets to its
4153   // parts don't wrap either.
4154   SDNodeFlags Flags;
4155   Flags.setNoUnsignedWrap(true);
4156 
4157   SmallVector<SDValue, 4> Values(NumValues);
4158   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4159   EVT PtrVT = Ptr.getValueType();
4160 
4161   unsigned ChainI = 0;
4162   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4163     // Serializing loads here may result in excessive register pressure, and
4164     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4165     // could recover a bit by hoisting nodes upward in the chain by recognizing
4166     // they are side-effect free or do not alias. The optimizer should really
4167     // avoid this case by converting large object/array copies to llvm.memcpy
4168     // (MaxParallelChains should always remain as failsafe).
4169     if (ChainI == MaxParallelChains) {
4170       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4171       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4172                                   makeArrayRef(Chains.data(), ChainI));
4173       Root = Chain;
4174       ChainI = 0;
4175     }
4176     SDValue A = DAG.getNode(ISD::ADD, dl,
4177                             PtrVT, Ptr,
4178                             DAG.getConstant(Offsets[i], dl, PtrVT),
4179                             Flags);
4180 
4181     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4182                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4183                             MMOFlags, AAInfo, Ranges);
4184     Chains[ChainI] = L.getValue(1);
4185 
4186     if (MemVTs[i] != ValueVTs[i])
4187       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4188 
4189     Values[i] = L;
4190   }
4191 
4192   if (!ConstantMemory) {
4193     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4194                                 makeArrayRef(Chains.data(), ChainI));
4195     if (isVolatile)
4196       DAG.setRoot(Chain);
4197     else
4198       PendingLoads.push_back(Chain);
4199   }
4200 
4201   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4202                            DAG.getVTList(ValueVTs), Values));
4203 }
4204 
4205 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4206   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4207          "call visitStoreToSwiftError when backend supports swifterror");
4208 
4209   SmallVector<EVT, 4> ValueVTs;
4210   SmallVector<uint64_t, 4> Offsets;
4211   const Value *SrcV = I.getOperand(0);
4212   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4213                   SrcV->getType(), ValueVTs, &Offsets);
4214   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4215          "expect a single EVT for swifterror");
4216 
4217   SDValue Src = getValue(SrcV);
4218   // Create a virtual register, then update the virtual register.
4219   Register VReg =
4220       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4221   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4222   // Chain can be getRoot or getControlRoot.
4223   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4224                                       SDValue(Src.getNode(), Src.getResNo()));
4225   DAG.setRoot(CopyNode);
4226 }
4227 
4228 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4229   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4230          "call visitLoadFromSwiftError when backend supports swifterror");
4231 
4232   assert(!I.isVolatile() &&
4233          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4234          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4235          "Support volatile, non temporal, invariant for load_from_swift_error");
4236 
4237   const Value *SV = I.getOperand(0);
4238   Type *Ty = I.getType();
4239   assert(
4240       (!AA ||
4241        !AA->pointsToConstantMemory(MemoryLocation(
4242            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4243            I.getAAMetadata()))) &&
4244       "load_from_swift_error should not be constant memory");
4245 
4246   SmallVector<EVT, 4> ValueVTs;
4247   SmallVector<uint64_t, 4> Offsets;
4248   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4249                   ValueVTs, &Offsets);
4250   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4251          "expect a single EVT for swifterror");
4252 
4253   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4254   SDValue L = DAG.getCopyFromReg(
4255       getRoot(), getCurSDLoc(),
4256       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4257 
4258   setValue(&I, L);
4259 }
4260 
4261 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4262   if (I.isAtomic())
4263     return visitAtomicStore(I);
4264 
4265   const Value *SrcV = I.getOperand(0);
4266   const Value *PtrV = I.getOperand(1);
4267 
4268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4269   if (TLI.supportSwiftError()) {
4270     // Swifterror values can come from either a function parameter with
4271     // swifterror attribute or an alloca with swifterror attribute.
4272     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4273       if (Arg->hasSwiftErrorAttr())
4274         return visitStoreToSwiftError(I);
4275     }
4276 
4277     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4278       if (Alloca->isSwiftError())
4279         return visitStoreToSwiftError(I);
4280     }
4281   }
4282 
4283   SmallVector<EVT, 4> ValueVTs, MemVTs;
4284   SmallVector<uint64_t, 4> Offsets;
4285   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4286                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4287   unsigned NumValues = ValueVTs.size();
4288   if (NumValues == 0)
4289     return;
4290 
4291   // Get the lowered operands. Note that we do this after
4292   // checking if NumResults is zero, because with zero results
4293   // the operands won't have values in the map.
4294   SDValue Src = getValue(SrcV);
4295   SDValue Ptr = getValue(PtrV);
4296 
4297   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4298   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4299   SDLoc dl = getCurSDLoc();
4300   Align Alignment = I.getAlign();
4301   AAMDNodes AAInfo = I.getAAMetadata();
4302 
4303   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4304 
4305   // An aggregate load cannot wrap around the address space, so offsets to its
4306   // parts don't wrap either.
4307   SDNodeFlags Flags;
4308   Flags.setNoUnsignedWrap(true);
4309 
4310   unsigned ChainI = 0;
4311   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4312     // See visitLoad comments.
4313     if (ChainI == MaxParallelChains) {
4314       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4315                                   makeArrayRef(Chains.data(), ChainI));
4316       Root = Chain;
4317       ChainI = 0;
4318     }
4319     SDValue Add =
4320         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4321     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4322     if (MemVTs[i] != ValueVTs[i])
4323       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4324     SDValue St =
4325         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4326                      Alignment, MMOFlags, AAInfo);
4327     Chains[ChainI] = St;
4328   }
4329 
4330   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4331                                   makeArrayRef(Chains.data(), ChainI));
4332   setValue(&I, StoreNode);
4333   DAG.setRoot(StoreNode);
4334 }
4335 
4336 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4337                                            bool IsCompressing) {
4338   SDLoc sdl = getCurSDLoc();
4339 
4340   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4341                                MaybeAlign &Alignment) {
4342     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4343     Src0 = I.getArgOperand(0);
4344     Ptr = I.getArgOperand(1);
4345     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4346     Mask = I.getArgOperand(3);
4347   };
4348   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4349                                     MaybeAlign &Alignment) {
4350     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4351     Src0 = I.getArgOperand(0);
4352     Ptr = I.getArgOperand(1);
4353     Mask = I.getArgOperand(2);
4354     Alignment = None;
4355   };
4356 
4357   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4358   MaybeAlign Alignment;
4359   if (IsCompressing)
4360     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4361   else
4362     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4363 
4364   SDValue Ptr = getValue(PtrOperand);
4365   SDValue Src0 = getValue(Src0Operand);
4366   SDValue Mask = getValue(MaskOperand);
4367   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4368 
4369   EVT VT = Src0.getValueType();
4370   if (!Alignment)
4371     Alignment = DAG.getEVTAlign(VT);
4372 
4373   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4374       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4375       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4376   SDValue StoreNode =
4377       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4378                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4379   DAG.setRoot(StoreNode);
4380   setValue(&I, StoreNode);
4381 }
4382 
4383 // Get a uniform base for the Gather/Scatter intrinsic.
4384 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4385 // We try to represent it as a base pointer + vector of indices.
4386 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4387 // The first operand of the GEP may be a single pointer or a vector of pointers
4388 // Example:
4389 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4390 //  or
4391 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4392 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4393 //
4394 // When the first GEP operand is a single pointer - it is the uniform base we
4395 // are looking for. If first operand of the GEP is a splat vector - we
4396 // extract the splat value and use it as a uniform base.
4397 // In all other cases the function returns 'false'.
4398 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4399                            ISD::MemIndexType &IndexType, SDValue &Scale,
4400                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4401                            uint64_t ElemSize) {
4402   SelectionDAG& DAG = SDB->DAG;
4403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4404   const DataLayout &DL = DAG.getDataLayout();
4405 
4406   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4407 
4408   // Handle splat constant pointer.
4409   if (auto *C = dyn_cast<Constant>(Ptr)) {
4410     C = C->getSplatValue();
4411     if (!C)
4412       return false;
4413 
4414     Base = SDB->getValue(C);
4415 
4416     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4417     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4418     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4419     IndexType = ISD::SIGNED_SCALED;
4420     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4421     return true;
4422   }
4423 
4424   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4425   if (!GEP || GEP->getParent() != CurBB)
4426     return false;
4427 
4428   if (GEP->getNumOperands() != 2)
4429     return false;
4430 
4431   const Value *BasePtr = GEP->getPointerOperand();
4432   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4433 
4434   // Make sure the base is scalar and the index is a vector.
4435   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4436     return false;
4437 
4438   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4439 
4440   // Target may not support the required addressing mode.
4441   if (ScaleVal != 1 &&
4442       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4443     return false;
4444 
4445   Base = SDB->getValue(BasePtr);
4446   Index = SDB->getValue(IndexVal);
4447   IndexType = ISD::SIGNED_SCALED;
4448 
4449   Scale =
4450       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4451   return true;
4452 }
4453 
4454 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4455   SDLoc sdl = getCurSDLoc();
4456 
4457   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4458   const Value *Ptr = I.getArgOperand(1);
4459   SDValue Src0 = getValue(I.getArgOperand(0));
4460   SDValue Mask = getValue(I.getArgOperand(3));
4461   EVT VT = Src0.getValueType();
4462   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4463                         ->getMaybeAlignValue()
4464                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4465   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4466 
4467   SDValue Base;
4468   SDValue Index;
4469   ISD::MemIndexType IndexType;
4470   SDValue Scale;
4471   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4472                                     I.getParent(), VT.getScalarStoreSize());
4473 
4474   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4475   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4476       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4477       // TODO: Make MachineMemOperands aware of scalable
4478       // vectors.
4479       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4480   if (!UniformBase) {
4481     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4482     Index = getValue(Ptr);
4483     IndexType = ISD::SIGNED_SCALED;
4484     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4485   }
4486 
4487   EVT IdxVT = Index.getValueType();
4488   EVT EltTy = IdxVT.getVectorElementType();
4489   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4490     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4491     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4492   }
4493 
4494   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4495   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4496                                          Ops, MMO, IndexType, false);
4497   DAG.setRoot(Scatter);
4498   setValue(&I, Scatter);
4499 }
4500 
4501 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4502   SDLoc sdl = getCurSDLoc();
4503 
4504   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4505                               MaybeAlign &Alignment) {
4506     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4507     Ptr = I.getArgOperand(0);
4508     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4509     Mask = I.getArgOperand(2);
4510     Src0 = I.getArgOperand(3);
4511   };
4512   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4513                                  MaybeAlign &Alignment) {
4514     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4515     Ptr = I.getArgOperand(0);
4516     Alignment = None;
4517     Mask = I.getArgOperand(1);
4518     Src0 = I.getArgOperand(2);
4519   };
4520 
4521   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4522   MaybeAlign Alignment;
4523   if (IsExpanding)
4524     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4525   else
4526     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4527 
4528   SDValue Ptr = getValue(PtrOperand);
4529   SDValue Src0 = getValue(Src0Operand);
4530   SDValue Mask = getValue(MaskOperand);
4531   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4532 
4533   EVT VT = Src0.getValueType();
4534   if (!Alignment)
4535     Alignment = DAG.getEVTAlign(VT);
4536 
4537   AAMDNodes AAInfo = I.getAAMetadata();
4538   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4539 
4540   // Do not serialize masked loads of constant memory with anything.
4541   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4542   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4543 
4544   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4545 
4546   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4547       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4548       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4549 
4550   SDValue Load =
4551       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4552                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4553   if (AddToChain)
4554     PendingLoads.push_back(Load.getValue(1));
4555   setValue(&I, Load);
4556 }
4557 
4558 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4559   SDLoc sdl = getCurSDLoc();
4560 
4561   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4562   const Value *Ptr = I.getArgOperand(0);
4563   SDValue Src0 = getValue(I.getArgOperand(3));
4564   SDValue Mask = getValue(I.getArgOperand(2));
4565 
4566   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4567   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4568   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4569                         ->getMaybeAlignValue()
4570                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4571 
4572   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4573 
4574   SDValue Root = DAG.getRoot();
4575   SDValue Base;
4576   SDValue Index;
4577   ISD::MemIndexType IndexType;
4578   SDValue Scale;
4579   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4580                                     I.getParent(), VT.getScalarStoreSize());
4581   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4582   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4583       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4584       // TODO: Make MachineMemOperands aware of scalable
4585       // vectors.
4586       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4587 
4588   if (!UniformBase) {
4589     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4590     Index = getValue(Ptr);
4591     IndexType = ISD::SIGNED_SCALED;
4592     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4593   }
4594 
4595   EVT IdxVT = Index.getValueType();
4596   EVT EltTy = IdxVT.getVectorElementType();
4597   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4598     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4599     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4600   }
4601 
4602   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4603   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4604                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4605 
4606   PendingLoads.push_back(Gather.getValue(1));
4607   setValue(&I, Gather);
4608 }
4609 
4610 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4611   SDLoc dl = getCurSDLoc();
4612   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4613   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4614   SyncScope::ID SSID = I.getSyncScopeID();
4615 
4616   SDValue InChain = getRoot();
4617 
4618   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4619   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4620 
4621   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4622   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4623 
4624   MachineFunction &MF = DAG.getMachineFunction();
4625   MachineMemOperand *MMO = MF.getMachineMemOperand(
4626       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4627       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4628       FailureOrdering);
4629 
4630   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4631                                    dl, MemVT, VTs, InChain,
4632                                    getValue(I.getPointerOperand()),
4633                                    getValue(I.getCompareOperand()),
4634                                    getValue(I.getNewValOperand()), MMO);
4635 
4636   SDValue OutChain = L.getValue(2);
4637 
4638   setValue(&I, L);
4639   DAG.setRoot(OutChain);
4640 }
4641 
4642 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4643   SDLoc dl = getCurSDLoc();
4644   ISD::NodeType NT;
4645   switch (I.getOperation()) {
4646   default: llvm_unreachable("Unknown atomicrmw operation");
4647   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4648   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4649   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4650   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4651   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4652   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4653   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4654   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4655   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4656   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4657   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4658   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4659   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4660   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4661   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4662   }
4663   AtomicOrdering Ordering = I.getOrdering();
4664   SyncScope::ID SSID = I.getSyncScopeID();
4665 
4666   SDValue InChain = getRoot();
4667 
4668   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4669   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4670   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4671 
4672   MachineFunction &MF = DAG.getMachineFunction();
4673   MachineMemOperand *MMO = MF.getMachineMemOperand(
4674       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4675       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4676 
4677   SDValue L =
4678     DAG.getAtomic(NT, dl, MemVT, InChain,
4679                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4680                   MMO);
4681 
4682   SDValue OutChain = L.getValue(1);
4683 
4684   setValue(&I, L);
4685   DAG.setRoot(OutChain);
4686 }
4687 
4688 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4689   SDLoc dl = getCurSDLoc();
4690   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4691   SDValue Ops[3];
4692   Ops[0] = getRoot();
4693   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4694                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4695   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4696                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4697   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4698   setValue(&I, N);
4699   DAG.setRoot(N);
4700 }
4701 
4702 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4703   SDLoc dl = getCurSDLoc();
4704   AtomicOrdering Order = I.getOrdering();
4705   SyncScope::ID SSID = I.getSyncScopeID();
4706 
4707   SDValue InChain = getRoot();
4708 
4709   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4710   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4711   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4712 
4713   if (!TLI.supportsUnalignedAtomics() &&
4714       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4715     report_fatal_error("Cannot generate unaligned atomic load");
4716 
4717   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4718 
4719   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4720       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4721       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4722 
4723   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4724 
4725   SDValue Ptr = getValue(I.getPointerOperand());
4726 
4727   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4728     // TODO: Once this is better exercised by tests, it should be merged with
4729     // the normal path for loads to prevent future divergence.
4730     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4731     if (MemVT != VT)
4732       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4733 
4734     setValue(&I, L);
4735     SDValue OutChain = L.getValue(1);
4736     if (!I.isUnordered())
4737       DAG.setRoot(OutChain);
4738     else
4739       PendingLoads.push_back(OutChain);
4740     return;
4741   }
4742 
4743   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4744                             Ptr, MMO);
4745 
4746   SDValue OutChain = L.getValue(1);
4747   if (MemVT != VT)
4748     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4749 
4750   setValue(&I, L);
4751   DAG.setRoot(OutChain);
4752 }
4753 
4754 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4755   SDLoc dl = getCurSDLoc();
4756 
4757   AtomicOrdering Ordering = I.getOrdering();
4758   SyncScope::ID SSID = I.getSyncScopeID();
4759 
4760   SDValue InChain = getRoot();
4761 
4762   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4763   EVT MemVT =
4764       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4765 
4766   if (!TLI.supportsUnalignedAtomics() &&
4767       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4768     report_fatal_error("Cannot generate unaligned atomic store");
4769 
4770   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4771 
4772   MachineFunction &MF = DAG.getMachineFunction();
4773   MachineMemOperand *MMO = MF.getMachineMemOperand(
4774       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4775       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4776 
4777   SDValue Val = getValue(I.getValueOperand());
4778   if (Val.getValueType() != MemVT)
4779     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4780   SDValue Ptr = getValue(I.getPointerOperand());
4781 
4782   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4783     // TODO: Once this is better exercised by tests, it should be merged with
4784     // the normal path for stores to prevent future divergence.
4785     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4786     setValue(&I, S);
4787     DAG.setRoot(S);
4788     return;
4789   }
4790   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4791                                    Ptr, Val, MMO);
4792 
4793   setValue(&I, OutChain);
4794   DAG.setRoot(OutChain);
4795 }
4796 
4797 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4798 /// node.
4799 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4800                                                unsigned Intrinsic) {
4801   // Ignore the callsite's attributes. A specific call site may be marked with
4802   // readnone, but the lowering code will expect the chain based on the
4803   // definition.
4804   const Function *F = I.getCalledFunction();
4805   bool HasChain = !F->doesNotAccessMemory();
4806   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4807 
4808   // Build the operand list.
4809   SmallVector<SDValue, 8> Ops;
4810   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4811     if (OnlyLoad) {
4812       // We don't need to serialize loads against other loads.
4813       Ops.push_back(DAG.getRoot());
4814     } else {
4815       Ops.push_back(getRoot());
4816     }
4817   }
4818 
4819   // Info is set by getTgtMemIntrinsic
4820   TargetLowering::IntrinsicInfo Info;
4821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4822   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4823                                                DAG.getMachineFunction(),
4824                                                Intrinsic);
4825 
4826   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4827   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4828       Info.opc == ISD::INTRINSIC_W_CHAIN)
4829     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4830                                         TLI.getPointerTy(DAG.getDataLayout())));
4831 
4832   // Add all operands of the call to the operand list.
4833   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4834     const Value *Arg = I.getArgOperand(i);
4835     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4836       Ops.push_back(getValue(Arg));
4837       continue;
4838     }
4839 
4840     // Use TargetConstant instead of a regular constant for immarg.
4841     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4842     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4843       assert(CI->getBitWidth() <= 64 &&
4844              "large intrinsic immediates not handled");
4845       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4846     } else {
4847       Ops.push_back(
4848           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4849     }
4850   }
4851 
4852   SmallVector<EVT, 4> ValueVTs;
4853   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4854 
4855   if (HasChain)
4856     ValueVTs.push_back(MVT::Other);
4857 
4858   SDVTList VTs = DAG.getVTList(ValueVTs);
4859 
4860   // Propagate fast-math-flags from IR to node(s).
4861   SDNodeFlags Flags;
4862   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4863     Flags.copyFMF(*FPMO);
4864   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4865 
4866   // Create the node.
4867   SDValue Result;
4868   // In some cases, custom collection of operands from CallInst I may be needed.
4869   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4870   if (IsTgtIntrinsic) {
4871     // This is target intrinsic that touches memory
4872     Result =
4873         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4874                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4875                                 Info.align, Info.flags, Info.size,
4876                                 I.getAAMetadata());
4877   } else if (!HasChain) {
4878     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4879   } else if (!I.getType()->isVoidTy()) {
4880     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4881   } else {
4882     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4883   }
4884 
4885   if (HasChain) {
4886     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4887     if (OnlyLoad)
4888       PendingLoads.push_back(Chain);
4889     else
4890       DAG.setRoot(Chain);
4891   }
4892 
4893   if (!I.getType()->isVoidTy()) {
4894     if (!isa<VectorType>(I.getType()))
4895       Result = lowerRangeToAssertZExt(DAG, I, Result);
4896 
4897     MaybeAlign Alignment = I.getRetAlign();
4898     if (!Alignment)
4899       Alignment = F->getAttributes().getRetAlignment();
4900     // Insert `assertalign` node if there's an alignment.
4901     if (InsertAssertAlign && Alignment) {
4902       Result =
4903           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4904     }
4905 
4906     setValue(&I, Result);
4907   }
4908 }
4909 
4910 /// GetSignificand - Get the significand and build it into a floating-point
4911 /// number with exponent of 1:
4912 ///
4913 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4914 ///
4915 /// where Op is the hexadecimal representation of floating point value.
4916 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4917   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4918                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4919   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4920                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4921   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4922 }
4923 
4924 /// GetExponent - Get the exponent:
4925 ///
4926 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4927 ///
4928 /// where Op is the hexadecimal representation of floating point value.
4929 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4930                            const TargetLowering &TLI, const SDLoc &dl) {
4931   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4932                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4933   SDValue t1 = DAG.getNode(
4934       ISD::SRL, dl, MVT::i32, t0,
4935       DAG.getConstant(23, dl,
4936                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4937   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4938                            DAG.getConstant(127, dl, MVT::i32));
4939   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4940 }
4941 
4942 /// getF32Constant - Get 32-bit floating point constant.
4943 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4944                               const SDLoc &dl) {
4945   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4946                            MVT::f32);
4947 }
4948 
4949 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4950                                        SelectionDAG &DAG) {
4951   // TODO: What fast-math-flags should be set on the floating-point nodes?
4952 
4953   //   IntegerPartOfX = ((int32_t)(t0);
4954   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4955 
4956   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4957   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4958   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4959 
4960   //   IntegerPartOfX <<= 23;
4961   IntegerPartOfX =
4962       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4963                   DAG.getConstant(23, dl,
4964                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4965                                       MVT::i32, DAG.getDataLayout())));
4966 
4967   SDValue TwoToFractionalPartOfX;
4968   if (LimitFloatPrecision <= 6) {
4969     // For floating-point precision of 6:
4970     //
4971     //   TwoToFractionalPartOfX =
4972     //     0.997535578f +
4973     //       (0.735607626f + 0.252464424f * x) * x;
4974     //
4975     // error 0.0144103317, which is 6 bits
4976     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4977                              getF32Constant(DAG, 0x3e814304, dl));
4978     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4979                              getF32Constant(DAG, 0x3f3c50c8, dl));
4980     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4981     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4982                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4983   } else if (LimitFloatPrecision <= 12) {
4984     // For floating-point precision of 12:
4985     //
4986     //   TwoToFractionalPartOfX =
4987     //     0.999892986f +
4988     //       (0.696457318f +
4989     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4990     //
4991     // error 0.000107046256, which is 13 to 14 bits
4992     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4993                              getF32Constant(DAG, 0x3da235e3, dl));
4994     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4995                              getF32Constant(DAG, 0x3e65b8f3, dl));
4996     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4997     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4998                              getF32Constant(DAG, 0x3f324b07, dl));
4999     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5000     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5001                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5002   } else { // LimitFloatPrecision <= 18
5003     // For floating-point precision of 18:
5004     //
5005     //   TwoToFractionalPartOfX =
5006     //     0.999999982f +
5007     //       (0.693148872f +
5008     //         (0.240227044f +
5009     //           (0.554906021e-1f +
5010     //             (0.961591928e-2f +
5011     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5012     // error 2.47208000*10^(-7), which is better than 18 bits
5013     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5014                              getF32Constant(DAG, 0x3924b03e, dl));
5015     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5016                              getF32Constant(DAG, 0x3ab24b87, dl));
5017     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5018     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5019                              getF32Constant(DAG, 0x3c1d8c17, dl));
5020     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5021     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5022                              getF32Constant(DAG, 0x3d634a1d, dl));
5023     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5024     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5025                              getF32Constant(DAG, 0x3e75fe14, dl));
5026     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5027     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5028                               getF32Constant(DAG, 0x3f317234, dl));
5029     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5030     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5031                                          getF32Constant(DAG, 0x3f800000, dl));
5032   }
5033 
5034   // Add the exponent into the result in integer domain.
5035   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5036   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5037                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5038 }
5039 
5040 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5041 /// limited-precision mode.
5042 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5043                          const TargetLowering &TLI, SDNodeFlags Flags) {
5044   if (Op.getValueType() == MVT::f32 &&
5045       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5046 
5047     // Put the exponent in the right bit position for later addition to the
5048     // final result:
5049     //
5050     // t0 = Op * log2(e)
5051 
5052     // TODO: What fast-math-flags should be set here?
5053     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5054                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5055     return getLimitedPrecisionExp2(t0, dl, DAG);
5056   }
5057 
5058   // No special expansion.
5059   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5060 }
5061 
5062 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5063 /// limited-precision mode.
5064 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5065                          const TargetLowering &TLI, SDNodeFlags Flags) {
5066   // TODO: What fast-math-flags should be set on the floating-point nodes?
5067 
5068   if (Op.getValueType() == MVT::f32 &&
5069       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5070     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5071 
5072     // Scale the exponent by log(2).
5073     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5074     SDValue LogOfExponent =
5075         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5076                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5077 
5078     // Get the significand and build it into a floating-point number with
5079     // exponent of 1.
5080     SDValue X = GetSignificand(DAG, Op1, dl);
5081 
5082     SDValue LogOfMantissa;
5083     if (LimitFloatPrecision <= 6) {
5084       // For floating-point precision of 6:
5085       //
5086       //   LogofMantissa =
5087       //     -1.1609546f +
5088       //       (1.4034025f - 0.23903021f * x) * x;
5089       //
5090       // error 0.0034276066, which is better than 8 bits
5091       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5092                                getF32Constant(DAG, 0xbe74c456, dl));
5093       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5094                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5095       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5096       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5097                                   getF32Constant(DAG, 0x3f949a29, dl));
5098     } else if (LimitFloatPrecision <= 12) {
5099       // For floating-point precision of 12:
5100       //
5101       //   LogOfMantissa =
5102       //     -1.7417939f +
5103       //       (2.8212026f +
5104       //         (-1.4699568f +
5105       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5106       //
5107       // error 0.000061011436, which is 14 bits
5108       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5109                                getF32Constant(DAG, 0xbd67b6d6, dl));
5110       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5111                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5112       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5113       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5114                                getF32Constant(DAG, 0x3fbc278b, dl));
5115       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5116       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5117                                getF32Constant(DAG, 0x40348e95, dl));
5118       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5119       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5120                                   getF32Constant(DAG, 0x3fdef31a, dl));
5121     } else { // LimitFloatPrecision <= 18
5122       // For floating-point precision of 18:
5123       //
5124       //   LogOfMantissa =
5125       //     -2.1072184f +
5126       //       (4.2372794f +
5127       //         (-3.7029485f +
5128       //           (2.2781945f +
5129       //             (-0.87823314f +
5130       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5131       //
5132       // error 0.0000023660568, which is better than 18 bits
5133       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5134                                getF32Constant(DAG, 0xbc91e5ac, dl));
5135       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5136                                getF32Constant(DAG, 0x3e4350aa, dl));
5137       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5138       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5139                                getF32Constant(DAG, 0x3f60d3e3, dl));
5140       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5141       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5142                                getF32Constant(DAG, 0x4011cdf0, dl));
5143       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5144       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5145                                getF32Constant(DAG, 0x406cfd1c, dl));
5146       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5147       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5148                                getF32Constant(DAG, 0x408797cb, dl));
5149       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5150       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5151                                   getF32Constant(DAG, 0x4006dcab, dl));
5152     }
5153 
5154     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5155   }
5156 
5157   // No special expansion.
5158   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5159 }
5160 
5161 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5162 /// limited-precision mode.
5163 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5164                           const TargetLowering &TLI, SDNodeFlags Flags) {
5165   // TODO: What fast-math-flags should be set on the floating-point nodes?
5166 
5167   if (Op.getValueType() == MVT::f32 &&
5168       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5169     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5170 
5171     // Get the exponent.
5172     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5173 
5174     // Get the significand and build it into a floating-point number with
5175     // exponent of 1.
5176     SDValue X = GetSignificand(DAG, Op1, dl);
5177 
5178     // Different possible minimax approximations of significand in
5179     // floating-point for various degrees of accuracy over [1,2].
