1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // True if the Value passed requires ABI mangling as it is a parameter to a 161 // function or a return value from a function which is not an intrinsic. 162 static bool isABIRegCopy(const Value *V) { 163 const bool IsRetInst = V && isa<ReturnInst>(V); 164 const bool IsCallInst = V && isa<CallInst>(V); 165 const bool IsInLineAsm = 166 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 167 const bool IsIndirectFunctionCall = 168 IsCallInst && !IsInLineAsm && 169 !static_cast<const CallInst *>(V)->getCalledFunction(); 170 // It is possible that the call instruction is an inline asm statement or an 171 // indirect function call in which case the return value of 172 // getCalledFunction() would be nullptr. 173 const bool IsInstrinsicCall = 174 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 175 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 176 Intrinsic::not_intrinsic; 177 178 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 179 } 180 181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 182 const SDValue *Parts, unsigned NumParts, 183 MVT PartVT, EVT ValueVT, const Value *V, 184 bool IsABIRegCopy); 185 186 /// getCopyFromParts - Create a value that contains the specified legal parts 187 /// combined into the value they represent. If the parts combine to a type 188 /// larger than ValueVT then AssertOp can be used to specify whether the extra 189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 190 /// (ISD::AssertSext). 191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 192 const SDValue *Parts, unsigned NumParts, 193 MVT PartVT, EVT ValueVT, const Value *V, 194 Optional<ISD::NodeType> AssertOp = None, 195 bool IsABIRegCopy = false) { 196 if (ValueVT.isVector()) 197 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 198 PartVT, ValueVT, V, IsABIRegCopy); 199 200 assert(NumParts > 0 && "No parts to assemble!"); 201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 202 SDValue Val = Parts[0]; 203 204 if (NumParts > 1) { 205 // Assemble the value from multiple parts. 206 if (ValueVT.isInteger()) { 207 unsigned PartBits = PartVT.getSizeInBits(); 208 unsigned ValueBits = ValueVT.getSizeInBits(); 209 210 // Assemble the power of 2 part. 211 unsigned RoundParts = NumParts & (NumParts - 1) ? 212 1 << Log2_32(NumParts) : NumParts; 213 unsigned RoundBits = PartBits * RoundParts; 214 EVT RoundVT = RoundBits == ValueBits ? 215 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 216 SDValue Lo, Hi; 217 218 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 219 220 if (RoundParts > 2) { 221 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 222 PartVT, HalfVT, V); 223 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 224 RoundParts / 2, PartVT, HalfVT, V); 225 } else { 226 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 227 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 228 } 229 230 if (DAG.getDataLayout().isBigEndian()) 231 std::swap(Lo, Hi); 232 233 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 234 235 if (RoundParts < NumParts) { 236 // Assemble the trailing non-power-of-2 part. 237 unsigned OddParts = NumParts - RoundParts; 238 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 239 Hi = getCopyFromParts(DAG, DL, 240 Parts + RoundParts, OddParts, PartVT, OddVT, V); 241 242 // Combine the round and odd parts. 243 Lo = Val; 244 if (DAG.getDataLayout().isBigEndian()) 245 std::swap(Lo, Hi); 246 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 247 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 248 Hi = 249 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 250 DAG.getConstant(Lo.getValueSizeInBits(), DL, 251 TLI.getPointerTy(DAG.getDataLayout()))); 252 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 253 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 254 } 255 } else if (PartVT.isFloatingPoint()) { 256 // FP split into multiple FP parts (for ppcf128) 257 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 258 "Unexpected split"); 259 SDValue Lo, Hi; 260 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 261 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 262 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 263 std::swap(Lo, Hi); 264 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 265 } else { 266 // FP split into integer parts (soft fp) 267 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 268 !PartVT.isVector() && "Unexpected split"); 269 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 271 } 272 } 273 274 // There is now one part, held in Val. Correct it to match ValueVT. 275 // PartEVT is the type of the register class that holds the value. 276 // ValueVT is the type of the inline asm operation. 277 EVT PartEVT = Val.getValueType(); 278 279 if (PartEVT == ValueVT) 280 return Val; 281 282 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 283 ValueVT.bitsLT(PartEVT)) { 284 // For an FP value in an integer part, we need to truncate to the right 285 // width first. 286 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 287 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 288 } 289 290 // Handle types that have the same size. 291 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 292 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 293 294 // Handle types with different sizes. 295 if (PartEVT.isInteger() && ValueVT.isInteger()) { 296 if (ValueVT.bitsLT(PartEVT)) { 297 // For a truncate, see if we have any information to 298 // indicate whether the truncated bits will always be 299 // zero or sign-extension. 300 if (AssertOp.hasValue()) 301 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 302 DAG.getValueType(ValueVT)); 303 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 304 } 305 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 306 } 307 308 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 309 // FP_ROUND's are always exact here. 310 if (ValueVT.bitsLT(Val.getValueType())) 311 return DAG.getNode( 312 ISD::FP_ROUND, DL, ValueVT, Val, 313 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 314 315 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 316 } 317 318 llvm_unreachable("Unknown mismatch!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (isa<InlineAsm>(CI->getCalledValue())) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 bool IsABIRegCopy) { 344 assert(ValueVT.isVector() && "Not a vector value"); 345 assert(NumParts > 0 && "No parts to assemble!"); 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 359 RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 380 PartVT, IntermediateVT, V); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 389 PartVT, IntermediateVT, V); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 396 (IntermediateVT.isVector() 397 ? IntermediateVT.getVectorNumElements() * NumParts 398 : NumIntermediates)); 399 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 400 : ISD::BUILD_VECTOR, 401 DL, BuiltVectorTy, Ops); 402 } 403 404 // There is now one part, held in Val. Correct it to match ValueVT. 405 EVT PartEVT = Val.getValueType(); 406 407 if (PartEVT == ValueVT) 408 return Val; 409 410 if (PartEVT.isVector()) { 411 // If the element type of the source/dest vectors are the same, but the 412 // parts vector has more elements than the value vector, then we have a 413 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 414 // elements we want. 415 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 416 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 417 "Cannot narrow, it would be a lossy transformation"); 418 return DAG.getNode( 419 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 420 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 421 } 422 423 // Vector/Vector bitcast. 424 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 425 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 426 427 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 428 "Cannot handle this kind of promotion"); 429 // Promoted vector extract 430 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 431 432 } 433 434 // Trivial bitcast if the types are the same size and the destination 435 // vector type is legal. 436 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 437 TLI.isTypeLegal(ValueVT)) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 if (ValueVT.getVectorNumElements() != 1) { 441 // Certain ABIs require that vectors are passed as integers. For vectors 442 // are the same size, this is an obvious bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 446 // Bitcast Val back the original type and extract the corresponding 447 // vector we want. 448 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 449 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 450 ValueVT.getVectorElementType(), Elts); 451 Val = DAG.getBitcast(WiderVecType, Val); 452 return DAG.getNode( 453 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 454 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 455 } 456 457 diagnosePossiblyInvalidConstraint( 458 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 459 return DAG.getUNDEF(ValueVT); 460 } 461 462 // Handle cases such as i8 -> <1 x i1> 463 EVT ValueSVT = ValueVT.getVectorElementType(); 464 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 465 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 468 return DAG.getBuildVector(ValueVT, DL, Val); 469 } 470 471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V, bool IsABIRegCopy); 474 475 /// getCopyToParts - Create a series of nodes that contain the specified value 476 /// split into legal parts. If the parts contain more bits than Val, then, for 477 /// integers, ExtendKind can be used to specify how to generate the extra bits. 478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 479 SDValue *Parts, unsigned NumParts, MVT PartVT, 480 const Value *V, 481 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 482 bool IsABIRegCopy = false) { 483 EVT ValueVT = Val.getValueType(); 484 485 // Handle the vector case separately. 486 if (ValueVT.isVector()) 487 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 488 IsABIRegCopy); 489 490 unsigned PartBits = PartVT.getSizeInBits(); 491 unsigned OrigNumParts = NumParts; 492 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 493 "Copying to an illegal type!"); 494 495 if (NumParts == 0) 496 return; 497 498 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 499 EVT PartEVT = PartVT; 500 if (PartEVT == ValueVT) { 501 assert(NumParts == 1 && "No-op copy with multiple parts!"); 502 Parts[0] = Val; 503 return; 504 } 505 506 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 507 // If the parts cover more bits than the value has, promote the value. 508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 509 assert(NumParts == 1 && "Do not know what to promote to!"); 510 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 511 } else { 512 if (ValueVT.isFloatingPoint()) { 513 // FP values need to be bitcast, then extended if they are being put 514 // into a larger container. 515 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 516 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 517 } 518 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 519 ValueVT.isInteger() && 520 "Unknown mismatch!"); 521 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 522 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 523 if (PartVT == MVT::x86mmx) 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } 526 } else if (PartBits == ValueVT.getSizeInBits()) { 527 // Different types of the same size. 528 assert(NumParts == 1 && PartEVT != ValueVT); 529 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 530 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 531 // If the parts cover less bits than value has, truncate the value. 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 541 // The value may have changed - recompute ValueVT. 542 ValueVT = Val.getValueType(); 543 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 544 "Failed to tile the value with PartVT!"); 545 546 if (NumParts == 1) { 547 if (PartEVT != ValueVT) { 548 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 549 "scalar-to-vector conversion failed"); 550 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 551 } 552 553 Parts[0] = Val; 554 return; 555 } 556 557 // Expand the value into multiple parts. 558 if (NumParts & (NumParts - 1)) { 559 // The number of parts is not a power of 2. Split off and copy the tail. 560 assert(PartVT.isInteger() && ValueVT.isInteger() && 561 "Do not know what to expand to!"); 562 unsigned RoundParts = 1 << Log2_32(NumParts); 563 unsigned RoundBits = RoundParts * PartBits; 564 unsigned OddParts = NumParts - RoundParts; 565 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 566 DAG.getIntPtrConstant(RoundBits, DL)); 567 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 568 569 if (DAG.getDataLayout().isBigEndian()) 570 // The odd parts were reversed by getCopyToParts - unreverse them. 571 std::reverse(Parts + RoundParts, Parts + NumParts); 572 573 NumParts = RoundParts; 574 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 575 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 576 } 577 578 // The number of parts is a power of 2. Repeatedly bisect the value using 579 // EXTRACT_ELEMENT. 580 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 581 EVT::getIntegerVT(*DAG.getContext(), 582 ValueVT.getSizeInBits()), 583 Val); 584 585 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 586 for (unsigned i = 0; i < NumParts; i += StepSize) { 587 unsigned ThisBits = StepSize * PartBits / 2; 588 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 589 SDValue &Part0 = Parts[i]; 590 SDValue &Part1 = Parts[i+StepSize/2]; 591 592 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 594 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 595 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 596 597 if (ThisBits == PartBits && ThisVT != PartVT) { 598 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 599 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 600 } 601 } 602 } 603 604 if (DAG.getDataLayout().isBigEndian()) 605 std::reverse(Parts, Parts + OrigNumParts); 606 } 607 608 609 /// getCopyToPartsVector - Create a series of nodes that contain the specified 610 /// value split into legal parts. 611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 612 SDValue Val, SDValue *Parts, unsigned NumParts, 613 MVT PartVT, const Value *V, 614 bool IsABIRegCopy) { 615 EVT ValueVT = Val.getValueType(); 616 assert(ValueVT.isVector() && "Not a vector"); 617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 618 619 if (NumParts == 1) { 620 EVT PartEVT = PartVT; 621 if (PartEVT == ValueVT) { 622 // Nothing to do. 623 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 624 // Bitconvert vector->vector case. 625 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 626 } else if (PartVT.isVector() && 627 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 628 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 634 Ops.push_back(DAG.getNode( 635 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 636 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 637 638 for (unsigned i = ValueVT.getVectorNumElements(), 639 e = PartVT.getVectorNumElements(); i != e; ++i) 640 Ops.push_back(DAG.getUNDEF(ElementVT)); 641 642 Val = DAG.getBuildVector(PartVT, DL, Ops); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 646 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 647 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 648 } else if (PartVT.isVector() && 649 PartEVT.getVectorElementType().bitsGE( 650 ValueVT.getVectorElementType()) && 651 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 652 653 // Promoted vector extract 654 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 655 } else { 656 if (ValueVT.getVectorNumElements() == 1) { 657 Val = DAG.getNode( 658 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 659 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 660 } else { 661 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 662 "lossy conversion of vector to scalar type"); 663 EVT IntermediateType = 664 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 665 Val = DAG.getBitcast(IntermediateType, Val); 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } 668 } 669 670 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 671 Parts[0] = Val; 672 return; 673 } 674 675 // Handle a multi-element vector. 676 EVT IntermediateVT; 677 MVT RegisterVT; 678 unsigned NumIntermediates; 679 unsigned NumRegs; 680 if (IsABIRegCopy) { 681 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 682 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 683 RegisterVT); 684 } else { 685 NumRegs = 686 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 687 NumIntermediates, RegisterVT); 688 } 689 unsigned NumElements = ValueVT.getVectorNumElements(); 690 691 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 692 NumParts = NumRegs; // Silence a compiler warning. 693 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 694 695 // Convert the vector to the appropiate type if necessary. 696 unsigned DestVectorNoElts = 697 NumIntermediates * 698 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 699 EVT BuiltVectorTy = EVT::getVectorVT( 700 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 701 if (Val.getValueType() != BuiltVectorTy) 702 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 703 704 // Split the vector into intermediate operands. 705 SmallVector<SDValue, 8> Ops(NumIntermediates); 706 for (unsigned i = 0; i != NumIntermediates; ++i) { 707 if (IntermediateVT.isVector()) 708 Ops[i] = 709 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 710 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 711 TLI.getVectorIdxTy(DAG.getDataLayout()))); 712 else 713 Ops[i] = DAG.getNode( 714 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 715 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 716 } 717 718 // Split the intermediate operands into legal parts. 719 if (NumParts == NumIntermediates) { 720 // If the register was not expanded, promote or copy the value, 721 // as appropriate. 722 for (unsigned i = 0; i != NumParts; ++i) 723 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 724 } else if (NumParts > 0) { 725 // If the intermediate type was expanded, split each the value into 726 // legal parts. 727 assert(NumIntermediates != 0 && "division by zero"); 728 assert(NumParts % NumIntermediates == 0 && 729 "Must expand into a divisible number of parts!"); 730 unsigned Factor = NumParts / NumIntermediates; 731 for (unsigned i = 0; i != NumIntermediates; ++i) 732 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 733 } 734 } 735 736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 737 EVT valuevt, bool IsABIMangledValue) 738 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 739 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 740 741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 742 const DataLayout &DL, unsigned Reg, Type *Ty, 743 bool IsABIMangledValue) { 744 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 745 746 IsABIMangled = IsABIMangledValue; 747 748 for (EVT ValueVT : ValueVTs) { 749 unsigned NumRegs = IsABIMangledValue 750 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 751 : TLI.getNumRegisters(Context, ValueVT); 752 MVT RegisterVT = IsABIMangledValue 753 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 754 : TLI.getRegisterType(Context, ValueVT); 755 for (unsigned i = 0; i != NumRegs; ++i) 756 Regs.push_back(Reg + i); 757 RegVTs.push_back(RegisterVT); 758 RegCount.push_back(NumRegs); 759 Reg += NumRegs; 760 } 761 } 762 763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 764 FunctionLoweringInfo &FuncInfo, 765 const SDLoc &dl, SDValue &Chain, 766 SDValue *Flag, const Value *V) const { 767 // A Value with type {} or [0 x %t] needs no registers. 768 if (ValueVTs.empty()) 769 return SDValue(); 770 771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 772 773 // Assemble the legal parts into the final values. 774 SmallVector<SDValue, 4> Values(ValueVTs.size()); 775 SmallVector<SDValue, 8> Parts; 776 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 777 // Copy the legal parts from the registers. 778 EVT ValueVT = ValueVTs[Value]; 779 unsigned NumRegs = RegCount[Value]; 780 MVT RegisterVT = IsABIMangled 781 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 782 : RegVTs[Value]; 783 784 Parts.resize(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue P; 787 if (!Flag) { 788 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 789 } else { 790 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 791 *Flag = P.getValue(2); 792 } 793 794 Chain = P.getValue(1); 795 Parts[i] = P; 796 797 // If the source register was virtual and if we know something about it, 798 // add an assert node. 799 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 800 !RegisterVT.isInteger() || RegisterVT.isVector()) 801 continue; 802 803 const FunctionLoweringInfo::LiveOutInfo *LOI = 804 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 805 if (!LOI) 806 continue; 807 808 unsigned RegSize = RegisterVT.getSizeInBits(); 809 unsigned NumSignBits = LOI->NumSignBits; 810 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 811 812 if (NumZeroBits == RegSize) { 813 // The current value is a zero. 814 // Explicitly express that as it would be easier for 815 // optimizations to kick in. 816 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 817 continue; 818 } 819 820 // FIXME: We capture more information than the dag can represent. For 821 // now, just use the tightest assertzext/assertsext possible. 822 bool isSExt = true; 823 EVT FromVT(MVT::Other); 824 if (NumSignBits == RegSize) { 825 isSExt = true; // ASSERT SEXT 1 826 FromVT = MVT::i1; 827 } else if (NumZeroBits >= RegSize - 1) { 828 isSExt = false; // ASSERT ZEXT 1 829 FromVT = MVT::i1; 830 } else if (NumSignBits > RegSize - 8) { 831 isSExt = true; // ASSERT SEXT 8 832 FromVT = MVT::i8; 833 } else if (NumZeroBits >= RegSize - 8) { 834 isSExt = false; // ASSERT ZEXT 8 835 FromVT = MVT::i8; 836 } else if (NumSignBits > RegSize - 16) { 837 isSExt = true; // ASSERT SEXT 16 838 FromVT = MVT::i16; 839 } else if (NumZeroBits >= RegSize - 16) { 840 isSExt = false; // ASSERT ZEXT 16 841 FromVT = MVT::i16; 842 } else if (NumSignBits > RegSize - 32) { 843 isSExt = true; // ASSERT SEXT 32 844 FromVT = MVT::i32; 845 } else if (NumZeroBits >= RegSize - 32) { 846 isSExt = false; // ASSERT ZEXT 32 847 FromVT = MVT::i32; 848 } else { 849 continue; 850 } 851 // Add an assertion node. 852 assert(FromVT != MVT::Other); 853 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 854 RegisterVT, P, DAG.getValueType(FromVT)); 855 } 856 857 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 858 NumRegs, RegisterVT, ValueVT, V); 859 Part += NumRegs; 860 Parts.clear(); 861 } 862 863 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 864 } 865 866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 867 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 868 const Value *V, 869 ISD::NodeType PreferredExtendType) const { 870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 871 ISD::NodeType ExtendKind = PreferredExtendType; 872 873 // Get the list of the values's legal parts. 874 unsigned NumRegs = Regs.size(); 875 SmallVector<SDValue, 8> Parts(NumRegs); 876 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 877 unsigned NumParts = RegCount[Value]; 878 879 MVT RegisterVT = IsABIMangled 880 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 881 : RegVTs[Value]; 882 883 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 884 ExtendKind = ISD::ZERO_EXTEND; 885 886 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 887 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 888 Part += NumParts; 889 } 890 891 // Copy the parts into the registers. 892 SmallVector<SDValue, 8> Chains(NumRegs); 893 for (unsigned i = 0; i != NumRegs; ++i) { 894 SDValue Part; 895 if (!Flag) { 896 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 897 } else { 898 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 899 *Flag = Part.getValue(1); 900 } 901 902 Chains[i] = Part.getValue(0); 903 } 904 905 if (NumRegs == 1 || Flag) 906 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 907 // flagged to it. That is the CopyToReg nodes and the user are considered 908 // a single scheduling unit. If we create a TokenFactor and return it as 909 // chain, then the TokenFactor is both a predecessor (operand) of the 910 // user as well as a successor (the TF operands are flagged to the user). 911 // c1, f1 = CopyToReg 912 // c2, f2 = CopyToReg 913 // c3 = TokenFactor c1, c2 914 // ... 915 // = op c3, ..., f2 916 Chain = Chains[NumRegs-1]; 917 else 918 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 919 } 920 921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 922 unsigned MatchingIdx, const SDLoc &dl, 923 SelectionDAG &DAG, 924 std::vector<SDValue> &Ops) const { 925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 926 927 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 928 if (HasMatching) 929 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 930 else if (!Regs.empty() && 931 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 932 // Put the register class of the virtual registers in the flag word. That 933 // way, later passes can recompute register class constraints for inline 934 // assembly as well as normal instructions. 935 // Don't do this for tied operands that can use the regclass information 936 // from the def. 937 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 938 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 939 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 940 } 941 942 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 943 Ops.push_back(Res); 944 945 if (Code == InlineAsm::Kind_Clobber) { 946 // Clobbers should always have a 1:1 mapping with registers, and may 947 // reference registers that have illegal (e.g. vector) types. Hence, we 948 // shouldn't try to apply any sort of splitting logic to them. 949 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 950 "No 1:1 mapping from clobbers to regs?"); 951 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 952 (void)SP; 953 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 954 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 955 assert( 956 (Regs[I] != SP || 957 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 958 "If we clobbered the stack pointer, MFI should know about it."); 959 } 960 return; 961 } 962 963 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 964 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 965 MVT RegisterVT = RegVTs[Value]; 966 for (unsigned i = 0; i != NumRegs; ++i) { 967 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 968 unsigned TheReg = Regs[Reg++]; 969 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 970 } 971 } 972 } 973 974 SmallVector<std::pair<unsigned, unsigned>, 4> 975 RegsForValue::getRegsAndSizes() const { 976 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 977 unsigned I = 0; 978 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 979 unsigned RegCount = std::get<0>(CountAndVT); 980 MVT RegisterVT = std::get<1>(CountAndVT); 981 unsigned RegisterSize = RegisterVT.getSizeInBits(); 982 for (unsigned E = I + RegCount; I != E; ++I) 983 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 984 } 985 return OutVec; 986 } 987 988 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 989 const TargetLibraryInfo *li) { 990 AA = aa; 991 GFI = gfi; 992 LibInfo = li; 993 DL = &DAG.getDataLayout(); 994 Context = DAG.getContext(); 995 LPadToCallSiteMap.clear(); 996 } 997 998 void SelectionDAGBuilder::clear() { 999 NodeMap.clear(); 1000 UnusedArgNodeMap.clear(); 1001 PendingLoads.clear(); 1002 PendingExports.clear(); 1003 CurInst = nullptr; 1004 HasTailCall = false; 1005 SDNodeOrder = LowestSDNodeOrder; 1006 StatepointLowering.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1010 DanglingDebugInfoMap.clear(); 1011 } 1012 1013 SDValue SelectionDAGBuilder::getRoot() { 1014 if (PendingLoads.empty()) 1015 return DAG.getRoot(); 1016 1017 if (PendingLoads.size() == 1) { 1018 SDValue Root = PendingLoads[0]; 1019 DAG.setRoot(Root); 1020 PendingLoads.clear(); 1021 return Root; 1022 } 1023 1024 // Otherwise, we have to make a token factor node. 1025 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1026 PendingLoads); 1027 PendingLoads.clear(); 1028 DAG.setRoot(Root); 1029 return Root; 1030 } 1031 1032 SDValue SelectionDAGBuilder::getControlRoot() { 1033 SDValue Root = DAG.getRoot(); 1034 1035 if (PendingExports.empty()) 1036 return Root; 1037 1038 // Turn all of the CopyToReg chains into one factored node. 1039 if (Root.getOpcode() != ISD::EntryToken) { 1040 unsigned i = 0, e = PendingExports.size(); 1041 for (; i != e; ++i) { 1042 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1043 if (PendingExports[i].getNode()->getOperand(0) == Root) 1044 break; // Don't add the root if we already indirectly depend on it. 1045 } 1046 1047 if (i == e) 1048 PendingExports.push_back(Root); 1049 } 1050 1051 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1052 PendingExports); 1053 PendingExports.clear(); 1054 DAG.setRoot(Root); 1055 return Root; 1056 } 1057 1058 void SelectionDAGBuilder::visit(const Instruction &I) { 1059 // Set up outgoing PHI node register values before emitting the terminator. 1060 if (isa<TerminatorInst>(&I)) { 1061 HandlePHINodesInSuccessorBlocks(I.getParent()); 1062 } 1063 1064 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1065 if (!isa<DbgInfoIntrinsic>(I)) 1066 ++SDNodeOrder; 1067 1068 CurInst = &I; 1069 1070 visit(I.getOpcode(), I); 1071 1072 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1073 !isStatepoint(&I)) // statepoints handle their exports internally 1074 CopyToExportRegsIfNeeded(&I); 1075 1076 CurInst = nullptr; 1077 } 1078 1079 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1080 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1081 } 1082 1083 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1084 // Note: this doesn't use InstVisitor, because it has to work with 1085 // ConstantExpr's in addition to instructions. 1086 switch (Opcode) { 1087 default: llvm_unreachable("Unknown instruction type encountered!"); 1088 // Build the switch statement using the Instruction.def file. 1089 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1090 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1091 #include "llvm/IR/Instruction.def" 1092 } 1093 } 1094 1095 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1096 const DIExpression *Expr) { 1097 for (auto &DDIMI : DanglingDebugInfoMap) 1098 for (auto &DDI : DDIMI.second) 1099 if (DDI.getDI()) { 1100 const DbgValueInst *DI = DDI.getDI(); 1101 DIVariable *DanglingVariable = DI->getVariable(); 1102 DIExpression *DanglingExpr = DI->getExpression(); 1103 if (DanglingVariable == Variable && 1104 Expr->fragmentsOverlap(DanglingExpr)) { 1105 DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1106 DDI = DanglingDebugInfo(); 1107 } 1108 } 1109 } 1110 1111 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1112 // generate the debug data structures now that we've seen its definition. 