1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/FunctionLoweringInfo.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GetElementPtrTypeIterator.h" 72 #include "llvm/IR/InlineAsm.h" 73 #include "llvm/IR/InstrTypes.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/IntrinsicsAArch64.h" 78 #include "llvm/IR/IntrinsicsWebAssembly.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/Operator.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Statepoint.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/MC/MCContext.h" 89 #include "llvm/Support/AtomicOrdering.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Compiler.h" 93 #include "llvm/Support/Debug.h" 94 #include "llvm/Support/MathExtras.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Target/TargetIntrinsicInfo.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetOptions.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <cstddef> 101 #include <iterator> 102 #include <limits> 103 #include <tuple> 104 105 using namespace llvm; 106 using namespace PatternMatch; 107 using namespace SwitchCG; 108 109 #define DEBUG_TYPE "isel" 110 111 /// LimitFloatPrecision - Generate low-precision inline sequences for 112 /// some float libcalls (6, 8 or 12 bits). 113 static unsigned LimitFloatPrecision; 114 115 static cl::opt<bool> 116 InsertAssertAlign("insert-assert-align", cl::init(true), 117 cl::desc("Insert the experimental `assertalign` node."), 118 cl::ReallyHidden); 119 120 static cl::opt<unsigned, true> 121 LimitFPPrecision("limit-float-precision", 122 cl::desc("Generate low-precision inline sequences " 123 "for some float libcalls"), 124 cl::location(LimitFloatPrecision), cl::Hidden, 125 cl::init(0)); 126 127 static cl::opt<unsigned> SwitchPeelThreshold( 128 "switch-peel-threshold", cl::Hidden, cl::init(66), 129 cl::desc("Set the case probability threshold for peeling the case from a " 130 "switch statement. A value greater than 100 will void this " 131 "optimization")); 132 133 // Limit the width of DAG chains. This is important in general to prevent 134 // DAG-based analysis from blowing up. For example, alias analysis and 135 // load clustering may not complete in reasonable time. It is difficult to 136 // recognize and avoid this situation within each individual analysis, and 137 // future analyses are likely to have the same behavior. Limiting DAG width is 138 // the safe approach and will be especially important with global DAGs. 139 // 140 // MaxParallelChains default is arbitrarily high to avoid affecting 141 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 142 // sequence over this should have been converted to llvm.memcpy by the 143 // frontend. It is easy to induce this behavior with .ll code such as: 144 // %buffer = alloca [4096 x i8] 145 // %data = load [4096 x i8]* %argPtr 146 // store [4096 x i8] %data, [4096 x i8]* %buffer 147 static const unsigned MaxParallelChains = 64; 148 149 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 150 const SDValue *Parts, unsigned NumParts, 151 MVT PartVT, EVT ValueVT, const Value *V, 152 Optional<CallingConv::ID> CC); 153 154 /// getCopyFromParts - Create a value that contains the specified legal parts 155 /// combined into the value they represent. If the parts combine to a type 156 /// larger than ValueVT then AssertOp can be used to specify whether the extra 157 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 158 /// (ISD::AssertSext). 159 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 160 const SDValue *Parts, unsigned NumParts, 161 MVT PartVT, EVT ValueVT, const Value *V, 162 Optional<CallingConv::ID> CC = None, 163 Optional<ISD::NodeType> AssertOp = None) { 164 // Let the target assemble the parts if it wants to 165 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 166 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 167 PartVT, ValueVT, CC)) 168 return Val; 169 170 if (ValueVT.isVector()) 171 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 172 CC); 173 174 assert(NumParts > 0 && "No parts to assemble!"); 175 SDValue Val = Parts[0]; 176 177 if (NumParts > 1) { 178 // Assemble the value from multiple parts. 179 if (ValueVT.isInteger()) { 180 unsigned PartBits = PartVT.getSizeInBits(); 181 unsigned ValueBits = ValueVT.getSizeInBits(); 182 183 // Assemble the power of 2 part. 184 unsigned RoundParts = 185 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 186 unsigned RoundBits = PartBits * RoundParts; 187 EVT RoundVT = RoundBits == ValueBits ? 188 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 189 SDValue Lo, Hi; 190 191 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 192 193 if (RoundParts > 2) { 194 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 195 PartVT, HalfVT, V); 196 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 197 RoundParts / 2, PartVT, HalfVT, V); 198 } else { 199 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 200 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 201 } 202 203 if (DAG.getDataLayout().isBigEndian()) 204 std::swap(Lo, Hi); 205 206 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 207 208 if (RoundParts < NumParts) { 209 // Assemble the trailing non-power-of-2 part. 210 unsigned OddParts = NumParts - RoundParts; 211 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 212 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 213 OddVT, V, CC); 214 215 // Combine the round and odd parts. 216 Lo = Val; 217 if (DAG.getDataLayout().isBigEndian()) 218 std::swap(Lo, Hi); 219 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 220 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 221 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 222 DAG.getConstant(Lo.getValueSizeInBits(), DL, 223 TLI.getShiftAmountTy( 224 TotalVT, DAG.getDataLayout()))); 225 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 226 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 227 } 228 } else if (PartVT.isFloatingPoint()) { 229 // FP split into multiple FP parts (for ppcf128) 230 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 231 "Unexpected split"); 232 SDValue Lo, Hi; 233 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 235 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 236 std::swap(Lo, Hi); 237 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 238 } else { 239 // FP split into integer parts (soft fp) 240 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 241 !PartVT.isVector() && "Unexpected split"); 242 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 243 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 244 } 245 } 246 247 // There is now one part, held in Val. Correct it to match ValueVT. 248 // PartEVT is the type of the register class that holds the value. 249 // ValueVT is the type of the inline asm operation. 250 EVT PartEVT = Val.getValueType(); 251 252 if (PartEVT == ValueVT) 253 return Val; 254 255 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 256 ValueVT.bitsLT(PartEVT)) { 257 // For an FP value in an integer part, we need to truncate to the right 258 // width first. 259 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 260 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 261 } 262 263 // Handle types that have the same size. 264 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 265 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 266 267 // Handle types with different sizes. 268 if (PartEVT.isInteger() && ValueVT.isInteger()) { 269 if (ValueVT.bitsLT(PartEVT)) { 270 // For a truncate, see if we have any information to 271 // indicate whether the truncated bits will always be 272 // zero or sign-extension. 273 if (AssertOp) 274 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 275 DAG.getValueType(ValueVT)); 276 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 277 } 278 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 279 } 280 281 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 282 // FP_ROUND's are always exact here. 283 if (ValueVT.bitsLT(Val.getValueType())) 284 return DAG.getNode( 285 ISD::FP_ROUND, DL, ValueVT, Val, 286 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 287 288 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 289 } 290 291 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 292 // then truncating. 293 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 294 ValueVT.bitsLT(PartEVT)) { 295 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 299 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 300 } 301 302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 303 const Twine &ErrMsg) { 304 const Instruction *I = dyn_cast_or_null<Instruction>(V); 305 if (!V) 306 return Ctx.emitError(ErrMsg); 307 308 const char *AsmError = ", possible invalid constraint for vector type"; 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (CI->isInlineAsm()) 311 return Ctx.emitError(I, ErrMsg + AsmError); 312 313 return Ctx.emitError(I, ErrMsg); 314 } 315 316 /// getCopyFromPartsVector - Create a value that contains the specified legal 317 /// parts combined into the value they represent. If the parts combine to a 318 /// type larger than ValueVT then AssertOp can be used to specify whether the 319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 320 /// ValueVT (ISD::AssertSext). 321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 322 const SDValue *Parts, unsigned NumParts, 323 MVT PartVT, EVT ValueVT, const Value *V, 324 Optional<CallingConv::ID> CallConv) { 325 assert(ValueVT.isVector() && "Not a vector value"); 326 assert(NumParts > 0 && "No parts to assemble!"); 327 const bool IsABIRegCopy = CallConv.has_value(); 328 329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 330 SDValue Val = Parts[0]; 331 332 // Handle a multi-element vector. 333 if (NumParts > 1) { 334 EVT IntermediateVT; 335 MVT RegisterVT; 336 unsigned NumIntermediates; 337 unsigned NumRegs; 338 339 if (IsABIRegCopy) { 340 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 341 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 342 NumIntermediates, RegisterVT); 343 } else { 344 NumRegs = 345 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 346 NumIntermediates, RegisterVT); 347 } 348 349 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 350 NumParts = NumRegs; // Silence a compiler warning. 351 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 352 assert(RegisterVT.getSizeInBits() == 353 Parts[0].getSimpleValueType().getSizeInBits() && 354 "Part type sizes don't match!"); 355 356 // Assemble the parts into intermediate operands. 357 SmallVector<SDValue, 8> Ops(NumIntermediates); 358 if (NumIntermediates == NumParts) { 359 // If the register was not expanded, truncate or copy the value, 360 // as appropriate. 361 for (unsigned i = 0; i != NumParts; ++i) 362 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 363 PartVT, IntermediateVT, V, CallConv); 364 } else if (NumParts > 0) { 365 // If the intermediate type was expanded, build the intermediate 366 // operands from the parts. 367 assert(NumParts % NumIntermediates == 0 && 368 "Must expand into a divisible number of parts!"); 369 unsigned Factor = NumParts / NumIntermediates; 370 for (unsigned i = 0; i != NumIntermediates; ++i) 371 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 372 PartVT, IntermediateVT, V, CallConv); 373 } 374 375 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 376 // intermediate operands. 377 EVT BuiltVectorTy = 378 IntermediateVT.isVector() 379 ? EVT::getVectorVT( 380 *DAG.getContext(), IntermediateVT.getScalarType(), 381 IntermediateVT.getVectorElementCount() * NumParts) 382 : EVT::getVectorVT(*DAG.getContext(), 383 IntermediateVT.getScalarType(), 384 NumIntermediates); 385 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 386 : ISD::BUILD_VECTOR, 387 DL, BuiltVectorTy, Ops); 388 } 389 390 // There is now one part, held in Val. Correct it to match ValueVT. 391 EVT PartEVT = Val.getValueType(); 392 393 if (PartEVT == ValueVT) 394 return Val; 395 396 if (PartEVT.isVector()) { 397 // Vector/Vector bitcast. 398 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 399 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 401 // If the element type of the source/dest vectors are the same, but the 402 // parts vector has more elements than the value vector, then we have a 403 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 404 // elements we want. 405 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 406 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 407 ValueVT.getVectorElementCount().getKnownMinValue()) && 408 (PartEVT.getVectorElementCount().isScalable() == 409 ValueVT.getVectorElementCount().isScalable()) && 410 "Cannot narrow, it would be a lossy transformation"); 411 PartEVT = 412 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 413 ValueVT.getVectorElementCount()); 414 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 415 DAG.getVectorIdxConstant(0, DL)); 416 if (PartEVT == ValueVT) 417 return Val; 418 } 419 420 // Promoted vector extract 421 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 422 } 423 424 // Trivial bitcast if the types are the same size and the destination 425 // vector type is legal. 426 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 427 TLI.isTypeLegal(ValueVT)) 428 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 429 430 if (ValueVT.getVectorNumElements() != 1) { 431 // Certain ABIs require that vectors are passed as integers. For vectors 432 // are the same size, this is an obvious bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 } else if (ValueVT.bitsLT(PartEVT)) { 436 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 437 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 438 // Drop the extra bits. 439 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 440 return DAG.getBitcast(ValueVT, Val); 441 } 442 443 diagnosePossiblyInvalidConstraint( 444 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 445 return DAG.getUNDEF(ValueVT); 446 } 447 448 // Handle cases such as i8 -> <1 x i1> 449 EVT ValueSVT = ValueVT.getVectorElementType(); 450 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 451 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 452 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 453 else 454 Val = ValueVT.isFloatingPoint() 455 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 456 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 457 } 458 459 return DAG.getBuildVector(ValueVT, DL, Val); 460 } 461 462 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 463 SDValue Val, SDValue *Parts, unsigned NumParts, 464 MVT PartVT, const Value *V, 465 Optional<CallingConv::ID> CallConv); 466 467 /// getCopyToParts - Create a series of nodes that contain the specified value 468 /// split into legal parts. If the parts contain more bits than Val, then, for 469 /// integers, ExtendKind can be used to specify how to generate the extra bits. 470 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 471 SDValue *Parts, unsigned NumParts, MVT PartVT, 472 const Value *V, 473 Optional<CallingConv::ID> CallConv = None, 474 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 475 // Let the target split the parts if it wants to 476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 477 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 478 CallConv)) 479 return; 480 EVT ValueVT = Val.getValueType(); 481 482 // Handle the vector case separately. 483 if (ValueVT.isVector()) 484 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 485 CallConv); 486 487 unsigned PartBits = PartVT.getSizeInBits(); 488 unsigned OrigNumParts = NumParts; 489 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 490 "Copying to an illegal type!"); 491 492 if (NumParts == 0) 493 return; 494 495 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 496 EVT PartEVT = PartVT; 497 if (PartEVT == ValueVT) { 498 assert(NumParts == 1 && "No-op copy with multiple parts!"); 499 Parts[0] = Val; 500 return; 501 } 502 503 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 504 // If the parts cover more bits than the value has, promote the value. 505 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 506 assert(NumParts == 1 && "Do not know what to promote to!"); 507 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 508 } else { 509 if (ValueVT.isFloatingPoint()) { 510 // FP values need to be bitcast, then extended if they are being put 511 // into a larger container. 512 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 513 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 514 } 515 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 516 ValueVT.isInteger() && 517 "Unknown mismatch!"); 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 519 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 520 if (PartVT == MVT::x86mmx) 521 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 522 } 523 } else if (PartBits == ValueVT.getSizeInBits()) { 524 // Different types of the same size. 525 assert(NumParts == 1 && PartEVT != ValueVT); 526 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 527 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 528 // If the parts cover less bits than value has, truncate the value. 529 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 530 ValueVT.isInteger() && 531 "Unknown mismatch!"); 532 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 533 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 534 if (PartVT == MVT::x86mmx) 535 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 536 } 537 538 // The value may have changed - recompute ValueVT. 539 ValueVT = Val.getValueType(); 540 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 541 "Failed to tile the value with PartVT!"); 542 543 if (NumParts == 1) { 544 if (PartEVT != ValueVT) { 545 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 546 "scalar-to-vector conversion failed"); 547 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 548 } 549 550 Parts[0] = Val; 551 return; 552 } 553 554 // Expand the value into multiple parts. 555 if (NumParts & (NumParts - 1)) { 556 // The number of parts is not a power of 2. Split off and copy the tail. 557 assert(PartVT.isInteger() && ValueVT.isInteger() && 558 "Do not know what to expand to!"); 559 unsigned RoundParts = 1 << Log2_32(NumParts); 560 unsigned RoundBits = RoundParts * PartBits; 561 unsigned OddParts = NumParts - RoundParts; 562 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 563 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 564 565 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 566 CallConv); 567 568 if (DAG.getDataLayout().isBigEndian()) 569 // The odd parts were reversed by getCopyToParts - unreverse them. 570 std::reverse(Parts + RoundParts, Parts + NumParts); 571 572 NumParts = RoundParts; 573 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 574 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 575 } 576 577 // The number of parts is a power of 2. Repeatedly bisect the value using 578 // EXTRACT_ELEMENT. 579 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 580 EVT::getIntegerVT(*DAG.getContext(), 581 ValueVT.getSizeInBits()), 582 Val); 583 584 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 585 for (unsigned i = 0; i < NumParts; i += StepSize) { 586 unsigned ThisBits = StepSize * PartBits / 2; 587 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 588 SDValue &Part0 = Parts[i]; 589 SDValue &Part1 = Parts[i+StepSize/2]; 590 591 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 592 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 593 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 594 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 595 596 if (ThisBits == PartBits && ThisVT != PartVT) { 597 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 598 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 599 } 600 } 601 } 602 603 if (DAG.getDataLayout().isBigEndian()) 604 std::reverse(Parts, Parts + OrigNumParts); 605 } 606 607 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 608 const SDLoc &DL, EVT PartVT) { 609 if (!PartVT.isVector()) 610 return SDValue(); 611 612 EVT ValueVT = Val.getValueType(); 613 ElementCount PartNumElts = PartVT.getVectorElementCount(); 614 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 615 616 // We only support widening vectors with equivalent element types and 617 // fixed/scalable properties. If a target needs to widen a fixed-length type 618 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 619 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 620 PartNumElts.isScalable() != ValueNumElts.isScalable() || 621 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 622 return SDValue(); 623 624 // Widening a scalable vector to another scalable vector is done by inserting 625 // the vector into a larger undef one. 626 if (PartNumElts.isScalable()) 627 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 628 Val, DAG.getVectorIdxConstant(0, DL)); 629 630 EVT ElementVT = PartVT.getVectorElementType(); 631 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 632 // undef elements. 633 SmallVector<SDValue, 16> Ops; 634 DAG.ExtractVectorElements(Val, Ops); 635 SDValue EltUndef = DAG.getUNDEF(ElementVT); 636 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 637 638 // FIXME: Use CONCAT for 2x -> 4x. 639 return DAG.getBuildVector(PartVT, DL, Ops); 640 } 641 642 /// getCopyToPartsVector - Create a series of nodes that contain the specified 643 /// value split into legal parts. 644 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 645 SDValue Val, SDValue *Parts, unsigned NumParts, 646 MVT PartVT, const Value *V, 647 Optional<CallingConv::ID> CallConv) { 648 EVT ValueVT = Val.getValueType(); 649 assert(ValueVT.isVector() && "Not a vector"); 650 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 651 const bool IsABIRegCopy = CallConv.has_value(); 652 653 if (NumParts == 1) { 654 EVT PartEVT = PartVT; 655 if (PartEVT == ValueVT) { 656 // Nothing to do. 657 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 658 // Bitconvert vector->vector case. 659 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 660 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 661 Val = Widened; 662 } else if (PartVT.isVector() && 663 PartEVT.getVectorElementType().bitsGE( 664 ValueVT.getVectorElementType()) && 665 PartEVT.getVectorElementCount() == 666 ValueVT.getVectorElementCount()) { 667 668 // Promoted vector extract 669 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 670 } else if (PartEVT.isVector() && 671 PartEVT.getVectorElementType() != 672 ValueVT.getVectorElementType() && 673 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 674 TargetLowering::TypeWidenVector) { 675 // Combination of widening and promotion. 676 EVT WidenVT = 677 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 678 PartVT.getVectorElementCount()); 679 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 680 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 681 } else { 682 if (ValueVT.getVectorElementCount().isScalar()) { 683 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 684 DAG.getVectorIdxConstant(0, DL)); 685 } else { 686 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 687 assert(PartVT.getFixedSizeInBits() > ValueSize && 688 "lossy conversion of vector to scalar type"); 689 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 690 Val = DAG.getBitcast(IntermediateType, Val); 691 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 692 } 693 } 694 695 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 696 Parts[0] = Val; 697 return; 698 } 699 700 // Handle a multi-element vector. 701 EVT IntermediateVT; 702 MVT RegisterVT; 703 unsigned NumIntermediates; 704 unsigned NumRegs; 705 if (IsABIRegCopy) { 706 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 707 *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, 708 NumIntermediates, RegisterVT); 709 } else { 710 NumRegs = 711 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 712 NumIntermediates, RegisterVT); 713 } 714 715 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 716 NumParts = NumRegs; // Silence a compiler warning. 717 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 718 719 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 720 "Mixing scalable and fixed vectors when copying in parts"); 721 722 Optional<ElementCount> DestEltCnt; 723 724 if (IntermediateVT.isVector()) 725 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 726 else 727 DestEltCnt = ElementCount::getFixed(NumIntermediates); 728 729 EVT BuiltVectorTy = EVT::getVectorVT( 730 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 731 732 if (ValueVT == BuiltVectorTy) { 733 // Nothing to do. 734 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 735 // Bitconvert vector->vector case. 736 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 737 } else { 738 if (BuiltVectorTy.getVectorElementType().bitsGT( 739 ValueVT.getVectorElementType())) { 740 // Integer promotion. 741 ValueVT = EVT::getVectorVT(*DAG.getContext(), 742 BuiltVectorTy.getVectorElementType(), 743 ValueVT.getVectorElementCount()); 744 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 745 } 746 747 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 748 Val = Widened; 749 } 750 } 751 752 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 753 754 // Split the vector into intermediate operands. 755 SmallVector<SDValue, 8> Ops(NumIntermediates); 756 for (unsigned i = 0; i != NumIntermediates; ++i) { 757 if (IntermediateVT.isVector()) { 758 // This does something sensible for scalable vectors - see the 759 // definition of EXTRACT_SUBVECTOR for further details. 760 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 761 Ops[i] = 762 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 763 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 764 } else { 765 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 766 DAG.getVectorIdxConstant(i, DL)); 767 } 768 } 769 770 // Split the intermediate operands into legal parts. 771 if (NumParts == NumIntermediates) { 772 // If the register was not expanded, promote or copy the value, 773 // as appropriate. 774 for (unsigned i = 0; i != NumParts; ++i) 775 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 776 } else if (NumParts > 0) { 777 // If the intermediate type was expanded, split each the value into 778 // legal parts. 779 assert(NumIntermediates != 0 && "division by zero"); 780 assert(NumParts % NumIntermediates == 0 && 781 "Must expand into a divisible number of parts!"); 782 unsigned Factor = NumParts / NumIntermediates; 783 for (unsigned i = 0; i != NumIntermediates; ++i) 784 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 785 CallConv); 786 } 787 } 788 789 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 790 EVT valuevt, Optional<CallingConv::ID> CC) 791 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 792 RegCount(1, regs.size()), CallConv(CC) {} 793 794 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 795 const DataLayout &DL, unsigned Reg, Type *Ty, 796 Optional<CallingConv::ID> CC) { 797 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 798 799 CallConv = CC; 800 801 for (EVT ValueVT : ValueVTs) { 802 unsigned NumRegs = 803 isABIMangled() 804 ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) 805 : TLI.getNumRegisters(Context, ValueVT); 806 MVT RegisterVT = 807 isABIMangled() 808 ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) 809 : TLI.getRegisterType(Context, ValueVT); 810 for (unsigned i = 0; i != NumRegs; ++i) 811 Regs.push_back(Reg + i); 812 RegVTs.push_back(RegisterVT); 813 RegCount.push_back(NumRegs); 814 Reg += NumRegs; 815 } 816 } 817 818 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 819 FunctionLoweringInfo &FuncInfo, 820 const SDLoc &dl, SDValue &Chain, 821 SDValue *Flag, const Value *V) const { 822 // A Value with type {} or [0 x %t] needs no registers. 823 if (ValueVTs.empty()) 824 return SDValue(); 825 826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 827 828 // Assemble the legal parts into the final values. 829 SmallVector<SDValue, 4> Values(ValueVTs.size()); 830 SmallVector<SDValue, 8> Parts; 831 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 832 // Copy the legal parts from the registers. 833 EVT ValueVT = ValueVTs[Value]; 834 unsigned NumRegs = RegCount[Value]; 835 MVT RegisterVT = 836 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 837 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 838 : RegVTs[Value]; 839 840 Parts.resize(NumRegs); 841 for (unsigned i = 0; i != NumRegs; ++i) { 842 SDValue P; 843 if (!Flag) { 844 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 845 } else { 846 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 847 *Flag = P.getValue(2); 848 } 849 850 Chain = P.getValue(1); 851 Parts[i] = P; 852 853 // If the source register was virtual and if we know something about it, 854 // add an assert node. 855 if (!Register::isVirtualRegister(Regs[Part + i]) || 856 !RegisterVT.isInteger()) 857 continue; 858 859 const FunctionLoweringInfo::LiveOutInfo *LOI = 860 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 861 if (!LOI) 862 continue; 863 864 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 865 unsigned NumSignBits = LOI->NumSignBits; 866 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 867 868 if (NumZeroBits == RegSize) { 869 // The current value is a zero. 870 // Explicitly express that as it would be easier for 871 // optimizations to kick in. 872 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 873 continue; 874 } 875 876 // FIXME: We capture more information than the dag can represent. For 877 // now, just use the tightest assertzext/assertsext possible. 878 bool isSExt; 879 EVT FromVT(MVT::Other); 880 if (NumZeroBits) { 881 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 882 isSExt = false; 883 } else if (NumSignBits > 1) { 884 FromVT = 885 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 886 isSExt = true; 887 } else { 888 continue; 889 } 890 // Add an assertion node. 891 assert(FromVT != MVT::Other); 892 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 893 RegisterVT, P, DAG.getValueType(FromVT)); 894 } 895 896 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 897 RegisterVT, ValueVT, V, CallConv); 898 Part += NumRegs; 899 Parts.clear(); 900 } 901 902 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 903 } 904 905 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 906 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 907 const Value *V, 908 ISD::NodeType PreferredExtendType) const { 909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 910 ISD::NodeType ExtendKind = PreferredExtendType; 911 912 // Get the list of the values's legal parts. 913 unsigned NumRegs = Regs.size(); 914 SmallVector<SDValue, 8> Parts(NumRegs); 915 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 916 unsigned NumParts = RegCount[Value]; 917 918 MVT RegisterVT = 919 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 920 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 921 : RegVTs[Value]; 922 923 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 924 ExtendKind = ISD::ZERO_EXTEND; 925 926 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 927 NumParts, RegisterVT, V, CallConv, ExtendKind); 928 Part += NumParts; 929 } 930 931 // Copy the parts into the registers. 932 SmallVector<SDValue, 8> Chains(NumRegs); 933 for (unsigned i = 0; i != NumRegs; ++i) { 934 SDValue Part; 935 if (!Flag) { 936 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 937 } else { 938 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 939 *Flag = Part.getValue(1); 940 } 941 942 Chains[i] = Part.getValue(0); 943 } 944 945 if (NumRegs == 1 || Flag) 946 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 947 // flagged to it. That is the CopyToReg nodes and the user are considered 948 // a single scheduling unit. If we create a TokenFactor and return it as 949 // chain, then the TokenFactor is both a predecessor (operand) of the 950 // user as well as a successor (the TF operands are flagged to the user). 951 // c1, f1 = CopyToReg 952 // c2, f2 = CopyToReg 953 // c3 = TokenFactor c1, c2 954 // ... 955 // = op c3, ..., f2 956 Chain = Chains[NumRegs-1]; 957 else 958 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 959 } 960 961 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 962 unsigned MatchingIdx, const SDLoc &dl, 963 SelectionDAG &DAG, 964 std::vector<SDValue> &Ops) const { 965 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 966 967 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 968 if (HasMatching) 969 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 970 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 971 // Put the register class of the virtual registers in the flag word. That 972 // way, later passes can recompute register class constraints for inline 973 // assembly as well as normal instructions. 974 // Don't do this for tied operands that can use the regclass information 975 // from the def. 976 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 977 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 978 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 979 } 980 981 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 982 Ops.push_back(Res); 983 984 if (Code == InlineAsm::Kind_Clobber) { 985 // Clobbers should always have a 1:1 mapping with registers, and may 986 // reference registers that have illegal (e.g. vector) types. Hence, we 987 // shouldn't try to apply any sort of splitting logic to them. 988 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 989 "No 1:1 mapping from clobbers to regs?"); 990 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 991 (void)SP; 992 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 993 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 994 assert( 995 (Regs[I] != SP || 996 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 997 "If we clobbered the stack pointer, MFI should know about it."); 998 } 999 return; 1000 } 1001 1002 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1003 MVT RegisterVT = RegVTs[Value]; 1004 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1005 RegisterVT); 1006 for (unsigned i = 0; i != NumRegs; ++i) { 1007 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1008 unsigned TheReg = Regs[Reg++]; 1009 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1010 } 1011 } 1012 } 1013 1014 SmallVector<std::pair<unsigned, TypeSize>, 4> 1015 RegsForValue::getRegsAndSizes() const { 1016 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1017 unsigned I = 0; 1018 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1019 unsigned RegCount = std::get<0>(CountAndVT); 1020 MVT RegisterVT = std::get<1>(CountAndVT); 1021 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1022 for (unsigned E = I + RegCount; I != E; ++I) 1023 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1024 } 1025 return OutVec; 1026 } 1027 1028 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1029 AssumptionCache *ac, 1030 const TargetLibraryInfo *li) { 1031 AA = aa; 1032 AC = ac; 1033 GFI = gfi; 1034 LibInfo = li; 1035 Context = DAG.getContext(); 1036 LPadToCallSiteMap.clear(); 1037 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1038 } 1039 1040 void SelectionDAGBuilder::clear() { 1041 NodeMap.clear(); 1042 UnusedArgNodeMap.clear(); 1043 PendingLoads.clear(); 1044 PendingExports.clear(); 1045 PendingConstrainedFP.clear(); 1046 PendingConstrainedFPStrict.clear(); 1047 CurInst = nullptr; 1048 HasTailCall = false; 1049 SDNodeOrder = LowestSDNodeOrder; 1050 StatepointLowering.clear(); 1051 } 1052 1053 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1054 DanglingDebugInfoMap.clear(); 1055 } 1056 1057 // Update DAG root to include dependencies on Pending chains. 1058 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1059 SDValue Root = DAG.getRoot(); 1060 1061 if (Pending.empty()) 1062 return Root; 1063 1064 // Add current root to PendingChains, unless we already indirectly 1065 // depend on it. 1066 if (Root.getOpcode() != ISD::EntryToken) { 1067 unsigned i = 0, e = Pending.size(); 1068 for (; i != e; ++i) { 1069 assert(Pending[i].getNode()->getNumOperands() > 1); 1070 if (Pending[i].getNode()->getOperand(0) == Root) 1071 break; // Don't add the root if we already indirectly depend on it. 1072 } 1073 1074 if (i == e) 1075 Pending.push_back(Root); 1076 } 1077 1078 if (Pending.size() == 1) 1079 Root = Pending[0]; 1080 else 1081 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1082 1083 DAG.setRoot(Root); 1084 Pending.clear(); 1085 return Root; 1086 } 1087 1088 SDValue SelectionDAGBuilder::getMemoryRoot() { 1089 return updateRoot(PendingLoads); 1090 } 1091 1092 SDValue SelectionDAGBuilder::getRoot() { 1093 // Chain up all pending constrained intrinsics together with all 1094 // pending loads, by simply appending them to PendingLoads and 1095 // then calling getMemoryRoot(). 1096 PendingLoads.reserve(PendingLoads.size() + 1097 PendingConstrainedFP.size() + 1098 PendingConstrainedFPStrict.size()); 1099 PendingLoads.append(PendingConstrainedFP.begin(), 1100 PendingConstrainedFP.end()); 1101 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1102 PendingConstrainedFPStrict.end()); 1103 PendingConstrainedFP.clear(); 1104 PendingConstrainedFPStrict.clear(); 1105 return getMemoryRoot(); 1106 } 1107 1108 SDValue SelectionDAGBuilder::getControlRoot() { 1109 // We need to emit pending fpexcept.strict constrained intrinsics, 1110 // so append them to the PendingExports list. 1111 PendingExports.append(PendingConstrainedFPStrict.begin(), 1112 PendingConstrainedFPStrict.end()); 1113 PendingConstrainedFPStrict.clear(); 1114 return updateRoot(PendingExports); 1115 } 1116 1117 void SelectionDAGBuilder::visit(const Instruction &I) { 1118 // Set up outgoing PHI node register values before emitting the terminator. 1119 if (I.isTerminator()) { 1120 HandlePHINodesInSuccessorBlocks(I.getParent()); 1121 } 1122 1123 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1124 if (!isa<DbgInfoIntrinsic>(I)) 1125 ++SDNodeOrder; 1126 1127 CurInst = &I; 1128 1129 // Set inserted listener only if required. 1130 bool NodeInserted = false; 1131 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1132 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1133 if (PCSectionsMD) { 1134 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1135 DAG, [&](SDNode *) { NodeInserted = true; }); 1136 } 1137 1138 visit(I.getOpcode(), I); 1139 1140 if (!I.isTerminator() && !HasTailCall && 1141 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1142 CopyToExportRegsIfNeeded(&I); 1143 1144 // Handle metadata. 1145 if (PCSectionsMD) { 1146 auto It = NodeMap.find(&I); 1147 if (It != NodeMap.end()) { 1148 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1149 } else if (NodeInserted) { 1150 // This should not happen; if it does, don't let it go unnoticed so we can 1151 // fix it. Relevant visit*() function is probably missing a setValue(). 1152 errs() << "warning: loosing !pcsections metadata [" 1153 << I.getModule()->getName() << "]\n"; 1154 LLVM_DEBUG(I.dump()); 1155 assert(false); 1156 } 1157 } 1158 1159 CurInst = nullptr; 1160 } 1161 1162 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1163 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1164 } 1165 1166 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1167 // Note: this doesn't use InstVisitor, because it has to work with 1168 // ConstantExpr's in addition to instructions. 1169 switch (Opcode) { 1170 default: llvm_unreachable("Unknown instruction type encountered!"); 1171 // Build the switch statement using the Instruction.def file. 1172 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1173 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1174 #include "llvm/IR/Instruction.def" 1175 } 1176 } 1177 1178 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1179 DebugLoc DL, unsigned Order) { 1180 // We treat variadic dbg_values differently at this stage. 1181 if (DI->hasArgList()) { 1182 // For variadic dbg_values we will now insert an undef. 1183 // FIXME: We can potentially recover these! 1184 SmallVector<SDDbgOperand, 2> Locs; 1185 for (const Value *V : DI->getValues()) { 1186 auto Undef = UndefValue::get(V->getType()); 1187 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1188 } 1189 SDDbgValue *SDV = DAG.getDbgValueList( 1190 DI->getVariable(), DI->getExpression(), Locs, {}, 1191 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1192 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1193 } else { 1194 // TODO: Dangling debug info will eventually either be resolved or produce 1195 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1196 // between the original dbg.value location and its resolved DBG_VALUE, 1197 // which we should ideally fill with an extra Undef DBG_VALUE. 1198 assert(DI->getNumVariableLocationOps() == 1 && 1199 "DbgValueInst without an ArgList should have a single location " 1200 "operand."); 1201 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1202 } 1203 } 1204 1205 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1206 const DIExpression *Expr) { 1207 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1208 const DbgValueInst *DI = DDI.getDI(); 1209 DIVariable *DanglingVariable = DI->getVariable(); 1210 DIExpression *DanglingExpr = DI->getExpression(); 1211 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1212 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1213 return true; 1214 } 1215 return false; 1216 }; 1217 1218 for (auto &DDIMI : DanglingDebugInfoMap) { 1219 DanglingDebugInfoVector &DDIV = DDIMI.second; 1220 1221 // If debug info is to be dropped, run it through final checks to see 1222 // whether it can be salvaged. 1223 for (auto &DDI : DDIV) 1224 if (isMatchingDbgValue(DDI)) 1225 salvageUnresolvedDbgValue(DDI); 1226 1227 erase_if(DDIV, isMatchingDbgValue); 1228 } 1229 } 1230 1231 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1232 // generate the debug data structures now that we've seen its definition. 1233 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1234 SDValue Val) { 1235 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1236 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1237 return; 1238 1239 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1240 for (auto &DDI : DDIV) { 1241 const DbgValueInst *DI = DDI.getDI(); 1242 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1243 assert(DI && "Ill-formed DanglingDebugInfo"); 1244 DebugLoc dl = DDI.getdl(); 1245 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1246 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1247 DILocalVariable *Variable = DI->getVariable(); 1248 DIExpression *Expr = DI->getExpression(); 1249 assert(Variable->isValidLocationForIntrinsic(dl) && 1250 "Expected inlined-at fields to agree"); 1251 SDDbgValue *SDV; 1252 if (Val.getNode()) { 1253 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1254 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1255 // we couldn't resolve it directly when examining the DbgValue intrinsic 1256 // in the first place we should not be more successful here). Unless we 1257 // have some test case that prove this to be correct we should avoid 1258 // calling EmitFuncArgumentDbgValue here. 1259 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, 1260 FuncArgumentDbgValueKind::Value, Val)) { 1261 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1262 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1263 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1264 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1265 // inserted after the definition of Val when emitting the instructions 1266 // after ISel. An alternative could be to teach 1267 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1268 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1269 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1270 << ValSDNodeOrder << "\n"); 1271 SDV = getDbgValue(Val, Variable, Expr, dl, 1272 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1273 DAG.AddDbgValue(SDV, false); 1274 } else 1275 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1276 << "in EmitFuncArgumentDbgValue\n"); 1277 } else { 1278 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1279 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1280 auto SDV = 1281 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1282 DAG.AddDbgValue(SDV, false); 1283 } 1284 } 1285 DDIV.clear(); 1286 } 1287 1288 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1289 // TODO: For the variadic implementation, instead of only checking the fail 1290 // state of `handleDebugValue`, we need know specifically which values were 1291 // invalid, so that we attempt to salvage only those values when processing 1292 // a DIArgList. 1293 assert(!DDI.getDI()->hasArgList() && 1294 "Not implemented for variadic dbg_values"); 1295 Value *V = DDI.getDI()->getValue(0); 1296 DILocalVariable *Var = DDI.getDI()->getVariable(); 1297 DIExpression *Expr = DDI.getDI()->getExpression(); 1298 DebugLoc DL = DDI.getdl(); 1299 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1300 unsigned SDOrder = DDI.getSDNodeOrder(); 1301 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1302 // that DW_OP_stack_value is desired. 1303 assert(isa<DbgValueInst>(DDI.getDI())); 1304 bool StackValue = true; 1305 1306 // Can this Value can be encoded without any further work? 1307 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1308 return; 1309 1310 // Attempt to salvage back through as many instructions as possible. Bail if 1311 // a non-instruction is seen, such as a constant expression or global 1312 // variable. FIXME: Further work could recover those too. 1313 while (isa<Instruction>(V)) { 1314 Instruction &VAsInst = *cast<Instruction>(V); 1315 // Temporary "0", awaiting real implementation. 1316 SmallVector<uint64_t, 16> Ops; 1317 SmallVector<Value *, 4> AdditionalValues; 1318 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1319 AdditionalValues); 1320 // If we cannot salvage any further, and haven't yet found a suitable debug 1321 // expression, bail out. 1322 if (!V) 1323 break; 1324 1325 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1326 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1327 // here for variadic dbg_values, remove that condition. 1328 if (!AdditionalValues.empty()) 1329 break; 1330 1331 // New value and expr now represent this debuginfo. 1332 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1333 1334 // Some kind of simplification occurred: check whether the operand of the 1335 // salvaged debug expression can be encoded in this DAG. 1336 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1337 /*IsVariadic=*/false)) { 1338 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1339 << *DDI.getDI() << "\nBy stripping back to:\n " << *V); 1340 return; 1341 } 1342 } 1343 1344 // This was the final opportunity to salvage this debug information, and it 1345 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1346 // any earlier variable location. 1347 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1348 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1349 DAG.AddDbgValue(SDV, false); 1350 1351 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << *DDI.getDI() 1352 << "\n"); 1353 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1354 << "\n"); 1355 } 1356 1357 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1358 DILocalVariable *Var, 1359 DIExpression *Expr, DebugLoc dl, 1360 DebugLoc InstDL, unsigned Order, 1361 bool IsVariadic) { 1362 if (Values.empty()) 1363 return true; 1364 SmallVector<SDDbgOperand> LocationOps; 1365 SmallVector<SDNode *> Dependencies; 1366 for (const Value *V : Values) { 1367 // Constant value. 1368 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1369 isa<ConstantPointerNull>(V)) { 1370 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1371 continue; 1372 } 1373 1374 // Look through IntToPtr constants. 1375 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1376 if (CE->getOpcode() == Instruction::IntToPtr) { 1377 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1378 continue; 1379 } 1380 1381 // If the Value is a frame index, we can create a FrameIndex debug value 1382 // without relying on the DAG at all. 1383 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1384 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1385 if (SI != FuncInfo.StaticAllocaMap.end()) { 1386 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1387 continue; 1388 } 1389 } 1390 1391 // Do not use getValue() in here; we don't want to generate code at 1392 // this point if it hasn't been done yet. 1393 SDValue N = NodeMap[V]; 1394 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1395 N = UnusedArgNodeMap[V]; 1396 if (N.getNode()) { 1397 // Only emit func arg dbg value for non-variadic dbg.values for now. 1398 if (!IsVariadic && 1399 EmitFuncArgumentDbgValue(V, Var, Expr, dl, 1400 FuncArgumentDbgValueKind::Value, N)) 1401 return true; 1402 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1403 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1404 // describe stack slot locations. 1405 // 1406 // Consider "int x = 0; int *px = &x;". There are two kinds of 1407 // interesting debug values here after optimization: 1408 // 1409 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1410 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1411 // 1412 // Both describe the direct values of their associated variables. 1413 Dependencies.push_back(N.getNode()); 1414 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1415 continue; 1416 } 1417 LocationOps.emplace_back( 1418 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1419 continue; 1420 } 1421 1422 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1423 // Special rules apply for the first dbg.values of parameter variables in a 1424 // function. Identify them by the fact they reference Argument Values, that 1425 // they're parameters, and they are parameters of the current function. We 1426 // need to let them dangle until they get an SDNode. 1427 bool IsParamOfFunc = 1428 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1429 if (IsParamOfFunc) 1430 return false; 1431 1432 // The value is not used in this block yet (or it would have an SDNode). 1433 // We still want the value to appear for the user if possible -- if it has 1434 // an associated VReg, we can refer to that instead. 1435 auto VMI = FuncInfo.ValueMap.find(V); 1436 if (VMI != FuncInfo.ValueMap.end()) { 1437 unsigned Reg = VMI->second; 1438 // If this is a PHI node, it may be split up into several MI PHI nodes 1439 // (in FunctionLoweringInfo::set). 1440 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1441 V->getType(), None); 1442 if (RFV.occupiesMultipleRegs()) { 1443 // FIXME: We could potentially support variadic dbg_values here. 1444 if (IsVariadic) 1445 return false; 1446 unsigned Offset = 0; 1447 unsigned BitsToDescribe = 0; 1448 if (auto VarSize = Var->getSizeInBits()) 1449 BitsToDescribe = *VarSize; 1450 if (auto Fragment = Expr->getFragmentInfo()) 1451 BitsToDescribe = Fragment->SizeInBits; 1452 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1453 // Bail out if all bits are described already. 1454 if (Offset >= BitsToDescribe) 1455 break; 1456 // TODO: handle scalable vectors. 1457 unsigned RegisterSize = RegAndSize.second; 1458 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1459 ? BitsToDescribe - Offset 1460 : RegisterSize; 1461 auto FragmentExpr = DIExpression::createFragmentExpression( 1462 Expr, Offset, FragmentSize); 1463 if (!FragmentExpr) 1464 continue; 1465 SDDbgValue *SDV = DAG.getVRegDbgValue( 1466 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1467 DAG.AddDbgValue(SDV, false); 1468 Offset += RegisterSize; 1469 } 1470 return true; 1471 } 1472 // We can use simple vreg locations for variadic dbg_values as well. 1473 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1474 continue; 1475 } 1476 // We failed to create a SDDbgOperand for V. 1477 return false; 1478 } 1479 1480 // We have created a SDDbgOperand for each Value in Values. 1481 // Should use Order instead of SDNodeOrder? 