5180     SDValue Log2ofMantissa;
5181     if (LimitFloatPrecision <= 6) {
5182       // For floating-point precision of 6:
5183       //
5184       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5185       //
5186       // error 0.0049451742, which is more than 7 bits
5187       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5188                                getF32Constant(DAG, 0xbeb08fe0, dl));
5189       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5190                                getF32Constant(DAG, 0x40019463, dl));
5191       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5192       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5193                                    getF32Constant(DAG, 0x3fd6633d, dl));
5194     } else if (LimitFloatPrecision <= 12) {
5195       // For floating-point precision of 12:
5196       //
5197       //   Log2ofMantissa =
5198       //     -2.51285454f +
5199       //       (4.07009056f +
5200       //         (-2.12067489f +
5201       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5202       //
5203       // error 0.0000876136000, which is better than 13 bits
5204       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5205                                getF32Constant(DAG, 0xbda7262e, dl));
5206       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5207                                getF32Constant(DAG, 0x3f25280b, dl));
5208       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5209       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5210                                getF32Constant(DAG, 0x4007b923, dl));
5211       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5212       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5213                                getF32Constant(DAG, 0x40823e2f, dl));
5214       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5215       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5216                                    getF32Constant(DAG, 0x4020d29c, dl));
5217     } else { // LimitFloatPrecision <= 18
5218       // For floating-point precision of 18:
5219       //
5220       //   Log2ofMantissa =
5221       //     -3.0400495f +
5222       //       (6.1129976f +
5223       //         (-5.3420409f +
5224       //           (3.2865683f +
5225       //             (-1.2669343f +
5226       //               (0.27515199f -
5227       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5228       //
5229       // error 0.0000018516, which is better than 18 bits
5230       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5231                                getF32Constant(DAG, 0xbcd2769e, dl));
5232       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5233                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5234       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5235       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5236                                getF32Constant(DAG, 0x3fa22ae7, dl));
5237       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5238       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5239                                getF32Constant(DAG, 0x40525723, dl));
5240       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5241       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5242                                getF32Constant(DAG, 0x40aaf200, dl));
5243       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5244       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5245                                getF32Constant(DAG, 0x40c39dad, dl));
5246       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5247       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5248                                    getF32Constant(DAG, 0x4042902c, dl));
5249     }
5250 
5251     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5252   }
5253 
5254   // No special expansion.
5255   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5256 }
5257 
5258 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5259 /// limited-precision mode.
5260 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5261                            const TargetLowering &TLI, SDNodeFlags Flags) {
5262   // TODO: What fast-math-flags should be set on the floating-point nodes?
5263 
5264   if (Op.getValueType() == MVT::f32 &&
5265       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5266     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5267 
5268     // Scale the exponent by log10(2) [0.30102999f].
5269     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5270     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5271                                         getF32Constant(DAG, 0x3e9a209a, dl));
5272 
5273     // Get the significand and build it into a floating-point number with
5274     // exponent of 1.
5275     SDValue X = GetSignificand(DAG, Op1, dl);
5276 
5277     SDValue Log10ofMantissa;
5278     if (LimitFloatPrecision <= 6) {
5279       // For floating-point precision of 6:
5280       //
5281       //   Log10ofMantissa =
5282       //     -0.50419619f +
5283       //       (0.60948995f - 0.10380950f * x) * x;
5284       //
5285       // error 0.0014886165, which is 6 bits
5286       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5287                                getF32Constant(DAG, 0xbdd49a13, dl));
5288       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5289                                getF32Constant(DAG, 0x3f1c0789, dl));
5290       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5291       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5292                                     getF32Constant(DAG, 0x3f011300, dl));
5293     } else if (LimitFloatPrecision <= 12) {
5294       // For floating-point precision of 12:
5295       //
5296       //   Log10ofMantissa =
5297       //     -0.64831180f +
5298       //       (0.91751397f +
5299       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5300       //
5301       // error 0.00019228036, which is better than 12 bits
5302       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5303                                getF32Constant(DAG, 0x3d431f31, dl));
5304       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5305                                getF32Constant(DAG, 0x3ea21fb2, dl));
5306       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5307       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5308                                getF32Constant(DAG, 0x3f6ae232, dl));
5309       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5310       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5311                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5312     } else { // LimitFloatPrecision <= 18
5313       // For floating-point precision of 18:
5314       //
5315       //   Log10ofMantissa =
5316       //     -0.84299375f +
5317       //       (1.5327582f +
5318       //         (-1.0688956f +
5319       //           (0.49102474f +
5320       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5321       //
5322       // error 0.0000037995730, which is better than 18 bits
5323       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5324                                getF32Constant(DAG, 0x3c5d51ce, dl));
5325       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5326                                getF32Constant(DAG, 0x3e00685a, dl));
5327       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5328       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5329                                getF32Constant(DAG, 0x3efb6798, dl));
5330       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5331       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5332                                getF32Constant(DAG, 0x3f88d192, dl));
5333       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5334       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5335                                getF32Constant(DAG, 0x3fc4316c, dl));
5336       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5337       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5338                                     getF32Constant(DAG, 0x3f57ce70, dl));
5339     }
5340 
5341     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5342   }
5343 
5344   // No special expansion.
5345   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5346 }
5347 
5348 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5349 /// limited-precision mode.
5350 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5351                           const TargetLowering &TLI, SDNodeFlags Flags) {
5352   if (Op.getValueType() == MVT::f32 &&
5353       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5354     return getLimitedPrecisionExp2(Op, dl, DAG);
5355 
5356   // No special expansion.
5357   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5358 }
5359 
5360 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5361 /// limited-precision mode with x == 10.0f.
5362 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5363                          SelectionDAG &DAG, const TargetLowering &TLI,
5364                          SDNodeFlags Flags) {
5365   bool IsExp10 = false;
5366   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5367       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5368     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5369       APFloat Ten(10.0f);
5370       IsExp10 = LHSC->isExactlyValue(Ten);
5371     }
5372   }
5373 
5374   // TODO: What fast-math-flags should be set on the FMUL node?
5375   if (IsExp10) {
5376     // Put the exponent in the right bit position for later addition to the
5377     // final result:
5378     //
5379     //   #define LOG2OF10 3.3219281f
5380     //   t0 = Op * LOG2OF10;
5381     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5382                              getF32Constant(DAG, 0x40549a78, dl));
5383     return getLimitedPrecisionExp2(t0, dl, DAG);
5384   }
5385 
5386   // No special expansion.
5387   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5388 }
5389 
5390 /// ExpandPowI - Expand a llvm.powi intrinsic.
5391 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5392                           SelectionDAG &DAG) {
5393   // If RHS is a constant, we can expand this out to a multiplication tree if
5394   // it's beneficial on the target, otherwise we end up lowering to a call to
5395   // __powidf2 (for example).
5396   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5397     unsigned Val = RHSC->getSExtValue();
5398 
5399     // powi(x, 0) -> 1.0
5400     if (Val == 0)
5401       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5402 
5403     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5404             Val, DAG.shouldOptForSize())) {
5405       // Get the exponent as a positive value.
5406       if ((int)Val < 0)
5407         Val = -Val;
5408       // We use the simple binary decomposition method to generate the multiply
5409       // sequence.  There are more optimal ways to do this (for example,
5410       // powi(x,15) generates one more multiply than it should), but this has
5411       // the benefit of being both really simple and much better than a libcall.
5412       SDValue Res; // Logically starts equal to 1.0
5413       SDValue CurSquare = LHS;
5414       // TODO: Intrinsics should have fast-math-flags that propagate to these
5415       // nodes.
5416       while (Val) {
5417         if (Val & 1) {
5418           if (Res.getNode())
5419             Res =
5420                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5421           else
5422             Res = CurSquare; // 1.0*CurSquare.
5423         }
5424 
5425         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5426                                 CurSquare, CurSquare);
5427         Val >>= 1;
5428       }
5429 
5430       // If the original was negative, invert the result, producing 1/(x*x*x).
5431       if (RHSC->getSExtValue() < 0)
5432         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5433                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5434       return Res;
5435     }
5436   }
5437 
5438   // Otherwise, expand to a libcall.
5439   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5440 }
5441 
5442 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5443                             SDValue LHS, SDValue RHS, SDValue Scale,
5444                             SelectionDAG &DAG, const TargetLowering &TLI) {
5445   EVT VT = LHS.getValueType();
5446   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5447   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5448   LLVMContext &Ctx = *DAG.getContext();
5449 
5450   // If the type is legal but the operation isn't, this node might survive all
5451   // the way to operation legalization. If we end up there and we do not have
5452   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5453   // node.
5454 
5455   // Coax the legalizer into expanding the node during type legalization instead
5456   // by bumping the size by one bit. This will force it to Promote, enabling the
5457   // early expansion and avoiding the need to expand later.
5458 
5459   // We don't have to do this if Scale is 0; that can always be expanded, unless
5460   // it's a saturating signed operation. Those can experience true integer
5461   // division overflow, a case which we must avoid.
5462 
5463   // FIXME: We wouldn't have to do this (or any of the early
5464   // expansion/promotion) if it was possible to expand a libcall of an
5465   // illegal type during operation legalization. But it's not, so things
5466   // get a bit hacky.
5467   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5468   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5469       (TLI.isTypeLegal(VT) ||
5470        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5471     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5472         Opcode, VT, ScaleInt);
5473     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5474       EVT PromVT;
5475       if (VT.isScalarInteger())
5476         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5477       else if (VT.isVector()) {
5478         PromVT = VT.getVectorElementType();
5479         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5480         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5481       } else
5482         llvm_unreachable("Wrong VT for DIVFIX?");
5483       if (Signed) {
5484         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5485         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5486       } else {
5487         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5488         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5489       }
5490       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5491       // For saturating operations, we need to shift up the LHS to get the
5492       // proper saturation width, and then shift down again afterwards.
5493       if (Saturating)
5494         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5495                           DAG.getConstant(1, DL, ShiftTy));
5496       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5497       if (Saturating)
5498         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5499                           DAG.getConstant(1, DL, ShiftTy));
5500       return DAG.getZExtOrTrunc(Res, DL, VT);
5501     }
5502   }
5503 
5504   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5505 }
5506 
5507 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5508 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5509 static void
5510 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5511                      const SDValue &N) {
5512   switch (N.getOpcode()) {
5513   case ISD::CopyFromReg: {
5514     SDValue Op = N.getOperand(1);
5515     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5516                       Op.getValueType().getSizeInBits());
5517     return;
5518   }
5519   case ISD::BITCAST:
5520   case ISD::AssertZext:
5521   case ISD::AssertSext:
5522   case ISD::TRUNCATE:
5523     getUnderlyingArgRegs(Regs, N.getOperand(0));
5524     return;
5525   case ISD::BUILD_PAIR:
5526   case ISD::BUILD_VECTOR:
5527   case ISD::CONCAT_VECTORS:
5528     for (SDValue Op : N->op_values())
5529       getUnderlyingArgRegs(Regs, Op);
5530     return;
5531   default:
5532     return;
5533   }
5534 }
5535 
5536 /// If the DbgValueInst is a dbg_value of a function argument, create the
5537 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5538 /// instruction selection, they will be inserted to the entry BB.
5539 /// We don't currently support this for variadic dbg_values, as they shouldn't
5540 /// appear for function arguments or in the prologue.
5541 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5542     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5543     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5544   const Argument *Arg = dyn_cast<Argument>(V);
5545   if (!Arg)
5546     return false;
5547 
5548   MachineFunction &MF = DAG.getMachineFunction();
5549   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5550 
5551   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5552   // we've been asked to pursue.
5553   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5554                               bool Indirect) {
5555     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5556       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5557       // pointing at the VReg, which will be patched up later.
5558       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5559       auto MIB = BuildMI(MF, DL, Inst);
5560       MIB.addReg(Reg);
5561       MIB.addImm(0);
5562       MIB.addMetadata(Variable);
5563       auto *NewDIExpr = FragExpr;
5564       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5565       // the DIExpression.
5566       if (Indirect)
5567         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5568       MIB.addMetadata(NewDIExpr);
5569       return MIB;
5570     } else {
5571       // Create a completely standard DBG_VALUE.
5572       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5573       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5574     }
5575   };
5576 
5577   if (Kind == FuncArgumentDbgValueKind::Value) {
5578     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5579     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5580     // the entry block.
5581     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5582     if (!IsInEntryBlock)
5583       return false;
5584 
5585     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5586     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5587     // variable that also is a param.
5588     //
5589     // Although, if we are at the top of the entry block already, we can still
5590     // emit using ArgDbgValue. This might catch some situations when the
5591     // dbg.value refers to an argument that isn't used in the entry block, so
5592     // any CopyToReg node would be optimized out and the only way to express
5593     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5594     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5595     // we should only emit as ArgDbgValue if the Variable is an argument to the
5596     // current function, and the dbg.value intrinsic is found in the entry
5597     // block.
5598     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5599         !DL->getInlinedAt();
5600     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5601     if (!IsInPrologue && !VariableIsFunctionInputArg)
5602       return false;
5603 
5604     // Here we assume that a function argument on IR level only can be used to
5605     // describe one input parameter on source level. If we for example have
5606     // source code like this
5607     //
5608     //    struct A { long x, y; };
5609     //    void foo(struct A a, long b) {
5610     //      ...
5611     //      b = a.x;
5612     //      ...
5613     //    }
5614     //
5615     // and IR like this
5616     //
5617     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5618     //  entry:
5619     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5620     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5621     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5622     //    ...
5623     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5624     //    ...
5625     //
5626     // then the last dbg.value is describing a parameter "b" using a value that
5627     // is an argument. But since we already has used %a1 to describe a parameter
5628     // we should not handle that last dbg.value here (that would result in an
5629     // incorrect hoisting of the DBG_VALUE to the function entry).
5630     // Notice that we allow one dbg.value per IR level argument, to accommodate
5631     // for the situation with fragments above.
5632     if (VariableIsFunctionInputArg) {
5633       unsigned ArgNo = Arg->getArgNo();
5634       if (ArgNo >= FuncInfo.DescribedArgs.size())
5635         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5636       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5637         return false;
5638       FuncInfo.DescribedArgs.set(ArgNo);
5639     }
5640   }
5641 
5642   bool IsIndirect = false;
5643   Optional<MachineOperand> Op;
5644   // Some arguments' frame index is recorded during argument lowering.
5645   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5646   if (FI != std::numeric_limits<int>::max())
5647     Op = MachineOperand::CreateFI(FI);
5648 
5649   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5650   if (!Op && N.getNode()) {
5651     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5652     Register Reg;
5653     if (ArgRegsAndSizes.size() == 1)
5654       Reg = ArgRegsAndSizes.front().first;
5655 
5656     if (Reg && Reg.isVirtual()) {
5657       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5658       Register PR = RegInfo.getLiveInPhysReg(Reg);
5659       if (PR)
5660         Reg = PR;
5661     }
5662     if (Reg) {
5663       Op = MachineOperand::CreateReg(Reg, false);
5664       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5665     }
5666   }
5667 
5668   if (!Op && N.getNode()) {
5669     // Check if frame index is available.
5670     SDValue LCandidate = peekThroughBitcasts(N);
5671     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5672       if (FrameIndexSDNode *FINode =
5673           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5674         Op = MachineOperand::CreateFI(FINode->getIndex());
5675   }
5676 
5677   if (!Op) {
5678     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5679     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5680                                          SplitRegs) {
5681       unsigned Offset = 0;
5682       for (const auto &RegAndSize : SplitRegs) {
5683         // If the expression is already a fragment, the current register
5684         // offset+size might extend beyond the fragment. In this case, only
5685         // the register bits that are inside the fragment are relevant.
5686         int RegFragmentSizeInBits = RegAndSize.second;
5687         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5688           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5689           // The register is entirely outside the expression fragment,
5690           // so is irrelevant for debug info.
5691           if (Offset >= ExprFragmentSizeInBits)
5692             break;
5693           // The register is partially outside the expression fragment, only
5694           // the low bits within the fragment are relevant for debug info.
5695           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5696             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5697           }
5698         }
5699 
5700         auto FragmentExpr = DIExpression::createFragmentExpression(
5701             Expr, Offset, RegFragmentSizeInBits);
5702         Offset += RegAndSize.second;
5703         // If a valid fragment expression cannot be created, the variable's
5704         // correct value cannot be determined and so it is set as Undef.
5705         if (!FragmentExpr) {
5706           SDDbgValue *SDV = DAG.getConstantDbgValue(
5707               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5708           DAG.AddDbgValue(SDV, false);
5709           continue;
5710         }
5711         MachineInstr *NewMI =
5712             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5713                              Kind != FuncArgumentDbgValueKind::Value);
5714         FuncInfo.ArgDbgValues.push_back(NewMI);
5715       }
5716     };
5717 
5718     // Check if ValueMap has reg number.
5719     DenseMap<const Value *, Register>::const_iterator
5720       VMI = FuncInfo.ValueMap.find(V);
5721     if (VMI != FuncInfo.ValueMap.end()) {
5722       const auto &TLI = DAG.getTargetLoweringInfo();
5723       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5724                        V->getType(), None);
5725       if (RFV.occupiesMultipleRegs()) {
5726         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5727         return true;
5728       }
5729 
5730       Op = MachineOperand::CreateReg(VMI->second, false);
5731       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5732     } else if (ArgRegsAndSizes.size() > 1) {
5733       // This was split due to the calling convention, and no virtual register
5734       // mapping exists for the value.
5735       splitMultiRegDbgValue(ArgRegsAndSizes);
5736       return true;
5737     }
5738   }
5739 
5740   if (!Op)
5741     return false;
5742 
5743   assert(Variable->isValidLocationForIntrinsic(DL) &&
5744          "Expected inlined-at fields to agree");
5745   MachineInstr *NewMI = nullptr;
5746 
5747   if (Op->isReg())
5748     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5749   else
5750     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5751                     Variable, Expr);
5752 
5753   // Otherwise, use ArgDbgValues.
5754   FuncInfo.ArgDbgValues.push_back(NewMI);
5755   return true;
5756 }
5757 
5758 /// Return the appropriate SDDbgValue based on N.
5759 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5760                                              DILocalVariable *Variable,
5761                                              DIExpression *Expr,
5762                                              const DebugLoc &dl,
5763                                              unsigned DbgSDNodeOrder) {
5764   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5765     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5766     // stack slot locations.
5767     //
5768     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5769     // debug values here after optimization:
5770     //
5771     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5772     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5773     //
5774     // Both describe the direct values of their associated variables.
5775     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5776                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5777   }
5778   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5779                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5780 }
5781 
5782 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5783   switch (Intrinsic) {
5784   case Intrinsic::smul_fix:
5785     return ISD::SMULFIX;
5786   case Intrinsic::umul_fix:
5787     return ISD::UMULFIX;
5788   case Intrinsic::smul_fix_sat:
5789     return ISD::SMULFIXSAT;
5790   case Intrinsic::umul_fix_sat:
5791     return ISD::UMULFIXSAT;
5792   case Intrinsic::sdiv_fix:
5793     return ISD::SDIVFIX;
5794   case Intrinsic::udiv_fix:
5795     return ISD::UDIVFIX;
5796   case Intrinsic::sdiv_fix_sat:
5797     return ISD::SDIVFIXSAT;
5798   case Intrinsic::udiv_fix_sat:
5799     return ISD::UDIVFIXSAT;
5800   default:
5801     llvm_unreachable("Unhandled fixed point intrinsic");
5802   }
5803 }
5804 
5805 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5806                                            const char *FunctionName) {
5807   assert(FunctionName && "FunctionName must not be nullptr");
5808   SDValue Callee = DAG.getExternalSymbol(
5809       FunctionName,
5810       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5811   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5812 }
5813 
5814 /// Given a @llvm.call.preallocated.setup, return the corresponding
5815 /// preallocated call.
5816 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5817   assert(cast<CallBase>(PreallocatedSetup)
5818                  ->getCalledFunction()
5819                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5820          "expected call_preallocated_setup Value");
5821   for (const auto *U : PreallocatedSetup->users()) {
5822     auto *UseCall = cast<CallBase>(U);
5823     const Function *Fn = UseCall->getCalledFunction();
5824     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5825       return UseCall;
5826     }
5827   }
5828   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5829 }
5830 
5831 /// Lower the call to the specified intrinsic function.
5832 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5833                                              unsigned Intrinsic) {
5834   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5835   SDLoc sdl = getCurSDLoc();
5836   DebugLoc dl = getCurDebugLoc();
5837   SDValue Res;
5838 
5839   SDNodeFlags Flags;
5840   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5841     Flags.copyFMF(*FPOp);
5842 
5843   switch (Intrinsic) {
5844   default:
5845     // By default, turn this into a target intrinsic node.
5846     visitTargetIntrinsic(I, Intrinsic);
5847     return;
5848   case Intrinsic::vscale: {
5849     match(&I, m_VScale(DAG.getDataLayout()));
5850     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5851     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5852     return;
5853   }
5854   case Intrinsic::vastart:  visitVAStart(I); return;
5855   case Intrinsic::vaend:    visitVAEnd(I); return;
5856   case Intrinsic::vacopy:   visitVACopy(I); return;
5857   case Intrinsic::returnaddress:
5858     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5859                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5860                              getValue(I.getArgOperand(0))));
5861     return;
5862   case Intrinsic::addressofreturnaddress:
5863     setValue(&I,
5864              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5865                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5866     return;
5867   case Intrinsic::sponentry:
5868     setValue(&I,
5869              DAG.getNode(ISD::SPONENTRY, sdl,
5870                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5871     return;
5872   case Intrinsic::frameaddress:
5873     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5874                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5875                              getValue(I.getArgOperand(0))));
5876     return;
5877   case Intrinsic::read_volatile_register:
5878   case Intrinsic::read_register: {
5879     Value *Reg = I.getArgOperand(0);
5880     SDValue Chain = getRoot();
5881     SDValue RegName =
5882         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5883     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5884     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5885       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5886     setValue(&I, Res);
5887     DAG.setRoot(Res.getValue(1));
5888     return;
5889   }
5890   case Intrinsic::write_register: {
5891     Value *Reg = I.getArgOperand(0);
5892     Value *RegValue = I.getArgOperand(1);
5893     SDValue Chain = getRoot();
5894     SDValue RegName =
5895         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5896     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5897                             RegName, getValue(RegValue)));
5898     return;
5899   }
5900   case Intrinsic::memcpy: {
5901     const auto &MCI = cast<MemCpyInst>(I);
5902     SDValue Op1 = getValue(I.getArgOperand(0));
5903     SDValue Op2 = getValue(I.getArgOperand(1));
5904     SDValue Op3 = getValue(I.getArgOperand(2));
5905     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5906     Align DstAlign = MCI.getDestAlign().valueOrOne();
5907     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5908     Align Alignment = std::min(DstAlign, SrcAlign);
5909     bool isVol = MCI.isVolatile();
5910     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5911     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5912     // node.
5913     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5914     SDValue MC = DAG.getMemcpy(
5915         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5916         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5917         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5918     updateDAGForMaybeTailCall(MC);
5919     return;
5920   }
5921   case Intrinsic::memcpy_inline: {
5922     const auto &MCI = cast<MemCpyInlineInst>(I);
5923     SDValue Dst = getValue(I.getArgOperand(0));
5924     SDValue Src = getValue(I.getArgOperand(1));
5925     SDValue Size = getValue(I.getArgOperand(2));
5926     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5927     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5928     Align DstAlign = MCI.getDestAlign().valueOrOne();
5929     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5930     Align Alignment = std::min(DstAlign, SrcAlign);
5931     bool isVol = MCI.isVolatile();
5932     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5933     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5934     // node.
5935     SDValue MC = DAG.getMemcpy(
5936         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5937         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5938         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5939     updateDAGForMaybeTailCall(MC);
5940     return;
5941   }
5942   case Intrinsic::memset: {
5943     const auto &MSI = cast<MemSetInst>(I);
5944     SDValue Op1 = getValue(I.getArgOperand(0));
5945     SDValue Op2 = getValue(I.getArgOperand(1));
5946     SDValue Op3 = getValue(I.getArgOperand(2));
5947     // @llvm.memset defines 0 and 1 to both mean no alignment.
5948     Align Alignment = MSI.getDestAlign().valueOrOne();
5949     bool isVol = MSI.isVolatile();
5950     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5951     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5952     SDValue MS = DAG.getMemset(
5953         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5954         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5955     updateDAGForMaybeTailCall(MS);
5956     return;
5957   }
5958   case Intrinsic::memset_inline: {
5959     const auto &MSII = cast<MemSetInlineInst>(I);
5960     SDValue Dst = getValue(I.getArgOperand(0));
5961     SDValue Value = getValue(I.getArgOperand(1));
5962     SDValue Size = getValue(I.getArgOperand(2));
5963     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5964     // @llvm.memset defines 0 and 1 to both mean no alignment.
5965     Align DstAlign = MSII.getDestAlign().valueOrOne();
5966     bool isVol = MSII.isVolatile();
5967     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5968     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5969     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5970                                /* AlwaysInline */ true, isTC,
5971                                MachinePointerInfo(I.getArgOperand(0)),
5972                                I.getAAMetadata());
5973     updateDAGForMaybeTailCall(MC);
5974     return;
5975   }
5976   case Intrinsic::memmove: {
5977     const auto &MMI = cast<MemMoveInst>(I);
5978     SDValue Op1 = getValue(I.getArgOperand(0));
5979     SDValue Op2 = getValue(I.getArgOperand(1));
5980     SDValue Op3 = getValue(I.getArgOperand(2));
5981     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5982     Align DstAlign = MMI.getDestAlign().valueOrOne();
5983     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5984     Align Alignment = std::min(DstAlign, SrcAlign);
5985     bool isVol = MMI.isVolatile();
5986     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5987     // FIXME: Support passing different dest/src alignments to the memmove DAG
5988     // node.
5989     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5990     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5991                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5992                                 MachinePointerInfo(I.getArgOperand(1)),
5993                                 I.getAAMetadata(), AA);
5994     updateDAGForMaybeTailCall(MM);
5995     return;
5996   }
5997   case Intrinsic::memcpy_element_unordered_atomic: {
5998     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5999     SDValue Dst = getValue(MI.getRawDest());
6000     SDValue Src = getValue(MI.getRawSource());
6001     SDValue Length = getValue(MI.getLength());
6002 
6003     Type *LengthTy = MI.getLength()->getType();
6004     unsigned ElemSz = MI.getElementSizeInBytes();
6005     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6006     SDValue MC =
6007         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6008                             isTC, MachinePointerInfo(MI.getRawDest()),
6009                             MachinePointerInfo(MI.getRawSource()));
6010     updateDAGForMaybeTailCall(MC);
6011     return;
6012   }
6013   case Intrinsic::memmove_element_unordered_atomic: {
6014     auto &MI = cast<AtomicMemMoveInst>(I);
6015     SDValue Dst = getValue(MI.getRawDest());
6016     SDValue Src = getValue(MI.getRawSource());
6017     SDValue Length = getValue(MI.getLength());
6018 
6019     Type *LengthTy = MI.getLength()->getType();
6020     unsigned ElemSz = MI.getElementSizeInBytes();
6021     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6022     SDValue MC =
6023         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6024                              isTC, MachinePointerInfo(MI.getRawDest()),
6025                              MachinePointerInfo(MI.getRawSource()));
6026     updateDAGForMaybeTailCall(MC);
6027     return;
6028   }
6029   case Intrinsic::memset_element_unordered_atomic: {
6030     auto &MI = cast<AtomicMemSetInst>(I);
6031     SDValue Dst = getValue(MI.getRawDest());
6032     SDValue Val = getValue(MI.getValue());
6033     SDValue Length = getValue(MI.getLength());
6034 
6035     Type *LengthTy = MI.getLength()->getType();
6036     unsigned ElemSz = MI.getElementSizeInBytes();
6037     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6038     SDValue MC =
6039         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6040                             isTC, MachinePointerInfo(MI.getRawDest()));
6041     updateDAGForMaybeTailCall(MC);
6042     return;
6043   }
6044   case Intrinsic::call_preallocated_setup: {
6045     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6046     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6047     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6048                               getRoot(), SrcValue);
6049     setValue(&I, Res);
6050     DAG.setRoot(Res);
6051     return;
6052   }
6053   case Intrinsic::call_preallocated_arg: {
6054     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6055     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6056     SDValue Ops[3];
6057     Ops[0] = getRoot();
6058     Ops[1] = SrcValue;
6059     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6060                                    MVT::i32); // arg index
6061     SDValue Res = DAG.getNode(
6062         ISD::PREALLOCATED_ARG, sdl,
6063         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6064     setValue(&I, Res);
6065     DAG.setRoot(Res.getValue(1));
6066     return;
6067   }
6068   case Intrinsic::dbg_addr:
6069   case Intrinsic::dbg_declare: {
6070     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6071     // they are non-variadic.
6072     const auto &DI = cast<DbgVariableIntrinsic>(I);
6073     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6074     DILocalVariable *Variable = DI.getVariable();
6075     DIExpression *Expression = DI.getExpression();
6076     dropDanglingDebugInfo(Variable, Expression);
6077     assert(Variable && "Missing variable");
6078     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6079                       << "\n");
6080     // Check if address has undef value.