1113 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1114 SDValue Val) { 1115 DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V]; 1116 for (auto &DDI : DDIV) { 1117 if (!DDI.getDI()) 1118 continue; 1119 const DbgValueInst *DI = DDI.getDI(); 1120 DebugLoc dl = DDI.getdl(); 1121 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1122 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1123 DILocalVariable *Variable = DI->getVariable(); 1124 DIExpression *Expr = DI->getExpression(); 1125 assert(Variable->isValidLocationForIntrinsic(dl) && 1126 "Expected inlined-at fields to agree"); 1127 SDDbgValue *SDV; 1128 if (Val.getNode()) { 1129 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1130 DEBUG(dbgs() << "Resolve dangling debug info [order=" << DbgSDNodeOrder 1131 << "] for:\n " << *DI << "\n"); 1132 DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1133 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1134 // inserted after the definition of Val when emitting the instructions 1135 // after ISel. An alternative could be to teach 1136 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1137 DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) 1138 dbgs() << "changing SDNodeOrder from " << DbgSDNodeOrder 1139 << " to " << ValSDNodeOrder << "\n"); 1140 SDV = getDbgValue(Val, Variable, Expr, dl, 1141 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1142 DAG.AddDbgValue(SDV, Val.getNode(), false); 1143 } else 1144 DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1145 << "in EmitFuncArgumentDbgValue\n"); 1146 } else 1147 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1148 } 1149 DanglingDebugInfoMap[V].clear(); 1150 } 1151 1152 /// getCopyFromRegs - If there was virtual register allocated for the value V 1153 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1154 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1155 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1156 SDValue Result; 1157 1158 if (It != FuncInfo.ValueMap.end()) { 1159 unsigned InReg = It->second; 1160 1161 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1162 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1163 SDValue Chain = DAG.getEntryNode(); 1164 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1165 V); 1166 resolveDanglingDebugInfo(V, Result); 1167 } 1168 1169 return Result; 1170 } 1171 1172 /// getValue - Return an SDValue for the given Value. 1173 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1174 // If we already have an SDValue for this value, use it. It's important 1175 // to do this first, so that we don't create a CopyFromReg if we already 1176 // have a regular SDValue. 1177 SDValue &N = NodeMap[V]; 1178 if (N.getNode()) return N; 1179 1180 // If there's a virtual register allocated and initialized for this 1181 // value, use it. 1182 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1183 return copyFromReg; 1184 1185 // Otherwise create a new SDValue and remember it. 1186 SDValue Val = getValueImpl(V); 1187 NodeMap[V] = Val; 1188 resolveDanglingDebugInfo(V, Val); 1189 return Val; 1190 } 1191 1192 // Return true if SDValue exists for the given Value 1193 bool SelectionDAGBuilder::findValue(const Value *V) const { 1194 return (NodeMap.find(V) != NodeMap.end()) || 1195 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1196 } 1197 1198 /// getNonRegisterValue - Return an SDValue for the given Value, but 1199 /// don't look in FuncInfo.ValueMap for a virtual register. 1200 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1201 // If we already have an SDValue for this value, use it. 1202 SDValue &N = NodeMap[V]; 1203 if (N.getNode()) { 1204 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1205 // Remove the debug location from the node as the node is about to be used 1206 // in a location which may differ from the original debug location. This 1207 // is relevant to Constant and ConstantFP nodes because they can appear 1208 // as constant expressions inside PHI nodes. 1209 N->setDebugLoc(DebugLoc()); 1210 } 1211 return N; 1212 } 1213 1214 // Otherwise create a new SDValue and remember it. 1215 SDValue Val = getValueImpl(V); 1216 NodeMap[V] = Val; 1217 resolveDanglingDebugInfo(V, Val); 1218 return Val; 1219 } 1220 1221 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1222 /// Create an SDValue for the given value. 1223 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1224 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1225 1226 if (const Constant *C = dyn_cast<Constant>(V)) { 1227 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1228 1229 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1230 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1231 1232 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1233 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1234 1235 if (isa<ConstantPointerNull>(C)) { 1236 unsigned AS = V->getType()->getPointerAddressSpace(); 1237 return DAG.getConstant(0, getCurSDLoc(), 1238 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1239 } 1240 1241 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1242 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1243 1244 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1245 return DAG.getUNDEF(VT); 1246 1247 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1248 visit(CE->getOpcode(), *CE); 1249 SDValue N1 = NodeMap[V]; 1250 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1251 return N1; 1252 } 1253 1254 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1255 SmallVector<SDValue, 4> Constants; 1256 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1257 OI != OE; ++OI) { 1258 SDNode *Val = getValue(*OI).getNode(); 1259 // If the operand is an empty aggregate, there are no values. 1260 if (!Val) continue; 1261 // Add each leaf value from the operand to the Constants list 1262 // to form a flattened list of all the values. 1263 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1264 Constants.push_back(SDValue(Val, i)); 1265 } 1266 1267 return DAG.getMergeValues(Constants, getCurSDLoc()); 1268 } 1269 1270 if (const ConstantDataSequential *CDS = 1271 dyn_cast<ConstantDataSequential>(C)) { 1272 SmallVector<SDValue, 4> Ops; 1273 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1274 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1275 // Add each leaf value from the operand to the Constants list 1276 // to form a flattened list of all the values. 1277 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1278 Ops.push_back(SDValue(Val, i)); 1279 } 1280 1281 if (isa<ArrayType>(CDS->getType())) 1282 return DAG.getMergeValues(Ops, getCurSDLoc()); 1283 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1284 } 1285 1286 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1287 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1288 "Unknown struct or array constant!"); 1289 1290 SmallVector<EVT, 4> ValueVTs; 1291 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1292 unsigned NumElts = ValueVTs.size(); 1293 if (NumElts == 0) 1294 return SDValue(); // empty struct 1295 SmallVector<SDValue, 4> Constants(NumElts); 1296 for (unsigned i = 0; i != NumElts; ++i) { 1297 EVT EltVT = ValueVTs[i]; 1298 if (isa<UndefValue>(C)) 1299 Constants[i] = DAG.getUNDEF(EltVT); 1300 else if (EltVT.isFloatingPoint()) 1301 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1302 else 1303 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1304 } 1305 1306 return DAG.getMergeValues(Constants, getCurSDLoc()); 1307 } 1308 1309 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1310 return DAG.getBlockAddress(BA, VT); 1311 1312 VectorType *VecTy = cast<VectorType>(V->getType()); 1313 unsigned NumElements = VecTy->getNumElements(); 1314 1315 // Now that we know the number and type of the elements, get that number of 1316 // elements into the Ops array based on what kind of constant it is. 1317 SmallVector<SDValue, 16> Ops; 1318 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1319 for (unsigned i = 0; i != NumElements; ++i) 1320 Ops.push_back(getValue(CV->getOperand(i))); 1321 } else { 1322 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1323 EVT EltVT = 1324 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1325 1326 SDValue Op; 1327 if (EltVT.isFloatingPoint()) 1328 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1329 else 1330 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1331 Ops.assign(NumElements, Op); 1332 } 1333 1334 // Create a BUILD_VECTOR node. 1335 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1336 } 1337 1338 // If this is a static alloca, generate it as the frameindex instead of 1339 // computation. 1340 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1341 DenseMap<const AllocaInst*, int>::iterator SI = 1342 FuncInfo.StaticAllocaMap.find(AI); 1343 if (SI != FuncInfo.StaticAllocaMap.end()) 1344 return DAG.getFrameIndex(SI->second, 1345 TLI.getFrameIndexTy(DAG.getDataLayout())); 1346 } 1347 1348 // If this is an instruction which fast-isel has deferred, select it now. 1349 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1350 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1351 1352 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1353 Inst->getType(), isABIRegCopy(V)); 1354 SDValue Chain = DAG.getEntryNode(); 1355 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1356 } 1357 1358 llvm_unreachable("Can't get register for value!"); 1359 } 1360 1361 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1362 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1363 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1364 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1365 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1366 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1367 if (IsMSVCCXX || IsCoreCLR) 1368 CatchPadMBB->setIsEHFuncletEntry(); 1369 1370 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1371 } 1372 1373 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1374 // Update machine-CFG edge. 1375 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1376 FuncInfo.MBB->addSuccessor(TargetMBB); 1377 1378 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1379 bool IsSEH = isAsynchronousEHPersonality(Pers); 1380 if (IsSEH) { 1381 // If this is not a fall-through branch or optimizations are switched off, 1382 // emit the branch. 1383 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1384 TM.getOptLevel() == CodeGenOpt::None) 1385 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1386 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1387 return; 1388 } 1389 1390 // Figure out the funclet membership for the catchret's successor. 1391 // This will be used by the FuncletLayout pass to determine how to order the 1392 // BB's. 1393 // A 'catchret' returns to the outer scope's color. 1394 Value *ParentPad = I.getCatchSwitchParentPad(); 1395 const BasicBlock *SuccessorColor; 1396 if (isa<ConstantTokenNone>(ParentPad)) 1397 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1398 else 1399 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1400 assert(SuccessorColor && "No parent funclet for catchret!"); 1401 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1402 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1403 1404 // Create the terminator node. 1405 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1406 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1407 DAG.getBasicBlock(SuccessorColorMBB)); 1408 DAG.setRoot(Ret); 1409 } 1410 1411 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1412 // Don't emit any special code for the cleanuppad instruction. It just marks 1413 // the start of a funclet. 1414 FuncInfo.MBB->setIsEHFuncletEntry(); 1415 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1416 } 1417 1418 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1419 /// many places it could ultimately go. In the IR, we have a single unwind 1420 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1421 /// This function skips over imaginary basic blocks that hold catchswitch 1422 /// instructions, and finds all the "real" machine 1423 /// basic block destinations. As those destinations may not be successors of 1424 /// EHPadBB, here we also calculate the edge probability to those destinations. 1425 /// The passed-in Prob is the edge probability to EHPadBB. 1426 static void findUnwindDestinations( 1427 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1428 BranchProbability Prob, 1429 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1430 &UnwindDests) { 1431 EHPersonality Personality = 1432 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1433 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1434 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1435 1436 while (EHPadBB) { 1437 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1438 BasicBlock *NewEHPadBB = nullptr; 1439 if (isa<LandingPadInst>(Pad)) { 1440 // Stop on landingpads. They are not funclets. 1441 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1442 break; 1443 } else if (isa<CleanupPadInst>(Pad)) { 1444 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1445 // personalities. 1446 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1447 UnwindDests.back().first->setIsEHFuncletEntry(); 1448 break; 1449 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1450 // Add the catchpad handlers to the possible destinations. 1451 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1452 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1453 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1454 if (IsMSVCCXX || IsCoreCLR) 1455 UnwindDests.back().first->setIsEHFuncletEntry(); 1456 } 1457 NewEHPadBB = CatchSwitch->getUnwindDest(); 1458 } else { 1459 continue; 1460 } 1461 1462 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1463 if (BPI && NewEHPadBB) 1464 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1465 EHPadBB = NewEHPadBB; 1466 } 1467 } 1468 1469 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1470 // Update successor info. 1471 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1472 auto UnwindDest = I.getUnwindDest(); 1473 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1474 BranchProbability UnwindDestProb = 1475 (BPI && UnwindDest) 1476 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1477 : BranchProbability::getZero(); 1478 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1479 for (auto &UnwindDest : UnwindDests) { 1480 UnwindDest.first->setIsEHPad(); 1481 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1482 } 1483 FuncInfo.MBB->normalizeSuccProbs(); 1484 1485 // Create the terminator node. 1486 SDValue Ret = 1487 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1488 DAG.setRoot(Ret); 1489 } 1490 1491 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1492 report_fatal_error("visitCatchSwitch not yet implemented!"); 1493 } 1494 1495 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1496 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1497 auto &DL = DAG.getDataLayout(); 1498 SDValue Chain = getControlRoot(); 1499 SmallVector<ISD::OutputArg, 8> Outs; 1500 SmallVector<SDValue, 8> OutVals; 1501 1502 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1503 // lower 1504 // 1505 // %val = call <ty> @llvm.experimental.deoptimize() 1506 // ret <ty> %val 1507 // 1508 // differently. 1509 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1510 LowerDeoptimizingReturn(); 1511 return; 1512 } 1513 1514 if (!FuncInfo.CanLowerReturn) { 1515 unsigned DemoteReg = FuncInfo.DemoteRegister; 1516 const Function *F = I.getParent()->getParent(); 1517 1518 // Emit a store of the return value through the virtual register. 1519 // Leave Outs empty so that LowerReturn won't try to load return 1520 // registers the usual way. 1521 SmallVector<EVT, 1> PtrValueVTs; 1522 ComputeValueVTs(TLI, DL, 1523 F->getReturnType()->getPointerTo( 1524 DAG.getDataLayout().getAllocaAddrSpace()), 1525 PtrValueVTs); 1526 1527 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1528 DemoteReg, PtrValueVTs[0]); 1529 SDValue RetOp = getValue(I.getOperand(0)); 1530 1531 SmallVector<EVT, 4> ValueVTs; 1532 SmallVector<uint64_t, 4> Offsets; 1533 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1534 unsigned NumValues = ValueVTs.size(); 1535 1536 SmallVector<SDValue, 4> Chains(NumValues); 1537 for (unsigned i = 0; i != NumValues; ++i) { 1538 // An aggregate return value cannot wrap around the address space, so 1539 // offsets to its parts don't wrap either. 1540 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1541 Chains[i] = DAG.getStore( 1542 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1543 // FIXME: better loc info would be nice. 1544 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1545 } 1546 1547 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1548 MVT::Other, Chains); 1549 } else if (I.getNumOperands() != 0) { 1550 SmallVector<EVT, 4> ValueVTs; 1551 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1552 unsigned NumValues = ValueVTs.size(); 1553 if (NumValues) { 1554 SDValue RetOp = getValue(I.getOperand(0)); 1555 1556 const Function *F = I.getParent()->getParent(); 1557 1558 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1559 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1560 Attribute::SExt)) 1561 ExtendKind = ISD::SIGN_EXTEND; 1562 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1563 Attribute::ZExt)) 1564 ExtendKind = ISD::ZERO_EXTEND; 1565 1566 LLVMContext &Context = F->getContext(); 1567 bool RetInReg = F->getAttributes().hasAttribute( 1568 AttributeList::ReturnIndex, Attribute::InReg); 1569 1570 for (unsigned j = 0; j != NumValues; ++j) { 1571 EVT VT = ValueVTs[j]; 1572 1573 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1574 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1575 1576 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1577 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1578 SmallVector<SDValue, 4> Parts(NumParts); 1579 getCopyToParts(DAG, getCurSDLoc(), 1580 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1581 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1582 1583 // 'inreg' on function refers to return value 1584 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1585 if (RetInReg) 1586 Flags.setInReg(); 1587 1588 // Propagate extension type if any 1589 if (ExtendKind == ISD::SIGN_EXTEND) 1590 Flags.setSExt(); 1591 else if (ExtendKind == ISD::ZERO_EXTEND) 1592 Flags.setZExt(); 1593 1594 for (unsigned i = 0; i < NumParts; ++i) { 1595 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1596 VT, /*isfixed=*/true, 0, 0)); 1597 OutVals.push_back(Parts[i]); 1598 } 1599 } 1600 } 1601 } 1602 1603 // Push in swifterror virtual register as the last element of Outs. This makes 1604 // sure swifterror virtual register will be returned in the swifterror 1605 // physical register. 1606 const Function *F = I.getParent()->getParent(); 1607 if (TLI.supportSwiftError() && 1608 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1609 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1610 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1611 Flags.setSwiftError(); 1612 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1613 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1614 true /*isfixed*/, 1 /*origidx*/, 1615 0 /*partOffs*/)); 1616 // Create SDNode for the swifterror virtual register. 1617 OutVals.push_back( 1618 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1619 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1620 EVT(TLI.getPointerTy(DL)))); 1621 } 1622 1623 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1624 CallingConv::ID CallConv = 1625 DAG.getMachineFunction().getFunction().getCallingConv(); 1626 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1627 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1628 1629 // Verify that the target's LowerReturn behaved as expected. 1630 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1631 "LowerReturn didn't return a valid chain!"); 1632 1633 // Update the DAG with the new chain value resulting from return lowering. 1634 DAG.setRoot(Chain); 1635 } 1636 1637 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1638 /// created for it, emit nodes to copy the value into the virtual 1639 /// registers. 1640 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1641 // Skip empty types 1642 if (V->getType()->isEmptyTy()) 1643 return; 1644 1645 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1646 if (VMI != FuncInfo.ValueMap.end()) { 1647 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1648 CopyValueToVirtualRegister(V, VMI->second); 1649 } 1650 } 1651 1652 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1653 /// the current basic block, add it to ValueMap now so that we'll get a 1654 /// CopyTo/FromReg. 1655 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1656 // No need to export constants. 1657 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1658 1659 // Already exported? 1660 if (FuncInfo.isExportedInst(V)) return; 1661 1662 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1663 CopyValueToVirtualRegister(V, Reg); 1664 } 1665 1666 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1667 const BasicBlock *FromBB) { 1668 // The operands of the setcc have to be in this block. We don't know 1669 // how to export them from some other block. 1670 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1671 // Can export from current BB. 1672 if (VI->getParent() == FromBB) 1673 return true; 1674 1675 // Is already exported, noop. 1676 return FuncInfo.isExportedInst(V); 1677 } 1678 1679 // If this is an argument, we can export it if the BB is the entry block or 1680 // if it is already exported. 1681 if (isa<Argument>(V)) { 1682 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1683 return true; 1684 1685 // Otherwise, can only export this if it is already exported. 1686 return FuncInfo.isExportedInst(V); 1687 } 1688 1689 // Otherwise, constants can always be exported. 1690 return true; 1691 } 1692 1693 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1694 BranchProbability 1695 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1696 const MachineBasicBlock *Dst) const { 1697 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1698 const BasicBlock *SrcBB = Src->getBasicBlock(); 1699 const BasicBlock *DstBB = Dst->getBasicBlock(); 1700 if (!BPI) { 1701 // If BPI is not available, set the default probability as 1 / N, where N is 1702 // the number of successors. 1703 auto SuccSize = std::max<uint32_t>( 1704 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1705 return BranchProbability(1, SuccSize); 1706 } 1707 return BPI->getEdgeProbability(SrcBB, DstBB); 1708 } 1709 1710 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1711 MachineBasicBlock *Dst, 1712 BranchProbability Prob) { 1713 if (!FuncInfo.BPI) 1714 Src->addSuccessorWithoutProb(Dst); 1715 else { 1716 if (Prob.isUnknown()) 1717 Prob = getEdgeProbability(Src, Dst); 1718 Src->addSuccessor(Dst, Prob); 1719 } 1720 } 1721 1722 static bool InBlock(const Value *V, const BasicBlock *BB) { 1723 if (const Instruction *I = dyn_cast<Instruction>(V)) 1724 return I->getParent() == BB; 1725 return true; 1726 } 1727 1728 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1729 /// This function emits a branch and is used at the leaves of an OR or an 1730 /// AND operator tree. 1731 void 1732 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1733 MachineBasicBlock *TBB, 1734 MachineBasicBlock *FBB, 1735 MachineBasicBlock *CurBB, 1736 MachineBasicBlock *SwitchBB, 1737 BranchProbability TProb, 1738 BranchProbability FProb, 1739 bool InvertCond) { 1740 const BasicBlock *BB = CurBB->getBasicBlock(); 1741 1742 // If the leaf of the tree is a comparison, merge the condition into 1743 // the caseblock. 1744 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1745 // The operands of the cmp have to be in this block. We don't know 1746 // how to export them from some other block. If this is the first block 1747 // of the sequence, no exporting is needed. 1748 if (CurBB == SwitchBB || 1749 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1750 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1751 ISD::CondCode Condition; 1752 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1753 ICmpInst::Predicate Pred = 1754 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1755 Condition = getICmpCondCode(Pred); 1756 } else { 1757 const FCmpInst *FC = cast<FCmpInst>(Cond); 1758 FCmpInst::Predicate Pred = 1759 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1760 Condition = getFCmpCondCode(Pred); 1761 if (TM.Options.NoNaNsFPMath) 1762 Condition = getFCmpCodeWithoutNaN(Condition); 1763 } 1764 1765 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1766 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1767 SwitchCases.push_back(CB); 1768 return; 1769 } 1770 } 1771 1772 // Create a CaseBlock record representing this branch. 1773 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1774 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1775 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1776 SwitchCases.push_back(CB); 1777 } 1778 1779 /// FindMergedConditions - If Cond is an expression like 1780 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1781 MachineBasicBlock *TBB, 1782 MachineBasicBlock *FBB, 1783 MachineBasicBlock *CurBB, 1784 MachineBasicBlock *SwitchBB, 1785 Instruction::BinaryOps Opc, 1786 BranchProbability TProb, 1787 BranchProbability FProb, 1788 bool InvertCond) { 1789 // Skip over not part of the tree and remember to invert op and operands at 1790 // next level. 1791 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1792 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1793 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1794 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1795 !InvertCond); 1796 return; 1797 } 1798 } 1799 1800 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1801 // Compute the effective opcode for Cond, taking into account whether it needs 1802 // to be inverted, e.g. 1803 // and (not (or A, B)), C 1804 // gets lowered as 1805 // and (and (not A, not B), C) 1806 unsigned BOpc = 0; 1807 if (BOp) { 1808 BOpc = BOp->getOpcode(); 1809 if (InvertCond) { 1810 if (BOpc == Instruction::And) 1811 BOpc = Instruction::Or; 1812 else if (BOpc == Instruction::Or) 1813 BOpc = Instruction::And; 1814 } 1815 } 1816 1817 // If this node is not part of the or/and tree, emit it as a branch. 1818 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1819 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1820 BOp->getParent() != CurBB->getBasicBlock() || 1821 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1822 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1823 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1824 TProb, FProb, InvertCond); 1825 return; 1826 } 1827 1828 // Create TmpBB after CurBB. 1829 MachineFunction::iterator BBI(CurBB); 1830 MachineFunction &MF = DAG.getMachineFunction(); 1831 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1832 CurBB->getParent()->insert(++BBI, TmpBB); 1833 1834 if (Opc == Instruction::Or) { 1835 // Codegen X | Y as: 1836 // BB1: 1837 // jmp_if_X TBB 1838 // jmp TmpBB 1839 // TmpBB: 1840 // jmp_if_Y TBB 1841 // jmp FBB 1842 // 1843 1844 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1845 // The requirement is that 1846 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1847 // = TrueProb for original BB. 1848 // Assuming the original probabilities are A and B, one choice is to set 1849 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1850 // A/(1+B) and 2B/(1+B). This choice assumes that 1851 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1852 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1853 // TmpBB, but the math is more complicated. 1854 1855 auto NewTrueProb = TProb / 2; 1856 auto NewFalseProb = TProb / 2 + FProb; 1857 // Emit the LHS condition. 1858 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1859 NewTrueProb, NewFalseProb, InvertCond); 1860 1861 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1862 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1863 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1864 // Emit the RHS condition into TmpBB. 1865 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1866 Probs[0], Probs[1], InvertCond); 1867 } else { 1868 assert(Opc == Instruction::And && "Unknown merge op!"); 1869 // Codegen X & Y as: 1870 // BB1: 1871 // jmp_if_X TmpBB 1872 // jmp FBB 1873 // TmpBB: 1874 // jmp_if_Y TBB 1875 // jmp FBB 1876 // 1877 // This requires creation of TmpBB after CurBB. 1878 1879 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1880 // The requirement is that 1881 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1882 // = FalseProb for original BB. 1883 // Assuming the original probabilities are A and B, one choice is to set 1884 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1885 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1886 // TrueProb for BB1 * FalseProb for TmpBB. 1887 1888 auto NewTrueProb = TProb + FProb / 2; 1889 auto NewFalseProb = FProb / 2; 1890 // Emit the LHS condition. 1891 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1892 NewTrueProb, NewFalseProb, InvertCond); 1893 1894 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1895 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1896 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1897 // Emit the RHS condition into TmpBB. 1898 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1899 Probs[0], Probs[1], InvertCond); 1900 } 1901 } 1902 1903 /// If the set of cases should be emitted as a series of branches, return true. 1904 /// If we should emit this as a bunch of and/or'd together conditions, return 1905 /// false. 1906 bool 1907 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1908 if (Cases.size() != 2) return true; 1909 1910 // If this is two comparisons of the same values or'd or and'd together, they 1911 // will get folded into a single comparison, so don't emit two blocks. 1912 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1913 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1914 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1915 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1916 return false; 1917 } 1918 1919 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1920 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1921 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1922 Cases[0].CC == Cases[1].CC && 1923 isa<Constant>(Cases[0].CmpRHS) && 1924 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1925 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1926 return false; 1927 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1928 return false; 1929 } 1930 1931 return true; 1932 } 1933 1934 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1935 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1936 1937 // Update machine-CFG edges. 1938 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1939 1940 if (I.isUnconditional()) { 1941 // Update machine-CFG edges. 1942 BrMBB->addSuccessor(Succ0MBB); 1943 1944 // If this is not a fall-through branch or optimizations are switched off, 1945 // emit the branch. 1946 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1947 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1948 MVT::Other, getControlRoot(), 1949 DAG.getBasicBlock(Succ0MBB))); 1950 1951 return; 1952 } 1953 1954 // If this condition is one of the special cases we handle, do special stuff 1955 // now. 1956 const Value *CondVal = I.getCondition(); 1957 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1958 1959 // If this is a series of conditions that are or'd or and'd together, emit 1960 // this as a sequence of branches instead of setcc's with and/or operations. 1961 // As long as jumps are not expensive, this should improve performance. 