1482 assert(!LocationOps.empty()); 1483 SDDbgValue *SDV = 1484 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1485 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1486 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1487 return true; 1488 } 1489 1490 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1491 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1492 for (auto &Pair : DanglingDebugInfoMap) 1493 for (auto &DDI : Pair.second) 1494 salvageUnresolvedDbgValue(DDI); 1495 clearDanglingDebugInfo(); 1496 } 1497 1498 /// getCopyFromRegs - If there was virtual register allocated for the value V 1499 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1500 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1501 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1502 SDValue Result; 1503 1504 if (It != FuncInfo.ValueMap.end()) { 1505 Register InReg = It->second; 1506 1507 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1508 DAG.getDataLayout(), InReg, Ty, 1509 None); // This is not an ABI copy. 1510 SDValue Chain = DAG.getEntryNode(); 1511 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1512 V); 1513 resolveDanglingDebugInfo(V, Result); 1514 } 1515 1516 return Result; 1517 } 1518 1519 /// getValue - Return an SDValue for the given Value. 1520 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1521 // If we already have an SDValue for this value, use it. It's important 1522 // to do this first, so that we don't create a CopyFromReg if we already 1523 // have a regular SDValue. 1524 SDValue &N = NodeMap[V]; 1525 if (N.getNode()) return N; 1526 1527 // If there's a virtual register allocated and initialized for this 1528 // value, use it. 1529 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1530 return copyFromReg; 1531 1532 // Otherwise create a new SDValue and remember it. 1533 SDValue Val = getValueImpl(V); 1534 NodeMap[V] = Val; 1535 resolveDanglingDebugInfo(V, Val); 1536 return Val; 1537 } 1538 1539 /// getNonRegisterValue - Return an SDValue for the given Value, but 1540 /// don't look in FuncInfo.ValueMap for a virtual register. 1541 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1542 // If we already have an SDValue for this value, use it. 1543 SDValue &N = NodeMap[V]; 1544 if (N.getNode()) { 1545 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1546 // Remove the debug location from the node as the node is about to be used 1547 // in a location which may differ from the original debug location. This 1548 // is relevant to Constant and ConstantFP nodes because they can appear 1549 // as constant expressions inside PHI nodes. 1550 N->setDebugLoc(DebugLoc()); 1551 } 1552 return N; 1553 } 1554 1555 // Otherwise create a new SDValue and remember it. 1556 SDValue Val = getValueImpl(V); 1557 NodeMap[V] = Val; 1558 resolveDanglingDebugInfo(V, Val); 1559 return Val; 1560 } 1561 1562 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1563 /// Create an SDValue for the given value. 1564 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1566 1567 if (const Constant *C = dyn_cast<Constant>(V)) { 1568 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1569 1570 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1571 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1572 1573 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1574 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1575 1576 if (isa<ConstantPointerNull>(C)) { 1577 unsigned AS = V->getType()->getPointerAddressSpace(); 1578 return DAG.getConstant(0, getCurSDLoc(), 1579 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1580 } 1581 1582 if (match(C, m_VScale(DAG.getDataLayout()))) 1583 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1584 1585 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1586 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1587 1588 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1589 return DAG.getUNDEF(VT); 1590 1591 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1592 visit(CE->getOpcode(), *CE); 1593 SDValue N1 = NodeMap[V]; 1594 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1595 return N1; 1596 } 1597 1598 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1599 SmallVector<SDValue, 4> Constants; 1600 for (const Use &U : C->operands()) { 1601 SDNode *Val = getValue(U).getNode(); 1602 // If the operand is an empty aggregate, there are no values. 1603 if (!Val) continue; 1604 // Add each leaf value from the operand to the Constants list 1605 // to form a flattened list of all the values. 1606 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1607 Constants.push_back(SDValue(Val, i)); 1608 } 1609 1610 return DAG.getMergeValues(Constants, getCurSDLoc()); 1611 } 1612 1613 if (const ConstantDataSequential *CDS = 1614 dyn_cast<ConstantDataSequential>(C)) { 1615 SmallVector<SDValue, 4> Ops; 1616 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1617 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1618 // Add each leaf value from the operand to the Constants list 1619 // to form a flattened list of all the values. 1620 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1621 Ops.push_back(SDValue(Val, i)); 1622 } 1623 1624 if (isa<ArrayType>(CDS->getType())) 1625 return DAG.getMergeValues(Ops, getCurSDLoc()); 1626 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1627 } 1628 1629 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1630 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1631 "Unknown struct or array constant!"); 1632 1633 SmallVector<EVT, 4> ValueVTs; 1634 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1635 unsigned NumElts = ValueVTs.size(); 1636 if (NumElts == 0) 1637 return SDValue(); // empty struct 1638 SmallVector<SDValue, 4> Constants(NumElts); 1639 for (unsigned i = 0; i != NumElts; ++i) { 1640 EVT EltVT = ValueVTs[i]; 1641 if (isa<UndefValue>(C)) 1642 Constants[i] = DAG.getUNDEF(EltVT); 1643 else if (EltVT.isFloatingPoint()) 1644 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1645 else 1646 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1647 } 1648 1649 return DAG.getMergeValues(Constants, getCurSDLoc()); 1650 } 1651 1652 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1653 return DAG.getBlockAddress(BA, VT); 1654 1655 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1656 return getValue(Equiv->getGlobalValue()); 1657 1658 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1659 return getValue(NC->getGlobalValue()); 1660 1661 VectorType *VecTy = cast<VectorType>(V->getType()); 1662 1663 // Now that we know the number and type of the elements, get that number of 1664 // elements into the Ops array based on what kind of constant it is. 1665 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1666 SmallVector<SDValue, 16> Ops; 1667 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1668 for (unsigned i = 0; i != NumElements; ++i) 1669 Ops.push_back(getValue(CV->getOperand(i))); 1670 1671 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1672 } 1673 1674 if (isa<ConstantAggregateZero>(C)) { 1675 EVT EltVT = 1676 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1677 1678 SDValue Op; 1679 if (EltVT.isFloatingPoint()) 1680 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1681 else 1682 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1683 1684 if (isa<ScalableVectorType>(VecTy)) 1685 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1686 1687 SmallVector<SDValue, 16> Ops; 1688 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1689 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1690 } 1691 1692 llvm_unreachable("Unknown vector constant"); 1693 } 1694 1695 // If this is a static alloca, generate it as the frameindex instead of 1696 // computation. 1697 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1698 DenseMap<const AllocaInst*, int>::iterator SI = 1699 FuncInfo.StaticAllocaMap.find(AI); 1700 if (SI != FuncInfo.StaticAllocaMap.end()) 1701 return DAG.getFrameIndex(SI->second, 1702 TLI.getFrameIndexTy(DAG.getDataLayout())); 1703 } 1704 1705 // If this is an instruction which fast-isel has deferred, select it now. 1706 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1707 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1708 1709 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1710 Inst->getType(), None); 1711 SDValue Chain = DAG.getEntryNode(); 1712 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1713 } 1714 1715 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1716 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1717 1718 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1719 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1720 1721 llvm_unreachable("Can't get register for value!"); 1722 } 1723 1724 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1725 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1726 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1727 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1728 bool IsSEH = isAsynchronousEHPersonality(Pers); 1729 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1730 if (!IsSEH) 1731 CatchPadMBB->setIsEHScopeEntry(); 1732 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1733 if (IsMSVCCXX || IsCoreCLR) 1734 CatchPadMBB->setIsEHFuncletEntry(); 1735 } 1736 1737 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1738 // Update machine-CFG edge. 1739 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1740 FuncInfo.MBB->addSuccessor(TargetMBB); 1741 TargetMBB->setIsEHCatchretTarget(true); 1742 DAG.getMachineFunction().setHasEHCatchret(true); 1743 1744 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1745 bool IsSEH = isAsynchronousEHPersonality(Pers); 1746 if (IsSEH) { 1747 // If this is not a fall-through branch or optimizations are switched off, 1748 // emit the branch. 1749 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1750 TM.getOptLevel() == CodeGenOpt::None) 1751 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1752 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1753 return; 1754 } 1755 1756 // Figure out the funclet membership for the catchret's successor. 1757 // This will be used by the FuncletLayout pass to determine how to order the 1758 // BB's. 1759 // A 'catchret' returns to the outer scope's color. 1760 Value *ParentPad = I.getCatchSwitchParentPad(); 1761 const BasicBlock *SuccessorColor; 1762 if (isa<ConstantTokenNone>(ParentPad)) 1763 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1764 else 1765 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1766 assert(SuccessorColor && "No parent funclet for catchret!"); 1767 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1768 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1769 1770 // Create the terminator node. 1771 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1772 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1773 DAG.getBasicBlock(SuccessorColorMBB)); 1774 DAG.setRoot(Ret); 1775 } 1776 1777 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1778 // Don't emit any special code for the cleanuppad instruction. It just marks 1779 // the start of an EH scope/funclet. 1780 FuncInfo.MBB->setIsEHScopeEntry(); 1781 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1782 if (Pers != EHPersonality::Wasm_CXX) { 1783 FuncInfo.MBB->setIsEHFuncletEntry(); 1784 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1785 } 1786 } 1787 1788 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1789 // not match, it is OK to add only the first unwind destination catchpad to the 1790 // successors, because there will be at least one invoke instruction within the 1791 // catch scope that points to the next unwind destination, if one exists, so 1792 // CFGSort cannot mess up with BB sorting order. 1793 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1794 // call within them, and catchpads only consisting of 'catch (...)' have a 1795 // '__cxa_end_catch' call within them, both of which generate invokes in case 1796 // the next unwind destination exists, i.e., the next unwind destination is not 1797 // the caller.) 1798 // 1799 // Having at most one EH pad successor is also simpler and helps later 1800 // transformations. 1801 // 1802 // For example, 1803 // current: 1804 // invoke void @foo to ... unwind label %catch.dispatch 1805 // catch.dispatch: 1806 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1807 // catch.start: 1808 // ... 1809 // ... in this BB or some other child BB dominated by this BB there will be an 1810 // invoke that points to 'next' BB as an unwind destination 1811 // 1812 // next: ; We don't need to add this to 'current' BB's successor 1813 // ... 1814 static void findWasmUnwindDestinations( 1815 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1816 BranchProbability Prob, 1817 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1818 &UnwindDests) { 1819 while (EHPadBB) { 1820 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1821 if (isa<CleanupPadInst>(Pad)) { 1822 // Stop on cleanup pads. 1823 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1824 UnwindDests.back().first->setIsEHScopeEntry(); 1825 break; 1826 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1827 // Add the catchpad handlers to the possible destinations. We don't 1828 // continue to the unwind destination of the catchswitch for wasm. 1829 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1830 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1831 UnwindDests.back().first->setIsEHScopeEntry(); 1832 } 1833 break; 1834 } else { 1835 continue; 1836 } 1837 } 1838 } 1839 1840 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1841 /// many places it could ultimately go. In the IR, we have a single unwind 1842 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1843 /// This function skips over imaginary basic blocks that hold catchswitch 1844 /// instructions, and finds all the "real" machine 1845 /// basic block destinations. As those destinations may not be successors of 1846 /// EHPadBB, here we also calculate the edge probability to those destinations. 1847 /// The passed-in Prob is the edge probability to EHPadBB. 1848 static void findUnwindDestinations( 1849 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1850 BranchProbability Prob, 1851 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1852 &UnwindDests) { 1853 EHPersonality Personality = 1854 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1855 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1856 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1857 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1858 bool IsSEH = isAsynchronousEHPersonality(Personality); 1859 1860 if (IsWasmCXX) { 1861 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1862 assert(UnwindDests.size() <= 1 && 1863 "There should be at most one unwind destination for wasm"); 1864 return; 1865 } 1866 1867 while (EHPadBB) { 1868 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1869 BasicBlock *NewEHPadBB = nullptr; 1870 if (isa<LandingPadInst>(Pad)) { 1871 // Stop on landingpads. They are not funclets. 1872 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1873 break; 1874 } else if (isa<CleanupPadInst>(Pad)) { 1875 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1876 // personalities. 1877 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1878 UnwindDests.back().first->setIsEHScopeEntry(); 1879 UnwindDests.back().first->setIsEHFuncletEntry(); 1880 break; 1881 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1882 // Add the catchpad handlers to the possible destinations. 1883 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1884 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1885 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1886 if (IsMSVCCXX || IsCoreCLR) 1887 UnwindDests.back().first->setIsEHFuncletEntry(); 1888 if (!IsSEH) 1889 UnwindDests.back().first->setIsEHScopeEntry(); 1890 } 1891 NewEHPadBB = CatchSwitch->getUnwindDest(); 1892 } else { 1893 continue; 1894 } 1895 1896 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1897 if (BPI && NewEHPadBB) 1898 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1899 EHPadBB = NewEHPadBB; 1900 } 1901 } 1902 1903 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1904 // Update successor info. 1905 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1906 auto UnwindDest = I.getUnwindDest(); 1907 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1908 BranchProbability UnwindDestProb = 1909 (BPI && UnwindDest) 1910 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1911 : BranchProbability::getZero(); 1912 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1913 for (auto &UnwindDest : UnwindDests) { 1914 UnwindDest.first->setIsEHPad(); 1915 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1916 } 1917 FuncInfo.MBB->normalizeSuccProbs(); 1918 1919 // Create the terminator node. 1920 SDValue Ret = 1921 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1922 DAG.setRoot(Ret); 1923 } 1924 1925 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1926 report_fatal_error("visitCatchSwitch not yet implemented!"); 1927 } 1928 1929 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1930 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1931 auto &DL = DAG.getDataLayout(); 1932 SDValue Chain = getControlRoot(); 1933 SmallVector<ISD::OutputArg, 8> Outs; 1934 SmallVector<SDValue, 8> OutVals; 1935 1936 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1937 // lower 1938 // 1939 // %val = call <ty> @llvm.experimental.deoptimize() 1940 // ret <ty> %val 1941 // 1942 // differently. 1943 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1944 LowerDeoptimizingReturn(); 1945 return; 1946 } 1947 1948 if (!FuncInfo.CanLowerReturn) { 1949 unsigned DemoteReg = FuncInfo.DemoteRegister; 1950 const Function *F = I.getParent()->getParent(); 1951 1952 // Emit a store of the return value through the virtual register. 1953 // Leave Outs empty so that LowerReturn won't try to load return 1954 // registers the usual way. 1955 SmallVector<EVT, 1> PtrValueVTs; 1956 ComputeValueVTs(TLI, DL, 1957 F->getReturnType()->getPointerTo( 1958 DAG.getDataLayout().getAllocaAddrSpace()), 1959 PtrValueVTs); 1960 1961 SDValue RetPtr = 1962 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1963 SDValue RetOp = getValue(I.getOperand(0)); 1964 1965 SmallVector<EVT, 4> ValueVTs, MemVTs; 1966 SmallVector<uint64_t, 4> Offsets; 1967 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1968 &Offsets); 1969 unsigned NumValues = ValueVTs.size(); 1970 1971 SmallVector<SDValue, 4> Chains(NumValues); 1972 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1973 for (unsigned i = 0; i != NumValues; ++i) { 1974 // An aggregate return value cannot wrap around the address space, so 1975 // offsets to its parts don't wrap either. 1976 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1977 TypeSize::Fixed(Offsets[i])); 1978 1979 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1980 if (MemVTs[i] != ValueVTs[i]) 1981 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1982 Chains[i] = DAG.getStore( 1983 Chain, getCurSDLoc(), Val, 1984 // FIXME: better loc info would be nice. 1985 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1986 commonAlignment(BaseAlign, Offsets[i])); 1987 } 1988 1989 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1990 MVT::Other, Chains); 1991 } else if (I.getNumOperands() != 0) { 1992 SmallVector<EVT, 4> ValueVTs; 1993 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1994 unsigned NumValues = ValueVTs.size(); 1995 if (NumValues) { 1996 SDValue RetOp = getValue(I.getOperand(0)); 1997 1998 const Function *F = I.getParent()->getParent(); 1999 2000 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2001 I.getOperand(0)->getType(), F->getCallingConv(), 2002 /*IsVarArg*/ false, DL); 2003 2004 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2005 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2006 ExtendKind = ISD::SIGN_EXTEND; 2007 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2008 ExtendKind = ISD::ZERO_EXTEND; 2009 2010 LLVMContext &Context = F->getContext(); 2011 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2012 2013 for (unsigned j = 0; j != NumValues; ++j) { 2014 EVT VT = ValueVTs[j]; 2015 2016 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2017 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2018 2019 CallingConv::ID CC = F->getCallingConv(); 2020 2021 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2022 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2023 SmallVector<SDValue, 4> Parts(NumParts); 2024 getCopyToParts(DAG, getCurSDLoc(), 2025 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2026 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2027 2028 // 'inreg' on function refers to return value 2029 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2030 if (RetInReg) 2031 Flags.setInReg(); 2032 2033 if (I.getOperand(0)->getType()->isPointerTy()) { 2034 Flags.setPointer(); 2035 Flags.setPointerAddrSpace( 2036 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2037 } 2038 2039 if (NeedsRegBlock) { 2040 Flags.setInConsecutiveRegs(); 2041 if (j == NumValues - 1) 2042 Flags.setInConsecutiveRegsLast(); 2043 } 2044 2045 // Propagate extension type if any 2046 if (ExtendKind == ISD::SIGN_EXTEND) 2047 Flags.setSExt(); 2048 else if (ExtendKind == ISD::ZERO_EXTEND) 2049 Flags.setZExt(); 2050 2051 for (unsigned i = 0; i < NumParts; ++i) { 2052 Outs.push_back(ISD::OutputArg(Flags, 2053 Parts[i].getValueType().getSimpleVT(), 2054 VT, /*isfixed=*/true, 0, 0)); 2055 OutVals.push_back(Parts[i]); 2056 } 2057 } 2058 } 2059 } 2060 2061 // Push in swifterror virtual register as the last element of Outs. This makes 2062 // sure swifterror virtual register will be returned in the swifterror 2063 // physical register. 2064 const Function *F = I.getParent()->getParent(); 2065 if (TLI.supportSwiftError() && 2066 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2067 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2068 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2069 Flags.setSwiftError(); 2070 Outs.push_back(ISD::OutputArg( 2071 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2072 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2073 // Create SDNode for the swifterror virtual register. 2074 OutVals.push_back( 2075 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2076 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2077 EVT(TLI.getPointerTy(DL)))); 2078 } 2079 2080 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2081 CallingConv::ID CallConv = 2082 DAG.getMachineFunction().getFunction().getCallingConv(); 2083 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2084 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2085 2086 // Verify that the target's LowerReturn behaved as expected. 2087 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2088 "LowerReturn didn't return a valid chain!"); 2089 2090 // Update the DAG with the new chain value resulting from return lowering. 2091 DAG.setRoot(Chain); 2092 } 2093 2094 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2095 /// created for it, emit nodes to copy the value into the virtual 2096 /// registers. 2097 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2098 // Skip empty types 2099 if (V->getType()->isEmptyTy()) 2100 return; 2101 2102 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2103 if (VMI != FuncInfo.ValueMap.end()) { 2104 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2105 CopyValueToVirtualRegister(V, VMI->second); 2106 } 2107 } 2108 2109 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2110 /// the current basic block, add it to ValueMap now so that we'll get a 2111 /// CopyTo/FromReg. 2112 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2113 // No need to export constants. 2114 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2115 2116 // Already exported? 2117 if (FuncInfo.isExportedInst(V)) return; 2118 2119 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2120 CopyValueToVirtualRegister(V, Reg); 2121 } 2122 2123 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2124 const BasicBlock *FromBB) { 2125 // The operands of the setcc have to be in this block. We don't know 2126 // how to export them from some other block. 2127 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2128 // Can export from current BB. 2129 if (VI->getParent() == FromBB) 2130 return true; 2131 2132 // Is already exported, noop. 2133 return FuncInfo.isExportedInst(V); 2134 } 2135 2136 // If this is an argument, we can export it if the BB is the entry block or 2137 // if it is already exported. 2138 if (isa<Argument>(V)) { 2139 if (FromBB->isEntryBlock()) 2140 return true; 2141 2142 // Otherwise, can only export this if it is already exported. 2143 return FuncInfo.isExportedInst(V); 2144 } 2145 2146 // Otherwise, constants can always be exported. 2147 return true; 2148 } 2149 2150 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2151 BranchProbability 2152 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2153 const MachineBasicBlock *Dst) const { 2154 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2155 const BasicBlock *SrcBB = Src->getBasicBlock(); 2156 const BasicBlock *DstBB = Dst->getBasicBlock(); 2157 if (!BPI) { 2158 // If BPI is not available, set the default probability as 1 / N, where N is 2159 // the number of successors. 2160 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2161 return BranchProbability(1, SuccSize); 2162 } 2163 return BPI->getEdgeProbability(SrcBB, DstBB); 2164 } 2165 2166 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2167 MachineBasicBlock *Dst, 2168 BranchProbability Prob) { 2169 if (!FuncInfo.BPI) 2170 Src->addSuccessorWithoutProb(Dst); 2171 else { 2172 if (Prob.isUnknown()) 2173 Prob = getEdgeProbability(Src, Dst); 2174 Src->addSuccessor(Dst, Prob); 2175 } 2176 } 2177 2178 static bool InBlock(const Value *V, const BasicBlock *BB) { 2179 if (const Instruction *I = dyn_cast<Instruction>(V)) 2180 return I->getParent() == BB; 2181 return true; 2182 } 2183 2184 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2185 /// This function emits a branch and is used at the leaves of an OR or an 2186 /// AND operator tree. 2187 void 2188 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2189 MachineBasicBlock *TBB, 2190 MachineBasicBlock *FBB, 2191 MachineBasicBlock *CurBB, 2192 MachineBasicBlock *SwitchBB, 2193 BranchProbability TProb, 2194 BranchProbability FProb, 2195 bool InvertCond) { 2196 const BasicBlock *BB = CurBB->getBasicBlock(); 2197 2198 // If the leaf of the tree is a comparison, merge the condition into 2199 // the caseblock. 2200 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2201 // The operands of the cmp have to be in this block. We don't know 2202 // how to export them from some other block. If this is the first block 2203 // of the sequence, no exporting is needed. 2204 if (CurBB == SwitchBB || 2205 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2206 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2207 ISD::CondCode Condition; 2208 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2209 ICmpInst::Predicate Pred = 2210 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2211 Condition = getICmpCondCode(Pred); 2212 } else { 2213 const FCmpInst *FC = cast<FCmpInst>(Cond); 2214 FCmpInst::Predicate Pred = 2215 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2216 Condition = getFCmpCondCode(Pred); 2217 if (TM.Options.NoNaNsFPMath) 2218 Condition = getFCmpCodeWithoutNaN(Condition); 2219 } 2220 2221 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2222 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2223 SL->SwitchCases.push_back(CB); 2224 return; 2225 } 2226 } 2227 2228 // Create a CaseBlock record representing this branch. 2229 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2230 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2231 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2232 SL->SwitchCases.push_back(CB); 2233 } 2234 2235 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2236 MachineBasicBlock *TBB, 2237 MachineBasicBlock *FBB, 2238 MachineBasicBlock *CurBB, 2239 MachineBasicBlock *SwitchBB, 2240 Instruction::BinaryOps Opc, 2241 BranchProbability TProb, 2242 BranchProbability FProb, 2243 bool InvertCond) { 2244 // Skip over not part of the tree and remember to invert op and operands at 2245 // next level. 2246 Value *NotCond; 2247 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2248 InBlock(NotCond, CurBB->getBasicBlock())) { 2249 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2250 !InvertCond); 2251 return; 2252 } 2253 2254 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2255 const Value *BOpOp0, *BOpOp1; 2256 // Compute the effective opcode for Cond, taking into account whether it needs 2257 // to be inverted, e.g. 2258 // and (not (or A, B)), C 2259 // gets lowered as 2260 // and (and (not A, not B), C) 2261 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2262 if (BOp) { 2263 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2264 ? Instruction::And 2265 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2266 ? Instruction::Or 2267 : (Instruction::BinaryOps)0); 2268 if (InvertCond) { 2269 if (BOpc == Instruction::And) 2270 BOpc = Instruction::Or; 2271 else if (BOpc == Instruction::Or) 2272 BOpc = Instruction::And; 2273 } 2274 } 2275 2276 // If this node is not part of the or/and tree, emit it as a branch. 2277 // Note that all nodes in the tree should have same opcode. 2278 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2279 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2280 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2281 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2282 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2283 TProb, FProb, InvertCond); 2284 return; 2285 } 2286 2287 // Create TmpBB after CurBB. 2288 MachineFunction::iterator BBI(CurBB); 2289 MachineFunction &MF = DAG.getMachineFunction(); 2290 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2291 CurBB->getParent()->insert(++BBI, TmpBB); 2292 2293 if (Opc == Instruction::Or) { 2294 // Codegen X | Y as: 2295 // BB1: 2296 // jmp_if_X TBB 2297 // jmp TmpBB 2298 // TmpBB: 2299 // jmp_if_Y TBB 2300 // jmp FBB 2301 // 2302 2303 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2304 // The requirement is that 2305 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2306 // = TrueProb for original BB. 2307 // Assuming the original probabilities are A and B, one choice is to set 2308 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2309 // A/(1+B) and 2B/(1+B). This choice assumes that 2310 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2311 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2312 // TmpBB, but the math is more complicated. 2313 2314 auto NewTrueProb = TProb / 2; 2315 auto NewFalseProb = TProb / 2 + FProb; 2316 // Emit the LHS condition. 2317 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2318 NewFalseProb, InvertCond); 2319 2320 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2321 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2322 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2323 // Emit the RHS condition into TmpBB. 2324 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2325 Probs[1], InvertCond); 2326 } else { 2327 assert(Opc == Instruction::And && "Unknown merge op!"); 2328 // Codegen X & Y as: 2329 // BB1: 2330 // jmp_if_X TmpBB 2331 // jmp FBB 2332 // TmpBB: 2333 // jmp_if_Y TBB 2334 // jmp FBB 2335 // 2336 // This requires creation of TmpBB after CurBB. 2337 2338 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2339 // The requirement is that 2340 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2341 // = FalseProb for original BB. 2342 // Assuming the original probabilities are A and B, one choice is to set 2343 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2344 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2345 // TrueProb for BB1 * FalseProb for TmpBB. 2346 2347 auto NewTrueProb = TProb + FProb / 2; 2348 auto NewFalseProb = FProb / 2; 2349 // Emit the LHS condition. 2350 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2351 NewFalseProb, InvertCond); 2352 2353 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2354 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2355 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2356 // Emit the RHS condition into TmpBB. 2357 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2358 Probs[1], InvertCond); 2359 } 2360 } 2361 2362 /// If the set of cases should be emitted as a series of branches, return true. 2363 /// If we should emit this as a bunch of and/or'd together conditions, return 2364 /// false. 2365 bool 2366 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2367 if (Cases.size() != 2) return true; 2368 2369 // If this is two comparisons of the same values or'd or and'd together, they 2370 // will get folded into a single comparison, so don't emit two blocks. 2371 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2372 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2373 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2374 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2375 return false; 2376 } 2377 2378 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2379 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2380 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2381 Cases[0].CC == Cases[1].CC && 2382 isa<Constant>(Cases[0].CmpRHS) && 2383 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2384 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2385 return false; 2386 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2387 return false; 2388 } 2389 2390 return true; 2391 } 2392 2393 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2394 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2395 2396 // Update machine-CFG edges. 2397 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2398 2399 if (I.isUnconditional()) { 2400 // Update machine-CFG edges. 2401 BrMBB->addSuccessor(Succ0MBB); 2402 2403 // If this is not a fall-through branch or optimizations are switched off, 2404 // emit the branch. 2405 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2406 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2407 MVT::Other, getControlRoot(), 2408 DAG.getBasicBlock(Succ0MBB))); 2409 2410 return; 2411 } 2412 2413 // If this condition is one of the special cases we handle, do special stuff 2414 // now. 2415 const Value *CondVal = I.getCondition(); 2416 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2417 2418 // If this is a series of conditions that are or'd or and'd together, emit 2419 // this as a sequence of branches instead of setcc's with and/or operations. 2420 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2421 // unpredictable branches, and vector extracts because those jumps are likely 2422 // expensive for any target), this should improve performance. 2423 // For example, instead of something like: 2424 // cmp A, B 2425 // C = seteq 2426 // cmp D, E 2427 // F = setle 2428 // or C, F 2429 // jnz foo 2430 // Emit: 2431 // cmp A, B 2432 // je foo 2433 // cmp D, E 2434 // jle foo 2435 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2436 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2437 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2438 Value *Vec; 2439 const Value *BOp0, *BOp1; 2440 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2441 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2442 Opcode = Instruction::And; 2443 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2444 Opcode = Instruction::Or; 2445 2446 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2447 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2448 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2449 getEdgeProbability(BrMBB, Succ0MBB), 2450 getEdgeProbability(BrMBB, Succ1MBB), 2451 /*InvertCond=*/false); 2452 // If the compares in later blocks need to use values not currently 2453 // exported from this block, export them now. This block should always 2454 // be the first entry. 2455 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2456 2457 // Allow some cases to be rejected. 2458 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2459 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2460 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2461 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2462 } 2463 2464 // Emit the branch for this block. 2465 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2466 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2467 return; 2468 } 2469 2470 // Okay, we decided not to do this, remove any inserted MBB's and clear 2471 // SwitchCases. 2472 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2473 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2474 2475 SL->SwitchCases.clear(); 2476 } 2477 } 2478 2479 // Create a CaseBlock record representing this branch. 2480 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2481 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2482 2483 // Use visitSwitchCase to actually insert the fast branch sequence for this 2484 // cond branch. 2485 visitSwitchCase(CB, BrMBB); 2486 } 2487 2488 /// visitSwitchCase - Emits the necessary code to represent a single node in 2489 /// the binary search tree resulting from lowering a switch instruction. 2490 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2491 MachineBasicBlock *SwitchBB) { 2492 SDValue Cond; 2493 SDValue CondLHS = getValue(CB.CmpLHS); 2494 SDLoc dl = CB.DL; 2495 2496 if (CB.CC == ISD::SETTRUE) { 2497 // Branch or fall through to TrueBB. 2498 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2499 SwitchBB->normalizeSuccProbs(); 2500 if (CB.TrueBB != NextBlock(SwitchBB)) { 2501 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2502 DAG.getBasicBlock(CB.TrueBB))); 2503 } 2504 return; 2505 } 2506 2507 auto &TLI = DAG.getTargetLoweringInfo(); 2508 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2509 2510 // Build the setcc now. 2511 if (!CB.CmpMHS) { 2512 // Fold "(X == true)" to X and "(X == false)" to !X to 2513 // handle common cases produced by branch lowering. 2514 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2515 CB.CC == ISD::SETEQ) 2516 Cond = CondLHS; 2517 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2518 CB.CC == ISD::SETEQ) { 2519 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2520 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2521 } else { 2522 SDValue CondRHS = getValue(CB.CmpRHS); 2523 2524 // If a pointer's DAG type is larger than its memory type then the DAG 2525 // values are zero-extended. This breaks signed comparisons so truncate 2526 // back to the underlying type before doing the compare. 2527 if (CondLHS.getValueType() != MemVT) { 2528 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2529 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2530 } 2531 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2532 } 2533 } else { 2534 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2535 2536 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2537 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2538 2539 SDValue CmpOp = getValue(CB.CmpMHS); 2540 EVT VT = CmpOp.getValueType(); 2541 2542 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2543 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2544 ISD::SETLE); 2545 } else { 2546 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2547 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2548 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2549 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2550 } 2551 } 2552 2553 // Update successor info 2554 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2555 // TrueBB and FalseBB are always different unless the incoming IR is 2556 // degenerate. This only happens when running llc on weird IR. 2557 if (CB.TrueBB != CB.FalseBB) 2558 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2559 SwitchBB->normalizeSuccProbs(); 2560 2561 // If the lhs block is the next block, invert the condition so that we can 2562 // fall through to the lhs instead of the rhs block. 2563 if (CB.TrueBB == NextBlock(SwitchBB)) { 2564 std::swap(CB.TrueBB, CB.FalseBB); 2565 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2566 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2567 } 2568 2569 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2570 MVT::Other, getControlRoot(), Cond, 2571 DAG.getBasicBlock(CB.TrueBB)); 2572 2573 setValue(CurInst, BrCond); 2574 2575 // Insert the false branch. Do this even if it's a fall through branch, 2576 // this makes it easier to do DAG optimizations which require inverting 2577 // the branch condition. 2578 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2579 DAG.getBasicBlock(CB.FalseBB)); 2580 2581 DAG.setRoot(BrCond); 2582 } 2583 2584 /// visitJumpTable - Emit JumpTable node in the current MBB 2585 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2586 // Emit the code for the jump table 2587 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2588 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2589 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2590 JT.Reg, PTy); 2591 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2592 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2593 MVT::Other, Index.getValue(1), 2594 Table, Index); 2595 DAG.setRoot(BrJumpTable); 2596 } 2597 2598 /// visitJumpTableHeader - This function emits necessary code to produce index 2599 /// in the JumpTable from switch case. 2600 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2601 JumpTableHeader &JTH, 2602 MachineBasicBlock *SwitchBB) { 2603 SDLoc dl = getCurSDLoc(); 2604 2605 // Subtract the lowest switch case value from the value being switched on. 2606 SDValue SwitchOp = getValue(JTH.SValue); 2607 EVT VT = SwitchOp.getValueType(); 2608 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2609 DAG.getConstant(JTH.First, dl, VT)); 2610 2611 // The SDNode we just created, which holds the value being switched on minus 2612 // the smallest case value, needs to be copied to a virtual register so it 2613 // can be used as an index into the jump table in a subsequent basic block. 2614 // This value may be smaller or larger than the target's pointer type, and 2615 // therefore require extension or truncating. 2616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2617 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2618 2619 unsigned JumpTableReg = 2620 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2621 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2622 JumpTableReg, SwitchOp); 2623 JT.Reg = JumpTableReg; 2624 2625 if (!JTH.FallthroughUnreachable) { 2626 // Emit the range check for the jump table, and branch to the default block 2627 // for the switch statement if the value being switched on exceeds the 2628 // largest case in the switch. 2629 SDValue CMP = DAG.getSetCC( 2630 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2631 Sub.getValueType()), 2632 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2633 2634 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2635 MVT::Other, CopyTo, CMP, 2636 DAG.getBasicBlock(JT.Default)); 2637 2638 // Avoid emitting unnecessary branches to the next block. 2639 if (JT.MBB != NextBlock(SwitchBB)) 2640 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2641 DAG.getBasicBlock(JT.MBB)); 2642 2643 DAG.setRoot(BrCond); 2644 } else { 2645 // Avoid emitting unnecessary branches to the next block. 2646 if (JT.MBB != NextBlock(SwitchBB)) 2647 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2648 DAG.getBasicBlock(JT.MBB))); 2649 else 2650 DAG.setRoot(CopyTo); 2651 } 2652 } 2653 2654 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2655 /// variable if there exists one. 2656 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2657 SDValue &Chain) { 2658 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2659 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2660 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2661 MachineFunction &MF = DAG.getMachineFunction(); 2662 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2663 MachineSDNode *Node = 2664 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2665 if (Global) { 2666 MachinePointerInfo MPInfo(Global); 2667 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2668 MachineMemOperand::MODereferenceable; 2669 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2670 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2671 DAG.setNodeMemRefs(Node, {MemRef}); 2672 } 2673 if (PtrTy != PtrMemTy) 2674 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2675 return SDValue(Node, 0); 2676 } 2677 2678 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2679 /// tail spliced into a stack protector check success bb. 2680 /// 2681 /// For a high level explanation of how this fits into the stack protector 2682 /// generation see the comment on the declaration of class 2683 /// StackProtectorDescriptor. 2684 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2685 MachineBasicBlock *ParentBB) { 2686 2687 // First create the loads to the guard/stack slot for the comparison. 2688 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2689 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2690 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2691 2692 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2693 int FI = MFI.getStackProtectorIndex(); 2694 2695 SDValue Guard; 2696 SDLoc dl = getCurSDLoc(); 2697 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2698 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2699 Align Align = 2700 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2701 2702 // Generate code to load the content of the guard slot. 2703 SDValue GuardVal = DAG.getLoad( 2704 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2705 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2706 MachineMemOperand::MOVolatile); 2707 2708 if (TLI.useStackGuardXorFP()) 2709 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2710 2711 // Retrieve guard check function, nullptr if instrumentation is inlined. 2712 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2713 // The target provides a guard check function to validate the guard value. 2714 // Generate a call to that function with the content of the guard slot as 2715 // argument. 2716 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2717 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2718 2719 TargetLowering::ArgListTy Args; 2720 TargetLowering::ArgListEntry Entry; 2721 Entry.Node = GuardVal; 2722 Entry.Ty = FnTy->getParamType(0); 2723 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2724 Entry.IsInReg = true; 2725 Args.push_back(Entry); 2726 2727 TargetLowering::CallLoweringInfo CLI(DAG); 2728 CLI.setDebugLoc(getCurSDLoc()) 2729 .setChain(DAG.getEntryNode()) 2730 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2731 getValue(GuardCheckFn), std::move(Args)); 2732 2733 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2734 DAG.setRoot(Result.second); 2735 return; 2736 } 2737 2738 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2739 // Otherwise, emit a volatile load to retrieve the stack guard value. 2740 SDValue Chain = DAG.getEntryNode(); 2741 if (TLI.useLoadStackGuardNode()) { 2742 Guard = getLoadStackGuard(DAG, dl, Chain); 2743 } else { 2744 const Value *IRGuard = TLI.getSDagStackGuard(M); 2745 SDValue GuardPtr = getValue(IRGuard); 2746 2747 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2748 MachinePointerInfo(IRGuard, 0), Align, 2749 MachineMemOperand::MOVolatile); 2750 } 2751 2752 // Perform the comparison via a getsetcc. 2753 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2754 *DAG.getContext(), 2755 Guard.getValueType()), 2756 Guard, GuardVal, ISD::SETNE); 2757 2758 // If the guard/stackslot do not equal, branch to failure MBB. 2759 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2760 MVT::Other, GuardVal.getOperand(0), 2761 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2762 // Otherwise branch to success MBB. 2763 SDValue Br = DAG.getNode(ISD::BR, dl, 2764 MVT::Other, BrCond, 2765 DAG.getBasicBlock(SPD.getSuccessMBB())); 2766 2767 DAG.setRoot(Br); 2768 } 2769 2770 /// Codegen the failure basic block for a stack protector check. 2771 /// 2772 /// A failure stack protector machine basic block consists simply of a call to 2773 /// __stack_chk_fail(). 2774 /// 2775 /// For a high level explanation of how this fits into the stack protector 2776 /// generation see the comment on the declaration of class 2777 /// StackProtectorDescriptor. 2778 void 2779 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2781 TargetLowering::MakeLibCallOptions CallOptions; 2782 CallOptions.setDiscardResult(true); 2783 SDValue Chain = 2784 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2785 None, CallOptions, getCurSDLoc()).second; 2786 // On PS4/PS5, the "return address" must still be within the calling 2787 // function, even if it's at the very end, so emit an explicit TRAP here. 2788 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2789 if (TM.getTargetTriple().isPS()) 2790 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2791 // WebAssembly needs an unreachable instruction after a non-returning call, 2792 // because the function return type can be different from __stack_chk_fail's 2793 // return type (void). 2794 if (TM.getTargetTriple().isWasm()) 2795 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2796 2797 DAG.setRoot(Chain); 2798 } 2799 2800 /// visitBitTestHeader - This function emits necessary code to produce value 2801 /// suitable for "bit tests" 2802 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2803 MachineBasicBlock *SwitchBB) { 2804 SDLoc dl = getCurSDLoc(); 2805 2806 // Subtract the minimum value. 2807 SDValue SwitchOp = getValue(B.SValue); 2808 EVT VT = SwitchOp.getValueType(); 2809 SDValue RangeSub = 2810 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2811 2812 // Determine the type of the test operands. 2813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2814 bool UsePtrType = false; 2815 if (!TLI.isTypeLegal(VT)) { 2816 UsePtrType = true; 2817 } else { 2818 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2819 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2820 // Switch table case range are encoded into series of masks. 2821 // Just use pointer type, it's guaranteed to fit. 2822 UsePtrType = true; 2823 break; 2824 } 2825 } 2826 SDValue Sub = RangeSub; 2827 if (UsePtrType) { 2828 VT = TLI.getPointerTy(DAG.getDataLayout()); 2829 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2830 } 2831 2832 B.RegVT = VT.getSimpleVT(); 2833 B.Reg = FuncInfo.CreateReg(B.RegVT); 2834 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2835 2836 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2837 2838 if (!B.FallthroughUnreachable) 2839 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2840 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2841 SwitchBB->normalizeSuccProbs(); 2842 2843 SDValue Root = CopyTo; 2844 if (!B.FallthroughUnreachable) { 2845 // Conditional branch to the default block. 2846 SDValue RangeCmp = DAG.getSetCC(dl, 2847 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2848 RangeSub.getValueType()), 2849 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2850 ISD::SETUGT); 2851 2852 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2853 DAG.getBasicBlock(B.Default)); 2854 } 2855 2856 // Avoid emitting unnecessary branches to the next block. 2857 if (MBB != NextBlock(SwitchBB)) 2858 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2859 2860 DAG.setRoot(Root); 2861 } 2862 2863 /// visitBitTestCase - this function produces one "bit test" 2864 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2865 MachineBasicBlock* NextMBB, 2866 BranchProbability BranchProbToNext, 2867 unsigned Reg, 2868 BitTestCase &B, 2869 MachineBasicBlock *SwitchBB) { 2870 SDLoc dl = getCurSDLoc(); 2871 MVT VT = BB.RegVT; 2872 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2873 SDValue Cmp; 2874 unsigned PopCount = countPopulation(B.Mask); 2875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2876 if (PopCount == 1) { 2877 // Testing for a single bit; just compare the shift count with what it 2878 // would need to be to shift a 1 bit in that position. 2879 Cmp = DAG.getSetCC( 2880 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2881 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2882 ISD::SETEQ); 2883 } else if (PopCount == BB.Range) { 2884 // There is only one zero bit in the range, test for it directly. 