6081     const Value *Address = DI.getVariableLocationOp(0);
6082     if (!Address || isa<UndefValue>(Address) ||
6083         (Address->use_empty() && !isa<Argument>(Address))) {
6084       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6085                         << " (bad/undef/unused-arg address)\n");
6086       return;
6087     }
6088 
6089     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6090 
6091     // Check if this variable can be described by a frame index, typically
6092     // either as a static alloca or a byval parameter.
6093     int FI = std::numeric_limits<int>::max();
6094     if (const auto *AI =
6095             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6096       if (AI->isStaticAlloca()) {
6097         auto I = FuncInfo.StaticAllocaMap.find(AI);
6098         if (I != FuncInfo.StaticAllocaMap.end())
6099           FI = I->second;
6100       }
6101     } else if (const auto *Arg = dyn_cast<Argument>(
6102                    Address->stripInBoundsConstantOffsets())) {
6103       FI = FuncInfo.getArgumentFrameIndex(Arg);
6104     }
6105 
6106     // llvm.dbg.addr is control dependent and always generates indirect
6107     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6108     // the MachineFunction variable table.
6109     if (FI != std::numeric_limits<int>::max()) {
6110       if (Intrinsic == Intrinsic::dbg_addr) {
6111         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6112             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6113             dl, SDNodeOrder);
6114         DAG.AddDbgValue(SDV, isParameter);
6115       } else {
6116         LLVM_DEBUG(dbgs() << "Skipping " << DI
6117                           << " (variable info stashed in MF side table)\n");
6118       }
6119       return;
6120     }
6121 
6122     SDValue &N = NodeMap[Address];
6123     if (!N.getNode() && isa<Argument>(Address))
6124       // Check unused arguments map.
6125       N = UnusedArgNodeMap[Address];
6126     SDDbgValue *SDV;
6127     if (N.getNode()) {
6128       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6129         Address = BCI->getOperand(0);
6130       // Parameters are handled specially.
6131       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6132       if (isParameter && FINode) {
6133         // Byval parameter. We have a frame index at this point.
6134         SDV =
6135             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6136                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6137       } else if (isa<Argument>(Address)) {
6138         // Address is an argument, so try to emit its dbg value using
6139         // virtual register info from the FuncInfo.ValueMap.
6140         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6141                                  FuncArgumentDbgValueKind::Declare, N);
6142         return;
6143       } else {
6144         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6145                               true, dl, SDNodeOrder);
6146       }
6147       DAG.AddDbgValue(SDV, isParameter);
6148     } else {
6149       // If Address is an argument then try to emit its dbg value using
6150       // virtual register info from the FuncInfo.ValueMap.
6151       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6152                                     FuncArgumentDbgValueKind::Declare, N)) {
6153         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6154                           << " (could not emit func-arg dbg_value)\n");
6155       }
6156     }
6157     return;
6158   }
6159   case Intrinsic::dbg_label: {
6160     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6161     DILabel *Label = DI.getLabel();
6162     assert(Label && "Missing label");
6163 
6164     SDDbgLabel *SDV;
6165     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6166     DAG.AddDbgLabel(SDV);
6167     return;
6168   }
6169   case Intrinsic::dbg_value: {
6170     const DbgValueInst &DI = cast<DbgValueInst>(I);
6171     assert(DI.getVariable() && "Missing variable");
6172 
6173     DILocalVariable *Variable = DI.getVariable();
6174     DIExpression *Expression = DI.getExpression();
6175     dropDanglingDebugInfo(Variable, Expression);
6176     SmallVector<Value *, 4> Values(DI.getValues());
6177     if (Values.empty())
6178       return;
6179 
6180     if (llvm::is_contained(Values, nullptr))
6181       return;
6182 
6183     bool IsVariadic = DI.hasArgList();
6184     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6185                           SDNodeOrder, IsVariadic))
6186       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6187     return;
6188   }
6189 
6190   case Intrinsic::eh_typeid_for: {
6191     // Find the type id for the given typeinfo.
6192     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6193     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6194     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6195     setValue(&I, Res);
6196     return;
6197   }
6198 
6199   case Intrinsic::eh_return_i32:
6200   case Intrinsic::eh_return_i64:
6201     DAG.getMachineFunction().setCallsEHReturn(true);
6202     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6203                             MVT::Other,
6204                             getControlRoot(),
6205                             getValue(I.getArgOperand(0)),
6206                             getValue(I.getArgOperand(1))));
6207     return;
6208   case Intrinsic::eh_unwind_init:
6209     DAG.getMachineFunction().setCallsUnwindInit(true);
6210     return;
6211   case Intrinsic::eh_dwarf_cfa:
6212     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6213                              TLI.getPointerTy(DAG.getDataLayout()),
6214                              getValue(I.getArgOperand(0))));
6215     return;
6216   case Intrinsic::eh_sjlj_callsite: {
6217     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6218     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6219     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6220 
6221     MMI.setCurrentCallSite(CI->getZExtValue());
6222     return;
6223   }
6224   case Intrinsic::eh_sjlj_functioncontext: {
6225     // Get and store the index of the function context.
6226     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6227     AllocaInst *FnCtx =
6228       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6229     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6230     MFI.setFunctionContextIndex(FI);
6231     return;
6232   }
6233   case Intrinsic::eh_sjlj_setjmp: {
6234     SDValue Ops[2];
6235     Ops[0] = getRoot();
6236     Ops[1] = getValue(I.getArgOperand(0));
6237     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6238                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6239     setValue(&I, Op.getValue(0));
6240     DAG.setRoot(Op.getValue(1));
6241     return;
6242   }
6243   case Intrinsic::eh_sjlj_longjmp:
6244     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6245                             getRoot(), getValue(I.getArgOperand(0))));
6246     return;
6247   case Intrinsic::eh_sjlj_setup_dispatch:
6248     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6249                             getRoot()));
6250     return;
6251   case Intrinsic::masked_gather:
6252     visitMaskedGather(I);
6253     return;
6254   case Intrinsic::masked_load:
6255     visitMaskedLoad(I);
6256     return;
6257   case Intrinsic::masked_scatter:
6258     visitMaskedScatter(I);
6259     return;
6260   case Intrinsic::masked_store:
6261     visitMaskedStore(I);
6262     return;
6263   case Intrinsic::masked_expandload:
6264     visitMaskedLoad(I, true /* IsExpanding */);
6265     return;
6266   case Intrinsic::masked_compressstore:
6267     visitMaskedStore(I, true /* IsCompressing */);
6268     return;
6269   case Intrinsic::powi:
6270     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6271                             getValue(I.getArgOperand(1)), DAG));
6272     return;
6273   case Intrinsic::log:
6274     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6275     return;
6276   case Intrinsic::log2:
6277     setValue(&I,
6278              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6279     return;
6280   case Intrinsic::log10:
6281     setValue(&I,
6282              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6283     return;
6284   case Intrinsic::exp:
6285     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6286     return;
6287   case Intrinsic::exp2:
6288     setValue(&I,
6289              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6290     return;
6291   case Intrinsic::pow:
6292     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6293                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6294     return;
6295   case Intrinsic::sqrt:
6296   case Intrinsic::fabs:
6297   case Intrinsic::sin:
6298   case Intrinsic::cos:
6299   case Intrinsic::floor:
6300   case Intrinsic::ceil:
6301   case Intrinsic::trunc:
6302   case Intrinsic::rint:
6303   case Intrinsic::nearbyint:
6304   case Intrinsic::round:
6305   case Intrinsic::roundeven:
6306   case Intrinsic::canonicalize: {
6307     unsigned Opcode;
6308     switch (Intrinsic) {
6309     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6310     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6311     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6312     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6313     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6314     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6315     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6316     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6317     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6318     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6319     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6320     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6321     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6322     }
6323 
6324     setValue(&I, DAG.getNode(Opcode, sdl,
6325                              getValue(I.getArgOperand(0)).getValueType(),
6326                              getValue(I.getArgOperand(0)), Flags));
6327     return;
6328   }
6329   case Intrinsic::lround:
6330   case Intrinsic::llround:
6331   case Intrinsic::lrint:
6332   case Intrinsic::llrint: {
6333     unsigned Opcode;
6334     switch (Intrinsic) {
6335     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6336     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6337     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6338     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6339     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6340     }
6341 
6342     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6343     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6344                              getValue(I.getArgOperand(0))));
6345     return;
6346   }
6347   case Intrinsic::minnum:
6348     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6349                              getValue(I.getArgOperand(0)).getValueType(),
6350                              getValue(I.getArgOperand(0)),
6351                              getValue(I.getArgOperand(1)), Flags));
6352     return;
6353   case Intrinsic::maxnum:
6354     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6355                              getValue(I.getArgOperand(0)).getValueType(),
6356                              getValue(I.getArgOperand(0)),
6357                              getValue(I.getArgOperand(1)), Flags));
6358     return;
6359   case Intrinsic::minimum:
6360     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6361                              getValue(I.getArgOperand(0)).getValueType(),
6362                              getValue(I.getArgOperand(0)),
6363                              getValue(I.getArgOperand(1)), Flags));
6364     return;
6365   case Intrinsic::maximum:
6366     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6367                              getValue(I.getArgOperand(0)).getValueType(),
6368                              getValue(I.getArgOperand(0)),
6369                              getValue(I.getArgOperand(1)), Flags));
6370     return;
6371   case Intrinsic::copysign:
6372     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6373                              getValue(I.getArgOperand(0)).getValueType(),
6374                              getValue(I.getArgOperand(0)),
6375                              getValue(I.getArgOperand(1)), Flags));
6376     return;
6377   case Intrinsic::arithmetic_fence: {
6378     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6379                              getValue(I.getArgOperand(0)).getValueType(),
6380                              getValue(I.getArgOperand(0)), Flags));
6381     return;
6382   }
6383   case Intrinsic::fma:
6384     setValue(&I, DAG.getNode(
6385                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6386                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6387                      getValue(I.getArgOperand(2)), Flags));
6388     return;
6389 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6390   case Intrinsic::INTRINSIC:
6391 #include "llvm/IR/ConstrainedOps.def"
6392     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6393     return;
6394 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6395 #include "llvm/IR/VPIntrinsics.def"
6396     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6397     return;
6398   case Intrinsic::fptrunc_round: {
6399     // Get the last argument, the metadata and convert it to an integer in the
6400     // call
6401     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6402     Optional<RoundingMode> RoundMode =
6403         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6404 
6405     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6406 
6407     // Propagate fast-math-flags from IR to node(s).
6408     SDNodeFlags Flags;
6409     Flags.copyFMF(*cast<FPMathOperator>(&I));
6410     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6411 
6412     SDValue Result;
6413     Result = DAG.getNode(
6414         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6415         DAG.getTargetConstant((int)*RoundMode, sdl,
6416                               TLI.getPointerTy(DAG.getDataLayout())));
6417     setValue(&I, Result);
6418 
6419     return;
6420   }
6421   case Intrinsic::fmuladd: {
6422     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6423     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6424         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6425       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6426                                getValue(I.getArgOperand(0)).getValueType(),
6427                                getValue(I.getArgOperand(0)),
6428                                getValue(I.getArgOperand(1)),
6429                                getValue(I.getArgOperand(2)), Flags));
6430     } else {
6431       // TODO: Intrinsic calls should have fast-math-flags.
6432       SDValue Mul = DAG.getNode(
6433           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6434           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6435       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6436                                 getValue(I.getArgOperand(0)).getValueType(),
6437                                 Mul, getValue(I.getArgOperand(2)), Flags);
6438       setValue(&I, Add);
6439     }
6440     return;
6441   }
6442   case Intrinsic::convert_to_fp16:
6443     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6444                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6445                                          getValue(I.getArgOperand(0)),
6446                                          DAG.getTargetConstant(0, sdl,
6447                                                                MVT::i32))));
6448     return;
6449   case Intrinsic::convert_from_fp16:
6450     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6451                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6452                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6453                                          getValue(I.getArgOperand(0)))));
6454     return;
6455   case Intrinsic::fptosi_sat: {
6456     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6457     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6458                              getValue(I.getArgOperand(0)),
6459                              DAG.getValueType(VT.getScalarType())));
6460     return;
6461   }
6462   case Intrinsic::fptoui_sat: {
6463     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6464     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6465                              getValue(I.getArgOperand(0)),
6466                              DAG.getValueType(VT.getScalarType())));
6467     return;
6468   }
6469   case Intrinsic::set_rounding:
6470     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6471                       {getRoot(), getValue(I.getArgOperand(0))});
6472     setValue(&I, Res);
6473     DAG.setRoot(Res.getValue(0));
6474     return;
6475   case Intrinsic::is_fpclass: {
6476     const DataLayout DLayout = DAG.getDataLayout();
6477     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6478     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6479     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6480     MachineFunction &MF = DAG.getMachineFunction();
6481     const Function &F = MF.getFunction();
6482     SDValue Op = getValue(I.getArgOperand(0));
6483     SDNodeFlags Flags;
6484     Flags.setNoFPExcept(
6485         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6486     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6487     // expansion can use illegal types. Making expansion early allows
6488     // legalizing these types prior to selection.
6489     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6490       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6491       setValue(&I, Result);
6492       return;
6493     }
6494 
6495     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6496     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6497     setValue(&I, V);
6498     return;
6499   }
6500   case Intrinsic::pcmarker: {
6501     SDValue Tmp = getValue(I.getArgOperand(0));
6502     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6503     return;
6504   }
6505   case Intrinsic::readcyclecounter: {
6506     SDValue Op = getRoot();
6507     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6508                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6509     setValue(&I, Res);
6510     DAG.setRoot(Res.getValue(1));
6511     return;
6512   }
6513   case Intrinsic::bitreverse:
6514     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6515                              getValue(I.getArgOperand(0)).getValueType(),
6516                              getValue(I.getArgOperand(0))));
6517     return;
6518   case Intrinsic::bswap:
6519     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6520                              getValue(I.getArgOperand(0)).getValueType(),
6521                              getValue(I.getArgOperand(0))));
6522     return;
6523   case Intrinsic::cttz: {
6524     SDValue Arg = getValue(I.getArgOperand(0));
6525     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6526     EVT Ty = Arg.getValueType();
6527     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6528                              sdl, Ty, Arg));
6529     return;
6530   }
6531   case Intrinsic::ctlz: {
6532     SDValue Arg = getValue(I.getArgOperand(0));
6533     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6534     EVT Ty = Arg.getValueType();
6535     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6536                              sdl, Ty, Arg));
6537     return;
6538   }
6539   case Intrinsic::ctpop: {
6540     SDValue Arg = getValue(I.getArgOperand(0));
6541     EVT Ty = Arg.getValueType();
6542     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6543     return;
6544   }
6545   case Intrinsic::fshl:
6546   case Intrinsic::fshr: {
6547     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6548     SDValue X = getValue(I.getArgOperand(0));
6549     SDValue Y = getValue(I.getArgOperand(1));
6550     SDValue Z = getValue(I.getArgOperand(2));
6551     EVT VT = X.getValueType();
6552 
6553     if (X == Y) {
6554       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6555       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6556     } else {
6557       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6558       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6559     }
6560     return;
6561   }
6562   case Intrinsic::sadd_sat: {
6563     SDValue Op1 = getValue(I.getArgOperand(0));
6564     SDValue Op2 = getValue(I.getArgOperand(1));
6565     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6566     return;
6567   }
6568   case Intrinsic::uadd_sat: {
6569     SDValue Op1 = getValue(I.getArgOperand(0));
6570     SDValue Op2 = getValue(I.getArgOperand(1));
6571     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6572     return;
6573   }
6574   case Intrinsic::ssub_sat: {
6575     SDValue Op1 = getValue(I.getArgOperand(0));
6576     SDValue Op2 = getValue(I.getArgOperand(1));
6577     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6578     return;
6579   }
6580   case Intrinsic::usub_sat: {
6581     SDValue Op1 = getValue(I.getArgOperand(0));
6582     SDValue Op2 = getValue(I.getArgOperand(1));
6583     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6584     return;
6585   }
6586   case Intrinsic::sshl_sat: {
6587     SDValue Op1 = getValue(I.getArgOperand(0));
6588     SDValue Op2 = getValue(I.getArgOperand(1));
6589     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6590     return;
6591   }
6592   case Intrinsic::ushl_sat: {
6593     SDValue Op1 = getValue(I.getArgOperand(0));
6594     SDValue Op2 = getValue(I.getArgOperand(1));
6595     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6596     return;
6597   }
6598   case Intrinsic::smul_fix:
6599   case Intrinsic::umul_fix:
6600   case Intrinsic::smul_fix_sat:
6601   case Intrinsic::umul_fix_sat: {
6602     SDValue Op1 = getValue(I.getArgOperand(0));
6603     SDValue Op2 = getValue(I.getArgOperand(1));
6604     SDValue Op3 = getValue(I.getArgOperand(2));
6605     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6606                              Op1.getValueType(), Op1, Op2, Op3));
6607     return;
6608   }
6609   case Intrinsic::sdiv_fix:
6610   case Intrinsic::udiv_fix:
6611   case Intrinsic::sdiv_fix_sat:
6612   case Intrinsic::udiv_fix_sat: {
6613     SDValue Op1 = getValue(I.getArgOperand(0));
6614     SDValue Op2 = getValue(I.getArgOperand(1));
6615     SDValue Op3 = getValue(I.getArgOperand(2));
6616     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6617                               Op1, Op2, Op3, DAG, TLI));
6618     return;
6619   }
6620   case Intrinsic::smax: {
6621     SDValue Op1 = getValue(I.getArgOperand(0));
6622     SDValue Op2 = getValue(I.getArgOperand(1));
6623     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6624     return;
6625   }
6626   case Intrinsic::smin: {
6627     SDValue Op1 = getValue(I.getArgOperand(0));
6628     SDValue Op2 = getValue(I.getArgOperand(1));
6629     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6630     return;
6631   }
6632   case Intrinsic::umax: {
6633     SDValue Op1 = getValue(I.getArgOperand(0));
6634     SDValue Op2 = getValue(I.getArgOperand(1));
6635     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6636     return;
6637   }
6638   case Intrinsic::umin: {
6639     SDValue Op1 = getValue(I.getArgOperand(0));
6640     SDValue Op2 = getValue(I.getArgOperand(1));
6641     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6642     return;
6643   }
6644   case Intrinsic::abs: {
6645     // TODO: Preserve "int min is poison" arg in SDAG?
6646     SDValue Op1 = getValue(I.getArgOperand(0));
6647     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6648     return;
6649   }
6650   case Intrinsic::stacksave: {
6651     SDValue Op = getRoot();
6652     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6653     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6654     setValue(&I, Res);
6655     DAG.setRoot(Res.getValue(1));
6656     return;
6657   }
6658   case Intrinsic::stackrestore:
6659     Res = getValue(I.getArgOperand(0));
6660     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6661     return;
6662   case Intrinsic::get_dynamic_area_offset: {
6663     SDValue Op = getRoot();
6664     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6665     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6666     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6667     // target.
6668     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6669       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6670                          " intrinsic!");
6671     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6672                       Op);
6673     DAG.setRoot(Op);
6674     setValue(&I, Res);
6675     return;
6676   }
6677   case Intrinsic::stackguard: {
6678     MachineFunction &MF = DAG.getMachineFunction();
6679     const Module &M = *MF.getFunction().getParent();
6680     SDValue Chain = getRoot();
6681     if (TLI.useLoadStackGuardNode()) {
6682       Res = getLoadStackGuard(DAG, sdl, Chain);
6683     } else {
6684       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6685       const Value *Global = TLI.getSDagStackGuard(M);
6686       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6687       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6688                         MachinePointerInfo(Global, 0), Align,
6689                         MachineMemOperand::MOVolatile);
6690     }
6691     if (TLI.useStackGuardXorFP())
6692       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6693     DAG.setRoot(Chain);
6694     setValue(&I, Res);
6695     return;
6696   }
6697   case Intrinsic::stackprotector: {
6698     // Emit code into the DAG to store the stack guard onto the stack.
6699     MachineFunction &MF = DAG.getMachineFunction();
6700     MachineFrameInfo &MFI = MF.getFrameInfo();
6701     SDValue Src, Chain = getRoot();
6702 
6703     if (TLI.useLoadStackGuardNode())
6704       Src = getLoadStackGuard(DAG, sdl, Chain);
6705     else
6706       Src = getValue(I.getArgOperand(0));   // The guard's value.
6707 
6708     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6709 
6710     int FI = FuncInfo.StaticAllocaMap[Slot];
6711     MFI.setStackProtectorIndex(FI);
6712     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6713 
6714     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6715 
6716     // Store the stack protector onto the stack.
6717     Res = DAG.getStore(
6718         Chain, sdl, Src, FIN,
6719         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6720         MaybeAlign(), MachineMemOperand::MOVolatile);
6721     setValue(&I, Res);
6722     DAG.setRoot(Res);
6723     return;
6724   }
6725   case Intrinsic::objectsize:
6726     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6727 
6728   case Intrinsic::is_constant:
6729     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6730 
6731   case Intrinsic::annotation:
6732   case Intrinsic::ptr_annotation:
6733   case Intrinsic::launder_invariant_group:
6734   case Intrinsic::strip_invariant_group:
6735     // Drop the intrinsic, but forward the value
6736     setValue(&I, getValue(I.getOperand(0)));
6737     return;
6738 
6739   case Intrinsic::assume:
6740   case Intrinsic::experimental_noalias_scope_decl:
6741   case Intrinsic::var_annotation:
6742   case Intrinsic::sideeffect:
6743     // Discard annotate attributes, noalias scope declarations, assumptions, and
6744     // artificial side-effects.
6745     return;
6746 
6747   case Intrinsic::codeview_annotation: {
6748     // Emit a label associated with this metadata.
6749     MachineFunction &MF = DAG.getMachineFunction();
6750     MCSymbol *Label =
6751         MF.getMMI().getContext().createTempSymbol("annotation", true);
6752     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6753     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6754     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6755     DAG.setRoot(Res);
6756     return;
6757   }
6758 
6759   case Intrinsic::init_trampoline: {
6760     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6761 
6762     SDValue Ops[6];
6763     Ops[0] = getRoot();
6764     Ops[1] = getValue(I.getArgOperand(0));
6765     Ops[2] = getValue(I.getArgOperand(1));
6766     Ops[3] = getValue(I.getArgOperand(2));
6767     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6768     Ops[5] = DAG.getSrcValue(F);
6769 
6770     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6771 
6772     DAG.setRoot(Res);
6773     return;
6774   }
6775   case Intrinsic::adjust_trampoline:
6776     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6777                              TLI.getPointerTy(DAG.getDataLayout()),
6778                              getValue(I.getArgOperand(0))));
6779     return;
6780   case Intrinsic::gcroot: {
6781     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6782            "only valid in functions with gc specified, enforced by Verifier");
6783     assert(GFI && "implied by previous");
6784     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6785     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6786 
6787     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6788     GFI->addStackRoot(FI->getIndex(), TypeMap);
6789     return;
6790   }
6791   case Intrinsic::gcread:
6792   case Intrinsic::gcwrite:
6793     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6794   case Intrinsic::flt_rounds:
6795     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6796     setValue(&I, Res);
6797     DAG.setRoot(Res.getValue(1));
6798     return;
6799 
6800   case Intrinsic::expect:
6801     // Just replace __builtin_expect(exp, c) with EXP.
6802     setValue(&I, getValue(I.getArgOperand(0)));
6803     return;
6804 
6805   case Intrinsic::ubsantrap:
6806   case Intrinsic::debugtrap:
6807   case Intrinsic::trap: {
6808     StringRef TrapFuncName =
6809         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6810     if (TrapFuncName.empty()) {
6811       switch (Intrinsic) {
6812       case Intrinsic::trap:
6813         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6814         break;
6815       case Intrinsic::debugtrap:
6816         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6817         break;
6818       case Intrinsic::ubsantrap:
6819         DAG.setRoot(DAG.getNode(
6820             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6821             DAG.getTargetConstant(
6822                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6823                 MVT::i32)));
6824         break;
6825       default: llvm_unreachable("unknown trap intrinsic");
6826       }
6827       return;
6828     }
6829     TargetLowering::ArgListTy Args;
6830     if (Intrinsic == Intrinsic::ubsantrap) {
6831       Args.push_back(TargetLoweringBase::ArgListEntry());
6832       Args[0].Val = I.getArgOperand(0);
6833       Args[0].Node = getValue(Args[0].Val);
6834       Args[0].Ty = Args[0].Val->getType();
6835     }
6836 
6837     TargetLowering::CallLoweringInfo CLI(DAG);
6838     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6839         CallingConv::C, I.getType(),
6840         DAG.getExternalSymbol(TrapFuncName.data(),
6841                               TLI.getPointerTy(DAG.getDataLayout())),
6842         std::move(Args));
6843 
6844     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6845     DAG.setRoot(Result.second);
6846     return;
6847   }
6848 
6849   case Intrinsic::uadd_with_overflow:
6850   case Intrinsic::sadd_with_overflow:
6851   case Intrinsic::usub_with_overflow:
6852   case Intrinsic::ssub_with_overflow:
6853   case Intrinsic::umul_with_overflow:
6854   case Intrinsic::smul_with_overflow: {
6855     ISD::NodeType Op;
6856     switch (Intrinsic) {
6857     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6858     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6859     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6860     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6861     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6862     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6863     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6864     }
6865     SDValue Op1 = getValue(I.getArgOperand(0));
6866     SDValue Op2 = getValue(I.getArgOperand(1));
6867 
6868     EVT ResultVT = Op1.getValueType();
6869     EVT OverflowVT = MVT::i1;
6870     if (ResultVT.isVector())
6871       OverflowVT = EVT::getVectorVT(
6872           *Context, OverflowVT, ResultVT.getVectorElementCount());
6873 
6874     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6875     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6876     return;
6877   }
6878   case Intrinsic::prefetch: {
6879     SDValue Ops[5];
6880     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6881     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6882     Ops[0] = DAG.getRoot();
6883     Ops[1] = getValue(I.getArgOperand(0));
6884     Ops[2] = getValue(I.getArgOperand(1));
6885     Ops[3] = getValue(I.getArgOperand(2));
6886     Ops[4] = getValue(I.getArgOperand(3));
6887     SDValue Result = DAG.getMemIntrinsicNode(
6888         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6889         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6890         /* align */ None, Flags);
6891 
6892     // Chain the prefetch in parallell with any pending loads, to stay out of
6893     // the way of later optimizations.
6894     PendingLoads.push_back(Result);
6895     Result = getRoot();
6896     DAG.setRoot(Result);
6897     return;
6898   }
6899   case Intrinsic::lifetime_start:
6900   case Intrinsic::lifetime_end: {
6901     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6902     // Stack coloring is not enabled in O0, discard region information.
6903     if (TM.getOptLevel() == CodeGenOpt::None)
6904       return;
6905 
6906     const int64_t ObjectSize =
6907         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6908     Value *const ObjectPtr = I.getArgOperand(1);
6909     SmallVector<const Value *, 4> Allocas;
6910     getUnderlyingObjects(ObjectPtr, Allocas);
6911 
6912     for (const Value *Alloca : Allocas) {
6913       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6914 
6915       // Could not find an Alloca.
6916       if (!LifetimeObject)
6917         continue;
6918 
6919       // First check that the Alloca is static, otherwise it won't have a
6920       // valid frame index.
6921       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6922       if (SI == FuncInfo.StaticAllocaMap.end())
6923         return;
6924 
6925       const int FrameIndex = SI->second;
6926       int64_t Offset;
6927       if (GetPointerBaseWithConstantOffset(
6928               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6929         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6930       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6931                                 Offset);
6932       DAG.setRoot(Res);
6933     }
6934     return;
6935   }
6936   case Intrinsic::pseudoprobe: {
6937     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6938     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6939     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6940     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6941     DAG.setRoot(Res);
6942     return;
6943   }
6944   case Intrinsic::invariant_start:
6945     // Discard region information.
6946     setValue(&I,
6947              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6948     return;
6949   case Intrinsic::invariant_end:
6950     // Discard region information.
6951     return;
6952   case Intrinsic::clear_cache:
6953     /// FunctionName may be null.
6954     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6955       lowerCallToExternalSymbol(I, FunctionName);
6956     return;
6957   case Intrinsic::donothing:
6958   case Intrinsic::seh_try_begin:
6959   case Intrinsic::seh_scope_begin:
6960   case Intrinsic::seh_try_end:
6961   case Intrinsic::seh_scope_end:
6962     // ignore
6963     return;
6964   case Intrinsic::experimental_stackmap:
6965     visitStackmap(I);
6966     return;
6967   case Intrinsic::experimental_patchpoint_void:
6968   case Intrinsic::experimental_patchpoint_i64:
6969     visitPatchpoint(I);
6970     return;
6971   case Intrinsic::experimental_gc_statepoint:
6972     LowerStatepoint(cast<GCStatepointInst>(I));
6973     return;
6974   case Intrinsic::experimental_gc_result:
6975     visitGCResult(cast<GCResultInst>(I));
6976     return;
6977   case Intrinsic::experimental_gc_relocate:
6978     visitGCRelocate(cast<GCRelocateInst>(I));
6979     return;
6980   case Intrinsic::instrprof_cover:
6981     llvm_unreachable("instrprof failed to lower a cover");
6982   case Intrinsic::instrprof_increment:
6983     llvm_unreachable("instrprof failed to lower an increment");
6984   case Intrinsic::instrprof_value_profile:
6985     llvm_unreachable("instrprof failed to lower a value profiling call");
6986   case Intrinsic::localescape: {
6987     MachineFunction &MF = DAG.getMachineFunction();
6988     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6989 
6990     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6991     // is the same on all targets.