1962 // For example, instead of something like: 1963 // cmp A, B 1964 // C = seteq 1965 // cmp D, E 1966 // F = setle 1967 // or C, F 1968 // jnz foo 1969 // Emit: 1970 // cmp A, B 1971 // je foo 1972 // cmp D, E 1973 // jle foo 1974 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1975 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1976 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1977 !I.getMetadata(LLVMContext::MD_unpredictable) && 1978 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1979 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1980 Opcode, 1981 getEdgeProbability(BrMBB, Succ0MBB), 1982 getEdgeProbability(BrMBB, Succ1MBB), 1983 /*InvertCond=*/false); 1984 // If the compares in later blocks need to use values not currently 1985 // exported from this block, export them now. This block should always 1986 // be the first entry. 1987 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1988 1989 // Allow some cases to be rejected. 1990 if (ShouldEmitAsBranches(SwitchCases)) { 1991 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1992 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1993 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1994 } 1995 1996 // Emit the branch for this block. 1997 visitSwitchCase(SwitchCases[0], BrMBB); 1998 SwitchCases.erase(SwitchCases.begin()); 1999 return; 2000 } 2001 2002 // Okay, we decided not to do this, remove any inserted MBB's and clear 2003 // SwitchCases. 2004 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2005 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2006 2007 SwitchCases.clear(); 2008 } 2009 } 2010 2011 // Create a CaseBlock record representing this branch. 2012 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2013 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2014 2015 // Use visitSwitchCase to actually insert the fast branch sequence for this 2016 // cond branch. 2017 visitSwitchCase(CB, BrMBB); 2018 } 2019 2020 /// visitSwitchCase - Emits the necessary code to represent a single node in 2021 /// the binary search tree resulting from lowering a switch instruction. 2022 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2023 MachineBasicBlock *SwitchBB) { 2024 SDValue Cond; 2025 SDValue CondLHS = getValue(CB.CmpLHS); 2026 SDLoc dl = CB.DL; 2027 2028 // Build the setcc now. 2029 if (!CB.CmpMHS) { 2030 // Fold "(X == true)" to X and "(X == false)" to !X to 2031 // handle common cases produced by branch lowering. 2032 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2033 CB.CC == ISD::SETEQ) 2034 Cond = CondLHS; 2035 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2036 CB.CC == ISD::SETEQ) { 2037 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2038 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2039 } else 2040 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2041 } else { 2042 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2043 2044 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2045 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2046 2047 SDValue CmpOp = getValue(CB.CmpMHS); 2048 EVT VT = CmpOp.getValueType(); 2049 2050 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2051 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2052 ISD::SETLE); 2053 } else { 2054 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2055 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2056 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2057 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2058 } 2059 } 2060 2061 // Update successor info 2062 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2063 // TrueBB and FalseBB are always different unless the incoming IR is 2064 // degenerate. This only happens when running llc on weird IR. 2065 if (CB.TrueBB != CB.FalseBB) 2066 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2067 SwitchBB->normalizeSuccProbs(); 2068 2069 // If the lhs block is the next block, invert the condition so that we can 2070 // fall through to the lhs instead of the rhs block. 2071 if (CB.TrueBB == NextBlock(SwitchBB)) { 2072 std::swap(CB.TrueBB, CB.FalseBB); 2073 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2074 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2075 } 2076 2077 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2078 MVT::Other, getControlRoot(), Cond, 2079 DAG.getBasicBlock(CB.TrueBB)); 2080 2081 // Insert the false branch. Do this even if it's a fall through branch, 2082 // this makes it easier to do DAG optimizations which require inverting 2083 // the branch condition. 2084 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2085 DAG.getBasicBlock(CB.FalseBB)); 2086 2087 DAG.setRoot(BrCond); 2088 } 2089 2090 /// visitJumpTable - Emit JumpTable node in the current MBB 2091 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2092 // Emit the code for the jump table 2093 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2094 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2095 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2096 JT.Reg, PTy); 2097 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2098 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2099 MVT::Other, Index.getValue(1), 2100 Table, Index); 2101 DAG.setRoot(BrJumpTable); 2102 } 2103 2104 /// visitJumpTableHeader - This function emits necessary code to produce index 2105 /// in the JumpTable from switch case. 2106 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2107 JumpTableHeader &JTH, 2108 MachineBasicBlock *SwitchBB) { 2109 SDLoc dl = getCurSDLoc(); 2110 2111 // Subtract the lowest switch case value from the value being switched on and 2112 // conditional branch to default mbb if the result is greater than the 2113 // difference between smallest and largest cases. 2114 SDValue SwitchOp = getValue(JTH.SValue); 2115 EVT VT = SwitchOp.getValueType(); 2116 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2117 DAG.getConstant(JTH.First, dl, VT)); 2118 2119 // The SDNode we just created, which holds the value being switched on minus 2120 // the smallest case value, needs to be copied to a virtual register so it 2121 // can be used as an index into the jump table in a subsequent basic block. 2122 // This value may be smaller or larger than the target's pointer type, and 2123 // therefore require extension or truncating. 2124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2125 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2126 2127 unsigned JumpTableReg = 2128 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2129 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2130 JumpTableReg, SwitchOp); 2131 JT.Reg = JumpTableReg; 2132 2133 // Emit the range check for the jump table, and branch to the default block 2134 // for the switch statement if the value being switched on exceeds the largest 2135 // case in the switch. 2136 SDValue CMP = DAG.getSetCC( 2137 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2138 Sub.getValueType()), 2139 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2140 2141 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2142 MVT::Other, CopyTo, CMP, 2143 DAG.getBasicBlock(JT.Default)); 2144 2145 // Avoid emitting unnecessary branches to the next block. 2146 if (JT.MBB != NextBlock(SwitchBB)) 2147 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2148 DAG.getBasicBlock(JT.MBB)); 2149 2150 DAG.setRoot(BrCond); 2151 } 2152 2153 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2154 /// variable if there exists one. 2155 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2156 SDValue &Chain) { 2157 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2158 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2159 MachineFunction &MF = DAG.getMachineFunction(); 2160 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2161 MachineSDNode *Node = 2162 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2163 if (Global) { 2164 MachinePointerInfo MPInfo(Global); 2165 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2166 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2167 MachineMemOperand::MODereferenceable; 2168 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2169 DAG.getEVTAlignment(PtrTy)); 2170 Node->setMemRefs(MemRefs, MemRefs + 1); 2171 } 2172 return SDValue(Node, 0); 2173 } 2174 2175 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2176 /// tail spliced into a stack protector check success bb. 2177 /// 2178 /// For a high level explanation of how this fits into the stack protector 2179 /// generation see the comment on the declaration of class 2180 /// StackProtectorDescriptor. 2181 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2182 MachineBasicBlock *ParentBB) { 2183 2184 // First create the loads to the guard/stack slot for the comparison. 2185 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2186 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2187 2188 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2189 int FI = MFI.getStackProtectorIndex(); 2190 2191 SDValue Guard; 2192 SDLoc dl = getCurSDLoc(); 2193 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2194 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2195 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2196 2197 // Generate code to load the content of the guard slot. 2198 SDValue GuardVal = DAG.getLoad( 2199 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2200 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2201 MachineMemOperand::MOVolatile); 2202 2203 if (TLI.useStackGuardXorFP()) 2204 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2205 2206 // Retrieve guard check function, nullptr if instrumentation is inlined. 2207 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2208 // The target provides a guard check function to validate the guard value. 2209 // Generate a call to that function with the content of the guard slot as 2210 // argument. 2211 auto *Fn = cast<Function>(GuardCheck); 2212 FunctionType *FnTy = Fn->getFunctionType(); 2213 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2214 2215 TargetLowering::ArgListTy Args; 2216 TargetLowering::ArgListEntry Entry; 2217 Entry.Node = GuardVal; 2218 Entry.Ty = FnTy->getParamType(0); 2219 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2220 Entry.IsInReg = true; 2221 Args.push_back(Entry); 2222 2223 TargetLowering::CallLoweringInfo CLI(DAG); 2224 CLI.setDebugLoc(getCurSDLoc()) 2225 .setChain(DAG.getEntryNode()) 2226 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2227 getValue(GuardCheck), std::move(Args)); 2228 2229 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2230 DAG.setRoot(Result.second); 2231 return; 2232 } 2233 2234 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2235 // Otherwise, emit a volatile load to retrieve the stack guard value. 2236 SDValue Chain = DAG.getEntryNode(); 2237 if (TLI.useLoadStackGuardNode()) { 2238 Guard = getLoadStackGuard(DAG, dl, Chain); 2239 } else { 2240 const Value *IRGuard = TLI.getSDagStackGuard(M); 2241 SDValue GuardPtr = getValue(IRGuard); 2242 2243 Guard = 2244 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2245 Align, MachineMemOperand::MOVolatile); 2246 } 2247 2248 // Perform the comparison via a subtract/getsetcc. 2249 EVT VT = Guard.getValueType(); 2250 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2251 2252 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2253 *DAG.getContext(), 2254 Sub.getValueType()), 2255 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2256 2257 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2258 // branch to failure MBB. 2259 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2260 MVT::Other, GuardVal.getOperand(0), 2261 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2262 // Otherwise branch to success MBB. 2263 SDValue Br = DAG.getNode(ISD::BR, dl, 2264 MVT::Other, BrCond, 2265 DAG.getBasicBlock(SPD.getSuccessMBB())); 2266 2267 DAG.setRoot(Br); 2268 } 2269 2270 /// Codegen the failure basic block for a stack protector check. 2271 /// 2272 /// A failure stack protector machine basic block consists simply of a call to 2273 /// __stack_chk_fail(). 2274 /// 2275 /// For a high level explanation of how this fits into the stack protector 2276 /// generation see the comment on the declaration of class 2277 /// StackProtectorDescriptor. 2278 void 2279 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2281 SDValue Chain = 2282 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2283 None, false, getCurSDLoc(), false, false).second; 2284 DAG.setRoot(Chain); 2285 } 2286 2287 /// visitBitTestHeader - This function emits necessary code to produce value 2288 /// suitable for "bit tests" 2289 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2290 MachineBasicBlock *SwitchBB) { 2291 SDLoc dl = getCurSDLoc(); 2292 2293 // Subtract the minimum value 2294 SDValue SwitchOp = getValue(B.SValue); 2295 EVT VT = SwitchOp.getValueType(); 2296 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2297 DAG.getConstant(B.First, dl, VT)); 2298 2299 // Check range 2300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2301 SDValue RangeCmp = DAG.getSetCC( 2302 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2303 Sub.getValueType()), 2304 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2305 2306 // Determine the type of the test operands. 2307 bool UsePtrType = false; 2308 if (!TLI.isTypeLegal(VT)) 2309 UsePtrType = true; 2310 else { 2311 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2312 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2313 // Switch table case range are encoded into series of masks. 2314 // Just use pointer type, it's guaranteed to fit. 2315 UsePtrType = true; 2316 break; 2317 } 2318 } 2319 if (UsePtrType) { 2320 VT = TLI.getPointerTy(DAG.getDataLayout()); 2321 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2322 } 2323 2324 B.RegVT = VT.getSimpleVT(); 2325 B.Reg = FuncInfo.CreateReg(B.RegVT); 2326 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2327 2328 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2329 2330 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2331 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2332 SwitchBB->normalizeSuccProbs(); 2333 2334 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2335 MVT::Other, CopyTo, RangeCmp, 2336 DAG.getBasicBlock(B.Default)); 2337 2338 // Avoid emitting unnecessary branches to the next block. 2339 if (MBB != NextBlock(SwitchBB)) 2340 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2341 DAG.getBasicBlock(MBB)); 2342 2343 DAG.setRoot(BrRange); 2344 } 2345 2346 /// visitBitTestCase - this function produces one "bit test" 2347 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2348 MachineBasicBlock* NextMBB, 2349 BranchProbability BranchProbToNext, 2350 unsigned Reg, 2351 BitTestCase &B, 2352 MachineBasicBlock *SwitchBB) { 2353 SDLoc dl = getCurSDLoc(); 2354 MVT VT = BB.RegVT; 2355 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2356 SDValue Cmp; 2357 unsigned PopCount = countPopulation(B.Mask); 2358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2359 if (PopCount == 1) { 2360 // Testing for a single bit; just compare the shift count with what it 2361 // would need to be to shift a 1 bit in that position. 2362 Cmp = DAG.getSetCC( 2363 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2364 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2365 ISD::SETEQ); 2366 } else if (PopCount == BB.Range) { 2367 // There is only one zero bit in the range, test for it directly. 2368 Cmp = DAG.getSetCC( 2369 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2370 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2371 ISD::SETNE); 2372 } else { 2373 // Make desired shift 2374 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2375 DAG.getConstant(1, dl, VT), ShiftOp); 2376 2377 // Emit bit tests and jumps 2378 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2379 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2380 Cmp = DAG.getSetCC( 2381 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2382 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2383 } 2384 2385 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2386 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2387 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2388 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2389 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2390 // one as they are relative probabilities (and thus work more like weights), 2391 // and hence we need to normalize them to let the sum of them become one. 2392 SwitchBB->normalizeSuccProbs(); 2393 2394 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2395 MVT::Other, getControlRoot(), 2396 Cmp, DAG.getBasicBlock(B.TargetBB)); 2397 2398 // Avoid emitting unnecessary branches to the next block. 2399 if (NextMBB != NextBlock(SwitchBB)) 2400 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2401 DAG.getBasicBlock(NextMBB)); 2402 2403 DAG.setRoot(BrAnd); 2404 } 2405 2406 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2407 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2408 2409 // Retrieve successors. Look through artificial IR level blocks like 2410 // catchswitch for successors. 2411 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2412 const BasicBlock *EHPadBB = I.getSuccessor(1); 2413 2414 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2415 // have to do anything here to lower funclet bundles. 2416 assert(!I.hasOperandBundlesOtherThan( 2417 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2418 "Cannot lower invokes with arbitrary operand bundles yet!"); 2419 2420 const Value *Callee(I.getCalledValue()); 2421 const Function *Fn = dyn_cast<Function>(Callee); 2422 if (isa<InlineAsm>(Callee)) 2423 visitInlineAsm(&I); 2424 else if (Fn && Fn->isIntrinsic()) { 2425 switch (Fn->getIntrinsicID()) { 2426 default: 2427 llvm_unreachable("Cannot invoke this intrinsic"); 2428 case Intrinsic::donothing: 2429 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2430 break; 2431 case Intrinsic::experimental_patchpoint_void: 2432 case Intrinsic::experimental_patchpoint_i64: 2433 visitPatchpoint(&I, EHPadBB); 2434 break; 2435 case Intrinsic::experimental_gc_statepoint: 2436 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2437 break; 2438 } 2439 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2440 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2441 // Eventually we will support lowering the @llvm.experimental.deoptimize 2442 // intrinsic, and right now there are no plans to support other intrinsics 2443 // with deopt state. 2444 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2445 } else { 2446 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2447 } 2448 2449 // If the value of the invoke is used outside of its defining block, make it 2450 // available as a virtual register. 2451 // We already took care of the exported value for the statepoint instruction 2452 // during call to the LowerStatepoint. 2453 if (!isStatepoint(I)) { 2454 CopyToExportRegsIfNeeded(&I); 2455 } 2456 2457 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2458 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2459 BranchProbability EHPadBBProb = 2460 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2461 : BranchProbability::getZero(); 2462 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2463 2464 // Update successor info. 2465 addSuccessorWithProb(InvokeMBB, Return); 2466 for (auto &UnwindDest : UnwindDests) { 2467 UnwindDest.first->setIsEHPad(); 2468 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2469 } 2470 InvokeMBB->normalizeSuccProbs(); 2471 2472 // Drop into normal successor. 2473 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2474 MVT::Other, getControlRoot(), 2475 DAG.getBasicBlock(Return))); 2476 } 2477 2478 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2479 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2480 } 2481 2482 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2483 assert(FuncInfo.MBB->isEHPad() && 2484 "Call to landingpad not in landing pad!"); 2485 2486 MachineBasicBlock *MBB = FuncInfo.MBB; 2487 addLandingPadInfo(LP, *MBB); 2488 2489 // If there aren't registers to copy the values into (e.g., during SjLj 2490 // exceptions), then don't bother to create these DAG nodes. 2491 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2492 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2493 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2494 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2495 return; 2496 2497 // If landingpad's return type is token type, we don't create DAG nodes 2498 // for its exception pointer and selector value. The extraction of exception 2499 // pointer or selector value from token type landingpads is not currently 2500 // supported. 2501 if (LP.getType()->isTokenTy()) 2502 return; 2503 2504 SmallVector<EVT, 2> ValueVTs; 2505 SDLoc dl = getCurSDLoc(); 2506 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2507 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2508 2509 // Get the two live-in registers as SDValues. The physregs have already been 2510 // copied into virtual registers. 2511 SDValue Ops[2]; 2512 if (FuncInfo.ExceptionPointerVirtReg) { 2513 Ops[0] = DAG.getZExtOrTrunc( 2514 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2515 FuncInfo.ExceptionPointerVirtReg, 2516 TLI.getPointerTy(DAG.getDataLayout())), 2517 dl, ValueVTs[0]); 2518 } else { 2519 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2520 } 2521 Ops[1] = DAG.getZExtOrTrunc( 2522 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2523 FuncInfo.ExceptionSelectorVirtReg, 2524 TLI.getPointerTy(DAG.getDataLayout())), 2525 dl, ValueVTs[1]); 2526 2527 // Merge into one. 2528 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2529 DAG.getVTList(ValueVTs), Ops); 2530 setValue(&LP, Res); 2531 } 2532 2533 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2534 #ifndef NDEBUG 2535 for (const CaseCluster &CC : Clusters) 2536 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2537 #endif 2538 2539 llvm::sort(Clusters.begin(), Clusters.end(), 2540 [](const CaseCluster &a, const CaseCluster &b) { 2541 return a.Low->getValue().slt(b.Low->getValue()); 2542 }); 2543 2544 // Merge adjacent clusters with the same destination. 2545 const unsigned N = Clusters.size(); 2546 unsigned DstIndex = 0; 2547 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2548 CaseCluster &CC = Clusters[SrcIndex]; 2549 const ConstantInt *CaseVal = CC.Low; 2550 MachineBasicBlock *Succ = CC.MBB; 2551 2552 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2553 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2554 // If this case has the same successor and is a neighbour, merge it into 2555 // the previous cluster. 2556 Clusters[DstIndex - 1].High = CaseVal; 2557 Clusters[DstIndex - 1].Prob += CC.Prob; 2558 } else { 2559 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2560 sizeof(Clusters[SrcIndex])); 2561 } 2562 } 2563 Clusters.resize(DstIndex); 2564 } 2565 2566 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2567 MachineBasicBlock *Last) { 2568 // Update JTCases. 2569 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2570 if (JTCases[i].first.HeaderBB == First) 2571 JTCases[i].first.HeaderBB = Last; 2572 2573 // Update BitTestCases. 2574 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2575 if (BitTestCases[i].Parent == First) 2576 BitTestCases[i].Parent = Last; 2577 } 2578 2579 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2580 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2581 2582 // Update machine-CFG edges with unique successors. 2583 SmallSet<BasicBlock*, 32> Done; 2584 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2585 BasicBlock *BB = I.getSuccessor(i); 2586 bool Inserted = Done.insert(BB).second; 2587 if (!Inserted) 2588 continue; 2589 2590 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2591 addSuccessorWithProb(IndirectBrMBB, Succ); 2592 } 2593 IndirectBrMBB->normalizeSuccProbs(); 2594 2595 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2596 MVT::Other, getControlRoot(), 2597 getValue(I.getAddress()))); 2598 } 2599 2600 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2601 if (DAG.getTarget().Options.TrapUnreachable) 2602 DAG.setRoot( 2603 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2604 } 2605 2606 void SelectionDAGBuilder::visitFSub(const User &I) { 2607 // -0.0 - X --> fneg 2608 Type *Ty = I.getType(); 2609 if (isa<Constant>(I.getOperand(0)) && 2610 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2611 SDValue Op2 = getValue(I.getOperand(1)); 2612 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2613 Op2.getValueType(), Op2)); 2614 return; 2615 } 2616 2617 visitBinary(I, ISD::FSUB); 2618 } 2619 2620 /// Checks if the given instruction performs a vector reduction, in which case 2621 /// we have the freedom to alter the elements in the result as long as the 2622 /// reduction of them stays unchanged. 2623 static bool isVectorReductionOp(const User *I) { 2624 const Instruction *Inst = dyn_cast<Instruction>(I); 2625 if (!Inst || !Inst->getType()->isVectorTy()) 2626 return false; 2627 2628 auto OpCode = Inst->getOpcode(); 2629 switch (OpCode) { 2630 case Instruction::Add: 2631 case Instruction::Mul: 2632 case Instruction::And: 2633 case Instruction::Or: 2634 case Instruction::Xor: 2635 break; 2636 case Instruction::FAdd: 2637 case Instruction::FMul: 2638 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2639 if (FPOp->getFastMathFlags().isFast()) 2640 break; 2641 LLVM_FALLTHROUGH; 2642 default: 2643 return false; 2644 } 2645 2646 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2647 unsigned ElemNumToReduce = ElemNum; 2648 2649 // Do DFS search on the def-use chain from the given instruction. We only 2650 // allow four kinds of operations during the search until we reach the 2651 // instruction that extracts the first element from the vector: 2652 // 2653 // 1. The reduction operation of the same opcode as the given instruction. 2654 // 2655 // 2. PHI node. 2656 // 2657 // 3. ShuffleVector instruction together with a reduction operation that 2658 // does a partial reduction. 2659 // 2660 // 4. ExtractElement that extracts the first element from the vector, and we 2661 // stop searching the def-use chain here. 2662 // 2663 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2664 // from 1-3 to the stack to continue the DFS. The given instruction is not 2665 // a reduction operation if we meet any other instructions other than those 2666 // listed above. 2667 2668 SmallVector<const User *, 16> UsersToVisit{Inst}; 2669 SmallPtrSet<const User *, 16> Visited; 2670 bool ReduxExtracted = false; 2671 2672 while (!UsersToVisit.empty()) { 2673 auto User = UsersToVisit.back(); 2674 UsersToVisit.pop_back(); 2675 if (!Visited.insert(User).second) 2676 continue; 2677 2678 for (const auto &U : User->users()) { 2679 auto Inst = dyn_cast<Instruction>(U); 2680 if (!Inst) 2681 return false; 2682 2683 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2684 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2685 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2686 return false; 2687 UsersToVisit.push_back(U); 2688 } else if (const ShuffleVectorInst *ShufInst = 2689 dyn_cast<ShuffleVectorInst>(U)) { 2690 // Detect the following pattern: A ShuffleVector instruction together 2691 // with a reduction that do partial reduction on the first and second 2692 // ElemNumToReduce / 2 elements, and store the result in 2693 // ElemNumToReduce / 2 elements in another vector. 2694 2695 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2696 if (ResultElements < ElemNum) 2697 return false; 2698 2699 if (ElemNumToReduce == 1) 2700 return false; 2701 if (!isa<UndefValue>(U->getOperand(1))) 2702 return false; 2703 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2704 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2705 return false; 2706 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2707 if (ShufInst->getMaskValue(i) != -1) 2708 return false; 2709 2710 // There is only one user of this ShuffleVector instruction, which 2711 // must be a reduction operation. 2712 if (!U->hasOneUse()) 2713 return false; 2714 2715 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2716 if (!U2 || U2->getOpcode() != OpCode) 2717 return false; 2718 2719 // Check operands of the reduction operation. 2720 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2721 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2722 UsersToVisit.push_back(U2); 2723 ElemNumToReduce /= 2; 2724 } else 2725 return false; 2726 } else if (isa<ExtractElementInst>(U)) { 2727 // At this moment we should have reduced all elements in the vector. 2728 if (ElemNumToReduce != 1) 2729 return false; 2730 2731 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2732 if (!Val || Val->getZExtValue() != 0) 2733 return false; 2734 2735 ReduxExtracted = true; 2736 } else 2737 return false; 2738 } 2739 } 2740 return ReduxExtracted; 2741 } 2742 2743 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2744 SDValue Op1 = getValue(I.getOperand(0)); 2745 SDValue Op2 = getValue(I.getOperand(1)); 2746 2747 bool nuw = false; 2748 bool nsw = false; 2749 bool exact = false; 2750 bool vec_redux = false; 2751 FastMathFlags FMF; 2752 2753 if (const OverflowingBinaryOperator *OFBinOp = 2754 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2755 nuw = OFBinOp->hasNoUnsignedWrap(); 2756 nsw = OFBinOp->hasNoSignedWrap(); 2757 } 2758 if (const PossiblyExactOperator *ExactOp = 2759 dyn_cast<const PossiblyExactOperator>(&I)) 2760 exact = ExactOp->isExact(); 2761 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2762 FMF = FPOp->getFastMathFlags(); 2763 2764 if (isVectorReductionOp(&I)) { 2765 vec_redux = true; 2766 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2767 } 2768 2769 SDNodeFlags Flags; 2770 Flags.setExact(exact); 2771 Flags.setNoSignedWrap(nsw); 2772 Flags.setNoUnsignedWrap(nuw); 2773 Flags.setVectorReduction(vec_redux); 2774 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2775 Flags.setAllowContract(FMF.allowContract()); 2776 Flags.setNoInfs(FMF.noInfs()); 2777 Flags.setNoNaNs(FMF.noNaNs()); 2778 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2779 Flags.setApproximateFuncs(FMF.approxFunc()); 2780 Flags.setAllowReassociation(FMF.allowReassoc()); 2781 2782 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2783 Op1, Op2, Flags); 2784 setValue(&I, BinNodeValue); 2785 } 2786 2787 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2788 SDValue Op1 = getValue(I.getOperand(0)); 2789 SDValue Op2 = getValue(I.getOperand(1)); 2790 2791 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2792 Op2.getValueType(), DAG.getDataLayout()); 2793 2794 // Coerce the shift amount to the right type if we can. 2795 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2796 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2797 unsigned Op2Size = Op2.getValueSizeInBits(); 2798 SDLoc DL = getCurSDLoc(); 2799 2800 // If the operand is smaller than the shift count type, promote it. 2801 if (ShiftSize > Op2Size) 2802 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2803 2804 // If the operand is larger than the shift count type but the shift 2805 // count type has enough bits to represent any shift value, truncate 2806 // it now. This is a common case and it exposes the truncate to 2807 // optimization early. 2808 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2809 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2810 // Otherwise we'll need to temporarily settle for some other convenient 2811 // type. Type legalization will make adjustments once the shiftee is split. 