2885 Cmp = DAG.getSetCC( 2886 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2887 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2888 ISD::SETNE); 2889 } else { 2890 // Make desired shift 2891 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2892 DAG.getConstant(1, dl, VT), ShiftOp); 2893 2894 // Emit bit tests and jumps 2895 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2896 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2897 Cmp = DAG.getSetCC( 2898 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2899 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2900 } 2901 2902 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2903 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2904 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2905 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2906 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2907 // one as they are relative probabilities (and thus work more like weights), 2908 // and hence we need to normalize them to let the sum of them become one. 2909 SwitchBB->normalizeSuccProbs(); 2910 2911 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2912 MVT::Other, getControlRoot(), 2913 Cmp, DAG.getBasicBlock(B.TargetBB)); 2914 2915 // Avoid emitting unnecessary branches to the next block. 2916 if (NextMBB != NextBlock(SwitchBB)) 2917 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2918 DAG.getBasicBlock(NextMBB)); 2919 2920 DAG.setRoot(BrAnd); 2921 } 2922 2923 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2924 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2925 2926 // Retrieve successors. Look through artificial IR level blocks like 2927 // catchswitch for successors. 2928 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2929 const BasicBlock *EHPadBB = I.getSuccessor(1); 2930 2931 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2932 // have to do anything here to lower funclet bundles. 2933 assert(!I.hasOperandBundlesOtherThan( 2934 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2935 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2936 LLVMContext::OB_cfguardtarget, 2937 LLVMContext::OB_clang_arc_attachedcall}) && 2938 "Cannot lower invokes with arbitrary operand bundles yet!"); 2939 2940 const Value *Callee(I.getCalledOperand()); 2941 const Function *Fn = dyn_cast<Function>(Callee); 2942 if (isa<InlineAsm>(Callee)) 2943 visitInlineAsm(I, EHPadBB); 2944 else if (Fn && Fn->isIntrinsic()) { 2945 switch (Fn->getIntrinsicID()) { 2946 default: 2947 llvm_unreachable("Cannot invoke this intrinsic"); 2948 case Intrinsic::donothing: 2949 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2950 case Intrinsic::seh_try_begin: 2951 case Intrinsic::seh_scope_begin: 2952 case Intrinsic::seh_try_end: 2953 case Intrinsic::seh_scope_end: 2954 break; 2955 case Intrinsic::experimental_patchpoint_void: 2956 case Intrinsic::experimental_patchpoint_i64: 2957 visitPatchpoint(I, EHPadBB); 2958 break; 2959 case Intrinsic::experimental_gc_statepoint: 2960 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2961 break; 2962 case Intrinsic::wasm_rethrow: { 2963 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2964 // special because it can be invoked, so we manually lower it to a DAG 2965 // node here. 2966 SmallVector<SDValue, 8> Ops; 2967 Ops.push_back(getRoot()); // inchain 2968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2969 Ops.push_back( 2970 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2971 TLI.getPointerTy(DAG.getDataLayout()))); 2972 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2973 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2974 break; 2975 } 2976 } 2977 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2978 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2979 // Eventually we will support lowering the @llvm.experimental.deoptimize 2980 // intrinsic, and right now there are no plans to support other intrinsics 2981 // with deopt state. 2982 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2983 } else { 2984 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2985 } 2986 2987 // If the value of the invoke is used outside of its defining block, make it 2988 // available as a virtual register. 2989 // We already took care of the exported value for the statepoint instruction 2990 // during call to the LowerStatepoint. 2991 if (!isa<GCStatepointInst>(I)) { 2992 CopyToExportRegsIfNeeded(&I); 2993 } 2994 2995 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2996 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2997 BranchProbability EHPadBBProb = 2998 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2999 : BranchProbability::getZero(); 3000 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3001 3002 // Update successor info. 3003 addSuccessorWithProb(InvokeMBB, Return); 3004 for (auto &UnwindDest : UnwindDests) { 3005 UnwindDest.first->setIsEHPad(); 3006 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3007 } 3008 InvokeMBB->normalizeSuccProbs(); 3009 3010 // Drop into normal successor. 3011 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3012 DAG.getBasicBlock(Return))); 3013 } 3014 3015 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3016 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3017 3018 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3019 // have to do anything here to lower funclet bundles. 3020 assert(!I.hasOperandBundlesOtherThan( 3021 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3022 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3023 3024 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3025 visitInlineAsm(I); 3026 CopyToExportRegsIfNeeded(&I); 3027 3028 // Retrieve successors. 3029 SmallPtrSet<BasicBlock *, 8> Dests; 3030 Dests.insert(I.getDefaultDest()); 3031 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3032 3033 // Update successor info. 3034 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3035 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3036 BasicBlock *Dest = I.getIndirectDest(i); 3037 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3038 Target->setIsInlineAsmBrIndirectTarget(); 3039 Target->setMachineBlockAddressTaken(); 3040 Target->setLabelMustBeEmitted(); 3041 // Don't add duplicate machine successors. 3042 if (Dests.insert(Dest).second) 3043 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3044 } 3045 CallBrMBB->normalizeSuccProbs(); 3046 3047 // Drop into default successor. 3048 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3049 MVT::Other, getControlRoot(), 3050 DAG.getBasicBlock(Return))); 3051 } 3052 3053 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3054 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3055 } 3056 3057 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3058 assert(FuncInfo.MBB->isEHPad() && 3059 "Call to landingpad not in landing pad!"); 3060 3061 // If there aren't registers to copy the values into (e.g., during SjLj 3062 // exceptions), then don't bother to create these DAG nodes. 3063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3064 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3065 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3066 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3067 return; 3068 3069 // If landingpad's return type is token type, we don't create DAG nodes 3070 // for its exception pointer and selector value. The extraction of exception 3071 // pointer or selector value from token type landingpads is not currently 3072 // supported. 3073 if (LP.getType()->isTokenTy()) 3074 return; 3075 3076 SmallVector<EVT, 2> ValueVTs; 3077 SDLoc dl = getCurSDLoc(); 3078 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3079 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3080 3081 // Get the two live-in registers as SDValues. The physregs have already been 3082 // copied into virtual registers. 3083 SDValue Ops[2]; 3084 if (FuncInfo.ExceptionPointerVirtReg) { 3085 Ops[0] = DAG.getZExtOrTrunc( 3086 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3087 FuncInfo.ExceptionPointerVirtReg, 3088 TLI.getPointerTy(DAG.getDataLayout())), 3089 dl, ValueVTs[0]); 3090 } else { 3091 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3092 } 3093 Ops[1] = DAG.getZExtOrTrunc( 3094 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3095 FuncInfo.ExceptionSelectorVirtReg, 3096 TLI.getPointerTy(DAG.getDataLayout())), 3097 dl, ValueVTs[1]); 3098 3099 // Merge into one. 3100 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3101 DAG.getVTList(ValueVTs), Ops); 3102 setValue(&LP, Res); 3103 } 3104 3105 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3106 MachineBasicBlock *Last) { 3107 // Update JTCases. 3108 for (JumpTableBlock &JTB : SL->JTCases) 3109 if (JTB.first.HeaderBB == First) 3110 JTB.first.HeaderBB = Last; 3111 3112 // Update BitTestCases. 3113 for (BitTestBlock &BTB : SL->BitTestCases) 3114 if (BTB.Parent == First) 3115 BTB.Parent = Last; 3116 } 3117 3118 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3119 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3120 3121 // Update machine-CFG edges with unique successors. 3122 SmallSet<BasicBlock*, 32> Done; 3123 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3124 BasicBlock *BB = I.getSuccessor(i); 3125 bool Inserted = Done.insert(BB).second; 3126 if (!Inserted) 3127 continue; 3128 3129 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3130 addSuccessorWithProb(IndirectBrMBB, Succ); 3131 } 3132 IndirectBrMBB->normalizeSuccProbs(); 3133 3134 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3135 MVT::Other, getControlRoot(), 3136 getValue(I.getAddress()))); 3137 } 3138 3139 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3140 if (!DAG.getTarget().Options.TrapUnreachable) 3141 return; 3142 3143 // We may be able to ignore unreachable behind a noreturn call. 3144 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3145 const BasicBlock &BB = *I.getParent(); 3146 if (&I != &BB.front()) { 3147 BasicBlock::const_iterator PredI = 3148 std::prev(BasicBlock::const_iterator(&I)); 3149 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3150 if (Call->doesNotReturn()) 3151 return; 3152 } 3153 } 3154 } 3155 3156 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3157 } 3158 3159 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3160 SDNodeFlags Flags; 3161 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3162 Flags.copyFMF(*FPOp); 3163 3164 SDValue Op = getValue(I.getOperand(0)); 3165 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3166 Op, Flags); 3167 setValue(&I, UnNodeValue); 3168 } 3169 3170 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3171 SDNodeFlags Flags; 3172 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3173 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3174 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3175 } 3176 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3177 Flags.setExact(ExactOp->isExact()); 3178 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3179 Flags.copyFMF(*FPOp); 3180 3181 SDValue Op1 = getValue(I.getOperand(0)); 3182 SDValue Op2 = getValue(I.getOperand(1)); 3183 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3184 Op1, Op2, Flags); 3185 setValue(&I, BinNodeValue); 3186 } 3187 3188 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3189 SDValue Op1 = getValue(I.getOperand(0)); 3190 SDValue Op2 = getValue(I.getOperand(1)); 3191 3192 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3193 Op1.getValueType(), DAG.getDataLayout()); 3194 3195 // Coerce the shift amount to the right type if we can. This exposes the 3196 // truncate or zext to optimization early. 3197 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3198 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3199 "Unexpected shift type"); 3200 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3201 } 3202 3203 bool nuw = false; 3204 bool nsw = false; 3205 bool exact = false; 3206 3207 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3208 3209 if (const OverflowingBinaryOperator *OFBinOp = 3210 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3211 nuw = OFBinOp->hasNoUnsignedWrap(); 3212 nsw = OFBinOp->hasNoSignedWrap(); 3213 } 3214 if (const PossiblyExactOperator *ExactOp = 3215 dyn_cast<const PossiblyExactOperator>(&I)) 3216 exact = ExactOp->isExact(); 3217 } 3218 SDNodeFlags Flags; 3219 Flags.setExact(exact); 3220 Flags.setNoSignedWrap(nsw); 3221 Flags.setNoUnsignedWrap(nuw); 3222 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3223 Flags); 3224 setValue(&I, Res); 3225 } 3226 3227 void SelectionDAGBuilder::visitSDiv(const User &I) { 3228 SDValue Op1 = getValue(I.getOperand(0)); 3229 SDValue Op2 = getValue(I.getOperand(1)); 3230 3231 SDNodeFlags Flags; 3232 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3233 cast<PossiblyExactOperator>(&I)->isExact()); 3234 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3235 Op2, Flags)); 3236 } 3237 3238 void SelectionDAGBuilder::visitICmp(const User &I) { 3239 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3240 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3241 predicate = IC->getPredicate(); 3242 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3243 predicate = ICmpInst::Predicate(IC->getPredicate()); 3244 SDValue Op1 = getValue(I.getOperand(0)); 3245 SDValue Op2 = getValue(I.getOperand(1)); 3246 ISD::CondCode Opcode = getICmpCondCode(predicate); 3247 3248 auto &TLI = DAG.getTargetLoweringInfo(); 3249 EVT MemVT = 3250 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3251 3252 // If a pointer's DAG type is larger than its memory type then the DAG values 3253 // are zero-extended. This breaks signed comparisons so truncate back to the 3254 // underlying type before doing the compare. 3255 if (Op1.getValueType() != MemVT) { 3256 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3257 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3258 } 3259 3260 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3261 I.getType()); 3262 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3263 } 3264 3265 void SelectionDAGBuilder::visitFCmp(const User &I) { 3266 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3267 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3268 predicate = FC->getPredicate(); 3269 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3270 predicate = FCmpInst::Predicate(FC->getPredicate()); 3271 SDValue Op1 = getValue(I.getOperand(0)); 3272 SDValue Op2 = getValue(I.getOperand(1)); 3273 3274 ISD::CondCode Condition = getFCmpCondCode(predicate); 3275 auto *FPMO = cast<FPMathOperator>(&I); 3276 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3277 Condition = getFCmpCodeWithoutNaN(Condition); 3278 3279 SDNodeFlags Flags; 3280 Flags.copyFMF(*FPMO); 3281 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3282 3283 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3284 I.getType()); 3285 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3286 } 3287 3288 // Check if the condition of the select has one use or two users that are both 3289 // selects with the same condition. 3290 static bool hasOnlySelectUsers(const Value *Cond) { 3291 return llvm::all_of(Cond->users(), [](const Value *V) { 3292 return isa<SelectInst>(V); 3293 }); 3294 } 3295 3296 void SelectionDAGBuilder::visitSelect(const User &I) { 3297 SmallVector<EVT, 4> ValueVTs; 3298 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3299 ValueVTs); 3300 unsigned NumValues = ValueVTs.size(); 3301 if (NumValues == 0) return; 3302 3303 SmallVector<SDValue, 4> Values(NumValues); 3304 SDValue Cond = getValue(I.getOperand(0)); 3305 SDValue LHSVal = getValue(I.getOperand(1)); 3306 SDValue RHSVal = getValue(I.getOperand(2)); 3307 SmallVector<SDValue, 1> BaseOps(1, Cond); 3308 ISD::NodeType OpCode = 3309 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3310 3311 bool IsUnaryAbs = false; 3312 bool Negate = false; 3313 3314 SDNodeFlags Flags; 3315 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3316 Flags.copyFMF(*FPOp); 3317 3318 // Min/max matching is only viable if all output VTs are the same. 3319 if (all_equal(ValueVTs)) { 3320 EVT VT = ValueVTs[0]; 3321 LLVMContext &Ctx = *DAG.getContext(); 3322 auto &TLI = DAG.getTargetLoweringInfo(); 3323 3324 // We care about the legality of the operation after it has been type 3325 // legalized. 3326 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3327 VT = TLI.getTypeToTransformTo(Ctx, VT); 3328 3329 // If the vselect is legal, assume we want to leave this as a vector setcc + 3330 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3331 // min/max is legal on the scalar type. 3332 bool UseScalarMinMax = VT.isVector() && 3333 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3334 3335 Value *LHS, *RHS; 3336 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3337 ISD::NodeType Opc = ISD::DELETED_NODE; 3338 switch (SPR.Flavor) { 3339 case SPF_UMAX: Opc = ISD::UMAX; break; 3340 case SPF_UMIN: Opc = ISD::UMIN; break; 3341 case SPF_SMAX: Opc = ISD::SMAX; break; 3342 case SPF_SMIN: Opc = ISD::SMIN; break; 3343 case SPF_FMINNUM: 3344 switch (SPR.NaNBehavior) { 3345 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3346 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3347 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3348 case SPNB_RETURNS_ANY: { 3349 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3350 Opc = ISD::FMINNUM; 3351 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3352 Opc = ISD::FMINIMUM; 3353 else if (UseScalarMinMax) 3354 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3355 ISD::FMINNUM : ISD::FMINIMUM; 3356 break; 3357 } 3358 } 3359 break; 3360 case SPF_FMAXNUM: 3361 switch (SPR.NaNBehavior) { 3362 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3363 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3364 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3365 case SPNB_RETURNS_ANY: 3366 3367 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3368 Opc = ISD::FMAXNUM; 3369 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3370 Opc = ISD::FMAXIMUM; 3371 else if (UseScalarMinMax) 3372 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3373 ISD::FMAXNUM : ISD::FMAXIMUM; 3374 break; 3375 } 3376 break; 3377 case SPF_NABS: 3378 Negate = true; 3379 [[fallthrough]]; 3380 case SPF_ABS: 3381 IsUnaryAbs = true; 3382 Opc = ISD::ABS; 3383 break; 3384 default: break; 3385 } 3386 3387 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3388 (TLI.isOperationLegalOrCustom(Opc, VT) || 3389 (UseScalarMinMax && 3390 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3391 // If the underlying comparison instruction is used by any other 3392 // instruction, the consumed instructions won't be destroyed, so it is 3393 // not profitable to convert to a min/max. 3394 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3395 OpCode = Opc; 3396 LHSVal = getValue(LHS); 3397 RHSVal = getValue(RHS); 3398 BaseOps.clear(); 3399 } 3400 3401 if (IsUnaryAbs) { 3402 OpCode = Opc; 3403 LHSVal = getValue(LHS); 3404 BaseOps.clear(); 3405 } 3406 } 3407 3408 if (IsUnaryAbs) { 3409 for (unsigned i = 0; i != NumValues; ++i) { 3410 SDLoc dl = getCurSDLoc(); 3411 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3412 Values[i] = 3413 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3414 if (Negate) 3415 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3416 Values[i]); 3417 } 3418 } else { 3419 for (unsigned i = 0; i != NumValues; ++i) { 3420 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3421 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3422 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3423 Values[i] = DAG.getNode( 3424 OpCode, getCurSDLoc(), 3425 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3426 } 3427 } 3428 3429 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3430 DAG.getVTList(ValueVTs), Values)); 3431 } 3432 3433 void SelectionDAGBuilder::visitTrunc(const User &I) { 3434 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3435 SDValue N = getValue(I.getOperand(0)); 3436 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3437 I.getType()); 3438 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3439 } 3440 3441 void SelectionDAGBuilder::visitZExt(const User &I) { 3442 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3443 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3444 SDValue N = getValue(I.getOperand(0)); 3445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3446 I.getType()); 3447 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3448 } 3449 3450 void SelectionDAGBuilder::visitSExt(const User &I) { 3451 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3452 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3453 SDValue N = getValue(I.getOperand(0)); 3454 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3455 I.getType()); 3456 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3457 } 3458 3459 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3460 // FPTrunc is never a no-op cast, no need to check 3461 SDValue N = getValue(I.getOperand(0)); 3462 SDLoc dl = getCurSDLoc(); 3463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3464 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3465 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3466 DAG.getTargetConstant( 3467 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3468 } 3469 3470 void SelectionDAGBuilder::visitFPExt(const User &I) { 3471 // FPExt is never a no-op cast, no need to check 3472 SDValue N = getValue(I.getOperand(0)); 3473 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3474 I.getType()); 3475 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3476 } 3477 3478 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3479 // FPToUI is never a no-op cast, no need to check 3480 SDValue N = getValue(I.getOperand(0)); 3481 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3482 I.getType()); 3483 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3484 } 3485 3486 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3487 // FPToSI is never a no-op cast, no need to check 3488 SDValue N = getValue(I.getOperand(0)); 3489 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3490 I.getType()); 3491 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3492 } 3493 3494 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3495 // UIToFP is never a no-op cast, no need to check 3496 SDValue N = getValue(I.getOperand(0)); 3497 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3498 I.getType()); 3499 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3500 } 3501 3502 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3503 // SIToFP is never a no-op cast, no need to check 3504 SDValue N = getValue(I.getOperand(0)); 3505 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3506 I.getType()); 3507 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3508 } 3509 3510 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3511 // What to do depends on the size of the integer and the size of the pointer. 3512 // We can either truncate, zero extend, or no-op, accordingly. 3513 SDValue N = getValue(I.getOperand(0)); 3514 auto &TLI = DAG.getTargetLoweringInfo(); 3515 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3516 I.getType()); 3517 EVT PtrMemVT = 3518 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3519 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3520 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3521 setValue(&I, N); 3522 } 3523 3524 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3525 // What to do depends on the size of the integer and the size of the pointer. 3526 // We can either truncate, zero extend, or no-op, accordingly. 3527 SDValue N = getValue(I.getOperand(0)); 3528 auto &TLI = DAG.getTargetLoweringInfo(); 3529 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3530 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3531 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3532 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3533 setValue(&I, N); 3534 } 3535 3536 void SelectionDAGBuilder::visitBitCast(const User &I) { 3537 SDValue N = getValue(I.getOperand(0)); 3538 SDLoc dl = getCurSDLoc(); 3539 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3540 I.getType()); 3541 3542 // BitCast assures us that source and destination are the same size so this is 3543 // either a BITCAST or a no-op. 3544 if (DestVT != N.getValueType()) 3545 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3546 DestVT, N)); // convert types. 3547 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3548 // might fold any kind of constant expression to an integer constant and that 3549 // is not what we are looking for. Only recognize a bitcast of a genuine 3550 // constant integer as an opaque constant. 3551 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3552 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3553 /*isOpaque*/true)); 3554 else 3555 setValue(&I, N); // noop cast. 3556 } 3557 3558 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3560 const Value *SV = I.getOperand(0); 3561 SDValue N = getValue(SV); 3562 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3563 3564 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3565 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3566 3567 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3568 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3569 3570 setValue(&I, N); 3571 } 3572 3573 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3575 SDValue InVec = getValue(I.getOperand(0)); 3576 SDValue InVal = getValue(I.getOperand(1)); 3577 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3578 TLI.getVectorIdxTy(DAG.getDataLayout())); 3579 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3580 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3581 InVec, InVal, InIdx)); 3582 } 3583 3584 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3586 SDValue InVec = getValue(I.getOperand(0)); 3587 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3588 TLI.getVectorIdxTy(DAG.getDataLayout())); 3589 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3590 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3591 InVec, InIdx)); 3592 } 3593 3594 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3595 SDValue Src1 = getValue(I.getOperand(0)); 3596 SDValue Src2 = getValue(I.getOperand(1)); 3597 ArrayRef<int> Mask; 3598 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3599 Mask = SVI->getShuffleMask(); 3600 else 3601 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3602 SDLoc DL = getCurSDLoc(); 3603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3604 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3605 EVT SrcVT = Src1.getValueType(); 3606 3607 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3608 VT.isScalableVector()) { 3609 // Canonical splat form of first element of first input vector. 3610 SDValue FirstElt = 3611 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3612 DAG.getVectorIdxConstant(0, DL)); 3613 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3614 return; 3615 } 3616 3617 // For now, we only handle splats for scalable vectors. 3618 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3619 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3620 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3621 3622 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3623 unsigned MaskNumElts = Mask.size(); 3624 3625 if (SrcNumElts == MaskNumElts) { 3626 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3627 return; 3628 } 3629 3630 // Normalize the shuffle vector since mask and vector length don't match. 3631 if (SrcNumElts < MaskNumElts) { 3632 // Mask is longer than the source vectors. We can use concatenate vector to 3633 // make the mask and vectors lengths match. 3634 3635 if (MaskNumElts % SrcNumElts == 0) { 3636 // Mask length is a multiple of the source vector length. 3637 // Check if the shuffle is some kind of concatenation of the input 3638 // vectors. 3639 unsigned NumConcat = MaskNumElts / SrcNumElts; 3640 bool IsConcat = true; 3641 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3642 for (unsigned i = 0; i != MaskNumElts; ++i) { 3643 int Idx = Mask[i]; 3644 if (Idx < 0) 3645 continue; 3646 // Ensure the indices in each SrcVT sized piece are sequential and that 3647 // the same source is used for the whole piece. 3648 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3649 (ConcatSrcs[i / SrcNumElts] >= 0 && 3650 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3651 IsConcat = false; 3652 break; 3653 } 3654 // Remember which source this index came from. 3655 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3656 } 3657 3658 // The shuffle is concatenating multiple vectors together. Just emit 3659 // a CONCAT_VECTORS operation. 3660 if (IsConcat) { 3661 SmallVector<SDValue, 8> ConcatOps; 3662 for (auto Src : ConcatSrcs) { 3663 if (Src < 0) 3664 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3665 else if (Src == 0) 3666 ConcatOps.push_back(Src1); 3667 else 3668 ConcatOps.push_back(Src2); 3669 } 3670 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3671 return; 3672 } 3673 } 3674 3675 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3676 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3677 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3678 PaddedMaskNumElts); 3679 3680 // Pad both vectors with undefs to make them the same length as the mask. 3681 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3682 3683 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3684 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3685 MOps1[0] = Src1; 3686 MOps2[0] = Src2; 3687 3688 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3689 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3690 3691 // Readjust mask for new input vector length. 3692 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3693 for (unsigned i = 0; i != MaskNumElts; ++i) { 3694 int Idx = Mask[i]; 3695 if (Idx >= (int)SrcNumElts) 3696 Idx -= SrcNumElts - PaddedMaskNumElts; 3697 MappedOps[i] = Idx; 3698 } 3699 3700 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3701 3702 // If the concatenated vector was padded, extract a subvector with the 3703 // correct number of elements. 3704 if (MaskNumElts != PaddedMaskNumElts) 3705 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3706 DAG.getVectorIdxConstant(0, DL)); 3707 3708 setValue(&I, Result); 3709 return; 3710 } 3711 3712 if (SrcNumElts > MaskNumElts) { 3713 // Analyze the access pattern of the vector to see if we can extract 3714 // two subvectors and do the shuffle. 3715 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3716 bool CanExtract = true; 3717 for (int Idx : Mask) { 3718 unsigned Input = 0; 3719 if (Idx < 0) 3720 continue; 3721 3722 if (Idx >= (int)SrcNumElts) { 3723 Input = 1; 3724 Idx -= SrcNumElts; 3725 } 3726 3727 // If all the indices come from the same MaskNumElts sized portion of 3728 // the sources we can use extract. Also make sure the extract wouldn't 3729 // extract past the end of the source. 3730 int NewStartIdx = alignDown(Idx, MaskNumElts); 3731 if (NewStartIdx + MaskNumElts > SrcNumElts || 3732 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3733 CanExtract = false; 3734 // Make sure we always update StartIdx as we use it to track if all 3735 // elements are undef. 3736 StartIdx[Input] = NewStartIdx; 3737 } 3738 3739 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3740 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3741 return; 3742 } 3743 if (CanExtract) { 3744 // Extract appropriate subvector and generate a vector shuffle 3745 for (unsigned Input = 0; Input < 2; ++Input) { 3746 SDValue &Src = Input == 0 ? Src1 : Src2; 3747 if (StartIdx[Input] < 0) 3748 Src = DAG.getUNDEF(VT); 3749 else { 3750 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3751 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3752 } 3753 } 3754 3755 // Calculate new mask. 3756 SmallVector<int, 8> MappedOps(Mask); 3757 for (int &Idx : MappedOps) { 3758 if (Idx >= (int)SrcNumElts) 3759 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3760 else if (Idx >= 0) 3761 Idx -= StartIdx[0]; 3762 } 3763 3764 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3765 return; 3766 } 3767 } 3768 3769 // We can't use either concat vectors or extract subvectors so fall back to 3770 // replacing the shuffle with extract and build vector. 3771 // to insert and build vector. 3772 EVT EltVT = VT.getVectorElementType(); 3773 SmallVector<SDValue,8> Ops; 3774 for (int Idx : Mask) { 3775 SDValue Res; 3776 3777 if (Idx < 0) { 3778 Res = DAG.getUNDEF(EltVT); 3779 } else { 3780 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3781 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3782 3783 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3784 DAG.getVectorIdxConstant(Idx, DL)); 3785 } 3786 3787 Ops.push_back(Res); 3788 } 3789 3790 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3791 } 3792 3793 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3794 ArrayRef<unsigned> Indices = I.getIndices(); 3795 const Value *Op0 = I.getOperand(0); 3796 const Value *Op1 = I.getOperand(1); 3797 Type *AggTy = I.getType(); 3798 Type *ValTy = Op1->getType(); 3799 bool IntoUndef = isa<UndefValue>(Op0); 3800 bool FromUndef = isa<UndefValue>(Op1); 3801 3802 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3803 3804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3805 SmallVector<EVT, 4> AggValueVTs; 3806 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3807 SmallVector<EVT, 4> ValValueVTs; 3808 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3809 3810 unsigned NumAggValues = AggValueVTs.size(); 3811 unsigned NumValValues = ValValueVTs.size(); 3812 SmallVector<SDValue, 4> Values(NumAggValues); 3813 3814 // Ignore an insertvalue that produces an empty object 3815 if (!NumAggValues) { 3816 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3817 return; 3818 } 3819 3820 SDValue Agg = getValue(Op0); 3821 unsigned i = 0; 3822 // Copy the beginning value(s) from the original aggregate. 3823 for (; i != LinearIndex; ++i) 3824 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3825 SDValue(Agg.getNode(), Agg.getResNo() + i); 3826 // Copy values from the inserted value(s). 3827 if (NumValValues) { 3828 SDValue Val = getValue(Op1); 3829 for (; i != LinearIndex + NumValValues; ++i) 3830 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3831 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3832 } 3833 // Copy remaining value(s) from the original aggregate. 3834 for (; i != NumAggValues; ++i) 3835 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3836 SDValue(Agg.getNode(), Agg.getResNo() + i); 3837 3838 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3839 DAG.getVTList(AggValueVTs), Values)); 3840 } 3841 3842 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3843 ArrayRef<unsigned> Indices = I.getIndices(); 3844 const Value *Op0 = I.getOperand(0); 3845 Type *AggTy = Op0->getType(); 3846 Type *ValTy = I.getType(); 3847 bool OutOfUndef = isa<UndefValue>(Op0); 3848 3849 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3850 3851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3852 SmallVector<EVT, 4> ValValueVTs; 3853 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3854 3855 unsigned NumValValues = ValValueVTs.size(); 3856 3857 // Ignore a extractvalue that produces an empty object 3858 if (!NumValValues) { 3859 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3860 return; 3861 } 3862 3863 SmallVector<SDValue, 4> Values(NumValValues); 3864 3865 SDValue Agg = getValue(Op0); 3866 // Copy out the selected value(s). 3867 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3868 Values[i - LinearIndex] = 3869 OutOfUndef ? 3870 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3871 SDValue(Agg.getNode(), Agg.getResNo() + i); 3872 3873 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3874 DAG.getVTList(ValValueVTs), Values)); 3875 } 3876 3877 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3878 Value *Op0 = I.getOperand(0); 3879 // Note that the pointer operand may be a vector of pointers. Take the scalar 3880 // element which holds a pointer. 3881 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3882 SDValue N = getValue(Op0); 3883 SDLoc dl = getCurSDLoc(); 3884 auto &TLI = DAG.getTargetLoweringInfo(); 3885 3886 // Normalize Vector GEP - all scalar operands should be converted to the 3887 // splat vector. 3888 bool IsVectorGEP = I.getType()->isVectorTy(); 3889 ElementCount VectorElementCount = 3890 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3891 : ElementCount::getFixed(0); 3892 3893 if (IsVectorGEP && !N.getValueType().isVector()) { 3894 LLVMContext &Context = *DAG.getContext(); 3895 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3896 if (VectorElementCount.isScalable()) 3897 N = DAG.getSplatVector(VT, dl, N); 3898 else 3899 N = DAG.getSplatBuildVector(VT, dl, N); 3900 } 3901 3902 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3903 GTI != E; ++GTI) { 3904 const Value *Idx = GTI.getOperand(); 3905 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3906 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3907 if (Field) { 3908 // N = N + Offset 3909 uint64_t Offset = 3910 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3911 3912 // In an inbounds GEP with an offset that is nonnegative even when 3913 // interpreted as signed, assume there is no unsigned overflow. 3914 SDNodeFlags Flags; 3915 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3916 Flags.setNoUnsignedWrap(true); 3917 3918 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3919 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3920 } 3921 } else { 3922 // IdxSize is the width of the arithmetic according to IR semantics. 3923 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3924 // (and fix up the result later). 3925 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3926 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3927 TypeSize ElementSize = 3928 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3929 // We intentionally mask away the high bits here; ElementSize may not 3930 // fit in IdxTy. 3931 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3932 bool ElementScalable = ElementSize.isScalable(); 3933 3934 // If this is a scalar constant or a splat vector of constants, 3935 // handle it quickly. 3936 const auto *C = dyn_cast<Constant>(Idx); 3937 if (C && isa<VectorType>(C->getType())) 3938 C = C->getSplatValue(); 3939 3940 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3941 if (CI && CI->isZero()) 3942 continue; 3943 if (CI && !ElementScalable) { 3944 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3945 LLVMContext &Context = *DAG.getContext(); 3946 SDValue OffsVal; 3947 if (IsVectorGEP) 3948 OffsVal = DAG.getConstant( 3949 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3950 else 3951 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3952 3953 // In an inbounds GEP with an offset that is nonnegative even when 3954 // interpreted as signed, assume there is no unsigned overflow. 3955 SDNodeFlags Flags; 3956 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3957 Flags.setNoUnsignedWrap(true); 3958 3959 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3960 3961 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3962 continue; 3963 } 3964 3965 // N = N + Idx * ElementMul; 3966 SDValue IdxN = getValue(Idx); 3967 3968 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3969 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3970 VectorElementCount); 3971 if (VectorElementCount.isScalable()) 3972 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3973 else 3974 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3975 } 3976 3977 // If the index is smaller or larger than intptr_t, truncate or extend 3978 // it. 3979 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3980 3981 if (ElementScalable) { 3982 EVT VScaleTy = N.getValueType().getScalarType(); 3983 SDValue VScale = DAG.getNode( 3984 ISD::VSCALE, dl, VScaleTy, 3985 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3986 if (IsVectorGEP) 3987 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3988 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3989 } else { 3990 // If this is a multiply by a power of two, turn it into a shl 3991 // immediately. This is a very common case. 3992 if (ElementMul != 1) { 3993 if (ElementMul.isPowerOf2()) { 3994 unsigned Amt = ElementMul.logBase2(); 3995 IdxN = DAG.getNode(ISD::SHL, dl, 3996 N.getValueType(), IdxN, 3997 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3998 } else { 3999 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4000 IdxN.getValueType()); 4001 IdxN = DAG.getNode(ISD::MUL, dl, 4002 N.getValueType(), IdxN, Scale); 4003 } 4004 } 4005 } 4006 4007 N = DAG.getNode(ISD::ADD, dl, 4008 N.getValueType(), N, IdxN); 4009 } 4010 } 4011 4012 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4013 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4014 if (IsVectorGEP) { 4015 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4016 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4017 } 4018 4019 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4020 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4021 4022 setValue(&I, N); 4023 } 4024 4025 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4026 // If this is a fixed sized alloca in the entry block of the function, 4027 // allocate it statically on the stack. 4028 if (FuncInfo.StaticAllocaMap.count(&I)) 4029 return; // getValue will auto-populate this. 4030 4031 SDLoc dl = getCurSDLoc(); 4032 Type *Ty = I.getAllocatedType(); 4033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4034 auto &DL = DAG.getDataLayout(); 4035 TypeSize TySize = DL.getTypeAllocSize(Ty); 4036 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4037 4038 SDValue AllocSize = getValue(I.getArraySize()); 4039 4040 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4041 if (AllocSize.getValueType() != IntPtr) 4042 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4043 4044 if (TySize.isScalable()) 4045 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4046 DAG.getVScale(dl, IntPtr, 4047 APInt(IntPtr.getScalarSizeInBits(), 4048 TySize.getKnownMinValue()))); 4049 else 4050 AllocSize = 4051 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4052 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4053 4054 // Handle alignment. If the requested alignment is less than or equal to 4055 // the stack alignment, ignore it. If the size is greater than or equal to 4056 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4057 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4058 if (*Alignment <= StackAlign) 4059 Alignment = None; 4060 4061 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4062 // Round the size of the allocation up to the stack alignment size 4063 // by add SA-1 to the size. This doesn't overflow because we're computing 4064 // an address inside an alloca. 4065 SDNodeFlags Flags; 4066 Flags.setNoUnsignedWrap(true); 4067 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4068 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4069 4070 // Mask out the low bits for alignment purposes. 4071 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4072 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4073 4074 SDValue Ops[] = { 4075 getRoot(), AllocSize, 4076 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4077 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4078 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4079 setValue(&I, DSA); 4080 DAG.setRoot(DSA.getValue(1)); 4081 4082 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4083 } 4084 4085 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4086 if (I.isAtomic()) 4087 return visitAtomicLoad(I); 4088 4089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4090 const Value *SV = I.getOperand(0); 4091 if (TLI.supportSwiftError()) { 4092 // Swifterror values can come from either a function parameter with 4093 // swifterror attribute or an alloca with swifterror attribute. 4094 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4095 if (Arg->hasSwiftErrorAttr()) 4096 return visitLoadFromSwiftError(I); 4097 } 4098 4099 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4100 if (Alloca->isSwiftError()) 4101 return visitLoadFromSwiftError(I); 4102 } 4103 } 4104 4105 SDValue Ptr = getValue(SV); 4106 4107 Type *Ty = I.getType(); 4108 SmallVector<EVT, 4> ValueVTs, MemVTs; 4109 SmallVector<uint64_t, 4> Offsets; 4110 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4111 unsigned NumValues = ValueVTs.size(); 4112 if (NumValues == 0) 4113 return; 4114 4115 Align Alignment = I.getAlign(); 4116 AAMDNodes AAInfo = I.getAAMetadata(); 4117 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4118 bool isVolatile = I.isVolatile(); 4119 MachineMemOperand::Flags MMOFlags = 4120 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4121 4122 SDValue Root; 4123 bool ConstantMemory = false; 4124 if (isVolatile) 4125 // Serialize volatile loads with other side effects. 4126 Root = getRoot(); 4127 else if (NumValues > MaxParallelChains) 4128 Root = getMemoryRoot(); 4129 else if (AA && 4130 AA->pointsToConstantMemory(MemoryLocation( 4131 SV, 4132 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4133 AAInfo))) { 4134 // Do not serialize (non-volatile) loads of constant memory with anything. 4135 Root = DAG.getEntryNode(); 4136 ConstantMemory = true; 4137 MMOFlags |= MachineMemOperand::MOInvariant; 4138 } else { 4139 // Do not serialize non-volatile loads against each other. 4140 Root = DAG.getRoot(); 4141 } 4142 4143 if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(), 4144 &I, AC, nullptr, LibInfo)) 4145 MMOFlags |= MachineMemOperand::MODereferenceable; 4146 4147 SDLoc dl = getCurSDLoc(); 4148 4149 if (isVolatile) 4150 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4151 4152 // An aggregate load cannot wrap around the address space, so offsets to its 4153 // parts don't wrap either. 4154 SDNodeFlags Flags; 4155 Flags.setNoUnsignedWrap(true); 4156 4157 SmallVector<SDValue, 4> Values(NumValues); 4158 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4159 EVT PtrVT = Ptr.getValueType(); 4160 4161 unsigned ChainI = 0; 4162 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4163 // Serializing loads here may result in excessive register pressure, and 4164 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4165 // could recover a bit by hoisting nodes upward in the chain by recognizing 4166 // they are side-effect free or do not alias. The optimizer should really 4167 // avoid this case by converting large object/array copies to llvm.memcpy 4168 // (MaxParallelChains should always remain as failsafe). 4169 if (ChainI == MaxParallelChains) { 4170 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4171 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4172 makeArrayRef(Chains.data(), ChainI)); 4173 Root = Chain; 4174 ChainI = 0; 4175 } 4176 SDValue A = DAG.getNode(ISD::ADD, dl, 4177 PtrVT, Ptr, 4178 DAG.getConstant(Offsets[i], dl, PtrVT), 4179 Flags); 4180 4181 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4182 MachinePointerInfo(SV, Offsets[i]), Alignment, 4183 MMOFlags, AAInfo, Ranges); 4184 Chains[ChainI] = L.getValue(1); 4185 4186 if (MemVTs[i] != ValueVTs[i]) 4187 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4188 4189 Values[i] = L; 4190 } 4191 4192 if (!ConstantMemory) { 4193 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4194 makeArrayRef(Chains.data(), ChainI)); 4195 if (isVolatile) 4196 DAG.setRoot(Chain); 4197 else 4198 PendingLoads.push_back(Chain); 4199 } 4200 4201 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4202 DAG.getVTList(ValueVTs), Values)); 4203 } 4204 4205 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4206 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4207 "call visitStoreToSwiftError when backend supports swifterror"); 4208 4209 SmallVector<EVT, 4> ValueVTs; 4210 SmallVector<uint64_t, 4> Offsets; 4211 const Value *SrcV = I.getOperand(0); 4212 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4213 SrcV->getType(), ValueVTs, &Offsets); 4214 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4215 "expect a single EVT for swifterror"); 4216 4217 SDValue Src = getValue(SrcV); 4218 // Create a virtual register, then update the virtual register. 4219 Register VReg = 4220 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4221 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4222 // Chain can be getRoot or getControlRoot. 4223 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4224 SDValue(Src.getNode(), Src.getResNo())); 4225 DAG.setRoot(CopyNode); 4226 } 4227 4228 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4229 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4230 "call visitLoadFromSwiftError when backend supports swifterror"); 4231 4232 assert(!I.isVolatile() && 4233 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4234 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4235 "Support volatile, non temporal, invariant for load_from_swift_error"); 4236 4237 const Value *SV = I.getOperand(0); 4238 Type *Ty = I.getType(); 4239 assert( 4240 (!AA || 4241 !AA->pointsToConstantMemory(MemoryLocation( 4242 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4243 I.getAAMetadata()))) && 4244 "load_from_swift_error should not be constant memory"); 4245 4246 SmallVector<EVT, 4> ValueVTs; 4247 SmallVector<uint64_t, 4> Offsets; 4248 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4249 ValueVTs, &Offsets); 4250 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4251 "expect a single EVT for swifterror"); 4252 4253 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4254 SDValue L = DAG.getCopyFromReg( 4255 getRoot(), getCurSDLoc(), 4256 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4257 4258 setValue(&I, L); 4259 } 4260 4261 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4262 if (I.isAtomic()) 4263 return visitAtomicStore(I); 4264 4265 const Value *SrcV = I.getOperand(0); 4266 const Value *PtrV = I.getOperand(1); 4267 4268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4269 if (TLI.supportSwiftError()) { 4270 // Swifterror values can come from either a function parameter with 4271 // swifterror attribute or an alloca with swifterror attribute. 4272 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4273 if (Arg->hasSwiftErrorAttr()) 4274 return visitStoreToSwiftError(I); 4275 } 4276 4277 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4278 if (Alloca->isSwiftError()) 4279 return visitStoreToSwiftError(I); 4280 } 4281 } 4282 4283 SmallVector<EVT, 4> ValueVTs, MemVTs; 4284 SmallVector<uint64_t, 4> Offsets; 4285 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4286 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4287 unsigned NumValues = ValueVTs.size(); 4288 if (NumValues == 0) 4289 return; 4290 4291 // Get the lowered operands. Note that we do this after 4292 // checking if NumResults is zero, because with zero results 4293 // the operands won't have values in the map. 4294 SDValue Src = getValue(SrcV); 4295 SDValue Ptr = getValue(PtrV); 4296 4297 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4298 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4299 SDLoc dl = getCurSDLoc(); 4300 Align Alignment = I.getAlign(); 4301 AAMDNodes AAInfo = I.getAAMetadata(); 4302 4303 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4304 4305 // An aggregate load cannot wrap around the address space, so offsets to its 4306 // parts don't wrap either. 4307 SDNodeFlags Flags; 4308 Flags.setNoUnsignedWrap(true); 4309 4310 unsigned ChainI = 0; 4311 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4312 // See visitLoad comments. 4313 if (ChainI == MaxParallelChains) { 4314 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4315 makeArrayRef(Chains.data(), ChainI)); 4316 Root = Chain; 4317 ChainI = 0; 4318 } 4319 SDValue Add = 4320 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4321 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4322 if (MemVTs[i] != ValueVTs[i]) 4323 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4324 SDValue St = 4325 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4326 Alignment, MMOFlags, AAInfo); 4327 Chains[ChainI] = St; 4328 } 4329 4330 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4331 makeArrayRef(Chains.data(), ChainI)); 4332 setValue(&I, StoreNode); 4333 DAG.setRoot(StoreNode); 4334 } 4335 4336 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4337 bool IsCompressing) { 4338 SDLoc sdl = getCurSDLoc(); 4339 4340 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4341 MaybeAlign &Alignment) { 4342 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4343 Src0 = I.getArgOperand(0); 4344 Ptr = I.getArgOperand(1); 4345 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4346 Mask = I.getArgOperand(3); 4347 }; 4348 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4349 MaybeAlign &Alignment) { 4350 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4351 Src0 = I.getArgOperand(0); 4352 Ptr = I.getArgOperand(1); 4353 Mask = I.getArgOperand(2); 4354 Alignment = None; 4355 }; 4356 4357 Value *PtrOperand, *MaskOperand, *Src0Operand; 4358 MaybeAlign Alignment; 4359 if (IsCompressing) 4360 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4361 else 4362 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4363 4364 SDValue Ptr = getValue(PtrOperand); 4365 SDValue Src0 = getValue(Src0Operand); 4366 SDValue Mask = getValue(MaskOperand); 4367 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4368 4369 EVT VT = Src0.getValueType(); 4370 if (!Alignment) 4371 Alignment = DAG.getEVTAlign(VT); 4372 4373 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4374 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4375 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4376 SDValue StoreNode = 4377 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4378 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4379 DAG.setRoot(StoreNode); 4380 setValue(&I, StoreNode); 4381 } 4382 4383 // Get a uniform base for the Gather/Scatter intrinsic. 