6992     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6993       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6994       if (isa<ConstantPointerNull>(Arg))
6995         continue; // Skip null pointers. They represent a hole in index space.
6996       AllocaInst *Slot = cast<AllocaInst>(Arg);
6997       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6998              "can only escape static allocas");
6999       int FI = FuncInfo.StaticAllocaMap[Slot];
7000       MCSymbol *FrameAllocSym =
7001           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7002               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7003       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7004               TII->get(TargetOpcode::LOCAL_ESCAPE))
7005           .addSym(FrameAllocSym)
7006           .addFrameIndex(FI);
7007     }
7008 
7009     return;
7010   }
7011 
7012   case Intrinsic::localrecover: {
7013     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7014     MachineFunction &MF = DAG.getMachineFunction();
7015 
7016     // Get the symbol that defines the frame offset.
7017     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7018     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7019     unsigned IdxVal =
7020         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7021     MCSymbol *FrameAllocSym =
7022         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7023             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7024 
7025     Value *FP = I.getArgOperand(1);
7026     SDValue FPVal = getValue(FP);
7027     EVT PtrVT = FPVal.getValueType();
7028 
7029     // Create a MCSymbol for the label to avoid any target lowering
7030     // that would make this PC relative.
7031     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7032     SDValue OffsetVal =
7033         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7034 
7035     // Add the offset to the FP.
7036     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7037     setValue(&I, Add);
7038 
7039     return;
7040   }
7041 
7042   case Intrinsic::eh_exceptionpointer:
7043   case Intrinsic::eh_exceptioncode: {
7044     // Get the exception pointer vreg, copy from it, and resize it to fit.
7045     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7046     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7047     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7048     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7049     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7050     if (Intrinsic == Intrinsic::eh_exceptioncode)
7051       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7052     setValue(&I, N);
7053     return;
7054   }
7055   case Intrinsic::xray_customevent: {
7056     // Here we want to make sure that the intrinsic behaves as if it has a
7057     // specific calling convention, and only for x86_64.
7058     // FIXME: Support other platforms later.
7059     const auto &Triple = DAG.getTarget().getTargetTriple();
7060     if (Triple.getArch() != Triple::x86_64)
7061       return;
7062 
7063     SmallVector<SDValue, 8> Ops;
7064 
7065     // We want to say that we always want the arguments in registers.
7066     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7067     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7068     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7069     SDValue Chain = getRoot();
7070     Ops.push_back(LogEntryVal);
7071     Ops.push_back(StrSizeVal);
7072     Ops.push_back(Chain);
7073 
7074     // We need to enforce the calling convention for the callsite, so that
7075     // argument ordering is enforced correctly, and that register allocation can
7076     // see that some registers may be assumed clobbered and have to preserve
7077     // them across calls to the intrinsic.
7078     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7079                                            sdl, NodeTys, Ops);
7080     SDValue patchableNode = SDValue(MN, 0);
7081     DAG.setRoot(patchableNode);
7082     setValue(&I, patchableNode);
7083     return;
7084   }
7085   case Intrinsic::xray_typedevent: {
7086     // Here we want to make sure that the intrinsic behaves as if it has a
7087     // specific calling convention, and only for x86_64.
7088     // FIXME: Support other platforms later.
7089     const auto &Triple = DAG.getTarget().getTargetTriple();
7090     if (Triple.getArch() != Triple::x86_64)
7091       return;
7092 
7093     SmallVector<SDValue, 8> Ops;
7094 
7095     // We want to say that we always want the arguments in registers.
7096     // It's unclear to me how manipulating the selection DAG here forces callers
7097     // to provide arguments in registers instead of on the stack.
7098     SDValue LogTypeId = getValue(I.getArgOperand(0));
7099     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7100     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7101     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7102     SDValue Chain = getRoot();
7103     Ops.push_back(LogTypeId);
7104     Ops.push_back(LogEntryVal);
7105     Ops.push_back(StrSizeVal);
7106     Ops.push_back(Chain);
7107 
7108     // We need to enforce the calling convention for the callsite, so that
7109     // argument ordering is enforced correctly, and that register allocation can
7110     // see that some registers may be assumed clobbered and have to preserve
7111     // them across calls to the intrinsic.
7112     MachineSDNode *MN = DAG.getMachineNode(
7113         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7114     SDValue patchableNode = SDValue(MN, 0);
7115     DAG.setRoot(patchableNode);
7116     setValue(&I, patchableNode);
7117     return;
7118   }
7119   case Intrinsic::experimental_deoptimize:
7120     LowerDeoptimizeCall(&I);
7121     return;
7122   case Intrinsic::experimental_stepvector:
7123     visitStepVector(I);
7124     return;
7125   case Intrinsic::vector_reduce_fadd:
7126   case Intrinsic::vector_reduce_fmul:
7127   case Intrinsic::vector_reduce_add:
7128   case Intrinsic::vector_reduce_mul:
7129   case Intrinsic::vector_reduce_and:
7130   case Intrinsic::vector_reduce_or:
7131   case Intrinsic::vector_reduce_xor:
7132   case Intrinsic::vector_reduce_smax:
7133   case Intrinsic::vector_reduce_smin:
7134   case Intrinsic::vector_reduce_umax:
7135   case Intrinsic::vector_reduce_umin:
7136   case Intrinsic::vector_reduce_fmax:
7137   case Intrinsic::vector_reduce_fmin:
7138     visitVectorReduce(I, Intrinsic);
7139     return;
7140 
7141   case Intrinsic::icall_branch_funnel: {
7142     SmallVector<SDValue, 16> Ops;
7143     Ops.push_back(getValue(I.getArgOperand(0)));
7144 
7145     int64_t Offset;
7146     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7147         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7148     if (!Base)
7149       report_fatal_error(
7150           "llvm.icall.branch.funnel operand must be a GlobalValue");
7151     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7152 
7153     struct BranchFunnelTarget {
7154       int64_t Offset;
7155       SDValue Target;
7156     };
7157     SmallVector<BranchFunnelTarget, 8> Targets;
7158 
7159     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7160       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7161           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7162       if (ElemBase != Base)
7163         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7164                            "to the same GlobalValue");
7165 
7166       SDValue Val = getValue(I.getArgOperand(Op + 1));
7167       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7168       if (!GA)
7169         report_fatal_error(
7170             "llvm.icall.branch.funnel operand must be a GlobalValue");
7171       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7172                                      GA->getGlobal(), sdl, Val.getValueType(),
7173                                      GA->getOffset())});
7174     }
7175     llvm::sort(Targets,
7176                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7177                  return T1.Offset < T2.Offset;
7178                });
7179 
7180     for (auto &T : Targets) {
7181       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7182       Ops.push_back(T.Target);
7183     }
7184 
7185     Ops.push_back(DAG.getRoot()); // Chain
7186     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7187                                  MVT::Other, Ops),
7188               0);
7189     DAG.setRoot(N);
7190     setValue(&I, N);
7191     HasTailCall = true;
7192     return;
7193   }
7194 
7195   case Intrinsic::wasm_landingpad_index:
7196     // Information this intrinsic contained has been transferred to
7197     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7198     // delete it now.
7199     return;
7200 
7201   case Intrinsic::aarch64_settag:
7202   case Intrinsic::aarch64_settag_zero: {
7203     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7204     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7205     SDValue Val = TSI.EmitTargetCodeForSetTag(
7206         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7207         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7208         ZeroMemory);
7209     DAG.setRoot(Val);
7210     setValue(&I, Val);
7211     return;
7212   }
7213   case Intrinsic::ptrmask: {
7214     SDValue Ptr = getValue(I.getOperand(0));
7215     SDValue Const = getValue(I.getOperand(1));
7216 
7217     EVT PtrVT = Ptr.getValueType();
7218     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7219                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7220     return;
7221   }
7222   case Intrinsic::threadlocal_address: {
7223     setValue(&I, getValue(I.getOperand(0)));
7224     return;
7225   }
7226   case Intrinsic::get_active_lane_mask: {
7227     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7228     SDValue Index = getValue(I.getOperand(0));
7229     EVT ElementVT = Index.getValueType();
7230 
7231     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7232       visitTargetIntrinsic(I, Intrinsic);
7233       return;
7234     }
7235 
7236     SDValue TripCount = getValue(I.getOperand(1));
7237     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7238 
7239     SDValue VectorIndex, VectorTripCount;
7240     if (VecTy.isScalableVector()) {
7241       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7242       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7243     } else {
7244       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7245       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7246     }
7247     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7248     SDValue VectorInduction = DAG.getNode(
7249         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7250     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7251                                  VectorTripCount, ISD::CondCode::SETULT);
7252     setValue(&I, SetCC);
7253     return;
7254   }
7255   case Intrinsic::vector_insert: {
7256     SDValue Vec = getValue(I.getOperand(0));
7257     SDValue SubVec = getValue(I.getOperand(1));
7258     SDValue Index = getValue(I.getOperand(2));
7259 
7260     // The intrinsic's index type is i64, but the SDNode requires an index type
7261     // suitable for the target. Convert the index as required.
7262     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7263     if (Index.getValueType() != VectorIdxTy)
7264       Index = DAG.getVectorIdxConstant(
7265           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7266 
7267     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7268     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7269                              Index));
7270     return;
7271   }
7272   case Intrinsic::vector_extract: {
7273     SDValue Vec = getValue(I.getOperand(0));
7274     SDValue Index = getValue(I.getOperand(1));
7275     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7276 
7277     // The intrinsic's index type is i64, but the SDNode requires an index type
7278     // suitable for the target. Convert the index as required.
7279     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7280     if (Index.getValueType() != VectorIdxTy)
7281       Index = DAG.getVectorIdxConstant(
7282           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7283 
7284     setValue(&I,
7285              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7286     return;
7287   }
7288   case Intrinsic::experimental_vector_reverse:
7289     visitVectorReverse(I);
7290     return;
7291   case Intrinsic::experimental_vector_splice:
7292     visitVectorSplice(I);
7293     return;
7294   }
7295 }
7296 
7297 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7298     const ConstrainedFPIntrinsic &FPI) {
7299   SDLoc sdl = getCurSDLoc();
7300 
7301   // We do not need to serialize constrained FP intrinsics against
7302   // each other or against (nonvolatile) loads, so they can be
7303   // chained like loads.
7304   SDValue Chain = DAG.getRoot();
7305   SmallVector<SDValue, 4> Opers;
7306   Opers.push_back(Chain);
7307   if (FPI.isUnaryOp()) {
7308     Opers.push_back(getValue(FPI.getArgOperand(0)));
7309   } else if (FPI.isTernaryOp()) {
7310     Opers.push_back(getValue(FPI.getArgOperand(0)));
7311     Opers.push_back(getValue(FPI.getArgOperand(1)));
7312     Opers.push_back(getValue(FPI.getArgOperand(2)));
7313   } else {
7314     Opers.push_back(getValue(FPI.getArgOperand(0)));
7315     Opers.push_back(getValue(FPI.getArgOperand(1)));
7316   }
7317 
7318   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7319     assert(Result.getNode()->getNumValues() == 2);
7320 
7321     // Push node to the appropriate list so that future instructions can be
7322     // chained up correctly.
7323     SDValue OutChain = Result.getValue(1);
7324     switch (EB) {
7325     case fp::ExceptionBehavior::ebIgnore:
7326       // The only reason why ebIgnore nodes still need to be chained is that
7327       // they might depend on the current rounding mode, and therefore must
7328       // not be moved across instruction that may change that mode.
7329       [[fallthrough]];
7330     case fp::ExceptionBehavior::ebMayTrap:
7331       // These must not be moved across calls or instructions that may change
7332       // floating-point exception masks.
7333       PendingConstrainedFP.push_back(OutChain);
7334       break;
7335     case fp::ExceptionBehavior::ebStrict:
7336       // These must not be moved across calls or instructions that may change
7337       // floating-point exception masks or read floating-point exception flags.
7338       // In addition, they cannot be optimized out even if unused.
7339       PendingConstrainedFPStrict.push_back(OutChain);
7340       break;
7341     }
7342   };
7343 
7344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7345   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7346   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7347   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7348 
7349   SDNodeFlags Flags;
7350   if (EB == fp::ExceptionBehavior::ebIgnore)
7351     Flags.setNoFPExcept(true);
7352 
7353   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7354     Flags.copyFMF(*FPOp);
7355 
7356   unsigned Opcode;
7357   switch (FPI.getIntrinsicID()) {
7358   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7359 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7360   case Intrinsic::INTRINSIC:                                                   \
7361     Opcode = ISD::STRICT_##DAGN;                                               \
7362     break;
7363 #include "llvm/IR/ConstrainedOps.def"
7364   case Intrinsic::experimental_constrained_fmuladd: {
7365     Opcode = ISD::STRICT_FMA;
7366     // Break fmuladd into fmul and fadd.
7367     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7368         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7369       Opers.pop_back();
7370       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7371       pushOutChain(Mul, EB);
7372       Opcode = ISD::STRICT_FADD;
7373       Opers.clear();
7374       Opers.push_back(Mul.getValue(1));
7375       Opers.push_back(Mul.getValue(0));
7376       Opers.push_back(getValue(FPI.getArgOperand(2)));
7377     }
7378     break;
7379   }
7380   }
7381 
7382   // A few strict DAG nodes carry additional operands that are not
7383   // set up by the default code above.
7384   switch (Opcode) {
7385   default: break;
7386   case ISD::STRICT_FP_ROUND:
7387     Opers.push_back(
7388         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7389     break;
7390   case ISD::STRICT_FSETCC:
7391   case ISD::STRICT_FSETCCS: {
7392     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7393     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7394     if (TM.Options.NoNaNsFPMath)
7395       Condition = getFCmpCodeWithoutNaN(Condition);
7396     Opers.push_back(DAG.getCondCode(Condition));
7397     break;
7398   }
7399   }
7400 
7401   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7402   pushOutChain(Result, EB);
7403 
7404   SDValue FPResult = Result.getValue(0);
7405   setValue(&FPI, FPResult);
7406 }
7407 
7408 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7409   Optional<unsigned> ResOPC;
7410   switch (VPIntrin.getIntrinsicID()) {
7411 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7412   case Intrinsic::VPID:                                                        \
7413     ResOPC = ISD::VPSD;                                                        \
7414     break;
7415 #include "llvm/IR/VPIntrinsics.def"
7416   }
7417 
7418   if (!ResOPC)
7419     llvm_unreachable(
7420         "Inconsistency: no SDNode available for this VPIntrinsic!");
7421 
7422   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7423       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7424     if (VPIntrin.getFastMathFlags().allowReassoc())
7425       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7426                                                 : ISD::VP_REDUCE_FMUL;
7427   }
7428 
7429   return *ResOPC;
7430 }
7431 
7432 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
7433                                       SmallVector<SDValue, 7> &OpValues) {
7434   SDLoc DL = getCurSDLoc();
7435   Value *PtrOperand = VPIntrin.getArgOperand(0);
7436   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7437   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7438   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7439   SDValue LD;
7440   bool AddToChain = true;
7441   // Do not serialize variable-length loads of constant memory with
7442   // anything.
7443   if (!Alignment)
7444     Alignment = DAG.getEVTAlign(VT);
7445   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7446   AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7447   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7448   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7449       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7450       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7451   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7452                      MMO, false /*IsExpanding */);
7453   if (AddToChain)
7454     PendingLoads.push_back(LD.getValue(1));
7455   setValue(&VPIntrin, LD);
7456 }
7457 
7458 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
7459                                         SmallVector<SDValue, 7> &OpValues) {
7460   SDLoc DL = getCurSDLoc();
7461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7462   Value *PtrOperand = VPIntrin.getArgOperand(0);
7463   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7464   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7465   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7466   SDValue LD;
7467   if (!Alignment)
7468     Alignment = DAG.getEVTAlign(VT.getScalarType());
7469   unsigned AS =
7470     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7471   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7472      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7473      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7474   SDValue Base, Index, Scale;
7475   ISD::MemIndexType IndexType;
7476   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7477                                     this, VPIntrin.getParent(),
7478                                     VT.getScalarStoreSize());
7479   if (!UniformBase) {
7480     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7481     Index = getValue(PtrOperand);
7482     IndexType = ISD::SIGNED_SCALED;
7483     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7484   }
7485   EVT IdxVT = Index.getValueType();
7486   EVT EltTy = IdxVT.getVectorElementType();
7487   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7488     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7489     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7490   }
7491   LD = DAG.getGatherVP(
7492       DAG.getVTList(VT, MVT::Other), VT, DL,
7493       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7494       IndexType);
7495   PendingLoads.push_back(LD.getValue(1));
7496   setValue(&VPIntrin, LD);
7497 }
7498 
7499 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
7500                                        SmallVector<SDValue, 7> &OpValues) {
7501   SDLoc DL = getCurSDLoc();
7502   Value *PtrOperand = VPIntrin.getArgOperand(1);
7503   EVT VT = OpValues[0].getValueType();
7504   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7505   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7506   SDValue ST;
7507   if (!Alignment)
7508     Alignment = DAG.getEVTAlign(VT);
7509   SDValue Ptr = OpValues[1];
7510   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7511   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7512       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7513       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7514   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7515                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7516                       /* IsTruncating */ false, /*IsCompressing*/ false);
7517   DAG.setRoot(ST);
7518   setValue(&VPIntrin, ST);
7519 }
7520 
7521 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
7522                                               SmallVector<SDValue, 7> &OpValues) {
7523   SDLoc DL = getCurSDLoc();
7524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7525   Value *PtrOperand = VPIntrin.getArgOperand(1);
7526   EVT VT = OpValues[0].getValueType();
7527   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7528   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7529   SDValue ST;
7530   if (!Alignment)
7531     Alignment = DAG.getEVTAlign(VT.getScalarType());
7532   unsigned AS =
7533       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7534   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7535       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7536       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7537   SDValue Base, Index, Scale;
7538   ISD::MemIndexType IndexType;
7539   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7540                                     this, VPIntrin.getParent(),
7541                                     VT.getScalarStoreSize());
7542   if (!UniformBase) {
7543     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7544     Index = getValue(PtrOperand);
7545     IndexType = ISD::SIGNED_SCALED;
7546     Scale =
7547       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7548   }
7549   EVT IdxVT = Index.getValueType();
7550   EVT EltTy = IdxVT.getVectorElementType();
7551   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7552     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7553     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7554   }
7555   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7556                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7557                          OpValues[2], OpValues[3]},
7558                         MMO, IndexType);
7559   DAG.setRoot(ST);
7560   setValue(&VPIntrin, ST);
7561 }
7562 
7563 void SelectionDAGBuilder::visitVPStridedLoad(
7564     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7565   SDLoc DL = getCurSDLoc();
7566   Value *PtrOperand = VPIntrin.getArgOperand(0);
7567   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7568   if (!Alignment)
7569     Alignment = DAG.getEVTAlign(VT.getScalarType());
7570   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7571   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7572   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7573   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7574   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7575   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7576       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7577       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7578 
7579   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7580                                     OpValues[2], OpValues[3], MMO,
7581                                     false /*IsExpanding*/);
7582 
7583   if (AddToChain)
7584     PendingLoads.push_back(LD.getValue(1));
7585   setValue(&VPIntrin, LD);
7586 }
7587 
7588 void SelectionDAGBuilder::visitVPStridedStore(
7589     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7590   SDLoc DL = getCurSDLoc();
7591   Value *PtrOperand = VPIntrin.getArgOperand(1);
7592   EVT VT = OpValues[0].getValueType();
7593   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7594   if (!Alignment)
7595     Alignment = DAG.getEVTAlign(VT.getScalarType());
7596   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7597   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7598       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7599       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7600 
7601   SDValue ST = DAG.getStridedStoreVP(
7602       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7603       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7604       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7605       /*IsCompressing*/ false);
7606 
7607   DAG.setRoot(ST);
7608   setValue(&VPIntrin, ST);
7609 }
7610 
7611 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7612   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7613   SDLoc DL = getCurSDLoc();
7614 
7615   ISD::CondCode Condition;
7616   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7617   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7618   if (IsFP) {
7619     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7620     // flags, but calls that don't return floating-point types can't be
7621     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7622     Condition = getFCmpCondCode(CondCode);
7623     if (TM.Options.NoNaNsFPMath)
7624       Condition = getFCmpCodeWithoutNaN(Condition);
7625   } else {
7626     Condition = getICmpCondCode(CondCode);
7627   }
7628 
7629   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7630   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7631   // #2 is the condition code
7632   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7633   SDValue EVL = getValue(VPIntrin.getOperand(4));
7634   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7635   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7636          "Unexpected target EVL type");
7637   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7638 
7639   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7640                                                         VPIntrin.getType());
7641   setValue(&VPIntrin,
7642            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7643 }
7644 
7645 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7646     const VPIntrinsic &VPIntrin) {
7647   SDLoc DL = getCurSDLoc();
7648   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7649 
7650   auto IID = VPIntrin.getIntrinsicID();
7651 
7652   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7653     return visitVPCmp(*CmpI);
7654 
7655   SmallVector<EVT, 4> ValueVTs;
7656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7657   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7658   SDVTList VTs = DAG.getVTList(ValueVTs);
7659 
7660   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7661 
7662   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7663   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7664          "Unexpected target EVL type");
7665 
7666   // Request operands.
7667   SmallVector<SDValue, 7> OpValues;
7668   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7669     auto Op = getValue(VPIntrin.getArgOperand(I));
7670     if (I == EVLParamPos)
7671       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7672     OpValues.push_back(Op);
7673   }
7674 
7675   switch (Opcode) {
7676   default: {
7677     SDNodeFlags SDFlags;
7678     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7679       SDFlags.copyFMF(*FPMO);
7680     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7681     setValue(&VPIntrin, Result);
7682     break;
7683   }
7684   case ISD::VP_LOAD:
7685     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7686     break;
7687   case ISD::VP_GATHER:
7688     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7689     break;
7690   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7691     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7692     break;
7693   case ISD::VP_STORE:
7694     visitVPStore(VPIntrin, OpValues);
7695     break;
7696   case ISD::VP_SCATTER:
7697     visitVPScatter(VPIntrin, OpValues);
7698     break;
7699   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7700     visitVPStridedStore(VPIntrin, OpValues);
7701     break;
7702   }
7703 }
7704 
7705 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7706                                           const BasicBlock *EHPadBB,
7707                                           MCSymbol *&BeginLabel) {
7708   MachineFunction &MF = DAG.getMachineFunction();
7709   MachineModuleInfo &MMI = MF.getMMI();
7710 
7711   // Insert a label before the invoke call to mark the try range.  This can be
7712   // used to detect deletion of the invoke via the MachineModuleInfo.
7713   BeginLabel = MMI.getContext().createTempSymbol();
7714 
7715   // For SjLj, keep track of which landing pads go with which invokes
7716   // so as to maintain the ordering of pads in the LSDA.
7717   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7718   if (CallSiteIndex) {
7719     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7720     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7721 
7722     // Now that the call site is handled, stop tracking it.
7723     MMI.setCurrentCallSite(0);
7724   }
7725 
7726   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7727 }
7728 
7729 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7730                                         const BasicBlock *EHPadBB,
7731                                         MCSymbol *BeginLabel) {
7732   assert(BeginLabel && "BeginLabel should've been set");
7733 
7734   MachineFunction &MF = DAG.getMachineFunction();
7735   MachineModuleInfo &MMI = MF.getMMI();
7736 
7737   // Insert a label at the end of the invoke call to mark the try range.  This
7738   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7739   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7740   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7741 
7742   // Inform MachineModuleInfo of range.
7743   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7744   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7745   // actually use outlined funclets and their LSDA info style.
7746   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7747     assert(II && "II should've been set");
7748     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7749     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7750   } else if (!isScopedEHPersonality(Pers)) {
7751     assert(EHPadBB);
7752     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7753   }
7754 
7755   return Chain;
7756 }
7757 
7758 std::pair<SDValue, SDValue>
7759 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7760                                     const BasicBlock *EHPadBB) {
7761   MCSymbol *BeginLabel = nullptr;
7762 
7763   if (EHPadBB) {
7764     // Both PendingLoads and PendingExports must be flushed here;
7765     // this call might not return.
7766     (void)getRoot();
7767     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7768     CLI.setChain(getRoot());
7769   }
7770 
7771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7772   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7773 
7774   assert((CLI.IsTailCall || Result.second.getNode()) &&
7775          "Non-null chain expected with non-tail call!");
7776   assert((Result.second.getNode() || !Result.first.getNode()) &&
7777          "Null value expected with tail call!");
7778 
7779   if (!Result.second.getNode()) {
7780     // As a special case, a null chain means that a tail call has been emitted
7781     // and the DAG root is already updated.
7782     HasTailCall = true;
7783 
7784     // Since there's no actual continuation from this block, nothing can be
7785     // relying on us setting vregs for them.
7786     PendingExports.clear();
7787   } else {
7788     DAG.setRoot(Result.second);
7789   }
7790 
7791   if (EHPadBB) {
7792     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7793                            BeginLabel));
7794   }
7795 
7796   return Result;
7797 }
7798 
7799 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7800                                       bool isTailCall,
7801                                       bool isMustTailCall,
7802                                       const BasicBlock *EHPadBB) {
7803   auto &DL = DAG.getDataLayout();
7804   FunctionType *FTy = CB.getFunctionType();
7805   Type *RetTy = CB.getType();
7806 
7807   TargetLowering::ArgListTy Args;
7808   Args.reserve(CB.arg_size());
7809 
7810   const Value *SwiftErrorVal = nullptr;
7811   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7812 
7813   if (isTailCall) {
7814     // Avoid emitting tail calls in functions with the disable-tail-calls
7815     // attribute.
7816     auto *Caller = CB.getParent()->getParent();
7817     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7818         "true" && !isMustTailCall)
7819       isTailCall = false;
7820 
7821     // We can't tail call inside a function with a swifterror argument. Lowering
7822     // does not support this yet. It would have to move into the swifterror
7823     // register before the call.
7824     if (TLI.supportSwiftError() &&
7825         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7826       isTailCall = false;
7827   }
7828 
7829   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7830     TargetLowering::ArgListEntry Entry;
7831     const Value *V = *I;
7832 
7833     // Skip empty types
7834     if (V->getType()->isEmptyTy())
7835       continue;
7836 
7837     SDValue ArgNode = getValue(V);
7838     Entry.Node = ArgNode; Entry.Ty = V->getType();
7839 
7840     Entry.setAttributes(&CB, I - CB.arg_begin());
7841 
7842     // Use swifterror virtual register as input to the call.
7843     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7844       SwiftErrorVal = V;
7845       // We find the virtual register for the actual swifterror argument.
7846       // Instead of using the Value, we use the virtual register instead.
7847       Entry.Node =
7848           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7849                           EVT(TLI.getPointerTy(DL)));
7850     }
7851 
7852     Args.push_back(Entry);
7853 
7854     // If we have an explicit sret argument that is an Instruction, (i.e., it
7855     // might point to function-local memory), we can't meaningfully tail-call.
7856     if (Entry.IsSRet && isa<Instruction>(V))
7857       isTailCall = false;
7858   }
7859 
7860   // If call site has a cfguardtarget operand bundle, create and add an
7861   // additional ArgListEntry.
7862   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7863     TargetLowering::ArgListEntry Entry;
7864     Value *V = Bundle->Inputs[0];
7865     SDValue ArgNode = getValue(V);
7866     Entry.Node = ArgNode;
7867     Entry.Ty = V->getType();
7868     Entry.IsCFGuardTarget = true;
7869     Args.push_back(Entry);
7870   }
7871 
7872   // Check if target-independent constraints permit a tail call here.
7873   // Target-dependent constraints are checked within TLI->LowerCallTo.
7874   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7875     isTailCall = false;
7876 
7877   // Disable tail calls if there is an swifterror argument. Targets have not
7878   // been updated to support tail calls.
7879   if (TLI.supportSwiftError() && SwiftErrorVal)
7880     isTailCall = false;
7881 
7882   ConstantInt *CFIType = nullptr;
7883   if (CB.isIndirectCall()) {
7884     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7885       if (!TLI.supportKCFIBundles())
7886         report_fatal_error(
7887             "Target doesn't support calls with kcfi operand bundles.");
7888       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
7889       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
7890     }
7891   }
7892 
7893   TargetLowering::CallLoweringInfo CLI(DAG);
7894   CLI.setDebugLoc(getCurSDLoc())
7895       .setChain(getRoot())
7896       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7897       .setTailCall(isTailCall)
7898       .setConvergent(CB.isConvergent())
7899       .setIsPreallocated(
7900           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
7901       .setCFIType(CFIType);
7902   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7903 
7904   if (Result.first.getNode()) {
7905     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7906     setValue(&CB, Result.first);
7907   }
7908 
7909   // The last element of CLI.InVals has the SDValue for swifterror return.