2812 else 2813 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2814 } 2815 2816 bool nuw = false; 2817 bool nsw = false; 2818 bool exact = false; 2819 2820 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2821 2822 if (const OverflowingBinaryOperator *OFBinOp = 2823 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2824 nuw = OFBinOp->hasNoUnsignedWrap(); 2825 nsw = OFBinOp->hasNoSignedWrap(); 2826 } 2827 if (const PossiblyExactOperator *ExactOp = 2828 dyn_cast<const PossiblyExactOperator>(&I)) 2829 exact = ExactOp->isExact(); 2830 } 2831 SDNodeFlags Flags; 2832 Flags.setExact(exact); 2833 Flags.setNoSignedWrap(nsw); 2834 Flags.setNoUnsignedWrap(nuw); 2835 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2836 Flags); 2837 setValue(&I, Res); 2838 } 2839 2840 void SelectionDAGBuilder::visitSDiv(const User &I) { 2841 SDValue Op1 = getValue(I.getOperand(0)); 2842 SDValue Op2 = getValue(I.getOperand(1)); 2843 2844 SDNodeFlags Flags; 2845 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2846 cast<PossiblyExactOperator>(&I)->isExact()); 2847 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2848 Op2, Flags)); 2849 } 2850 2851 void SelectionDAGBuilder::visitICmp(const User &I) { 2852 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2853 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2854 predicate = IC->getPredicate(); 2855 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2856 predicate = ICmpInst::Predicate(IC->getPredicate()); 2857 SDValue Op1 = getValue(I.getOperand(0)); 2858 SDValue Op2 = getValue(I.getOperand(1)); 2859 ISD::CondCode Opcode = getICmpCondCode(predicate); 2860 2861 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2862 I.getType()); 2863 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2864 } 2865 2866 void SelectionDAGBuilder::visitFCmp(const User &I) { 2867 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2868 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2869 predicate = FC->getPredicate(); 2870 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2871 predicate = FCmpInst::Predicate(FC->getPredicate()); 2872 SDValue Op1 = getValue(I.getOperand(0)); 2873 SDValue Op2 = getValue(I.getOperand(1)); 2874 ISD::CondCode Condition = getFCmpCondCode(predicate); 2875 2876 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2877 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2878 // further optimization, but currently FMF is only applicable to binary nodes. 2879 if (TM.Options.NoNaNsFPMath) 2880 Condition = getFCmpCodeWithoutNaN(Condition); 2881 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2882 I.getType()); 2883 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2884 } 2885 2886 // Check if the condition of the select has one use or two users that are both 2887 // selects with the same condition. 2888 static bool hasOnlySelectUsers(const Value *Cond) { 2889 return llvm::all_of(Cond->users(), [](const Value *V) { 2890 return isa<SelectInst>(V); 2891 }); 2892 } 2893 2894 void SelectionDAGBuilder::visitSelect(const User &I) { 2895 SmallVector<EVT, 4> ValueVTs; 2896 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2897 ValueVTs); 2898 unsigned NumValues = ValueVTs.size(); 2899 if (NumValues == 0) return; 2900 2901 SmallVector<SDValue, 4> Values(NumValues); 2902 SDValue Cond = getValue(I.getOperand(0)); 2903 SDValue LHSVal = getValue(I.getOperand(1)); 2904 SDValue RHSVal = getValue(I.getOperand(2)); 2905 auto BaseOps = {Cond}; 2906 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2907 ISD::VSELECT : ISD::SELECT; 2908 2909 // Min/max matching is only viable if all output VTs are the same. 2910 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2911 EVT VT = ValueVTs[0]; 2912 LLVMContext &Ctx = *DAG.getContext(); 2913 auto &TLI = DAG.getTargetLoweringInfo(); 2914 2915 // We care about the legality of the operation after it has been type 2916 // legalized. 2917 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2918 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2919 VT = TLI.getTypeToTransformTo(Ctx, VT); 2920 2921 // If the vselect is legal, assume we want to leave this as a vector setcc + 2922 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2923 // min/max is legal on the scalar type. 2924 bool UseScalarMinMax = VT.isVector() && 2925 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2926 2927 Value *LHS, *RHS; 2928 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2929 ISD::NodeType Opc = ISD::DELETED_NODE; 2930 switch (SPR.Flavor) { 2931 case SPF_UMAX: Opc = ISD::UMAX; break; 2932 case SPF_UMIN: Opc = ISD::UMIN; break; 2933 case SPF_SMAX: Opc = ISD::SMAX; break; 2934 case SPF_SMIN: Opc = ISD::SMIN; break; 2935 case SPF_FMINNUM: 2936 switch (SPR.NaNBehavior) { 2937 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2938 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2939 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2940 case SPNB_RETURNS_ANY: { 2941 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2942 Opc = ISD::FMINNUM; 2943 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2944 Opc = ISD::FMINNAN; 2945 else if (UseScalarMinMax) 2946 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2947 ISD::FMINNUM : ISD::FMINNAN; 2948 break; 2949 } 2950 } 2951 break; 2952 case SPF_FMAXNUM: 2953 switch (SPR.NaNBehavior) { 2954 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2955 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2956 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2957 case SPNB_RETURNS_ANY: 2958 2959 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2960 Opc = ISD::FMAXNUM; 2961 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2962 Opc = ISD::FMAXNAN; 2963 else if (UseScalarMinMax) 2964 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2965 ISD::FMAXNUM : ISD::FMAXNAN; 2966 break; 2967 } 2968 break; 2969 default: break; 2970 } 2971 2972 if (Opc != ISD::DELETED_NODE && 2973 (TLI.isOperationLegalOrCustom(Opc, VT) || 2974 (UseScalarMinMax && 2975 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2976 // If the underlying comparison instruction is used by any other 2977 // instruction, the consumed instructions won't be destroyed, so it is 2978 // not profitable to convert to a min/max. 2979 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2980 OpCode = Opc; 2981 LHSVal = getValue(LHS); 2982 RHSVal = getValue(RHS); 2983 BaseOps = {}; 2984 } 2985 } 2986 2987 for (unsigned i = 0; i != NumValues; ++i) { 2988 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2989 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2990 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2991 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2992 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2993 Ops); 2994 } 2995 2996 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2997 DAG.getVTList(ValueVTs), Values)); 2998 } 2999 3000 void SelectionDAGBuilder::visitTrunc(const User &I) { 3001 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3002 SDValue N = getValue(I.getOperand(0)); 3003 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3004 I.getType()); 3005 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3006 } 3007 3008 void SelectionDAGBuilder::visitZExt(const User &I) { 3009 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3010 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3011 SDValue N = getValue(I.getOperand(0)); 3012 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3013 I.getType()); 3014 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3015 } 3016 3017 void SelectionDAGBuilder::visitSExt(const User &I) { 3018 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3019 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3020 SDValue N = getValue(I.getOperand(0)); 3021 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3022 I.getType()); 3023 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3024 } 3025 3026 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3027 // FPTrunc is never a no-op cast, no need to check 3028 SDValue N = getValue(I.getOperand(0)); 3029 SDLoc dl = getCurSDLoc(); 3030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3031 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3032 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3033 DAG.getTargetConstant( 3034 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3035 } 3036 3037 void SelectionDAGBuilder::visitFPExt(const User &I) { 3038 // FPExt is never a no-op cast, no need to check 3039 SDValue N = getValue(I.getOperand(0)); 3040 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3041 I.getType()); 3042 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3043 } 3044 3045 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3046 // FPToUI is never a no-op cast, no need to check 3047 SDValue N = getValue(I.getOperand(0)); 3048 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3049 I.getType()); 3050 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3051 } 3052 3053 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3054 // FPToSI is never a no-op cast, no need to check 3055 SDValue N = getValue(I.getOperand(0)); 3056 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3057 I.getType()); 3058 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3059 } 3060 3061 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3062 // UIToFP is never a no-op cast, no need to check 3063 SDValue N = getValue(I.getOperand(0)); 3064 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3065 I.getType()); 3066 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3067 } 3068 3069 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3070 // SIToFP is never a no-op cast, no need to check 3071 SDValue N = getValue(I.getOperand(0)); 3072 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3073 I.getType()); 3074 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3075 } 3076 3077 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3078 // What to do depends on the size of the integer and the size of the pointer. 3079 // We can either truncate, zero extend, or no-op, accordingly. 3080 SDValue N = getValue(I.getOperand(0)); 3081 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3082 I.getType()); 3083 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3084 } 3085 3086 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3087 // What to do depends on the size of the integer and the size of the pointer. 3088 // We can either truncate, zero extend, or no-op, accordingly. 3089 SDValue N = getValue(I.getOperand(0)); 3090 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3091 I.getType()); 3092 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3093 } 3094 3095 void SelectionDAGBuilder::visitBitCast(const User &I) { 3096 SDValue N = getValue(I.getOperand(0)); 3097 SDLoc dl = getCurSDLoc(); 3098 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3099 I.getType()); 3100 3101 // BitCast assures us that source and destination are the same size so this is 3102 // either a BITCAST or a no-op. 3103 if (DestVT != N.getValueType()) 3104 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3105 DestVT, N)); // convert types. 3106 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3107 // might fold any kind of constant expression to an integer constant and that 3108 // is not what we are looking for. Only recognize a bitcast of a genuine 3109 // constant integer as an opaque constant. 3110 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3111 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3112 /*isOpaque*/true)); 3113 else 3114 setValue(&I, N); // noop cast. 3115 } 3116 3117 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3119 const Value *SV = I.getOperand(0); 3120 SDValue N = getValue(SV); 3121 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3122 3123 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3124 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3125 3126 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3127 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3128 3129 setValue(&I, N); 3130 } 3131 3132 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3133 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3134 SDValue InVec = getValue(I.getOperand(0)); 3135 SDValue InVal = getValue(I.getOperand(1)); 3136 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3137 TLI.getVectorIdxTy(DAG.getDataLayout())); 3138 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3139 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3140 InVec, InVal, InIdx)); 3141 } 3142 3143 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3144 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3145 SDValue InVec = getValue(I.getOperand(0)); 3146 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3147 TLI.getVectorIdxTy(DAG.getDataLayout())); 3148 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3149 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3150 InVec, InIdx)); 3151 } 3152 3153 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3154 SDValue Src1 = getValue(I.getOperand(0)); 3155 SDValue Src2 = getValue(I.getOperand(1)); 3156 SDLoc DL = getCurSDLoc(); 3157 3158 SmallVector<int, 8> Mask; 3159 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3160 unsigned MaskNumElts = Mask.size(); 3161 3162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3163 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3164 EVT SrcVT = Src1.getValueType(); 3165 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3166 3167 if (SrcNumElts == MaskNumElts) { 3168 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3169 return; 3170 } 3171 3172 // Normalize the shuffle vector since mask and vector length don't match. 3173 if (SrcNumElts < MaskNumElts) { 3174 // Mask is longer than the source vectors. We can use concatenate vector to 3175 // make the mask and vectors lengths match. 3176 3177 if (MaskNumElts % SrcNumElts == 0) { 3178 // Mask length is a multiple of the source vector length. 3179 // Check if the shuffle is some kind of concatenation of the input 3180 // vectors. 3181 unsigned NumConcat = MaskNumElts / SrcNumElts; 3182 bool IsConcat = true; 3183 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3184 for (unsigned i = 0; i != MaskNumElts; ++i) { 3185 int Idx = Mask[i]; 3186 if (Idx < 0) 3187 continue; 3188 // Ensure the indices in each SrcVT sized piece are sequential and that 3189 // the same source is used for the whole piece. 3190 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3191 (ConcatSrcs[i / SrcNumElts] >= 0 && 3192 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3193 IsConcat = false; 3194 break; 3195 } 3196 // Remember which source this index came from. 3197 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3198 } 3199 3200 // The shuffle is concatenating multiple vectors together. Just emit 3201 // a CONCAT_VECTORS operation. 3202 if (IsConcat) { 3203 SmallVector<SDValue, 8> ConcatOps; 3204 for (auto Src : ConcatSrcs) { 3205 if (Src < 0) 3206 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3207 else if (Src == 0) 3208 ConcatOps.push_back(Src1); 3209 else 3210 ConcatOps.push_back(Src2); 3211 } 3212 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3213 return; 3214 } 3215 } 3216 3217 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3218 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3219 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3220 PaddedMaskNumElts); 3221 3222 // Pad both vectors with undefs to make them the same length as the mask. 3223 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3224 3225 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3226 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3227 MOps1[0] = Src1; 3228 MOps2[0] = Src2; 3229 3230 Src1 = Src1.isUndef() 3231 ? DAG.getUNDEF(PaddedVT) 3232 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3233 Src2 = Src2.isUndef() 3234 ? DAG.getUNDEF(PaddedVT) 3235 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3236 3237 // Readjust mask for new input vector length. 3238 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3239 for (unsigned i = 0; i != MaskNumElts; ++i) { 3240 int Idx = Mask[i]; 3241 if (Idx >= (int)SrcNumElts) 3242 Idx -= SrcNumElts - PaddedMaskNumElts; 3243 MappedOps[i] = Idx; 3244 } 3245 3246 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3247 3248 // If the concatenated vector was padded, extract a subvector with the 3249 // correct number of elements. 3250 if (MaskNumElts != PaddedMaskNumElts) 3251 Result = DAG.getNode( 3252 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3253 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3254 3255 setValue(&I, Result); 3256 return; 3257 } 3258 3259 if (SrcNumElts > MaskNumElts) { 3260 // Analyze the access pattern of the vector to see if we can extract 3261 // two subvectors and do the shuffle. 3262 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3263 bool CanExtract = true; 3264 for (int Idx : Mask) { 3265 unsigned Input = 0; 3266 if (Idx < 0) 3267 continue; 3268 3269 if (Idx >= (int)SrcNumElts) { 3270 Input = 1; 3271 Idx -= SrcNumElts; 3272 } 3273 3274 // If all the indices come from the same MaskNumElts sized portion of 3275 // the sources we can use extract. Also make sure the extract wouldn't 3276 // extract past the end of the source. 3277 int NewStartIdx = alignDown(Idx, MaskNumElts); 3278 if (NewStartIdx + MaskNumElts > SrcNumElts || 3279 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3280 CanExtract = false; 3281 // Make sure we always update StartIdx as we use it to track if all 3282 // elements are undef. 3283 StartIdx[Input] = NewStartIdx; 3284 } 3285 3286 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3287 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3288 return; 3289 } 3290 if (CanExtract) { 3291 // Extract appropriate subvector and generate a vector shuffle 3292 for (unsigned Input = 0; Input < 2; ++Input) { 3293 SDValue &Src = Input == 0 ? Src1 : Src2; 3294 if (StartIdx[Input] < 0) 3295 Src = DAG.getUNDEF(VT); 3296 else { 3297 Src = DAG.getNode( 3298 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3299 DAG.getConstant(StartIdx[Input], DL, 3300 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3301 } 3302 } 3303 3304 // Calculate new mask. 3305 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3306 for (int &Idx : MappedOps) { 3307 if (Idx >= (int)SrcNumElts) 3308 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3309 else if (Idx >= 0) 3310 Idx -= StartIdx[0]; 3311 } 3312 3313 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3314 return; 3315 } 3316 } 3317 3318 // We can't use either concat vectors or extract subvectors so fall back to 3319 // replacing the shuffle with extract and build vector. 3320 // to insert and build vector. 3321 EVT EltVT = VT.getVectorElementType(); 3322 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3323 SmallVector<SDValue,8> Ops; 3324 for (int Idx : Mask) { 3325 SDValue Res; 3326 3327 if (Idx < 0) { 3328 Res = DAG.getUNDEF(EltVT); 3329 } else { 3330 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3331 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3332 3333 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3334 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3335 } 3336 3337 Ops.push_back(Res); 3338 } 3339 3340 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3341 } 3342 3343 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3344 ArrayRef<unsigned> Indices; 3345 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3346 Indices = IV->getIndices(); 3347 else 3348 Indices = cast<ConstantExpr>(&I)->getIndices(); 3349 3350 const Value *Op0 = I.getOperand(0); 3351 const Value *Op1 = I.getOperand(1); 3352 Type *AggTy = I.getType(); 3353 Type *ValTy = Op1->getType(); 3354 bool IntoUndef = isa<UndefValue>(Op0); 3355 bool FromUndef = isa<UndefValue>(Op1); 3356 3357 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3358 3359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3360 SmallVector<EVT, 4> AggValueVTs; 3361 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3362 SmallVector<EVT, 4> ValValueVTs; 3363 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3364 3365 unsigned NumAggValues = AggValueVTs.size(); 3366 unsigned NumValValues = ValValueVTs.size(); 3367 SmallVector<SDValue, 4> Values(NumAggValues); 3368 3369 // Ignore an insertvalue that produces an empty object 3370 if (!NumAggValues) { 3371 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3372 return; 3373 } 3374 3375 SDValue Agg = getValue(Op0); 3376 unsigned i = 0; 3377 // Copy the beginning value(s) from the original aggregate. 3378 for (; i != LinearIndex; ++i) 3379 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3380 SDValue(Agg.getNode(), Agg.getResNo() + i); 3381 // Copy values from the inserted value(s). 3382 if (NumValValues) { 3383 SDValue Val = getValue(Op1); 3384 for (; i != LinearIndex + NumValValues; ++i) 3385 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3386 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3387 } 3388 // Copy remaining value(s) from the original aggregate. 3389 for (; i != NumAggValues; ++i) 3390 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3391 SDValue(Agg.getNode(), Agg.getResNo() + i); 3392 3393 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3394 DAG.getVTList(AggValueVTs), Values)); 3395 } 3396 3397 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3398 ArrayRef<unsigned> Indices; 3399 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3400 Indices = EV->getIndices(); 3401 else 3402 Indices = cast<ConstantExpr>(&I)->getIndices(); 3403 3404 const Value *Op0 = I.getOperand(0); 3405 Type *AggTy = Op0->getType(); 3406 Type *ValTy = I.getType(); 3407 bool OutOfUndef = isa<UndefValue>(Op0); 3408 3409 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3410 3411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3412 SmallVector<EVT, 4> ValValueVTs; 3413 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3414 3415 unsigned NumValValues = ValValueVTs.size(); 3416 3417 // Ignore a extractvalue that produces an empty object 3418 if (!NumValValues) { 3419 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3420 return; 3421 } 3422 3423 SmallVector<SDValue, 4> Values(NumValValues); 3424 3425 SDValue Agg = getValue(Op0); 3426 // Copy out the selected value(s). 3427 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3428 Values[i - LinearIndex] = 3429 OutOfUndef ? 3430 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3431 SDValue(Agg.getNode(), Agg.getResNo() + i); 3432 3433 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3434 DAG.getVTList(ValValueVTs), Values)); 3435 } 3436 3437 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3438 Value *Op0 = I.getOperand(0); 3439 // Note that the pointer operand may be a vector of pointers. Take the scalar 3440 // element which holds a pointer. 3441 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3442 SDValue N = getValue(Op0); 3443 SDLoc dl = getCurSDLoc(); 3444 3445 // Normalize Vector GEP - all scalar operands should be converted to the 3446 // splat vector. 3447 unsigned VectorWidth = I.getType()->isVectorTy() ? 3448 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3449 3450 if (VectorWidth && !N.getValueType().isVector()) { 3451 LLVMContext &Context = *DAG.getContext(); 3452 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3453 N = DAG.getSplatBuildVector(VT, dl, N); 3454 } 3455 3456 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3457 GTI != E; ++GTI) { 3458 const Value *Idx = GTI.getOperand(); 3459 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3460 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3461 if (Field) { 3462 // N = N + Offset 3463 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3464 3465 // In an inbounds GEP with an offset that is nonnegative even when 3466 // interpreted as signed, assume there is no unsigned overflow. 3467 SDNodeFlags Flags; 3468 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3469 Flags.setNoUnsignedWrap(true); 3470 3471 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3472 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3473 } 3474 } else { 3475 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3476 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3477 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3478 3479 // If this is a scalar constant or a splat vector of constants, 3480 // handle it quickly. 3481 const auto *CI = dyn_cast<ConstantInt>(Idx); 3482 if (!CI && isa<ConstantDataVector>(Idx) && 3483 cast<ConstantDataVector>(Idx)->getSplatValue()) 3484 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3485 3486 if (CI) { 3487 if (CI->isZero()) 3488 continue; 3489 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3490 LLVMContext &Context = *DAG.getContext(); 3491 SDValue OffsVal = VectorWidth ? 3492 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3493 DAG.getConstant(Offs, dl, IdxTy); 3494 3495 // In an inbouds GEP with an offset that is nonnegative even when 3496 // interpreted as signed, assume there is no unsigned overflow. 3497 SDNodeFlags Flags; 3498 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3499 Flags.setNoUnsignedWrap(true); 3500 3501 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3502 continue; 3503 } 3504 3505 // N = N + Idx * ElementSize; 3506 SDValue IdxN = getValue(Idx); 3507 3508 if (!IdxN.getValueType().isVector() && VectorWidth) { 3509 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3510 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3511 } 3512 3513 // If the index is smaller or larger than intptr_t, truncate or extend 3514 // it. 3515 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3516 3517 // If this is a multiply by a power of two, turn it into a shl 3518 // immediately. This is a very common case. 3519 if (ElementSize != 1) { 3520 if (ElementSize.isPowerOf2()) { 3521 unsigned Amt = ElementSize.logBase2(); 3522 IdxN = DAG.getNode(ISD::SHL, dl, 3523 N.getValueType(), IdxN, 3524 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3525 } else { 3526 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3527 IdxN = DAG.getNode(ISD::MUL, dl, 3528 N.getValueType(), IdxN, Scale); 3529 } 3530 } 3531 3532 N = DAG.getNode(ISD::ADD, dl, 3533 N.getValueType(), N, IdxN); 3534 } 3535 } 3536 3537 setValue(&I, N); 3538 } 3539 3540 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3541 // If this is a fixed sized alloca in the entry block of the function, 3542 // allocate it statically on the stack. 3543 if (FuncInfo.StaticAllocaMap.count(&I)) 3544 return; // getValue will auto-populate this. 3545 3546 SDLoc dl = getCurSDLoc(); 3547 Type *Ty = I.getAllocatedType(); 3548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3549 auto &DL = DAG.getDataLayout(); 3550 uint64_t TySize = DL.getTypeAllocSize(Ty); 3551 unsigned Align = 3552 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3553 3554 SDValue AllocSize = getValue(I.getArraySize()); 3555 3556 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3557 if (AllocSize.getValueType() != IntPtr) 3558 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3559 3560 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3561 AllocSize, 3562 DAG.getConstant(TySize, dl, IntPtr)); 3563 3564 // Handle alignment. If the requested alignment is less than or equal to 3565 // the stack alignment, ignore it. If the size is greater than or equal to 3566 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3567 unsigned StackAlign = 3568 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3569 if (Align <= StackAlign) 3570 Align = 0; 3571 3572 // Round the size of the allocation up to the stack alignment size 3573 // by add SA-1 to the size. This doesn't overflow because we're computing 3574 // an address inside an alloca. 3575 SDNodeFlags Flags; 3576 Flags.setNoUnsignedWrap(true); 3577 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3578 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3579 3580 // Mask out the low bits for alignment purposes. 3581 AllocSize = 3582 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3583 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3584 3585 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3586 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3587 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3588 setValue(&I, DSA); 3589 DAG.setRoot(DSA.getValue(1)); 3590 3591 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3592 } 3593 3594 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3595 if (I.isAtomic()) 3596 return visitAtomicLoad(I); 3597 3598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3599 const Value *SV = I.getOperand(0); 3600 if (TLI.supportSwiftError()) { 3601 // Swifterror values can come from either a function parameter with 3602 // swifterror attribute or an alloca with swifterror attribute. 3603 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3604 if (Arg->hasSwiftErrorAttr()) 3605 return visitLoadFromSwiftError(I); 3606 } 3607 3608 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3609 if (Alloca->isSwiftError()) 3610 return visitLoadFromSwiftError(I); 3611 } 3612 } 3613 3614 SDValue Ptr = getValue(SV); 3615 3616 Type *Ty = I.getType(); 3617 3618 bool isVolatile = I.isVolatile(); 3619 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3620 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3621 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3622 unsigned Alignment = I.getAlignment(); 3623 3624 AAMDNodes AAInfo; 3625 I.getAAMetadata(AAInfo); 3626 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3627 3628 SmallVector<EVT, 4> ValueVTs; 3629 SmallVector<uint64_t, 4> Offsets; 3630 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3631 unsigned NumValues = ValueVTs.size(); 3632 if (NumValues == 0) 3633 return; 3634 3635 SDValue Root; 3636 bool ConstantMemory = false; 3637 if (isVolatile || NumValues > MaxParallelChains) 3638 // Serialize volatile loads with other side effects. 3639 Root = getRoot(); 3640 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3641 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3642 // Do not serialize (non-volatile) loads of constant memory with anything. 3643 Root = DAG.getEntryNode(); 3644 ConstantMemory = true; 3645 } else { 3646 // Do not serialize non-volatile loads against each other. 3647 Root = DAG.getRoot(); 3648 } 3649 3650 SDLoc dl = getCurSDLoc(); 3651 3652 if (isVolatile) 3653 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3654 3655 // An aggregate load cannot wrap around the address space, so offsets to its 3656 // parts don't wrap either. 3657 SDNodeFlags Flags; 3658 Flags.setNoUnsignedWrap(true); 3659 3660 SmallVector<SDValue, 4> Values(NumValues); 3661 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3662 EVT PtrVT = Ptr.getValueType(); 3663 unsigned ChainI = 0; 3664 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3665 // Serializing loads here may result in excessive register pressure, and 3666 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3667 // could recover a bit by hoisting nodes upward in the chain by recognizing 3668 // they are side-effect free or do not alias. The optimizer should really 3669 // avoid this case by converting large object/array copies to llvm.memcpy 3670 // (MaxParallelChains should always remain as failsafe). 