4384 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4385 // We try to represent it as a base pointer + vector of indices. 4386 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4387 // The first operand of the GEP may be a single pointer or a vector of pointers 4388 // Example: 4389 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4390 // or 4391 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4392 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4393 // 4394 // When the first GEP operand is a single pointer - it is the uniform base we 4395 // are looking for. If first operand of the GEP is a splat vector - we 4396 // extract the splat value and use it as a uniform base. 4397 // In all other cases the function returns 'false'. 4398 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4399 ISD::MemIndexType &IndexType, SDValue &Scale, 4400 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4401 uint64_t ElemSize) { 4402 SelectionDAG& DAG = SDB->DAG; 4403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4404 const DataLayout &DL = DAG.getDataLayout(); 4405 4406 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4407 4408 // Handle splat constant pointer. 4409 if (auto *C = dyn_cast<Constant>(Ptr)) { 4410 C = C->getSplatValue(); 4411 if (!C) 4412 return false; 4413 4414 Base = SDB->getValue(C); 4415 4416 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4417 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4418 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4419 IndexType = ISD::SIGNED_SCALED; 4420 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4421 return true; 4422 } 4423 4424 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4425 if (!GEP || GEP->getParent() != CurBB) 4426 return false; 4427 4428 if (GEP->getNumOperands() != 2) 4429 return false; 4430 4431 const Value *BasePtr = GEP->getPointerOperand(); 4432 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4433 4434 // Make sure the base is scalar and the index is a vector. 4435 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4436 return false; 4437 4438 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4439 4440 // Target may not support the required addressing mode. 4441 if (ScaleVal != 1 && 4442 !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) 4443 return false; 4444 4445 Base = SDB->getValue(BasePtr); 4446 Index = SDB->getValue(IndexVal); 4447 IndexType = ISD::SIGNED_SCALED; 4448 4449 Scale = 4450 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4451 return true; 4452 } 4453 4454 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4455 SDLoc sdl = getCurSDLoc(); 4456 4457 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4458 const Value *Ptr = I.getArgOperand(1); 4459 SDValue Src0 = getValue(I.getArgOperand(0)); 4460 SDValue Mask = getValue(I.getArgOperand(3)); 4461 EVT VT = Src0.getValueType(); 4462 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4463 ->getMaybeAlignValue() 4464 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4465 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4466 4467 SDValue Base; 4468 SDValue Index; 4469 ISD::MemIndexType IndexType; 4470 SDValue Scale; 4471 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4472 I.getParent(), VT.getScalarStoreSize()); 4473 4474 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4475 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4476 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4477 // TODO: Make MachineMemOperands aware of scalable 4478 // vectors. 4479 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4480 if (!UniformBase) { 4481 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4482 Index = getValue(Ptr); 4483 IndexType = ISD::SIGNED_SCALED; 4484 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4485 } 4486 4487 EVT IdxVT = Index.getValueType(); 4488 EVT EltTy = IdxVT.getVectorElementType(); 4489 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4490 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4491 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4492 } 4493 4494 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4495 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4496 Ops, MMO, IndexType, false); 4497 DAG.setRoot(Scatter); 4498 setValue(&I, Scatter); 4499 } 4500 4501 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4502 SDLoc sdl = getCurSDLoc(); 4503 4504 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4505 MaybeAlign &Alignment) { 4506 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4507 Ptr = I.getArgOperand(0); 4508 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4509 Mask = I.getArgOperand(2); 4510 Src0 = I.getArgOperand(3); 4511 }; 4512 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4513 MaybeAlign &Alignment) { 4514 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4515 Ptr = I.getArgOperand(0); 4516 Alignment = None; 4517 Mask = I.getArgOperand(1); 4518 Src0 = I.getArgOperand(2); 4519 }; 4520 4521 Value *PtrOperand, *MaskOperand, *Src0Operand; 4522 MaybeAlign Alignment; 4523 if (IsExpanding) 4524 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4525 else 4526 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4527 4528 SDValue Ptr = getValue(PtrOperand); 4529 SDValue Src0 = getValue(Src0Operand); 4530 SDValue Mask = getValue(MaskOperand); 4531 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4532 4533 EVT VT = Src0.getValueType(); 4534 if (!Alignment) 4535 Alignment = DAG.getEVTAlign(VT); 4536 4537 AAMDNodes AAInfo = I.getAAMetadata(); 4538 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4539 4540 // Do not serialize masked loads of constant memory with anything. 4541 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4542 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4543 4544 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4545 4546 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4547 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4548 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4549 4550 SDValue Load = 4551 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4552 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4553 if (AddToChain) 4554 PendingLoads.push_back(Load.getValue(1)); 4555 setValue(&I, Load); 4556 } 4557 4558 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4559 SDLoc sdl = getCurSDLoc(); 4560 4561 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4562 const Value *Ptr = I.getArgOperand(0); 4563 SDValue Src0 = getValue(I.getArgOperand(3)); 4564 SDValue Mask = getValue(I.getArgOperand(2)); 4565 4566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4567 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4568 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4569 ->getMaybeAlignValue() 4570 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4571 4572 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4573 4574 SDValue Root = DAG.getRoot(); 4575 SDValue Base; 4576 SDValue Index; 4577 ISD::MemIndexType IndexType; 4578 SDValue Scale; 4579 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4580 I.getParent(), VT.getScalarStoreSize()); 4581 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4582 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4583 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4584 // TODO: Make MachineMemOperands aware of scalable 4585 // vectors. 4586 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4587 4588 if (!UniformBase) { 4589 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4590 Index = getValue(Ptr); 4591 IndexType = ISD::SIGNED_SCALED; 4592 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4593 } 4594 4595 EVT IdxVT = Index.getValueType(); 4596 EVT EltTy = IdxVT.getVectorElementType(); 4597 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4598 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4599 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4600 } 4601 4602 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4603 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4604 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4605 4606 PendingLoads.push_back(Gather.getValue(1)); 4607 setValue(&I, Gather); 4608 } 4609 4610 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4611 SDLoc dl = getCurSDLoc(); 4612 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4613 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4614 SyncScope::ID SSID = I.getSyncScopeID(); 4615 4616 SDValue InChain = getRoot(); 4617 4618 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4619 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4620 4621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4622 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4623 4624 MachineFunction &MF = DAG.getMachineFunction(); 4625 MachineMemOperand *MMO = MF.getMachineMemOperand( 4626 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4627 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4628 FailureOrdering); 4629 4630 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4631 dl, MemVT, VTs, InChain, 4632 getValue(I.getPointerOperand()), 4633 getValue(I.getCompareOperand()), 4634 getValue(I.getNewValOperand()), MMO); 4635 4636 SDValue OutChain = L.getValue(2); 4637 4638 setValue(&I, L); 4639 DAG.setRoot(OutChain); 4640 } 4641 4642 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4643 SDLoc dl = getCurSDLoc(); 4644 ISD::NodeType NT; 4645 switch (I.getOperation()) { 4646 default: llvm_unreachable("Unknown atomicrmw operation"); 4647 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4648 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4649 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4650 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4651 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4652 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4653 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4654 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4655 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4656 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4657 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4658 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4659 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4660 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4661 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4662 } 4663 AtomicOrdering Ordering = I.getOrdering(); 4664 SyncScope::ID SSID = I.getSyncScopeID(); 4665 4666 SDValue InChain = getRoot(); 4667 4668 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4670 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4671 4672 MachineFunction &MF = DAG.getMachineFunction(); 4673 MachineMemOperand *MMO = MF.getMachineMemOperand( 4674 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4675 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4676 4677 SDValue L = 4678 DAG.getAtomic(NT, dl, MemVT, InChain, 4679 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4680 MMO); 4681 4682 SDValue OutChain = L.getValue(1); 4683 4684 setValue(&I, L); 4685 DAG.setRoot(OutChain); 4686 } 4687 4688 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4689 SDLoc dl = getCurSDLoc(); 4690 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4691 SDValue Ops[3]; 4692 Ops[0] = getRoot(); 4693 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4694 TLI.getFenceOperandTy(DAG.getDataLayout())); 4695 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4696 TLI.getFenceOperandTy(DAG.getDataLayout())); 4697 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4698 setValue(&I, N); 4699 DAG.setRoot(N); 4700 } 4701 4702 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4703 SDLoc dl = getCurSDLoc(); 4704 AtomicOrdering Order = I.getOrdering(); 4705 SyncScope::ID SSID = I.getSyncScopeID(); 4706 4707 SDValue InChain = getRoot(); 4708 4709 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4710 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4711 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4712 4713 if (!TLI.supportsUnalignedAtomics() && 4714 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4715 report_fatal_error("Cannot generate unaligned atomic load"); 4716 4717 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4718 4719 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4720 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4721 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4722 4723 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4724 4725 SDValue Ptr = getValue(I.getPointerOperand()); 4726 4727 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4728 // TODO: Once this is better exercised by tests, it should be merged with 4729 // the normal path for loads to prevent future divergence. 4730 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4731 if (MemVT != VT) 4732 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4733 4734 setValue(&I, L); 4735 SDValue OutChain = L.getValue(1); 4736 if (!I.isUnordered()) 4737 DAG.setRoot(OutChain); 4738 else 4739 PendingLoads.push_back(OutChain); 4740 return; 4741 } 4742 4743 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4744 Ptr, MMO); 4745 4746 SDValue OutChain = L.getValue(1); 4747 if (MemVT != VT) 4748 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4749 4750 setValue(&I, L); 4751 DAG.setRoot(OutChain); 4752 } 4753 4754 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4755 SDLoc dl = getCurSDLoc(); 4756 4757 AtomicOrdering Ordering = I.getOrdering(); 4758 SyncScope::ID SSID = I.getSyncScopeID(); 4759 4760 SDValue InChain = getRoot(); 4761 4762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4763 EVT MemVT = 4764 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4765 4766 if (!TLI.supportsUnalignedAtomics() && 4767 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4768 report_fatal_error("Cannot generate unaligned atomic store"); 4769 4770 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4771 4772 MachineFunction &MF = DAG.getMachineFunction(); 4773 MachineMemOperand *MMO = MF.getMachineMemOperand( 4774 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4775 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4776 4777 SDValue Val = getValue(I.getValueOperand()); 4778 if (Val.getValueType() != MemVT) 4779 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4780 SDValue Ptr = getValue(I.getPointerOperand()); 4781 4782 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4783 // TODO: Once this is better exercised by tests, it should be merged with 4784 // the normal path for stores to prevent future divergence. 4785 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4786 setValue(&I, S); 4787 DAG.setRoot(S); 4788 return; 4789 } 4790 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4791 Ptr, Val, MMO); 4792 4793 setValue(&I, OutChain); 4794 DAG.setRoot(OutChain); 4795 } 4796 4797 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4798 /// node. 4799 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4800 unsigned Intrinsic) { 4801 // Ignore the callsite's attributes. A specific call site may be marked with 4802 // readnone, but the lowering code will expect the chain based on the 4803 // definition. 4804 const Function *F = I.getCalledFunction(); 4805 bool HasChain = !F->doesNotAccessMemory(); 4806 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4807 4808 // Build the operand list. 4809 SmallVector<SDValue, 8> Ops; 4810 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4811 if (OnlyLoad) { 4812 // We don't need to serialize loads against other loads. 4813 Ops.push_back(DAG.getRoot()); 4814 } else { 4815 Ops.push_back(getRoot()); 4816 } 4817 } 4818 4819 // Info is set by getTgtMemIntrinsic 4820 TargetLowering::IntrinsicInfo Info; 4821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4822 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4823 DAG.getMachineFunction(), 4824 Intrinsic); 4825 4826 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4827 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4828 Info.opc == ISD::INTRINSIC_W_CHAIN) 4829 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4830 TLI.getPointerTy(DAG.getDataLayout()))); 4831 4832 // Add all operands of the call to the operand list. 4833 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4834 const Value *Arg = I.getArgOperand(i); 4835 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4836 Ops.push_back(getValue(Arg)); 4837 continue; 4838 } 4839 4840 // Use TargetConstant instead of a regular constant for immarg. 4841 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4842 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4843 assert(CI->getBitWidth() <= 64 && 4844 "large intrinsic immediates not handled"); 4845 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4846 } else { 4847 Ops.push_back( 4848 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4849 } 4850 } 4851 4852 SmallVector<EVT, 4> ValueVTs; 4853 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4854 4855 if (HasChain) 4856 ValueVTs.push_back(MVT::Other); 4857 4858 SDVTList VTs = DAG.getVTList(ValueVTs); 4859 4860 // Propagate fast-math-flags from IR to node(s). 4861 SDNodeFlags Flags; 4862 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4863 Flags.copyFMF(*FPMO); 4864 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4865 4866 // Create the node. 4867 SDValue Result; 4868 // In some cases, custom collection of operands from CallInst I may be needed. 4869 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4870 if (IsTgtIntrinsic) { 4871 // This is target intrinsic that touches memory 4872 Result = 4873 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4874 MachinePointerInfo(Info.ptrVal, Info.offset), 4875 Info.align, Info.flags, Info.size, 4876 I.getAAMetadata()); 4877 } else if (!HasChain) { 4878 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4879 } else if (!I.getType()->isVoidTy()) { 4880 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4881 } else { 4882 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4883 } 4884 4885 if (HasChain) { 4886 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4887 if (OnlyLoad) 4888 PendingLoads.push_back(Chain); 4889 else 4890 DAG.setRoot(Chain); 4891 } 4892 4893 if (!I.getType()->isVoidTy()) { 4894 if (!isa<VectorType>(I.getType())) 4895 Result = lowerRangeToAssertZExt(DAG, I, Result); 4896 4897 MaybeAlign Alignment = I.getRetAlign(); 4898 if (!Alignment) 4899 Alignment = F->getAttributes().getRetAlignment(); 4900 // Insert `assertalign` node if there's an alignment. 4901 if (InsertAssertAlign && Alignment) { 4902 Result = 4903 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4904 } 4905 4906 setValue(&I, Result); 4907 } 4908 } 4909 4910 /// GetSignificand - Get the significand and build it into a floating-point 4911 /// number with exponent of 1: 4912 /// 4913 /// Op = (Op & 0x007fffff) | 0x3f800000; 4914 /// 4915 /// where Op is the hexadecimal representation of floating point value. 4916 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4917 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4918 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4919 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4920 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4921 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4922 } 4923 4924 /// GetExponent - Get the exponent: 4925 /// 4926 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4927 /// 4928 /// where Op is the hexadecimal representation of floating point value. 4929 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4930 const TargetLowering &TLI, const SDLoc &dl) { 4931 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4932 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4933 SDValue t1 = DAG.getNode( 4934 ISD::SRL, dl, MVT::i32, t0, 4935 DAG.getConstant(23, dl, 4936 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4937 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4938 DAG.getConstant(127, dl, MVT::i32)); 4939 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4940 } 4941 4942 /// getF32Constant - Get 32-bit floating point constant. 4943 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4944 const SDLoc &dl) { 4945 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4946 MVT::f32); 4947 } 4948 4949 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4950 SelectionDAG &DAG) { 4951 // TODO: What fast-math-flags should be set on the floating-point nodes? 4952 4953 // IntegerPartOfX = ((int32_t)(t0); 4954 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4955 4956 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4957 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4958 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4959 4960 // IntegerPartOfX <<= 23; 4961 IntegerPartOfX = 4962 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4963 DAG.getConstant(23, dl, 4964 DAG.getTargetLoweringInfo().getShiftAmountTy( 4965 MVT::i32, DAG.getDataLayout()))); 4966 4967 SDValue TwoToFractionalPartOfX; 4968 if (LimitFloatPrecision <= 6) { 4969 // For floating-point precision of 6: 4970 // 4971 // TwoToFractionalPartOfX = 4972 // 0.997535578f + 4973 // (0.735607626f + 0.252464424f * x) * x; 4974 // 4975 // error 0.0144103317, which is 6 bits 4976 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4977 getF32Constant(DAG, 0x3e814304, dl)); 4978 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4979 getF32Constant(DAG, 0x3f3c50c8, dl)); 4980 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4981 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4982 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4983 } else if (LimitFloatPrecision <= 12) { 4984 // For floating-point precision of 12: 4985 // 4986 // TwoToFractionalPartOfX = 4987 // 0.999892986f + 4988 // (0.696457318f + 4989 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4990 // 4991 // error 0.000107046256, which is 13 to 14 bits 4992 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4993 getF32Constant(DAG, 0x3da235e3, dl)); 4994 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4995 getF32Constant(DAG, 0x3e65b8f3, dl)); 4996 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4997 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4998 getF32Constant(DAG, 0x3f324b07, dl)); 4999 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5000 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5001 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5002 } else { // LimitFloatPrecision <= 18 5003 // For floating-point precision of 18: 5004 // 5005 // TwoToFractionalPartOfX = 5006 // 0.999999982f + 5007 // (0.693148872f + 5008 // (0.240227044f + 5009 // (0.554906021e-1f + 5010 // (0.961591928e-2f + 5011 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5012 // error 2.47208000*10^(-7), which is better than 18 bits 5013 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5014 getF32Constant(DAG, 0x3924b03e, dl)); 5015 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5016 getF32Constant(DAG, 0x3ab24b87, dl)); 5017 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5018 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5019 getF32Constant(DAG, 0x3c1d8c17, dl)); 5020 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5021 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5022 getF32Constant(DAG, 0x3d634a1d, dl)); 5023 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5024 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5025 getF32Constant(DAG, 0x3e75fe14, dl)); 5026 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5027 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5028 getF32Constant(DAG, 0x3f317234, dl)); 5029 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5030 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5031 getF32Constant(DAG, 0x3f800000, dl)); 5032 } 5033 5034 // Add the exponent into the result in integer domain. 5035 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5036 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5037 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5038 } 5039 5040 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5041 /// limited-precision mode. 5042 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5043 const TargetLowering &TLI, SDNodeFlags Flags) { 5044 if (Op.getValueType() == MVT::f32 && 5045 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5046 5047 // Put the exponent in the right bit position for later addition to the 5048 // final result: 5049 // 5050 // t0 = Op * log2(e) 5051 5052 // TODO: What fast-math-flags should be set here? 5053 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5054 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5055 return getLimitedPrecisionExp2(t0, dl, DAG); 5056 } 5057 5058 // No special expansion. 5059 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5060 } 5061 5062 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5063 /// limited-precision mode. 5064 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5065 const TargetLowering &TLI, SDNodeFlags Flags) { 5066 // TODO: What fast-math-flags should be set on the floating-point nodes? 5067 5068 if (Op.getValueType() == MVT::f32 && 5069 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5070 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5071 5072 // Scale the exponent by log(2). 5073 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5074 SDValue LogOfExponent = 5075 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5076 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5077 5078 // Get the significand and build it into a floating-point number with 5079 // exponent of 1. 5080 SDValue X = GetSignificand(DAG, Op1, dl); 5081 5082 SDValue LogOfMantissa; 5083 if (LimitFloatPrecision <= 6) { 5084 // For floating-point precision of 6: 5085 // 5086 // LogofMantissa = 5087 // -1.1609546f + 5088 // (1.4034025f - 0.23903021f * x) * x; 5089 // 5090 // error 0.0034276066, which is better than 8 bits 5091 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5092 getF32Constant(DAG, 0xbe74c456, dl)); 5093 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5094 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5095 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5096 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5097 getF32Constant(DAG, 0x3f949a29, dl)); 5098 } else if (LimitFloatPrecision <= 12) { 5099 // For floating-point precision of 12: 5100 // 5101 // LogOfMantissa = 5102 // -1.7417939f + 5103 // (2.8212026f + 5104 // (-1.4699568f + 5105 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5106 // 5107 // error 0.000061011436, which is 14 bits 5108 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5109 getF32Constant(DAG, 0xbd67b6d6, dl)); 5110 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5111 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5112 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5113 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5114 getF32Constant(DAG, 0x3fbc278b, dl)); 5115 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5116 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5117 getF32Constant(DAG, 0x40348e95, dl)); 5118 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5119 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5120 getF32Constant(DAG, 0x3fdef31a, dl)); 5121 } else { // LimitFloatPrecision <= 18 5122 // For floating-point precision of 18: 5123 // 5124 // LogOfMantissa = 5125 // -2.1072184f + 5126 // (4.2372794f + 5127 // (-3.7029485f + 5128 // (2.2781945f + 5129 // (-0.87823314f + 5130 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5131 // 5132 // error 0.0000023660568, which is better than 18 bits 5133 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5134 getF32Constant(DAG, 0xbc91e5ac, dl)); 5135 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5136 getF32Constant(DAG, 0x3e4350aa, dl)); 5137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5138 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5139 getF32Constant(DAG, 0x3f60d3e3, dl)); 5140 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5141 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5142 getF32Constant(DAG, 0x4011cdf0, dl)); 5143 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5144 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5145 getF32Constant(DAG, 0x406cfd1c, dl)); 5146 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5147 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5148 getF32Constant(DAG, 0x408797cb, dl)); 5149 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5150 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5151 getF32Constant(DAG, 0x4006dcab, dl)); 5152 } 5153 5154 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5155 } 5156 5157 // No special expansion. 5158 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5159 } 5160 5161 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5162 /// limited-precision mode. 5163 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5164 const TargetLowering &TLI, SDNodeFlags Flags) { 5165 // TODO: What fast-math-flags should be set on the floating-point nodes? 5166 5167 if (Op.getValueType() == MVT::f32 && 5168 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5169 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5170 5171 // Get the exponent. 5172 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5173 5174 // Get the significand and build it into a floating-point number with 5175 // exponent of 1. 5176 SDValue X = GetSignificand(DAG, Op1, dl); 5177 5178 // Different possible minimax approximations of significand in 5179 // floating-point for various degrees of accuracy over [1,2]. 5180 SDValue Log2ofMantissa; 5181 if (LimitFloatPrecision <= 6) { 5182 // For floating-point precision of 6: 5183 // 5184 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5185 // 5186 // error 0.0049451742, which is more than 7 bits 5187 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5188 getF32Constant(DAG, 0xbeb08fe0, dl)); 5189 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5190 getF32Constant(DAG, 0x40019463, dl)); 5191 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5192 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5193 getF32Constant(DAG, 0x3fd6633d, dl)); 5194 } else if (LimitFloatPrecision <= 12) { 5195 // For floating-point precision of 12: 5196 // 5197 // Log2ofMantissa = 5198 // -2.51285454f + 5199 // (4.07009056f + 5200 // (-2.12067489f + 5201 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5202 // 5203 // error 0.0000876136000, which is better than 13 bits 5204 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5205 getF32Constant(DAG, 0xbda7262e, dl)); 5206 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5207 getF32Constant(DAG, 0x3f25280b, dl)); 5208 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5209 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5210 getF32Constant(DAG, 0x4007b923, dl)); 5211 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5212 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5213 getF32Constant(DAG, 0x40823e2f, dl)); 5214 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5215 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5216 getF32Constant(DAG, 0x4020d29c, dl)); 5217 } else { // LimitFloatPrecision <= 18 5218 // For floating-point precision of 18: 5219 // 5220 // Log2ofMantissa = 5221 // -3.0400495f + 5222 // (6.1129976f + 5223 // (-5.3420409f + 5224 // (3.2865683f + 5225 // (-1.2669343f + 5226 // (0.27515199f - 5227 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5228 // 5229 // error 0.0000018516, which is better than 18 bits 5230 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5231 getF32Constant(DAG, 0xbcd2769e, dl)); 5232 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5233 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5234 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5235 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5236 getF32Constant(DAG, 0x3fa22ae7, dl)); 5237 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5238 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5239 getF32Constant(DAG, 0x40525723, dl)); 5240 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5241 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5242 getF32Constant(DAG, 0x40aaf200, dl)); 5243 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5244 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5245 getF32Constant(DAG, 0x40c39dad, dl)); 5246 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5247 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5248 getF32Constant(DAG, 0x4042902c, dl)); 5249 } 5250 5251 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5252 } 5253 5254 // No special expansion. 5255 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5256 } 5257 5258 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5259 /// limited-precision mode. 5260 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5261 const TargetLowering &TLI, SDNodeFlags Flags) { 5262 // TODO: What fast-math-flags should be set on the floating-point nodes? 5263 5264 if (Op.getValueType() == MVT::f32 && 5265 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5266 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5267 5268 // Scale the exponent by log10(2) [0.30102999f]. 5269 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5270 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5271 getF32Constant(DAG, 0x3e9a209a, dl)); 5272 5273 // Get the significand and build it into a floating-point number with 5274 // exponent of 1. 5275 SDValue X = GetSignificand(DAG, Op1, dl); 5276 5277 SDValue Log10ofMantissa; 5278 if (LimitFloatPrecision <= 6) { 5279 // For floating-point precision of 6: 5280 // 5281 // Log10ofMantissa = 5282 // -0.50419619f + 5283 // (0.60948995f - 0.10380950f * x) * x; 5284 // 5285 // error 0.0014886165, which is 6 bits 5286 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5287 getF32Constant(DAG, 0xbdd49a13, dl)); 5288 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5289 getF32Constant(DAG, 0x3f1c0789, dl)); 5290 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5291 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5292 getF32Constant(DAG, 0x3f011300, dl)); 5293 } else if (LimitFloatPrecision <= 12) { 5294 // For floating-point precision of 12: 5295 // 5296 // Log10ofMantissa = 5297 // -0.64831180f + 5298 // (0.91751397f + 5299 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5300 // 5301 // error 0.00019228036, which is better than 12 bits 5302 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5303 getF32Constant(DAG, 0x3d431f31, dl)); 5304 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5305 getF32Constant(DAG, 0x3ea21fb2, dl)); 5306 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5307 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5308 getF32Constant(DAG, 0x3f6ae232, dl)); 5309 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5310 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5311 getF32Constant(DAG, 0x3f25f7c3, dl)); 5312 } else { // LimitFloatPrecision <= 18 5313 // For floating-point precision of 18: 5314 // 5315 // Log10ofMantissa = 5316 // -0.84299375f + 5317 // (1.5327582f + 5318 // (-1.0688956f + 5319 // (0.49102474f + 5320 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5321 // 5322 // error 0.0000037995730, which is better than 18 bits 5323 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5324 getF32Constant(DAG, 0x3c5d51ce, dl)); 5325 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5326 getF32Constant(DAG, 0x3e00685a, dl)); 5327 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5328 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5329 getF32Constant(DAG, 0x3efb6798, dl)); 5330 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5331 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5332 getF32Constant(DAG, 0x3f88d192, dl)); 5333 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5334 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5335 getF32Constant(DAG, 0x3fc4316c, dl)); 5336 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5337 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5338 getF32Constant(DAG, 0x3f57ce70, dl)); 5339 } 5340 5341 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5342 } 5343 5344 // No special expansion. 5345 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5346 } 5347 5348 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5349 /// limited-precision mode. 5350 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5351 const TargetLowering &TLI, SDNodeFlags Flags) { 5352 if (Op.getValueType() == MVT::f32 && 5353 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5354 return getLimitedPrecisionExp2(Op, dl, DAG); 5355 5356 // No special expansion. 5357 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5358 } 5359 5360 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5361 /// limited-precision mode with x == 10.0f. 5362 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5363 SelectionDAG &DAG, const TargetLowering &TLI, 5364 SDNodeFlags Flags) { 5365 bool IsExp10 = false; 5366 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5367 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5368 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5369 APFloat Ten(10.0f); 5370 IsExp10 = LHSC->isExactlyValue(Ten); 5371 } 5372 } 5373 5374 // TODO: What fast-math-flags should be set on the FMUL node? 5375 if (IsExp10) { 5376 // Put the exponent in the right bit position for later addition to the 5377 // final result: 5378 // 5379 // #define LOG2OF10 3.3219281f 5380 // t0 = Op * LOG2OF10; 5381 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5382 getF32Constant(DAG, 0x40549a78, dl)); 5383 return getLimitedPrecisionExp2(t0, dl, DAG); 5384 } 5385 5386 // No special expansion. 5387 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5388 } 5389 5390 /// ExpandPowI - Expand a llvm.powi intrinsic. 5391 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5392 SelectionDAG &DAG) { 5393 // If RHS is a constant, we can expand this out to a multiplication tree if 5394 // it's beneficial on the target, otherwise we end up lowering to a call to 5395 // __powidf2 (for example). 5396 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5397 unsigned Val = RHSC->getSExtValue(); 5398 5399 // powi(x, 0) -> 1.0 5400 if (Val == 0) 5401 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5402 5403 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5404 Val, DAG.shouldOptForSize())) { 5405 // Get the exponent as a positive value. 5406 if ((int)Val < 0) 5407 Val = -Val; 5408 // We use the simple binary decomposition method to generate the multiply 5409 // sequence. There are more optimal ways to do this (for example, 5410 // powi(x,15) generates one more multiply than it should), but this has 5411 // the benefit of being both really simple and much better than a libcall. 5412 SDValue Res; // Logically starts equal to 1.0 5413 SDValue CurSquare = LHS; 5414 // TODO: Intrinsics should have fast-math-flags that propagate to these 5415 // nodes. 5416 while (Val) { 5417 if (Val & 1) { 5418 if (Res.getNode()) 5419 Res = 5420 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5421 else 5422 Res = CurSquare; // 1.0*CurSquare. 5423 } 5424 5425 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5426 CurSquare, CurSquare); 5427 Val >>= 1; 5428 } 5429 5430 // If the original was negative, invert the result, producing 1/(x*x*x). 5431 if (RHSC->getSExtValue() < 0) 5432 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5433 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5434 return Res; 5435 } 5436 } 5437 5438 // Otherwise, expand to a libcall. 5439 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5440 } 5441 5442 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5443 SDValue LHS, SDValue RHS, SDValue Scale, 5444 SelectionDAG &DAG, const TargetLowering &TLI) { 5445 EVT VT = LHS.getValueType(); 5446 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5447 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5448 LLVMContext &Ctx = *DAG.getContext(); 5449 5450 // If the type is legal but the operation isn't, this node might survive all 5451 // the way to operation legalization. If we end up there and we do not have 5452 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5453 // node. 5454 5455 // Coax the legalizer into expanding the node during type legalization instead 5456 // by bumping the size by one bit. This will force it to Promote, enabling the 5457 // early expansion and avoiding the need to expand later. 5458 5459 // We don't have to do this if Scale is 0; that can always be expanded, unless 5460 // it's a saturating signed operation. Those can experience true integer 5461 // division overflow, a case which we must avoid. 5462 5463 // FIXME: We wouldn't have to do this (or any of the early 5464 // expansion/promotion) if it was possible to expand a libcall of an 5465 // illegal type during operation legalization. But it's not, so things 5466 // get a bit hacky. 5467 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5468 if ((ScaleInt > 0 || (Saturating && Signed)) && 5469 (TLI.isTypeLegal(VT) || 5470 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5471 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5472 Opcode, VT, ScaleInt); 5473 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5474 EVT PromVT; 5475 if (VT.isScalarInteger()) 5476 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5477 else if (VT.isVector()) { 5478 PromVT = VT.getVectorElementType(); 5479 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5480 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5481 } else 5482 llvm_unreachable("Wrong VT for DIVFIX?"); 5483 if (Signed) { 5484 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5485 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5486 } else { 5487 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5488 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5489 } 5490 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5491 // For saturating operations, we need to shift up the LHS to get the 5492 // proper saturation width, and then shift down again afterwards. 5493 if (Saturating) 5494 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5495 DAG.getConstant(1, DL, ShiftTy)); 5496 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5497 if (Saturating) 5498 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5499 DAG.getConstant(1, DL, ShiftTy)); 5500 return DAG.getZExtOrTrunc(Res, DL, VT); 5501 } 5502 } 5503 5504 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5505 } 5506 5507 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5508 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5509 static void 5510 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5511 const SDValue &N) { 5512 switch (N.getOpcode()) { 5513 case ISD::CopyFromReg: { 5514 SDValue Op = N.getOperand(1); 5515 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5516 Op.getValueType().getSizeInBits()); 5517 return; 5518 } 5519 case ISD::BITCAST: 5520 case ISD::AssertZext: 5521 case ISD::AssertSext: 5522 case ISD::TRUNCATE: 5523 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5524 return; 5525 case ISD::BUILD_PAIR: 5526 case ISD::BUILD_VECTOR: 5527 case ISD::CONCAT_VECTORS: 5528 for (SDValue Op : N->op_values()) 5529 getUnderlyingArgRegs(Regs, Op); 5530 return; 5531 default: 5532 return; 5533 } 5534 } 5535 5536 /// If the DbgValueInst is a dbg_value of a function argument, create the 5537 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5538 /// instruction selection, they will be inserted to the entry BB. 5539 /// We don't currently support this for variadic dbg_values, as they shouldn't 5540 /// appear for function arguments or in the prologue. 5541 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5542 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5543 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5544 const Argument *Arg = dyn_cast<Argument>(V); 5545 if (!Arg) 5546 return false; 5547 5548 MachineFunction &MF = DAG.getMachineFunction(); 5549 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5550 5551 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5552 // we've been asked to pursue. 5553 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5554 bool Indirect) { 5555 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5556 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5557 // pointing at the VReg, which will be patched up later. 5558 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5559 auto MIB = BuildMI(MF, DL, Inst); 5560 MIB.addReg(Reg); 5561 MIB.addImm(0); 5562 MIB.addMetadata(Variable); 5563 auto *NewDIExpr = FragExpr; 5564 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5565 // the DIExpression. 5566 if (Indirect) 5567 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5568 MIB.addMetadata(NewDIExpr); 5569 return MIB; 5570 } else { 5571 // Create a completely standard DBG_VALUE. 5572 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5573 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5574 } 5575 }; 5576 5577 if (Kind == FuncArgumentDbgValueKind::Value) { 5578 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5579 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5580 // the entry block. 5581 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5582 if (!IsInEntryBlock) 5583 return false; 5584 5585 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5586 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5587 // variable that also is a param. 5588 // 5589 // Although, if we are at the top of the entry block already, we can still 5590 // emit using ArgDbgValue. This might catch some situations when the 5591 // dbg.value refers to an argument that isn't used in the entry block, so 5592 // any CopyToReg node would be optimized out and the only way to express 5593 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5594 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5595 // we should only emit as ArgDbgValue if the Variable is an argument to the 5596 // current function, and the dbg.value intrinsic is found in the entry 5597 // block. 5598 bool VariableIsFunctionInputArg = Variable->isParameter() && 5599 !DL->getInlinedAt(); 5600 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5601 if (!IsInPrologue && !VariableIsFunctionInputArg) 5602 return false; 5603 5604 // Here we assume that a function argument on IR level only can be used to 5605 // describe one input parameter on source level. If we for example have 5606 // source code like this 5607 // 5608 // struct A { long x, y; }; 5609 // void foo(struct A a, long b) { 5610 // ... 5611 // b = a.x; 5612 // ... 5613 // } 5614 // 5615 // and IR like this 5616 // 5617 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5618 // entry: 5619 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5620 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5621 // call void @llvm.dbg.value(metadata i32 %b, "b", 5622 // ... 5623 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5624 // ... 5625 // 5626 // then the last dbg.value is describing a parameter "b" using a value that 5627 // is an argument. But since we already has used %a1 to describe a parameter 5628 // we should not handle that last dbg.value here (that would result in an 5629 // incorrect hoisting of the DBG_VALUE to the function entry). 5630 // Notice that we allow one dbg.value per IR level argument, to accommodate 5631 // for the situation with fragments above. 5632 if (VariableIsFunctionInputArg) { 5633 unsigned ArgNo = Arg->getArgNo(); 5634 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5635 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5636 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5637 return false; 5638 FuncInfo.DescribedArgs.set(ArgNo); 5639 } 5640 } 5641 5642 bool IsIndirect = false; 5643 Optional<MachineOperand> Op; 5644 // Some arguments' frame index is recorded during argument lowering. 5645 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5646 if (FI != std::numeric_limits<int>::max()) 5647 Op = MachineOperand::CreateFI(FI); 5648 5649 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5650 if (!Op && N.getNode()) { 5651 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5652 Register Reg; 5653 if (ArgRegsAndSizes.size() == 1) 5654 Reg = ArgRegsAndSizes.front().first; 5655 5656 if (Reg && Reg.isVirtual()) { 5657 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5658 Register PR = RegInfo.getLiveInPhysReg(Reg); 5659 if (PR) 5660 Reg = PR; 5661 } 5662 if (Reg) { 5663 Op = MachineOperand::CreateReg(Reg, false); 5664 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5665 } 5666 } 5667 5668 if (!Op && N.getNode()) { 5669 // Check if frame index is available. 5670 SDValue LCandidate = peekThroughBitcasts(N); 5671 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5672 if (FrameIndexSDNode *FINode = 5673 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5674 Op = MachineOperand::CreateFI(FINode->getIndex()); 5675 } 5676 5677 if (!Op) { 5678 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5679 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5680 SplitRegs) { 5681 unsigned Offset = 0; 5682 for (const auto &RegAndSize : SplitRegs) { 5683 // If the expression is already a fragment, the current register 5684 // offset+size might extend beyond the fragment. In this case, only 5685 // the register bits that are inside the fragment are relevant. 5686 int RegFragmentSizeInBits = RegAndSize.second; 5687 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5688 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5689 // The register is entirely outside the expression fragment, 5690 // so is irrelevant for debug info. 5691 if (Offset >= ExprFragmentSizeInBits) 5692 break; 5693 // The register is partially outside the expression fragment, only 5694 // the low bits within the fragment are relevant for debug info. 5695 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5696 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5697 } 5698 } 5699 5700 auto FragmentExpr = DIExpression::createFragmentExpression( 5701 Expr, Offset, RegFragmentSizeInBits); 5702 Offset += RegAndSize.second; 5703 // If a valid fragment expression cannot be created, the variable's 5704 // correct value cannot be determined and so it is set as Undef. 5705 if (!FragmentExpr) { 5706 SDDbgValue *SDV = DAG.getConstantDbgValue( 5707 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5708 DAG.AddDbgValue(SDV, false); 5709 continue; 5710 } 5711 MachineInstr *NewMI = 5712 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5713 Kind != FuncArgumentDbgValueKind::Value); 5714 FuncInfo.ArgDbgValues.push_back(NewMI); 5715 } 5716 }; 5717 5718 // Check if ValueMap has reg number. 5719 DenseMap<const Value *, Register>::const_iterator 5720 VMI = FuncInfo.ValueMap.find(V); 5721 if (VMI != FuncInfo.ValueMap.end()) { 5722 const auto &TLI = DAG.getTargetLoweringInfo(); 5723 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5724 V->getType(), None); 5725 if (RFV.occupiesMultipleRegs()) { 5726 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5727 return true; 5728 } 5729 5730 Op = MachineOperand::CreateReg(VMI->second, false); 5731 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5732 } else if (ArgRegsAndSizes.size() > 1) { 5733 // This was split due to the calling convention, and no virtual register 5734 // mapping exists for the value. 