7910   // Here we copy it to a virtual register and update SwiftErrorMap for
7911   // book-keeping.
7912   if (SwiftErrorVal && TLI.supportSwiftError()) {
7913     // Get the last element of InVals.
7914     SDValue Src = CLI.InVals.back();
7915     Register VReg =
7916         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7917     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7918     DAG.setRoot(CopyNode);
7919   }
7920 }
7921 
7922 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7923                              SelectionDAGBuilder &Builder) {
7924   // Check to see if this load can be trivially constant folded, e.g. if the
7925   // input is from a string literal.
7926   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7927     // Cast pointer to the type we really want to load.
7928     Type *LoadTy =
7929         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7930     if (LoadVT.isVector())
7931       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7932 
7933     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7934                                          PointerType::getUnqual(LoadTy));
7935 
7936     if (const Constant *LoadCst =
7937             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7938                                          LoadTy, Builder.DAG.getDataLayout()))
7939       return Builder.getValue(LoadCst);
7940   }
7941 
7942   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7943   // still constant memory, the input chain can be the entry node.
7944   SDValue Root;
7945   bool ConstantMemory = false;
7946 
7947   // Do not serialize (non-volatile) loads of constant memory with anything.
7948   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7949     Root = Builder.DAG.getEntryNode();
7950     ConstantMemory = true;
7951   } else {
7952     // Do not serialize non-volatile loads against each other.
7953     Root = Builder.DAG.getRoot();
7954   }
7955 
7956   SDValue Ptr = Builder.getValue(PtrVal);
7957   SDValue LoadVal =
7958       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7959                           MachinePointerInfo(PtrVal), Align(1));
7960 
7961   if (!ConstantMemory)
7962     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7963   return LoadVal;
7964 }
7965 
7966 /// Record the value for an instruction that produces an integer result,
7967 /// converting the type where necessary.
7968 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7969                                                   SDValue Value,
7970                                                   bool IsSigned) {
7971   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7972                                                     I.getType(), true);
7973   if (IsSigned)
7974     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7975   else
7976     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7977   setValue(&I, Value);
7978 }
7979 
7980 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7981 /// true and lower it. Otherwise return false, and it will be lowered like a
7982 /// normal call.
7983 /// The caller already checked that \p I calls the appropriate LibFunc with a
7984 /// correct prototype.
7985 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7986   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7987   const Value *Size = I.getArgOperand(2);
7988   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
7989   if (CSize && CSize->getZExtValue() == 0) {
7990     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7991                                                           I.getType(), true);
7992     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7993     return true;
7994   }
7995 
7996   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7997   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7998       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7999       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8000   if (Res.first.getNode()) {
8001     processIntegerCallValue(I, Res.first, true);
8002     PendingLoads.push_back(Res.second);
8003     return true;
8004   }
8005 
8006   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8007   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8008   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8009     return false;
8010 
8011   // If the target has a fast compare for the given size, it will return a
8012   // preferred load type for that size. Require that the load VT is legal and
8013   // that the target supports unaligned loads of that type. Otherwise, return
8014   // INVALID.
8015   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8016     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8017     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8018     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8019       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8020       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8021       // TODO: Check alignment of src and dest ptrs.
8022       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8023       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8024       if (!TLI.isTypeLegal(LVT) ||
8025           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8026           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8027         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8028     }
8029 
8030     return LVT;
8031   };
8032 
8033   // This turns into unaligned loads. We only do this if the target natively
8034   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8035   // we'll only produce a small number of byte loads.
8036   MVT LoadVT;
8037   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8038   switch (NumBitsToCompare) {
8039   default:
8040     return false;
8041   case 16:
8042     LoadVT = MVT::i16;
8043     break;
8044   case 32:
8045     LoadVT = MVT::i32;
8046     break;
8047   case 64:
8048   case 128:
8049   case 256:
8050     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8051     break;
8052   }
8053 
8054   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8055     return false;
8056 
8057   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8058   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8059 
8060   // Bitcast to a wide integer type if the loads are vectors.
8061   if (LoadVT.isVector()) {
8062     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8063     LoadL = DAG.getBitcast(CmpVT, LoadL);
8064     LoadR = DAG.getBitcast(CmpVT, LoadR);
8065   }
8066 
8067   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8068   processIntegerCallValue(I, Cmp, false);
8069   return true;
8070 }
8071 
8072 /// See if we can lower a memchr call into an optimized form. If so, return
8073 /// true and lower it. Otherwise return false, and it will be lowered like a
8074 /// normal call.
8075 /// The caller already checked that \p I calls the appropriate LibFunc with a
8076 /// correct prototype.
8077 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8078   const Value *Src = I.getArgOperand(0);
8079   const Value *Char = I.getArgOperand(1);
8080   const Value *Length = I.getArgOperand(2);
8081 
8082   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8083   std::pair<SDValue, SDValue> Res =
8084     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8085                                 getValue(Src), getValue(Char), getValue(Length),
8086                                 MachinePointerInfo(Src));
8087   if (Res.first.getNode()) {
8088     setValue(&I, Res.first);
8089     PendingLoads.push_back(Res.second);
8090     return true;
8091   }
8092 
8093   return false;
8094 }
8095 
8096 /// See if we can lower a mempcpy call into an optimized form. If so, return
8097 /// true and lower it. Otherwise return false, and it will be lowered like a
8098 /// normal call.
8099 /// The caller already checked that \p I calls the appropriate LibFunc with a
8100 /// correct prototype.
8101 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8102   SDValue Dst = getValue(I.getArgOperand(0));
8103   SDValue Src = getValue(I.getArgOperand(1));
8104   SDValue Size = getValue(I.getArgOperand(2));
8105 
8106   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8107   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8108   // DAG::getMemcpy needs Alignment to be defined.
8109   Align Alignment = std::min(DstAlign, SrcAlign);
8110 
8111   bool isVol = false;
8112   SDLoc sdl = getCurSDLoc();
8113 
8114   // In the mempcpy context we need to pass in a false value for isTailCall
8115   // because the return pointer needs to be adjusted by the size of
8116   // the copied memory.
8117   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8118   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8119                              /*isTailCall=*/false,
8120                              MachinePointerInfo(I.getArgOperand(0)),
8121                              MachinePointerInfo(I.getArgOperand(1)),
8122                              I.getAAMetadata());
8123   assert(MC.getNode() != nullptr &&
8124          "** memcpy should not be lowered as TailCall in mempcpy context **");
8125   DAG.setRoot(MC);
8126 
8127   // Check if Size needs to be truncated or extended.
8128   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8129 
8130   // Adjust return pointer to point just past the last dst byte.
8131   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8132                                     Dst, Size);
8133   setValue(&I, DstPlusSize);
8134   return true;
8135 }
8136 
8137 /// See if we can lower a strcpy call into an optimized form.  If so, return
8138 /// true and lower it, otherwise return false and it will be lowered like a
8139 /// normal call.
8140 /// The caller already checked that \p I calls the appropriate LibFunc with a
8141 /// correct prototype.
8142 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8143   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8144 
8145   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8146   std::pair<SDValue, SDValue> Res =
8147     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8148                                 getValue(Arg0), getValue(Arg1),
8149                                 MachinePointerInfo(Arg0),
8150                                 MachinePointerInfo(Arg1), isStpcpy);
8151   if (Res.first.getNode()) {
8152     setValue(&I, Res.first);
8153     DAG.setRoot(Res.second);
8154     return true;
8155   }
8156 
8157   return false;
8158 }
8159 
8160 /// See if we can lower a strcmp call into an optimized form.  If so, return
8161 /// true and lower it, otherwise return false and it will be lowered like a
8162 /// normal call.
8163 /// The caller already checked that \p I calls the appropriate LibFunc with a
8164 /// correct prototype.
8165 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8166   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8167 
8168   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8169   std::pair<SDValue, SDValue> Res =
8170     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8171                                 getValue(Arg0), getValue(Arg1),
8172                                 MachinePointerInfo(Arg0),
8173                                 MachinePointerInfo(Arg1));
8174   if (Res.first.getNode()) {
8175     processIntegerCallValue(I, Res.first, true);
8176     PendingLoads.push_back(Res.second);
8177     return true;
8178   }
8179 
8180   return false;
8181 }
8182 
8183 /// See if we can lower a strlen call into an optimized form.  If so, return
8184 /// true and lower it, otherwise return false and it will be lowered like a
8185 /// normal call.
8186 /// The caller already checked that \p I calls the appropriate LibFunc with a
8187 /// correct prototype.
8188 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8189   const Value *Arg0 = I.getArgOperand(0);
8190 
8191   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8192   std::pair<SDValue, SDValue> Res =
8193     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8194                                 getValue(Arg0), MachinePointerInfo(Arg0));
8195   if (Res.first.getNode()) {
8196     processIntegerCallValue(I, Res.first, false);
8197     PendingLoads.push_back(Res.second);
8198     return true;
8199   }
8200 
8201   return false;
8202 }
8203 
8204 /// See if we can lower a strnlen call into an optimized form.  If so, return
8205 /// true and lower it, otherwise return false and it will be lowered like a
8206 /// normal call.
8207 /// The caller already checked that \p I calls the appropriate LibFunc with a
8208 /// correct prototype.
8209 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8210   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8211 
8212   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8213   std::pair<SDValue, SDValue> Res =
8214     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8215                                  getValue(Arg0), getValue(Arg1),
8216                                  MachinePointerInfo(Arg0));
8217   if (Res.first.getNode()) {
8218     processIntegerCallValue(I, Res.first, false);
8219     PendingLoads.push_back(Res.second);
8220     return true;
8221   }
8222 
8223   return false;
8224 }
8225 
8226 /// See if we can lower a unary floating-point operation into an SDNode with
8227 /// the specified Opcode.  If so, return true and lower it, otherwise return
8228 /// false and it will be lowered like a normal call.
8229 /// The caller already checked that \p I calls the appropriate LibFunc with a
8230 /// correct prototype.
8231 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8232                                               unsigned Opcode) {
8233   // We already checked this call's prototype; verify it doesn't modify errno.
8234   if (!I.onlyReadsMemory())
8235     return false;
8236 
8237   SDNodeFlags Flags;
8238   Flags.copyFMF(cast<FPMathOperator>(I));
8239 
8240   SDValue Tmp = getValue(I.getArgOperand(0));
8241   setValue(&I,
8242            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8243   return true;
8244 }
8245 
8246 /// See if we can lower a binary floating-point operation into an SDNode with
8247 /// the specified Opcode. If so, return true and lower it. Otherwise return
8248 /// false, and it will be lowered like a normal call.
8249 /// The caller already checked that \p I calls the appropriate LibFunc with a
8250 /// correct prototype.
8251 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8252                                                unsigned Opcode) {
8253   // We already checked this call's prototype; verify it doesn't modify errno.
8254   if (!I.onlyReadsMemory())
8255     return false;
8256 
8257   SDNodeFlags Flags;
8258   Flags.copyFMF(cast<FPMathOperator>(I));
8259 
8260   SDValue Tmp0 = getValue(I.getArgOperand(0));
8261   SDValue Tmp1 = getValue(I.getArgOperand(1));
8262   EVT VT = Tmp0.getValueType();
8263   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8264   return true;
8265 }
8266 
8267 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8268   // Handle inline assembly differently.
8269   if (I.isInlineAsm()) {
8270     visitInlineAsm(I);
8271     return;
8272   }
8273 
8274   if (Function *F = I.getCalledFunction()) {
8275     diagnoseDontCall(I);
8276 
8277     if (F->isDeclaration()) {
8278       // Is this an LLVM intrinsic or a target-specific intrinsic?
8279       unsigned IID = F->getIntrinsicID();
8280       if (!IID)
8281         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8282           IID = II->getIntrinsicID(F);
8283 
8284       if (IID) {
8285         visitIntrinsicCall(I, IID);
8286         return;
8287       }
8288     }
8289 
8290     // Check for well-known libc/libm calls.  If the function is internal, it
8291     // can't be a library call.  Don't do the check if marked as nobuiltin for
8292     // some reason or the call site requires strict floating point semantics.
8293     LibFunc Func;
8294     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8295         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8296         LibInfo->hasOptimizedCodeGen(Func)) {
8297       switch (Func) {
8298       default: break;
8299       case LibFunc_bcmp:
8300         if (visitMemCmpBCmpCall(I))
8301           return;
8302         break;
8303       case LibFunc_copysign:
8304       case LibFunc_copysignf:
8305       case LibFunc_copysignl:
8306         // We already checked this call's prototype; verify it doesn't modify
8307         // errno.
8308         if (I.onlyReadsMemory()) {
8309           SDValue LHS = getValue(I.getArgOperand(0));
8310           SDValue RHS = getValue(I.getArgOperand(1));
8311           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8312                                    LHS.getValueType(), LHS, RHS));
8313           return;
8314         }
8315         break;
8316       case LibFunc_fabs:
8317       case LibFunc_fabsf:
8318       case LibFunc_fabsl:
8319         if (visitUnaryFloatCall(I, ISD::FABS))
8320           return;
8321         break;
8322       case LibFunc_fmin:
8323       case LibFunc_fminf:
8324       case LibFunc_fminl:
8325         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8326           return;
8327         break;
8328       case LibFunc_fmax:
8329       case LibFunc_fmaxf:
8330       case LibFunc_fmaxl:
8331         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8332           return;
8333         break;
8334       case LibFunc_sin:
8335       case LibFunc_sinf:
8336       case LibFunc_sinl:
8337         if (visitUnaryFloatCall(I, ISD::FSIN))
8338           return;
8339         break;
8340       case LibFunc_cos:
8341       case LibFunc_cosf:
8342       case LibFunc_cosl:
8343         if (visitUnaryFloatCall(I, ISD::FCOS))
8344           return;
8345         break;
8346       case LibFunc_sqrt:
8347       case LibFunc_sqrtf:
8348       case LibFunc_sqrtl:
8349       case LibFunc_sqrt_finite:
8350       case LibFunc_sqrtf_finite:
8351       case LibFunc_sqrtl_finite:
8352         if (visitUnaryFloatCall(I, ISD::FSQRT))
8353           return;
8354         break;
8355       case LibFunc_floor:
8356       case LibFunc_floorf:
8357       case LibFunc_floorl:
8358         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8359           return;
8360         break;
8361       case LibFunc_nearbyint:
8362       case LibFunc_nearbyintf:
8363       case LibFunc_nearbyintl:
8364         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8365           return;
8366         break;
8367       case LibFunc_ceil:
8368       case LibFunc_ceilf:
8369       case LibFunc_ceill:
8370         if (visitUnaryFloatCall(I, ISD::FCEIL))
8371           return;
8372         break;
8373       case LibFunc_rint:
8374       case LibFunc_rintf:
8375       case LibFunc_rintl:
8376         if (visitUnaryFloatCall(I, ISD::FRINT))
8377           return;
8378         break;
8379       case LibFunc_round:
8380       case LibFunc_roundf:
8381       case LibFunc_roundl:
8382         if (visitUnaryFloatCall(I, ISD::FROUND))
8383           return;
8384         break;
8385       case LibFunc_trunc:
8386       case LibFunc_truncf:
8387       case LibFunc_truncl:
8388         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8389           return;
8390         break;
8391       case LibFunc_log2:
8392       case LibFunc_log2f:
8393       case LibFunc_log2l:
8394         if (visitUnaryFloatCall(I, ISD::FLOG2))
8395           return;
8396         break;
8397       case LibFunc_exp2:
8398       case LibFunc_exp2f:
8399       case LibFunc_exp2l:
8400         if (visitUnaryFloatCall(I, ISD::FEXP2))
8401           return;
8402         break;
8403       case LibFunc_memcmp:
8404         if (visitMemCmpBCmpCall(I))
8405           return;
8406         break;
8407       case LibFunc_mempcpy:
8408         if (visitMemPCpyCall(I))
8409           return;
8410         break;
8411       case LibFunc_memchr:
8412         if (visitMemChrCall(I))
8413           return;
8414         break;
8415       case LibFunc_strcpy:
8416         if (visitStrCpyCall(I, false))
8417           return;
8418         break;
8419       case LibFunc_stpcpy:
8420         if (visitStrCpyCall(I, true))
8421           return;
8422         break;
8423       case LibFunc_strcmp:
8424         if (visitStrCmpCall(I))
8425           return;
8426         break;
8427       case LibFunc_strlen:
8428         if (visitStrLenCall(I))
8429           return;
8430         break;
8431       case LibFunc_strnlen:
8432         if (visitStrNLenCall(I))
8433           return;
8434         break;
8435       }
8436     }
8437   }
8438 
8439   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8440   // have to do anything here to lower funclet bundles.
8441   // CFGuardTarget bundles are lowered in LowerCallTo.
8442   assert(!I.hasOperandBundlesOtherThan(
8443              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8444               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8445               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8446          "Cannot lower calls with arbitrary operand bundles!");
8447 
8448   SDValue Callee = getValue(I.getCalledOperand());
8449 
8450   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8451     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8452   else
8453     // Check if we can potentially perform a tail call. More detailed checking
8454     // is be done within LowerCallTo, after more information about the call is
8455     // known.
8456     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8457 }
8458 
8459 namespace {
8460 
8461 /// AsmOperandInfo - This contains information for each constraint that we are
8462 /// lowering.
8463 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8464 public:
8465   /// CallOperand - If this is the result output operand or a clobber
8466   /// this is null, otherwise it is the incoming operand to the CallInst.
8467   /// This gets modified as the asm is processed.
8468   SDValue CallOperand;
8469 
8470   /// AssignedRegs - If this is a register or register class operand, this
8471   /// contains the set of register corresponding to the operand.
8472   RegsForValue AssignedRegs;
8473 
8474   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8475     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8476   }
8477 
8478   /// Whether or not this operand accesses memory
8479   bool hasMemory(const TargetLowering &TLI) const {
8480     // Indirect operand accesses access memory.
8481     if (isIndirect)
8482       return true;
8483 
8484     for (const auto &Code : Codes)
8485       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8486         return true;
8487 
8488     return false;
8489   }
8490 };
8491 
8492 
8493 } // end anonymous namespace
8494 
8495 /// Make sure that the output operand \p OpInfo and its corresponding input
8496 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8497 /// out).
8498 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8499                                SDISelAsmOperandInfo &MatchingOpInfo,
8500                                SelectionDAG &DAG) {
8501   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8502     return;
8503 
8504   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8505   const auto &TLI = DAG.getTargetLoweringInfo();
8506 
8507   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8508       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8509                                        OpInfo.ConstraintVT);
8510   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8511       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8512                                        MatchingOpInfo.ConstraintVT);
8513   if ((OpInfo.ConstraintVT.isInteger() !=
8514        MatchingOpInfo.ConstraintVT.isInteger()) ||
8515       (MatchRC.second != InputRC.second)) {
8516     // FIXME: error out in a more elegant fashion
8517     report_fatal_error("Unsupported asm: input constraint"
8518                        " with a matching output constraint of"
8519                        " incompatible type!");
8520   }
8521   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8522 }
8523 
8524 /// Get a direct memory input to behave well as an indirect operand.
8525 /// This may introduce stores, hence the need for a \p Chain.
8526 /// \return The (possibly updated) chain.
8527 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8528                                         SDISelAsmOperandInfo &OpInfo,
8529                                         SelectionDAG &DAG) {
8530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8531 
8532   // If we don't have an indirect input, put it in the constpool if we can,
8533   // otherwise spill it to a stack slot.
8534   // TODO: This isn't quite right. We need to handle these according to
8535   // the addressing mode that the constraint wants. Also, this may take
8536   // an additional register for the computation and we don't want that
8537   // either.
8538 
8539   // If the operand is a float, integer, or vector constant, spill to a
8540   // constant pool entry to get its address.
8541   const Value *OpVal = OpInfo.CallOperandVal;
8542   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8543       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8544     OpInfo.CallOperand = DAG.getConstantPool(
8545         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8546     return Chain;
8547   }
8548 
8549   // Otherwise, create a stack slot and emit a store to it before the asm.
8550   Type *Ty = OpVal->getType();
8551   auto &DL = DAG.getDataLayout();
8552   uint64_t TySize = DL.getTypeAllocSize(Ty);
8553   MachineFunction &MF = DAG.getMachineFunction();
8554   int SSFI = MF.getFrameInfo().CreateStackObject(
8555       TySize, DL.getPrefTypeAlign(Ty), false);
8556   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8557   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8558                             MachinePointerInfo::getFixedStack(MF, SSFI),
8559                             TLI.getMemValueType(DL, Ty));
8560   OpInfo.CallOperand = StackSlot;
8561 
8562   return Chain;
8563 }
8564 
8565 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8566 /// specified operand.  We prefer to assign virtual registers, to allow the
8567 /// register allocator to handle the assignment process.  However, if the asm
8568 /// uses features that we can't model on machineinstrs, we have SDISel do the
8569 /// allocation.  This produces generally horrible, but correct, code.
8570 ///
8571 ///   OpInfo describes the operand
8572 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8573 static llvm::Optional<unsigned>
8574 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8575                      SDISelAsmOperandInfo &OpInfo,
8576                      SDISelAsmOperandInfo &RefOpInfo) {
8577   LLVMContext &Context = *DAG.getContext();
8578   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8579 
8580   MachineFunction &MF = DAG.getMachineFunction();
8581   SmallVector<unsigned, 4> Regs;
8582   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8583 
8584   // No work to do for memory/address operands.
8585   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8586       OpInfo.ConstraintType == TargetLowering::C_Address)
8587     return None;
8588 
8589   // If this is a constraint for a single physreg, or a constraint for a
8590   // register class, find it.
8591   unsigned AssignedReg;
8592   const TargetRegisterClass *RC;
8593   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8594       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8595   // RC is unset only on failure. Return immediately.
8596   if (!RC)
8597     return None;
8598 
8599   // Get the actual register value type.  This is important, because the user
8600   // may have asked for (e.g.) the AX register in i32 type.  We need to
8601   // remember that AX is actually i16 to get the right extension.
8602   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8603 
8604   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8605     // If this is an FP operand in an integer register (or visa versa), or more
8606     // generally if the operand value disagrees with the register class we plan
8607     // to stick it in, fix the operand type.
8608     //
8609     // If this is an input value, the bitcast to the new type is done now.
8610     // Bitcast for output value is done at the end of visitInlineAsm().
8611     if ((OpInfo.Type == InlineAsm::isOutput ||
8612          OpInfo.Type == InlineAsm::isInput) &&
8613         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8614       // Try to convert to the first EVT that the reg class contains.  If the
8615       // types are identical size, use a bitcast to convert (e.g. two differing
8616       // vector types).  Note: output bitcast is done at the end of
8617       // visitInlineAsm().
8618       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8619         // Exclude indirect inputs while they are unsupported because the code
8620         // to perform the load is missing and thus OpInfo.CallOperand still
8621         // refers to the input address rather than the pointed-to value.
8622         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8623           OpInfo.CallOperand =
8624               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8625         OpInfo.ConstraintVT = RegVT;
8626         // If the operand is an FP value and we want it in integer registers,
8627         // use the corresponding integer type. This turns an f64 value into
8628         // i64, which can be passed with two i32 values on a 32-bit machine.
8629       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8630         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8631         if (OpInfo.Type == InlineAsm::isInput)
8632           OpInfo.CallOperand =
8633               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8634         OpInfo.ConstraintVT = VT;
8635       }
8636     }
8637   }
8638 
8639   // No need to allocate a matching input constraint since the constraint it's
8640   // matching to has already been allocated.
8641   if (OpInfo.isMatchingInputConstraint())
8642     return None;
8643 
8644   EVT ValueVT = OpInfo.ConstraintVT;
8645   if (OpInfo.ConstraintVT == MVT::Other)
8646     ValueVT = RegVT;
8647 
8648   // Initialize NumRegs.
8649   unsigned NumRegs = 1;
8650   if (OpInfo.ConstraintVT != MVT::Other)
8651     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8652 
8653   // If this is a constraint for a specific physical register, like {r17},
8654   // assign it now.
8655 
8656   // If this associated to a specific register, initialize iterator to correct
8657   // place. If virtual, make sure we have enough registers
8658 
8659   // Initialize iterator if necessary
8660   TargetRegisterClass::iterator I = RC->begin();
8661   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8662 
8663   // Do not check for single registers.
8664   if (AssignedReg) {
8665     I = std::find(I, RC->end(), AssignedReg);
8666     if (I == RC->end()) {
8667       // RC does not contain the selected register, which indicates a
8668       // mismatch between the register and the required type/bitwidth.
8669       return {AssignedReg};
8670     }
8671   }
8672 
8673   for (; NumRegs; --NumRegs, ++I) {
8674     assert(I != RC->end() && "Ran out of registers to allocate!");
8675     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8676     Regs.push_back(R);
8677   }
8678 
8679   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8680   return None;
8681 }
8682 
8683 static unsigned
8684 findMatchingInlineAsmOperand(unsigned OperandNo,
8685                              const std::vector<SDValue> &AsmNodeOperands) {
8686   // Scan until we find the definition we already emitted of this operand.
8687   unsigned CurOp = InlineAsm::Op_FirstOperand;
8688   for (; OperandNo; --OperandNo) {
8689     // Advance to the next operand.
8690     unsigned OpFlag =
8691         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8692     assert((InlineAsm::isRegDefKind(OpFlag) ||
8693             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8694             InlineAsm::isMemKind(OpFlag)) &&
8695            "Skipped past definitions?");
8696     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8697   }
8698   return CurOp;
8699 }
8700 
8701 namespace {
8702 
8703 class ExtraFlags {
8704   unsigned Flags = 0;
8705 
8706 public:
8707   explicit ExtraFlags(const CallBase &Call) {
8708     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8709     if (IA->hasSideEffects())
8710       Flags |= InlineAsm::Extra_HasSideEffects;
8711     if (IA->isAlignStack())
8712       Flags |= InlineAsm::Extra_IsAlignStack;
8713     if (Call.isConvergent())
8714       Flags |= InlineAsm::Extra_IsConvergent;
8715     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8716   }
8717 
8718   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8719     // Ideally, we would only check against memory constraints.  However, the
8720     // meaning of an Other constraint can be target-specific and we can't easily
8721     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8722     // for Other constraints as well.
8723     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8724         OpInfo.ConstraintType == TargetLowering::C_Other) {
8725       if (OpInfo.Type == InlineAsm::isInput)
8726         Flags |= InlineAsm::Extra_MayLoad;
8727       else if (OpInfo.Type == InlineAsm::isOutput)
8728         Flags |= InlineAsm::Extra_MayStore;
8729       else if (OpInfo.Type == InlineAsm::isClobber)
8730         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8731     }
8732   }
8733 
8734   unsigned get() const { return Flags; }
8735 };
8736 
8737 } // end anonymous namespace
8738 
8739 /// visitInlineAsm - Handle a call to an InlineAsm object.
8740 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8741                                          const BasicBlock *EHPadBB) {
8742   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8743 
8744   /// ConstraintOperands - Information about all of the constraints.
8745   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8746 
8747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8748   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8749       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8750 
8751   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8752   // AsmDialect, MayLoad, MayStore).
8753   bool HasSideEffect = IA->hasSideEffects();
8754   ExtraFlags ExtraInfo(Call);
8755 
8756   for (auto &T : TargetConstraints) {
8757     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8758     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8759 
8760     if (OpInfo.CallOperandVal)
8761       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8762 
8763     if (!HasSideEffect)
8764       HasSideEffect = OpInfo.hasMemory(TLI);
8765 
8766     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8767     // FIXME: Could we compute this on OpInfo rather than T?
8768 
8769     // Compute the constraint code and ConstraintType to use.
8770     TLI.ComputeConstraintToUse(T, SDValue());
8771 
8772     if (T.ConstraintType == TargetLowering::C_Immediate &&
8773         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8774       // We've delayed emitting a diagnostic like the "n" constraint because
8775       // inlining could cause an integer showing up.
8776       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8777                                           "' expects an integer constant "
8778                                           "expression");
8779 
8780     ExtraInfo.update(T);
8781   }
8782 
8783   // We won't need to flush pending loads if this asm doesn't touch
8784   // memory and is nonvolatile.
8785   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8786 
8787   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8788   if (EmitEHLabels) {
8789     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8790   }
8791   bool IsCallBr = isa<CallBrInst>(Call);
8792 
8793   if (IsCallBr || EmitEHLabels) {
8794     // If this is a callbr or invoke we need to flush pending exports since
8795     // inlineasm_br and invoke are terminators.
8796     // We need to do this before nodes are glued to the inlineasm_br node.