3671 if (ChainI == MaxParallelChains) { 3672 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3673 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3674 makeArrayRef(Chains.data(), ChainI)); 3675 Root = Chain; 3676 ChainI = 0; 3677 } 3678 SDValue A = DAG.getNode(ISD::ADD, dl, 3679 PtrVT, Ptr, 3680 DAG.getConstant(Offsets[i], dl, PtrVT), 3681 Flags); 3682 auto MMOFlags = MachineMemOperand::MONone; 3683 if (isVolatile) 3684 MMOFlags |= MachineMemOperand::MOVolatile; 3685 if (isNonTemporal) 3686 MMOFlags |= MachineMemOperand::MONonTemporal; 3687 if (isInvariant) 3688 MMOFlags |= MachineMemOperand::MOInvariant; 3689 if (isDereferenceable) 3690 MMOFlags |= MachineMemOperand::MODereferenceable; 3691 MMOFlags |= TLI.getMMOFlags(I); 3692 3693 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3694 MachinePointerInfo(SV, Offsets[i]), Alignment, 3695 MMOFlags, AAInfo, Ranges); 3696 3697 Values[i] = L; 3698 Chains[ChainI] = L.getValue(1); 3699 } 3700 3701 if (!ConstantMemory) { 3702 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3703 makeArrayRef(Chains.data(), ChainI)); 3704 if (isVolatile) 3705 DAG.setRoot(Chain); 3706 else 3707 PendingLoads.push_back(Chain); 3708 } 3709 3710 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3711 DAG.getVTList(ValueVTs), Values)); 3712 } 3713 3714 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3715 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3716 "call visitStoreToSwiftError when backend supports swifterror"); 3717 3718 SmallVector<EVT, 4> ValueVTs; 3719 SmallVector<uint64_t, 4> Offsets; 3720 const Value *SrcV = I.getOperand(0); 3721 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3722 SrcV->getType(), ValueVTs, &Offsets); 3723 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3724 "expect a single EVT for swifterror"); 3725 3726 SDValue Src = getValue(SrcV); 3727 // Create a virtual register, then update the virtual register. 3728 unsigned VReg; bool CreatedVReg; 3729 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3730 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3731 // Chain can be getRoot or getControlRoot. 3732 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3733 SDValue(Src.getNode(), Src.getResNo())); 3734 DAG.setRoot(CopyNode); 3735 if (CreatedVReg) 3736 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3737 } 3738 3739 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3740 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3741 "call visitLoadFromSwiftError when backend supports swifterror"); 3742 3743 assert(!I.isVolatile() && 3744 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3745 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3746 "Support volatile, non temporal, invariant for load_from_swift_error"); 3747 3748 const Value *SV = I.getOperand(0); 3749 Type *Ty = I.getType(); 3750 AAMDNodes AAInfo; 3751 I.getAAMetadata(AAInfo); 3752 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3753 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3754 "load_from_swift_error should not be constant memory"); 3755 3756 SmallVector<EVT, 4> ValueVTs; 3757 SmallVector<uint64_t, 4> Offsets; 3758 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3759 ValueVTs, &Offsets); 3760 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3761 "expect a single EVT for swifterror"); 3762 3763 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3764 SDValue L = DAG.getCopyFromReg( 3765 getRoot(), getCurSDLoc(), 3766 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3767 ValueVTs[0]); 3768 3769 setValue(&I, L); 3770 } 3771 3772 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3773 if (I.isAtomic()) 3774 return visitAtomicStore(I); 3775 3776 const Value *SrcV = I.getOperand(0); 3777 const Value *PtrV = I.getOperand(1); 3778 3779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3780 if (TLI.supportSwiftError()) { 3781 // Swifterror values can come from either a function parameter with 3782 // swifterror attribute or an alloca with swifterror attribute. 3783 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3784 if (Arg->hasSwiftErrorAttr()) 3785 return visitStoreToSwiftError(I); 3786 } 3787 3788 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3789 if (Alloca->isSwiftError()) 3790 return visitStoreToSwiftError(I); 3791 } 3792 } 3793 3794 SmallVector<EVT, 4> ValueVTs; 3795 SmallVector<uint64_t, 4> Offsets; 3796 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3797 SrcV->getType(), ValueVTs, &Offsets); 3798 unsigned NumValues = ValueVTs.size(); 3799 if (NumValues == 0) 3800 return; 3801 3802 // Get the lowered operands. Note that we do this after 3803 // checking if NumResults is zero, because with zero results 3804 // the operands won't have values in the map. 3805 SDValue Src = getValue(SrcV); 3806 SDValue Ptr = getValue(PtrV); 3807 3808 SDValue Root = getRoot(); 3809 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3810 SDLoc dl = getCurSDLoc(); 3811 EVT PtrVT = Ptr.getValueType(); 3812 unsigned Alignment = I.getAlignment(); 3813 AAMDNodes AAInfo; 3814 I.getAAMetadata(AAInfo); 3815 3816 auto MMOFlags = MachineMemOperand::MONone; 3817 if (I.isVolatile()) 3818 MMOFlags |= MachineMemOperand::MOVolatile; 3819 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3820 MMOFlags |= MachineMemOperand::MONonTemporal; 3821 MMOFlags |= TLI.getMMOFlags(I); 3822 3823 // An aggregate load cannot wrap around the address space, so offsets to its 3824 // parts don't wrap either. 3825 SDNodeFlags Flags; 3826 Flags.setNoUnsignedWrap(true); 3827 3828 unsigned ChainI = 0; 3829 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3830 // See visitLoad comments. 3831 if (ChainI == MaxParallelChains) { 3832 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3833 makeArrayRef(Chains.data(), ChainI)); 3834 Root = Chain; 3835 ChainI = 0; 3836 } 3837 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3838 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3839 SDValue St = DAG.getStore( 3840 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3841 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3842 Chains[ChainI] = St; 3843 } 3844 3845 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3846 makeArrayRef(Chains.data(), ChainI)); 3847 DAG.setRoot(StoreNode); 3848 } 3849 3850 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3851 bool IsCompressing) { 3852 SDLoc sdl = getCurSDLoc(); 3853 3854 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3855 unsigned& Alignment) { 3856 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3857 Src0 = I.getArgOperand(0); 3858 Ptr = I.getArgOperand(1); 3859 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3860 Mask = I.getArgOperand(3); 3861 }; 3862 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3863 unsigned& Alignment) { 3864 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3865 Src0 = I.getArgOperand(0); 3866 Ptr = I.getArgOperand(1); 3867 Mask = I.getArgOperand(2); 3868 Alignment = 0; 3869 }; 3870 3871 Value *PtrOperand, *MaskOperand, *Src0Operand; 3872 unsigned Alignment; 3873 if (IsCompressing) 3874 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3875 else 3876 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3877 3878 SDValue Ptr = getValue(PtrOperand); 3879 SDValue Src0 = getValue(Src0Operand); 3880 SDValue Mask = getValue(MaskOperand); 3881 3882 EVT VT = Src0.getValueType(); 3883 if (!Alignment) 3884 Alignment = DAG.getEVTAlignment(VT); 3885 3886 AAMDNodes AAInfo; 3887 I.getAAMetadata(AAInfo); 3888 3889 MachineMemOperand *MMO = 3890 DAG.getMachineFunction(). 3891 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3892 MachineMemOperand::MOStore, VT.getStoreSize(), 3893 Alignment, AAInfo); 3894 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3895 MMO, false /* Truncating */, 3896 IsCompressing); 3897 DAG.setRoot(StoreNode); 3898 setValue(&I, StoreNode); 3899 } 3900 3901 // Get a uniform base for the Gather/Scatter intrinsic. 3902 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3903 // We try to represent it as a base pointer + vector of indices. 3904 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3905 // The first operand of the GEP may be a single pointer or a vector of pointers 3906 // Example: 3907 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3908 // or 3909 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3910 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3911 // 3912 // When the first GEP operand is a single pointer - it is the uniform base we 3913 // are looking for. If first operand of the GEP is a splat vector - we 3914 // extract the splat value and use it as a uniform base. 3915 // In all other cases the function returns 'false'. 3916 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3917 SDValue &Scale, SelectionDAGBuilder* SDB) { 3918 SelectionDAG& DAG = SDB->DAG; 3919 LLVMContext &Context = *DAG.getContext(); 3920 3921 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3922 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3923 if (!GEP) 3924 return false; 3925 3926 const Value *GEPPtr = GEP->getPointerOperand(); 3927 if (!GEPPtr->getType()->isVectorTy()) 3928 Ptr = GEPPtr; 3929 else if (!(Ptr = getSplatValue(GEPPtr))) 3930 return false; 3931 3932 unsigned FinalIndex = GEP->getNumOperands() - 1; 3933 Value *IndexVal = GEP->getOperand(FinalIndex); 3934 3935 // Ensure all the other indices are 0. 3936 for (unsigned i = 1; i < FinalIndex; ++i) { 3937 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3938 if (!C || !C->isZero()) 3939 return false; 3940 } 3941 3942 // The operands of the GEP may be defined in another basic block. 3943 // In this case we'll not find nodes for the operands. 3944 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3945 return false; 3946 3947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3948 const DataLayout &DL = DAG.getDataLayout(); 3949 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3950 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3951 Base = SDB->getValue(Ptr); 3952 Index = SDB->getValue(IndexVal); 3953 3954 if (!Index.getValueType().isVector()) { 3955 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3956 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3957 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3958 } 3959 return true; 3960 } 3961 3962 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3963 SDLoc sdl = getCurSDLoc(); 3964 3965 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3966 const Value *Ptr = I.getArgOperand(1); 3967 SDValue Src0 = getValue(I.getArgOperand(0)); 3968 SDValue Mask = getValue(I.getArgOperand(3)); 3969 EVT VT = Src0.getValueType(); 3970 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3971 if (!Alignment) 3972 Alignment = DAG.getEVTAlignment(VT); 3973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3974 3975 AAMDNodes AAInfo; 3976 I.getAAMetadata(AAInfo); 3977 3978 SDValue Base; 3979 SDValue Index; 3980 SDValue Scale; 3981 const Value *BasePtr = Ptr; 3982 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 3983 3984 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3985 MachineMemOperand *MMO = DAG.getMachineFunction(). 3986 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3987 MachineMemOperand::MOStore, VT.getStoreSize(), 3988 Alignment, AAInfo); 3989 if (!UniformBase) { 3990 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3991 Index = getValue(Ptr); 3992 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3993 } 3994 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 3995 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3996 Ops, MMO); 3997 DAG.setRoot(Scatter); 3998 setValue(&I, Scatter); 3999 } 4000 4001 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4002 SDLoc sdl = getCurSDLoc(); 4003 4004 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4005 unsigned& Alignment) { 4006 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4007 Ptr = I.getArgOperand(0); 4008 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4009 Mask = I.getArgOperand(2); 4010 Src0 = I.getArgOperand(3); 4011 }; 4012 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4013 unsigned& Alignment) { 4014 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4015 Ptr = I.getArgOperand(0); 4016 Alignment = 0; 4017 Mask = I.getArgOperand(1); 4018 Src0 = I.getArgOperand(2); 4019 }; 4020 4021 Value *PtrOperand, *MaskOperand, *Src0Operand; 4022 unsigned Alignment; 4023 if (IsExpanding) 4024 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4025 else 4026 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4027 4028 SDValue Ptr = getValue(PtrOperand); 4029 SDValue Src0 = getValue(Src0Operand); 4030 SDValue Mask = getValue(MaskOperand); 4031 4032 EVT VT = Src0.getValueType(); 4033 if (!Alignment) 4034 Alignment = DAG.getEVTAlignment(VT); 4035 4036 AAMDNodes AAInfo; 4037 I.getAAMetadata(AAInfo); 4038 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4039 4040 // Do not serialize masked loads of constant memory with anything. 4041 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4042 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4043 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4044 4045 MachineMemOperand *MMO = 4046 DAG.getMachineFunction(). 4047 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4048 MachineMemOperand::MOLoad, VT.getStoreSize(), 4049 Alignment, AAInfo, Ranges); 4050 4051 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4052 ISD::NON_EXTLOAD, IsExpanding); 4053 if (AddToChain) { 4054 SDValue OutChain = Load.getValue(1); 4055 DAG.setRoot(OutChain); 4056 } 4057 setValue(&I, Load); 4058 } 4059 4060 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4061 SDLoc sdl = getCurSDLoc(); 4062 4063 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4064 const Value *Ptr = I.getArgOperand(0); 4065 SDValue Src0 = getValue(I.getArgOperand(3)); 4066 SDValue Mask = getValue(I.getArgOperand(2)); 4067 4068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4069 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4070 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4071 if (!Alignment) 4072 Alignment = DAG.getEVTAlignment(VT); 4073 4074 AAMDNodes AAInfo; 4075 I.getAAMetadata(AAInfo); 4076 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4077 4078 SDValue Root = DAG.getRoot(); 4079 SDValue Base; 4080 SDValue Index; 4081 SDValue Scale; 4082 const Value *BasePtr = Ptr; 4083 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4084 bool ConstantMemory = false; 4085 if (UniformBase && 4086 AA && AA->pointsToConstantMemory(MemoryLocation( 4087 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4088 AAInfo))) { 4089 // Do not serialize (non-volatile) loads of constant memory with anything. 4090 Root = DAG.getEntryNode(); 4091 ConstantMemory = true; 4092 } 4093 4094 MachineMemOperand *MMO = 4095 DAG.getMachineFunction(). 4096 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4097 MachineMemOperand::MOLoad, VT.getStoreSize(), 4098 Alignment, AAInfo, Ranges); 4099 4100 if (!UniformBase) { 4101 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4102 Index = getValue(Ptr); 4103 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4104 } 4105 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4106 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4107 Ops, MMO); 4108 4109 SDValue OutChain = Gather.getValue(1); 4110 if (!ConstantMemory) 4111 PendingLoads.push_back(OutChain); 4112 setValue(&I, Gather); 4113 } 4114 4115 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4116 SDLoc dl = getCurSDLoc(); 4117 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4118 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4119 SyncScope::ID SSID = I.getSyncScopeID(); 4120 4121 SDValue InChain = getRoot(); 4122 4123 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4124 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4125 SDValue L = DAG.getAtomicCmpSwap( 4126 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4127 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4128 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4129 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4130 4131 SDValue OutChain = L.getValue(2); 4132 4133 setValue(&I, L); 4134 DAG.setRoot(OutChain); 4135 } 4136 4137 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4138 SDLoc dl = getCurSDLoc(); 4139 ISD::NodeType NT; 4140 switch (I.getOperation()) { 4141 default: llvm_unreachable("Unknown atomicrmw operation"); 4142 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4143 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4144 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4145 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4146 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4147 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4148 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4149 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4150 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4151 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4152 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4153 } 4154 AtomicOrdering Order = I.getOrdering(); 4155 SyncScope::ID SSID = I.getSyncScopeID(); 4156 4157 SDValue InChain = getRoot(); 4158 4159 SDValue L = 4160 DAG.getAtomic(NT, dl, 4161 getValue(I.getValOperand()).getSimpleValueType(), 4162 InChain, 4163 getValue(I.getPointerOperand()), 4164 getValue(I.getValOperand()), 4165 I.getPointerOperand(), 4166 /* Alignment=*/ 0, Order, SSID); 4167 4168 SDValue OutChain = L.getValue(1); 4169 4170 setValue(&I, L); 4171 DAG.setRoot(OutChain); 4172 } 4173 4174 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4175 SDLoc dl = getCurSDLoc(); 4176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4177 SDValue Ops[3]; 4178 Ops[0] = getRoot(); 4179 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4180 TLI.getFenceOperandTy(DAG.getDataLayout())); 4181 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4182 TLI.getFenceOperandTy(DAG.getDataLayout())); 4183 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4184 } 4185 4186 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4187 SDLoc dl = getCurSDLoc(); 4188 AtomicOrdering Order = I.getOrdering(); 4189 SyncScope::ID SSID = I.getSyncScopeID(); 4190 4191 SDValue InChain = getRoot(); 4192 4193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4194 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4195 4196 if (!TLI.supportsUnalignedAtomics() && 4197 I.getAlignment() < VT.getStoreSize()) 4198 report_fatal_error("Cannot generate unaligned atomic load"); 4199 4200 MachineMemOperand *MMO = 4201 DAG.getMachineFunction(). 4202 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4203 MachineMemOperand::MOVolatile | 4204 MachineMemOperand::MOLoad, 4205 VT.getStoreSize(), 4206 I.getAlignment() ? I.getAlignment() : 4207 DAG.getEVTAlignment(VT), 4208 AAMDNodes(), nullptr, SSID, Order); 4209 4210 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4211 SDValue L = 4212 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4213 getValue(I.getPointerOperand()), MMO); 4214 4215 SDValue OutChain = L.getValue(1); 4216 4217 setValue(&I, L); 4218 DAG.setRoot(OutChain); 4219 } 4220 4221 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4222 SDLoc dl = getCurSDLoc(); 4223 4224 AtomicOrdering Order = I.getOrdering(); 4225 SyncScope::ID SSID = I.getSyncScopeID(); 4226 4227 SDValue InChain = getRoot(); 4228 4229 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4230 EVT VT = 4231 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4232 4233 if (I.getAlignment() < VT.getStoreSize()) 4234 report_fatal_error("Cannot generate unaligned atomic store"); 4235 4236 SDValue OutChain = 4237 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4238 InChain, 4239 getValue(I.getPointerOperand()), 4240 getValue(I.getValueOperand()), 4241 I.getPointerOperand(), I.getAlignment(), 4242 Order, SSID); 4243 4244 DAG.setRoot(OutChain); 4245 } 4246 4247 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4248 /// node. 4249 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4250 unsigned Intrinsic) { 4251 // Ignore the callsite's attributes. A specific call site may be marked with 4252 // readnone, but the lowering code will expect the chain based on the 4253 // definition. 4254 const Function *F = I.getCalledFunction(); 4255 bool HasChain = !F->doesNotAccessMemory(); 4256 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4257 4258 // Build the operand list. 4259 SmallVector<SDValue, 8> Ops; 4260 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4261 if (OnlyLoad) { 4262 // We don't need to serialize loads against other loads. 4263 Ops.push_back(DAG.getRoot()); 4264 } else { 4265 Ops.push_back(getRoot()); 4266 } 4267 } 4268 4269 // Info is set by getTgtMemInstrinsic 4270 TargetLowering::IntrinsicInfo Info; 4271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4272 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4273 DAG.getMachineFunction(), 4274 Intrinsic); 4275 4276 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4277 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4278 Info.opc == ISD::INTRINSIC_W_CHAIN) 4279 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4280 TLI.getPointerTy(DAG.getDataLayout()))); 4281 4282 // Add all operands of the call to the operand list. 4283 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4284 SDValue Op = getValue(I.getArgOperand(i)); 4285 Ops.push_back(Op); 4286 } 4287 4288 SmallVector<EVT, 4> ValueVTs; 4289 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4290 4291 if (HasChain) 4292 ValueVTs.push_back(MVT::Other); 4293 4294 SDVTList VTs = DAG.getVTList(ValueVTs); 4295 4296 // Create the node. 4297 SDValue Result; 4298 if (IsTgtIntrinsic) { 4299 // This is target intrinsic that touches memory 4300 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4301 Ops, Info.memVT, 4302 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4303 Info.flags, Info.size); 4304 } else if (!HasChain) { 4305 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4306 } else if (!I.getType()->isVoidTy()) { 4307 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4308 } else { 4309 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4310 } 4311 4312 if (HasChain) { 4313 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4314 if (OnlyLoad) 4315 PendingLoads.push_back(Chain); 4316 else 4317 DAG.setRoot(Chain); 4318 } 4319 4320 if (!I.getType()->isVoidTy()) { 4321 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4322 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4323 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4324 } else 4325 Result = lowerRangeToAssertZExt(DAG, I, Result); 4326 4327 setValue(&I, Result); 4328 } 4329 } 4330 4331 /// GetSignificand - Get the significand and build it into a floating-point 4332 /// number with exponent of 1: 4333 /// 4334 /// Op = (Op & 0x007fffff) | 0x3f800000; 4335 /// 4336 /// where Op is the hexadecimal representation of floating point value. 4337 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4338 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4339 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4340 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4341 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4342 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4343 } 4344 4345 /// GetExponent - Get the exponent: 4346 /// 4347 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4348 /// 4349 /// where Op is the hexadecimal representation of floating point value. 4350 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4351 const TargetLowering &TLI, const SDLoc &dl) { 4352 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4353 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4354 SDValue t1 = DAG.getNode( 4355 ISD::SRL, dl, MVT::i32, t0, 4356 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4357 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4358 DAG.getConstant(127, dl, MVT::i32)); 4359 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4360 } 4361 4362 /// getF32Constant - Get 32-bit floating point constant. 4363 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4364 const SDLoc &dl) { 4365 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4366 MVT::f32); 4367 } 4368 4369 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4370 SelectionDAG &DAG) { 4371 // TODO: What fast-math-flags should be set on the floating-point nodes? 4372 4373 // IntegerPartOfX = ((int32_t)(t0); 4374 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4375 4376 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4377 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4378 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4379 4380 // IntegerPartOfX <<= 23; 4381 IntegerPartOfX = DAG.getNode( 4382 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4383 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4384 DAG.getDataLayout()))); 4385 4386 SDValue TwoToFractionalPartOfX; 4387 if (LimitFloatPrecision <= 6) { 4388 // For floating-point precision of 6: 4389 // 4390 // TwoToFractionalPartOfX = 4391 // 0.997535578f + 4392 // (0.735607626f + 0.252464424f * x) * x; 4393 // 4394 // error 0.0144103317, which is 6 bits 4395 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4396 getF32Constant(DAG, 0x3e814304, dl)); 4397 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4398 getF32Constant(DAG, 0x3f3c50c8, dl)); 4399 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4400 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4401 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4402 } else if (LimitFloatPrecision <= 12) { 4403 // For floating-point precision of 12: 4404 // 4405 // TwoToFractionalPartOfX = 4406 // 0.999892986f + 4407 // (0.696457318f + 4408 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4409 // 4410 // error 0.000107046256, which is 13 to 14 bits 4411 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4412 getF32Constant(DAG, 0x3da235e3, dl)); 4413 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4414 getF32Constant(DAG, 0x3e65b8f3, dl)); 4415 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4416 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4417 getF32Constant(DAG, 0x3f324b07, dl)); 4418 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4419 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4420 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4421 } else { // LimitFloatPrecision <= 18 4422 // For floating-point precision of 18: 4423 // 4424 // TwoToFractionalPartOfX = 4425 // 0.999999982f + 4426 // (0.693148872f + 4427 // (0.240227044f + 4428 // (0.554906021e-1f + 4429 // (0.961591928e-2f + 4430 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4431 // error 2.47208000*10^(-7), which is better than 18 bits 4432 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4433 getF32Constant(DAG, 0x3924b03e, dl)); 4434 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4435 getF32Constant(DAG, 0x3ab24b87, dl)); 4436 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4437 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4438 getF32Constant(DAG, 0x3c1d8c17, dl)); 4439 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4440 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4441 getF32Constant(DAG, 0x3d634a1d, dl)); 4442 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4443 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4444 getF32Constant(DAG, 0x3e75fe14, dl)); 4445 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4446 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4447 getF32Constant(DAG, 0x3f317234, dl)); 4448 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4449 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4450 getF32Constant(DAG, 0x3f800000, dl)); 4451 } 4452 4453 // Add the exponent into the result in integer domain. 4454 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4455 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4456 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4457 } 4458 4459 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4460 /// limited-precision mode. 4461 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4462 const TargetLowering &TLI) { 4463 if (Op.getValueType() == MVT::f32 && 4464 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4465 4466 // Put the exponent in the right bit position for later addition to the 4467 // final result: 4468 // 4469 // #define LOG2OFe 1.4426950f 4470 // t0 = Op * LOG2OFe 4471 4472 // TODO: What fast-math-flags should be set here? 4473 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4474 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4475 return getLimitedPrecisionExp2(t0, dl, DAG); 4476 } 4477 4478 // No special expansion. 4479 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4480 } 4481 4482 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4483 /// limited-precision mode. 4484 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4485 const TargetLowering &TLI) { 4486 // TODO: What fast-math-flags should be set on the floating-point nodes? 4487 4488 if (Op.getValueType() == MVT::f32 && 4489 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4490 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4491 4492 // Scale the exponent by log(2) [0.69314718f]. 4493 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4494 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4495 getF32Constant(DAG, 0x3f317218, dl)); 4496 4497 // Get the significand and build it into a floating-point number with 4498 // exponent of 1. 4499 SDValue X = GetSignificand(DAG, Op1, dl); 4500 4501 SDValue LogOfMantissa; 4502 if (LimitFloatPrecision <= 6) { 4503 // For floating-point precision of 6: 4504 // 4505 // LogofMantissa = 4506 // -1.1609546f + 4507 // (1.4034025f - 0.23903021f * x) * x; 4508 // 4509 // error 0.0034276066, which is better than 8 bits 4510 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4511 getF32Constant(DAG, 0xbe74c456, dl)); 4512 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4513 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4514 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4515 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4516 getF32Constant(DAG, 0x3f949a29, dl)); 4517 } else if (LimitFloatPrecision <= 12) { 4518 // For floating-point precision of 12: 4519 // 4520 // LogOfMantissa = 4521 // -1.7417939f + 4522 // (2.8212026f + 4523 // (-1.4699568f + 4524 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4525 // 4526 // error 0.000061011436, which is 14 bits 4527 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4528 getF32Constant(DAG, 0xbd67b6d6, dl)); 4529 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4530 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4531 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4532 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4533 getF32Constant(DAG, 0x3fbc278b, dl)); 4534 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4535 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4536 getF32Constant(DAG, 0x40348e95, dl)); 4537 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4538 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4539 getF32Constant(DAG, 0x3fdef31a, dl)); 4540 } else { // LimitFloatPrecision <= 18 4541 // For floating-point precision of 18: 4542 // 4543 // LogOfMantissa = 4544 // -2.1072184f + 4545 // (4.2372794f + 4546 // (-3.7029485f + 4547 // (2.2781945f + 4548 // (-0.87823314f + 4549 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4550 // 4551 // error 0.0000023660568, which is better than 18 bits 4552 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4553 getF32Constant(DAG, 0xbc91e5ac, dl)); 4554 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4555 getF32Constant(DAG, 0x3e4350aa, dl)); 4556 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4557 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4558 getF32Constant(DAG, 0x3f60d3e3, dl)); 4559 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4560 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4561 getF32Constant(DAG, 0x4011cdf0, dl)); 4562 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4563 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4564 getF32Constant(DAG, 0x406cfd1c, dl)); 4565 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4566 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4567 getF32Constant(DAG, 0x408797cb, dl)); 4568 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4569 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4570 getF32Constant(DAG, 0x4006dcab, dl)); 4571 } 4572 4573 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4574 } 4575 4576 // No special expansion. 