5735 splitMultiRegDbgValue(ArgRegsAndSizes); 5736 return true; 5737 } 5738 } 5739 5740 if (!Op) 5741 return false; 5742 5743 assert(Variable->isValidLocationForIntrinsic(DL) && 5744 "Expected inlined-at fields to agree"); 5745 MachineInstr *NewMI = nullptr; 5746 5747 if (Op->isReg()) 5748 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5749 else 5750 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5751 Variable, Expr); 5752 5753 // Otherwise, use ArgDbgValues. 5754 FuncInfo.ArgDbgValues.push_back(NewMI); 5755 return true; 5756 } 5757 5758 /// Return the appropriate SDDbgValue based on N. 5759 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5760 DILocalVariable *Variable, 5761 DIExpression *Expr, 5762 const DebugLoc &dl, 5763 unsigned DbgSDNodeOrder) { 5764 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5765 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5766 // stack slot locations. 5767 // 5768 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5769 // debug values here after optimization: 5770 // 5771 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5772 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5773 // 5774 // Both describe the direct values of their associated variables. 5775 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5776 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5777 } 5778 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5779 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5780 } 5781 5782 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5783 switch (Intrinsic) { 5784 case Intrinsic::smul_fix: 5785 return ISD::SMULFIX; 5786 case Intrinsic::umul_fix: 5787 return ISD::UMULFIX; 5788 case Intrinsic::smul_fix_sat: 5789 return ISD::SMULFIXSAT; 5790 case Intrinsic::umul_fix_sat: 5791 return ISD::UMULFIXSAT; 5792 case Intrinsic::sdiv_fix: 5793 return ISD::SDIVFIX; 5794 case Intrinsic::udiv_fix: 5795 return ISD::UDIVFIX; 5796 case Intrinsic::sdiv_fix_sat: 5797 return ISD::SDIVFIXSAT; 5798 case Intrinsic::udiv_fix_sat: 5799 return ISD::UDIVFIXSAT; 5800 default: 5801 llvm_unreachable("Unhandled fixed point intrinsic"); 5802 } 5803 } 5804 5805 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5806 const char *FunctionName) { 5807 assert(FunctionName && "FunctionName must not be nullptr"); 5808 SDValue Callee = DAG.getExternalSymbol( 5809 FunctionName, 5810 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5811 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5812 } 5813 5814 /// Given a @llvm.call.preallocated.setup, return the corresponding 5815 /// preallocated call. 5816 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5817 assert(cast<CallBase>(PreallocatedSetup) 5818 ->getCalledFunction() 5819 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5820 "expected call_preallocated_setup Value"); 5821 for (const auto *U : PreallocatedSetup->users()) { 5822 auto *UseCall = cast<CallBase>(U); 5823 const Function *Fn = UseCall->getCalledFunction(); 5824 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5825 return UseCall; 5826 } 5827 } 5828 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5829 } 5830 5831 /// Lower the call to the specified intrinsic function. 5832 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5833 unsigned Intrinsic) { 5834 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5835 SDLoc sdl = getCurSDLoc(); 5836 DebugLoc dl = getCurDebugLoc(); 5837 SDValue Res; 5838 5839 SDNodeFlags Flags; 5840 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5841 Flags.copyFMF(*FPOp); 5842 5843 switch (Intrinsic) { 5844 default: 5845 // By default, turn this into a target intrinsic node. 5846 visitTargetIntrinsic(I, Intrinsic); 5847 return; 5848 case Intrinsic::vscale: { 5849 match(&I, m_VScale(DAG.getDataLayout())); 5850 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5851 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5852 return; 5853 } 5854 case Intrinsic::vastart: visitVAStart(I); return; 5855 case Intrinsic::vaend: visitVAEnd(I); return; 5856 case Intrinsic::vacopy: visitVACopy(I); return; 5857 case Intrinsic::returnaddress: 5858 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5859 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5860 getValue(I.getArgOperand(0)))); 5861 return; 5862 case Intrinsic::addressofreturnaddress: 5863 setValue(&I, 5864 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5865 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5866 return; 5867 case Intrinsic::sponentry: 5868 setValue(&I, 5869 DAG.getNode(ISD::SPONENTRY, sdl, 5870 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5871 return; 5872 case Intrinsic::frameaddress: 5873 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5874 TLI.getFrameIndexTy(DAG.getDataLayout()), 5875 getValue(I.getArgOperand(0)))); 5876 return; 5877 case Intrinsic::read_volatile_register: 5878 case Intrinsic::read_register: { 5879 Value *Reg = I.getArgOperand(0); 5880 SDValue Chain = getRoot(); 5881 SDValue RegName = 5882 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5883 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5884 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5885 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5886 setValue(&I, Res); 5887 DAG.setRoot(Res.getValue(1)); 5888 return; 5889 } 5890 case Intrinsic::write_register: { 5891 Value *Reg = I.getArgOperand(0); 5892 Value *RegValue = I.getArgOperand(1); 5893 SDValue Chain = getRoot(); 5894 SDValue RegName = 5895 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5896 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5897 RegName, getValue(RegValue))); 5898 return; 5899 } 5900 case Intrinsic::memcpy: { 5901 const auto &MCI = cast<MemCpyInst>(I); 5902 SDValue Op1 = getValue(I.getArgOperand(0)); 5903 SDValue Op2 = getValue(I.getArgOperand(1)); 5904 SDValue Op3 = getValue(I.getArgOperand(2)); 5905 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5906 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5907 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5908 Align Alignment = std::min(DstAlign, SrcAlign); 5909 bool isVol = MCI.isVolatile(); 5910 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5911 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5912 // node. 5913 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5914 SDValue MC = DAG.getMemcpy( 5915 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5916 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5917 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5918 updateDAGForMaybeTailCall(MC); 5919 return; 5920 } 5921 case Intrinsic::memcpy_inline: { 5922 const auto &MCI = cast<MemCpyInlineInst>(I); 5923 SDValue Dst = getValue(I.getArgOperand(0)); 5924 SDValue Src = getValue(I.getArgOperand(1)); 5925 SDValue Size = getValue(I.getArgOperand(2)); 5926 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5927 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5928 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5929 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5930 Align Alignment = std::min(DstAlign, SrcAlign); 5931 bool isVol = MCI.isVolatile(); 5932 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5933 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5934 // node. 5935 SDValue MC = DAG.getMemcpy( 5936 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5937 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5938 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5939 updateDAGForMaybeTailCall(MC); 5940 return; 5941 } 5942 case Intrinsic::memset: { 5943 const auto &MSI = cast<MemSetInst>(I); 5944 SDValue Op1 = getValue(I.getArgOperand(0)); 5945 SDValue Op2 = getValue(I.getArgOperand(1)); 5946 SDValue Op3 = getValue(I.getArgOperand(2)); 5947 // @llvm.memset defines 0 and 1 to both mean no alignment. 5948 Align Alignment = MSI.getDestAlign().valueOrOne(); 5949 bool isVol = MSI.isVolatile(); 5950 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5951 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5952 SDValue MS = DAG.getMemset( 5953 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5954 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5955 updateDAGForMaybeTailCall(MS); 5956 return; 5957 } 5958 case Intrinsic::memset_inline: { 5959 const auto &MSII = cast<MemSetInlineInst>(I); 5960 SDValue Dst = getValue(I.getArgOperand(0)); 5961 SDValue Value = getValue(I.getArgOperand(1)); 5962 SDValue Size = getValue(I.getArgOperand(2)); 5963 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5964 // @llvm.memset defines 0 and 1 to both mean no alignment. 5965 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5966 bool isVol = MSII.isVolatile(); 5967 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5968 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5969 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5970 /* AlwaysInline */ true, isTC, 5971 MachinePointerInfo(I.getArgOperand(0)), 5972 I.getAAMetadata()); 5973 updateDAGForMaybeTailCall(MC); 5974 return; 5975 } 5976 case Intrinsic::memmove: { 5977 const auto &MMI = cast<MemMoveInst>(I); 5978 SDValue Op1 = getValue(I.getArgOperand(0)); 5979 SDValue Op2 = getValue(I.getArgOperand(1)); 5980 SDValue Op3 = getValue(I.getArgOperand(2)); 5981 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5982 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5983 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5984 Align Alignment = std::min(DstAlign, SrcAlign); 5985 bool isVol = MMI.isVolatile(); 5986 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5987 // FIXME: Support passing different dest/src alignments to the memmove DAG 5988 // node. 5989 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5990 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5991 isTC, MachinePointerInfo(I.getArgOperand(0)), 5992 MachinePointerInfo(I.getArgOperand(1)), 5993 I.getAAMetadata(), AA); 5994 updateDAGForMaybeTailCall(MM); 5995 return; 5996 } 5997 case Intrinsic::memcpy_element_unordered_atomic: { 5998 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5999 SDValue Dst = getValue(MI.getRawDest()); 6000 SDValue Src = getValue(MI.getRawSource()); 6001 SDValue Length = getValue(MI.getLength()); 6002 6003 Type *LengthTy = MI.getLength()->getType(); 6004 unsigned ElemSz = MI.getElementSizeInBytes(); 6005 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6006 SDValue MC = 6007 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6008 isTC, MachinePointerInfo(MI.getRawDest()), 6009 MachinePointerInfo(MI.getRawSource())); 6010 updateDAGForMaybeTailCall(MC); 6011 return; 6012 } 6013 case Intrinsic::memmove_element_unordered_atomic: { 6014 auto &MI = cast<AtomicMemMoveInst>(I); 6015 SDValue Dst = getValue(MI.getRawDest()); 6016 SDValue Src = getValue(MI.getRawSource()); 6017 SDValue Length = getValue(MI.getLength()); 6018 6019 Type *LengthTy = MI.getLength()->getType(); 6020 unsigned ElemSz = MI.getElementSizeInBytes(); 6021 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6022 SDValue MC = 6023 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6024 isTC, MachinePointerInfo(MI.getRawDest()), 6025 MachinePointerInfo(MI.getRawSource())); 6026 updateDAGForMaybeTailCall(MC); 6027 return; 6028 } 6029 case Intrinsic::memset_element_unordered_atomic: { 6030 auto &MI = cast<AtomicMemSetInst>(I); 6031 SDValue Dst = getValue(MI.getRawDest()); 6032 SDValue Val = getValue(MI.getValue()); 6033 SDValue Length = getValue(MI.getLength()); 6034 6035 Type *LengthTy = MI.getLength()->getType(); 6036 unsigned ElemSz = MI.getElementSizeInBytes(); 6037 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6038 SDValue MC = 6039 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6040 isTC, MachinePointerInfo(MI.getRawDest())); 6041 updateDAGForMaybeTailCall(MC); 6042 return; 6043 } 6044 case Intrinsic::call_preallocated_setup: { 6045 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6046 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6047 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6048 getRoot(), SrcValue); 6049 setValue(&I, Res); 6050 DAG.setRoot(Res); 6051 return; 6052 } 6053 case Intrinsic::call_preallocated_arg: { 6054 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6055 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6056 SDValue Ops[3]; 6057 Ops[0] = getRoot(); 6058 Ops[1] = SrcValue; 6059 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6060 MVT::i32); // arg index 6061 SDValue Res = DAG.getNode( 6062 ISD::PREALLOCATED_ARG, sdl, 6063 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6064 setValue(&I, Res); 6065 DAG.setRoot(Res.getValue(1)); 6066 return; 6067 } 6068 case Intrinsic::dbg_addr: 6069 case Intrinsic::dbg_declare: { 6070 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6071 // they are non-variadic. 6072 const auto &DI = cast<DbgVariableIntrinsic>(I); 6073 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6074 DILocalVariable *Variable = DI.getVariable(); 6075 DIExpression *Expression = DI.getExpression(); 6076 dropDanglingDebugInfo(Variable, Expression); 6077 assert(Variable && "Missing variable"); 6078 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6079 << "\n"); 6080 // Check if address has undef value. 6081 const Value *Address = DI.getVariableLocationOp(0); 6082 if (!Address || isa<UndefValue>(Address) || 6083 (Address->use_empty() && !isa<Argument>(Address))) { 6084 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6085 << " (bad/undef/unused-arg address)\n"); 6086 return; 6087 } 6088 6089 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6090 6091 // Check if this variable can be described by a frame index, typically 6092 // either as a static alloca or a byval parameter. 6093 int FI = std::numeric_limits<int>::max(); 6094 if (const auto *AI = 6095 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6096 if (AI->isStaticAlloca()) { 6097 auto I = FuncInfo.StaticAllocaMap.find(AI); 6098 if (I != FuncInfo.StaticAllocaMap.end()) 6099 FI = I->second; 6100 } 6101 } else if (const auto *Arg = dyn_cast<Argument>( 6102 Address->stripInBoundsConstantOffsets())) { 6103 FI = FuncInfo.getArgumentFrameIndex(Arg); 6104 } 6105 6106 // llvm.dbg.addr is control dependent and always generates indirect 6107 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6108 // the MachineFunction variable table. 6109 if (FI != std::numeric_limits<int>::max()) { 6110 if (Intrinsic == Intrinsic::dbg_addr) { 6111 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6112 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6113 dl, SDNodeOrder); 6114 DAG.AddDbgValue(SDV, isParameter); 6115 } else { 6116 LLVM_DEBUG(dbgs() << "Skipping " << DI 6117 << " (variable info stashed in MF side table)\n"); 6118 } 6119 return; 6120 } 6121 6122 SDValue &N = NodeMap[Address]; 6123 if (!N.getNode() && isa<Argument>(Address)) 6124 // Check unused arguments map. 6125 N = UnusedArgNodeMap[Address]; 6126 SDDbgValue *SDV; 6127 if (N.getNode()) { 6128 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6129 Address = BCI->getOperand(0); 6130 // Parameters are handled specially. 6131 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6132 if (isParameter && FINode) { 6133 // Byval parameter. We have a frame index at this point. 6134 SDV = 6135 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6136 /*IsIndirect*/ true, dl, SDNodeOrder); 6137 } else if (isa<Argument>(Address)) { 6138 // Address is an argument, so try to emit its dbg value using 6139 // virtual register info from the FuncInfo.ValueMap. 6140 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6141 FuncArgumentDbgValueKind::Declare, N); 6142 return; 6143 } else { 6144 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6145 true, dl, SDNodeOrder); 6146 } 6147 DAG.AddDbgValue(SDV, isParameter); 6148 } else { 6149 // If Address is an argument then try to emit its dbg value using 6150 // virtual register info from the FuncInfo.ValueMap. 6151 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6152 FuncArgumentDbgValueKind::Declare, N)) { 6153 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6154 << " (could not emit func-arg dbg_value)\n"); 6155 } 6156 } 6157 return; 6158 } 6159 case Intrinsic::dbg_label: { 6160 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6161 DILabel *Label = DI.getLabel(); 6162 assert(Label && "Missing label"); 6163 6164 SDDbgLabel *SDV; 6165 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6166 DAG.AddDbgLabel(SDV); 6167 return; 6168 } 6169 case Intrinsic::dbg_value: { 6170 const DbgValueInst &DI = cast<DbgValueInst>(I); 6171 assert(DI.getVariable() && "Missing variable"); 6172 6173 DILocalVariable *Variable = DI.getVariable(); 6174 DIExpression *Expression = DI.getExpression(); 6175 dropDanglingDebugInfo(Variable, Expression); 6176 SmallVector<Value *, 4> Values(DI.getValues()); 6177 if (Values.empty()) 6178 return; 6179 6180 if (llvm::is_contained(Values, nullptr)) 6181 return; 6182 6183 bool IsVariadic = DI.hasArgList(); 6184 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6185 SDNodeOrder, IsVariadic)) 6186 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6187 return; 6188 } 6189 6190 case Intrinsic::eh_typeid_for: { 6191 // Find the type id for the given typeinfo. 6192 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6193 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6194 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6195 setValue(&I, Res); 6196 return; 6197 } 6198 6199 case Intrinsic::eh_return_i32: 6200 case Intrinsic::eh_return_i64: 6201 DAG.getMachineFunction().setCallsEHReturn(true); 6202 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6203 MVT::Other, 6204 getControlRoot(), 6205 getValue(I.getArgOperand(0)), 6206 getValue(I.getArgOperand(1)))); 6207 return; 6208 case Intrinsic::eh_unwind_init: 6209 DAG.getMachineFunction().setCallsUnwindInit(true); 6210 return; 6211 case Intrinsic::eh_dwarf_cfa: 6212 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6213 TLI.getPointerTy(DAG.getDataLayout()), 6214 getValue(I.getArgOperand(0)))); 6215 return; 6216 case Intrinsic::eh_sjlj_callsite: { 6217 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6218 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6219 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6220 6221 MMI.setCurrentCallSite(CI->getZExtValue()); 6222 return; 6223 } 6224 case Intrinsic::eh_sjlj_functioncontext: { 6225 // Get and store the index of the function context. 6226 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6227 AllocaInst *FnCtx = 6228 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6229 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6230 MFI.setFunctionContextIndex(FI); 6231 return; 6232 } 6233 case Intrinsic::eh_sjlj_setjmp: { 6234 SDValue Ops[2]; 6235 Ops[0] = getRoot(); 6236 Ops[1] = getValue(I.getArgOperand(0)); 6237 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6238 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6239 setValue(&I, Op.getValue(0)); 6240 DAG.setRoot(Op.getValue(1)); 6241 return; 6242 } 6243 case Intrinsic::eh_sjlj_longjmp: 6244 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6245 getRoot(), getValue(I.getArgOperand(0)))); 6246 return; 6247 case Intrinsic::eh_sjlj_setup_dispatch: 6248 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6249 getRoot())); 6250 return; 6251 case Intrinsic::masked_gather: 6252 visitMaskedGather(I); 6253 return; 6254 case Intrinsic::masked_load: 6255 visitMaskedLoad(I); 6256 return; 6257 case Intrinsic::masked_scatter: 6258 visitMaskedScatter(I); 6259 return; 6260 case Intrinsic::masked_store: 6261 visitMaskedStore(I); 6262 return; 6263 case Intrinsic::masked_expandload: 6264 visitMaskedLoad(I, true /* IsExpanding */); 6265 return; 6266 case Intrinsic::masked_compressstore: 6267 visitMaskedStore(I, true /* IsCompressing */); 6268 return; 6269 case Intrinsic::powi: 6270 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6271 getValue(I.getArgOperand(1)), DAG)); 6272 return; 6273 case Intrinsic::log: 6274 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6275 return; 6276 case Intrinsic::log2: 6277 setValue(&I, 6278 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6279 return; 6280 case Intrinsic::log10: 6281 setValue(&I, 6282 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6283 return; 6284 case Intrinsic::exp: 6285 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6286 return; 6287 case Intrinsic::exp2: 6288 setValue(&I, 6289 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6290 return; 6291 case Intrinsic::pow: 6292 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6293 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6294 return; 6295 case Intrinsic::sqrt: 6296 case Intrinsic::fabs: 6297 case Intrinsic::sin: 6298 case Intrinsic::cos: 6299 case Intrinsic::floor: 6300 case Intrinsic::ceil: 6301 case Intrinsic::trunc: 6302 case Intrinsic::rint: 6303 case Intrinsic::nearbyint: 6304 case Intrinsic::round: 6305 case Intrinsic::roundeven: 6306 case Intrinsic::canonicalize: { 6307 unsigned Opcode; 6308 switch (Intrinsic) { 6309 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6310 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6311 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6312 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6313 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6314 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6315 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6316 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6317 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6318 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6319 case Intrinsic::round: Opcode = ISD::FROUND; break; 6320 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6321 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6322 } 6323 6324 setValue(&I, DAG.getNode(Opcode, sdl, 6325 getValue(I.getArgOperand(0)).getValueType(), 6326 getValue(I.getArgOperand(0)), Flags)); 6327 return; 6328 } 6329 case Intrinsic::lround: 6330 case Intrinsic::llround: 6331 case Intrinsic::lrint: 6332 case Intrinsic::llrint: { 6333 unsigned Opcode; 6334 switch (Intrinsic) { 6335 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6336 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6337 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6338 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6339 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6340 } 6341 6342 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6343 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6344 getValue(I.getArgOperand(0)))); 6345 return; 6346 } 6347 case Intrinsic::minnum: 6348 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6349 getValue(I.getArgOperand(0)).getValueType(), 6350 getValue(I.getArgOperand(0)), 6351 getValue(I.getArgOperand(1)), Flags)); 6352 return; 6353 case Intrinsic::maxnum: 6354 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6355 getValue(I.getArgOperand(0)).getValueType(), 6356 getValue(I.getArgOperand(0)), 6357 getValue(I.getArgOperand(1)), Flags)); 6358 return; 6359 case Intrinsic::minimum: 6360 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6361 getValue(I.getArgOperand(0)).getValueType(), 6362 getValue(I.getArgOperand(0)), 6363 getValue(I.getArgOperand(1)), Flags)); 6364 return; 6365 case Intrinsic::maximum: 6366 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6367 getValue(I.getArgOperand(0)).getValueType(), 6368 getValue(I.getArgOperand(0)), 6369 getValue(I.getArgOperand(1)), Flags)); 6370 return; 6371 case Intrinsic::copysign: 6372 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6373 getValue(I.getArgOperand(0)).getValueType(), 6374 getValue(I.getArgOperand(0)), 6375 getValue(I.getArgOperand(1)), Flags)); 6376 return; 6377 case Intrinsic::arithmetic_fence: { 6378 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6379 getValue(I.getArgOperand(0)).getValueType(), 6380 getValue(I.getArgOperand(0)), Flags)); 6381 return; 6382 } 6383 case Intrinsic::fma: 6384 setValue(&I, DAG.getNode( 6385 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6386 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6387 getValue(I.getArgOperand(2)), Flags)); 6388 return; 6389 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6390 case Intrinsic::INTRINSIC: 6391 #include "llvm/IR/ConstrainedOps.def" 6392 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6393 return; 6394 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6395 #include "llvm/IR/VPIntrinsics.def" 6396 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6397 return; 6398 case Intrinsic::fptrunc_round: { 6399 // Get the last argument, the metadata and convert it to an integer in the 6400 // call 6401 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6402 Optional<RoundingMode> RoundMode = 6403 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6404 6405 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6406 6407 // Propagate fast-math-flags from IR to node(s). 6408 SDNodeFlags Flags; 6409 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6410 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6411 6412 SDValue Result; 6413 Result = DAG.getNode( 6414 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6415 DAG.getTargetConstant((int)*RoundMode, sdl, 6416 TLI.getPointerTy(DAG.getDataLayout()))); 6417 setValue(&I, Result); 6418 6419 return; 6420 } 6421 case Intrinsic::fmuladd: { 6422 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6423 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6424 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6425 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6426 getValue(I.getArgOperand(0)).getValueType(), 6427 getValue(I.getArgOperand(0)), 6428 getValue(I.getArgOperand(1)), 6429 getValue(I.getArgOperand(2)), Flags)); 6430 } else { 6431 // TODO: Intrinsic calls should have fast-math-flags. 6432 SDValue Mul = DAG.getNode( 6433 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6434 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6435 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6436 getValue(I.getArgOperand(0)).getValueType(), 6437 Mul, getValue(I.getArgOperand(2)), Flags); 6438 setValue(&I, Add); 6439 } 6440 return; 6441 } 6442 case Intrinsic::convert_to_fp16: 6443 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6444 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6445 getValue(I.getArgOperand(0)), 6446 DAG.getTargetConstant(0, sdl, 6447 MVT::i32)))); 6448 return; 6449 case Intrinsic::convert_from_fp16: 6450 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6451 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6452 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6453 getValue(I.getArgOperand(0))))); 6454 return; 6455 case Intrinsic::fptosi_sat: { 6456 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6457 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6458 getValue(I.getArgOperand(0)), 6459 DAG.getValueType(VT.getScalarType()))); 6460 return; 6461 } 6462 case Intrinsic::fptoui_sat: { 6463 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6464 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6465 getValue(I.getArgOperand(0)), 6466 DAG.getValueType(VT.getScalarType()))); 6467 return; 6468 } 6469 case Intrinsic::set_rounding: 6470 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6471 {getRoot(), getValue(I.getArgOperand(0))}); 6472 setValue(&I, Res); 6473 DAG.setRoot(Res.getValue(0)); 6474 return; 6475 case Intrinsic::is_fpclass: { 6476 const DataLayout DLayout = DAG.getDataLayout(); 6477 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6478 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6479 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6480 MachineFunction &MF = DAG.getMachineFunction(); 6481 const Function &F = MF.getFunction(); 6482 SDValue Op = getValue(I.getArgOperand(0)); 6483 SDNodeFlags Flags; 6484 Flags.setNoFPExcept( 6485 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6486 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6487 // expansion can use illegal types. Making expansion early allows 6488 // legalizing these types prior to selection. 6489 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6490 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6491 setValue(&I, Result); 6492 return; 6493 } 6494 6495 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6496 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6497 setValue(&I, V); 6498 return; 6499 } 6500 case Intrinsic::pcmarker: { 6501 SDValue Tmp = getValue(I.getArgOperand(0)); 6502 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6503 return; 6504 } 6505 case Intrinsic::readcyclecounter: { 6506 SDValue Op = getRoot(); 6507 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6508 DAG.getVTList(MVT::i64, MVT::Other), Op); 6509 setValue(&I, Res); 6510 DAG.setRoot(Res.getValue(1)); 6511 return; 6512 } 6513 case Intrinsic::bitreverse: 6514 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6515 getValue(I.getArgOperand(0)).getValueType(), 6516 getValue(I.getArgOperand(0)))); 6517 return; 6518 case Intrinsic::bswap: 6519 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6520 getValue(I.getArgOperand(0)).getValueType(), 6521 getValue(I.getArgOperand(0)))); 6522 return; 6523 case Intrinsic::cttz: { 6524 SDValue Arg = getValue(I.getArgOperand(0)); 6525 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6526 EVT Ty = Arg.getValueType(); 6527 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6528 sdl, Ty, Arg)); 6529 return; 6530 } 6531 case Intrinsic::ctlz: { 6532 SDValue Arg = getValue(I.getArgOperand(0)); 6533 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6534 EVT Ty = Arg.getValueType(); 6535 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6536 sdl, Ty, Arg)); 6537 return; 6538 } 6539 case Intrinsic::ctpop: { 6540 SDValue Arg = getValue(I.getArgOperand(0)); 6541 EVT Ty = Arg.getValueType(); 6542 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6543 return; 6544 } 6545 case Intrinsic::fshl: 6546 case Intrinsic::fshr: { 6547 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6548 SDValue X = getValue(I.getArgOperand(0)); 6549 SDValue Y = getValue(I.getArgOperand(1)); 6550 SDValue Z = getValue(I.getArgOperand(2)); 6551 EVT VT = X.getValueType(); 6552 6553 if (X == Y) { 6554 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6555 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6556 } else { 6557 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6558 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6559 } 6560 return; 6561 } 6562 case Intrinsic::sadd_sat: { 6563 SDValue Op1 = getValue(I.getArgOperand(0)); 6564 SDValue Op2 = getValue(I.getArgOperand(1)); 6565 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6566 return; 6567 } 6568 case Intrinsic::uadd_sat: { 6569 SDValue Op1 = getValue(I.getArgOperand(0)); 6570 SDValue Op2 = getValue(I.getArgOperand(1)); 6571 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6572 return; 6573 } 6574 case Intrinsic::ssub_sat: { 6575 SDValue Op1 = getValue(I.getArgOperand(0)); 6576 SDValue Op2 = getValue(I.getArgOperand(1)); 6577 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6578 return; 6579 } 6580 case Intrinsic::usub_sat: { 6581 SDValue Op1 = getValue(I.getArgOperand(0)); 6582 SDValue Op2 = getValue(I.getArgOperand(1)); 6583 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6584 return; 6585 } 6586 case Intrinsic::sshl_sat: { 6587 SDValue Op1 = getValue(I.getArgOperand(0)); 6588 SDValue Op2 = getValue(I.getArgOperand(1)); 6589 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6590 return; 6591 } 6592 case Intrinsic::ushl_sat: { 6593 SDValue Op1 = getValue(I.getArgOperand(0)); 6594 SDValue Op2 = getValue(I.getArgOperand(1)); 6595 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6596 return; 6597 } 6598 case Intrinsic::smul_fix: 6599 case Intrinsic::umul_fix: 6600 case Intrinsic::smul_fix_sat: 6601 case Intrinsic::umul_fix_sat: { 6602 SDValue Op1 = getValue(I.getArgOperand(0)); 6603 SDValue Op2 = getValue(I.getArgOperand(1)); 6604 SDValue Op3 = getValue(I.getArgOperand(2)); 6605 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6606 Op1.getValueType(), Op1, Op2, Op3)); 6607 return; 6608 } 6609 case Intrinsic::sdiv_fix: 6610 case Intrinsic::udiv_fix: 6611 case Intrinsic::sdiv_fix_sat: 6612 case Intrinsic::udiv_fix_sat: { 6613 SDValue Op1 = getValue(I.getArgOperand(0)); 6614 SDValue Op2 = getValue(I.getArgOperand(1)); 6615 SDValue Op3 = getValue(I.getArgOperand(2)); 6616 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6617 Op1, Op2, Op3, DAG, TLI)); 6618 return; 6619 } 6620 case Intrinsic::smax: { 6621 SDValue Op1 = getValue(I.getArgOperand(0)); 6622 SDValue Op2 = getValue(I.getArgOperand(1)); 6623 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6624 return; 6625 } 6626 case Intrinsic::smin: { 6627 SDValue Op1 = getValue(I.getArgOperand(0)); 6628 SDValue Op2 = getValue(I.getArgOperand(1)); 6629 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6630 return; 6631 } 6632 case Intrinsic::umax: { 6633 SDValue Op1 = getValue(I.getArgOperand(0)); 6634 SDValue Op2 = getValue(I.getArgOperand(1)); 6635 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6636 return; 6637 } 6638 case Intrinsic::umin: { 6639 SDValue Op1 = getValue(I.getArgOperand(0)); 6640 SDValue Op2 = getValue(I.getArgOperand(1)); 6641 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6642 return; 6643 } 6644 case Intrinsic::abs: { 6645 // TODO: Preserve "int min is poison" arg in SDAG? 6646 SDValue Op1 = getValue(I.getArgOperand(0)); 6647 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6648 return; 6649 } 6650 case Intrinsic::stacksave: { 6651 SDValue Op = getRoot(); 6652 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6653 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6654 setValue(&I, Res); 6655 DAG.setRoot(Res.getValue(1)); 6656 return; 6657 } 6658 case Intrinsic::stackrestore: 6659 Res = getValue(I.getArgOperand(0)); 6660 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6661 return; 6662 case Intrinsic::get_dynamic_area_offset: { 6663 SDValue Op = getRoot(); 6664 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6665 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6666 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6667 // target. 6668 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6669 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6670 " intrinsic!"); 6671 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6672 Op); 6673 DAG.setRoot(Op); 6674 setValue(&I, Res); 6675 return; 6676 } 6677 case Intrinsic::stackguard: { 6678 MachineFunction &MF = DAG.getMachineFunction(); 6679 const Module &M = *MF.getFunction().getParent(); 6680 SDValue Chain = getRoot(); 6681 if (TLI.useLoadStackGuardNode()) { 6682 Res = getLoadStackGuard(DAG, sdl, Chain); 6683 } else { 6684 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6685 const Value *Global = TLI.getSDagStackGuard(M); 6686 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6687 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6688 MachinePointerInfo(Global, 0), Align, 6689 MachineMemOperand::MOVolatile); 6690 } 6691 if (TLI.useStackGuardXorFP()) 6692 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6693 DAG.setRoot(Chain); 6694 setValue(&I, Res); 6695 return; 6696 } 6697 case Intrinsic::stackprotector: { 6698 // Emit code into the DAG to store the stack guard onto the stack. 6699 MachineFunction &MF = DAG.getMachineFunction(); 6700 MachineFrameInfo &MFI = MF.getFrameInfo(); 6701 SDValue Src, Chain = getRoot(); 6702 6703 if (TLI.useLoadStackGuardNode()) 6704 Src = getLoadStackGuard(DAG, sdl, Chain); 6705 else 6706 Src = getValue(I.getArgOperand(0)); // The guard's value. 6707 6708 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6709 6710 int FI = FuncInfo.StaticAllocaMap[Slot]; 6711 MFI.setStackProtectorIndex(FI); 6712 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6713 6714 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6715 6716 // Store the stack protector onto the stack. 6717 Res = DAG.getStore( 6718 Chain, sdl, Src, FIN, 6719 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6720 MaybeAlign(), MachineMemOperand::MOVolatile); 6721 setValue(&I, Res); 6722 DAG.setRoot(Res); 6723 return; 6724 } 6725 case Intrinsic::objectsize: 6726 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6727 6728 case Intrinsic::is_constant: 6729 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6730 6731 case Intrinsic::annotation: 6732 case Intrinsic::ptr_annotation: 6733 case Intrinsic::launder_invariant_group: 6734 case Intrinsic::strip_invariant_group: 6735 // Drop the intrinsic, but forward the value 6736 setValue(&I, getValue(I.getOperand(0))); 6737 return; 6738 6739 case Intrinsic::assume: 6740 case Intrinsic::experimental_noalias_scope_decl: 6741 case Intrinsic::var_annotation: 6742 case Intrinsic::sideeffect: 6743 // Discard annotate attributes, noalias scope declarations, assumptions, and 6744 // artificial side-effects. 6745 return; 6746 6747 case Intrinsic::codeview_annotation: { 6748 // Emit a label associated with this metadata. 6749 MachineFunction &MF = DAG.getMachineFunction(); 6750 MCSymbol *Label = 6751 MF.getMMI().getContext().createTempSymbol("annotation", true); 6752 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6753 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6754 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6755 DAG.setRoot(Res); 6756 return; 6757 } 6758 6759 case Intrinsic::init_trampoline: { 6760 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6761 6762 SDValue Ops[6]; 6763 Ops[0] = getRoot(); 6764 Ops[1] = getValue(I.getArgOperand(0)); 6765 Ops[2] = getValue(I.getArgOperand(1)); 6766 Ops[3] = getValue(I.getArgOperand(2)); 6767 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6768 Ops[5] = DAG.getSrcValue(F); 6769 6770 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6771 6772 DAG.setRoot(Res); 6773 return; 6774 } 6775 case Intrinsic::adjust_trampoline: 6776 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6777 TLI.getPointerTy(DAG.getDataLayout()), 6778 getValue(I.getArgOperand(0)))); 6779 return; 6780 case Intrinsic::gcroot: { 6781 assert(DAG.getMachineFunction().getFunction().hasGC() && 6782 "only valid in functions with gc specified, enforced by Verifier"); 6783 assert(GFI && "implied by previous"); 6784 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6785 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6786 6787 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6788 GFI->addStackRoot(FI->getIndex(), TypeMap); 6789 return; 6790 } 6791 case Intrinsic::gcread: 6792 case Intrinsic::gcwrite: 6793 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6794 case Intrinsic::flt_rounds: 6795 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6796 setValue(&I, Res); 6797 DAG.setRoot(Res.getValue(1)); 6798 return; 6799 6800 case Intrinsic::expect: 6801 // Just replace __builtin_expect(exp, c) with EXP. 6802 setValue(&I, getValue(I.getArgOperand(0))); 6803 return; 6804 6805 case Intrinsic::ubsantrap: 6806 case Intrinsic::debugtrap: 6807 case Intrinsic::trap: { 6808 StringRef TrapFuncName = 6809 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6810 if (TrapFuncName.empty()) { 6811 switch (Intrinsic) { 6812 case Intrinsic::trap: 6813 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6814 break; 6815 case Intrinsic::debugtrap: 6816 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6817 break; 6818 case Intrinsic::ubsantrap: 6819 DAG.setRoot(DAG.getNode( 6820 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6821 DAG.getTargetConstant( 6822 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6823 MVT::i32))); 6824 break; 6825 default: llvm_unreachable("unknown trap intrinsic"); 6826 } 6827 return; 6828 } 6829 TargetLowering::ArgListTy Args; 6830 if (Intrinsic == Intrinsic::ubsantrap) { 6831 Args.push_back(TargetLoweringBase::ArgListEntry()); 6832 Args[0].Val = I.getArgOperand(0); 6833 Args[0].Node = getValue(Args[0].Val); 6834 Args[0].Ty = Args[0].Val->getType(); 6835 } 6836 6837 TargetLowering::CallLoweringInfo CLI(DAG); 6838 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6839 CallingConv::C, I.getType(), 6840 DAG.getExternalSymbol(TrapFuncName.data(), 6841 TLI.getPointerTy(DAG.getDataLayout())), 6842 std::move(Args)); 6843 6844 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6845 DAG.setRoot(Result.second); 6846 return; 6847 } 6848 6849 case Intrinsic::uadd_with_overflow: 6850 case Intrinsic::sadd_with_overflow: 6851 case Intrinsic::usub_with_overflow: 6852 case Intrinsic::ssub_with_overflow: 6853 case Intrinsic::umul_with_overflow: 6854 case Intrinsic::smul_with_overflow: { 6855 ISD::NodeType Op; 6856 switch (Intrinsic) { 6857 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6858 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6859 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6860 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6861 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6862 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6863 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6864 } 6865 SDValue Op1 = getValue(I.getArgOperand(0)); 6866 SDValue Op2 = getValue(I.getArgOperand(1)); 6867 6868 EVT ResultVT = Op1.getValueType(); 6869 EVT OverflowVT = MVT::i1; 6870 if (ResultVT.isVector()) 6871 OverflowVT = EVT::getVectorVT( 6872 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6873 6874 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6875 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6876 return; 6877 } 6878 case Intrinsic::prefetch: { 6879 SDValue Ops[5]; 6880 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6881 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6882 Ops[0] = DAG.getRoot(); 6883 Ops[1] = getValue(I.getArgOperand(0)); 6884 Ops[2] = getValue(I.getArgOperand(1)); 6885 Ops[3] = getValue(I.getArgOperand(2)); 6886 Ops[4] = getValue(I.getArgOperand(3)); 6887 SDValue Result = DAG.getMemIntrinsicNode( 6888 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6889 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6890 /* align */ None, Flags); 6891 6892 // Chain the prefetch in parallell with any pending loads, to stay out of 6893 // the way of later optimizations. 6894 PendingLoads.push_back(Result); 6895 Result = getRoot(); 6896 DAG.setRoot(Result); 6897 return; 6898 } 6899 case Intrinsic::lifetime_start: 6900 case Intrinsic::lifetime_end: { 6901 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6902 // Stack coloring is not enabled in O0, discard region information. 6903 if (TM.getOptLevel() == CodeGenOpt::None) 6904 return; 6905 6906 const int64_t ObjectSize = 6907 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6908 Value *const ObjectPtr = I.getArgOperand(1); 6909 SmallVector<const Value *, 4> Allocas; 6910 getUnderlyingObjects(ObjectPtr, Allocas); 6911 6912 for (const Value *Alloca : Allocas) { 6913 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6914 6915 // Could not find an Alloca. 6916 if (!LifetimeObject) 6917 continue; 6918 6919 // First check that the Alloca is static, otherwise it won't have a 6920 // valid frame index. 6921 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6922 if (SI == FuncInfo.StaticAllocaMap.end()) 6923 return; 6924 6925 const int FrameIndex = SI->second; 6926 int64_t Offset; 6927 if (GetPointerBaseWithConstantOffset( 6928 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6929 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6930 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6931 Offset); 6932 DAG.setRoot(Res); 6933 } 6934 return; 6935 } 6936 case Intrinsic::pseudoprobe: { 6937 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6938 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6939 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6940 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6941 DAG.setRoot(Res); 6942 return; 6943 } 6944 case Intrinsic::invariant_start: 6945 // Discard region information. 6946 setValue(&I, 6947 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6948 return; 6949 case Intrinsic::invariant_end: 6950 // Discard region information. 6951 return; 6952 case Intrinsic::clear_cache: 6953 /// FunctionName may be null. 6954 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6955 lowerCallToExternalSymbol(I, FunctionName); 6956 return; 6957 case Intrinsic::donothing: 6958 case Intrinsic::seh_try_begin: 6959 case Intrinsic::seh_scope_begin: 6960 case Intrinsic::seh_try_end: 6961 case Intrinsic::seh_scope_end: 6962 // ignore 6963 return; 6964 case Intrinsic::experimental_stackmap: 6965 visitStackmap(I); 6966 return; 6967 case Intrinsic::experimental_patchpoint_void: 6968 case Intrinsic::experimental_patchpoint_i64: 6969 visitPatchpoint(I); 6970 return; 6971 case Intrinsic::experimental_gc_statepoint: 6972 LowerStatepoint(cast<GCStatepointInst>(I)); 6973 return; 6974 case Intrinsic::experimental_gc_result: 6975 visitGCResult(cast<GCResultInst>(I)); 6976 return; 6977 case Intrinsic::experimental_gc_relocate: 6978 visitGCRelocate(cast<GCRelocateInst>(I)); 6979 return; 6980 case Intrinsic::instrprof_cover: 6981 llvm_unreachable("instrprof failed to lower a cover"); 6982 case Intrinsic::instrprof_increment: 6983 llvm_unreachable("instrprof failed to lower an increment"); 6984 case Intrinsic::instrprof_value_profile: 6985 llvm_unreachable("instrprof failed to lower a value profiling call"); 6986 case Intrinsic::localescape: { 6987 MachineFunction &MF = DAG.getMachineFunction(); 6988 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6989 6990 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6991 // is the same on all targets. 6992 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6993 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6994 if (isa<ConstantPointerNull>(Arg)) 6995 continue; // Skip null pointers. They represent a hole in index space. 6996 AllocaInst *Slot = cast<AllocaInst>(Arg); 6997 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6998 "can only escape static allocas"); 6999 int FI = FuncInfo.StaticAllocaMap[Slot]; 7000 MCSymbol *FrameAllocSym = 7001 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7002 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7004 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7005 .addSym(FrameAllocSym) 7006 .addFrameIndex(FI); 7007 } 7008 7009 return; 7010 } 7011 7012 case Intrinsic::localrecover: { 7013 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7014 MachineFunction &MF = DAG.getMachineFunction(); 7015 7016 // Get the symbol that defines the frame offset. 7017 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7018 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7019 unsigned IdxVal = 7020 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7021 MCSymbol *FrameAllocSym = 7022 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7023 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7024 7025 Value *FP = I.getArgOperand(1); 7026 SDValue FPVal = getValue(FP); 7027 EVT PtrVT = FPVal.getValueType(); 7028 7029 // Create a MCSymbol for the label to avoid any target lowering 7030 // that would make this PC relative. 7031 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7032 SDValue OffsetVal = 7033 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7034 7035 // Add the offset to the FP. 7036 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7037 setValue(&I, Add); 7038 7039 return; 7040 } 7041 7042 case Intrinsic::eh_exceptionpointer: 7043 case Intrinsic::eh_exceptioncode: { 7044 // Get the exception pointer vreg, copy from it, and resize it to fit. 7045 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7046 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7047 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7048 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7049 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7050 if (Intrinsic == Intrinsic::eh_exceptioncode) 7051 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7052 setValue(&I, N); 7053 return; 7054 } 7055 case Intrinsic::xray_customevent: { 7056 // Here we want to make sure that the intrinsic behaves as if it has a 7057 // specific calling convention, and only for x86_64. 7058 // FIXME: Support other platforms later. 7059 const auto &Triple = DAG.getTarget().getTargetTriple(); 7060 if (Triple.getArch() != Triple::x86_64) 7061 return; 7062 7063 SmallVector<SDValue, 8> Ops; 7064 7065 // We want to say that we always want the arguments in registers. 7066 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7067 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7068 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7069 SDValue Chain = getRoot(); 7070 Ops.push_back(LogEntryVal); 7071 Ops.push_back(StrSizeVal); 7072 Ops.push_back(Chain); 7073 7074 // We need to enforce the calling convention for the callsite, so that 7075 // argument ordering is enforced correctly, and that register allocation can 7076 // see that some registers may be assumed clobbered and have to preserve 7077 // them across calls to the intrinsic. 7078 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7079 sdl, NodeTys, Ops); 7080 SDValue patchableNode = SDValue(MN, 0); 7081 DAG.setRoot(patchableNode); 7082 setValue(&I, patchableNode); 7083 return; 7084 } 7085 case Intrinsic::xray_typedevent: { 7086 // Here we want to make sure that the intrinsic behaves as if it has a 7087 // specific calling convention, and only for x86_64. 7088 // FIXME: Support other platforms later. 7089 const auto &Triple = DAG.getTarget().getTargetTriple(); 7090 if (Triple.getArch() != Triple::x86_64) 7091 return; 7092 7093 SmallVector<SDValue, 8> Ops; 7094 7095 // We want to say that we always want the arguments in registers. 7096 // It's unclear to me how manipulating the selection DAG here forces callers 7097 // to provide arguments in registers instead of on the stack. 7098 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7099 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7100 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7101 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7102 SDValue Chain = getRoot(); 7103 Ops.push_back(LogTypeId); 7104 Ops.push_back(LogEntryVal); 7105 Ops.push_back(StrSizeVal); 7106 Ops.push_back(Chain); 7107 7108 // We need to enforce the calling convention for the callsite, so that 7109 // argument ordering is enforced correctly, and that register allocation can 7110 // see that some registers may be assumed clobbered and have to preserve 7111 // them across calls to the intrinsic. 