8797     Chain = getControlRoot();
8798   }
8799 
8800   MCSymbol *BeginLabel = nullptr;
8801   if (EmitEHLabels) {
8802     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8803   }
8804 
8805   // Second pass over the constraints: compute which constraint option to use.
8806   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8807     // If this is an output operand with a matching input operand, look up the
8808     // matching input. If their types mismatch, e.g. one is an integer, the
8809     // other is floating point, or their sizes are different, flag it as an
8810     // error.
8811     if (OpInfo.hasMatchingInput()) {
8812       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8813       patchMatchingInput(OpInfo, Input, DAG);
8814     }
8815 
8816     // Compute the constraint code and ConstraintType to use.
8817     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8818 
8819     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8820          OpInfo.Type == InlineAsm::isClobber) ||
8821         OpInfo.ConstraintType == TargetLowering::C_Address)
8822       continue;
8823 
8824     // If this is a memory input, and if the operand is not indirect, do what we
8825     // need to provide an address for the memory input.
8826     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8827         !OpInfo.isIndirect) {
8828       assert((OpInfo.isMultipleAlternative ||
8829               (OpInfo.Type == InlineAsm::isInput)) &&
8830              "Can only indirectify direct input operands!");
8831 
8832       // Memory operands really want the address of the value.
8833       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8834 
8835       // There is no longer a Value* corresponding to this operand.
8836       OpInfo.CallOperandVal = nullptr;
8837 
8838       // It is now an indirect operand.
8839       OpInfo.isIndirect = true;
8840     }
8841 
8842   }
8843 
8844   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8845   std::vector<SDValue> AsmNodeOperands;
8846   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8847   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8848       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8849 
8850   // If we have a !srcloc metadata node associated with it, we want to attach
8851   // this to the ultimately generated inline asm machineinstr.  To do this, we
8852   // pass in the third operand as this (potentially null) inline asm MDNode.
8853   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8854   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8855 
8856   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8857   // bits as operand 3.
8858   AsmNodeOperands.push_back(DAG.getTargetConstant(
8859       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8860 
8861   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8862   // this, assign virtual and physical registers for inputs and otput.
8863   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8864     // Assign Registers.
8865     SDISelAsmOperandInfo &RefOpInfo =
8866         OpInfo.isMatchingInputConstraint()
8867             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8868             : OpInfo;
8869     const auto RegError =
8870         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8871     if (RegError) {
8872       const MachineFunction &MF = DAG.getMachineFunction();
8873       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8874       const char *RegName = TRI.getName(RegError.value());
8875       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8876                                    "' allocated for constraint '" +
8877                                    Twine(OpInfo.ConstraintCode) +
8878                                    "' does not match required type");
8879       return;
8880     }
8881 
8882     auto DetectWriteToReservedRegister = [&]() {
8883       const MachineFunction &MF = DAG.getMachineFunction();
8884       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8885       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8886         if (Register::isPhysicalRegister(Reg) &&
8887             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8888           const char *RegName = TRI.getName(Reg);
8889           emitInlineAsmError(Call, "write to reserved register '" +
8890                                        Twine(RegName) + "'");
8891           return true;
8892         }
8893       }
8894       return false;
8895     };
8896     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
8897             (OpInfo.Type == InlineAsm::isInput &&
8898              !OpInfo.isMatchingInputConstraint())) &&
8899            "Only address as input operand is allowed.");
8900 
8901     switch (OpInfo.Type) {
8902     case InlineAsm::isOutput:
8903       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8904         unsigned ConstraintID =
8905             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8906         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8907                "Failed to convert memory constraint code to constraint id.");
8908 
8909         // Add information to the INLINEASM node to know about this output.
8910         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8911         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8912         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8913                                                         MVT::i32));
8914         AsmNodeOperands.push_back(OpInfo.CallOperand);
8915       } else {
8916         // Otherwise, this outputs to a register (directly for C_Register /
8917         // C_RegisterClass, and a target-defined fashion for
8918         // C_Immediate/C_Other). Find a register that we can use.
8919         if (OpInfo.AssignedRegs.Regs.empty()) {
8920           emitInlineAsmError(
8921               Call, "couldn't allocate output register for constraint '" +
8922                         Twine(OpInfo.ConstraintCode) + "'");
8923           return;
8924         }
8925 
8926         if (DetectWriteToReservedRegister())
8927           return;
8928 
8929         // Add information to the INLINEASM node to know that this register is
8930         // set.
8931         OpInfo.AssignedRegs.AddInlineAsmOperands(
8932             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8933                                   : InlineAsm::Kind_RegDef,
8934             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8935       }
8936       break;
8937 
8938     case InlineAsm::isInput:
8939     case InlineAsm::isLabel: {
8940       SDValue InOperandVal = OpInfo.CallOperand;
8941 
8942       if (OpInfo.isMatchingInputConstraint()) {
8943         // If this is required to match an output register we have already set,
8944         // just use its register.
8945         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8946                                                   AsmNodeOperands);
8947         unsigned OpFlag =
8948           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8949         if (InlineAsm::isRegDefKind(OpFlag) ||
8950             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8951           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8952           if (OpInfo.isIndirect) {
8953             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8954             emitInlineAsmError(Call, "inline asm not supported yet: "
8955                                      "don't know how to handle tied "
8956                                      "indirect register inputs");
8957             return;
8958           }
8959 
8960           SmallVector<unsigned, 4> Regs;
8961           MachineFunction &MF = DAG.getMachineFunction();
8962           MachineRegisterInfo &MRI = MF.getRegInfo();
8963           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8964           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8965           Register TiedReg = R->getReg();
8966           MVT RegVT = R->getSimpleValueType(0);
8967           const TargetRegisterClass *RC =
8968               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8969               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8970                                       : TRI.getMinimalPhysRegClass(TiedReg);
8971           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8972           for (unsigned i = 0; i != NumRegs; ++i)
8973             Regs.push_back(MRI.createVirtualRegister(RC));
8974 
8975           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8976 
8977           SDLoc dl = getCurSDLoc();
8978           // Use the produced MatchedRegs object to
8979           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8980           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8981                                            true, OpInfo.getMatchedOperand(), dl,
8982                                            DAG, AsmNodeOperands);
8983           break;
8984         }
8985 
8986         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8987         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8988                "Unexpected number of operands");
8989         // Add information to the INLINEASM node to know about this input.
8990         // See InlineAsm.h isUseOperandTiedToDef.
8991         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8992         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8993                                                     OpInfo.getMatchedOperand());
8994         AsmNodeOperands.push_back(DAG.getTargetConstant(
8995             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8996         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8997         break;
8998       }
8999 
9000       // Treat indirect 'X' constraint as memory.
9001       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9002           OpInfo.isIndirect)
9003         OpInfo.ConstraintType = TargetLowering::C_Memory;
9004 
9005       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9006           OpInfo.ConstraintType == TargetLowering::C_Other) {
9007         std::vector<SDValue> Ops;
9008         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9009                                           Ops, DAG);
9010         if (Ops.empty()) {
9011           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9012             if (isa<ConstantSDNode>(InOperandVal)) {
9013               emitInlineAsmError(Call, "value out of range for constraint '" +
9014                                            Twine(OpInfo.ConstraintCode) + "'");
9015               return;
9016             }
9017 
9018           emitInlineAsmError(Call,
9019                              "invalid operand for inline asm constraint '" +
9020                                  Twine(OpInfo.ConstraintCode) + "'");
9021           return;
9022         }
9023 
9024         // Add information to the INLINEASM node to know about this input.
9025         unsigned ResOpType =
9026           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9027         AsmNodeOperands.push_back(DAG.getTargetConstant(
9028             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9029         llvm::append_range(AsmNodeOperands, Ops);
9030         break;
9031       }
9032 
9033       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9034           OpInfo.ConstraintType == TargetLowering::C_Address) {
9035         assert((OpInfo.isIndirect ||
9036                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9037                "Operand must be indirect to be a mem!");
9038         assert(InOperandVal.getValueType() ==
9039                    TLI.getPointerTy(DAG.getDataLayout()) &&
9040                "Memory operands expect pointer values");
9041 
9042         unsigned ConstraintID =
9043             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9044         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9045                "Failed to convert memory constraint code to constraint id.");
9046 
9047         // Add information to the INLINEASM node to know about this input.
9048         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9049         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9050         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9051                                                         getCurSDLoc(),
9052                                                         MVT::i32));
9053         AsmNodeOperands.push_back(InOperandVal);
9054         break;
9055       }
9056 
9057       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9058               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9059              "Unknown constraint type!");
9060 
9061       // TODO: Support this.
9062       if (OpInfo.isIndirect) {
9063         emitInlineAsmError(
9064             Call, "Don't know how to handle indirect register inputs yet "
9065                   "for constraint '" +
9066                       Twine(OpInfo.ConstraintCode) + "'");
9067         return;
9068       }
9069 
9070       // Copy the input into the appropriate registers.
9071       if (OpInfo.AssignedRegs.Regs.empty()) {
9072         emitInlineAsmError(Call,
9073                            "couldn't allocate input reg for constraint '" +
9074                                Twine(OpInfo.ConstraintCode) + "'");
9075         return;
9076       }
9077 
9078       if (DetectWriteToReservedRegister())
9079         return;
9080 
9081       SDLoc dl = getCurSDLoc();
9082 
9083       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9084                                         &Call);
9085 
9086       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9087                                                dl, DAG, AsmNodeOperands);
9088       break;
9089     }
9090     case InlineAsm::isClobber:
9091       // Add the clobbered value to the operand list, so that the register
9092       // allocator is aware that the physreg got clobbered.
9093       if (!OpInfo.AssignedRegs.Regs.empty())
9094         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9095                                                  false, 0, getCurSDLoc(), DAG,
9096                                                  AsmNodeOperands);
9097       break;
9098     }
9099   }
9100 
9101   // Finish up input operands.  Set the input chain and add the flag last.
9102   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9103   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9104 
9105   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9106   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9107                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9108   Flag = Chain.getValue(1);
9109 
9110   // Do additional work to generate outputs.
9111 
9112   SmallVector<EVT, 1> ResultVTs;
9113   SmallVector<SDValue, 1> ResultValues;
9114   SmallVector<SDValue, 8> OutChains;
9115 
9116   llvm::Type *CallResultType = Call.getType();
9117   ArrayRef<Type *> ResultTypes;
9118   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9119     ResultTypes = StructResult->elements();
9120   else if (!CallResultType->isVoidTy())
9121     ResultTypes = makeArrayRef(CallResultType);
9122 
9123   auto CurResultType = ResultTypes.begin();
9124   auto handleRegAssign = [&](SDValue V) {
9125     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9126     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9127     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9128     ++CurResultType;
9129     // If the type of the inline asm call site return value is different but has
9130     // same size as the type of the asm output bitcast it.  One example of this
9131     // is for vectors with different width / number of elements.  This can
9132     // happen for register classes that can contain multiple different value
9133     // types.  The preg or vreg allocated may not have the same VT as was
9134     // expected.
9135     //
9136     // This can also happen for a return value that disagrees with the register
9137     // class it is put in, eg. a double in a general-purpose register on a
9138     // 32-bit machine.
9139     if (ResultVT != V.getValueType() &&
9140         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9141       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9142     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9143              V.getValueType().isInteger()) {
9144       // If a result value was tied to an input value, the computed result
9145       // may have a wider width than the expected result.  Extract the
9146       // relevant portion.
9147       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9148     }
9149     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9150     ResultVTs.push_back(ResultVT);
9151     ResultValues.push_back(V);
9152   };
9153 
9154   // Deal with output operands.
9155   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9156     if (OpInfo.Type == InlineAsm::isOutput) {
9157       SDValue Val;
9158       // Skip trivial output operands.
9159       if (OpInfo.AssignedRegs.Regs.empty())
9160         continue;
9161 
9162       switch (OpInfo.ConstraintType) {
9163       case TargetLowering::C_Register:
9164       case TargetLowering::C_RegisterClass:
9165         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9166                                                   Chain, &Flag, &Call);
9167         break;
9168       case TargetLowering::C_Immediate:
9169       case TargetLowering::C_Other:
9170         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9171                                               OpInfo, DAG);
9172         break;
9173       case TargetLowering::C_Memory:
9174         break; // Already handled.
9175       case TargetLowering::C_Address:
9176         break; // Silence warning.
9177       case TargetLowering::C_Unknown:
9178         assert(false && "Unexpected unknown constraint");
9179       }
9180 
9181       // Indirect output manifest as stores. Record output chains.
9182       if (OpInfo.isIndirect) {
9183         const Value *Ptr = OpInfo.CallOperandVal;
9184         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9185         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9186                                      MachinePointerInfo(Ptr));
9187         OutChains.push_back(Store);
9188       } else {
9189         // generate CopyFromRegs to associated registers.
9190         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9191         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9192           for (const SDValue &V : Val->op_values())
9193             handleRegAssign(V);
9194         } else
9195           handleRegAssign(Val);
9196       }
9197     }
9198   }
9199 
9200   // Set results.
9201   if (!ResultValues.empty()) {
9202     assert(CurResultType == ResultTypes.end() &&
9203            "Mismatch in number of ResultTypes");
9204     assert(ResultValues.size() == ResultTypes.size() &&
9205            "Mismatch in number of output operands in asm result");
9206 
9207     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9208                             DAG.getVTList(ResultVTs), ResultValues);
9209     setValue(&Call, V);
9210   }
9211 
9212   // Collect store chains.
9213   if (!OutChains.empty())
9214     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9215 
9216   if (EmitEHLabels) {
9217     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9218   }
9219 
9220   // Only Update Root if inline assembly has a memory effect.
9221   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9222       EmitEHLabels)
9223     DAG.setRoot(Chain);
9224 }
9225 
9226 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9227                                              const Twine &Message) {
9228   LLVMContext &Ctx = *DAG.getContext();
9229   Ctx.emitError(&Call, Message);
9230 
9231   // Make sure we leave the DAG in a valid state
9232   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9233   SmallVector<EVT, 1> ValueVTs;
9234   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9235 
9236   if (ValueVTs.empty())
9237     return;
9238 
9239   SmallVector<SDValue, 1> Ops;
9240   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9241     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9242 
9243   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9244 }
9245 
9246 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9247   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9248                           MVT::Other, getRoot(),
9249                           getValue(I.getArgOperand(0)),
9250                           DAG.getSrcValue(I.getArgOperand(0))));
9251 }
9252 
9253 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9254   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9255   const DataLayout &DL = DAG.getDataLayout();
9256   SDValue V = DAG.getVAArg(
9257       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9258       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9259       DL.getABITypeAlign(I.getType()).value());
9260   DAG.setRoot(V.getValue(1));
9261 
9262   if (I.getType()->isPointerTy())
9263     V = DAG.getPtrExtOrTrunc(
9264         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9265   setValue(&I, V);
9266 }
9267 
9268 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9269   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9270                           MVT::Other, getRoot(),
9271                           getValue(I.getArgOperand(0)),
9272                           DAG.getSrcValue(I.getArgOperand(0))));
9273 }
9274 
9275 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9276   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9277                           MVT::Other, getRoot(),
9278                           getValue(I.getArgOperand(0)),
9279                           getValue(I.getArgOperand(1)),
9280                           DAG.getSrcValue(I.getArgOperand(0)),
9281                           DAG.getSrcValue(I.getArgOperand(1))));
9282 }
9283 
9284 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9285                                                     const Instruction &I,
9286                                                     SDValue Op) {
9287   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9288   if (!Range)
9289     return Op;
9290 
9291   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9292   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9293     return Op;
9294 
9295   APInt Lo = CR.getUnsignedMin();
9296   if (!Lo.isMinValue())
9297     return Op;
9298 
9299   APInt Hi = CR.getUnsignedMax();
9300   unsigned Bits = std::max(Hi.getActiveBits(),
9301                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9302 
9303   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9304 
9305   SDLoc SL = getCurSDLoc();
9306 
9307   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9308                              DAG.getValueType(SmallVT));
9309   unsigned NumVals = Op.getNode()->getNumValues();
9310   if (NumVals == 1)
9311     return ZExt;
9312 
9313   SmallVector<SDValue, 4> Ops;
9314 
9315   Ops.push_back(ZExt);
9316   for (unsigned I = 1; I != NumVals; ++I)
9317     Ops.push_back(Op.getValue(I));
9318 
9319   return DAG.getMergeValues(Ops, SL);
9320 }
9321 
9322 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9323 /// the call being lowered.
9324 ///
9325 /// This is a helper for lowering intrinsics that follow a target calling
9326 /// convention or require stack pointer adjustment. Only a subset of the
9327 /// intrinsic's operands need to participate in the calling convention.
9328 void SelectionDAGBuilder::populateCallLoweringInfo(
9329     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9330     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9331     bool IsPatchPoint) {
9332   TargetLowering::ArgListTy Args;
9333   Args.reserve(NumArgs);
9334 
9335   // Populate the argument list.
9336   // Attributes for args start at offset 1, after the return attribute.
9337   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9338        ArgI != ArgE; ++ArgI) {
9339     const Value *V = Call->getOperand(ArgI);
9340 
9341     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9342 
9343     TargetLowering::ArgListEntry Entry;
9344     Entry.Node = getValue(V);
9345     Entry.Ty = V->getType();
9346     Entry.setAttributes(Call, ArgI);
9347     Args.push_back(Entry);
9348   }
9349 
9350   CLI.setDebugLoc(getCurSDLoc())
9351       .setChain(getRoot())
9352       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9353       .setDiscardResult(Call->use_empty())
9354       .setIsPatchPoint(IsPatchPoint)
9355       .setIsPreallocated(
9356           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9357 }
9358 
9359 /// Add a stack map intrinsic call's live variable operands to a stackmap
9360 /// or patchpoint target node's operand list.
9361 ///
9362 /// Constants are converted to TargetConstants purely as an optimization to
9363 /// avoid constant materialization and register allocation.
9364 ///
9365 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9366 /// generate addess computation nodes, and so FinalizeISel can convert the
9367 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9368 /// address materialization and register allocation, but may also be required
9369 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9370 /// alloca in the entry block, then the runtime may assume that the alloca's
9371 /// StackMap location can be read immediately after compilation and that the
9372 /// location is valid at any point during execution (this is similar to the
9373 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9374 /// only available in a register, then the runtime would need to trap when
9375 /// execution reaches the StackMap in order to read the alloca's location.
9376 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9377                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9378                                 SelectionDAGBuilder &Builder) {
9379   SelectionDAG &DAG = Builder.DAG;
9380   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9381     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9382 
9383     // Things on the stack are pointer-typed, meaning that they are already
9384     // legal and can be emitted directly to target nodes.
9385     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9386       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9387     } else {
9388       // Otherwise emit a target independent node to be legalised.
9389       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9390     }
9391   }
9392 }
9393 
9394 /// Lower llvm.experimental.stackmap.
9395 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9396   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9397   //                                  [live variables...])
9398 
9399   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9400 
9401   SDValue Chain, InFlag, Callee;
9402   SmallVector<SDValue, 32> Ops;
9403 
9404   SDLoc DL = getCurSDLoc();
9405   Callee = getValue(CI.getCalledOperand());
9406 
9407   // The stackmap intrinsic only records the live variables (the arguments
9408   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9409   // intrinsic, this won't be lowered to a function call. This means we don't
9410   // have to worry about calling conventions and target specific lowering code.
9411   // Instead we perform the call lowering right here.
9412   //
9413   // chain, flag = CALLSEQ_START(chain, 0, 0)
9414   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9415   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9416   //
9417   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9418   InFlag = Chain.getValue(1);
9419 
9420   // Add the STACKMAP operands, starting with DAG house-keeping.
9421   Ops.push_back(Chain);
9422   Ops.push_back(InFlag);
9423 
9424   // Add the <id>, <numShadowBytes> operands.
9425   //
9426   // These do not require legalisation, and can be emitted directly to target
9427   // constant nodes.
9428   SDValue ID = getValue(CI.getArgOperand(0));
9429   assert(ID.getValueType() == MVT::i64);
9430   SDValue IDConst = DAG.getTargetConstant(
9431       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9432   Ops.push_back(IDConst);
9433 
9434   SDValue Shad = getValue(CI.getArgOperand(1));
9435   assert(Shad.getValueType() == MVT::i32);
9436   SDValue ShadConst = DAG.getTargetConstant(
9437       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9438   Ops.push_back(ShadConst);
9439 
9440   // Add the live variables.
9441   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9442 
9443   // Create the STACKMAP node.
9444   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9445   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9446   InFlag = Chain.getValue(1);
9447 
9448   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
9449 
9450   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9451 
9452   // Set the root to the target-lowered call chain.
9453   DAG.setRoot(Chain);
9454 
9455   // Inform the Frame Information that we have a stackmap in this function.
9456   FuncInfo.MF->getFrameInfo().setHasStackMap();
9457 }
9458 
9459 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9460 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9461                                           const BasicBlock *EHPadBB) {
9462   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9463   //                                                 i32 <numBytes>,
9464   //                                                 i8* <target>,
9465   //                                                 i32 <numArgs>,
9466   //                                                 [Args...],
9467   //                                                 [live variables...])
9468 
9469   CallingConv::ID CC = CB.getCallingConv();
9470   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9471   bool HasDef = !CB.getType()->isVoidTy();
9472   SDLoc dl = getCurSDLoc();
9473   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9474 
9475   // Handle immediate and symbolic callees.
9476   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9477     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9478                                    /*isTarget=*/true);
9479   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9480     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9481                                          SDLoc(SymbolicCallee),
9482                                          SymbolicCallee->getValueType(0));
9483 
9484   // Get the real number of arguments participating in the call <numArgs>
9485   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9486   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9487 
9488   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9489   // Intrinsics include all meta-operands up to but not including CC.
9490   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9491   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9492          "Not enough arguments provided to the patchpoint intrinsic");
9493 
9494   // For AnyRegCC the arguments are lowered later on manually.
9495   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9496   Type *ReturnTy =
9497       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9498 
9499   TargetLowering::CallLoweringInfo CLI(DAG);
9500   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9501                            ReturnTy, true);
9502   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9503 
9504   SDNode *CallEnd = Result.second.getNode();
9505   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9506     CallEnd = CallEnd->getOperand(0).getNode();
9507 
9508   /// Get a call instruction from the call sequence chain.
9509   /// Tail calls are not allowed.
9510   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9511          "Expected a callseq node.");
9512   SDNode *Call = CallEnd->getOperand(0).getNode();
9513   bool HasGlue = Call->getGluedNode();
9514 
9515   // Replace the target specific call node with the patchable intrinsic.
9516   SmallVector<SDValue, 8> Ops;
9517 
9518   // Push the chain.
9519   Ops.push_back(*(Call->op_begin()));
9520 
9521   // Optionally, push the glue (if any).
9522   if (HasGlue)
9523     Ops.push_back(*(Call->op_end() - 1));
9524 
9525   // Push the register mask info.
9526   if (HasGlue)
9527     Ops.push_back(*(Call->op_end() - 2));
9528   else
9529     Ops.push_back(*(Call->op_end() - 1));
9530 
9531   // Add the <id> and <numBytes> constants.
9532   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9533   Ops.push_back(DAG.getTargetConstant(
9534                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9535   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9536   Ops.push_back(DAG.getTargetConstant(
9537                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9538                   MVT::i32));
9539 
9540   // Add the callee.
9541   Ops.push_back(Callee);
9542 
9543   // Adjust <numArgs> to account for any arguments that have been passed on the
9544   // stack instead.
9545   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9546   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9547   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9548   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9549 
9550   // Add the calling convention
9551   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9552 
9553   // Add the arguments we omitted previously. The register allocator should
9554   // place these in any free register.
9555   if (IsAnyRegCC)
9556     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9557       Ops.push_back(getValue(CB.getArgOperand(i)));
9558 
9559   // Push the arguments from the call instruction.
9560   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9561   Ops.append(Call->op_begin() + 2, e);
9562 
9563   // Push live variables for the stack map.
9564   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9565 
9566   SDVTList NodeTys;
9567   if (IsAnyRegCC && HasDef) {
9568     // Create the return types based on the intrinsic definition
9569     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9570     SmallVector<EVT, 3> ValueVTs;
9571     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9572     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9573 
9574     // There is always a chain and a glue type at the end
9575     ValueVTs.push_back(MVT::Other);
9576     ValueVTs.push_back(MVT::Glue);
9577     NodeTys = DAG.getVTList(ValueVTs);
9578   } else
9579     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9580 
9581   // Replace the target specific call node with a PATCHPOINT node.
9582   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9583 
9584   // Update the NodeMap.
9585   if (HasDef) {
9586     if (IsAnyRegCC)
9587       setValue(&CB, SDValue(PPV.getNode(), 0));
9588     else
9589       setValue(&CB, Result.first);
9590   }
9591 
9592   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9593   // call sequence. Furthermore the location of the chain and glue can change
9594   // when the AnyReg calling convention is used and the intrinsic returns a
9595   // value.
9596   if (IsAnyRegCC && HasDef) {
9597     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9598     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9599     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9600   } else
9601     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9602   DAG.DeleteNode(Call);
9603 
9604   // Inform the Frame Information that we have a patchpoint in this function.
9605   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9606 }
9607 
9608 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9609                                             unsigned Intrinsic) {
9610   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9611   SDValue Op1 = getValue(I.getArgOperand(0));
9612   SDValue Op2;
9613   if (I.arg_size() > 1)
9614     Op2 = getValue(I.getArgOperand(1));
9615   SDLoc dl = getCurSDLoc();
9616   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9617   SDValue Res;
9618   SDNodeFlags SDFlags;
9619   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9620     SDFlags.copyFMF(*FPMO);
9621 
9622   switch (Intrinsic) {
9623   case Intrinsic::vector_reduce_fadd:
9624     if (SDFlags.hasAllowReassociation())
9625       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9626                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9627                         SDFlags);
9628     else
9629       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9630     break;
9631   case Intrinsic::vector_reduce_fmul:
9632     if (SDFlags.hasAllowReassociation())
9633       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9634                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9635                         SDFlags);
9636     else
9637       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9638     break;
9639   case Intrinsic::vector_reduce_add:
9640     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9641     break;
9642   case Intrinsic::vector_reduce_mul:
9643     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9644     break;
9645   case Intrinsic::vector_reduce_and:
9646     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9647     break;
9648   case Intrinsic::vector_reduce_or:
9649     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9650     break;
9651   case Intrinsic::vector_reduce_xor:
9652     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9653     break;
9654   case Intrinsic::vector_reduce_smax:
9655     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9656     break;
9657   case Intrinsic::vector_reduce_smin:
9658     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9659     break;
9660   case Intrinsic::vector_reduce_umax:
9661     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9662     break;
9663   case Intrinsic::vector_reduce_umin:
9664     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9665     break;
9666   case Intrinsic::vector_reduce_fmax:
9667     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9668     break;
9669   case Intrinsic::vector_reduce_fmin:
9670     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9671     break;
9672   default:
9673     llvm_unreachable("Unhandled vector reduce intrinsic");
9674   }
9675   setValue(&I, Res);
9676 }
9677 
9678 /// Returns an AttributeList representing the attributes applied to the return
9679 /// value of the given call.
9680 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9681   SmallVector<Attribute::AttrKind, 2> Attrs;
9682   if (CLI.RetSExt)
9683     Attrs.push_back(Attribute::SExt);
9684   if (CLI.RetZExt)
9685     Attrs.push_back(Attribute::ZExt);
9686   if (CLI.IsInReg)
9687     Attrs.push_back(Attribute::InReg);
9688 
9689   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9690                             Attrs);
9691 }
9692 
9693 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9694 /// implementation, which just calls LowerCall.
9695 /// FIXME: When all targets are
9696 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9697 std::pair<SDValue, SDValue>
9698 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9699   // Handle the incoming return values from the call.
9700   CLI.Ins.clear();
9701   Type *OrigRetTy = CLI.RetTy;
9702   SmallVector<EVT, 4> RetTys;
9703   SmallVector<uint64_t, 4> Offsets;
9704   auto &DL = CLI.DAG.getDataLayout();
9705   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9706 
9707   if (CLI.IsPostTypeLegalization) {
9708     // If we are lowering a libcall after legalization, split the return type.
9709     SmallVector<EVT, 4> OldRetTys;
9710     SmallVector<uint64_t, 4> OldOffsets;
9711     RetTys.swap(OldRetTys);
9712     Offsets.swap(OldOffsets);
9713 
9714     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9715       EVT RetVT = OldRetTys[i];
9716       uint64_t Offset = OldOffsets[i];
9717       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9718       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9719       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9720       RetTys.append(NumRegs, RegisterVT);
9721       for (unsigned j = 0; j != NumRegs; ++j)
9722         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9723     }
9724   }
9725 
9726   SmallVector<ISD::OutputArg, 4> Outs;
9727   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9728 
9729   bool CanLowerReturn =
9730       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9731                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9732 
9733   SDValue DemoteStackSlot;
9734   int DemoteStackIdx = -100;
9735   if (!CanLowerReturn) {
9736     // FIXME: equivalent assert?