4577 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4578 } 4579 4580 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4581 /// limited-precision mode. 4582 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4583 const TargetLowering &TLI) { 4584 // TODO: What fast-math-flags should be set on the floating-point nodes? 4585 4586 if (Op.getValueType() == MVT::f32 && 4587 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4588 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4589 4590 // Get the exponent. 4591 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4592 4593 // Get the significand and build it into a floating-point number with 4594 // exponent of 1. 4595 SDValue X = GetSignificand(DAG, Op1, dl); 4596 4597 // Different possible minimax approximations of significand in 4598 // floating-point for various degrees of accuracy over [1,2]. 4599 SDValue Log2ofMantissa; 4600 if (LimitFloatPrecision <= 6) { 4601 // For floating-point precision of 6: 4602 // 4603 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4604 // 4605 // error 0.0049451742, which is more than 7 bits 4606 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4607 getF32Constant(DAG, 0xbeb08fe0, dl)); 4608 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4609 getF32Constant(DAG, 0x40019463, dl)); 4610 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4611 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4612 getF32Constant(DAG, 0x3fd6633d, dl)); 4613 } else if (LimitFloatPrecision <= 12) { 4614 // For floating-point precision of 12: 4615 // 4616 // Log2ofMantissa = 4617 // -2.51285454f + 4618 // (4.07009056f + 4619 // (-2.12067489f + 4620 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4621 // 4622 // error 0.0000876136000, which is better than 13 bits 4623 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4624 getF32Constant(DAG, 0xbda7262e, dl)); 4625 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4626 getF32Constant(DAG, 0x3f25280b, dl)); 4627 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4628 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4629 getF32Constant(DAG, 0x4007b923, dl)); 4630 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4631 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4632 getF32Constant(DAG, 0x40823e2f, dl)); 4633 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4634 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4635 getF32Constant(DAG, 0x4020d29c, dl)); 4636 } else { // LimitFloatPrecision <= 18 4637 // For floating-point precision of 18: 4638 // 4639 // Log2ofMantissa = 4640 // -3.0400495f + 4641 // (6.1129976f + 4642 // (-5.3420409f + 4643 // (3.2865683f + 4644 // (-1.2669343f + 4645 // (0.27515199f - 4646 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4647 // 4648 // error 0.0000018516, which is better than 18 bits 4649 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4650 getF32Constant(DAG, 0xbcd2769e, dl)); 4651 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4652 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4653 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4654 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4655 getF32Constant(DAG, 0x3fa22ae7, dl)); 4656 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4657 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4658 getF32Constant(DAG, 0x40525723, dl)); 4659 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4660 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4661 getF32Constant(DAG, 0x40aaf200, dl)); 4662 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4663 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4664 getF32Constant(DAG, 0x40c39dad, dl)); 4665 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4666 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4667 getF32Constant(DAG, 0x4042902c, dl)); 4668 } 4669 4670 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4671 } 4672 4673 // No special expansion. 4674 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4675 } 4676 4677 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4678 /// limited-precision mode. 4679 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4680 const TargetLowering &TLI) { 4681 // TODO: What fast-math-flags should be set on the floating-point nodes? 4682 4683 if (Op.getValueType() == MVT::f32 && 4684 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4685 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4686 4687 // Scale the exponent by log10(2) [0.30102999f]. 4688 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4689 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4690 getF32Constant(DAG, 0x3e9a209a, dl)); 4691 4692 // Get the significand and build it into a floating-point number with 4693 // exponent of 1. 4694 SDValue X = GetSignificand(DAG, Op1, dl); 4695 4696 SDValue Log10ofMantissa; 4697 if (LimitFloatPrecision <= 6) { 4698 // For floating-point precision of 6: 4699 // 4700 // Log10ofMantissa = 4701 // -0.50419619f + 4702 // (0.60948995f - 0.10380950f * x) * x; 4703 // 4704 // error 0.0014886165, which is 6 bits 4705 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4706 getF32Constant(DAG, 0xbdd49a13, dl)); 4707 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4708 getF32Constant(DAG, 0x3f1c0789, dl)); 4709 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4710 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4711 getF32Constant(DAG, 0x3f011300, dl)); 4712 } else if (LimitFloatPrecision <= 12) { 4713 // For floating-point precision of 12: 4714 // 4715 // Log10ofMantissa = 4716 // -0.64831180f + 4717 // (0.91751397f + 4718 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4719 // 4720 // error 0.00019228036, which is better than 12 bits 4721 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4722 getF32Constant(DAG, 0x3d431f31, dl)); 4723 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4724 getF32Constant(DAG, 0x3ea21fb2, dl)); 4725 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4726 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4727 getF32Constant(DAG, 0x3f6ae232, dl)); 4728 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4729 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4730 getF32Constant(DAG, 0x3f25f7c3, dl)); 4731 } else { // LimitFloatPrecision <= 18 4732 // For floating-point precision of 18: 4733 // 4734 // Log10ofMantissa = 4735 // -0.84299375f + 4736 // (1.5327582f + 4737 // (-1.0688956f + 4738 // (0.49102474f + 4739 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4740 // 4741 // error 0.0000037995730, which is better than 18 bits 4742 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4743 getF32Constant(DAG, 0x3c5d51ce, dl)); 4744 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4745 getF32Constant(DAG, 0x3e00685a, dl)); 4746 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4747 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4748 getF32Constant(DAG, 0x3efb6798, dl)); 4749 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4750 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4751 getF32Constant(DAG, 0x3f88d192, dl)); 4752 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4753 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4754 getF32Constant(DAG, 0x3fc4316c, dl)); 4755 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4756 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4757 getF32Constant(DAG, 0x3f57ce70, dl)); 4758 } 4759 4760 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4761 } 4762 4763 // No special expansion. 4764 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4765 } 4766 4767 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4768 /// limited-precision mode. 4769 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4770 const TargetLowering &TLI) { 4771 if (Op.getValueType() == MVT::f32 && 4772 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4773 return getLimitedPrecisionExp2(Op, dl, DAG); 4774 4775 // No special expansion. 4776 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4777 } 4778 4779 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4780 /// limited-precision mode with x == 10.0f. 4781 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4782 SelectionDAG &DAG, const TargetLowering &TLI) { 4783 bool IsExp10 = false; 4784 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4785 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4786 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4787 APFloat Ten(10.0f); 4788 IsExp10 = LHSC->isExactlyValue(Ten); 4789 } 4790 } 4791 4792 // TODO: What fast-math-flags should be set on the FMUL node? 4793 if (IsExp10) { 4794 // Put the exponent in the right bit position for later addition to the 4795 // final result: 4796 // 4797 // #define LOG2OF10 3.3219281f 4798 // t0 = Op * LOG2OF10; 4799 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4800 getF32Constant(DAG, 0x40549a78, dl)); 4801 return getLimitedPrecisionExp2(t0, dl, DAG); 4802 } 4803 4804 // No special expansion. 4805 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4806 } 4807 4808 /// ExpandPowI - Expand a llvm.powi intrinsic. 4809 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4810 SelectionDAG &DAG) { 4811 // If RHS is a constant, we can expand this out to a multiplication tree, 4812 // otherwise we end up lowering to a call to __powidf2 (for example). When 4813 // optimizing for size, we only want to do this if the expansion would produce 4814 // a small number of multiplies, otherwise we do the full expansion. 4815 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4816 // Get the exponent as a positive value. 4817 unsigned Val = RHSC->getSExtValue(); 4818 if ((int)Val < 0) Val = -Val; 4819 4820 // powi(x, 0) -> 1.0 4821 if (Val == 0) 4822 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4823 4824 const Function &F = DAG.getMachineFunction().getFunction(); 4825 if (!F.optForSize() || 4826 // If optimizing for size, don't insert too many multiplies. 4827 // This inserts up to 5 multiplies. 4828 countPopulation(Val) + Log2_32(Val) < 7) { 4829 // We use the simple binary decomposition method to generate the multiply 4830 // sequence. There are more optimal ways to do this (for example, 4831 // powi(x,15) generates one more multiply than it should), but this has 4832 // the benefit of being both really simple and much better than a libcall. 4833 SDValue Res; // Logically starts equal to 1.0 4834 SDValue CurSquare = LHS; 4835 // TODO: Intrinsics should have fast-math-flags that propagate to these 4836 // nodes. 4837 while (Val) { 4838 if (Val & 1) { 4839 if (Res.getNode()) 4840 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4841 else 4842 Res = CurSquare; // 1.0*CurSquare. 4843 } 4844 4845 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4846 CurSquare, CurSquare); 4847 Val >>= 1; 4848 } 4849 4850 // If the original was negative, invert the result, producing 1/(x*x*x). 4851 if (RHSC->getSExtValue() < 0) 4852 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4853 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4854 return Res; 4855 } 4856 } 4857 4858 // Otherwise, expand to a libcall. 4859 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4860 } 4861 4862 // getUnderlyingArgReg - Find underlying register used for a truncated or 4863 // bitcasted argument. 4864 static unsigned getUnderlyingArgReg(const SDValue &N) { 4865 switch (N.getOpcode()) { 4866 case ISD::CopyFromReg: 4867 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4868 case ISD::BITCAST: 4869 case ISD::AssertZext: 4870 case ISD::AssertSext: 4871 case ISD::TRUNCATE: 4872 return getUnderlyingArgReg(N.getOperand(0)); 4873 default: 4874 return 0; 4875 } 4876 } 4877 4878 /// If the DbgValueInst is a dbg_value of a function argument, create the 4879 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4880 /// instruction selection, they will be inserted to the entry BB. 4881 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4882 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4883 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4884 const Argument *Arg = dyn_cast<Argument>(V); 4885 if (!Arg) 4886 return false; 4887 4888 MachineFunction &MF = DAG.getMachineFunction(); 4889 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4890 4891 bool IsIndirect = false; 4892 Optional<MachineOperand> Op; 4893 // Some arguments' frame index is recorded during argument lowering. 4894 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4895 if (FI != std::numeric_limits<int>::max()) 4896 Op = MachineOperand::CreateFI(FI); 4897 4898 if (!Op && N.getNode()) { 4899 unsigned Reg = getUnderlyingArgReg(N); 4900 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4901 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4902 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4903 if (PR) 4904 Reg = PR; 4905 } 4906 if (Reg) { 4907 Op = MachineOperand::CreateReg(Reg, false); 4908 IsIndirect = IsDbgDeclare; 4909 } 4910 } 4911 4912 if (!Op && N.getNode()) 4913 // Check if frame index is available. 4914 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4915 if (FrameIndexSDNode *FINode = 4916 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4917 Op = MachineOperand::CreateFI(FINode->getIndex()); 4918 4919 if (!Op) { 4920 // Check if ValueMap has reg number. 4921 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4922 if (VMI != FuncInfo.ValueMap.end()) { 4923 const auto &TLI = DAG.getTargetLoweringInfo(); 4924 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4925 V->getType(), isABIRegCopy(V)); 4926 if (RFV.occupiesMultipleRegs()) { 4927 unsigned Offset = 0; 4928 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4929 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4930 auto FragmentExpr = DIExpression::createFragmentExpression( 4931 Expr, Offset, RegAndSize.second); 4932 if (!FragmentExpr) 4933 continue; 4934 FuncInfo.ArgDbgValues.push_back( 4935 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4936 Op->getReg(), Variable, *FragmentExpr)); 4937 Offset += RegAndSize.second; 4938 } 4939 return true; 4940 } 4941 Op = MachineOperand::CreateReg(VMI->second, false); 4942 IsIndirect = IsDbgDeclare; 4943 } 4944 } 4945 4946 if (!Op) 4947 return false; 4948 4949 assert(Variable->isValidLocationForIntrinsic(DL) && 4950 "Expected inlined-at fields to agree"); 4951 if (Op->isReg()) 4952 FuncInfo.ArgDbgValues.push_back( 4953 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4954 Op->getReg(), Variable, Expr)); 4955 else 4956 FuncInfo.ArgDbgValues.push_back( 4957 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4958 .add(*Op) 4959 .addImm(0) 4960 .addMetadata(Variable) 4961 .addMetadata(Expr)); 4962 4963 return true; 4964 } 4965 4966 /// Return the appropriate SDDbgValue based on N. 4967 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4968 DILocalVariable *Variable, 4969 DIExpression *Expr, 4970 const DebugLoc &dl, 4971 unsigned DbgSDNodeOrder) { 4972 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4973 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4974 // stack slot locations as such instead of as indirectly addressed 4975 // locations. 4976 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4977 DbgSDNodeOrder); 4978 } 4979 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4980 DbgSDNodeOrder); 4981 } 4982 4983 // VisualStudio defines setjmp as _setjmp 4984 #if defined(_MSC_VER) && defined(setjmp) && \ 4985 !defined(setjmp_undefined_for_msvc) 4986 # pragma push_macro("setjmp") 4987 # undef setjmp 4988 # define setjmp_undefined_for_msvc 4989 #endif 4990 4991 /// Lower the call to the specified intrinsic function. If we want to emit this 4992 /// as a call to a named external function, return the name. Otherwise, lower it 4993 /// and return null. 4994 const char * 4995 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4997 SDLoc sdl = getCurSDLoc(); 4998 DebugLoc dl = getCurDebugLoc(); 4999 SDValue Res; 5000 5001 switch (Intrinsic) { 5002 default: 5003 // By default, turn this into a target intrinsic node. 5004 visitTargetIntrinsic(I, Intrinsic); 5005 return nullptr; 5006 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5007 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5008 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5009 case Intrinsic::returnaddress: 5010 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5011 TLI.getPointerTy(DAG.getDataLayout()), 5012 getValue(I.getArgOperand(0)))); 5013 return nullptr; 5014 case Intrinsic::addressofreturnaddress: 5015 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5016 TLI.getPointerTy(DAG.getDataLayout()))); 5017 return nullptr; 5018 case Intrinsic::frameaddress: 5019 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5020 TLI.getPointerTy(DAG.getDataLayout()), 5021 getValue(I.getArgOperand(0)))); 5022 return nullptr; 5023 case Intrinsic::read_register: { 5024 Value *Reg = I.getArgOperand(0); 5025 SDValue Chain = getRoot(); 5026 SDValue RegName = 5027 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5028 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5029 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5030 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5031 setValue(&I, Res); 5032 DAG.setRoot(Res.getValue(1)); 5033 return nullptr; 5034 } 5035 case Intrinsic::write_register: { 5036 Value *Reg = I.getArgOperand(0); 5037 Value *RegValue = I.getArgOperand(1); 5038 SDValue Chain = getRoot(); 5039 SDValue RegName = 5040 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5041 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5042 RegName, getValue(RegValue))); 5043 return nullptr; 5044 } 5045 case Intrinsic::setjmp: 5046 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5047 case Intrinsic::longjmp: 5048 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5049 case Intrinsic::memcpy: { 5050 const auto &MCI = cast<MemCpyInst>(I); 5051 SDValue Op1 = getValue(I.getArgOperand(0)); 5052 SDValue Op2 = getValue(I.getArgOperand(1)); 5053 SDValue Op3 = getValue(I.getArgOperand(2)); 5054 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5055 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5056 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5057 unsigned Align = MinAlign(DstAlign, SrcAlign); 5058 bool isVol = MCI.isVolatile(); 5059 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5060 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5061 // node. 5062 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5063 false, isTC, 5064 MachinePointerInfo(I.getArgOperand(0)), 5065 MachinePointerInfo(I.getArgOperand(1))); 5066 updateDAGForMaybeTailCall(MC); 5067 return nullptr; 5068 } 5069 case Intrinsic::memset: { 5070 const auto &MSI = cast<MemSetInst>(I); 5071 SDValue Op1 = getValue(I.getArgOperand(0)); 5072 SDValue Op2 = getValue(I.getArgOperand(1)); 5073 SDValue Op3 = getValue(I.getArgOperand(2)); 5074 // @llvm.memset defines 0 and 1 to both mean no alignment. 5075 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5076 bool isVol = MSI.isVolatile(); 5077 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5078 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5079 isTC, MachinePointerInfo(I.getArgOperand(0))); 5080 updateDAGForMaybeTailCall(MS); 5081 return nullptr; 5082 } 5083 case Intrinsic::memmove: { 5084 const auto &MMI = cast<MemMoveInst>(I); 5085 SDValue Op1 = getValue(I.getArgOperand(0)); 5086 SDValue Op2 = getValue(I.getArgOperand(1)); 5087 SDValue Op3 = getValue(I.getArgOperand(2)); 5088 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5089 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5090 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5091 unsigned Align = MinAlign(DstAlign, SrcAlign); 5092 bool isVol = MMI.isVolatile(); 5093 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5094 // FIXME: Support passing different dest/src alignments to the memmove DAG 5095 // node. 5096 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5097 isTC, MachinePointerInfo(I.getArgOperand(0)), 5098 MachinePointerInfo(I.getArgOperand(1))); 5099 updateDAGForMaybeTailCall(MM); 5100 return nullptr; 5101 } 5102 case Intrinsic::memcpy_element_unordered_atomic: { 5103 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5104 SDValue Dst = getValue(MI.getRawDest()); 5105 SDValue Src = getValue(MI.getRawSource()); 5106 SDValue Length = getValue(MI.getLength()); 5107 5108 unsigned DstAlign = MI.getDestAlignment(); 5109 unsigned SrcAlign = MI.getSourceAlignment(); 5110 Type *LengthTy = MI.getLength()->getType(); 5111 unsigned ElemSz = MI.getElementSizeInBytes(); 5112 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5113 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5114 SrcAlign, Length, LengthTy, ElemSz, isTC, 5115 MachinePointerInfo(MI.getRawDest()), 5116 MachinePointerInfo(MI.getRawSource())); 5117 updateDAGForMaybeTailCall(MC); 5118 return nullptr; 5119 } 5120 case Intrinsic::memmove_element_unordered_atomic: { 5121 auto &MI = cast<AtomicMemMoveInst>(I); 5122 SDValue Dst = getValue(MI.getRawDest()); 5123 SDValue Src = getValue(MI.getRawSource()); 5124 SDValue Length = getValue(MI.getLength()); 5125 5126 unsigned DstAlign = MI.getDestAlignment(); 5127 unsigned SrcAlign = MI.getSourceAlignment(); 5128 Type *LengthTy = MI.getLength()->getType(); 5129 unsigned ElemSz = MI.getElementSizeInBytes(); 5130 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5131 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5132 SrcAlign, Length, LengthTy, ElemSz, isTC, 5133 MachinePointerInfo(MI.getRawDest()), 5134 MachinePointerInfo(MI.getRawSource())); 5135 updateDAGForMaybeTailCall(MC); 5136 return nullptr; 5137 } 5138 case Intrinsic::memset_element_unordered_atomic: { 5139 auto &MI = cast<AtomicMemSetInst>(I); 5140 SDValue Dst = getValue(MI.getRawDest()); 5141 SDValue Val = getValue(MI.getValue()); 5142 SDValue Length = getValue(MI.getLength()); 5143 5144 unsigned DstAlign = MI.getDestAlignment(); 5145 Type *LengthTy = MI.getLength()->getType(); 5146 unsigned ElemSz = MI.getElementSizeInBytes(); 5147 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5148 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5149 LengthTy, ElemSz, isTC, 5150 MachinePointerInfo(MI.getRawDest())); 5151 updateDAGForMaybeTailCall(MC); 5152 return nullptr; 5153 } 5154 case Intrinsic::dbg_addr: 5155 case Intrinsic::dbg_declare: { 5156 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5157 DILocalVariable *Variable = DI.getVariable(); 5158 DIExpression *Expression = DI.getExpression(); 5159 dropDanglingDebugInfo(Variable, Expression); 5160 assert(Variable && "Missing variable"); 5161 5162 // Check if address has undef value. 5163 const Value *Address = DI.getVariableLocation(); 5164 if (!Address || isa<UndefValue>(Address) || 5165 (Address->use_empty() && !isa<Argument>(Address))) { 5166 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5167 return nullptr; 5168 } 5169 5170 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5171 5172 // Check if this variable can be described by a frame index, typically 5173 // either as a static alloca or a byval parameter. 5174 int FI = std::numeric_limits<int>::max(); 5175 if (const auto *AI = 5176 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5177 if (AI->isStaticAlloca()) { 5178 auto I = FuncInfo.StaticAllocaMap.find(AI); 5179 if (I != FuncInfo.StaticAllocaMap.end()) 5180 FI = I->second; 5181 } 5182 } else if (const auto *Arg = dyn_cast<Argument>( 5183 Address->stripInBoundsConstantOffsets())) { 5184 FI = FuncInfo.getArgumentFrameIndex(Arg); 5185 } 5186 5187 // llvm.dbg.addr is control dependent and always generates indirect 5188 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5189 // the MachineFunction variable table. 5190 if (FI != std::numeric_limits<int>::max()) { 5191 if (Intrinsic == Intrinsic::dbg_addr) { 5192 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5193 FI, dl, SDNodeOrder); 5194 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5195 } 5196 return nullptr; 5197 } 5198 5199 SDValue &N = NodeMap[Address]; 5200 if (!N.getNode() && isa<Argument>(Address)) 5201 // Check unused arguments map. 5202 N = UnusedArgNodeMap[Address]; 5203 SDDbgValue *SDV; 5204 if (N.getNode()) { 5205 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5206 Address = BCI->getOperand(0); 5207 // Parameters are handled specially. 5208 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5209 if (isParameter && FINode) { 5210 // Byval parameter. We have a frame index at this point. 5211 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5212 FINode->getIndex(), dl, SDNodeOrder); 5213 } else if (isa<Argument>(Address)) { 5214 // Address is an argument, so try to emit its dbg value using 5215 // virtual register info from the FuncInfo.ValueMap. 5216 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5217 return nullptr; 5218 } else { 5219 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5220 true, dl, SDNodeOrder); 5221 } 5222 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5223 } else { 5224 // If Address is an argument then try to emit its dbg value using 5225 // virtual register info from the FuncInfo.ValueMap. 5226 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5227 N)) { 5228 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5229 } 5230 } 5231 return nullptr; 5232 } 5233 case Intrinsic::dbg_label: { 5234 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5235 DILabel *Label = DI.getLabel(); 5236 assert(Label && "Missing label"); 5237 5238 SDDbgLabel *SDV; 5239 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5240 DAG.AddDbgLabel(SDV); 5241 return nullptr; 5242 } 5243 case Intrinsic::dbg_value: { 5244 const DbgValueInst &DI = cast<DbgValueInst>(I); 5245 assert(DI.getVariable() && "Missing variable"); 5246 5247 DILocalVariable *Variable = DI.getVariable(); 5248 DIExpression *Expression = DI.getExpression(); 5249 dropDanglingDebugInfo(Variable, Expression); 5250 const Value *V = DI.getValue(); 5251 if (!V) 5252 return nullptr; 5253 5254 SDDbgValue *SDV; 5255 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5256 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5257 DAG.AddDbgValue(SDV, nullptr, false); 5258 return nullptr; 5259 } 5260 5261 // Do not use getValue() in here; we don't want to generate code at 5262 // this point if it hasn't been done yet. 5263 SDValue N = NodeMap[V]; 5264 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5265 N = UnusedArgNodeMap[V]; 5266 if (N.getNode()) { 5267 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5268 return nullptr; 5269 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5270 DAG.AddDbgValue(SDV, N.getNode(), false); 5271 return nullptr; 5272 } 5273 5274 // PHI nodes have already been selected, so we should know which VReg that 5275 // is assigns to already. 5276 if (isa<PHINode>(V)) { 5277 auto VMI = FuncInfo.ValueMap.find(V); 5278 if (VMI != FuncInfo.ValueMap.end()) { 5279 unsigned Reg = VMI->second; 5280 // The PHI node may be split up into several MI PHI nodes (in 5281 // FunctionLoweringInfo::set). 5282 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5283 V->getType(), false); 5284 if (RFV.occupiesMultipleRegs()) { 5285 unsigned Offset = 0; 5286 unsigned BitsToDescribe = 0; 5287 if (auto VarSize = Variable->getSizeInBits()) 5288 BitsToDescribe = *VarSize; 5289 if (auto Fragment = Expression->getFragmentInfo()) 5290 BitsToDescribe = Fragment->SizeInBits; 5291 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5292 unsigned RegisterSize = RegAndSize.second; 5293 // Bail out if all bits are described already. 5294 if (Offset >= BitsToDescribe) 5295 break; 5296 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5297 ? BitsToDescribe - Offset 5298 : RegisterSize; 5299 auto FragmentExpr = DIExpression::createFragmentExpression( 5300 Expression, Offset, FragmentSize); 5301 if (!FragmentExpr) 5302 continue; 5303 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5304 false, dl, SDNodeOrder); 5305 DAG.AddDbgValue(SDV, nullptr, false); 5306 Offset += RegisterSize; 5307 } 5308 } else { 5309 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5310 SDNodeOrder); 5311 DAG.AddDbgValue(SDV, nullptr, false); 5312 } 5313 return nullptr; 5314 } 5315 } 5316 5317 // TODO: When we get here we will either drop the dbg.value completely, or 5318 // we try to move it forward by letting it dangle for awhile. So we should 5319 // probably add an extra DbgValue to the DAG here, with a reference to 5320 // "noreg", to indicate that we have lost the debug location for the 5321 // variable. 5322 5323 if (!V->use_empty() ) { 5324 // Do not call getValue(V) yet, as we don't want to generate code. 5325 // Remember it for later. 5326 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5327 DanglingDebugInfoMap[V].push_back(DDI); 5328 return nullptr; 5329 } 5330 5331 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5332 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5333 return nullptr; 5334 } 5335 5336 case Intrinsic::eh_typeid_for: { 5337 // Find the type id for the given typeinfo. 5338 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5339 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5340 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5341 setValue(&I, Res); 5342 return nullptr; 5343 } 5344 5345 case Intrinsic::eh_return_i32: 5346 case Intrinsic::eh_return_i64: 5347 DAG.getMachineFunction().setCallsEHReturn(true); 5348 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5349 MVT::Other, 5350 getControlRoot(), 5351 getValue(I.getArgOperand(0)), 5352 getValue(I.getArgOperand(1)))); 5353 return nullptr; 5354 case Intrinsic::eh_unwind_init: 5355 DAG.getMachineFunction().setCallsUnwindInit(true); 5356 return nullptr; 5357 case Intrinsic::eh_dwarf_cfa: 5358 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5359 TLI.getPointerTy(DAG.getDataLayout()), 5360 getValue(I.getArgOperand(0)))); 5361 return nullptr; 5362 case Intrinsic::eh_sjlj_callsite: { 5363 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5364 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5365 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5366 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5367 5368 MMI.setCurrentCallSite(CI->getZExtValue()); 5369 return nullptr; 5370 } 5371 case Intrinsic::eh_sjlj_functioncontext: { 5372 // Get and store the index of the function context. 