7112 MachineSDNode *MN = DAG.getMachineNode( 7113 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7114 SDValue patchableNode = SDValue(MN, 0); 7115 DAG.setRoot(patchableNode); 7116 setValue(&I, patchableNode); 7117 return; 7118 } 7119 case Intrinsic::experimental_deoptimize: 7120 LowerDeoptimizeCall(&I); 7121 return; 7122 case Intrinsic::experimental_stepvector: 7123 visitStepVector(I); 7124 return; 7125 case Intrinsic::vector_reduce_fadd: 7126 case Intrinsic::vector_reduce_fmul: 7127 case Intrinsic::vector_reduce_add: 7128 case Intrinsic::vector_reduce_mul: 7129 case Intrinsic::vector_reduce_and: 7130 case Intrinsic::vector_reduce_or: 7131 case Intrinsic::vector_reduce_xor: 7132 case Intrinsic::vector_reduce_smax: 7133 case Intrinsic::vector_reduce_smin: 7134 case Intrinsic::vector_reduce_umax: 7135 case Intrinsic::vector_reduce_umin: 7136 case Intrinsic::vector_reduce_fmax: 7137 case Intrinsic::vector_reduce_fmin: 7138 visitVectorReduce(I, Intrinsic); 7139 return; 7140 7141 case Intrinsic::icall_branch_funnel: { 7142 SmallVector<SDValue, 16> Ops; 7143 Ops.push_back(getValue(I.getArgOperand(0))); 7144 7145 int64_t Offset; 7146 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7147 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7148 if (!Base) 7149 report_fatal_error( 7150 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7151 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7152 7153 struct BranchFunnelTarget { 7154 int64_t Offset; 7155 SDValue Target; 7156 }; 7157 SmallVector<BranchFunnelTarget, 8> Targets; 7158 7159 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7160 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7161 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7162 if (ElemBase != Base) 7163 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7164 "to the same GlobalValue"); 7165 7166 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7167 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7168 if (!GA) 7169 report_fatal_error( 7170 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7171 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7172 GA->getGlobal(), sdl, Val.getValueType(), 7173 GA->getOffset())}); 7174 } 7175 llvm::sort(Targets, 7176 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7177 return T1.Offset < T2.Offset; 7178 }); 7179 7180 for (auto &T : Targets) { 7181 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7182 Ops.push_back(T.Target); 7183 } 7184 7185 Ops.push_back(DAG.getRoot()); // Chain 7186 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7187 MVT::Other, Ops), 7188 0); 7189 DAG.setRoot(N); 7190 setValue(&I, N); 7191 HasTailCall = true; 7192 return; 7193 } 7194 7195 case Intrinsic::wasm_landingpad_index: 7196 // Information this intrinsic contained has been transferred to 7197 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7198 // delete it now. 7199 return; 7200 7201 case Intrinsic::aarch64_settag: 7202 case Intrinsic::aarch64_settag_zero: { 7203 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7204 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7205 SDValue Val = TSI.EmitTargetCodeForSetTag( 7206 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7207 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7208 ZeroMemory); 7209 DAG.setRoot(Val); 7210 setValue(&I, Val); 7211 return; 7212 } 7213 case Intrinsic::ptrmask: { 7214 SDValue Ptr = getValue(I.getOperand(0)); 7215 SDValue Const = getValue(I.getOperand(1)); 7216 7217 EVT PtrVT = Ptr.getValueType(); 7218 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7219 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7220 return; 7221 } 7222 case Intrinsic::threadlocal_address: { 7223 setValue(&I, getValue(I.getOperand(0))); 7224 return; 7225 } 7226 case Intrinsic::get_active_lane_mask: { 7227 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7228 SDValue Index = getValue(I.getOperand(0)); 7229 EVT ElementVT = Index.getValueType(); 7230 7231 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7232 visitTargetIntrinsic(I, Intrinsic); 7233 return; 7234 } 7235 7236 SDValue TripCount = getValue(I.getOperand(1)); 7237 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7238 7239 SDValue VectorIndex, VectorTripCount; 7240 if (VecTy.isScalableVector()) { 7241 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7242 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7243 } else { 7244 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7245 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7246 } 7247 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7248 SDValue VectorInduction = DAG.getNode( 7249 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7250 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7251 VectorTripCount, ISD::CondCode::SETULT); 7252 setValue(&I, SetCC); 7253 return; 7254 } 7255 case Intrinsic::vector_insert: { 7256 SDValue Vec = getValue(I.getOperand(0)); 7257 SDValue SubVec = getValue(I.getOperand(1)); 7258 SDValue Index = getValue(I.getOperand(2)); 7259 7260 // The intrinsic's index type is i64, but the SDNode requires an index type 7261 // suitable for the target. Convert the index as required. 7262 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7263 if (Index.getValueType() != VectorIdxTy) 7264 Index = DAG.getVectorIdxConstant( 7265 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7266 7267 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7268 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7269 Index)); 7270 return; 7271 } 7272 case Intrinsic::vector_extract: { 7273 SDValue Vec = getValue(I.getOperand(0)); 7274 SDValue Index = getValue(I.getOperand(1)); 7275 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7276 7277 // The intrinsic's index type is i64, but the SDNode requires an index type 7278 // suitable for the target. Convert the index as required. 7279 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7280 if (Index.getValueType() != VectorIdxTy) 7281 Index = DAG.getVectorIdxConstant( 7282 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7283 7284 setValue(&I, 7285 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7286 return; 7287 } 7288 case Intrinsic::experimental_vector_reverse: 7289 visitVectorReverse(I); 7290 return; 7291 case Intrinsic::experimental_vector_splice: 7292 visitVectorSplice(I); 7293 return; 7294 } 7295 } 7296 7297 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7298 const ConstrainedFPIntrinsic &FPI) { 7299 SDLoc sdl = getCurSDLoc(); 7300 7301 // We do not need to serialize constrained FP intrinsics against 7302 // each other or against (nonvolatile) loads, so they can be 7303 // chained like loads. 7304 SDValue Chain = DAG.getRoot(); 7305 SmallVector<SDValue, 4> Opers; 7306 Opers.push_back(Chain); 7307 if (FPI.isUnaryOp()) { 7308 Opers.push_back(getValue(FPI.getArgOperand(0))); 7309 } else if (FPI.isTernaryOp()) { 7310 Opers.push_back(getValue(FPI.getArgOperand(0))); 7311 Opers.push_back(getValue(FPI.getArgOperand(1))); 7312 Opers.push_back(getValue(FPI.getArgOperand(2))); 7313 } else { 7314 Opers.push_back(getValue(FPI.getArgOperand(0))); 7315 Opers.push_back(getValue(FPI.getArgOperand(1))); 7316 } 7317 7318 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7319 assert(Result.getNode()->getNumValues() == 2); 7320 7321 // Push node to the appropriate list so that future instructions can be 7322 // chained up correctly. 7323 SDValue OutChain = Result.getValue(1); 7324 switch (EB) { 7325 case fp::ExceptionBehavior::ebIgnore: 7326 // The only reason why ebIgnore nodes still need to be chained is that 7327 // they might depend on the current rounding mode, and therefore must 7328 // not be moved across instruction that may change that mode. 7329 [[fallthrough]]; 7330 case fp::ExceptionBehavior::ebMayTrap: 7331 // These must not be moved across calls or instructions that may change 7332 // floating-point exception masks. 7333 PendingConstrainedFP.push_back(OutChain); 7334 break; 7335 case fp::ExceptionBehavior::ebStrict: 7336 // These must not be moved across calls or instructions that may change 7337 // floating-point exception masks or read floating-point exception flags. 7338 // In addition, they cannot be optimized out even if unused. 7339 PendingConstrainedFPStrict.push_back(OutChain); 7340 break; 7341 } 7342 }; 7343 7344 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7345 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7346 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7347 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7348 7349 SDNodeFlags Flags; 7350 if (EB == fp::ExceptionBehavior::ebIgnore) 7351 Flags.setNoFPExcept(true); 7352 7353 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7354 Flags.copyFMF(*FPOp); 7355 7356 unsigned Opcode; 7357 switch (FPI.getIntrinsicID()) { 7358 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7359 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7360 case Intrinsic::INTRINSIC: \ 7361 Opcode = ISD::STRICT_##DAGN; \ 7362 break; 7363 #include "llvm/IR/ConstrainedOps.def" 7364 case Intrinsic::experimental_constrained_fmuladd: { 7365 Opcode = ISD::STRICT_FMA; 7366 // Break fmuladd into fmul and fadd. 7367 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7368 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7369 Opers.pop_back(); 7370 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7371 pushOutChain(Mul, EB); 7372 Opcode = ISD::STRICT_FADD; 7373 Opers.clear(); 7374 Opers.push_back(Mul.getValue(1)); 7375 Opers.push_back(Mul.getValue(0)); 7376 Opers.push_back(getValue(FPI.getArgOperand(2))); 7377 } 7378 break; 7379 } 7380 } 7381 7382 // A few strict DAG nodes carry additional operands that are not 7383 // set up by the default code above. 7384 switch (Opcode) { 7385 default: break; 7386 case ISD::STRICT_FP_ROUND: 7387 Opers.push_back( 7388 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7389 break; 7390 case ISD::STRICT_FSETCC: 7391 case ISD::STRICT_FSETCCS: { 7392 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7393 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7394 if (TM.Options.NoNaNsFPMath) 7395 Condition = getFCmpCodeWithoutNaN(Condition); 7396 Opers.push_back(DAG.getCondCode(Condition)); 7397 break; 7398 } 7399 } 7400 7401 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7402 pushOutChain(Result, EB); 7403 7404 SDValue FPResult = Result.getValue(0); 7405 setValue(&FPI, FPResult); 7406 } 7407 7408 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7409 Optional<unsigned> ResOPC; 7410 switch (VPIntrin.getIntrinsicID()) { 7411 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7412 case Intrinsic::VPID: \ 7413 ResOPC = ISD::VPSD; \ 7414 break; 7415 #include "llvm/IR/VPIntrinsics.def" 7416 } 7417 7418 if (!ResOPC) 7419 llvm_unreachable( 7420 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7421 7422 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7423 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7424 if (VPIntrin.getFastMathFlags().allowReassoc()) 7425 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7426 : ISD::VP_REDUCE_FMUL; 7427 } 7428 7429 return *ResOPC; 7430 } 7431 7432 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT, 7433 SmallVector<SDValue, 7> &OpValues) { 7434 SDLoc DL = getCurSDLoc(); 7435 Value *PtrOperand = VPIntrin.getArgOperand(0); 7436 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7437 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7438 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7439 SDValue LD; 7440 bool AddToChain = true; 7441 // Do not serialize variable-length loads of constant memory with 7442 // anything. 7443 if (!Alignment) 7444 Alignment = DAG.getEVTAlign(VT); 7445 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7446 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7447 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7448 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7449 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7450 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7451 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7452 MMO, false /*IsExpanding */); 7453 if (AddToChain) 7454 PendingLoads.push_back(LD.getValue(1)); 7455 setValue(&VPIntrin, LD); 7456 } 7457 7458 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT, 7459 SmallVector<SDValue, 7> &OpValues) { 7460 SDLoc DL = getCurSDLoc(); 7461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7462 Value *PtrOperand = VPIntrin.getArgOperand(0); 7463 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7464 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7465 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7466 SDValue LD; 7467 if (!Alignment) 7468 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7469 unsigned AS = 7470 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7471 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7472 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7473 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7474 SDValue Base, Index, Scale; 7475 ISD::MemIndexType IndexType; 7476 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7477 this, VPIntrin.getParent(), 7478 VT.getScalarStoreSize()); 7479 if (!UniformBase) { 7480 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7481 Index = getValue(PtrOperand); 7482 IndexType = ISD::SIGNED_SCALED; 7483 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7484 } 7485 EVT IdxVT = Index.getValueType(); 7486 EVT EltTy = IdxVT.getVectorElementType(); 7487 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7488 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7489 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7490 } 7491 LD = DAG.getGatherVP( 7492 DAG.getVTList(VT, MVT::Other), VT, DL, 7493 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7494 IndexType); 7495 PendingLoads.push_back(LD.getValue(1)); 7496 setValue(&VPIntrin, LD); 7497 } 7498 7499 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin, 7500 SmallVector<SDValue, 7> &OpValues) { 7501 SDLoc DL = getCurSDLoc(); 7502 Value *PtrOperand = VPIntrin.getArgOperand(1); 7503 EVT VT = OpValues[0].getValueType(); 7504 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7505 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7506 SDValue ST; 7507 if (!Alignment) 7508 Alignment = DAG.getEVTAlign(VT); 7509 SDValue Ptr = OpValues[1]; 7510 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7511 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7512 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7513 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7514 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7515 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7516 /* IsTruncating */ false, /*IsCompressing*/ false); 7517 DAG.setRoot(ST); 7518 setValue(&VPIntrin, ST); 7519 } 7520 7521 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin, 7522 SmallVector<SDValue, 7> &OpValues) { 7523 SDLoc DL = getCurSDLoc(); 7524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7525 Value *PtrOperand = VPIntrin.getArgOperand(1); 7526 EVT VT = OpValues[0].getValueType(); 7527 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7528 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7529 SDValue ST; 7530 if (!Alignment) 7531 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7532 unsigned AS = 7533 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7534 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7535 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7536 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7537 SDValue Base, Index, Scale; 7538 ISD::MemIndexType IndexType; 7539 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7540 this, VPIntrin.getParent(), 7541 VT.getScalarStoreSize()); 7542 if (!UniformBase) { 7543 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7544 Index = getValue(PtrOperand); 7545 IndexType = ISD::SIGNED_SCALED; 7546 Scale = 7547 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7548 } 7549 EVT IdxVT = Index.getValueType(); 7550 EVT EltTy = IdxVT.getVectorElementType(); 7551 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7552 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7553 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7554 } 7555 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7556 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7557 OpValues[2], OpValues[3]}, 7558 MMO, IndexType); 7559 DAG.setRoot(ST); 7560 setValue(&VPIntrin, ST); 7561 } 7562 7563 void SelectionDAGBuilder::visitVPStridedLoad( 7564 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7565 SDLoc DL = getCurSDLoc(); 7566 Value *PtrOperand = VPIntrin.getArgOperand(0); 7567 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7568 if (!Alignment) 7569 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7570 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7571 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7572 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7573 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7574 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7575 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7576 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7577 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7578 7579 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7580 OpValues[2], OpValues[3], MMO, 7581 false /*IsExpanding*/); 7582 7583 if (AddToChain) 7584 PendingLoads.push_back(LD.getValue(1)); 7585 setValue(&VPIntrin, LD); 7586 } 7587 7588 void SelectionDAGBuilder::visitVPStridedStore( 7589 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7590 SDLoc DL = getCurSDLoc(); 7591 Value *PtrOperand = VPIntrin.getArgOperand(1); 7592 EVT VT = OpValues[0].getValueType(); 7593 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7594 if (!Alignment) 7595 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7596 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7597 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7598 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7599 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7600 7601 SDValue ST = DAG.getStridedStoreVP( 7602 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7603 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7604 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7605 /*IsCompressing*/ false); 7606 7607 DAG.setRoot(ST); 7608 setValue(&VPIntrin, ST); 7609 } 7610 7611 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7613 SDLoc DL = getCurSDLoc(); 7614 7615 ISD::CondCode Condition; 7616 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7617 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7618 if (IsFP) { 7619 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7620 // flags, but calls that don't return floating-point types can't be 7621 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7622 Condition = getFCmpCondCode(CondCode); 7623 if (TM.Options.NoNaNsFPMath) 7624 Condition = getFCmpCodeWithoutNaN(Condition); 7625 } else { 7626 Condition = getICmpCondCode(CondCode); 7627 } 7628 7629 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7630 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7631 // #2 is the condition code 7632 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7633 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7634 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7635 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7636 "Unexpected target EVL type"); 7637 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7638 7639 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7640 VPIntrin.getType()); 7641 setValue(&VPIntrin, 7642 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7643 } 7644 7645 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7646 const VPIntrinsic &VPIntrin) { 7647 SDLoc DL = getCurSDLoc(); 7648 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7649 7650 auto IID = VPIntrin.getIntrinsicID(); 7651 7652 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7653 return visitVPCmp(*CmpI); 7654 7655 SmallVector<EVT, 4> ValueVTs; 7656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7657 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7658 SDVTList VTs = DAG.getVTList(ValueVTs); 7659 7660 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7661 7662 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7663 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7664 "Unexpected target EVL type"); 7665 7666 // Request operands. 7667 SmallVector<SDValue, 7> OpValues; 7668 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7669 auto Op = getValue(VPIntrin.getArgOperand(I)); 7670 if (I == EVLParamPos) 7671 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7672 OpValues.push_back(Op); 7673 } 7674 7675 switch (Opcode) { 7676 default: { 7677 SDNodeFlags SDFlags; 7678 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7679 SDFlags.copyFMF(*FPMO); 7680 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7681 setValue(&VPIntrin, Result); 7682 break; 7683 } 7684 case ISD::VP_LOAD: 7685 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7686 break; 7687 case ISD::VP_GATHER: 7688 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7689 break; 7690 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7691 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7692 break; 7693 case ISD::VP_STORE: 7694 visitVPStore(VPIntrin, OpValues); 7695 break; 7696 case ISD::VP_SCATTER: 7697 visitVPScatter(VPIntrin, OpValues); 7698 break; 7699 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7700 visitVPStridedStore(VPIntrin, OpValues); 7701 break; 7702 } 7703 } 7704 7705 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7706 const BasicBlock *EHPadBB, 7707 MCSymbol *&BeginLabel) { 7708 MachineFunction &MF = DAG.getMachineFunction(); 7709 MachineModuleInfo &MMI = MF.getMMI(); 7710 7711 // Insert a label before the invoke call to mark the try range. This can be 7712 // used to detect deletion of the invoke via the MachineModuleInfo. 7713 BeginLabel = MMI.getContext().createTempSymbol(); 7714 7715 // For SjLj, keep track of which landing pads go with which invokes 7716 // so as to maintain the ordering of pads in the LSDA. 7717 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7718 if (CallSiteIndex) { 7719 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7720 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7721 7722 // Now that the call site is handled, stop tracking it. 7723 MMI.setCurrentCallSite(0); 7724 } 7725 7726 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7727 } 7728 7729 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7730 const BasicBlock *EHPadBB, 7731 MCSymbol *BeginLabel) { 7732 assert(BeginLabel && "BeginLabel should've been set"); 7733 7734 MachineFunction &MF = DAG.getMachineFunction(); 7735 MachineModuleInfo &MMI = MF.getMMI(); 7736 7737 // Insert a label at the end of the invoke call to mark the try range. This 7738 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7739 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7740 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7741 7742 // Inform MachineModuleInfo of range. 7743 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7744 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7745 // actually use outlined funclets and their LSDA info style. 7746 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7747 assert(II && "II should've been set"); 7748 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7749 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7750 } else if (!isScopedEHPersonality(Pers)) { 7751 assert(EHPadBB); 7752 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7753 } 7754 7755 return Chain; 7756 } 7757 7758 std::pair<SDValue, SDValue> 7759 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7760 const BasicBlock *EHPadBB) { 7761 MCSymbol *BeginLabel = nullptr; 7762 7763 if (EHPadBB) { 7764 // Both PendingLoads and PendingExports must be flushed here; 7765 // this call might not return. 7766 (void)getRoot(); 7767 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7768 CLI.setChain(getRoot()); 7769 } 7770 7771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7772 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7773 7774 assert((CLI.IsTailCall || Result.second.getNode()) && 7775 "Non-null chain expected with non-tail call!"); 7776 assert((Result.second.getNode() || !Result.first.getNode()) && 7777 "Null value expected with tail call!"); 7778 7779 if (!Result.second.getNode()) { 7780 // As a special case, a null chain means that a tail call has been emitted 7781 // and the DAG root is already updated. 7782 HasTailCall = true; 7783 7784 // Since there's no actual continuation from this block, nothing can be 7785 // relying on us setting vregs for them. 7786 PendingExports.clear(); 7787 } else { 7788 DAG.setRoot(Result.second); 7789 } 7790 7791 if (EHPadBB) { 7792 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7793 BeginLabel)); 7794 } 7795 7796 return Result; 7797 } 7798 7799 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7800 bool isTailCall, 7801 bool isMustTailCall, 7802 const BasicBlock *EHPadBB) { 7803 auto &DL = DAG.getDataLayout(); 7804 FunctionType *FTy = CB.getFunctionType(); 7805 Type *RetTy = CB.getType(); 7806 7807 TargetLowering::ArgListTy Args; 7808 Args.reserve(CB.arg_size()); 7809 7810 const Value *SwiftErrorVal = nullptr; 7811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7812 7813 if (isTailCall) { 7814 // Avoid emitting tail calls in functions with the disable-tail-calls 7815 // attribute. 7816 auto *Caller = CB.getParent()->getParent(); 7817 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7818 "true" && !isMustTailCall) 7819 isTailCall = false; 7820 7821 // We can't tail call inside a function with a swifterror argument. Lowering 7822 // does not support this yet. It would have to move into the swifterror 7823 // register before the call. 7824 if (TLI.supportSwiftError() && 7825 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7826 isTailCall = false; 7827 } 7828 7829 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7830 TargetLowering::ArgListEntry Entry; 7831 const Value *V = *I; 7832 7833 // Skip empty types 7834 if (V->getType()->isEmptyTy()) 7835 continue; 7836 7837 SDValue ArgNode = getValue(V); 7838 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7839 7840 Entry.setAttributes(&CB, I - CB.arg_begin()); 7841 7842 // Use swifterror virtual register as input to the call. 7843 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7844 SwiftErrorVal = V; 7845 // We find the virtual register for the actual swifterror argument. 7846 // Instead of using the Value, we use the virtual register instead. 7847 Entry.Node = 7848 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7849 EVT(TLI.getPointerTy(DL))); 7850 } 7851 7852 Args.push_back(Entry); 7853 7854 // If we have an explicit sret argument that is an Instruction, (i.e., it 7855 // might point to function-local memory), we can't meaningfully tail-call. 7856 if (Entry.IsSRet && isa<Instruction>(V)) 7857 isTailCall = false; 7858 } 7859 7860 // If call site has a cfguardtarget operand bundle, create and add an 7861 // additional ArgListEntry. 7862 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7863 TargetLowering::ArgListEntry Entry; 7864 Value *V = Bundle->Inputs[0]; 7865 SDValue ArgNode = getValue(V); 7866 Entry.Node = ArgNode; 7867 Entry.Ty = V->getType(); 7868 Entry.IsCFGuardTarget = true; 7869 Args.push_back(Entry); 7870 } 7871 7872 // Check if target-independent constraints permit a tail call here. 7873 // Target-dependent constraints are checked within TLI->LowerCallTo. 7874 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7875 isTailCall = false; 7876 7877 // Disable tail calls if there is an swifterror argument. Targets have not 7878 // been updated to support tail calls. 7879 if (TLI.supportSwiftError() && SwiftErrorVal) 7880 isTailCall = false; 7881 7882 ConstantInt *CFIType = nullptr; 7883 if (CB.isIndirectCall()) { 7884 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7885 if (!TLI.supportKCFIBundles()) 7886 report_fatal_error( 7887 "Target doesn't support calls with kcfi operand bundles."); 7888 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7889 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7890 } 7891 } 7892 7893 TargetLowering::CallLoweringInfo CLI(DAG); 7894 CLI.setDebugLoc(getCurSDLoc()) 7895 .setChain(getRoot()) 7896 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7897 .setTailCall(isTailCall) 7898 .setConvergent(CB.isConvergent()) 7899 .setIsPreallocated( 7900 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 7901 .setCFIType(CFIType); 7902 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7903 7904 if (Result.first.getNode()) { 7905 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7906 setValue(&CB, Result.first); 7907 } 7908 7909 // The last element of CLI.InVals has the SDValue for swifterror return. 7910 // Here we copy it to a virtual register and update SwiftErrorMap for 7911 // book-keeping. 7912 if (SwiftErrorVal && TLI.supportSwiftError()) { 7913 // Get the last element of InVals. 7914 SDValue Src = CLI.InVals.back(); 7915 Register VReg = 7916 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7917 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7918 DAG.setRoot(CopyNode); 7919 } 7920 } 7921 7922 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7923 SelectionDAGBuilder &Builder) { 7924 // Check to see if this load can be trivially constant folded, e.g. if the 7925 // input is from a string literal. 7926 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7927 // Cast pointer to the type we really want to load. 7928 Type *LoadTy = 7929 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7930 if (LoadVT.isVector()) 7931 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7932 7933 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7934 PointerType::getUnqual(LoadTy)); 7935 7936 if (const Constant *LoadCst = 7937 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7938 LoadTy, Builder.DAG.getDataLayout())) 7939 return Builder.getValue(LoadCst); 7940 } 7941 7942 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7943 // still constant memory, the input chain can be the entry node. 7944 SDValue Root; 7945 bool ConstantMemory = false; 7946 7947 // Do not serialize (non-volatile) loads of constant memory with anything. 7948 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7949 Root = Builder.DAG.getEntryNode(); 7950 ConstantMemory = true; 7951 } else { 7952 // Do not serialize non-volatile loads against each other. 7953 Root = Builder.DAG.getRoot(); 7954 } 7955 7956 SDValue Ptr = Builder.getValue(PtrVal); 7957 SDValue LoadVal = 7958 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7959 MachinePointerInfo(PtrVal), Align(1)); 7960 7961 if (!ConstantMemory) 7962 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7963 return LoadVal; 7964 } 7965 7966 /// Record the value for an instruction that produces an integer result, 7967 /// converting the type where necessary. 7968 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7969 SDValue Value, 7970 bool IsSigned) { 7971 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7972 I.getType(), true); 7973 if (IsSigned) 7974 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7975 else 7976 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7977 setValue(&I, Value); 7978 } 7979 7980 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7981 /// true and lower it. Otherwise return false, and it will be lowered like a 7982 /// normal call. 7983 /// The caller already checked that \p I calls the appropriate LibFunc with a 7984 /// correct prototype. 7985 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7986 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7987 const Value *Size = I.getArgOperand(2); 7988 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 7989 if (CSize && CSize->getZExtValue() == 0) { 7990 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7991 I.getType(), true); 7992 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7993 return true; 7994 } 7995 7996 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7997 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7998 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7999 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8000 if (Res.first.getNode()) { 8001 processIntegerCallValue(I, Res.first, true); 8002 PendingLoads.push_back(Res.second); 8003 return true; 8004 } 8005 8006 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8007 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8008 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8009 return false; 8010 8011 // If the target has a fast compare for the given size, it will return a 8012 // preferred load type for that size. Require that the load VT is legal and 8013 // that the target supports unaligned loads of that type. Otherwise, return 8014 // INVALID. 8015 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8017 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8018 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8019 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8020 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8021 // TODO: Check alignment of src and dest ptrs. 8022 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8023 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8024 if (!TLI.isTypeLegal(LVT) || 8025 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8026 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8027 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8028 } 8029 8030 return LVT; 8031 }; 8032 8033 // This turns into unaligned loads. We only do this if the target natively 8034 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8035 // we'll only produce a small number of byte loads. 8036 MVT LoadVT; 8037 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8038 switch (NumBitsToCompare) { 8039 default: 8040 return false; 8041 case 16: 8042 LoadVT = MVT::i16; 8043 break; 8044 case 32: 8045 LoadVT = MVT::i32; 8046 break; 8047 case 64: 8048 case 128: 8049 case 256: 8050 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8051 break; 8052 } 8053 8054 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8055 return false; 8056 8057 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8058 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8059 8060 // Bitcast to a wide integer type if the loads are vectors. 8061 if (LoadVT.isVector()) { 8062 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8063 LoadL = DAG.getBitcast(CmpVT, LoadL); 8064 LoadR = DAG.getBitcast(CmpVT, LoadR); 8065 } 8066 8067 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8068 processIntegerCallValue(I, Cmp, false); 8069 return true; 8070 } 8071 8072 /// See if we can lower a memchr call into an optimized form. If so, return 8073 /// true and lower it. Otherwise return false, and it will be lowered like a 8074 /// normal call. 8075 /// The caller already checked that \p I calls the appropriate LibFunc with a 8076 /// correct prototype. 8077 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8078 const Value *Src = I.getArgOperand(0); 8079 const Value *Char = I.getArgOperand(1); 8080 const Value *Length = I.getArgOperand(2); 8081 8082 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8083 std::pair<SDValue, SDValue> Res = 8084 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8085 getValue(Src), getValue(Char), getValue(Length), 8086 MachinePointerInfo(Src)); 8087 if (Res.first.getNode()) { 8088 setValue(&I, Res.first); 8089 PendingLoads.push_back(Res.second); 8090 return true; 8091 } 8092 8093 return false; 8094 } 8095 8096 /// See if we can lower a mempcpy call into an optimized form. If so, return 8097 /// true and lower it. Otherwise return false, and it will be lowered like a 8098 /// normal call. 8099 /// The caller already checked that \p I calls the appropriate LibFunc with a 8100 /// correct prototype. 8101 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8102 SDValue Dst = getValue(I.getArgOperand(0)); 8103 SDValue Src = getValue(I.getArgOperand(1)); 8104 SDValue Size = getValue(I.getArgOperand(2)); 8105 8106 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8107 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8108 // DAG::getMemcpy needs Alignment to be defined. 8109 Align Alignment = std::min(DstAlign, SrcAlign); 8110 8111 bool isVol = false; 8112 SDLoc sdl = getCurSDLoc(); 8113 8114 // In the mempcpy context we need to pass in a false value for isTailCall 8115 // because the return pointer needs to be adjusted by the size of 8116 // the copied memory. 8117 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8118 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8119 /*isTailCall=*/false, 8120 MachinePointerInfo(I.getArgOperand(0)), 8121 MachinePointerInfo(I.getArgOperand(1)), 8122 I.getAAMetadata()); 8123 assert(MC.getNode() != nullptr && 8124 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8125 DAG.setRoot(MC); 8126 8127 // Check if Size needs to be truncated or extended. 8128 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8129 8130 // Adjust return pointer to point just past the last dst byte. 8131 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8132 Dst, Size); 8133 setValue(&I, DstPlusSize); 8134 return true; 8135 } 8136 8137 /// See if we can lower a strcpy call into an optimized form. If so, return 8138 /// true and lower it, otherwise return false and it will be lowered like a 8139 /// normal call. 8140 /// The caller already checked that \p I calls the appropriate LibFunc with a 8141 /// correct prototype. 8142 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8143 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8144 8145 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8146 std::pair<SDValue, SDValue> Res = 8147 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8148 getValue(Arg0), getValue(Arg1), 8149 MachinePointerInfo(Arg0), 8150 MachinePointerInfo(Arg1), isStpcpy); 8151 if (Res.first.getNode()) { 8152 setValue(&I, Res.first); 8153 DAG.setRoot(Res.second); 8154 return true; 8155 } 8156 8157 return false; 8158 } 8159 8160 /// See if we can lower a strcmp call into an optimized form. If so, return 8161 /// true and lower it, otherwise return false and it will be lowered like a 8162 /// normal call. 8163 /// The caller already checked that \p I calls the appropriate LibFunc with a 8164 /// correct prototype. 8165 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8166 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8167 8168 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8169 std::pair<SDValue, SDValue> Res = 8170 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8171 getValue(Arg0), getValue(Arg1), 8172 MachinePointerInfo(Arg0), 8173 MachinePointerInfo(Arg1)); 8174 if (Res.first.getNode()) { 8175 processIntegerCallValue(I, Res.first, true); 8176 PendingLoads.push_back(Res.second); 8177 return true; 8178 } 8179 8180 return false; 8181 } 8182 8183 /// See if we can lower a strlen call into an optimized form. If so, return 8184 /// true and lower it, otherwise return false and it will be lowered like a 8185 /// normal call. 8186 /// The caller already checked that \p I calls the appropriate LibFunc with a 8187 /// correct prototype. 8188 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8189 const Value *Arg0 = I.getArgOperand(0); 8190 8191 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8192 std::pair<SDValue, SDValue> Res = 8193 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8194 getValue(Arg0), MachinePointerInfo(Arg0)); 8195 if (Res.first.getNode()) { 8196 processIntegerCallValue(I, Res.first, false); 8197 PendingLoads.push_back(Res.second); 8198 return true; 8199 } 8200 8201 return false; 8202 } 8203 8204 /// See if we can lower a strnlen call into an optimized form. If so, return 8205 /// true and lower it, otherwise return false and it will be lowered like a 8206 /// normal call. 8207 /// The caller already checked that \p I calls the appropriate LibFunc with a 8208 /// correct prototype. 8209 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8210 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8211 8212 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8213 std::pair<SDValue, SDValue> Res = 8214 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8215 getValue(Arg0), getValue(Arg1), 8216 MachinePointerInfo(Arg0)); 8217 if (Res.first.getNode()) { 8218 processIntegerCallValue(I, Res.first, false); 8219 PendingLoads.push_back(Res.second); 8220 return true; 8221 } 8222 8223 return false; 8224 } 8225 8226 /// See if we can lower a unary floating-point operation into an SDNode with 8227 /// the specified Opcode. If so, return true and lower it, otherwise return 8228 /// false and it will be lowered like a normal call. 8229 /// The caller already checked that \p I calls the appropriate LibFunc with a 8230 /// correct prototype. 8231 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8232 unsigned Opcode) { 8233 // We already checked this call's prototype; verify it doesn't modify errno. 8234 if (!I.onlyReadsMemory()) 8235 return false; 8236 8237 SDNodeFlags Flags; 8238 Flags.copyFMF(cast<FPMathOperator>(I)); 8239 8240 SDValue Tmp = getValue(I.getArgOperand(0)); 8241 setValue(&I, 8242 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8243 return true; 8244 } 8245 8246 /// See if we can lower a binary floating-point operation into an SDNode with 8247 /// the specified Opcode. If so, return true and lower it. Otherwise return 8248 /// false, and it will be lowered like a normal call. 8249 /// The caller already checked that \p I calls the appropriate LibFunc with a 8250 /// correct prototype. 8251 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8252 unsigned Opcode) { 8253 // We already checked this call's prototype; verify it doesn't modify errno. 8254 if (!I.onlyReadsMemory()) 8255 return false; 8256 8257 SDNodeFlags Flags; 8258 Flags.copyFMF(cast<FPMathOperator>(I)); 8259 8260 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8261 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8262 EVT VT = Tmp0.getValueType(); 8263 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8264 return true; 8265 } 8266 8267 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8268 // Handle inline assembly differently. 8269 if (I.isInlineAsm()) { 8270 visitInlineAsm(I); 8271 return; 8272 } 8273 8274 if (Function *F = I.getCalledFunction()) { 8275 diagnoseDontCall(I); 8276 8277 if (F->isDeclaration()) { 8278 // Is this an LLVM intrinsic or a target-specific intrinsic? 8279 unsigned IID = F->getIntrinsicID(); 8280 if (!IID) 8281 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8282 IID = II->getIntrinsicID(F); 8283 8284 if (IID) { 8285 visitIntrinsicCall(I, IID); 8286 return; 8287 } 8288 } 8289 8290 // Check for well-known libc/libm calls. If the function is internal, it 8291 // can't be a library call. Don't do the check if marked as nobuiltin for 8292 // some reason or the call site requires strict floating point semantics. 8293 LibFunc Func; 8294 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8295 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8296 LibInfo->hasOptimizedCodeGen(Func)) { 8297 switch (Func) { 8298 default: break; 8299 case LibFunc_bcmp: 8300 if (visitMemCmpBCmpCall(I)) 8301 return; 8302 break; 8303 case LibFunc_copysign: 8304 case LibFunc_copysignf: 8305 case LibFunc_copysignl: 8306 // We already checked this call's prototype; verify it doesn't modify 8307 // errno. 8308 if (I.onlyReadsMemory()) { 8309 SDValue LHS = getValue(I.getArgOperand(0)); 8310 SDValue RHS = getValue(I.getArgOperand(1)); 8311 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8312 LHS.getValueType(), LHS, RHS)); 8313 return; 8314 } 8315 break; 8316 case LibFunc_fabs: 8317 case LibFunc_fabsf: 8318 case LibFunc_fabsl: 8319 if (visitUnaryFloatCall(I, ISD::FABS)) 8320 return; 8321 break; 8322 case LibFunc_fmin: 8323 case LibFunc_fminf: 8324 case LibFunc_fminl: 8325 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8326 return; 8327 break; 8328 case LibFunc_fmax: 8329 case LibFunc_fmaxf: 8330 case LibFunc_fmaxl: 8331 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8332 return; 8333 break; 8334 case LibFunc_sin: 8335 case LibFunc_sinf: 8336 case LibFunc_sinl: 8337 if (visitUnaryFloatCall(I, ISD::FSIN)) 8338 return; 8339 break; 8340 case LibFunc_cos: 8341 case LibFunc_cosf: 8342 case LibFunc_cosl: 8343 if (visitUnaryFloatCall(I, ISD::FCOS)) 8344 return; 8345 break; 8346 case LibFunc_sqrt: 8347 case LibFunc_sqrtf: 8348 case LibFunc_sqrtl: 8349 case LibFunc_sqrt_finite: 8350 case LibFunc_sqrtf_finite: 8351 case LibFunc_sqrtl_finite: 8352 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8353 return; 8354 break; 8355 case LibFunc_floor: 8356 case LibFunc_floorf: 8357 case LibFunc_floorl: 8358 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8359 return; 8360 break; 8361 case LibFunc_nearbyint: 8362 case LibFunc_nearbyintf: 8363 case LibFunc_nearbyintl: 8364 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8365 return; 8366 break; 8367 case LibFunc_ceil: 8368 case LibFunc_ceilf: 8369 case LibFunc_ceill: 8370 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8371 return; 8372 break; 8373 case LibFunc_rint: 8374 case LibFunc_rintf: 8375 case LibFunc_rintl: 8376 if (visitUnaryFloatCall(I, ISD::FRINT)) 8377 return; 8378 break; 8379 case LibFunc_round: 8380 case LibFunc_roundf: 8381 case LibFunc_roundl: 8382 if (visitUnaryFloatCall(I, ISD::FROUND)) 8383 return; 8384 break; 8385 case LibFunc_trunc: 8386 case LibFunc_truncf: 8387 case LibFunc_truncl: 8388 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8389 return; 8390 break; 8391 case LibFunc_log2: 8392 case LibFunc_log2f: 8393 case LibFunc_log2l: 8394 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8395 return; 8396 break; 8397 case LibFunc_exp2: 8398 case LibFunc_exp2f: 8399 case LibFunc_exp2l: 8400 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8401 return; 8402 break; 8403 case LibFunc_memcmp: 8404 if (visitMemCmpBCmpCall(I)) 8405 return; 8406 break; 8407 case LibFunc_mempcpy: 8408 if (visitMemPCpyCall(I)) 8409 return; 8410 break; 8411 case LibFunc_memchr: 8412 if (visitMemChrCall(I)) 8413 return; 8414 break; 8415 case LibFunc_strcpy: 8416 if (visitStrCpyCall(I, false)) 8417 return; 8418 break; 8419 case LibFunc_stpcpy: 8420 if (visitStrCpyCall(I, true)) 8421 return; 8422 break; 8423 case LibFunc_strcmp: 8424 if (visitStrCmpCall(I)) 8425 return; 8426 break; 8427 case LibFunc_strlen: 8428 if (visitStrLenCall(I)) 8429 return; 8430 break; 8431 case LibFunc_strnlen: 8432 if (visitStrNLenCall(I)) 8433 return; 8434 break; 8435 } 8436 } 8437 } 8438 8439 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8440 // have to do anything here to lower funclet bundles. 8441 // CFGuardTarget bundles are lowered in LowerCallTo. 8442 assert(!I.hasOperandBundlesOtherThan( 8443 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8444 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8445 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8446 "Cannot lower calls with arbitrary operand bundles!"); 8447 8448 SDValue Callee = getValue(I.getCalledOperand()); 8449 8450 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8451 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8452 else 8453 // Check if we can potentially perform a tail call. More detailed checking 8454 // is be done within LowerCallTo, after more information about the call is 8455 // known. 8456 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8457 } 8458 8459 namespace { 8460 8461 /// AsmOperandInfo - This contains information for each constraint that we are 8462 /// lowering. 8463 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8464 public: 8465 /// CallOperand - If this is the result output operand or a clobber 8466 /// this is null, otherwise it is the incoming operand to the CallInst. 8467 /// This gets modified as the asm is processed. 8468 SDValue CallOperand; 8469 8470 /// AssignedRegs - If this is a register or register class operand, this 8471 /// contains the set of register corresponding to the operand. 8472 RegsForValue AssignedRegs; 8473 8474 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8475 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8476 } 8477 8478 /// Whether or not this operand accesses memory 8479 bool hasMemory(const TargetLowering &TLI) const { 8480 // Indirect operand accesses access memory. 8481 if (isIndirect) 8482 return true; 8483 8484 for (const auto &Code : Codes) 8485 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8486 return true; 8487 8488 return false; 8489 } 8490 }; 8491 8492 8493 } // end anonymous namespace 8494 8495 /// Make sure that the output operand \p OpInfo and its corresponding input 8496 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8497 /// out). 8498 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8499 SDISelAsmOperandInfo &MatchingOpInfo, 8500 SelectionDAG &DAG) { 8501 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8502 return; 8503 8504 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8505 const auto &TLI = DAG.getTargetLoweringInfo(); 8506 8507 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8508 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8509 OpInfo.ConstraintVT); 8510 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8511 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8512 MatchingOpInfo.ConstraintVT); 8513 if ((OpInfo.ConstraintVT.isInteger() != 8514 MatchingOpInfo.ConstraintVT.isInteger()) || 8515 (MatchRC.second != InputRC.second)) { 8516 // FIXME: error out in a more elegant fashion 8517 report_fatal_error("Unsupported asm: input constraint" 8518 " with a matching output constraint of" 8519 " incompatible type!"); 8520 } 8521 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8522 } 8523 8524 /// Get a direct memory input to behave well as an indirect operand. 8525 /// This may introduce stores, hence the need for a \p Chain. 8526 /// \return The (possibly updated) chain. 8527 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8528 SDISelAsmOperandInfo &OpInfo, 8529 SelectionDAG &DAG) { 8530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8531 8532 // If we don't have an indirect input, put it in the constpool if we can, 8533 // otherwise spill it to a stack slot. 8534 // TODO: This isn't quite right. We need to handle these according to 8535 // the addressing mode that the constraint wants. Also, this may take 8536 // an additional register for the computation and we don't want that 8537 // either. 8538 8539 // If the operand is a float, integer, or vector constant, spill to a 8540 // constant pool entry to get its address. 8541 const Value *OpVal = OpInfo.CallOperandVal; 8542 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8543 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8544 OpInfo.CallOperand = DAG.getConstantPool( 8545 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8546 return Chain; 8547 } 8548 8549 // Otherwise, create a stack slot and emit a store to it before the asm. 8550 Type *Ty = OpVal->getType(); 8551 auto &DL = DAG.getDataLayout(); 8552 uint64_t TySize = DL.getTypeAllocSize(Ty); 8553 MachineFunction &MF = DAG.getMachineFunction(); 8554 int SSFI = MF.getFrameInfo().CreateStackObject( 8555 TySize, DL.getPrefTypeAlign(Ty), false); 8556 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8557 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8558 MachinePointerInfo::getFixedStack(MF, SSFI), 8559 TLI.getMemValueType(DL, Ty)); 8560 OpInfo.CallOperand = StackSlot; 8561 8562 return Chain; 8563 } 8564 8565 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8566 /// specified operand. We prefer to assign virtual registers, to allow the 8567 /// register allocator to handle the assignment process. However, if the asm 8568 /// uses features that we can't model on machineinstrs, we have SDISel do the 8569 /// allocation. This produces generally horrible, but correct, code. 8570 /// 8571 /// OpInfo describes the operand 8572 /// RefOpInfo describes the matching operand if any, the operand otherwise 8573 static llvm::Optional<unsigned> 8574 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8575 SDISelAsmOperandInfo &OpInfo, 8576 SDISelAsmOperandInfo &RefOpInfo) { 8577 LLVMContext &Context = *DAG.getContext(); 8578 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8579 8580 MachineFunction &MF = DAG.getMachineFunction(); 8581 SmallVector<unsigned, 4> Regs; 8582 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8583 8584 // No work to do for memory/address operands. 8585 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8586 OpInfo.ConstraintType == TargetLowering::C_Address) 8587 return None; 8588 8589 // If this is a constraint for a single physreg, or a constraint for a 8590 // register class, find it. 8591 unsigned AssignedReg; 8592 const TargetRegisterClass *RC; 8593 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8594 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8595 // RC is unset only on failure. Return immediately. 8596 if (!RC) 8597 return None; 8598 8599 // Get the actual register value type. This is important, because the user 8600 // may have asked for (e.g.) the AX register in i32 type. We need to 8601 // remember that AX is actually i16 to get the right extension. 8602 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8603 8604 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8605 // If this is an FP operand in an integer register (or visa versa), or more 8606 // generally if the operand value disagrees with the register class we plan 8607 // to stick it in, fix the operand type. 8608 // 8609 // If this is an input value, the bitcast to the new type is done now. 8610 // Bitcast for output value is done at the end of visitInlineAsm(). 8611 if ((OpInfo.Type == InlineAsm::isOutput || 8612 OpInfo.Type == InlineAsm::isInput) && 8613 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8614 // Try to convert to the first EVT that the reg class contains. If the 8615 // types are identical size, use a bitcast to convert (e.g. two differing 8616 // vector types). Note: output bitcast is done at the end of 8617 // visitInlineAsm(). 8618 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8619 // Exclude indirect inputs while they are unsupported because the code 8620 // to perform the load is missing and thus OpInfo.CallOperand still 8621 // refers to the input address rather than the pointed-to value. 8622 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8623 OpInfo.CallOperand = 8624 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8625 OpInfo.ConstraintVT = RegVT; 8626 // If the operand is an FP value and we want it in integer registers, 8627 // use the corresponding integer type. This turns an f64 value into 8628 // i64, which can be passed with two i32 values on a 32-bit machine. 