9737     // assert(!CS.hasInAllocaArgument() &&
9738     //        "sret demotion is incompatible with inalloca");
9739     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9740     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9741     MachineFunction &MF = CLI.DAG.getMachineFunction();
9742     DemoteStackIdx =
9743         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9744     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9745                                               DL.getAllocaAddrSpace());
9746 
9747     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9748     ArgListEntry Entry;
9749     Entry.Node = DemoteStackSlot;
9750     Entry.Ty = StackSlotPtrType;
9751     Entry.IsSExt = false;
9752     Entry.IsZExt = false;
9753     Entry.IsInReg = false;
9754     Entry.IsSRet = true;
9755     Entry.IsNest = false;
9756     Entry.IsByVal = false;
9757     Entry.IsByRef = false;
9758     Entry.IsReturned = false;
9759     Entry.IsSwiftSelf = false;
9760     Entry.IsSwiftAsync = false;
9761     Entry.IsSwiftError = false;
9762     Entry.IsCFGuardTarget = false;
9763     Entry.Alignment = Alignment;
9764     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9765     CLI.NumFixedArgs += 1;
9766     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9767 
9768     // sret demotion isn't compatible with tail-calls, since the sret argument
9769     // points into the callers stack frame.
9770     CLI.IsTailCall = false;
9771   } else {
9772     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9773         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9774     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9775       ISD::ArgFlagsTy Flags;
9776       if (NeedsRegBlock) {
9777         Flags.setInConsecutiveRegs();
9778         if (I == RetTys.size() - 1)
9779           Flags.setInConsecutiveRegsLast();
9780       }
9781       EVT VT = RetTys[I];
9782       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9783                                                      CLI.CallConv, VT);
9784       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9785                                                        CLI.CallConv, VT);
9786       for (unsigned i = 0; i != NumRegs; ++i) {
9787         ISD::InputArg MyFlags;
9788         MyFlags.Flags = Flags;
9789         MyFlags.VT = RegisterVT;
9790         MyFlags.ArgVT = VT;
9791         MyFlags.Used = CLI.IsReturnValueUsed;
9792         if (CLI.RetTy->isPointerTy()) {
9793           MyFlags.Flags.setPointer();
9794           MyFlags.Flags.setPointerAddrSpace(
9795               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9796         }
9797         if (CLI.RetSExt)
9798           MyFlags.Flags.setSExt();
9799         if (CLI.RetZExt)
9800           MyFlags.Flags.setZExt();
9801         if (CLI.IsInReg)
9802           MyFlags.Flags.setInReg();
9803         CLI.Ins.push_back(MyFlags);
9804       }
9805     }
9806   }
9807 
9808   // We push in swifterror return as the last element of CLI.Ins.
9809   ArgListTy &Args = CLI.getArgs();
9810   if (supportSwiftError()) {
9811     for (const ArgListEntry &Arg : Args) {
9812       if (Arg.IsSwiftError) {
9813         ISD::InputArg MyFlags;
9814         MyFlags.VT = getPointerTy(DL);
9815         MyFlags.ArgVT = EVT(getPointerTy(DL));
9816         MyFlags.Flags.setSwiftError();
9817         CLI.Ins.push_back(MyFlags);
9818       }
9819     }
9820   }
9821 
9822   // Handle all of the outgoing arguments.
9823   CLI.Outs.clear();
9824   CLI.OutVals.clear();
9825   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9826     SmallVector<EVT, 4> ValueVTs;
9827     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9828     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9829     Type *FinalType = Args[i].Ty;
9830     if (Args[i].IsByVal)
9831       FinalType = Args[i].IndirectType;
9832     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9833         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9834     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9835          ++Value) {
9836       EVT VT = ValueVTs[Value];
9837       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9838       SDValue Op = SDValue(Args[i].Node.getNode(),
9839                            Args[i].Node.getResNo() + Value);
9840       ISD::ArgFlagsTy Flags;
9841 
9842       // Certain targets (such as MIPS), may have a different ABI alignment
9843       // for a type depending on the context. Give the target a chance to
9844       // specify the alignment it wants.
9845       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9846       Flags.setOrigAlign(OriginalAlignment);
9847 
9848       if (Args[i].Ty->isPointerTy()) {
9849         Flags.setPointer();
9850         Flags.setPointerAddrSpace(
9851             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9852       }
9853       if (Args[i].IsZExt)
9854         Flags.setZExt();
9855       if (Args[i].IsSExt)
9856         Flags.setSExt();
9857       if (Args[i].IsInReg) {
9858         // If we are using vectorcall calling convention, a structure that is
9859         // passed InReg - is surely an HVA
9860         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9861             isa<StructType>(FinalType)) {
9862           // The first value of a structure is marked
9863           if (0 == Value)
9864             Flags.setHvaStart();
9865           Flags.setHva();
9866         }
9867         // Set InReg Flag
9868         Flags.setInReg();
9869       }
9870       if (Args[i].IsSRet)
9871         Flags.setSRet();
9872       if (Args[i].IsSwiftSelf)
9873         Flags.setSwiftSelf();
9874       if (Args[i].IsSwiftAsync)
9875         Flags.setSwiftAsync();
9876       if (Args[i].IsSwiftError)
9877         Flags.setSwiftError();
9878       if (Args[i].IsCFGuardTarget)
9879         Flags.setCFGuardTarget();
9880       if (Args[i].IsByVal)
9881         Flags.setByVal();
9882       if (Args[i].IsByRef)
9883         Flags.setByRef();
9884       if (Args[i].IsPreallocated) {
9885         Flags.setPreallocated();
9886         // Set the byval flag for CCAssignFn callbacks that don't know about
9887         // preallocated.  This way we can know how many bytes we should've
9888         // allocated and how many bytes a callee cleanup function will pop.  If
9889         // we port preallocated to more targets, we'll have to add custom
9890         // preallocated handling in the various CC lowering callbacks.
9891         Flags.setByVal();
9892       }
9893       if (Args[i].IsInAlloca) {
9894         Flags.setInAlloca();
9895         // Set the byval flag for CCAssignFn callbacks that don't know about
9896         // inalloca.  This way we can know how many bytes we should've allocated
9897         // and how many bytes a callee cleanup function will pop.  If we port
9898         // inalloca to more targets, we'll have to add custom inalloca handling
9899         // in the various CC lowering callbacks.
9900         Flags.setByVal();
9901       }
9902       Align MemAlign;
9903       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9904         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9905         Flags.setByValSize(FrameSize);
9906 
9907         // info is not there but there are cases it cannot get right.
9908         if (auto MA = Args[i].Alignment)
9909           MemAlign = *MA;
9910         else
9911           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9912       } else if (auto MA = Args[i].Alignment) {
9913         MemAlign = *MA;
9914       } else {
9915         MemAlign = OriginalAlignment;
9916       }
9917       Flags.setMemAlign(MemAlign);
9918       if (Args[i].IsNest)
9919         Flags.setNest();
9920       if (NeedsRegBlock)
9921         Flags.setInConsecutiveRegs();
9922 
9923       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9924                                                  CLI.CallConv, VT);
9925       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9926                                                         CLI.CallConv, VT);
9927       SmallVector<SDValue, 4> Parts(NumParts);
9928       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9929 
9930       if (Args[i].IsSExt)
9931         ExtendKind = ISD::SIGN_EXTEND;
9932       else if (Args[i].IsZExt)
9933         ExtendKind = ISD::ZERO_EXTEND;
9934 
9935       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9936       // for now.
9937       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9938           CanLowerReturn) {
9939         assert((CLI.RetTy == Args[i].Ty ||
9940                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9941                  CLI.RetTy->getPointerAddressSpace() ==
9942                      Args[i].Ty->getPointerAddressSpace())) &&
9943                RetTys.size() == NumValues && "unexpected use of 'returned'");
9944         // Before passing 'returned' to the target lowering code, ensure that
9945         // either the register MVT and the actual EVT are the same size or that
9946         // the return value and argument are extended in the same way; in these
9947         // cases it's safe to pass the argument register value unchanged as the
9948         // return register value (although it's at the target's option whether
9949         // to do so)
9950         // TODO: allow code generation to take advantage of partially preserved
9951         // registers rather than clobbering the entire register when the
9952         // parameter extension method is not compatible with the return
9953         // extension method
9954         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9955             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9956              CLI.RetZExt == Args[i].IsZExt))
9957           Flags.setReturned();
9958       }
9959 
9960       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9961                      CLI.CallConv, ExtendKind);
9962 
9963       for (unsigned j = 0; j != NumParts; ++j) {
9964         // if it isn't first piece, alignment must be 1
9965         // For scalable vectors the scalable part is currently handled
9966         // by individual targets, so we just use the known minimum size here.
9967         ISD::OutputArg MyFlags(
9968             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9969             i < CLI.NumFixedArgs, i,
9970             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9971         if (NumParts > 1 && j == 0)
9972           MyFlags.Flags.setSplit();
9973         else if (j != 0) {
9974           MyFlags.Flags.setOrigAlign(Align(1));
9975           if (j == NumParts - 1)
9976             MyFlags.Flags.setSplitEnd();
9977         }
9978 
9979         CLI.Outs.push_back(MyFlags);
9980         CLI.OutVals.push_back(Parts[j]);
9981       }
9982 
9983       if (NeedsRegBlock && Value == NumValues - 1)
9984         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9985     }
9986   }
9987 
9988   SmallVector<SDValue, 4> InVals;
9989   CLI.Chain = LowerCall(CLI, InVals);
9990 
9991   // Update CLI.InVals to use outside of this function.
9992   CLI.InVals = InVals;
9993 
9994   // Verify that the target's LowerCall behaved as expected.
9995   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9996          "LowerCall didn't return a valid chain!");
9997   assert((!CLI.IsTailCall || InVals.empty()) &&
9998          "LowerCall emitted a return value for a tail call!");
9999   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10000          "LowerCall didn't emit the correct number of values!");
10001 
10002   // For a tail call, the return value is merely live-out and there aren't
10003   // any nodes in the DAG representing it. Return a special value to
10004   // indicate that a tail call has been emitted and no more Instructions
10005   // should be processed in the current block.
10006   if (CLI.IsTailCall) {
10007     CLI.DAG.setRoot(CLI.Chain);
10008     return std::make_pair(SDValue(), SDValue());
10009   }
10010 
10011 #ifndef NDEBUG
10012   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10013     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10014     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10015            "LowerCall emitted a value with the wrong type!");
10016   }
10017 #endif
10018 
10019   SmallVector<SDValue, 4> ReturnValues;
10020   if (!CanLowerReturn) {
10021     // The instruction result is the result of loading from the
10022     // hidden sret parameter.
10023     SmallVector<EVT, 1> PVTs;
10024     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10025 
10026     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10027     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10028     EVT PtrVT = PVTs[0];
10029 
10030     unsigned NumValues = RetTys.size();
10031     ReturnValues.resize(NumValues);
10032     SmallVector<SDValue, 4> Chains(NumValues);
10033 
10034     // An aggregate return value cannot wrap around the address space, so
10035     // offsets to its parts don't wrap either.
10036     SDNodeFlags Flags;
10037     Flags.setNoUnsignedWrap(true);
10038 
10039     MachineFunction &MF = CLI.DAG.getMachineFunction();
10040     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10041     for (unsigned i = 0; i < NumValues; ++i) {
10042       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10043                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10044                                                         PtrVT), Flags);
10045       SDValue L = CLI.DAG.getLoad(
10046           RetTys[i], CLI.DL, CLI.Chain, Add,
10047           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10048                                             DemoteStackIdx, Offsets[i]),
10049           HiddenSRetAlign);
10050       ReturnValues[i] = L;
10051       Chains[i] = L.getValue(1);
10052     }
10053 
10054     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10055   } else {
10056     // Collect the legal value parts into potentially illegal values
10057     // that correspond to the original function's return values.
10058     Optional<ISD::NodeType> AssertOp;
10059     if (CLI.RetSExt)
10060       AssertOp = ISD::AssertSext;
10061     else if (CLI.RetZExt)
10062       AssertOp = ISD::AssertZext;
10063     unsigned CurReg = 0;
10064     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10065       EVT VT = RetTys[I];
10066       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10067                                                      CLI.CallConv, VT);
10068       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10069                                                        CLI.CallConv, VT);
10070 
10071       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10072                                               NumRegs, RegisterVT, VT, nullptr,
10073                                               CLI.CallConv, AssertOp));
10074       CurReg += NumRegs;
10075     }
10076 
10077     // For a function returning void, there is no return value. We can't create
10078     // such a node, so we just return a null return value in that case. In
10079     // that case, nothing will actually look at the value.
10080     if (ReturnValues.empty())
10081       return std::make_pair(SDValue(), CLI.Chain);
10082   }
10083 
10084   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10085                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10086   return std::make_pair(Res, CLI.Chain);
10087 }
10088 
10089 /// Places new result values for the node in Results (their number
10090 /// and types must exactly match those of the original return values of
10091 /// the node), or leaves Results empty, which indicates that the node is not
10092 /// to be custom lowered after all.
10093 void TargetLowering::LowerOperationWrapper(SDNode *N,
10094                                            SmallVectorImpl<SDValue> &Results,
10095                                            SelectionDAG &DAG) const {
10096   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10097 
10098   if (!Res.getNode())
10099     return;
10100 
10101   // If the original node has one result, take the return value from
10102   // LowerOperation as is. It might not be result number 0.
10103   if (N->getNumValues() == 1) {
10104     Results.push_back(Res);
10105     return;
10106   }
10107 
10108   // If the original node has multiple results, then the return node should
10109   // have the same number of results.
10110   assert((N->getNumValues() == Res->getNumValues()) &&
10111       "Lowering returned the wrong number of results!");
10112 
10113   // Places new result values base on N result number.
10114   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10115     Results.push_back(Res.getValue(I));
10116 }
10117 
10118 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10119   llvm_unreachable("LowerOperation not implemented for this target!");
10120 }
10121 
10122 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10123                                                      unsigned Reg,
10124                                                      ISD::NodeType ExtendType) {
10125   SDValue Op = getNonRegisterValue(V);
10126   assert((Op.getOpcode() != ISD::CopyFromReg ||
10127           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10128          "Copy from a reg to the same reg!");
10129   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10130 
10131   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10132   // If this is an InlineAsm we have to match the registers required, not the
10133   // notional registers required by the type.
10134 
10135   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10136                    None); // This is not an ABI copy.
10137   SDValue Chain = DAG.getEntryNode();
10138 
10139   if (ExtendType == ISD::ANY_EXTEND) {
10140     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10141     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10142       ExtendType = PreferredExtendIt->second;
10143   }
10144   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10145   PendingExports.push_back(Chain);
10146 }
10147 
10148 #include "llvm/CodeGen/SelectionDAGISel.h"
10149 
10150 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10151 /// entry block, return true.  This includes arguments used by switches, since
10152 /// the switch may expand into multiple basic blocks.
10153 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10154   // With FastISel active, we may be splitting blocks, so force creation
10155   // of virtual registers for all non-dead arguments.
10156   if (FastISel)
10157     return A->use_empty();
10158 
10159   const BasicBlock &Entry = A->getParent()->front();
10160   for (const User *U : A->users())
10161     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10162       return false;  // Use not in entry block.
10163 
10164   return true;
10165 }
10166 
10167 using ArgCopyElisionMapTy =
10168     DenseMap<const Argument *,
10169              std::pair<const AllocaInst *, const StoreInst *>>;
10170 
10171 /// Scan the entry block of the function in FuncInfo for arguments that look
10172 /// like copies into a local alloca. Record any copied arguments in
10173 /// ArgCopyElisionCandidates.
10174 static void
10175 findArgumentCopyElisionCandidates(const DataLayout &DL,
10176                                   FunctionLoweringInfo *FuncInfo,
10177                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10178   // Record the state of every static alloca used in the entry block. Argument
10179   // allocas are all used in the entry block, so we need approximately as many
10180   // entries as we have arguments.
10181   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10182   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10183   unsigned NumArgs = FuncInfo->Fn->arg_size();
10184   StaticAllocas.reserve(NumArgs * 2);
10185 
10186   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10187     if (!V)
10188       return nullptr;
10189     V = V->stripPointerCasts();
10190     const auto *AI = dyn_cast<AllocaInst>(V);
10191     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10192       return nullptr;
10193     auto Iter = StaticAllocas.insert({AI, Unknown});
10194     return &Iter.first->second;
10195   };
10196 
10197   // Look for stores of arguments to static allocas. Look through bitcasts and
10198   // GEPs to handle type coercions, as long as the alloca is fully initialized
10199   // by the store. Any non-store use of an alloca escapes it and any subsequent
10200   // unanalyzed store might write it.
10201   // FIXME: Handle structs initialized with multiple stores.
10202   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10203     // Look for stores, and handle non-store uses conservatively.
10204     const auto *SI = dyn_cast<StoreInst>(&I);
10205     if (!SI) {
10206       // We will look through cast uses, so ignore them completely.
10207       if (I.isCast())
10208         continue;
10209       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10210       // to allocas.
10211       if (I.isDebugOrPseudoInst())
10212         continue;
10213       // This is an unknown instruction. Assume it escapes or writes to all
10214       // static alloca operands.
10215       for (const Use &U : I.operands()) {
10216         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10217           *Info = StaticAllocaInfo::Clobbered;
10218       }
10219       continue;
10220     }
10221 
10222     // If the stored value is a static alloca, mark it as escaped.
10223     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10224       *Info = StaticAllocaInfo::Clobbered;
10225 
10226     // Check if the destination is a static alloca.
10227     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10228     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10229     if (!Info)
10230       continue;
10231     const AllocaInst *AI = cast<AllocaInst>(Dst);
10232 
10233     // Skip allocas that have been initialized or clobbered.
10234     if (*Info != StaticAllocaInfo::Unknown)
10235       continue;
10236 
10237     // Check if the stored value is an argument, and that this store fully
10238     // initializes the alloca.
10239     // If the argument type has padding bits we can't directly forward a pointer
10240     // as the upper bits may contain garbage.
10241     // Don't elide copies from the same argument twice.
10242     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10243     const auto *Arg = dyn_cast<Argument>(Val);
10244     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10245         Arg->getType()->isEmptyTy() ||
10246         DL.getTypeStoreSize(Arg->getType()) !=
10247             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10248         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10249         ArgCopyElisionCandidates.count(Arg)) {
10250       *Info = StaticAllocaInfo::Clobbered;
10251       continue;
10252     }
10253 
10254     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10255                       << '\n');
10256 
10257     // Mark this alloca and store for argument copy elision.
10258     *Info = StaticAllocaInfo::Elidable;
10259     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10260 
10261     // Stop scanning if we've seen all arguments. This will happen early in -O0
10262     // builds, which is useful, because -O0 builds have large entry blocks and
10263     // many allocas.
10264     if (ArgCopyElisionCandidates.size() == NumArgs)
10265       break;
10266   }
10267 }
10268 
10269 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10270 /// ArgVal is a load from a suitable fixed stack object.
10271 static void tryToElideArgumentCopy(
10272     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10273     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10274     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10275     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10276     SDValue ArgVal, bool &ArgHasUses) {
10277   // Check if this is a load from a fixed stack object.
10278   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10279   if (!LNode)
10280     return;
10281   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10282   if (!FINode)
10283     return;
10284 
10285   // Check that the fixed stack object is the right size and alignment.
10286   // Look at the alignment that the user wrote on the alloca instead of looking
10287   // at the stack object.
10288   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10289   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10290   const AllocaInst *AI = ArgCopyIter->second.first;
10291   int FixedIndex = FINode->getIndex();
10292   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10293   int OldIndex = AllocaIndex;
10294   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10295   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10296     LLVM_DEBUG(
10297         dbgs() << "  argument copy elision failed due to bad fixed stack "
10298                   "object size\n");
10299     return;
10300   }
10301   Align RequiredAlignment = AI->getAlign();
10302   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10303     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10304                          "greater than stack argument alignment ("
10305                       << DebugStr(RequiredAlignment) << " vs "
10306                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10307     return;
10308   }
10309 
10310   // Perform the elision. Delete the old stack object and replace its only use
10311   // in the variable info map. Mark the stack object as mutable.
10312   LLVM_DEBUG({
10313     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10314            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10315            << '\n';
10316   });
10317   MFI.RemoveStackObject(OldIndex);
10318   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10319   AllocaIndex = FixedIndex;
10320   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10321   Chains.push_back(ArgVal.getValue(1));
10322 
10323   // Avoid emitting code for the store implementing the copy.
10324   const StoreInst *SI = ArgCopyIter->second.second;
10325   ElidedArgCopyInstrs.insert(SI);
10326 
10327   // Check for uses of the argument again so that we can avoid exporting ArgVal
10328   // if it is't used by anything other than the store.
10329   for (const Value *U : Arg.users()) {
10330     if (U != SI) {
10331       ArgHasUses = true;
10332       break;
10333     }
10334   }
10335 }
10336 
10337 void SelectionDAGISel::LowerArguments(const Function &F) {
10338   SelectionDAG &DAG = SDB->DAG;
10339   SDLoc dl = SDB->getCurSDLoc();
10340   const DataLayout &DL = DAG.getDataLayout();
10341   SmallVector<ISD::InputArg, 16> Ins;
10342 
10343   // In Naked functions we aren't going to save any registers.
10344   if (F.hasFnAttribute(Attribute::Naked))
10345     return;
10346 
10347   if (!FuncInfo->CanLowerReturn) {
10348     // Put in an sret pointer parameter before all the other parameters.
10349     SmallVector<EVT, 1> ValueVTs;
10350     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10351                     F.getReturnType()->getPointerTo(
10352                         DAG.getDataLayout().getAllocaAddrSpace()),
10353                     ValueVTs);
10354 
10355     // NOTE: Assuming that a pointer will never break down to more than one VT
10356     // or one register.
10357     ISD::ArgFlagsTy Flags;
10358     Flags.setSRet();
10359     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10360     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10361                          ISD::InputArg::NoArgIndex, 0);
10362     Ins.push_back(RetArg);
10363   }
10364 
10365   // Look for stores of arguments to static allocas. Mark such arguments with a
10366   // flag to ask the target to give us the memory location of that argument if
10367   // available.
10368   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10369   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10370                                     ArgCopyElisionCandidates);
10371 
10372   // Set up the incoming argument description vector.
10373   for (const Argument &Arg : F.args()) {
10374     unsigned ArgNo = Arg.getArgNo();
10375     SmallVector<EVT, 4> ValueVTs;
10376     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10377     bool isArgValueUsed = !Arg.use_empty();
10378     unsigned PartBase = 0;
10379     Type *FinalType = Arg.getType();
10380     if (Arg.hasAttribute(Attribute::ByVal))
10381       FinalType = Arg.getParamByValType();
10382     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10383         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10384     for (unsigned Value = 0, NumValues = ValueVTs.size();
10385          Value != NumValues; ++Value) {
10386       EVT VT = ValueVTs[Value];
10387       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10388       ISD::ArgFlagsTy Flags;
10389 
10390 
10391       if (Arg.getType()->isPointerTy()) {
10392         Flags.setPointer();
10393         Flags.setPointerAddrSpace(
10394             cast<PointerType>(Arg.getType())->getAddressSpace());
10395       }
10396       if (Arg.hasAttribute(Attribute::ZExt))
10397         Flags.setZExt();
10398       if (Arg.hasAttribute(Attribute::SExt))
10399         Flags.setSExt();
10400       if (Arg.hasAttribute(Attribute::InReg)) {
10401         // If we are using vectorcall calling convention, a structure that is
10402         // passed InReg - is surely an HVA
10403         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10404             isa<StructType>(Arg.getType())) {
10405           // The first value of a structure is marked
10406           if (0 == Value)
10407             Flags.setHvaStart();
10408           Flags.setHva();
10409         }
10410         // Set InReg Flag
10411         Flags.setInReg();
10412       }
10413       if (Arg.hasAttribute(Attribute::StructRet))
10414         Flags.setSRet();
10415       if (Arg.hasAttribute(Attribute::SwiftSelf))
10416         Flags.setSwiftSelf();
10417       if (Arg.hasAttribute(Attribute::SwiftAsync))
10418         Flags.setSwiftAsync();
10419       if (Arg.hasAttribute(Attribute::SwiftError))
10420         Flags.setSwiftError();
10421       if (Arg.hasAttribute(Attribute::ByVal))
10422         Flags.setByVal();
10423       if (Arg.hasAttribute(Attribute::ByRef))
10424         Flags.setByRef();
10425       if (Arg.hasAttribute(Attribute::InAlloca)) {
10426         Flags.setInAlloca();
10427         // Set the byval flag for CCAssignFn callbacks that don't know about
10428         // inalloca.  This way we can know how many bytes we should've allocated
10429         // and how many bytes a callee cleanup function will pop.  If we port
10430         // inalloca to more targets, we'll have to add custom inalloca handling
10431         // in the various CC lowering callbacks.
10432         Flags.setByVal();
10433       }
10434       if (Arg.hasAttribute(Attribute::Preallocated)) {
10435         Flags.setPreallocated();
10436         // Set the byval flag for CCAssignFn callbacks that don't know about
10437         // preallocated.  This way we can know how many bytes we should've
10438         // allocated and how many bytes a callee cleanup function will pop.  If
10439         // we port preallocated to more targets, we'll have to add custom
10440         // preallocated handling in the various CC lowering callbacks.
10441         Flags.setByVal();
10442       }
10443 
10444       // Certain targets (such as MIPS), may have a different ABI alignment
10445       // for a type depending on the context. Give the target a chance to
10446       // specify the alignment it wants.
10447       const Align OriginalAlignment(
10448           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10449       Flags.setOrigAlign(OriginalAlignment);
10450 
10451       Align MemAlign;
10452       Type *ArgMemTy = nullptr;
10453       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10454           Flags.isByRef()) {
10455         if (!ArgMemTy)
10456           ArgMemTy = Arg.getPointeeInMemoryValueType();
10457 
10458         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10459 
10460         // For in-memory arguments, size and alignment should be passed from FE.
10461         // BE will guess if this info is not there but there are cases it cannot
10462         // get right.
10463         if (auto ParamAlign = Arg.getParamStackAlign())
10464           MemAlign = *ParamAlign;
10465         else if ((ParamAlign = Arg.getParamAlign()))
10466           MemAlign = *ParamAlign;
10467         else
10468           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10469         if (Flags.isByRef())
10470           Flags.setByRefSize(MemSize);
10471         else
10472           Flags.setByValSize(MemSize);
10473       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10474         MemAlign = *ParamAlign;
10475       } else {
10476         MemAlign = OriginalAlignment;
10477       }
10478       Flags.setMemAlign(MemAlign);
10479 
10480       if (Arg.hasAttribute(Attribute::Nest))
10481         Flags.setNest();
10482       if (NeedsRegBlock)
10483         Flags.setInConsecutiveRegs();
10484       if (ArgCopyElisionCandidates.count(&Arg))
10485         Flags.setCopyElisionCandidate();
10486       if (Arg.hasAttribute(Attribute::Returned))
10487         Flags.setReturned();
10488 
10489       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10490           *CurDAG->getContext(), F.getCallingConv(), VT);
10491       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10492           *CurDAG->getContext(), F.getCallingConv(), VT);
10493       for (unsigned i = 0; i != NumRegs; ++i) {
10494         // For scalable vectors, use the minimum size; individual targets
10495         // are responsible for handling scalable vector arguments and
10496         // return values.
10497         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10498                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10499         if (NumRegs > 1 && i == 0)
10500           MyFlags.Flags.setSplit();
10501         // if it isn't first piece, alignment must be 1
10502         else if (i > 0) {
10503           MyFlags.Flags.setOrigAlign(Align(1));
10504           if (i == NumRegs - 1)
10505             MyFlags.Flags.setSplitEnd();
10506         }
10507         Ins.push_back(MyFlags);
10508       }
10509       if (NeedsRegBlock && Value == NumValues - 1)
10510         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10511       PartBase += VT.getStoreSize().getKnownMinSize();
10512     }
10513   }
10514 
10515   // Call the target to set up the argument values.
10516   SmallVector<SDValue, 8> InVals;
10517   SDValue NewRoot = TLI->LowerFormalArguments(
10518       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10519 
10520   // Verify that the target's LowerFormalArguments behaved as expected.
10521   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10522          "LowerFormalArguments didn't return a valid chain!");
10523   assert(InVals.size() == Ins.size() &&
10524          "LowerFormalArguments didn't emit the correct number of values!");
10525   LLVM_DEBUG({
10526     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10527       assert(InVals[i].getNode() &&
10528              "LowerFormalArguments emitted a null value!");
10529       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10530              "LowerFormalArguments emitted a value with the wrong type!");
10531     }
10532   });
10533 
10534   // Update the DAG with the new chain value resulting from argument lowering.
10535   DAG.setRoot(NewRoot);
10536 
10537   // Set up the argument values.
10538   unsigned i = 0;
10539   if (!FuncInfo->CanLowerReturn) {
10540     // Create a virtual register for the sret pointer, and put in a copy
10541     // from the sret argument into it.