5373 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5374 AllocaInst *FnCtx = 5375 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5376 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5377 MFI.setFunctionContextIndex(FI); 5378 return nullptr; 5379 } 5380 case Intrinsic::eh_sjlj_setjmp: { 5381 SDValue Ops[2]; 5382 Ops[0] = getRoot(); 5383 Ops[1] = getValue(I.getArgOperand(0)); 5384 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5385 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5386 setValue(&I, Op.getValue(0)); 5387 DAG.setRoot(Op.getValue(1)); 5388 return nullptr; 5389 } 5390 case Intrinsic::eh_sjlj_longjmp: 5391 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5392 getRoot(), getValue(I.getArgOperand(0)))); 5393 return nullptr; 5394 case Intrinsic::eh_sjlj_setup_dispatch: 5395 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5396 getRoot())); 5397 return nullptr; 5398 case Intrinsic::masked_gather: 5399 visitMaskedGather(I); 5400 return nullptr; 5401 case Intrinsic::masked_load: 5402 visitMaskedLoad(I); 5403 return nullptr; 5404 case Intrinsic::masked_scatter: 5405 visitMaskedScatter(I); 5406 return nullptr; 5407 case Intrinsic::masked_store: 5408 visitMaskedStore(I); 5409 return nullptr; 5410 case Intrinsic::masked_expandload: 5411 visitMaskedLoad(I, true /* IsExpanding */); 5412 return nullptr; 5413 case Intrinsic::masked_compressstore: 5414 visitMaskedStore(I, true /* IsCompressing */); 5415 return nullptr; 5416 case Intrinsic::x86_mmx_pslli_w: 5417 case Intrinsic::x86_mmx_pslli_d: 5418 case Intrinsic::x86_mmx_pslli_q: 5419 case Intrinsic::x86_mmx_psrli_w: 5420 case Intrinsic::x86_mmx_psrli_d: 5421 case Intrinsic::x86_mmx_psrli_q: 5422 case Intrinsic::x86_mmx_psrai_w: 5423 case Intrinsic::x86_mmx_psrai_d: { 5424 SDValue ShAmt = getValue(I.getArgOperand(1)); 5425 if (isa<ConstantSDNode>(ShAmt)) { 5426 visitTargetIntrinsic(I, Intrinsic); 5427 return nullptr; 5428 } 5429 unsigned NewIntrinsic = 0; 5430 EVT ShAmtVT = MVT::v2i32; 5431 switch (Intrinsic) { 5432 case Intrinsic::x86_mmx_pslli_w: 5433 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5434 break; 5435 case Intrinsic::x86_mmx_pslli_d: 5436 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5437 break; 5438 case Intrinsic::x86_mmx_pslli_q: 5439 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5440 break; 5441 case Intrinsic::x86_mmx_psrli_w: 5442 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5443 break; 5444 case Intrinsic::x86_mmx_psrli_d: 5445 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5446 break; 5447 case Intrinsic::x86_mmx_psrli_q: 5448 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5449 break; 5450 case Intrinsic::x86_mmx_psrai_w: 5451 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5452 break; 5453 case Intrinsic::x86_mmx_psrai_d: 5454 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5455 break; 5456 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5457 } 5458 5459 // The vector shift intrinsics with scalars uses 32b shift amounts but 5460 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5461 // to be zero. 5462 // We must do this early because v2i32 is not a legal type. 5463 SDValue ShOps[2]; 5464 ShOps[0] = ShAmt; 5465 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5466 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5467 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5468 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5469 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5470 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5471 getValue(I.getArgOperand(0)), ShAmt); 5472 setValue(&I, Res); 5473 return nullptr; 5474 } 5475 case Intrinsic::powi: 5476 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5477 getValue(I.getArgOperand(1)), DAG)); 5478 return nullptr; 5479 case Intrinsic::log: 5480 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5481 return nullptr; 5482 case Intrinsic::log2: 5483 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5484 return nullptr; 5485 case Intrinsic::log10: 5486 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5487 return nullptr; 5488 case Intrinsic::exp: 5489 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5490 return nullptr; 5491 case Intrinsic::exp2: 5492 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5493 return nullptr; 5494 case Intrinsic::pow: 5495 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5496 getValue(I.getArgOperand(1)), DAG, TLI)); 5497 return nullptr; 5498 case Intrinsic::sqrt: 5499 case Intrinsic::fabs: 5500 case Intrinsic::sin: 5501 case Intrinsic::cos: 5502 case Intrinsic::floor: 5503 case Intrinsic::ceil: 5504 case Intrinsic::trunc: 5505 case Intrinsic::rint: 5506 case Intrinsic::nearbyint: 5507 case Intrinsic::round: 5508 case Intrinsic::canonicalize: { 5509 unsigned Opcode; 5510 switch (Intrinsic) { 5511 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5512 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5513 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5514 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5515 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5516 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5517 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5518 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5519 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5520 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5521 case Intrinsic::round: Opcode = ISD::FROUND; break; 5522 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5523 } 5524 5525 setValue(&I, DAG.getNode(Opcode, sdl, 5526 getValue(I.getArgOperand(0)).getValueType(), 5527 getValue(I.getArgOperand(0)))); 5528 return nullptr; 5529 } 5530 case Intrinsic::minnum: { 5531 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5532 unsigned Opc = 5533 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5534 ? ISD::FMINNAN 5535 : ISD::FMINNUM; 5536 setValue(&I, DAG.getNode(Opc, sdl, VT, 5537 getValue(I.getArgOperand(0)), 5538 getValue(I.getArgOperand(1)))); 5539 return nullptr; 5540 } 5541 case Intrinsic::maxnum: { 5542 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5543 unsigned Opc = 5544 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5545 ? ISD::FMAXNAN 5546 : ISD::FMAXNUM; 5547 setValue(&I, DAG.getNode(Opc, sdl, VT, 5548 getValue(I.getArgOperand(0)), 5549 getValue(I.getArgOperand(1)))); 5550 return nullptr; 5551 } 5552 case Intrinsic::copysign: 5553 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5554 getValue(I.getArgOperand(0)).getValueType(), 5555 getValue(I.getArgOperand(0)), 5556 getValue(I.getArgOperand(1)))); 5557 return nullptr; 5558 case Intrinsic::fma: 5559 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5560 getValue(I.getArgOperand(0)).getValueType(), 5561 getValue(I.getArgOperand(0)), 5562 getValue(I.getArgOperand(1)), 5563 getValue(I.getArgOperand(2)))); 5564 return nullptr; 5565 case Intrinsic::experimental_constrained_fadd: 5566 case Intrinsic::experimental_constrained_fsub: 5567 case Intrinsic::experimental_constrained_fmul: 5568 case Intrinsic::experimental_constrained_fdiv: 5569 case Intrinsic::experimental_constrained_frem: 5570 case Intrinsic::experimental_constrained_fma: 5571 case Intrinsic::experimental_constrained_sqrt: 5572 case Intrinsic::experimental_constrained_pow: 5573 case Intrinsic::experimental_constrained_powi: 5574 case Intrinsic::experimental_constrained_sin: 5575 case Intrinsic::experimental_constrained_cos: 5576 case Intrinsic::experimental_constrained_exp: 5577 case Intrinsic::experimental_constrained_exp2: 5578 case Intrinsic::experimental_constrained_log: 5579 case Intrinsic::experimental_constrained_log10: 5580 case Intrinsic::experimental_constrained_log2: 5581 case Intrinsic::experimental_constrained_rint: 5582 case Intrinsic::experimental_constrained_nearbyint: 5583 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5584 return nullptr; 5585 case Intrinsic::fmuladd: { 5586 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5587 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5588 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5589 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5590 getValue(I.getArgOperand(0)).getValueType(), 5591 getValue(I.getArgOperand(0)), 5592 getValue(I.getArgOperand(1)), 5593 getValue(I.getArgOperand(2)))); 5594 } else { 5595 // TODO: Intrinsic calls should have fast-math-flags. 5596 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5597 getValue(I.getArgOperand(0)).getValueType(), 5598 getValue(I.getArgOperand(0)), 5599 getValue(I.getArgOperand(1))); 5600 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5601 getValue(I.getArgOperand(0)).getValueType(), 5602 Mul, 5603 getValue(I.getArgOperand(2))); 5604 setValue(&I, Add); 5605 } 5606 return nullptr; 5607 } 5608 case Intrinsic::convert_to_fp16: 5609 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5610 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5611 getValue(I.getArgOperand(0)), 5612 DAG.getTargetConstant(0, sdl, 5613 MVT::i32)))); 5614 return nullptr; 5615 case Intrinsic::convert_from_fp16: 5616 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5617 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5618 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5619 getValue(I.getArgOperand(0))))); 5620 return nullptr; 5621 case Intrinsic::pcmarker: { 5622 SDValue Tmp = getValue(I.getArgOperand(0)); 5623 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5624 return nullptr; 5625 } 5626 case Intrinsic::readcyclecounter: { 5627 SDValue Op = getRoot(); 5628 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5629 DAG.getVTList(MVT::i64, MVT::Other), Op); 5630 setValue(&I, Res); 5631 DAG.setRoot(Res.getValue(1)); 5632 return nullptr; 5633 } 5634 case Intrinsic::bitreverse: 5635 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5636 getValue(I.getArgOperand(0)).getValueType(), 5637 getValue(I.getArgOperand(0)))); 5638 return nullptr; 5639 case Intrinsic::bswap: 5640 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5641 getValue(I.getArgOperand(0)).getValueType(), 5642 getValue(I.getArgOperand(0)))); 5643 return nullptr; 5644 case Intrinsic::cttz: { 5645 SDValue Arg = getValue(I.getArgOperand(0)); 5646 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5647 EVT Ty = Arg.getValueType(); 5648 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5649 sdl, Ty, Arg)); 5650 return nullptr; 5651 } 5652 case Intrinsic::ctlz: { 5653 SDValue Arg = getValue(I.getArgOperand(0)); 5654 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5655 EVT Ty = Arg.getValueType(); 5656 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5657 sdl, Ty, Arg)); 5658 return nullptr; 5659 } 5660 case Intrinsic::ctpop: { 5661 SDValue Arg = getValue(I.getArgOperand(0)); 5662 EVT Ty = Arg.getValueType(); 5663 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5664 return nullptr; 5665 } 5666 case Intrinsic::stacksave: { 5667 SDValue Op = getRoot(); 5668 Res = DAG.getNode( 5669 ISD::STACKSAVE, sdl, 5670 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5671 setValue(&I, Res); 5672 DAG.setRoot(Res.getValue(1)); 5673 return nullptr; 5674 } 5675 case Intrinsic::stackrestore: 5676 Res = getValue(I.getArgOperand(0)); 5677 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5678 return nullptr; 5679 case Intrinsic::get_dynamic_area_offset: { 5680 SDValue Op = getRoot(); 5681 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5682 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5683 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5684 // target. 5685 if (PtrTy != ResTy) 5686 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5687 " intrinsic!"); 5688 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5689 Op); 5690 DAG.setRoot(Op); 5691 setValue(&I, Res); 5692 return nullptr; 5693 } 5694 case Intrinsic::stackguard: { 5695 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5696 MachineFunction &MF = DAG.getMachineFunction(); 5697 const Module &M = *MF.getFunction().getParent(); 5698 SDValue Chain = getRoot(); 5699 if (TLI.useLoadStackGuardNode()) { 5700 Res = getLoadStackGuard(DAG, sdl, Chain); 5701 } else { 5702 const Value *Global = TLI.getSDagStackGuard(M); 5703 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5704 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5705 MachinePointerInfo(Global, 0), Align, 5706 MachineMemOperand::MOVolatile); 5707 } 5708 if (TLI.useStackGuardXorFP()) 5709 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5710 DAG.setRoot(Chain); 5711 setValue(&I, Res); 5712 return nullptr; 5713 } 5714 case Intrinsic::stackprotector: { 5715 // Emit code into the DAG to store the stack guard onto the stack. 5716 MachineFunction &MF = DAG.getMachineFunction(); 5717 MachineFrameInfo &MFI = MF.getFrameInfo(); 5718 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5719 SDValue Src, Chain = getRoot(); 5720 5721 if (TLI.useLoadStackGuardNode()) 5722 Src = getLoadStackGuard(DAG, sdl, Chain); 5723 else 5724 Src = getValue(I.getArgOperand(0)); // The guard's value. 5725 5726 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5727 5728 int FI = FuncInfo.StaticAllocaMap[Slot]; 5729 MFI.setStackProtectorIndex(FI); 5730 5731 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5732 5733 // Store the stack protector onto the stack. 5734 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5735 DAG.getMachineFunction(), FI), 5736 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5737 setValue(&I, Res); 5738 DAG.setRoot(Res); 5739 return nullptr; 5740 } 5741 case Intrinsic::objectsize: { 5742 // If we don't know by now, we're never going to know. 5743 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5744 5745 assert(CI && "Non-constant type in __builtin_object_size?"); 5746 5747 SDValue Arg = getValue(I.getCalledValue()); 5748 EVT Ty = Arg.getValueType(); 5749 5750 if (CI->isZero()) 5751 Res = DAG.getConstant(-1ULL, sdl, Ty); 5752 else 5753 Res = DAG.getConstant(0, sdl, Ty); 5754 5755 setValue(&I, Res); 5756 return nullptr; 5757 } 5758 case Intrinsic::annotation: 5759 case Intrinsic::ptr_annotation: 5760 case Intrinsic::launder_invariant_group: 5761 // Drop the intrinsic, but forward the value 5762 setValue(&I, getValue(I.getOperand(0))); 5763 return nullptr; 5764 case Intrinsic::assume: 5765 case Intrinsic::var_annotation: 5766 case Intrinsic::sideeffect: 5767 // Discard annotate attributes, assumptions, and artificial side-effects. 5768 return nullptr; 5769 5770 case Intrinsic::codeview_annotation: { 5771 // Emit a label associated with this metadata. 5772 MachineFunction &MF = DAG.getMachineFunction(); 5773 MCSymbol *Label = 5774 MF.getMMI().getContext().createTempSymbol("annotation", true); 5775 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5776 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5777 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5778 DAG.setRoot(Res); 5779 return nullptr; 5780 } 5781 5782 case Intrinsic::init_trampoline: { 5783 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5784 5785 SDValue Ops[6]; 5786 Ops[0] = getRoot(); 5787 Ops[1] = getValue(I.getArgOperand(0)); 5788 Ops[2] = getValue(I.getArgOperand(1)); 5789 Ops[3] = getValue(I.getArgOperand(2)); 5790 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5791 Ops[5] = DAG.getSrcValue(F); 5792 5793 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5794 5795 DAG.setRoot(Res); 5796 return nullptr; 5797 } 5798 case Intrinsic::adjust_trampoline: 5799 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5800 TLI.getPointerTy(DAG.getDataLayout()), 5801 getValue(I.getArgOperand(0)))); 5802 return nullptr; 5803 case Intrinsic::gcroot: { 5804 assert(DAG.getMachineFunction().getFunction().hasGC() && 5805 "only valid in functions with gc specified, enforced by Verifier"); 5806 assert(GFI && "implied by previous"); 5807 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5808 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5809 5810 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5811 GFI->addStackRoot(FI->getIndex(), TypeMap); 5812 return nullptr; 5813 } 5814 case Intrinsic::gcread: 5815 case Intrinsic::gcwrite: 5816 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5817 case Intrinsic::flt_rounds: 5818 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5819 return nullptr; 5820 5821 case Intrinsic::expect: 5822 // Just replace __builtin_expect(exp, c) with EXP. 5823 setValue(&I, getValue(I.getArgOperand(0))); 5824 return nullptr; 5825 5826 case Intrinsic::debugtrap: 5827 case Intrinsic::trap: { 5828 StringRef TrapFuncName = 5829 I.getAttributes() 5830 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5831 .getValueAsString(); 5832 if (TrapFuncName.empty()) { 5833 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5834 ISD::TRAP : ISD::DEBUGTRAP; 5835 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5836 return nullptr; 5837 } 5838 TargetLowering::ArgListTy Args; 5839 5840 TargetLowering::CallLoweringInfo CLI(DAG); 5841 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5842 CallingConv::C, I.getType(), 5843 DAG.getExternalSymbol(TrapFuncName.data(), 5844 TLI.getPointerTy(DAG.getDataLayout())), 5845 std::move(Args)); 5846 5847 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5848 DAG.setRoot(Result.second); 5849 return nullptr; 5850 } 5851 5852 case Intrinsic::uadd_with_overflow: 5853 case Intrinsic::sadd_with_overflow: 5854 case Intrinsic::usub_with_overflow: 5855 case Intrinsic::ssub_with_overflow: 5856 case Intrinsic::umul_with_overflow: 5857 case Intrinsic::smul_with_overflow: { 5858 ISD::NodeType Op; 5859 switch (Intrinsic) { 5860 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5861 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5862 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5863 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5864 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5865 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5866 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5867 } 5868 SDValue Op1 = getValue(I.getArgOperand(0)); 5869 SDValue Op2 = getValue(I.getArgOperand(1)); 5870 5871 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5872 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5873 return nullptr; 5874 } 5875 case Intrinsic::prefetch: { 5876 SDValue Ops[5]; 5877 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5878 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5879 Ops[0] = DAG.getRoot(); 5880 Ops[1] = getValue(I.getArgOperand(0)); 5881 Ops[2] = getValue(I.getArgOperand(1)); 5882 Ops[3] = getValue(I.getArgOperand(2)); 5883 Ops[4] = getValue(I.getArgOperand(3)); 5884 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5885 DAG.getVTList(MVT::Other), Ops, 5886 EVT::getIntegerVT(*Context, 8), 5887 MachinePointerInfo(I.getArgOperand(0)), 5888 0, /* align */ 5889 Flags); 5890 5891 // Chain the prefetch in parallell with any pending loads, to stay out of 5892 // the way of later optimizations. 5893 PendingLoads.push_back(Result); 5894 Result = getRoot(); 5895 DAG.setRoot(Result); 5896 return nullptr; 5897 } 5898 case Intrinsic::lifetime_start: 5899 case Intrinsic::lifetime_end: { 5900 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5901 // Stack coloring is not enabled in O0, discard region information. 5902 if (TM.getOptLevel() == CodeGenOpt::None) 5903 return nullptr; 5904 5905 SmallVector<Value *, 4> Allocas; 5906 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5907 5908 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5909 E = Allocas.end(); Object != E; ++Object) { 5910 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5911 5912 // Could not find an Alloca. 5913 if (!LifetimeObject) 5914 continue; 5915 5916 // First check that the Alloca is static, otherwise it won't have a 5917 // valid frame index. 5918 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5919 if (SI == FuncInfo.StaticAllocaMap.end()) 5920 return nullptr; 5921 5922 int FI = SI->second; 5923 5924 SDValue Ops[2]; 5925 Ops[0] = getRoot(); 5926 Ops[1] = 5927 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5928 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5929 5930 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5931 DAG.setRoot(Res); 5932 } 5933 return nullptr; 5934 } 5935 case Intrinsic::invariant_start: 5936 // Discard region information. 5937 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5938 return nullptr; 5939 case Intrinsic::invariant_end: 5940 // Discard region information. 5941 return nullptr; 5942 case Intrinsic::clear_cache: 5943 return TLI.getClearCacheBuiltinName(); 5944 case Intrinsic::donothing: 5945 // ignore 5946 return nullptr; 5947 case Intrinsic::experimental_stackmap: 5948 visitStackmap(I); 5949 return nullptr; 5950 case Intrinsic::experimental_patchpoint_void: 5951 case Intrinsic::experimental_patchpoint_i64: 5952 visitPatchpoint(&I); 5953 return nullptr; 5954 case Intrinsic::experimental_gc_statepoint: 5955 LowerStatepoint(ImmutableStatepoint(&I)); 5956 return nullptr; 5957 case Intrinsic::experimental_gc_result: 5958 visitGCResult(cast<GCResultInst>(I)); 5959 return nullptr; 5960 case Intrinsic::experimental_gc_relocate: 5961 visitGCRelocate(cast<GCRelocateInst>(I)); 5962 return nullptr; 5963 case Intrinsic::instrprof_increment: 5964 llvm_unreachable("instrprof failed to lower an increment"); 5965 case Intrinsic::instrprof_value_profile: 5966 llvm_unreachable("instrprof failed to lower a value profiling call"); 5967 case Intrinsic::localescape: { 5968 MachineFunction &MF = DAG.getMachineFunction(); 5969 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5970 5971 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5972 // is the same on all targets. 5973 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5974 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5975 if (isa<ConstantPointerNull>(Arg)) 5976 continue; // Skip null pointers. They represent a hole in index space. 5977 AllocaInst *Slot = cast<AllocaInst>(Arg); 5978 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5979 "can only escape static allocas"); 5980 int FI = FuncInfo.StaticAllocaMap[Slot]; 5981 MCSymbol *FrameAllocSym = 5982 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5983 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5984 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5985 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5986 .addSym(FrameAllocSym) 5987 .addFrameIndex(FI); 5988 } 5989 5990 return nullptr; 5991 } 5992 5993 case Intrinsic::localrecover: { 5994 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5995 MachineFunction &MF = DAG.getMachineFunction(); 5996 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5997 5998 // Get the symbol that defines the frame offset. 5999 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6000 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6001 unsigned IdxVal = 6002 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6003 MCSymbol *FrameAllocSym = 6004 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6005 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6006 6007 // Create a MCSymbol for the label to avoid any target lowering 6008 // that would make this PC relative. 6009 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6010 SDValue OffsetVal = 6011 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6012 6013 // Add the offset to the FP. 6014 Value *FP = I.getArgOperand(1); 6015 SDValue FPVal = getValue(FP); 6016 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6017 setValue(&I, Add); 6018 6019 return nullptr; 6020 } 6021 6022 case Intrinsic::eh_exceptionpointer: 6023 case Intrinsic::eh_exceptioncode: { 6024 // Get the exception pointer vreg, copy from it, and resize it to fit. 6025 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6026 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6027 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6028 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6029 SDValue N = 6030 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6031 if (Intrinsic == Intrinsic::eh_exceptioncode) 6032 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6033 setValue(&I, N); 6034 return nullptr; 6035 } 6036 case Intrinsic::xray_customevent: { 6037 // Here we want to make sure that the intrinsic behaves as if it has a 6038 // specific calling convention, and only for x86_64. 6039 // FIXME: Support other platforms later. 6040 const auto &Triple = DAG.getTarget().getTargetTriple(); 6041 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6042 return nullptr; 6043 6044 SDLoc DL = getCurSDLoc(); 6045 SmallVector<SDValue, 8> Ops; 6046 6047 // We want to say that we always want the arguments in registers. 6048 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6049 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6050 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6051 SDValue Chain = getRoot(); 6052 Ops.push_back(LogEntryVal); 6053 Ops.push_back(StrSizeVal); 6054 Ops.push_back(Chain); 6055 6056 // We need to enforce the calling convention for the callsite, so that 6057 // argument ordering is enforced correctly, and that register allocation can 6058 // see that some registers may be assumed clobbered and have to preserve 6059 // them across calls to the intrinsic. 6060 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6061 DL, NodeTys, Ops); 6062 SDValue patchableNode = SDValue(MN, 0); 6063 DAG.setRoot(patchableNode); 6064 setValue(&I, patchableNode); 6065 return nullptr; 6066 } 6067 case Intrinsic::xray_typedevent: { 6068 // Here we want to make sure that the intrinsic behaves as if it has a 6069 // specific calling convention, and only for x86_64. 6070 // FIXME: Support other platforms later. 6071 const auto &Triple = DAG.getTarget().getTargetTriple(); 6072 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6073 return nullptr; 6074 6075 SDLoc DL = getCurSDLoc(); 6076 SmallVector<SDValue, 8> Ops; 6077 6078 // We want to say that we always want the arguments in registers. 6079 // It's unclear to me how manipulating the selection DAG here forces callers 6080 // to provide arguments in registers instead of on the stack. 6081 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6082 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6083 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6084 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6085 SDValue Chain = getRoot(); 6086 Ops.push_back(LogTypeId); 6087 Ops.push_back(LogEntryVal); 6088 Ops.push_back(StrSizeVal); 6089 Ops.push_back(Chain); 6090 6091 // We need to enforce the calling convention for the callsite, so that 6092 // argument ordering is enforced correctly, and that register allocation can 6093 // see that some registers may be assumed clobbered and have to preserve 6094 // them across calls to the intrinsic. 6095 MachineSDNode *MN = DAG.getMachineNode( 6096 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6097 SDValue patchableNode = SDValue(MN, 0); 6098 DAG.setRoot(patchableNode); 6099 setValue(&I, patchableNode); 6100 return nullptr; 6101 } 6102 case Intrinsic::experimental_deoptimize: 6103 LowerDeoptimizeCall(&I); 6104 return nullptr; 6105 6106 case Intrinsic::experimental_vector_reduce_fadd: 6107 case Intrinsic::experimental_vector_reduce_fmul: 6108 case Intrinsic::experimental_vector_reduce_add: 6109 case Intrinsic::experimental_vector_reduce_mul: 6110 case Intrinsic::experimental_vector_reduce_and: 6111 case Intrinsic::experimental_vector_reduce_or: 6112 case Intrinsic::experimental_vector_reduce_xor: 6113 case Intrinsic::experimental_vector_reduce_smax: 6114 case Intrinsic::experimental_vector_reduce_smin: 6115 case Intrinsic::experimental_vector_reduce_umax: 6116 case Intrinsic::experimental_vector_reduce_umin: 6117 case Intrinsic::experimental_vector_reduce_fmax: 6118 case Intrinsic::experimental_vector_reduce_fmin: 6119 visitVectorReduce(I, Intrinsic); 6120 return nullptr; 6121 6122 case Intrinsic::icall_branch_funnel: { 6123 SmallVector<SDValue, 16> Ops; 6124 Ops.push_back(DAG.getRoot()); 6125 Ops.push_back(getValue(I.getArgOperand(0))); 6126 6127 int64_t Offset; 6128 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6129 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6130 if (!Base) 6131 report_fatal_error( 6132 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6133 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6134 6135 struct BranchFunnelTarget { 6136 int64_t Offset; 6137 SDValue Target; 6138 }; 6139 SmallVector<BranchFunnelTarget, 8> Targets; 6140 6141 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6142 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6143 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6144 if (ElemBase != Base) 6145 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6146 "to the same GlobalValue"); 6147 6148 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6149 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6150 if (!GA) 6151 report_fatal_error( 6152 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6153 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6154 GA->getGlobal(), getCurSDLoc(), 6155 Val.getValueType(), GA->getOffset())}); 6156 } 6157 llvm::sort(Targets.begin(), Targets.end(), 6158 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6159 return T1.Offset < T2.Offset; 6160 }); 6161 6162 for (auto &T : Targets) { 6163 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6164 Ops.push_back(T.Target); 6165 } 6166 6167 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6168 getCurSDLoc(), MVT::Other, Ops), 6169 0); 6170 DAG.setRoot(N); 6171 setValue(&I, N); 6172 HasTailCall = true; 6173 return nullptr; 6174 } 6175 } 6176 } 6177 6178 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6179 const ConstrainedFPIntrinsic &FPI) { 6180 SDLoc sdl = getCurSDLoc(); 6181 unsigned Opcode; 6182 switch (FPI.getIntrinsicID()) { 6183 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6184 case Intrinsic::experimental_constrained_fadd: 6185 Opcode = ISD::STRICT_FADD; 6186 break; 6187 case Intrinsic::experimental_constrained_fsub: 6188 Opcode = ISD::STRICT_FSUB; 6189 break; 6190 case Intrinsic::experimental_constrained_fmul: 6191 Opcode = ISD::STRICT_FMUL; 6192 break; 6193 case Intrinsic::experimental_constrained_fdiv: 6194 Opcode = ISD::STRICT_FDIV; 6195 break; 6196 case Intrinsic::experimental_constrained_frem: 6197 Opcode = ISD::STRICT_FREM; 6198 break; 6199 case Intrinsic::experimental_constrained_fma: 6200 Opcode = ISD::STRICT_FMA; 6201 break; 6202 case Intrinsic::experimental_constrained_sqrt: 6203 Opcode = ISD::STRICT_FSQRT; 6204 break; 6205 case Intrinsic::experimental_constrained_pow: 6206 Opcode = ISD::STRICT_FPOW; 6207 break; 6208 case Intrinsic::experimental_constrained_powi: 6209 Opcode = ISD::STRICT_FPOWI; 6210 break; 6211 case Intrinsic::experimental_constrained_sin: 6212 Opcode = ISD::STRICT_FSIN; 6213 break; 6214 case Intrinsic::experimental_constrained_cos: 6215 Opcode = ISD::STRICT_FCOS; 6216 break; 6217 case Intrinsic::experimental_constrained_exp: 6218 Opcode = ISD::STRICT_FEXP; 6219 break; 6220 case Intrinsic::experimental_constrained_exp2: 6221 Opcode = ISD::STRICT_FEXP2; 6222 break; 6223 case Intrinsic::experimental_constrained_log: 6224 Opcode = ISD::STRICT_FLOG; 6225 break; 6226 case Intrinsic::experimental_constrained_log10: 6227 Opcode = ISD::STRICT_FLOG10; 6228 break; 6229 case Intrinsic::experimental_constrained_log2: 6230 Opcode = ISD::STRICT_FLOG2; 6231 break; 6232 case Intrinsic::experimental_constrained_rint: 6233 Opcode = ISD::STRICT_FRINT; 6234 break; 6235 case Intrinsic::experimental_constrained_nearbyint: 6236 Opcode = ISD::STRICT_FNEARBYINT; 6237 break; 6238 } 6239 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6240 SDValue Chain = getRoot(); 6241 SmallVector<EVT, 4> ValueVTs; 6242 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6243 ValueVTs.push_back(MVT::Other); // Out chain 6244 6245 SDVTList VTs = DAG.getVTList(ValueVTs); 6246 SDValue Result; 6247 if (FPI.isUnaryOp()) 6248 Result = DAG.getNode(Opcode, sdl, VTs, 6249 { Chain, getValue(FPI.getArgOperand(0)) }); 6250 else if (FPI.isTernaryOp()) 6251 Result = DAG.getNode(Opcode, sdl, VTs, 6252 { Chain, getValue(FPI.getArgOperand(0)), 6253 getValue(FPI.getArgOperand(1)), 6254 getValue(FPI.getArgOperand(2)) }); 6255 else 6256 Result = DAG.getNode(Opcode, sdl, VTs, 6257 { Chain, getValue(FPI.getArgOperand(0)), 6258 getValue(FPI.getArgOperand(1)) }); 6259 6260 assert(Result.getNode()->getNumValues() == 2); 6261 SDValue OutChain = Result.getValue(1); 6262 DAG.setRoot(OutChain); 6263 SDValue FPResult = Result.getValue(0); 6264 setValue(&FPI, FPResult); 6265 } 6266 6267 std::pair<SDValue, SDValue> 6268 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6269 const BasicBlock *EHPadBB) { 6270 MachineFunction &MF = DAG.getMachineFunction(); 6271 MachineModuleInfo &MMI = MF.getMMI(); 6272 MCSymbol *BeginLabel = nullptr; 6273 6274 if (EHPadBB) { 6275 // Insert a label before the invoke call to mark the try range. This can be 6276 // used to detect deletion of the invoke via the MachineModuleInfo. 