8629 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8630 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8631 if (OpInfo.Type == InlineAsm::isInput) 8632 OpInfo.CallOperand = 8633 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8634 OpInfo.ConstraintVT = VT; 8635 } 8636 } 8637 } 8638 8639 // No need to allocate a matching input constraint since the constraint it's 8640 // matching to has already been allocated. 8641 if (OpInfo.isMatchingInputConstraint()) 8642 return None; 8643 8644 EVT ValueVT = OpInfo.ConstraintVT; 8645 if (OpInfo.ConstraintVT == MVT::Other) 8646 ValueVT = RegVT; 8647 8648 // Initialize NumRegs. 8649 unsigned NumRegs = 1; 8650 if (OpInfo.ConstraintVT != MVT::Other) 8651 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8652 8653 // If this is a constraint for a specific physical register, like {r17}, 8654 // assign it now. 8655 8656 // If this associated to a specific register, initialize iterator to correct 8657 // place. If virtual, make sure we have enough registers 8658 8659 // Initialize iterator if necessary 8660 TargetRegisterClass::iterator I = RC->begin(); 8661 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8662 8663 // Do not check for single registers. 8664 if (AssignedReg) { 8665 I = std::find(I, RC->end(), AssignedReg); 8666 if (I == RC->end()) { 8667 // RC does not contain the selected register, which indicates a 8668 // mismatch between the register and the required type/bitwidth. 8669 return {AssignedReg}; 8670 } 8671 } 8672 8673 for (; NumRegs; --NumRegs, ++I) { 8674 assert(I != RC->end() && "Ran out of registers to allocate!"); 8675 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8676 Regs.push_back(R); 8677 } 8678 8679 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8680 return None; 8681 } 8682 8683 static unsigned 8684 findMatchingInlineAsmOperand(unsigned OperandNo, 8685 const std::vector<SDValue> &AsmNodeOperands) { 8686 // Scan until we find the definition we already emitted of this operand. 8687 unsigned CurOp = InlineAsm::Op_FirstOperand; 8688 for (; OperandNo; --OperandNo) { 8689 // Advance to the next operand. 8690 unsigned OpFlag = 8691 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8692 assert((InlineAsm::isRegDefKind(OpFlag) || 8693 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8694 InlineAsm::isMemKind(OpFlag)) && 8695 "Skipped past definitions?"); 8696 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8697 } 8698 return CurOp; 8699 } 8700 8701 namespace { 8702 8703 class ExtraFlags { 8704 unsigned Flags = 0; 8705 8706 public: 8707 explicit ExtraFlags(const CallBase &Call) { 8708 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8709 if (IA->hasSideEffects()) 8710 Flags |= InlineAsm::Extra_HasSideEffects; 8711 if (IA->isAlignStack()) 8712 Flags |= InlineAsm::Extra_IsAlignStack; 8713 if (Call.isConvergent()) 8714 Flags |= InlineAsm::Extra_IsConvergent; 8715 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8716 } 8717 8718 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8719 // Ideally, we would only check against memory constraints. However, the 8720 // meaning of an Other constraint can be target-specific and we can't easily 8721 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8722 // for Other constraints as well. 8723 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8724 OpInfo.ConstraintType == TargetLowering::C_Other) { 8725 if (OpInfo.Type == InlineAsm::isInput) 8726 Flags |= InlineAsm::Extra_MayLoad; 8727 else if (OpInfo.Type == InlineAsm::isOutput) 8728 Flags |= InlineAsm::Extra_MayStore; 8729 else if (OpInfo.Type == InlineAsm::isClobber) 8730 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8731 } 8732 } 8733 8734 unsigned get() const { return Flags; } 8735 }; 8736 8737 } // end anonymous namespace 8738 8739 /// visitInlineAsm - Handle a call to an InlineAsm object. 8740 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8741 const BasicBlock *EHPadBB) { 8742 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8743 8744 /// ConstraintOperands - Information about all of the constraints. 8745 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8746 8747 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8748 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8749 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8750 8751 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8752 // AsmDialect, MayLoad, MayStore). 8753 bool HasSideEffect = IA->hasSideEffects(); 8754 ExtraFlags ExtraInfo(Call); 8755 8756 for (auto &T : TargetConstraints) { 8757 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8758 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8759 8760 if (OpInfo.CallOperandVal) 8761 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8762 8763 if (!HasSideEffect) 8764 HasSideEffect = OpInfo.hasMemory(TLI); 8765 8766 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8767 // FIXME: Could we compute this on OpInfo rather than T? 8768 8769 // Compute the constraint code and ConstraintType to use. 8770 TLI.ComputeConstraintToUse(T, SDValue()); 8771 8772 if (T.ConstraintType == TargetLowering::C_Immediate && 8773 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8774 // We've delayed emitting a diagnostic like the "n" constraint because 8775 // inlining could cause an integer showing up. 8776 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8777 "' expects an integer constant " 8778 "expression"); 8779 8780 ExtraInfo.update(T); 8781 } 8782 8783 // We won't need to flush pending loads if this asm doesn't touch 8784 // memory and is nonvolatile. 8785 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8786 8787 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8788 if (EmitEHLabels) { 8789 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8790 } 8791 bool IsCallBr = isa<CallBrInst>(Call); 8792 8793 if (IsCallBr || EmitEHLabels) { 8794 // If this is a callbr or invoke we need to flush pending exports since 8795 // inlineasm_br and invoke are terminators. 8796 // We need to do this before nodes are glued to the inlineasm_br node. 8797 Chain = getControlRoot(); 8798 } 8799 8800 MCSymbol *BeginLabel = nullptr; 8801 if (EmitEHLabels) { 8802 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8803 } 8804 8805 // Second pass over the constraints: compute which constraint option to use. 8806 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8807 // If this is an output operand with a matching input operand, look up the 8808 // matching input. If their types mismatch, e.g. one is an integer, the 8809 // other is floating point, or their sizes are different, flag it as an 8810 // error. 8811 if (OpInfo.hasMatchingInput()) { 8812 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8813 patchMatchingInput(OpInfo, Input, DAG); 8814 } 8815 8816 // Compute the constraint code and ConstraintType to use. 8817 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8818 8819 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8820 OpInfo.Type == InlineAsm::isClobber) || 8821 OpInfo.ConstraintType == TargetLowering::C_Address) 8822 continue; 8823 8824 // If this is a memory input, and if the operand is not indirect, do what we 8825 // need to provide an address for the memory input. 8826 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8827 !OpInfo.isIndirect) { 8828 assert((OpInfo.isMultipleAlternative || 8829 (OpInfo.Type == InlineAsm::isInput)) && 8830 "Can only indirectify direct input operands!"); 8831 8832 // Memory operands really want the address of the value. 8833 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8834 8835 // There is no longer a Value* corresponding to this operand. 8836 OpInfo.CallOperandVal = nullptr; 8837 8838 // It is now an indirect operand. 8839 OpInfo.isIndirect = true; 8840 } 8841 8842 } 8843 8844 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8845 std::vector<SDValue> AsmNodeOperands; 8846 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8847 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8848 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8849 8850 // If we have a !srcloc metadata node associated with it, we want to attach 8851 // this to the ultimately generated inline asm machineinstr. To do this, we 8852 // pass in the third operand as this (potentially null) inline asm MDNode. 8853 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8854 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8855 8856 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8857 // bits as operand 3. 8858 AsmNodeOperands.push_back(DAG.getTargetConstant( 8859 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8860 8861 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8862 // this, assign virtual and physical registers for inputs and otput. 8863 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8864 // Assign Registers. 8865 SDISelAsmOperandInfo &RefOpInfo = 8866 OpInfo.isMatchingInputConstraint() 8867 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8868 : OpInfo; 8869 const auto RegError = 8870 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8871 if (RegError) { 8872 const MachineFunction &MF = DAG.getMachineFunction(); 8873 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8874 const char *RegName = TRI.getName(RegError.value()); 8875 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8876 "' allocated for constraint '" + 8877 Twine(OpInfo.ConstraintCode) + 8878 "' does not match required type"); 8879 return; 8880 } 8881 8882 auto DetectWriteToReservedRegister = [&]() { 8883 const MachineFunction &MF = DAG.getMachineFunction(); 8884 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8885 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8886 if (Register::isPhysicalRegister(Reg) && 8887 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8888 const char *RegName = TRI.getName(Reg); 8889 emitInlineAsmError(Call, "write to reserved register '" + 8890 Twine(RegName) + "'"); 8891 return true; 8892 } 8893 } 8894 return false; 8895 }; 8896 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8897 (OpInfo.Type == InlineAsm::isInput && 8898 !OpInfo.isMatchingInputConstraint())) && 8899 "Only address as input operand is allowed."); 8900 8901 switch (OpInfo.Type) { 8902 case InlineAsm::isOutput: 8903 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8904 unsigned ConstraintID = 8905 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8906 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8907 "Failed to convert memory constraint code to constraint id."); 8908 8909 // Add information to the INLINEASM node to know about this output. 8910 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8911 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8912 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8913 MVT::i32)); 8914 AsmNodeOperands.push_back(OpInfo.CallOperand); 8915 } else { 8916 // Otherwise, this outputs to a register (directly for C_Register / 8917 // C_RegisterClass, and a target-defined fashion for 8918 // C_Immediate/C_Other). Find a register that we can use. 8919 if (OpInfo.AssignedRegs.Regs.empty()) { 8920 emitInlineAsmError( 8921 Call, "couldn't allocate output register for constraint '" + 8922 Twine(OpInfo.ConstraintCode) + "'"); 8923 return; 8924 } 8925 8926 if (DetectWriteToReservedRegister()) 8927 return; 8928 8929 // Add information to the INLINEASM node to know that this register is 8930 // set. 8931 OpInfo.AssignedRegs.AddInlineAsmOperands( 8932 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8933 : InlineAsm::Kind_RegDef, 8934 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8935 } 8936 break; 8937 8938 case InlineAsm::isInput: 8939 case InlineAsm::isLabel: { 8940 SDValue InOperandVal = OpInfo.CallOperand; 8941 8942 if (OpInfo.isMatchingInputConstraint()) { 8943 // If this is required to match an output register we have already set, 8944 // just use its register. 8945 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8946 AsmNodeOperands); 8947 unsigned OpFlag = 8948 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8949 if (InlineAsm::isRegDefKind(OpFlag) || 8950 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8951 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8952 if (OpInfo.isIndirect) { 8953 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8954 emitInlineAsmError(Call, "inline asm not supported yet: " 8955 "don't know how to handle tied " 8956 "indirect register inputs"); 8957 return; 8958 } 8959 8960 SmallVector<unsigned, 4> Regs; 8961 MachineFunction &MF = DAG.getMachineFunction(); 8962 MachineRegisterInfo &MRI = MF.getRegInfo(); 8963 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8964 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8965 Register TiedReg = R->getReg(); 8966 MVT RegVT = R->getSimpleValueType(0); 8967 const TargetRegisterClass *RC = 8968 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8969 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8970 : TRI.getMinimalPhysRegClass(TiedReg); 8971 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8972 for (unsigned i = 0; i != NumRegs; ++i) 8973 Regs.push_back(MRI.createVirtualRegister(RC)); 8974 8975 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8976 8977 SDLoc dl = getCurSDLoc(); 8978 // Use the produced MatchedRegs object to 8979 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8980 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8981 true, OpInfo.getMatchedOperand(), dl, 8982 DAG, AsmNodeOperands); 8983 break; 8984 } 8985 8986 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8987 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8988 "Unexpected number of operands"); 8989 // Add information to the INLINEASM node to know about this input. 8990 // See InlineAsm.h isUseOperandTiedToDef. 8991 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8992 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8993 OpInfo.getMatchedOperand()); 8994 AsmNodeOperands.push_back(DAG.getTargetConstant( 8995 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8996 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8997 break; 8998 } 8999 9000 // Treat indirect 'X' constraint as memory. 9001 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9002 OpInfo.isIndirect) 9003 OpInfo.ConstraintType = TargetLowering::C_Memory; 9004 9005 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9006 OpInfo.ConstraintType == TargetLowering::C_Other) { 9007 std::vector<SDValue> Ops; 9008 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9009 Ops, DAG); 9010 if (Ops.empty()) { 9011 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9012 if (isa<ConstantSDNode>(InOperandVal)) { 9013 emitInlineAsmError(Call, "value out of range for constraint '" + 9014 Twine(OpInfo.ConstraintCode) + "'"); 9015 return; 9016 } 9017 9018 emitInlineAsmError(Call, 9019 "invalid operand for inline asm constraint '" + 9020 Twine(OpInfo.ConstraintCode) + "'"); 9021 return; 9022 } 9023 9024 // Add information to the INLINEASM node to know about this input. 9025 unsigned ResOpType = 9026 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9027 AsmNodeOperands.push_back(DAG.getTargetConstant( 9028 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9029 llvm::append_range(AsmNodeOperands, Ops); 9030 break; 9031 } 9032 9033 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9034 OpInfo.ConstraintType == TargetLowering::C_Address) { 9035 assert((OpInfo.isIndirect || 9036 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9037 "Operand must be indirect to be a mem!"); 9038 assert(InOperandVal.getValueType() == 9039 TLI.getPointerTy(DAG.getDataLayout()) && 9040 "Memory operands expect pointer values"); 9041 9042 unsigned ConstraintID = 9043 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9044 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9045 "Failed to convert memory constraint code to constraint id."); 9046 9047 // Add information to the INLINEASM node to know about this input. 9048 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9049 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9050 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9051 getCurSDLoc(), 9052 MVT::i32)); 9053 AsmNodeOperands.push_back(InOperandVal); 9054 break; 9055 } 9056 9057 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9058 OpInfo.ConstraintType == TargetLowering::C_Register) && 9059 "Unknown constraint type!"); 9060 9061 // TODO: Support this. 9062 if (OpInfo.isIndirect) { 9063 emitInlineAsmError( 9064 Call, "Don't know how to handle indirect register inputs yet " 9065 "for constraint '" + 9066 Twine(OpInfo.ConstraintCode) + "'"); 9067 return; 9068 } 9069 9070 // Copy the input into the appropriate registers. 9071 if (OpInfo.AssignedRegs.Regs.empty()) { 9072 emitInlineAsmError(Call, 9073 "couldn't allocate input reg for constraint '" + 9074 Twine(OpInfo.ConstraintCode) + "'"); 9075 return; 9076 } 9077 9078 if (DetectWriteToReservedRegister()) 9079 return; 9080 9081 SDLoc dl = getCurSDLoc(); 9082 9083 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9084 &Call); 9085 9086 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9087 dl, DAG, AsmNodeOperands); 9088 break; 9089 } 9090 case InlineAsm::isClobber: 9091 // Add the clobbered value to the operand list, so that the register 9092 // allocator is aware that the physreg got clobbered. 9093 if (!OpInfo.AssignedRegs.Regs.empty()) 9094 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9095 false, 0, getCurSDLoc(), DAG, 9096 AsmNodeOperands); 9097 break; 9098 } 9099 } 9100 9101 // Finish up input operands. Set the input chain and add the flag last. 9102 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9103 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9104 9105 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9106 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9107 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9108 Flag = Chain.getValue(1); 9109 9110 // Do additional work to generate outputs. 9111 9112 SmallVector<EVT, 1> ResultVTs; 9113 SmallVector<SDValue, 1> ResultValues; 9114 SmallVector<SDValue, 8> OutChains; 9115 9116 llvm::Type *CallResultType = Call.getType(); 9117 ArrayRef<Type *> ResultTypes; 9118 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9119 ResultTypes = StructResult->elements(); 9120 else if (!CallResultType->isVoidTy()) 9121 ResultTypes = makeArrayRef(CallResultType); 9122 9123 auto CurResultType = ResultTypes.begin(); 9124 auto handleRegAssign = [&](SDValue V) { 9125 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9126 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9127 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9128 ++CurResultType; 9129 // If the type of the inline asm call site return value is different but has 9130 // same size as the type of the asm output bitcast it. One example of this 9131 // is for vectors with different width / number of elements. This can 9132 // happen for register classes that can contain multiple different value 9133 // types. The preg or vreg allocated may not have the same VT as was 9134 // expected. 9135 // 9136 // This can also happen for a return value that disagrees with the register 9137 // class it is put in, eg. a double in a general-purpose register on a 9138 // 32-bit machine. 9139 if (ResultVT != V.getValueType() && 9140 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9141 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9142 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9143 V.getValueType().isInteger()) { 9144 // If a result value was tied to an input value, the computed result 9145 // may have a wider width than the expected result. Extract the 9146 // relevant portion. 9147 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9148 } 9149 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9150 ResultVTs.push_back(ResultVT); 9151 ResultValues.push_back(V); 9152 }; 9153 9154 // Deal with output operands. 9155 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9156 if (OpInfo.Type == InlineAsm::isOutput) { 9157 SDValue Val; 9158 // Skip trivial output operands. 9159 if (OpInfo.AssignedRegs.Regs.empty()) 9160 continue; 9161 9162 switch (OpInfo.ConstraintType) { 9163 case TargetLowering::C_Register: 9164 case TargetLowering::C_RegisterClass: 9165 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9166 Chain, &Flag, &Call); 9167 break; 9168 case TargetLowering::C_Immediate: 9169 case TargetLowering::C_Other: 9170 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9171 OpInfo, DAG); 9172 break; 9173 case TargetLowering::C_Memory: 9174 break; // Already handled. 9175 case TargetLowering::C_Address: 9176 break; // Silence warning. 9177 case TargetLowering::C_Unknown: 9178 assert(false && "Unexpected unknown constraint"); 9179 } 9180 9181 // Indirect output manifest as stores. Record output chains. 9182 if (OpInfo.isIndirect) { 9183 const Value *Ptr = OpInfo.CallOperandVal; 9184 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9185 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9186 MachinePointerInfo(Ptr)); 9187 OutChains.push_back(Store); 9188 } else { 9189 // generate CopyFromRegs to associated registers. 9190 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9191 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9192 for (const SDValue &V : Val->op_values()) 9193 handleRegAssign(V); 9194 } else 9195 handleRegAssign(Val); 9196 } 9197 } 9198 } 9199 9200 // Set results. 9201 if (!ResultValues.empty()) { 9202 assert(CurResultType == ResultTypes.end() && 9203 "Mismatch in number of ResultTypes"); 9204 assert(ResultValues.size() == ResultTypes.size() && 9205 "Mismatch in number of output operands in asm result"); 9206 9207 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9208 DAG.getVTList(ResultVTs), ResultValues); 9209 setValue(&Call, V); 9210 } 9211 9212 // Collect store chains. 9213 if (!OutChains.empty()) 9214 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9215 9216 if (EmitEHLabels) { 9217 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9218 } 9219 9220 // Only Update Root if inline assembly has a memory effect. 9221 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9222 EmitEHLabels) 9223 DAG.setRoot(Chain); 9224 } 9225 9226 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9227 const Twine &Message) { 9228 LLVMContext &Ctx = *DAG.getContext(); 9229 Ctx.emitError(&Call, Message); 9230 9231 // Make sure we leave the DAG in a valid state 9232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9233 SmallVector<EVT, 1> ValueVTs; 9234 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9235 9236 if (ValueVTs.empty()) 9237 return; 9238 9239 SmallVector<SDValue, 1> Ops; 9240 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9241 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9242 9243 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9244 } 9245 9246 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9247 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9248 MVT::Other, getRoot(), 9249 getValue(I.getArgOperand(0)), 9250 DAG.getSrcValue(I.getArgOperand(0)))); 9251 } 9252 9253 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9255 const DataLayout &DL = DAG.getDataLayout(); 9256 SDValue V = DAG.getVAArg( 9257 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9258 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9259 DL.getABITypeAlign(I.getType()).value()); 9260 DAG.setRoot(V.getValue(1)); 9261 9262 if (I.getType()->isPointerTy()) 9263 V = DAG.getPtrExtOrTrunc( 9264 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9265 setValue(&I, V); 9266 } 9267 9268 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9269 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9270 MVT::Other, getRoot(), 9271 getValue(I.getArgOperand(0)), 9272 DAG.getSrcValue(I.getArgOperand(0)))); 9273 } 9274 9275 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9276 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9277 MVT::Other, getRoot(), 9278 getValue(I.getArgOperand(0)), 9279 getValue(I.getArgOperand(1)), 9280 DAG.getSrcValue(I.getArgOperand(0)), 9281 DAG.getSrcValue(I.getArgOperand(1)))); 9282 } 9283 9284 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9285 const Instruction &I, 9286 SDValue Op) { 9287 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9288 if (!Range) 9289 return Op; 9290 9291 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9292 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9293 return Op; 9294 9295 APInt Lo = CR.getUnsignedMin(); 9296 if (!Lo.isMinValue()) 9297 return Op; 9298 9299 APInt Hi = CR.getUnsignedMax(); 9300 unsigned Bits = std::max(Hi.getActiveBits(), 9301 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9302 9303 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9304 9305 SDLoc SL = getCurSDLoc(); 9306 9307 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9308 DAG.getValueType(SmallVT)); 9309 unsigned NumVals = Op.getNode()->getNumValues(); 9310 if (NumVals == 1) 9311 return ZExt; 9312 9313 SmallVector<SDValue, 4> Ops; 9314 9315 Ops.push_back(ZExt); 9316 for (unsigned I = 1; I != NumVals; ++I) 9317 Ops.push_back(Op.getValue(I)); 9318 9319 return DAG.getMergeValues(Ops, SL); 9320 } 9321 9322 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9323 /// the call being lowered. 9324 /// 9325 /// This is a helper for lowering intrinsics that follow a target calling 9326 /// convention or require stack pointer adjustment. Only a subset of the 9327 /// intrinsic's operands need to participate in the calling convention. 9328 void SelectionDAGBuilder::populateCallLoweringInfo( 9329 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9330 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9331 bool IsPatchPoint) { 9332 TargetLowering::ArgListTy Args; 9333 Args.reserve(NumArgs); 9334 9335 // Populate the argument list. 9336 // Attributes for args start at offset 1, after the return attribute. 9337 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9338 ArgI != ArgE; ++ArgI) { 9339 const Value *V = Call->getOperand(ArgI); 9340 9341 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9342 9343 TargetLowering::ArgListEntry Entry; 9344 Entry.Node = getValue(V); 9345 Entry.Ty = V->getType(); 9346 Entry.setAttributes(Call, ArgI); 9347 Args.push_back(Entry); 9348 } 9349 9350 CLI.setDebugLoc(getCurSDLoc()) 9351 .setChain(getRoot()) 9352 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9353 .setDiscardResult(Call->use_empty()) 9354 .setIsPatchPoint(IsPatchPoint) 9355 .setIsPreallocated( 9356 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9357 } 9358 9359 /// Add a stack map intrinsic call's live variable operands to a stackmap 9360 /// or patchpoint target node's operand list. 9361 /// 9362 /// Constants are converted to TargetConstants purely as an optimization to 9363 /// avoid constant materialization and register allocation. 9364 /// 9365 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9366 /// generate addess computation nodes, and so FinalizeISel can convert the 9367 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9368 /// address materialization and register allocation, but may also be required 9369 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9370 /// alloca in the entry block, then the runtime may assume that the alloca's 9371 /// StackMap location can be read immediately after compilation and that the 9372 /// location is valid at any point during execution (this is similar to the 9373 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9374 /// only available in a register, then the runtime would need to trap when 9375 /// execution reaches the StackMap in order to read the alloca's location. 9376 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9377 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9378 SelectionDAGBuilder &Builder) { 9379 SelectionDAG &DAG = Builder.DAG; 9380 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9381 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9382 9383 // Things on the stack are pointer-typed, meaning that they are already 9384 // legal and can be emitted directly to target nodes. 9385 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9386 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9387 } else { 9388 // Otherwise emit a target independent node to be legalised. 9389 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9390 } 9391 } 9392 } 9393 9394 /// Lower llvm.experimental.stackmap. 9395 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9396 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9397 // [live variables...]) 9398 9399 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9400 9401 SDValue Chain, InFlag, Callee; 9402 SmallVector<SDValue, 32> Ops; 9403 9404 SDLoc DL = getCurSDLoc(); 9405 Callee = getValue(CI.getCalledOperand()); 9406 9407 // The stackmap intrinsic only records the live variables (the arguments 9408 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9409 // intrinsic, this won't be lowered to a function call. This means we don't 9410 // have to worry about calling conventions and target specific lowering code. 9411 // Instead we perform the call lowering right here. 9412 // 9413 // chain, flag = CALLSEQ_START(chain, 0, 0) 9414 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9415 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9416 // 9417 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9418 InFlag = Chain.getValue(1); 9419 9420 // Add the STACKMAP operands, starting with DAG house-keeping. 9421 Ops.push_back(Chain); 9422 Ops.push_back(InFlag); 9423 9424 // Add the <id>, <numShadowBytes> operands. 9425 // 9426 // These do not require legalisation, and can be emitted directly to target 9427 // constant nodes. 9428 SDValue ID = getValue(CI.getArgOperand(0)); 9429 assert(ID.getValueType() == MVT::i64); 9430 SDValue IDConst = DAG.getTargetConstant( 9431 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9432 Ops.push_back(IDConst); 9433 9434 SDValue Shad = getValue(CI.getArgOperand(1)); 9435 assert(Shad.getValueType() == MVT::i32); 9436 SDValue ShadConst = DAG.getTargetConstant( 9437 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9438 Ops.push_back(ShadConst); 9439 9440 // Add the live variables. 9441 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9442 9443 // Create the STACKMAP node. 9444 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9445 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9446 InFlag = Chain.getValue(1); 9447 9448 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); 9449 9450 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9451 9452 // Set the root to the target-lowered call chain. 9453 DAG.setRoot(Chain); 9454 9455 // Inform the Frame Information that we have a stackmap in this function. 9456 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9457 } 9458 9459 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9460 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9461 const BasicBlock *EHPadBB) { 9462 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9463 // i32 <numBytes>, 9464 // i8* <target>, 9465 // i32 <numArgs>, 9466 // [Args...], 9467 // [live variables...]) 9468 9469 CallingConv::ID CC = CB.getCallingConv(); 9470 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9471 bool HasDef = !CB.getType()->isVoidTy(); 9472 SDLoc dl = getCurSDLoc(); 9473 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9474 9475 // Handle immediate and symbolic callees. 9476 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9477 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9478 /*isTarget=*/true); 9479 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9480 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9481 SDLoc(SymbolicCallee), 9482 SymbolicCallee->getValueType(0)); 9483 9484 // Get the real number of arguments participating in the call <numArgs> 9485 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9486 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9487 9488 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9489 // Intrinsics include all meta-operands up to but not including CC. 9490 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9491 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9492 "Not enough arguments provided to the patchpoint intrinsic"); 9493 9494 // For AnyRegCC the arguments are lowered later on manually. 9495 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9496 Type *ReturnTy = 9497 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9498 9499 TargetLowering::CallLoweringInfo CLI(DAG); 9500 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9501 ReturnTy, true); 9502 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9503 9504 SDNode *CallEnd = Result.second.getNode(); 9505 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9506 CallEnd = CallEnd->getOperand(0).getNode(); 9507 9508 /// Get a call instruction from the call sequence chain. 9509 /// Tail calls are not allowed. 9510 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9511 "Expected a callseq node."); 9512 SDNode *Call = CallEnd->getOperand(0).getNode(); 9513 bool HasGlue = Call->getGluedNode(); 9514 9515 // Replace the target specific call node with the patchable intrinsic. 9516 SmallVector<SDValue, 8> Ops; 9517 9518 // Push the chain. 9519 Ops.push_back(*(Call->op_begin())); 9520 9521 // Optionally, push the glue (if any). 9522 if (HasGlue) 9523 Ops.push_back(*(Call->op_end() - 1)); 9524 9525 // Push the register mask info. 9526 if (HasGlue) 9527 Ops.push_back(*(Call->op_end() - 2)); 9528 else 9529 Ops.push_back(*(Call->op_end() - 1)); 9530 9531 // Add the <id> and <numBytes> constants. 9532 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9533 Ops.push_back(DAG.getTargetConstant( 9534 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9535 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9536 Ops.push_back(DAG.getTargetConstant( 9537 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9538 MVT::i32)); 9539 9540 // Add the callee. 9541 Ops.push_back(Callee); 9542 9543 // Adjust <numArgs> to account for any arguments that have been passed on the 9544 // stack instead. 9545 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9546 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9547 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9548 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9549 9550 // Add the calling convention 9551 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9552 9553 // Add the arguments we omitted previously. The register allocator should 9554 // place these in any free register. 9555 if (IsAnyRegCC) 9556 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9557 Ops.push_back(getValue(CB.getArgOperand(i))); 9558 9559 // Push the arguments from the call instruction. 9560 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9561 Ops.append(Call->op_begin() + 2, e); 9562 9563 // Push live variables for the stack map. 9564 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9565 9566 SDVTList NodeTys; 9567 if (IsAnyRegCC && HasDef) { 9568 // Create the return types based on the intrinsic definition 9569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9570 SmallVector<EVT, 3> ValueVTs; 9571 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9572 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9573 9574 // There is always a chain and a glue type at the end 9575 ValueVTs.push_back(MVT::Other); 9576 ValueVTs.push_back(MVT::Glue); 9577 NodeTys = DAG.getVTList(ValueVTs); 9578 } else 9579 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9580 9581 // Replace the target specific call node with a PATCHPOINT node. 9582 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9583 9584 // Update the NodeMap. 9585 if (HasDef) { 9586 if (IsAnyRegCC) 9587 setValue(&CB, SDValue(PPV.getNode(), 0)); 9588 else 9589 setValue(&CB, Result.first); 9590 } 9591 9592 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9593 // call sequence. Furthermore the location of the chain and glue can change 9594 // when the AnyReg calling convention is used and the intrinsic returns a 9595 // value. 9596 if (IsAnyRegCC && HasDef) { 9597 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9598 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9599 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9600 } else 9601 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9602 DAG.DeleteNode(Call); 9603 9604 // Inform the Frame Information that we have a patchpoint in this function. 9605 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9606 } 9607 9608 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9609 unsigned Intrinsic) { 9610 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9611 SDValue Op1 = getValue(I.getArgOperand(0)); 9612 SDValue Op2; 9613 if (I.arg_size() > 1) 9614 Op2 = getValue(I.getArgOperand(1)); 9615 SDLoc dl = getCurSDLoc(); 9616 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9617 SDValue Res; 9618 SDNodeFlags SDFlags; 9619 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9620 SDFlags.copyFMF(*FPMO); 9621 9622 switch (Intrinsic) { 9623 case Intrinsic::vector_reduce_fadd: 9624 if (SDFlags.hasAllowReassociation()) 9625 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9626 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9627 SDFlags); 9628 else 9629 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9630 break; 9631 case Intrinsic::vector_reduce_fmul: 9632 if (SDFlags.hasAllowReassociation()) 9633 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9634 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9635 SDFlags); 9636 else 9637 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9638 break; 9639 case Intrinsic::vector_reduce_add: 9640 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9641 break; 9642 case Intrinsic::vector_reduce_mul: 9643 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9644 break; 9645 case Intrinsic::vector_reduce_and: 9646 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9647 break; 9648 case Intrinsic::vector_reduce_or: 9649 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9650 break; 9651 case Intrinsic::vector_reduce_xor: 9652 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9653 break; 9654 case Intrinsic::vector_reduce_smax: 9655 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9656 break; 9657 case Intrinsic::vector_reduce_smin: 9658 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9659 break; 9660 case Intrinsic::vector_reduce_umax: 9661 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9662 break; 9663 case Intrinsic::vector_reduce_umin: 9664 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9665 break; 9666 case Intrinsic::vector_reduce_fmax: 9667 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9668 break; 9669 case Intrinsic::vector_reduce_fmin: 9670 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9671 break; 9672 default: 9673 llvm_unreachable("Unhandled vector reduce intrinsic"); 9674 } 9675 setValue(&I, Res); 9676 } 9677 9678 /// Returns an AttributeList representing the attributes applied to the return 9679 /// value of the given call. 9680 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9681 SmallVector<Attribute::AttrKind, 2> Attrs; 9682 if (CLI.RetSExt) 9683 Attrs.push_back(Attribute::SExt); 9684 if (CLI.RetZExt) 9685 Attrs.push_back(Attribute::ZExt); 9686 if (CLI.IsInReg) 9687 Attrs.push_back(Attribute::InReg); 9688 9689 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9690 Attrs); 9691 } 9692 9693 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9694 /// implementation, which just calls LowerCall. 9695 /// FIXME: When all targets are 9696 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9697 std::pair<SDValue, SDValue> 9698 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9699 // Handle the incoming return values from the call. 9700 CLI.Ins.clear(); 9701 Type *OrigRetTy = CLI.RetTy; 9702 SmallVector<EVT, 4> RetTys; 9703 SmallVector<uint64_t, 4> Offsets; 9704 auto &DL = CLI.DAG.getDataLayout(); 9705 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9706 9707 if (CLI.IsPostTypeLegalization) { 9708 // If we are lowering a libcall after legalization, split the return type. 9709 SmallVector<EVT, 4> OldRetTys; 9710 SmallVector<uint64_t, 4> OldOffsets; 9711 RetTys.swap(OldRetTys); 9712 Offsets.swap(OldOffsets); 9713 9714 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9715 EVT RetVT = OldRetTys[i]; 9716 uint64_t Offset = OldOffsets[i]; 9717 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9718 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9719 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9720 RetTys.append(NumRegs, RegisterVT); 9721 for (unsigned j = 0; j != NumRegs; ++j) 9722 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9723 } 9724 } 9725 9726 SmallVector<ISD::OutputArg, 4> Outs; 9727 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9728 9729 bool CanLowerReturn = 9730 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9731 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9732 9733 SDValue DemoteStackSlot; 9734 int DemoteStackIdx = -100; 9735 if (!CanLowerReturn) { 9736 // FIXME: equivalent assert? 9737 // assert(!CS.hasInAllocaArgument() && 9738 // "sret demotion is incompatible with inalloca"); 9739 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9740 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9741 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9742 DemoteStackIdx = 9743 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9744 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9745 DL.getAllocaAddrSpace()); 9746 9747 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9748 ArgListEntry Entry; 9749 Entry.Node = DemoteStackSlot; 9750 Entry.Ty = StackSlotPtrType; 9751 Entry.IsSExt = false; 9752 Entry.IsZExt = false; 9753 Entry.IsInReg = false; 9754 Entry.IsSRet = true; 9755 Entry.IsNest = false; 9756 Entry.IsByVal = false; 9757 Entry.IsByRef = false; 9758 Entry.IsReturned = false; 9759 Entry.IsSwiftSelf = false; 9760 Entry.IsSwiftAsync = false; 9761 Entry.IsSwiftError = false; 9762 Entry.IsCFGuardTarget = false; 9763 Entry.Alignment = Alignment; 9764 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9765 CLI.NumFixedArgs += 1; 9766 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9767 9768 // sret demotion isn't compatible with tail-calls, since the sret argument 9769 // points into the callers stack frame. 9770 CLI.IsTailCall = false; 9771 } else { 9772 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9773 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9774 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9775 ISD::ArgFlagsTy Flags; 9776 if (NeedsRegBlock) { 9777 Flags.setInConsecutiveRegs(); 9778 if (I == RetTys.size() - 1) 9779 Flags.setInConsecutiveRegsLast(); 9780 } 9781 EVT VT = RetTys[I]; 9782 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9783 CLI.CallConv, VT); 9784 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9785 CLI.CallConv, VT); 9786 for (unsigned i = 0; i != NumRegs; ++i) { 9787 ISD::InputArg MyFlags; 9788 MyFlags.Flags = Flags; 9789 MyFlags.VT = RegisterVT; 9790 MyFlags.ArgVT = VT; 9791 MyFlags.Used = CLI.IsReturnValueUsed; 9792 if (CLI.RetTy->isPointerTy()) { 9793 MyFlags.Flags.setPointer(); 9794 MyFlags.Flags.setPointerAddrSpace( 9795 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9796 } 9797 if (CLI.RetSExt) 9798 MyFlags.Flags.setSExt(); 9799 if (CLI.RetZExt) 9800 MyFlags.Flags.setZExt(); 9801 if (CLI.IsInReg) 9802 MyFlags.Flags.setInReg(); 9803 CLI.Ins.push_back(MyFlags); 9804 } 9805 } 9806 } 9807 9808 // We push in swifterror return as the last element of CLI.Ins. 9809 ArgListTy &Args = CLI.getArgs(); 9810 if (supportSwiftError()) { 9811 for (const ArgListEntry &Arg : Args) { 9812 if (Arg.IsSwiftError) { 9813 ISD::InputArg MyFlags; 9814 MyFlags.VT = getPointerTy(DL); 9815 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9816 MyFlags.Flags.setSwiftError(); 9817 CLI.Ins.push_back(MyFlags); 9818 } 9819 } 9820 } 9821 9822 // Handle all of the outgoing arguments. 9823 CLI.Outs.clear(); 9824 CLI.OutVals.clear(); 9825 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9826 SmallVector<EVT, 4> ValueVTs; 9827 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9828 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9829 Type *FinalType = Args[i].Ty; 9830 if (Args[i].IsByVal) 9831 FinalType = Args[i].IndirectType; 9832 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9833 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9834 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9835 ++Value) { 9836 EVT VT = ValueVTs[Value]; 9837 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9838 SDValue Op = SDValue(Args[i].Node.getNode(), 9839 Args[i].Node.getResNo() + Value); 9840 ISD::ArgFlagsTy Flags; 9841 9842 // Certain targets (such as MIPS), may have a different ABI alignment 9843 // for a type depending on the context. Give the target a chance to 9844 // specify the alignment it wants. 9845 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9846 Flags.setOrigAlign(OriginalAlignment); 9847 9848 if (Args[i].Ty->isPointerTy()) { 9849 Flags.setPointer(); 9850 Flags.setPointerAddrSpace( 9851 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9852 } 9853 if (Args[i].IsZExt) 9854 Flags.setZExt(); 9855 if (Args[i].IsSExt) 9856 Flags.setSExt(); 9857 if (Args[i].IsInReg) { 9858 // If we are using vectorcall calling convention, a structure that is 9859 // passed InReg - is surely an HVA 9860 if (CLI.CallConv == CallingConv::X86_VectorCall && 9861 isa<StructType>(FinalType)) { 9862 // The first value of a structure is marked 9863 if (0 == Value) 9864 Flags.setHvaStart(); 9865 Flags.setHva(); 9866 } 9867 // Set InReg Flag 9868 Flags.setInReg(); 9869 } 9870 if (Args[i].IsSRet) 9871 Flags.setSRet(); 9872 if (Args[i].IsSwiftSelf) 9873 Flags.setSwiftSelf(); 9874 if (Args[i].IsSwiftAsync) 9875 Flags.setSwiftAsync(); 9876 if (Args[i].IsSwiftError) 9877 Flags.setSwiftError(); 9878 if (Args[i].IsCFGuardTarget) 9879 Flags.setCFGuardTarget(); 9880 if (Args[i].IsByVal) 9881 Flags.setByVal(); 9882 if (Args[i].IsByRef) 9883 Flags.setByRef(); 9884 if (Args[i].IsPreallocated) { 9885 Flags.setPreallocated(); 9886 // Set the byval flag for CCAssignFn callbacks that don't know about 9887 // preallocated. This way we can know how many bytes we should've 9888 // allocated and how many bytes a callee cleanup function will pop. If 9889 // we port preallocated to more targets, we'll have to add custom 9890 // preallocated handling in the various CC lowering callbacks. 9891 Flags.setByVal(); 9892 } 9893 if (Args[i].IsInAlloca) { 9894 Flags.setInAlloca(); 9895 // Set the byval flag for CCAssignFn callbacks that don't know about 9896 // inalloca. This way we can know how many bytes we should've allocated 9897 // and how many bytes a callee cleanup function will pop. If we port 9898 // inalloca to more targets, we'll have to add custom inalloca handling 9899 // in the various CC lowering callbacks. 9900 Flags.setByVal(); 9901 } 9902 Align MemAlign; 9903 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9904 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9905 Flags.setByValSize(FrameSize); 9906 9907 // info is not there but there are cases it cannot get right. 9908 if (auto MA = Args[i].Alignment) 9909 MemAlign = *MA; 9910 else 9911 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9912 } else if (auto MA = Args[i].Alignment) { 9913 MemAlign = *MA; 9914 } else { 9915 MemAlign = OriginalAlignment; 9916 } 9917 Flags.setMemAlign(MemAlign); 9918 if (Args[i].IsNest) 9919 Flags.setNest(); 9920 if (NeedsRegBlock) 9921 Flags.setInConsecutiveRegs(); 9922 9923 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9924 CLI.CallConv, VT); 9925 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9926 CLI.CallConv, VT); 9927 SmallVector<SDValue, 4> Parts(NumParts); 9928 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9929 9930 if (Args[i].IsSExt) 9931 ExtendKind = ISD::SIGN_EXTEND; 9932 else if (Args[i].IsZExt) 9933 ExtendKind = ISD::ZERO_EXTEND; 9934 9935 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9936 // for now. 9937 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9938 CanLowerReturn) { 9939 assert((CLI.RetTy == Args[i].Ty || 9940 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9941 CLI.RetTy->getPointerAddressSpace() == 9942 Args[i].Ty->getPointerAddressSpace())) && 9943 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9944 // Before passing 'returned' to the target lowering code, ensure that 9945 // either the register MVT and the actual EVT are the same size or that 9946 // the return value and argument are extended in the same way; in these 9947 // cases it's safe to pass the argument register value unchanged as the 9948 // return register value (although it's at the target's option whether 9949 // to do so) 9950 // TODO: allow code generation to take advantage of partially preserved 9951 // registers rather than clobbering the entire register when the 9952 // parameter extension method is not compatible with the return 9953 // extension method 9954 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9955 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9956 CLI.RetZExt == Args[i].IsZExt)) 9957 Flags.setReturned(); 9958 } 9959 9960 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9961 CLI.CallConv, ExtendKind); 9962 9963 for (unsigned j = 0; j != NumParts; ++j) { 9964 // if it isn't first piece, alignment must be 1 9965 // For scalable vectors the scalable part is currently handled 9966 // by individual targets, so we just use the known minimum size here. 9967 ISD::OutputArg MyFlags( 9968 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9969 i < CLI.NumFixedArgs, i, 9970 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9971 if (NumParts > 1 && j == 0) 9972 MyFlags.Flags.setSplit(); 9973 else if (j != 0) { 9974 MyFlags.Flags.setOrigAlign(Align(1)); 9975 if (j == NumParts - 1) 9976 MyFlags.Flags.setSplitEnd(); 9977 } 9978 9979 CLI.Outs.push_back(MyFlags); 9980 CLI.OutVals.push_back(Parts[j]); 9981 } 9982 9983 if (NeedsRegBlock && Value == NumValues - 1) 9984 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9985 } 9986 } 9987 9988 SmallVector<SDValue, 4> InVals; 9989 CLI.Chain = LowerCall(CLI, InVals); 9990 9991 // Update CLI.InVals to use outside of this function. 9992 CLI.InVals = InVals; 9993 9994 // Verify that the target's LowerCall behaved as expected. 9995 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9996 "LowerCall didn't return a valid chain!"); 9997 assert((!CLI.IsTailCall || InVals.empty()) && 9998 "LowerCall emitted a return value for a tail call!"); 9999 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10000 "LowerCall didn't emit the correct number of values!"); 10001 10002 // For a tail call, the return value is merely live-out and there aren't 10003 // any nodes in the DAG representing it. Return a special value to 10004 // indicate that a tail call has been emitted and no more Instructions 10005 // should be processed in the current block. 10006 if (CLI.IsTailCall) { 10007 CLI.DAG.setRoot(CLI.Chain); 10008 return std::make_pair(SDValue(), SDValue()); 10009 } 10010 10011 #ifndef NDEBUG 10012 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10013 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10014 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10015 "LowerCall emitted a value with the wrong type!"); 10016 } 10017 #endif 10018 10019 SmallVector<SDValue, 4> ReturnValues; 10020 if (!CanLowerReturn) { 10021 // The instruction result is the result of loading from the 10022 // hidden sret parameter. 10023 SmallVector<EVT, 1> PVTs; 10024 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10025 10026 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10027 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10028 EVT PtrVT = PVTs[0]; 10029 10030 unsigned NumValues = RetTys.size(); 10031 ReturnValues.resize(NumValues); 10032 SmallVector<SDValue, 4> Chains(NumValues); 10033 10034 // An aggregate return value cannot wrap around the address space, so 10035 // offsets to its parts don't wrap either. 