10542     SmallVector<EVT, 1> ValueVTs;
10543     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10544                     F.getReturnType()->getPointerTo(
10545                         DAG.getDataLayout().getAllocaAddrSpace()),
10546                     ValueVTs);
10547     MVT VT = ValueVTs[0].getSimpleVT();
10548     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10549     Optional<ISD::NodeType> AssertOp;
10550     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10551                                         nullptr, F.getCallingConv(), AssertOp);
10552 
10553     MachineFunction& MF = SDB->DAG.getMachineFunction();
10554     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10555     Register SRetReg =
10556         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10557     FuncInfo->DemoteRegister = SRetReg;
10558     NewRoot =
10559         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10560     DAG.setRoot(NewRoot);
10561 
10562     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10563     ++i;
10564   }
10565 
10566   SmallVector<SDValue, 4> Chains;
10567   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10568   for (const Argument &Arg : F.args()) {
10569     SmallVector<SDValue, 4> ArgValues;
10570     SmallVector<EVT, 4> ValueVTs;
10571     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10572     unsigned NumValues = ValueVTs.size();
10573     if (NumValues == 0)
10574       continue;
10575 
10576     bool ArgHasUses = !Arg.use_empty();
10577 
10578     // Elide the copying store if the target loaded this argument from a
10579     // suitable fixed stack object.
10580     if (Ins[i].Flags.isCopyElisionCandidate()) {
10581       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10582                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10583                              InVals[i], ArgHasUses);
10584     }
10585 
10586     // If this argument is unused then remember its value. It is used to generate
10587     // debugging information.
10588     bool isSwiftErrorArg =
10589         TLI->supportSwiftError() &&
10590         Arg.hasAttribute(Attribute::SwiftError);
10591     if (!ArgHasUses && !isSwiftErrorArg) {
10592       SDB->setUnusedArgValue(&Arg, InVals[i]);
10593 
10594       // Also remember any frame index for use in FastISel.
10595       if (FrameIndexSDNode *FI =
10596           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10597         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10598     }
10599 
10600     for (unsigned Val = 0; Val != NumValues; ++Val) {
10601       EVT VT = ValueVTs[Val];
10602       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10603                                                       F.getCallingConv(), VT);
10604       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10605           *CurDAG->getContext(), F.getCallingConv(), VT);
10606 
10607       // Even an apparent 'unused' swifterror argument needs to be returned. So
10608       // we do generate a copy for it that can be used on return from the
10609       // function.
10610       if (ArgHasUses || isSwiftErrorArg) {
10611         Optional<ISD::NodeType> AssertOp;
10612         if (Arg.hasAttribute(Attribute::SExt))
10613           AssertOp = ISD::AssertSext;
10614         else if (Arg.hasAttribute(Attribute::ZExt))
10615           AssertOp = ISD::AssertZext;
10616 
10617         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10618                                              PartVT, VT, nullptr,
10619                                              F.getCallingConv(), AssertOp));
10620       }
10621 
10622       i += NumParts;
10623     }
10624 
10625     // We don't need to do anything else for unused arguments.
10626     if (ArgValues.empty())
10627       continue;
10628 
10629     // Note down frame index.
10630     if (FrameIndexSDNode *FI =
10631         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10632       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10633 
10634     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10635                                      SDB->getCurSDLoc());
10636 
10637     SDB->setValue(&Arg, Res);
10638     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10639       // We want to associate the argument with the frame index, among
10640       // involved operands, that correspond to the lowest address. The
10641       // getCopyFromParts function, called earlier, is swapping the order of
10642       // the operands to BUILD_PAIR depending on endianness. The result of
10643       // that swapping is that the least significant bits of the argument will
10644       // be in the first operand of the BUILD_PAIR node, and the most
10645       // significant bits will be in the second operand.
10646       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10647       if (LoadSDNode *LNode =
10648           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10649         if (FrameIndexSDNode *FI =
10650             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10651           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10652     }
10653 
10654     // Analyses past this point are naive and don't expect an assertion.
10655     if (Res.getOpcode() == ISD::AssertZext)
10656       Res = Res.getOperand(0);
10657 
10658     // Update the SwiftErrorVRegDefMap.
10659     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10660       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10661       if (Register::isVirtualRegister(Reg))
10662         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10663                                    Reg);
10664     }
10665 
10666     // If this argument is live outside of the entry block, insert a copy from
10667     // wherever we got it to the vreg that other BB's will reference it as.
10668     if (Res.getOpcode() == ISD::CopyFromReg) {
10669       // If we can, though, try to skip creating an unnecessary vreg.
10670       // FIXME: This isn't very clean... it would be nice to make this more
10671       // general.
10672       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10673       if (Register::isVirtualRegister(Reg)) {
10674         FuncInfo->ValueMap[&Arg] = Reg;
10675         continue;
10676       }
10677     }
10678     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10679       FuncInfo->InitializeRegForValue(&Arg);
10680       SDB->CopyToExportRegsIfNeeded(&Arg);
10681     }
10682   }
10683 
10684   if (!Chains.empty()) {
10685     Chains.push_back(NewRoot);
10686     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10687   }
10688 
10689   DAG.setRoot(NewRoot);
10690 
10691   assert(i == InVals.size() && "Argument register count mismatch!");
10692 
10693   // If any argument copy elisions occurred and we have debug info, update the
10694   // stale frame indices used in the dbg.declare variable info table.
10695   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10696   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10697     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10698       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10699       if (I != ArgCopyElisionFrameIndexMap.end())
10700         VI.Slot = I->second;
10701     }
10702   }
10703 
10704   // Finally, if the target has anything special to do, allow it to do so.
10705   emitFunctionEntryCode();
10706 }
10707 
10708 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10709 /// ensure constants are generated when needed.  Remember the virtual registers
10710 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10711 /// directly add them, because expansion might result in multiple MBB's for one
10712 /// BB.  As such, the start of the BB might correspond to a different MBB than
10713 /// the end.
10714 void
10715 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10716   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10717   const Instruction *TI = LLVMBB->getTerminator();
10718 
10719   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10720 
10721   // Check PHI nodes in successors that expect a value to be available from this
10722   // block.
10723   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10724     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10725     if (!isa<PHINode>(SuccBB->begin())) continue;
10726     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10727 
10728     // If this terminator has multiple identical successors (common for
10729     // switches), only handle each succ once.
10730     if (!SuccsHandled.insert(SuccMBB).second)
10731       continue;
10732 
10733     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10734 
10735     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10736     // nodes and Machine PHI nodes, but the incoming operands have not been
10737     // emitted yet.
10738     for (const PHINode &PN : SuccBB->phis()) {
10739       // Ignore dead phi's.
10740       if (PN.use_empty())
10741         continue;
10742 
10743       // Skip empty types
10744       if (PN.getType()->isEmptyTy())
10745         continue;
10746 
10747       unsigned Reg;
10748       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10749 
10750       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10751         unsigned &RegOut = ConstantsOut[C];
10752         if (RegOut == 0) {
10753           RegOut = FuncInfo.CreateRegs(C);
10754           // We need to zero/sign extend ConstantInt phi operands to match
10755           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10756           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10757           if (auto *CI = dyn_cast<ConstantInt>(C))
10758             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10759                                                     : ISD::ZERO_EXTEND;
10760           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10761         }
10762         Reg = RegOut;
10763       } else {
10764         DenseMap<const Value *, Register>::iterator I =
10765           FuncInfo.ValueMap.find(PHIOp);
10766         if (I != FuncInfo.ValueMap.end())
10767           Reg = I->second;
10768         else {
10769           assert(isa<AllocaInst>(PHIOp) &&
10770                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10771                  "Didn't codegen value into a register!??");
10772           Reg = FuncInfo.CreateRegs(PHIOp);
10773           CopyValueToVirtualRegister(PHIOp, Reg);
10774         }
10775       }
10776 
10777       // Remember that this register needs to added to the machine PHI node as
10778       // the input for this MBB.
10779       SmallVector<EVT, 4> ValueVTs;
10780       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10781       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10782         EVT VT = ValueVTs[vti];
10783         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10784         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10785           FuncInfo.PHINodesToUpdate.push_back(
10786               std::make_pair(&*MBBI++, Reg + i));
10787         Reg += NumRegisters;
10788       }
10789     }
10790   }
10791 
10792   ConstantsOut.clear();
10793 }
10794 
10795 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10796   MachineFunction::iterator I(MBB);
10797   if (++I == FuncInfo.MF->end())
10798     return nullptr;
10799   return &*I;
10800 }
10801 
10802 /// During lowering new call nodes can be created (such as memset, etc.).
10803 /// Those will become new roots of the current DAG, but complications arise
10804 /// when they are tail calls. In such cases, the call lowering will update
10805 /// the root, but the builder still needs to know that a tail call has been
10806 /// lowered in order to avoid generating an additional return.
10807 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10808   // If the node is null, we do have a tail call.
10809   if (MaybeTC.getNode() != nullptr)
10810     DAG.setRoot(MaybeTC);
10811   else
10812     HasTailCall = true;
10813 }
10814 
10815 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10816                                         MachineBasicBlock *SwitchMBB,
10817                                         MachineBasicBlock *DefaultMBB) {
10818   MachineFunction *CurMF = FuncInfo.MF;
10819   MachineBasicBlock *NextMBB = nullptr;
10820   MachineFunction::iterator BBI(W.MBB);
10821   if (++BBI != FuncInfo.MF->end())
10822     NextMBB = &*BBI;
10823 
10824   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10825 
10826   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10827 
10828   if (Size == 2 && W.MBB == SwitchMBB) {
10829     // If any two of the cases has the same destination, and if one value
10830     // is the same as the other, but has one bit unset that the other has set,
10831     // use bit manipulation to do two compares at once.  For example:
10832     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10833     // TODO: This could be extended to merge any 2 cases in switches with 3
10834     // cases.
10835     // TODO: Handle cases where W.CaseBB != SwitchBB.
10836     CaseCluster &Small = *W.FirstCluster;
10837     CaseCluster &Big = *W.LastCluster;
10838 
10839     if (Small.Low == Small.High && Big.Low == Big.High &&
10840         Small.MBB == Big.MBB) {
10841       const APInt &SmallValue = Small.Low->getValue();
10842       const APInt &BigValue = Big.Low->getValue();
10843 
10844       // Check that there is only one bit different.
10845       APInt CommonBit = BigValue ^ SmallValue;
10846       if (CommonBit.isPowerOf2()) {
10847         SDValue CondLHS = getValue(Cond);
10848         EVT VT = CondLHS.getValueType();
10849         SDLoc DL = getCurSDLoc();
10850 
10851         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10852                                  DAG.getConstant(CommonBit, DL, VT));
10853         SDValue Cond = DAG.getSetCC(
10854             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10855             ISD::SETEQ);
10856 
10857         // Update successor info.
10858         // Both Small and Big will jump to Small.BB, so we sum up the
10859         // probabilities.
10860         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10861         if (BPI)
10862           addSuccessorWithProb(
10863               SwitchMBB, DefaultMBB,
10864               // The default destination is the first successor in IR.
10865               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10866         else
10867           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10868 
10869         // Insert the true branch.
10870         SDValue BrCond =
10871             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10872                         DAG.getBasicBlock(Small.MBB));
10873         // Insert the false branch.
10874         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10875                              DAG.getBasicBlock(DefaultMBB));
10876 
10877         DAG.setRoot(BrCond);
10878         return;
10879       }
10880     }
10881   }
10882 
10883   if (TM.getOptLevel() != CodeGenOpt::None) {
10884     // Here, we order cases by probability so the most likely case will be
10885     // checked first. However, two clusters can have the same probability in
10886     // which case their relative ordering is non-deterministic. So we use Low
10887     // as a tie-breaker as clusters are guaranteed to never overlap.
10888     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10889                [](const CaseCluster &a, const CaseCluster &b) {
10890       return a.Prob != b.Prob ?
10891              a.Prob > b.Prob :
10892              a.Low->getValue().slt(b.Low->getValue());
10893     });
10894 
10895     // Rearrange the case blocks so that the last one falls through if possible
10896     // without changing the order of probabilities.
10897     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10898       --I;
10899       if (I->Prob > W.LastCluster->Prob)
10900         break;
10901       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10902         std::swap(*I, *W.LastCluster);
10903         break;
10904       }
10905     }
10906   }
10907 
10908   // Compute total probability.
10909   BranchProbability DefaultProb = W.DefaultProb;
10910   BranchProbability UnhandledProbs = DefaultProb;
10911   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10912     UnhandledProbs += I->Prob;
10913 
10914   MachineBasicBlock *CurMBB = W.MBB;
10915   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10916     bool FallthroughUnreachable = false;
10917     MachineBasicBlock *Fallthrough;
10918     if (I == W.LastCluster) {
10919       // For the last cluster, fall through to the default destination.
10920       Fallthrough = DefaultMBB;
10921       FallthroughUnreachable = isa<UnreachableInst>(
10922           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10923     } else {
10924       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10925       CurMF->insert(BBI, Fallthrough);
10926       // Put Cond in a virtual register to make it available from the new blocks.
10927       ExportFromCurrentBlock(Cond);
10928     }
10929     UnhandledProbs -= I->Prob;
10930 
10931     switch (I->Kind) {
10932       case CC_JumpTable: {
10933         // FIXME: Optimize away range check based on pivot comparisons.
10934         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10935         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10936 
10937         // The jump block hasn't been inserted yet; insert it here.
10938         MachineBasicBlock *JumpMBB = JT->MBB;
10939         CurMF->insert(BBI, JumpMBB);
10940 
10941         auto JumpProb = I->Prob;
10942         auto FallthroughProb = UnhandledProbs;
10943 
10944         // If the default statement is a target of the jump table, we evenly
10945         // distribute the default probability to successors of CurMBB. Also
10946         // update the probability on the edge from JumpMBB to Fallthrough.
10947         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10948                                               SE = JumpMBB->succ_end();
10949              SI != SE; ++SI) {
10950           if (*SI == DefaultMBB) {
10951             JumpProb += DefaultProb / 2;
10952             FallthroughProb -= DefaultProb / 2;
10953             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10954             JumpMBB->normalizeSuccProbs();
10955             break;
10956           }
10957         }
10958 
10959         if (FallthroughUnreachable)
10960           JTH->FallthroughUnreachable = true;
10961 
10962         if (!JTH->FallthroughUnreachable)
10963           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10964         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10965         CurMBB->normalizeSuccProbs();
10966 
10967         // The jump table header will be inserted in our current block, do the
10968         // range check, and fall through to our fallthrough block.
10969         JTH->HeaderBB = CurMBB;
10970         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10971 
10972         // If we're in the right place, emit the jump table header right now.
10973         if (CurMBB == SwitchMBB) {
10974           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10975           JTH->Emitted = true;
10976         }
10977         break;
10978       }
10979       case CC_BitTests: {
10980         // FIXME: Optimize away range check based on pivot comparisons.
10981         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10982 
10983         // The bit test blocks haven't been inserted yet; insert them here.
10984         for (BitTestCase &BTC : BTB->Cases)
10985           CurMF->insert(BBI, BTC.ThisBB);
10986 
10987         // Fill in fields of the BitTestBlock.
10988         BTB->Parent = CurMBB;
10989         BTB->Default = Fallthrough;
10990 
10991         BTB->DefaultProb = UnhandledProbs;
10992         // If the cases in bit test don't form a contiguous range, we evenly
10993         // distribute the probability on the edge to Fallthrough to two
10994         // successors of CurMBB.
10995         if (!BTB->ContiguousRange) {
10996           BTB->Prob += DefaultProb / 2;
10997           BTB->DefaultProb -= DefaultProb / 2;
10998         }
10999 
11000         if (FallthroughUnreachable)
11001           BTB->FallthroughUnreachable = true;
11002 
11003         // If we're in the right place, emit the bit test header right now.
11004         if (CurMBB == SwitchMBB) {
11005           visitBitTestHeader(*BTB, SwitchMBB);
11006           BTB->Emitted = true;
11007         }
11008         break;
11009       }
11010       case CC_Range: {
11011         const Value *RHS, *LHS, *MHS;
11012         ISD::CondCode CC;
11013         if (I->Low == I->High) {
11014           // Check Cond == I->Low.
11015           CC = ISD::SETEQ;
11016           LHS = Cond;
11017           RHS=I->Low;
11018           MHS = nullptr;
11019         } else {
11020           // Check I->Low <= Cond <= I->High.
11021           CC = ISD::SETLE;
11022           LHS = I->Low;
11023           MHS = Cond;
11024           RHS = I->High;
11025         }
11026 
11027         // If Fallthrough is unreachable, fold away the comparison.
11028         if (FallthroughUnreachable)
11029           CC = ISD::SETTRUE;
11030 
11031         // The false probability is the sum of all unhandled cases.
11032         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11033                      getCurSDLoc(), I->Prob, UnhandledProbs);
11034 
11035         if (CurMBB == SwitchMBB)
11036           visitSwitchCase(CB, SwitchMBB);
11037         else
11038           SL->SwitchCases.push_back(CB);
11039 
11040         break;
11041       }
11042     }
11043     CurMBB = Fallthrough;
11044   }
11045 }
11046 
11047 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11048                                               CaseClusterIt First,
11049                                               CaseClusterIt Last) {
11050   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11051     if (X.Prob != CC.Prob)
11052       return X.Prob > CC.Prob;
11053 
11054     // Ties are broken by comparing the case value.
11055     return X.Low->getValue().slt(CC.Low->getValue());
11056   });
11057 }
11058 
11059 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11060                                         const SwitchWorkListItem &W,
11061                                         Value *Cond,
11062                                         MachineBasicBlock *SwitchMBB) {
11063   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11064          "Clusters not sorted?");
11065 
11066   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11067 
11068   // Balance the tree based on branch probabilities to create a near-optimal (in
11069   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11070   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11071   CaseClusterIt LastLeft = W.FirstCluster;
11072   CaseClusterIt FirstRight = W.LastCluster;
11073   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11074   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11075 
11076   // Move LastLeft and FirstRight towards each other from opposite directions to
11077   // find a partitioning of the clusters which balances the probability on both
11078   // sides. If LeftProb and RightProb are equal, alternate which side is
11079   // taken to ensure 0-probability nodes are distributed evenly.
11080   unsigned I = 0;
11081   while (LastLeft + 1 < FirstRight) {
11082     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11083       LeftProb += (++LastLeft)->Prob;
11084     else
11085       RightProb += (--FirstRight)->Prob;
11086     I++;
11087   }
11088 
11089   while (true) {
11090     // Our binary search tree differs from a typical BST in that ours can have up
11091     // to three values in each leaf. The pivot selection above doesn't take that
11092     // into account, which means the tree might require more nodes and be less
11093     // efficient. We compensate for this here.
11094 
11095     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11096     unsigned NumRight = W.LastCluster - FirstRight + 1;
11097 
11098     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11099       // If one side has less than 3 clusters, and the other has more than 3,
11100       // consider taking a cluster from the other side.
11101 
11102       if (NumLeft < NumRight) {
11103         // Consider moving the first cluster on the right to the left side.
11104         CaseCluster &CC = *FirstRight;
11105         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11106         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11107         if (LeftSideRank <= RightSideRank) {
11108           // Moving the cluster to the left does not demote it.
11109           ++LastLeft;
11110           ++FirstRight;
11111           continue;
11112         }
11113       } else {
11114         assert(NumRight < NumLeft);
11115         // Consider moving the last element on the left to the right side.
11116         CaseCluster &CC = *LastLeft;
11117         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11118         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11119         if (RightSideRank <= LeftSideRank) {
11120           // Moving the cluster to the right does not demot it.
11121           --LastLeft;
11122           --FirstRight;
11123           continue;
11124         }
11125       }
11126     }
11127     break;
11128   }
11129 
11130   assert(LastLeft + 1 == FirstRight);
11131   assert(LastLeft >= W.FirstCluster);
11132   assert(FirstRight <= W.LastCluster);
11133 
11134   // Use the first element on the right as pivot since we will make less-than
11135   // comparisons against it.
11136   CaseClusterIt PivotCluster = FirstRight;
11137   assert(PivotCluster > W.FirstCluster);
11138   assert(PivotCluster <= W.LastCluster);
11139 
11140   CaseClusterIt FirstLeft = W.FirstCluster;
11141   CaseClusterIt LastRight = W.LastCluster;
11142 
11143   const ConstantInt *Pivot = PivotCluster->Low;
11144 
11145   // New blocks will be inserted immediately after the current one.
11146   MachineFunction::iterator BBI(W.MBB);
11147   ++BBI;
11148 
11149   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11150   // we can branch to its destination directly if it's squeezed exactly in
11151   // between the known lower bound and Pivot - 1.
11152   MachineBasicBlock *LeftMBB;
11153   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11154       FirstLeft->Low == W.GE &&
11155       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11156     LeftMBB = FirstLeft->MBB;
11157   } else {
11158     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11159     FuncInfo.MF->insert(BBI, LeftMBB);
11160     WorkList.push_back(
11161         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11162     // Put Cond in a virtual register to make it available from the new blocks.
11163     ExportFromCurrentBlock(Cond);
11164   }
11165 
11166   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11167   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11168   // directly if RHS.High equals the current upper bound.
11169   MachineBasicBlock *RightMBB;
11170   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11171       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11172     RightMBB = FirstRight->MBB;
11173   } else {
11174     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11175     FuncInfo.MF->insert(BBI, RightMBB);
11176     WorkList.push_back(
11177         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11178     // Put Cond in a virtual register to make it available from the new blocks.
11179     ExportFromCurrentBlock(Cond);
11180   }
11181 
11182   // Create the CaseBlock record that will be used to lower the branch.
11183   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11184                getCurSDLoc(), LeftProb, RightProb);
11185 
11186   if (W.MBB == SwitchMBB)
11187     visitSwitchCase(CB, SwitchMBB);
11188   else
11189     SL->SwitchCases.push_back(CB);
11190 }
11191 
11192 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11193 // from the swith statement.
11194 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11195                                             BranchProbability PeeledCaseProb) {
11196   if (PeeledCaseProb == BranchProbability::getOne())
11197     return BranchProbability::getZero();
11198   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11199 
11200   uint32_t Numerator = CaseProb.getNumerator();
11201   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11202   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11203 }
11204 
11205 // Try to peel the top probability case if it exceeds the threshold.
11206 // Return current MachineBasicBlock for the switch statement if the peeling
11207 // does not occur.
11208 // If the peeling is performed, return the newly created MachineBasicBlock
11209 // for the peeled switch statement. Also update Clusters to remove the peeled
11210 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11211 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11212     const SwitchInst &SI, CaseClusterVector &Clusters,
11213     BranchProbability &PeeledCaseProb) {
11214   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11215   // Don't perform if there is only one cluster or optimizing for size.
11216   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11217       TM.getOptLevel() == CodeGenOpt::None ||
11218       SwitchMBB->getParent()->getFunction().hasMinSize())
11219     return SwitchMBB;
11220 
11221   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11222   unsigned PeeledCaseIndex = 0;
11223   bool SwitchPeeled = false;
11224   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11225     CaseCluster &CC = Clusters[Index];
11226     if (CC.Prob < TopCaseProb)
11227       continue;
11228     TopCaseProb = CC.Prob;
11229     PeeledCaseIndex = Index;
11230     SwitchPeeled = true;
11231   }
11232   if (!SwitchPeeled)
11233     return SwitchMBB;
11234 
11235   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11236                     << TopCaseProb << "\n");
11237 
11238   // Record the MBB for the peeled switch statement.
11239   MachineFunction::iterator BBI(SwitchMBB);
11240   ++BBI;
11241   MachineBasicBlock *PeeledSwitchMBB =
11242       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11243   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11244 
11245   ExportFromCurrentBlock(SI.getCondition());
11246   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11247   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11248                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11249   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11250 
11251   Clusters.erase(PeeledCaseIt);
11252   for (CaseCluster &CC : Clusters) {
11253     LLVM_DEBUG(
11254         dbgs() << "Scale the probablity for one cluster, before scaling: "
11255                << CC.Prob << "\n");
11256     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11257     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11258   }
11259   PeeledCaseProb = TopCaseProb;
11260   return PeeledSwitchMBB;
11261 }
11262 
11263 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11264   // Extract cases from the switch.
11265   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11266   CaseClusterVector Clusters;
11267   Clusters.reserve(SI.getNumCases());
11268   for (auto I : SI.cases()) {
11269     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11270     const ConstantInt *CaseVal = I.getCaseValue();
11271     BranchProbability Prob =
11272         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11273             : BranchProbability(1, SI.getNumCases() + 1);
11274     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11275   }
11276 
11277   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11278 
11279   // Cluster adjacent cases with the same destination. We do this at all
11280   // optimization levels because it's cheap to do and will make codegen faster
11281   // if there are many clusters.
11282   sortAndRangeify(Clusters);
11283 
11284   // The branch probablity of the peeled case.
11285   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11286   MachineBasicBlock *PeeledSwitchMBB =
11287       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11288 
11289   // If there is only the default destination, jump there directly.
11290   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11291   if (Clusters.empty()) {
11292     assert(PeeledSwitchMBB == SwitchMBB);
11293     SwitchMBB->addSuccessor(DefaultMBB);
11294     if (DefaultMBB != NextBlock(SwitchMBB)) {
11295       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11296                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11297     }
11298     return;
11299   }
11300 
11301   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11302   SL->findBitTestClusters(Clusters, &SI);
11303 
11304   LLVM_DEBUG({
11305     dbgs() << "Case clusters: ";
11306     for (const CaseCluster &C : Clusters) {
11307       if (C.Kind == CC_JumpTable)
11308         dbgs() << "JT:";
11309       if (C.Kind == CC_BitTests)
11310         dbgs() << "BT:";
11311 
11312       C.Low->getValue().print(dbgs(), true);
11313       if (C.Low != C.High) {
11314         dbgs() << '-';
11315         C.High->getValue().print(dbgs(), true);
11316       }
11317       dbgs() << ' ';
11318     }
11319     dbgs() << '\n';
11320   });
11321 
11322   assert(!Clusters.empty());
11323   SwitchWorkList WorkList;
11324   CaseClusterIt First = Clusters.begin();
11325   CaseClusterIt Last = Clusters.end() - 1;
11326   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11327   // Scale the branchprobability for DefaultMBB if the peel occurs and
11328   // DefaultMBB is not replaced.
11329   if (PeeledCaseProb != BranchProbability::getZero() &&
11330       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11331     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11332   WorkList.push_back(
11333       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11334 
11335   while (!WorkList.empty()) {
11336     SwitchWorkListItem W = WorkList.pop_back_val();
11337     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11338 
11339     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11340         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11341       // For optimized builds, lower large range as a balanced binary tree.
11342       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11343       continue;
11344     }
11345 
11346     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11347   }
11348 }
11349 
11350 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11351   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11352   auto DL = getCurSDLoc();
11353   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11354   setValue(&I, DAG.getStepVector(DL, ResultVT));
11355 }
11356 
11357 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11359   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11360 
11361   SDLoc DL = getCurSDLoc();
11362   SDValue V = getValue(I.getOperand(0));
11363   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11364 
11365   if (VT.isScalableVector()) {
11366     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11367     return;
11368   }
11369 
11370   // Use VECTOR_SHUFFLE for the fixed-length vector
11371   // to maintain existing behavior.
11372   SmallVector<int, 8> Mask;
11373   unsigned NumElts = VT.getVectorMinNumElements();
11374   for (unsigned i = 0; i != NumElts; ++i)
11375     Mask.push_back(NumElts - 1 - i);
11376 
11377   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11378 }
11379 
11380 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11381   SmallVector<EVT, 4> ValueVTs;
11382   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11383                   ValueVTs);
11384   unsigned NumValues = ValueVTs.size();
11385   if (NumValues == 0) return;
11386 
11387   SmallVector<SDValue, 4> Values(NumValues);
11388   SDValue Op = getValue(I.getOperand(0));
11389 
11390   for (unsigned i = 0; i != NumValues; ++i)
11391     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11392                             SDValue(Op.getNode(), Op.getResNo() + i));
11393 
11394   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11395                            DAG.getVTList(ValueVTs), Values));
11396 }
11397 
11398 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11399   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11400   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11401 
11402   SDLoc DL = getCurSDLoc();
11403   SDValue V1 = getValue(I.getOperand(0));
11404   SDValue V2 = getValue(I.getOperand(1));
11405   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11406 
11407   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11408   if (VT.isScalableVector()) {
11409     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11410     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11411                              DAG.getConstant(Imm, DL, IdxVT)));
11412     return;
11413   }
11414 
11415   unsigned NumElts = VT.getVectorNumElements();
11416 
11417   uint64_t Idx = (NumElts + Imm) % NumElts;
11418 
11419   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11420   SmallVector<int, 8> Mask;
11421   for (unsigned i = 0; i < NumElts; ++i)
11422     Mask.push_back(Idx + i);
11423   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11424 }
11425