10036 SDNodeFlags Flags; 10037 Flags.setNoUnsignedWrap(true); 10038 10039 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10040 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10041 for (unsigned i = 0; i < NumValues; ++i) { 10042 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10043 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10044 PtrVT), Flags); 10045 SDValue L = CLI.DAG.getLoad( 10046 RetTys[i], CLI.DL, CLI.Chain, Add, 10047 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10048 DemoteStackIdx, Offsets[i]), 10049 HiddenSRetAlign); 10050 ReturnValues[i] = L; 10051 Chains[i] = L.getValue(1); 10052 } 10053 10054 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10055 } else { 10056 // Collect the legal value parts into potentially illegal values 10057 // that correspond to the original function's return values. 10058 Optional<ISD::NodeType> AssertOp; 10059 if (CLI.RetSExt) 10060 AssertOp = ISD::AssertSext; 10061 else if (CLI.RetZExt) 10062 AssertOp = ISD::AssertZext; 10063 unsigned CurReg = 0; 10064 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10065 EVT VT = RetTys[I]; 10066 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10067 CLI.CallConv, VT); 10068 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10069 CLI.CallConv, VT); 10070 10071 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10072 NumRegs, RegisterVT, VT, nullptr, 10073 CLI.CallConv, AssertOp)); 10074 CurReg += NumRegs; 10075 } 10076 10077 // For a function returning void, there is no return value. We can't create 10078 // such a node, so we just return a null return value in that case. In 10079 // that case, nothing will actually look at the value. 10080 if (ReturnValues.empty()) 10081 return std::make_pair(SDValue(), CLI.Chain); 10082 } 10083 10084 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10085 CLI.DAG.getVTList(RetTys), ReturnValues); 10086 return std::make_pair(Res, CLI.Chain); 10087 } 10088 10089 /// Places new result values for the node in Results (their number 10090 /// and types must exactly match those of the original return values of 10091 /// the node), or leaves Results empty, which indicates that the node is not 10092 /// to be custom lowered after all. 10093 void TargetLowering::LowerOperationWrapper(SDNode *N, 10094 SmallVectorImpl<SDValue> &Results, 10095 SelectionDAG &DAG) const { 10096 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10097 10098 if (!Res.getNode()) 10099 return; 10100 10101 // If the original node has one result, take the return value from 10102 // LowerOperation as is. It might not be result number 0. 10103 if (N->getNumValues() == 1) { 10104 Results.push_back(Res); 10105 return; 10106 } 10107 10108 // If the original node has multiple results, then the return node should 10109 // have the same number of results. 10110 assert((N->getNumValues() == Res->getNumValues()) && 10111 "Lowering returned the wrong number of results!"); 10112 10113 // Places new result values base on N result number. 10114 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10115 Results.push_back(Res.getValue(I)); 10116 } 10117 10118 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10119 llvm_unreachable("LowerOperation not implemented for this target!"); 10120 } 10121 10122 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10123 unsigned Reg, 10124 ISD::NodeType ExtendType) { 10125 SDValue Op = getNonRegisterValue(V); 10126 assert((Op.getOpcode() != ISD::CopyFromReg || 10127 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10128 "Copy from a reg to the same reg!"); 10129 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10130 10131 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10132 // If this is an InlineAsm we have to match the registers required, not the 10133 // notional registers required by the type. 10134 10135 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10136 None); // This is not an ABI copy. 10137 SDValue Chain = DAG.getEntryNode(); 10138 10139 if (ExtendType == ISD::ANY_EXTEND) { 10140 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10141 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10142 ExtendType = PreferredExtendIt->second; 10143 } 10144 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10145 PendingExports.push_back(Chain); 10146 } 10147 10148 #include "llvm/CodeGen/SelectionDAGISel.h" 10149 10150 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10151 /// entry block, return true. This includes arguments used by switches, since 10152 /// the switch may expand into multiple basic blocks. 10153 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10154 // With FastISel active, we may be splitting blocks, so force creation 10155 // of virtual registers for all non-dead arguments. 10156 if (FastISel) 10157 return A->use_empty(); 10158 10159 const BasicBlock &Entry = A->getParent()->front(); 10160 for (const User *U : A->users()) 10161 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10162 return false; // Use not in entry block. 10163 10164 return true; 10165 } 10166 10167 using ArgCopyElisionMapTy = 10168 DenseMap<const Argument *, 10169 std::pair<const AllocaInst *, const StoreInst *>>; 10170 10171 /// Scan the entry block of the function in FuncInfo for arguments that look 10172 /// like copies into a local alloca. Record any copied arguments in 10173 /// ArgCopyElisionCandidates. 10174 static void 10175 findArgumentCopyElisionCandidates(const DataLayout &DL, 10176 FunctionLoweringInfo *FuncInfo, 10177 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10178 // Record the state of every static alloca used in the entry block. Argument 10179 // allocas are all used in the entry block, so we need approximately as many 10180 // entries as we have arguments. 10181 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10182 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10183 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10184 StaticAllocas.reserve(NumArgs * 2); 10185 10186 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10187 if (!V) 10188 return nullptr; 10189 V = V->stripPointerCasts(); 10190 const auto *AI = dyn_cast<AllocaInst>(V); 10191 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10192 return nullptr; 10193 auto Iter = StaticAllocas.insert({AI, Unknown}); 10194 return &Iter.first->second; 10195 }; 10196 10197 // Look for stores of arguments to static allocas. Look through bitcasts and 10198 // GEPs to handle type coercions, as long as the alloca is fully initialized 10199 // by the store. Any non-store use of an alloca escapes it and any subsequent 10200 // unanalyzed store might write it. 10201 // FIXME: Handle structs initialized with multiple stores. 10202 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10203 // Look for stores, and handle non-store uses conservatively. 10204 const auto *SI = dyn_cast<StoreInst>(&I); 10205 if (!SI) { 10206 // We will look through cast uses, so ignore them completely. 10207 if (I.isCast()) 10208 continue; 10209 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10210 // to allocas. 10211 if (I.isDebugOrPseudoInst()) 10212 continue; 10213 // This is an unknown instruction. Assume it escapes or writes to all 10214 // static alloca operands. 10215 for (const Use &U : I.operands()) { 10216 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10217 *Info = StaticAllocaInfo::Clobbered; 10218 } 10219 continue; 10220 } 10221 10222 // If the stored value is a static alloca, mark it as escaped. 10223 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10224 *Info = StaticAllocaInfo::Clobbered; 10225 10226 // Check if the destination is a static alloca. 10227 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10228 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10229 if (!Info) 10230 continue; 10231 const AllocaInst *AI = cast<AllocaInst>(Dst); 10232 10233 // Skip allocas that have been initialized or clobbered. 10234 if (*Info != StaticAllocaInfo::Unknown) 10235 continue; 10236 10237 // Check if the stored value is an argument, and that this store fully 10238 // initializes the alloca. 10239 // If the argument type has padding bits we can't directly forward a pointer 10240 // as the upper bits may contain garbage. 10241 // Don't elide copies from the same argument twice. 10242 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10243 const auto *Arg = dyn_cast<Argument>(Val); 10244 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10245 Arg->getType()->isEmptyTy() || 10246 DL.getTypeStoreSize(Arg->getType()) != 10247 DL.getTypeAllocSize(AI->getAllocatedType()) || 10248 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10249 ArgCopyElisionCandidates.count(Arg)) { 10250 *Info = StaticAllocaInfo::Clobbered; 10251 continue; 10252 } 10253 10254 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10255 << '\n'); 10256 10257 // Mark this alloca and store for argument copy elision. 10258 *Info = StaticAllocaInfo::Elidable; 10259 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10260 10261 // Stop scanning if we've seen all arguments. This will happen early in -O0 10262 // builds, which is useful, because -O0 builds have large entry blocks and 10263 // many allocas. 10264 if (ArgCopyElisionCandidates.size() == NumArgs) 10265 break; 10266 } 10267 } 10268 10269 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10270 /// ArgVal is a load from a suitable fixed stack object. 10271 static void tryToElideArgumentCopy( 10272 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10273 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10274 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10275 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10276 SDValue ArgVal, bool &ArgHasUses) { 10277 // Check if this is a load from a fixed stack object. 10278 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10279 if (!LNode) 10280 return; 10281 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10282 if (!FINode) 10283 return; 10284 10285 // Check that the fixed stack object is the right size and alignment. 10286 // Look at the alignment that the user wrote on the alloca instead of looking 10287 // at the stack object. 10288 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10289 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10290 const AllocaInst *AI = ArgCopyIter->second.first; 10291 int FixedIndex = FINode->getIndex(); 10292 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10293 int OldIndex = AllocaIndex; 10294 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10295 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10296 LLVM_DEBUG( 10297 dbgs() << " argument copy elision failed due to bad fixed stack " 10298 "object size\n"); 10299 return; 10300 } 10301 Align RequiredAlignment = AI->getAlign(); 10302 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10303 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10304 "greater than stack argument alignment (" 10305 << DebugStr(RequiredAlignment) << " vs " 10306 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10307 return; 10308 } 10309 10310 // Perform the elision. Delete the old stack object and replace its only use 10311 // in the variable info map. Mark the stack object as mutable. 10312 LLVM_DEBUG({ 10313 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10314 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10315 << '\n'; 10316 }); 10317 MFI.RemoveStackObject(OldIndex); 10318 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10319 AllocaIndex = FixedIndex; 10320 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10321 Chains.push_back(ArgVal.getValue(1)); 10322 10323 // Avoid emitting code for the store implementing the copy. 10324 const StoreInst *SI = ArgCopyIter->second.second; 10325 ElidedArgCopyInstrs.insert(SI); 10326 10327 // Check for uses of the argument again so that we can avoid exporting ArgVal 10328 // if it is't used by anything other than the store. 10329 for (const Value *U : Arg.users()) { 10330 if (U != SI) { 10331 ArgHasUses = true; 10332 break; 10333 } 10334 } 10335 } 10336 10337 void SelectionDAGISel::LowerArguments(const Function &F) { 10338 SelectionDAG &DAG = SDB->DAG; 10339 SDLoc dl = SDB->getCurSDLoc(); 10340 const DataLayout &DL = DAG.getDataLayout(); 10341 SmallVector<ISD::InputArg, 16> Ins; 10342 10343 // In Naked functions we aren't going to save any registers. 10344 if (F.hasFnAttribute(Attribute::Naked)) 10345 return; 10346 10347 if (!FuncInfo->CanLowerReturn) { 10348 // Put in an sret pointer parameter before all the other parameters. 10349 SmallVector<EVT, 1> ValueVTs; 10350 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10351 F.getReturnType()->getPointerTo( 10352 DAG.getDataLayout().getAllocaAddrSpace()), 10353 ValueVTs); 10354 10355 // NOTE: Assuming that a pointer will never break down to more than one VT 10356 // or one register. 10357 ISD::ArgFlagsTy Flags; 10358 Flags.setSRet(); 10359 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10360 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10361 ISD::InputArg::NoArgIndex, 0); 10362 Ins.push_back(RetArg); 10363 } 10364 10365 // Look for stores of arguments to static allocas. Mark such arguments with a 10366 // flag to ask the target to give us the memory location of that argument if 10367 // available. 10368 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10369 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10370 ArgCopyElisionCandidates); 10371 10372 // Set up the incoming argument description vector. 10373 for (const Argument &Arg : F.args()) { 10374 unsigned ArgNo = Arg.getArgNo(); 10375 SmallVector<EVT, 4> ValueVTs; 10376 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10377 bool isArgValueUsed = !Arg.use_empty(); 10378 unsigned PartBase = 0; 10379 Type *FinalType = Arg.getType(); 10380 if (Arg.hasAttribute(Attribute::ByVal)) 10381 FinalType = Arg.getParamByValType(); 10382 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10383 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10384 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10385 Value != NumValues; ++Value) { 10386 EVT VT = ValueVTs[Value]; 10387 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10388 ISD::ArgFlagsTy Flags; 10389 10390 10391 if (Arg.getType()->isPointerTy()) { 10392 Flags.setPointer(); 10393 Flags.setPointerAddrSpace( 10394 cast<PointerType>(Arg.getType())->getAddressSpace()); 10395 } 10396 if (Arg.hasAttribute(Attribute::ZExt)) 10397 Flags.setZExt(); 10398 if (Arg.hasAttribute(Attribute::SExt)) 10399 Flags.setSExt(); 10400 if (Arg.hasAttribute(Attribute::InReg)) { 10401 // If we are using vectorcall calling convention, a structure that is 10402 // passed InReg - is surely an HVA 10403 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10404 isa<StructType>(Arg.getType())) { 10405 // The first value of a structure is marked 10406 if (0 == Value) 10407 Flags.setHvaStart(); 10408 Flags.setHva(); 10409 } 10410 // Set InReg Flag 10411 Flags.setInReg(); 10412 } 10413 if (Arg.hasAttribute(Attribute::StructRet)) 10414 Flags.setSRet(); 10415 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10416 Flags.setSwiftSelf(); 10417 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10418 Flags.setSwiftAsync(); 10419 if (Arg.hasAttribute(Attribute::SwiftError)) 10420 Flags.setSwiftError(); 10421 if (Arg.hasAttribute(Attribute::ByVal)) 10422 Flags.setByVal(); 10423 if (Arg.hasAttribute(Attribute::ByRef)) 10424 Flags.setByRef(); 10425 if (Arg.hasAttribute(Attribute::InAlloca)) { 10426 Flags.setInAlloca(); 10427 // Set the byval flag for CCAssignFn callbacks that don't know about 10428 // inalloca. This way we can know how many bytes we should've allocated 10429 // and how many bytes a callee cleanup function will pop. If we port 10430 // inalloca to more targets, we'll have to add custom inalloca handling 10431 // in the various CC lowering callbacks. 10432 Flags.setByVal(); 10433 } 10434 if (Arg.hasAttribute(Attribute::Preallocated)) { 10435 Flags.setPreallocated(); 10436 // Set the byval flag for CCAssignFn callbacks that don't know about 10437 // preallocated. This way we can know how many bytes we should've 10438 // allocated and how many bytes a callee cleanup function will pop. If 10439 // we port preallocated to more targets, we'll have to add custom 10440 // preallocated handling in the various CC lowering callbacks. 10441 Flags.setByVal(); 10442 } 10443 10444 // Certain targets (such as MIPS), may have a different ABI alignment 10445 // for a type depending on the context. Give the target a chance to 10446 // specify the alignment it wants. 10447 const Align OriginalAlignment( 10448 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10449 Flags.setOrigAlign(OriginalAlignment); 10450 10451 Align MemAlign; 10452 Type *ArgMemTy = nullptr; 10453 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10454 Flags.isByRef()) { 10455 if (!ArgMemTy) 10456 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10457 10458 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10459 10460 // For in-memory arguments, size and alignment should be passed from FE. 10461 // BE will guess if this info is not there but there are cases it cannot 10462 // get right. 10463 if (auto ParamAlign = Arg.getParamStackAlign()) 10464 MemAlign = *ParamAlign; 10465 else if ((ParamAlign = Arg.getParamAlign())) 10466 MemAlign = *ParamAlign; 10467 else 10468 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10469 if (Flags.isByRef()) 10470 Flags.setByRefSize(MemSize); 10471 else 10472 Flags.setByValSize(MemSize); 10473 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10474 MemAlign = *ParamAlign; 10475 } else { 10476 MemAlign = OriginalAlignment; 10477 } 10478 Flags.setMemAlign(MemAlign); 10479 10480 if (Arg.hasAttribute(Attribute::Nest)) 10481 Flags.setNest(); 10482 if (NeedsRegBlock) 10483 Flags.setInConsecutiveRegs(); 10484 if (ArgCopyElisionCandidates.count(&Arg)) 10485 Flags.setCopyElisionCandidate(); 10486 if (Arg.hasAttribute(Attribute::Returned)) 10487 Flags.setReturned(); 10488 10489 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10490 *CurDAG->getContext(), F.getCallingConv(), VT); 10491 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10492 *CurDAG->getContext(), F.getCallingConv(), VT); 10493 for (unsigned i = 0; i != NumRegs; ++i) { 10494 // For scalable vectors, use the minimum size; individual targets 10495 // are responsible for handling scalable vector arguments and 10496 // return values. 10497 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10498 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10499 if (NumRegs > 1 && i == 0) 10500 MyFlags.Flags.setSplit(); 10501 // if it isn't first piece, alignment must be 1 10502 else if (i > 0) { 10503 MyFlags.Flags.setOrigAlign(Align(1)); 10504 if (i == NumRegs - 1) 10505 MyFlags.Flags.setSplitEnd(); 10506 } 10507 Ins.push_back(MyFlags); 10508 } 10509 if (NeedsRegBlock && Value == NumValues - 1) 10510 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10511 PartBase += VT.getStoreSize().getKnownMinSize(); 10512 } 10513 } 10514 10515 // Call the target to set up the argument values. 10516 SmallVector<SDValue, 8> InVals; 10517 SDValue NewRoot = TLI->LowerFormalArguments( 10518 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10519 10520 // Verify that the target's LowerFormalArguments behaved as expected. 10521 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10522 "LowerFormalArguments didn't return a valid chain!"); 10523 assert(InVals.size() == Ins.size() && 10524 "LowerFormalArguments didn't emit the correct number of values!"); 10525 LLVM_DEBUG({ 10526 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10527 assert(InVals[i].getNode() && 10528 "LowerFormalArguments emitted a null value!"); 10529 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10530 "LowerFormalArguments emitted a value with the wrong type!"); 10531 } 10532 }); 10533 10534 // Update the DAG with the new chain value resulting from argument lowering. 10535 DAG.setRoot(NewRoot); 10536 10537 // Set up the argument values. 10538 unsigned i = 0; 10539 if (!FuncInfo->CanLowerReturn) { 10540 // Create a virtual register for the sret pointer, and put in a copy 10541 // from the sret argument into it. 10542 SmallVector<EVT, 1> ValueVTs; 10543 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10544 F.getReturnType()->getPointerTo( 10545 DAG.getDataLayout().getAllocaAddrSpace()), 10546 ValueVTs); 10547 MVT VT = ValueVTs[0].getSimpleVT(); 10548 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10549 Optional<ISD::NodeType> AssertOp; 10550 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10551 nullptr, F.getCallingConv(), AssertOp); 10552 10553 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10554 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10555 Register SRetReg = 10556 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10557 FuncInfo->DemoteRegister = SRetReg; 10558 NewRoot = 10559 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10560 DAG.setRoot(NewRoot); 10561 10562 // i indexes lowered arguments. Bump it past the hidden sret argument. 10563 ++i; 10564 } 10565 10566 SmallVector<SDValue, 4> Chains; 10567 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10568 for (const Argument &Arg : F.args()) { 10569 SmallVector<SDValue, 4> ArgValues; 10570 SmallVector<EVT, 4> ValueVTs; 10571 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10572 unsigned NumValues = ValueVTs.size(); 10573 if (NumValues == 0) 10574 continue; 10575 10576 bool ArgHasUses = !Arg.use_empty(); 10577 10578 // Elide the copying store if the target loaded this argument from a 10579 // suitable fixed stack object. 10580 if (Ins[i].Flags.isCopyElisionCandidate()) { 10581 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10582 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10583 InVals[i], ArgHasUses); 10584 } 10585 10586 // If this argument is unused then remember its value. It is used to generate 10587 // debugging information. 10588 bool isSwiftErrorArg = 10589 TLI->supportSwiftError() && 10590 Arg.hasAttribute(Attribute::SwiftError); 10591 if (!ArgHasUses && !isSwiftErrorArg) { 10592 SDB->setUnusedArgValue(&Arg, InVals[i]); 10593 10594 // Also remember any frame index for use in FastISel. 10595 if (FrameIndexSDNode *FI = 10596 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10597 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10598 } 10599 10600 for (unsigned Val = 0; Val != NumValues; ++Val) { 10601 EVT VT = ValueVTs[Val]; 10602 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10603 F.getCallingConv(), VT); 10604 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10605 *CurDAG->getContext(), F.getCallingConv(), VT); 10606 10607 // Even an apparent 'unused' swifterror argument needs to be returned. So 10608 // we do generate a copy for it that can be used on return from the 10609 // function. 10610 if (ArgHasUses || isSwiftErrorArg) { 10611 Optional<ISD::NodeType> AssertOp; 10612 if (Arg.hasAttribute(Attribute::SExt)) 10613 AssertOp = ISD::AssertSext; 10614 else if (Arg.hasAttribute(Attribute::ZExt)) 10615 AssertOp = ISD::AssertZext; 10616 10617 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10618 PartVT, VT, nullptr, 10619 F.getCallingConv(), AssertOp)); 10620 } 10621 10622 i += NumParts; 10623 } 10624 10625 // We don't need to do anything else for unused arguments. 10626 if (ArgValues.empty()) 10627 continue; 10628 10629 // Note down frame index. 10630 if (FrameIndexSDNode *FI = 10631 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10632 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10633 10634 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10635 SDB->getCurSDLoc()); 10636 10637 SDB->setValue(&Arg, Res); 10638 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10639 // We want to associate the argument with the frame index, among 10640 // involved operands, that correspond to the lowest address. The 10641 // getCopyFromParts function, called earlier, is swapping the order of 10642 // the operands to BUILD_PAIR depending on endianness. The result of 10643 // that swapping is that the least significant bits of the argument will 10644 // be in the first operand of the BUILD_PAIR node, and the most 10645 // significant bits will be in the second operand. 10646 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10647 if (LoadSDNode *LNode = 10648 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10649 if (FrameIndexSDNode *FI = 10650 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10651 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10652 } 10653 10654 // Analyses past this point are naive and don't expect an assertion. 10655 if (Res.getOpcode() == ISD::AssertZext) 10656 Res = Res.getOperand(0); 10657 10658 // Update the SwiftErrorVRegDefMap. 10659 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10660 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10661 if (Register::isVirtualRegister(Reg)) 10662 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10663 Reg); 10664 } 10665 10666 // If this argument is live outside of the entry block, insert a copy from 10667 // wherever we got it to the vreg that other BB's will reference it as. 10668 if (Res.getOpcode() == ISD::CopyFromReg) { 10669 // If we can, though, try to skip creating an unnecessary vreg. 10670 // FIXME: This isn't very clean... it would be nice to make this more 10671 // general. 10672 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10673 if (Register::isVirtualRegister(Reg)) { 10674 FuncInfo->ValueMap[&Arg] = Reg; 10675 continue; 10676 } 10677 } 10678 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10679 FuncInfo->InitializeRegForValue(&Arg); 10680 SDB->CopyToExportRegsIfNeeded(&Arg); 10681 } 10682 } 10683 10684 if (!Chains.empty()) { 10685 Chains.push_back(NewRoot); 10686 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10687 } 10688 10689 DAG.setRoot(NewRoot); 10690 10691 assert(i == InVals.size() && "Argument register count mismatch!"); 10692 10693 // If any argument copy elisions occurred and we have debug info, update the 10694 // stale frame indices used in the dbg.declare variable info table. 10695 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10696 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10697 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10698 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10699 if (I != ArgCopyElisionFrameIndexMap.end()) 10700 VI.Slot = I->second; 10701 } 10702 } 10703 10704 // Finally, if the target has anything special to do, allow it to do so. 10705 emitFunctionEntryCode(); 10706 } 10707 10708 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10709 /// ensure constants are generated when needed. Remember the virtual registers 10710 /// that need to be added to the Machine PHI nodes as input. We cannot just 10711 /// directly add them, because expansion might result in multiple MBB's for one 10712 /// BB. As such, the start of the BB might correspond to a different MBB than 10713 /// the end. 10714 void 10715 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10717 const Instruction *TI = LLVMBB->getTerminator(); 10718 10719 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10720 10721 // Check PHI nodes in successors that expect a value to be available from this 10722 // block. 10723 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10724 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10725 if (!isa<PHINode>(SuccBB->begin())) continue; 10726 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10727 10728 // If this terminator has multiple identical successors (common for 10729 // switches), only handle each succ once. 10730 if (!SuccsHandled.insert(SuccMBB).second) 10731 continue; 10732 10733 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10734 10735 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10736 // nodes and Machine PHI nodes, but the incoming operands have not been 10737 // emitted yet. 10738 for (const PHINode &PN : SuccBB->phis()) { 10739 // Ignore dead phi's. 10740 if (PN.use_empty()) 10741 continue; 10742 10743 // Skip empty types 10744 if (PN.getType()->isEmptyTy()) 10745 continue; 10746 10747 unsigned Reg; 10748 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10749 10750 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10751 unsigned &RegOut = ConstantsOut[C]; 10752 if (RegOut == 0) { 10753 RegOut = FuncInfo.CreateRegs(C); 10754 // We need to zero/sign extend ConstantInt phi operands to match 10755 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10756 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10757 if (auto *CI = dyn_cast<ConstantInt>(C)) 10758 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10759 : ISD::ZERO_EXTEND; 10760 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10761 } 10762 Reg = RegOut; 10763 } else { 10764 DenseMap<const Value *, Register>::iterator I = 10765 FuncInfo.ValueMap.find(PHIOp); 10766 if (I != FuncInfo.ValueMap.end()) 10767 Reg = I->second; 10768 else { 10769 assert(isa<AllocaInst>(PHIOp) && 10770 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10771 "Didn't codegen value into a register!??"); 10772 Reg = FuncInfo.CreateRegs(PHIOp); 10773 CopyValueToVirtualRegister(PHIOp, Reg); 10774 } 10775 } 10776 10777 // Remember that this register needs to added to the machine PHI node as 10778 // the input for this MBB. 10779 SmallVector<EVT, 4> ValueVTs; 10780 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10781 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10782 EVT VT = ValueVTs[vti]; 10783 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10784 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10785 FuncInfo.PHINodesToUpdate.push_back( 10786 std::make_pair(&*MBBI++, Reg + i)); 10787 Reg += NumRegisters; 10788 } 10789 } 10790 } 10791 10792 ConstantsOut.clear(); 10793 } 10794 10795 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10796 MachineFunction::iterator I(MBB); 10797 if (++I == FuncInfo.MF->end()) 10798 return nullptr; 10799 return &*I; 10800 } 10801 10802 /// During lowering new call nodes can be created (such as memset, etc.). 10803 /// Those will become new roots of the current DAG, but complications arise 10804 /// when they are tail calls. In such cases, the call lowering will update 10805 /// the root, but the builder still needs to know that a tail call has been 10806 /// lowered in order to avoid generating an additional return. 10807 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10808 // If the node is null, we do have a tail call. 10809 if (MaybeTC.getNode() != nullptr) 10810 DAG.setRoot(MaybeTC); 10811 else 10812 HasTailCall = true; 10813 } 10814 10815 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10816 MachineBasicBlock *SwitchMBB, 10817 MachineBasicBlock *DefaultMBB) { 10818 MachineFunction *CurMF = FuncInfo.MF; 10819 MachineBasicBlock *NextMBB = nullptr; 10820 MachineFunction::iterator BBI(W.MBB); 10821 if (++BBI != FuncInfo.MF->end()) 10822 NextMBB = &*BBI; 10823 10824 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10825 10826 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10827 10828 if (Size == 2 && W.MBB == SwitchMBB) { 10829 // If any two of the cases has the same destination, and if one value 10830 // is the same as the other, but has one bit unset that the other has set, 10831 // use bit manipulation to do two compares at once. For example: 10832 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10833 // TODO: This could be extended to merge any 2 cases in switches with 3 10834 // cases. 10835 // TODO: Handle cases where W.CaseBB != SwitchBB. 10836 CaseCluster &Small = *W.FirstCluster; 10837 CaseCluster &Big = *W.LastCluster; 10838 10839 if (Small.Low == Small.High && Big.Low == Big.High && 10840 Small.MBB == Big.MBB) { 10841 const APInt &SmallValue = Small.Low->getValue(); 10842 const APInt &BigValue = Big.Low->getValue(); 10843 10844 // Check that there is only one bit different. 10845 APInt CommonBit = BigValue ^ SmallValue; 10846 if (CommonBit.isPowerOf2()) { 10847 SDValue CondLHS = getValue(Cond); 10848 EVT VT = CondLHS.getValueType(); 10849 SDLoc DL = getCurSDLoc(); 10850 10851 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10852 DAG.getConstant(CommonBit, DL, VT)); 10853 SDValue Cond = DAG.getSetCC( 10854 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10855 ISD::SETEQ); 10856 10857 // Update successor info. 10858 // Both Small and Big will jump to Small.BB, so we sum up the 10859 // probabilities. 10860 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10861 if (BPI) 10862 addSuccessorWithProb( 10863 SwitchMBB, DefaultMBB, 10864 // The default destination is the first successor in IR. 10865 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10866 else 10867 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10868 10869 // Insert the true branch. 10870 SDValue BrCond = 10871 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10872 DAG.getBasicBlock(Small.MBB)); 10873 // Insert the false branch. 10874 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10875 DAG.getBasicBlock(DefaultMBB)); 10876 10877 DAG.setRoot(BrCond); 10878 return; 10879 } 10880 } 10881 } 10882 10883 if (TM.getOptLevel() != CodeGenOpt::None) { 10884 // Here, we order cases by probability so the most likely case will be 10885 // checked first. However, two clusters can have the same probability in 10886 // which case their relative ordering is non-deterministic. So we use Low 10887 // as a tie-breaker as clusters are guaranteed to never overlap. 10888 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10889 [](const CaseCluster &a, const CaseCluster &b) { 10890 return a.Prob != b.Prob ? 10891 a.Prob > b.Prob : 10892 a.Low->getValue().slt(b.Low->getValue()); 10893 }); 10894 10895 // Rearrange the case blocks so that the last one falls through if possible 10896 // without changing the order of probabilities. 10897 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10898 --I; 10899 if (I->Prob > W.LastCluster->Prob) 10900 break; 10901 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10902 std::swap(*I, *W.LastCluster); 10903 break; 10904 } 10905 } 10906 } 10907 10908 // Compute total probability. 10909 BranchProbability DefaultProb = W.DefaultProb; 10910 BranchProbability UnhandledProbs = DefaultProb; 10911 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10912 UnhandledProbs += I->Prob; 10913 10914 MachineBasicBlock *CurMBB = W.MBB; 10915 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10916 bool FallthroughUnreachable = false; 10917 MachineBasicBlock *Fallthrough; 10918 if (I == W.LastCluster) { 10919 // For the last cluster, fall through to the default destination. 10920 Fallthrough = DefaultMBB; 10921 FallthroughUnreachable = isa<UnreachableInst>( 10922 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10923 } else { 10924 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10925 CurMF->insert(BBI, Fallthrough); 10926 // Put Cond in a virtual register to make it available from the new blocks. 10927 ExportFromCurrentBlock(Cond); 10928 } 10929 UnhandledProbs -= I->Prob; 10930 10931 switch (I->Kind) { 10932 case CC_JumpTable: { 10933 // FIXME: Optimize away range check based on pivot comparisons. 10934 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10935 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10936 10937 // The jump block hasn't been inserted yet; insert it here. 10938 MachineBasicBlock *JumpMBB = JT->MBB; 10939 CurMF->insert(BBI, JumpMBB); 10940 10941 auto JumpProb = I->Prob; 10942 auto FallthroughProb = UnhandledProbs; 10943 10944 // If the default statement is a target of the jump table, we evenly 10945 // distribute the default probability to successors of CurMBB. Also 10946 // update the probability on the edge from JumpMBB to Fallthrough. 10947 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10948 SE = JumpMBB->succ_end(); 10949 SI != SE; ++SI) { 10950 if (*SI == DefaultMBB) { 10951 JumpProb += DefaultProb / 2; 10952 FallthroughProb -= DefaultProb / 2; 10953 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10954 JumpMBB->normalizeSuccProbs(); 10955 break; 10956 } 10957 } 10958 10959 if (FallthroughUnreachable) 10960 JTH->FallthroughUnreachable = true; 10961 10962 if (!JTH->FallthroughUnreachable) 10963 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10964 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10965 CurMBB->normalizeSuccProbs(); 10966 10967 // The jump table header will be inserted in our current block, do the 10968 // range check, and fall through to our fallthrough block. 10969 JTH->HeaderBB = CurMBB; 10970 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10971 10972 // If we're in the right place, emit the jump table header right now. 10973 if (CurMBB == SwitchMBB) { 10974 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10975 JTH->Emitted = true; 10976 } 10977 break; 10978 } 10979 case CC_BitTests: { 10980 // FIXME: Optimize away range check based on pivot comparisons. 10981 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10982 10983 // The bit test blocks haven't been inserted yet; insert them here. 10984 for (BitTestCase &BTC : BTB->Cases) 10985 CurMF->insert(BBI, BTC.ThisBB); 10986 10987 // Fill in fields of the BitTestBlock. 10988 BTB->Parent = CurMBB; 10989 BTB->Default = Fallthrough; 10990 10991 BTB->DefaultProb = UnhandledProbs; 10992 // If the cases in bit test don't form a contiguous range, we evenly 10993 // distribute the probability on the edge to Fallthrough to two 10994 // successors of CurMBB. 10995 if (!BTB->ContiguousRange) { 10996 BTB->Prob += DefaultProb / 2; 10997 BTB->DefaultProb -= DefaultProb / 2; 10998 } 10999 11000 if (FallthroughUnreachable) 11001 BTB->FallthroughUnreachable = true; 11002 11003 // If we're in the right place, emit the bit test header right now. 11004 if (CurMBB == SwitchMBB) { 11005 visitBitTestHeader(*BTB, SwitchMBB); 11006 BTB->Emitted = true; 11007 } 11008 break; 11009 } 11010 case CC_Range: { 11011 const Value *RHS, *LHS, *MHS; 11012 ISD::CondCode CC; 11013 if (I->Low == I->High) { 11014 // Check Cond == I->Low. 11015 CC = ISD::SETEQ; 11016 LHS = Cond; 11017 RHS=I->Low; 11018 MHS = nullptr; 11019 } else { 11020 // Check I->Low <= Cond <= I->High. 11021 CC = ISD::SETLE; 11022 LHS = I->Low; 11023 MHS = Cond; 11024 RHS = I->High; 11025 } 11026 11027 // If Fallthrough is unreachable, fold away the comparison. 11028 if (FallthroughUnreachable) 11029 CC = ISD::SETTRUE; 11030 11031 // The false probability is the sum of all unhandled cases. 11032 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11033 getCurSDLoc(), I->Prob, UnhandledProbs); 11034 11035 if (CurMBB == SwitchMBB) 11036 visitSwitchCase(CB, SwitchMBB); 11037 else 11038 SL->SwitchCases.push_back(CB); 11039 11040 break; 11041 } 11042 } 11043 CurMBB = Fallthrough; 11044 } 11045 } 11046 11047 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11048 CaseClusterIt First, 11049 CaseClusterIt Last) { 11050 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11051 if (X.Prob != CC.Prob) 11052 return X.Prob > CC.Prob; 11053 11054 // Ties are broken by comparing the case value. 11055 return X.Low->getValue().slt(CC.Low->getValue()); 11056 }); 11057 } 11058 11059 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11060 const SwitchWorkListItem &W, 11061 Value *Cond, 11062 MachineBasicBlock *SwitchMBB) { 11063 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11064 "Clusters not sorted?"); 11065 11066 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11067 11068 // Balance the tree based on branch probabilities to create a near-optimal (in 11069 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11070 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11071 CaseClusterIt LastLeft = W.FirstCluster; 11072 CaseClusterIt FirstRight = W.LastCluster; 11073 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11074 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11075 11076 // Move LastLeft and FirstRight towards each other from opposite directions to 11077 // find a partitioning of the clusters which balances the probability on both 11078 // sides. If LeftProb and RightProb are equal, alternate which side is 11079 // taken to ensure 0-probability nodes are distributed evenly. 11080 unsigned I = 0; 11081 while (LastLeft + 1 < FirstRight) { 11082 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11083 LeftProb += (++LastLeft)->Prob; 11084 else 11085 RightProb += (--FirstRight)->Prob; 11086 I++; 11087 } 11088 11089 while (true) { 11090 // Our binary search tree differs from a typical BST in that ours can have up 11091 // to three values in each leaf. The pivot selection above doesn't take that 11092 // into account, which means the tree might require more nodes and be less 11093 // efficient. We compensate for this here. 11094 11095 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11096 unsigned NumRight = W.LastCluster - FirstRight + 1; 11097 11098 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11099 // If one side has less than 3 clusters, and the other has more than 3, 11100 // consider taking a cluster from the other side. 11101 11102 if (NumLeft < NumRight) { 11103 // Consider moving the first cluster on the right to the left side. 11104 CaseCluster &CC = *FirstRight; 11105 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11106 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11107 if (LeftSideRank <= RightSideRank) { 11108 // Moving the cluster to the left does not demote it. 11109 ++LastLeft; 11110 ++FirstRight; 11111 continue; 11112 } 11113 } else { 11114 assert(NumRight < NumLeft); 11115 // Consider moving the last element on the left to the right side. 11116 CaseCluster &CC = *LastLeft; 11117 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11118 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11119 if (RightSideRank <= LeftSideRank) { 11120 // Moving the cluster to the right does not demot it. 11121 --LastLeft; 11122 --FirstRight; 11123 continue; 11124 } 11125 } 11126 } 11127 break; 11128 } 11129 11130 assert(LastLeft + 1 == FirstRight); 11131 assert(LastLeft >= W.FirstCluster); 11132 assert(FirstRight <= W.LastCluster); 11133 11134 // Use the first element on the right as pivot since we will make less-than 11135 // comparisons against it. 11136 CaseClusterIt PivotCluster = FirstRight; 11137 assert(PivotCluster > W.FirstCluster); 11138 assert(PivotCluster <= W.LastCluster); 11139 11140 CaseClusterIt FirstLeft = W.FirstCluster; 11141 CaseClusterIt LastRight = W.LastCluster; 11142 11143 const ConstantInt *Pivot = PivotCluster->Low; 11144 11145 // New blocks will be inserted immediately after the current one. 11146 MachineFunction::iterator BBI(W.MBB); 11147 ++BBI; 11148 11149 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11150 // we can branch to its destination directly if it's squeezed exactly in 11151 // between the known lower bound and Pivot - 1. 11152 MachineBasicBlock *LeftMBB; 11153 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11154 FirstLeft->Low == W.GE && 11155 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11156 LeftMBB = FirstLeft->MBB; 11157 } else { 11158 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11159 FuncInfo.MF->insert(BBI, LeftMBB); 11160 WorkList.push_back( 11161 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11162 // Put Cond in a virtual register to make it available from the new blocks. 11163 ExportFromCurrentBlock(Cond); 11164 } 11165 11166 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11167 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11168 // directly if RHS.High equals the current upper bound. 11169 MachineBasicBlock *RightMBB; 11170 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11171 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11172 RightMBB = FirstRight->MBB; 11173 } else { 11174 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11175 FuncInfo.MF->insert(BBI, RightMBB); 11176 WorkList.push_back( 11177 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11178 // Put Cond in a virtual register to make it available from the new blocks. 11179 ExportFromCurrentBlock(Cond); 11180 } 11181 11182 // Create the CaseBlock record that will be used to lower the branch. 11183 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11184 getCurSDLoc(), LeftProb, RightProb); 11185 11186 if (W.MBB == SwitchMBB) 11187 visitSwitchCase(CB, SwitchMBB); 11188 else 11189 SL->SwitchCases.push_back(CB); 11190 } 11191 11192 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11193 // from the swith statement. 11194 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11195 BranchProbability PeeledCaseProb) { 11196 if (PeeledCaseProb == BranchProbability::getOne()) 11197 return BranchProbability::getZero(); 11198 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11199 11200 uint32_t Numerator = CaseProb.getNumerator(); 11201 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11202 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11203 } 11204 11205 // Try to peel the top probability case if it exceeds the threshold. 11206 // Return current MachineBasicBlock for the switch statement if the peeling 11207 // does not occur. 11208 // If the peeling is performed, return the newly created MachineBasicBlock 11209 // for the peeled switch statement. Also update Clusters to remove the peeled 11210 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11211 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11212 const SwitchInst &SI, CaseClusterVector &Clusters, 11213 BranchProbability &PeeledCaseProb) { 11214 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11215 // Don't perform if there is only one cluster or optimizing for size. 11216 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11217 TM.getOptLevel() == CodeGenOpt::None || 11218 SwitchMBB->getParent()->getFunction().hasMinSize()) 11219 return SwitchMBB; 11220 11221 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11222 unsigned PeeledCaseIndex = 0; 11223 bool SwitchPeeled = false; 11224 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11225 CaseCluster &CC = Clusters[Index]; 11226 if (CC.Prob < TopCaseProb) 11227 continue; 11228 TopCaseProb = CC.Prob; 11229 PeeledCaseIndex = Index; 11230 SwitchPeeled = true; 11231 } 11232 if (!SwitchPeeled) 11233 return SwitchMBB; 11234 11235 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11236 << TopCaseProb << "\n"); 11237 11238 // Record the MBB for the peeled switch statement. 11239 MachineFunction::iterator BBI(SwitchMBB); 11240 ++BBI; 11241 MachineBasicBlock *PeeledSwitchMBB = 11242 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11243 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11244 11245 ExportFromCurrentBlock(SI.getCondition()); 11246 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11247 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11248 nullptr, nullptr, TopCaseProb.getCompl()}; 11249 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11250 11251 Clusters.erase(PeeledCaseIt); 11252 for (CaseCluster &CC : Clusters) { 11253 LLVM_DEBUG( 11254 dbgs() << "Scale the probablity for one cluster, before scaling: " 11255 << CC.Prob << "\n"); 11256 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11257 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11258 } 11259 PeeledCaseProb = TopCaseProb; 11260 return PeeledSwitchMBB; 11261 } 11262 11263 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11264 // Extract cases from the switch. 11265 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11266 CaseClusterVector Clusters; 11267 Clusters.reserve(SI.getNumCases()); 11268 for (auto I : SI.cases()) { 11269 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11270 const ConstantInt *CaseVal = I.getCaseValue(); 11271 BranchProbability Prob = 11272 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11273 : BranchProbability(1, SI.getNumCases() + 1); 11274 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11275 } 11276 11277 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11278 11279 // Cluster adjacent cases with the same destination. We do this at all 11280 // optimization levels because it's cheap to do and will make codegen faster 11281 // if there are many clusters. 11282 sortAndRangeify(Clusters); 11283 11284 // The branch probablity of the peeled case. 11285 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11286 MachineBasicBlock *PeeledSwitchMBB = 11287 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11288 11289 // If there is only the default destination, jump there directly. 11290 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11291 if (Clusters.empty()) { 11292 assert(PeeledSwitchMBB == SwitchMBB); 11293 SwitchMBB->addSuccessor(DefaultMBB); 11294 if (DefaultMBB != NextBlock(SwitchMBB)) { 11295 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11296 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11297 } 11298 return; 11299 } 11300 11301 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11302 SL->findBitTestClusters(Clusters, &SI); 11303 11304 LLVM_DEBUG({ 11305 dbgs() << "Case clusters: "; 11306 for (const CaseCluster &C : Clusters) { 11307 if (C.Kind == CC_JumpTable) 11308 dbgs() << "JT:"; 11309 if (C.Kind == CC_BitTests) 11310 dbgs() << "BT:"; 11311 11312 C.Low->getValue().print(dbgs(), true); 11313 if (C.Low != C.High) { 11314 dbgs() << '-'; 11315 C.High->getValue().print(dbgs(), true); 11316 } 11317 dbgs() << ' '; 11318 } 11319 dbgs() << '\n'; 11320 }); 11321 11322 assert(!Clusters.empty()); 11323 SwitchWorkList WorkList; 11324 CaseClusterIt First = Clusters.begin(); 11325 CaseClusterIt Last = Clusters.end() - 1; 11326 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11327 // Scale the branchprobability for DefaultMBB if the peel occurs and 11328 // DefaultMBB is not replaced. 11329 if (PeeledCaseProb != BranchProbability::getZero() && 11330 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11331 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11332 WorkList.push_back( 11333 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11334 11335 while (!WorkList.empty()) { 11336 SwitchWorkListItem W = WorkList.pop_back_val(); 11337 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11338 11339 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11340 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11341 // For optimized builds, lower large range as a balanced binary tree. 11342 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11343 continue; 11344 } 11345 11346 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11347 } 11348 } 11349 11350 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11352 auto DL = getCurSDLoc(); 11353 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11354 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11355 } 11356 11357 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11359 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11360 11361 SDLoc DL = getCurSDLoc(); 11362 SDValue V = getValue(I.getOperand(0)); 11363 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11364 11365 if (VT.isScalableVector()) { 11366 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11367 return; 11368 } 11369 11370 // Use VECTOR_SHUFFLE for the fixed-length vector 11371 // to maintain existing behavior. 11372 SmallVector<int, 8> Mask; 11373 unsigned NumElts = VT.getVectorMinNumElements(); 11374 for (unsigned i = 0; i != NumElts; ++i) 11375 Mask.push_back(NumElts - 1 - i); 11376 11377 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11378 } 11379 11380 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11381 SmallVector<EVT, 4> ValueVTs; 11382 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11383 ValueVTs); 11384 unsigned NumValues = ValueVTs.size(); 11385 if (NumValues == 0) return; 11386 11387 SmallVector<SDValue, 4> Values(NumValues); 11388 SDValue Op = getValue(I.getOperand(0)); 11389 11390 for (unsigned i = 0; i != NumValues; ++i) 11391 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11392 SDValue(Op.getNode(), Op.getResNo() + i)); 11393 11394 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11395 DAG.getVTList(ValueVTs), Values)); 11396 } 11397 11398 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11400 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11401 11402 SDLoc DL = getCurSDLoc(); 11403 SDValue V1 = getValue(I.getOperand(0)); 11404 SDValue V2 = getValue(I.getOperand(1)); 11405 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11406 11407 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11408 if (VT.isScalableVector()) { 11409 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11410 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11411 DAG.getConstant(Imm, DL, IdxVT))); 11412 return; 11413 } 11414 11415 unsigned NumElts = VT.getVectorNumElements(); 11416 11417 uint64_t Idx = (NumElts + Imm) % NumElts; 11418 11419 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11420 SmallVector<int, 8> Mask; 11421 for (unsigned i = 0; i < NumElts; ++i) 11422 Mask.push_back(Idx + i); 11423 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11424 } 11425