6277 BeginLabel = MMI.getContext().createTempSymbol(); 6278 6279 // For SjLj, keep track of which landing pads go with which invokes 6280 // so as to maintain the ordering of pads in the LSDA. 6281 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6282 if (CallSiteIndex) { 6283 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6284 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6285 6286 // Now that the call site is handled, stop tracking it. 6287 MMI.setCurrentCallSite(0); 6288 } 6289 6290 // Both PendingLoads and PendingExports must be flushed here; 6291 // this call might not return. 6292 (void)getRoot(); 6293 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6294 6295 CLI.setChain(getRoot()); 6296 } 6297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6298 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6299 6300 assert((CLI.IsTailCall || Result.second.getNode()) && 6301 "Non-null chain expected with non-tail call!"); 6302 assert((Result.second.getNode() || !Result.first.getNode()) && 6303 "Null value expected with tail call!"); 6304 6305 if (!Result.second.getNode()) { 6306 // As a special case, a null chain means that a tail call has been emitted 6307 // and the DAG root is already updated. 6308 HasTailCall = true; 6309 6310 // Since there's no actual continuation from this block, nothing can be 6311 // relying on us setting vregs for them. 6312 PendingExports.clear(); 6313 } else { 6314 DAG.setRoot(Result.second); 6315 } 6316 6317 if (EHPadBB) { 6318 // Insert a label at the end of the invoke call to mark the try range. This 6319 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6320 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6321 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6322 6323 // Inform MachineModuleInfo of range. 6324 if (MF.hasEHFunclets()) { 6325 assert(CLI.CS); 6326 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6327 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6328 BeginLabel, EndLabel); 6329 } else { 6330 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6331 } 6332 } 6333 6334 return Result; 6335 } 6336 6337 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6338 bool isTailCall, 6339 const BasicBlock *EHPadBB) { 6340 auto &DL = DAG.getDataLayout(); 6341 FunctionType *FTy = CS.getFunctionType(); 6342 Type *RetTy = CS.getType(); 6343 6344 TargetLowering::ArgListTy Args; 6345 Args.reserve(CS.arg_size()); 6346 6347 const Value *SwiftErrorVal = nullptr; 6348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6349 6350 // We can't tail call inside a function with a swifterror argument. Lowering 6351 // does not support this yet. It would have to move into the swifterror 6352 // register before the call. 6353 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6354 if (TLI.supportSwiftError() && 6355 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6356 isTailCall = false; 6357 6358 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6359 i != e; ++i) { 6360 TargetLowering::ArgListEntry Entry; 6361 const Value *V = *i; 6362 6363 // Skip empty types 6364 if (V->getType()->isEmptyTy()) 6365 continue; 6366 6367 SDValue ArgNode = getValue(V); 6368 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6369 6370 Entry.setAttributes(&CS, i - CS.arg_begin()); 6371 6372 // Use swifterror virtual register as input to the call. 6373 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6374 SwiftErrorVal = V; 6375 // We find the virtual register for the actual swifterror argument. 6376 // Instead of using the Value, we use the virtual register instead. 6377 Entry.Node = DAG.getRegister(FuncInfo 6378 .getOrCreateSwiftErrorVRegUseAt( 6379 CS.getInstruction(), FuncInfo.MBB, V) 6380 .first, 6381 EVT(TLI.getPointerTy(DL))); 6382 } 6383 6384 Args.push_back(Entry); 6385 6386 // If we have an explicit sret argument that is an Instruction, (i.e., it 6387 // might point to function-local memory), we can't meaningfully tail-call. 6388 if (Entry.IsSRet && isa<Instruction>(V)) 6389 isTailCall = false; 6390 } 6391 6392 // Check if target-independent constraints permit a tail call here. 6393 // Target-dependent constraints are checked within TLI->LowerCallTo. 6394 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6395 isTailCall = false; 6396 6397 // Disable tail calls if there is an swifterror argument. Targets have not 6398 // been updated to support tail calls. 6399 if (TLI.supportSwiftError() && SwiftErrorVal) 6400 isTailCall = false; 6401 6402 TargetLowering::CallLoweringInfo CLI(DAG); 6403 CLI.setDebugLoc(getCurSDLoc()) 6404 .setChain(getRoot()) 6405 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6406 .setTailCall(isTailCall) 6407 .setConvergent(CS.isConvergent()); 6408 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6409 6410 if (Result.first.getNode()) { 6411 const Instruction *Inst = CS.getInstruction(); 6412 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6413 setValue(Inst, Result.first); 6414 } 6415 6416 // The last element of CLI.InVals has the SDValue for swifterror return. 6417 // Here we copy it to a virtual register and update SwiftErrorMap for 6418 // book-keeping. 6419 if (SwiftErrorVal && TLI.supportSwiftError()) { 6420 // Get the last element of InVals. 6421 SDValue Src = CLI.InVals.back(); 6422 unsigned VReg; bool CreatedVReg; 6423 std::tie(VReg, CreatedVReg) = 6424 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6425 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6426 // We update the virtual register for the actual swifterror argument. 6427 if (CreatedVReg) 6428 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6429 DAG.setRoot(CopyNode); 6430 } 6431 } 6432 6433 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6434 SelectionDAGBuilder &Builder) { 6435 // Check to see if this load can be trivially constant folded, e.g. if the 6436 // input is from a string literal. 6437 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6438 // Cast pointer to the type we really want to load. 6439 Type *LoadTy = 6440 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6441 if (LoadVT.isVector()) 6442 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6443 6444 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6445 PointerType::getUnqual(LoadTy)); 6446 6447 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6448 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6449 return Builder.getValue(LoadCst); 6450 } 6451 6452 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6453 // still constant memory, the input chain can be the entry node. 6454 SDValue Root; 6455 bool ConstantMemory = false; 6456 6457 // Do not serialize (non-volatile) loads of constant memory with anything. 6458 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6459 Root = Builder.DAG.getEntryNode(); 6460 ConstantMemory = true; 6461 } else { 6462 // Do not serialize non-volatile loads against each other. 6463 Root = Builder.DAG.getRoot(); 6464 } 6465 6466 SDValue Ptr = Builder.getValue(PtrVal); 6467 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6468 Ptr, MachinePointerInfo(PtrVal), 6469 /* Alignment = */ 1); 6470 6471 if (!ConstantMemory) 6472 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6473 return LoadVal; 6474 } 6475 6476 /// Record the value for an instruction that produces an integer result, 6477 /// converting the type where necessary. 6478 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6479 SDValue Value, 6480 bool IsSigned) { 6481 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6482 I.getType(), true); 6483 if (IsSigned) 6484 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6485 else 6486 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6487 setValue(&I, Value); 6488 } 6489 6490 /// See if we can lower a memcmp call into an optimized form. If so, return 6491 /// true and lower it. Otherwise return false, and it will be lowered like a 6492 /// normal call. 6493 /// The caller already checked that \p I calls the appropriate LibFunc with a 6494 /// correct prototype. 6495 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6496 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6497 const Value *Size = I.getArgOperand(2); 6498 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6499 if (CSize && CSize->getZExtValue() == 0) { 6500 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6501 I.getType(), true); 6502 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6503 return true; 6504 } 6505 6506 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6507 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6508 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6509 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6510 if (Res.first.getNode()) { 6511 processIntegerCallValue(I, Res.first, true); 6512 PendingLoads.push_back(Res.second); 6513 return true; 6514 } 6515 6516 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6517 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6518 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6519 return false; 6520 6521 // If the target has a fast compare for the given size, it will return a 6522 // preferred load type for that size. Require that the load VT is legal and 6523 // that the target supports unaligned loads of that type. Otherwise, return 6524 // INVALID. 6525 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6527 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6528 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6529 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6530 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6531 // TODO: Check alignment of src and dest ptrs. 6532 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6533 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6534 if (!TLI.isTypeLegal(LVT) || 6535 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6536 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6537 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6538 } 6539 6540 return LVT; 6541 }; 6542 6543 // This turns into unaligned loads. We only do this if the target natively 6544 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6545 // we'll only produce a small number of byte loads. 6546 MVT LoadVT; 6547 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6548 switch (NumBitsToCompare) { 6549 default: 6550 return false; 6551 case 16: 6552 LoadVT = MVT::i16; 6553 break; 6554 case 32: 6555 LoadVT = MVT::i32; 6556 break; 6557 case 64: 6558 case 128: 6559 case 256: 6560 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6561 break; 6562 } 6563 6564 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6565 return false; 6566 6567 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6568 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6569 6570 // Bitcast to a wide integer type if the loads are vectors. 6571 if (LoadVT.isVector()) { 6572 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6573 LoadL = DAG.getBitcast(CmpVT, LoadL); 6574 LoadR = DAG.getBitcast(CmpVT, LoadR); 6575 } 6576 6577 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6578 processIntegerCallValue(I, Cmp, false); 6579 return true; 6580 } 6581 6582 /// See if we can lower a memchr call into an optimized form. If so, return 6583 /// true and lower it. Otherwise return false, and it will be lowered like a 6584 /// normal call. 6585 /// The caller already checked that \p I calls the appropriate LibFunc with a 6586 /// correct prototype. 6587 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6588 const Value *Src = I.getArgOperand(0); 6589 const Value *Char = I.getArgOperand(1); 6590 const Value *Length = I.getArgOperand(2); 6591 6592 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6593 std::pair<SDValue, SDValue> Res = 6594 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6595 getValue(Src), getValue(Char), getValue(Length), 6596 MachinePointerInfo(Src)); 6597 if (Res.first.getNode()) { 6598 setValue(&I, Res.first); 6599 PendingLoads.push_back(Res.second); 6600 return true; 6601 } 6602 6603 return false; 6604 } 6605 6606 /// See if we can lower a mempcpy call into an optimized form. If so, return 6607 /// true and lower it. Otherwise return false, and it will be lowered like a 6608 /// normal call. 6609 /// The caller already checked that \p I calls the appropriate LibFunc with a 6610 /// correct prototype. 6611 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6612 SDValue Dst = getValue(I.getArgOperand(0)); 6613 SDValue Src = getValue(I.getArgOperand(1)); 6614 SDValue Size = getValue(I.getArgOperand(2)); 6615 6616 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6617 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6618 unsigned Align = std::min(DstAlign, SrcAlign); 6619 if (Align == 0) // Alignment of one or both could not be inferred. 6620 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6621 6622 bool isVol = false; 6623 SDLoc sdl = getCurSDLoc(); 6624 6625 // In the mempcpy context we need to pass in a false value for isTailCall 6626 // because the return pointer needs to be adjusted by the size of 6627 // the copied memory. 6628 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6629 false, /*isTailCall=*/false, 6630 MachinePointerInfo(I.getArgOperand(0)), 6631 MachinePointerInfo(I.getArgOperand(1))); 6632 assert(MC.getNode() != nullptr && 6633 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6634 DAG.setRoot(MC); 6635 6636 // Check if Size needs to be truncated or extended. 6637 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6638 6639 // Adjust return pointer to point just past the last dst byte. 6640 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6641 Dst, Size); 6642 setValue(&I, DstPlusSize); 6643 return true; 6644 } 6645 6646 /// See if we can lower a strcpy call into an optimized form. If so, return 6647 /// true and lower it, otherwise return false and it will be lowered like a 6648 /// normal call. 6649 /// The caller already checked that \p I calls the appropriate LibFunc with a 6650 /// correct prototype. 6651 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6652 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6653 6654 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6655 std::pair<SDValue, SDValue> Res = 6656 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6657 getValue(Arg0), getValue(Arg1), 6658 MachinePointerInfo(Arg0), 6659 MachinePointerInfo(Arg1), isStpcpy); 6660 if (Res.first.getNode()) { 6661 setValue(&I, Res.first); 6662 DAG.setRoot(Res.second); 6663 return true; 6664 } 6665 6666 return false; 6667 } 6668 6669 /// See if we can lower a strcmp call into an optimized form. If so, return 6670 /// true and lower it, otherwise return false and it will be lowered like a 6671 /// normal call. 6672 /// The caller already checked that \p I calls the appropriate LibFunc with a 6673 /// correct prototype. 6674 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6675 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6676 6677 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6678 std::pair<SDValue, SDValue> Res = 6679 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6680 getValue(Arg0), getValue(Arg1), 6681 MachinePointerInfo(Arg0), 6682 MachinePointerInfo(Arg1)); 6683 if (Res.first.getNode()) { 6684 processIntegerCallValue(I, Res.first, true); 6685 PendingLoads.push_back(Res.second); 6686 return true; 6687 } 6688 6689 return false; 6690 } 6691 6692 /// See if we can lower a strlen call into an optimized form. If so, return 6693 /// true and lower it, otherwise return false and it will be lowered like a 6694 /// normal call. 6695 /// The caller already checked that \p I calls the appropriate LibFunc with a 6696 /// correct prototype. 6697 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6698 const Value *Arg0 = I.getArgOperand(0); 6699 6700 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6701 std::pair<SDValue, SDValue> Res = 6702 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6703 getValue(Arg0), MachinePointerInfo(Arg0)); 6704 if (Res.first.getNode()) { 6705 processIntegerCallValue(I, Res.first, false); 6706 PendingLoads.push_back(Res.second); 6707 return true; 6708 } 6709 6710 return false; 6711 } 6712 6713 /// See if we can lower a strnlen call into an optimized form. If so, return 6714 /// true and lower it, otherwise return false and it will be lowered like a 6715 /// normal call. 6716 /// The caller already checked that \p I calls the appropriate LibFunc with a 6717 /// correct prototype. 6718 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6719 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6720 6721 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6722 std::pair<SDValue, SDValue> Res = 6723 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6724 getValue(Arg0), getValue(Arg1), 6725 MachinePointerInfo(Arg0)); 6726 if (Res.first.getNode()) { 6727 processIntegerCallValue(I, Res.first, false); 6728 PendingLoads.push_back(Res.second); 6729 return true; 6730 } 6731 6732 return false; 6733 } 6734 6735 /// See if we can lower a unary floating-point operation into an SDNode with 6736 /// the specified Opcode. If so, return true and lower it, otherwise return 6737 /// false and it will be lowered like a normal call. 6738 /// The caller already checked that \p I calls the appropriate LibFunc with a 6739 /// correct prototype. 6740 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6741 unsigned Opcode) { 6742 // We already checked this call's prototype; verify it doesn't modify errno. 6743 if (!I.onlyReadsMemory()) 6744 return false; 6745 6746 SDValue Tmp = getValue(I.getArgOperand(0)); 6747 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6748 return true; 6749 } 6750 6751 /// See if we can lower a binary floating-point operation into an SDNode with 6752 /// the specified Opcode. If so, return true and lower it. Otherwise return 6753 /// false, and it will be lowered like a normal call. 6754 /// The caller already checked that \p I calls the appropriate LibFunc with a 6755 /// correct prototype. 6756 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6757 unsigned Opcode) { 6758 // We already checked this call's prototype; verify it doesn't modify errno. 6759 if (!I.onlyReadsMemory()) 6760 return false; 6761 6762 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6763 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6764 EVT VT = Tmp0.getValueType(); 6765 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6766 return true; 6767 } 6768 6769 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6770 // Handle inline assembly differently. 6771 if (isa<InlineAsm>(I.getCalledValue())) { 6772 visitInlineAsm(&I); 6773 return; 6774 } 6775 6776 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6777 computeUsesVAFloatArgument(I, MMI); 6778 6779 const char *RenameFn = nullptr; 6780 if (Function *F = I.getCalledFunction()) { 6781 if (F->isDeclaration()) { 6782 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6783 if (unsigned IID = II->getIntrinsicID(F)) { 6784 RenameFn = visitIntrinsicCall(I, IID); 6785 if (!RenameFn) 6786 return; 6787 } 6788 } 6789 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6790 RenameFn = visitIntrinsicCall(I, IID); 6791 if (!RenameFn) 6792 return; 6793 } 6794 } 6795 6796 // Check for well-known libc/libm calls. If the function is internal, it 6797 // can't be a library call. Don't do the check if marked as nobuiltin for 6798 // some reason or the call site requires strict floating point semantics. 6799 LibFunc Func; 6800 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6801 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6802 LibInfo->hasOptimizedCodeGen(Func)) { 6803 switch (Func) { 6804 default: break; 6805 case LibFunc_copysign: 6806 case LibFunc_copysignf: 6807 case LibFunc_copysignl: 6808 // We already checked this call's prototype; verify it doesn't modify 6809 // errno. 6810 if (I.onlyReadsMemory()) { 6811 SDValue LHS = getValue(I.getArgOperand(0)); 6812 SDValue RHS = getValue(I.getArgOperand(1)); 6813 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6814 LHS.getValueType(), LHS, RHS)); 6815 return; 6816 } 6817 break; 6818 case LibFunc_fabs: 6819 case LibFunc_fabsf: 6820 case LibFunc_fabsl: 6821 if (visitUnaryFloatCall(I, ISD::FABS)) 6822 return; 6823 break; 6824 case LibFunc_fmin: 6825 case LibFunc_fminf: 6826 case LibFunc_fminl: 6827 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6828 return; 6829 break; 6830 case LibFunc_fmax: 6831 case LibFunc_fmaxf: 6832 case LibFunc_fmaxl: 6833 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6834 return; 6835 break; 6836 case LibFunc_sin: 6837 case LibFunc_sinf: 6838 case LibFunc_sinl: 6839 if (visitUnaryFloatCall(I, ISD::FSIN)) 6840 return; 6841 break; 6842 case LibFunc_cos: 6843 case LibFunc_cosf: 6844 case LibFunc_cosl: 6845 if (visitUnaryFloatCall(I, ISD::FCOS)) 6846 return; 6847 break; 6848 case LibFunc_sqrt: 6849 case LibFunc_sqrtf: 6850 case LibFunc_sqrtl: 6851 case LibFunc_sqrt_finite: 6852 case LibFunc_sqrtf_finite: 6853 case LibFunc_sqrtl_finite: 6854 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6855 return; 6856 break; 6857 case LibFunc_floor: 6858 case LibFunc_floorf: 6859 case LibFunc_floorl: 6860 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6861 return; 6862 break; 6863 case LibFunc_nearbyint: 6864 case LibFunc_nearbyintf: 6865 case LibFunc_nearbyintl: 6866 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6867 return; 6868 break; 6869 case LibFunc_ceil: 6870 case LibFunc_ceilf: 6871 case LibFunc_ceill: 6872 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6873 return; 6874 break; 6875 case LibFunc_rint: 6876 case LibFunc_rintf: 6877 case LibFunc_rintl: 6878 if (visitUnaryFloatCall(I, ISD::FRINT)) 6879 return; 6880 break; 6881 case LibFunc_round: 6882 case LibFunc_roundf: 6883 case LibFunc_roundl: 6884 if (visitUnaryFloatCall(I, ISD::FROUND)) 6885 return; 6886 break; 6887 case LibFunc_trunc: 6888 case LibFunc_truncf: 6889 case LibFunc_truncl: 6890 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6891 return; 6892 break; 6893 case LibFunc_log2: 6894 case LibFunc_log2f: 6895 case LibFunc_log2l: 6896 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6897 return; 6898 break; 6899 case LibFunc_exp2: 6900 case LibFunc_exp2f: 6901 case LibFunc_exp2l: 6902 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6903 return; 6904 break; 6905 case LibFunc_memcmp: 6906 if (visitMemCmpCall(I)) 6907 return; 6908 break; 6909 case LibFunc_mempcpy: 6910 if (visitMemPCpyCall(I)) 6911 return; 6912 break; 6913 case LibFunc_memchr: 6914 if (visitMemChrCall(I)) 6915 return; 6916 break; 6917 case LibFunc_strcpy: 6918 if (visitStrCpyCall(I, false)) 6919 return; 6920 break; 6921 case LibFunc_stpcpy: 6922 if (visitStrCpyCall(I, true)) 6923 return; 6924 break; 6925 case LibFunc_strcmp: 6926 if (visitStrCmpCall(I)) 6927 return; 6928 break; 6929 case LibFunc_strlen: 6930 if (visitStrLenCall(I)) 6931 return; 6932 break; 6933 case LibFunc_strnlen: 6934 if (visitStrNLenCall(I)) 6935 return; 6936 break; 6937 } 6938 } 6939 } 6940 6941 SDValue Callee; 6942 if (!RenameFn) 6943 Callee = getValue(I.getCalledValue()); 6944 else 6945 Callee = DAG.getExternalSymbol( 6946 RenameFn, 6947 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6948 6949 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6950 // have to do anything here to lower funclet bundles. 6951 assert(!I.hasOperandBundlesOtherThan( 6952 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6953 "Cannot lower calls with arbitrary operand bundles!"); 6954 6955 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6956 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6957 else 6958 // Check if we can potentially perform a tail call. More detailed checking 6959 // is be done within LowerCallTo, after more information about the call is 6960 // known. 6961 LowerCallTo(&I, Callee, I.isTailCall()); 6962 } 6963 6964 namespace { 6965 6966 /// AsmOperandInfo - This contains information for each constraint that we are 6967 /// lowering. 6968 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6969 public: 6970 /// CallOperand - If this is the result output operand or a clobber 6971 /// this is null, otherwise it is the incoming operand to the CallInst. 6972 /// This gets modified as the asm is processed. 6973 SDValue CallOperand; 6974 6975 /// AssignedRegs - If this is a register or register class operand, this 6976 /// contains the set of register corresponding to the operand. 6977 RegsForValue AssignedRegs; 6978 6979 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6980 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6981 } 6982 6983 /// Whether or not this operand accesses memory 6984 bool hasMemory(const TargetLowering &TLI) const { 6985 // Indirect operand accesses access memory. 6986 if (isIndirect) 6987 return true; 6988 6989 for (const auto &Code : Codes) 6990 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6991 return true; 6992 6993 return false; 6994 } 6995 6996 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6997 /// corresponds to. If there is no Value* for this operand, it returns 6998 /// MVT::Other. 6999 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7000 const DataLayout &DL) const { 7001 if (!CallOperandVal) return MVT::Other; 7002 7003 if (isa<BasicBlock>(CallOperandVal)) 7004 return TLI.getPointerTy(DL); 7005 7006 llvm::Type *OpTy = CallOperandVal->getType(); 7007 7008 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7009 // If this is an indirect operand, the operand is a pointer to the 7010 // accessed type. 7011 if (isIndirect) { 7012 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7013 if (!PtrTy) 7014 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7015 OpTy = PtrTy->getElementType(); 7016 } 7017 7018 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7019 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7020 if (STy->getNumElements() == 1) 7021 OpTy = STy->getElementType(0); 7022 7023 // If OpTy is not a single value, it may be a struct/union that we 7024 // can tile with integers. 7025 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7026 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7027 switch (BitSize) { 7028 default: break; 7029 case 1: 7030 case 8: 7031 case 16: 7032 case 32: 7033 case 64: 7034 case 128: 7035 OpTy = IntegerType::get(Context, BitSize); 7036 break; 7037 } 7038 } 7039 7040 return TLI.getValueType(DL, OpTy, true); 7041 } 7042 }; 7043 7044 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7045 7046 } // end anonymous namespace 7047 7048 /// Make sure that the output operand \p OpInfo and its corresponding input 7049 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7050 /// out). 7051 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7052 SDISelAsmOperandInfo &MatchingOpInfo, 7053 SelectionDAG &DAG) { 7054 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7055 return; 7056 7057 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7058 const auto &TLI = DAG.getTargetLoweringInfo(); 7059 7060 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7061 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7062 OpInfo.ConstraintVT); 7063 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7064 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7065 MatchingOpInfo.ConstraintVT); 7066 if ((OpInfo.ConstraintVT.isInteger() != 7067 MatchingOpInfo.ConstraintVT.isInteger()) || 7068 (MatchRC.second != InputRC.second)) { 7069 // FIXME: error out in a more elegant fashion 7070 report_fatal_error("Unsupported asm: input constraint" 7071 " with a matching output constraint of" 7072 " incompatible type!"); 7073 } 7074 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7075 } 7076 7077 /// Get a direct memory input to behave well as an indirect operand. 7078 /// This may introduce stores, hence the need for a \p Chain. 7079 /// \return The (possibly updated) chain. 7080 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7081 SDISelAsmOperandInfo &OpInfo, 7082 SelectionDAG &DAG) { 7083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7084 7085 // If we don't have an indirect input, put it in the constpool if we can, 7086 // otherwise spill it to a stack slot. 7087 // TODO: This isn't quite right. We need to handle these according to 7088 // the addressing mode that the constraint wants. Also, this may take 7089 // an additional register for the computation and we don't want that 7090 // either. 7091 7092 // If the operand is a float, integer, or vector constant, spill to a 7093 // constant pool entry to get its address. 7094 const Value *OpVal = OpInfo.CallOperandVal; 7095 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7096 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7097 OpInfo.CallOperand = DAG.getConstantPool( 7098 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7099 return Chain; 7100 } 7101 7102 // Otherwise, create a stack slot and emit a store to it before the asm. 7103 Type *Ty = OpVal->getType(); 7104 auto &DL = DAG.getDataLayout(); 7105 uint64_t TySize = DL.getTypeAllocSize(Ty); 7106 unsigned Align = DL.getPrefTypeAlignment(Ty); 7107 MachineFunction &MF = DAG.getMachineFunction(); 7108 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7109 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7110 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7111 MachinePointerInfo::getFixedStack(MF, SSFI)); 7112 OpInfo.CallOperand = StackSlot; 7113 7114 return Chain; 7115 } 7116 7117 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7118 /// specified operand. We prefer to assign virtual registers, to allow the 7119 /// register allocator to handle the assignment process. However, if the asm 7120 /// uses features that we can't model on machineinstrs, we have SDISel do the 7121 /// allocation. This produces generally horrible, but correct, code. 7122 /// 7123 /// OpInfo describes the operand. 7124 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7125 const SDLoc &DL, 7126 SDISelAsmOperandInfo &OpInfo) { 7127 LLVMContext &Context = *DAG.getContext(); 7128 7129 MachineFunction &MF = DAG.getMachineFunction(); 7130 SmallVector<unsigned, 4> Regs; 7131 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7132 7133 // If this is a constraint for a single physreg, or a constraint for a 7134 // register class, find it. 7135 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7136 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 7137 OpInfo.ConstraintVT); 7138 7139 unsigned NumRegs = 1; 7140 if (OpInfo.ConstraintVT != MVT::Other) { 7141 // If this is a FP input in an integer register (or visa versa) insert a bit 7142 // cast of the input value. More generally, handle any case where the input 7143 // value disagrees with the register class we plan to stick this in. 7144 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7145 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7146 // Try to convert to the first EVT that the reg class contains. If the 7147 // types are identical size, use a bitcast to convert (e.g. two differing 7148 // vector types). 7149 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7150 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7151 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7152 RegVT, OpInfo.CallOperand); 7153 OpInfo.ConstraintVT = RegVT; 7154 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7155 // If the input is a FP value and we want it in FP registers, do a 7156 // bitcast to the corresponding integer type. This turns an f64 value 7157 // into i64, which can be passed with two i32 values on a 32-bit 7158 // machine. 7159 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7160 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7161 RegVT, OpInfo.CallOperand); 7162 OpInfo.ConstraintVT = RegVT; 7163 } 7164 } 7165 7166 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7167 } 7168 7169 MVT RegVT; 7170 EVT ValueVT = OpInfo.ConstraintVT; 7171 7172 // If this is a constraint for a specific physical register, like {r17}, 7173 // assign it now. 7174 if (unsigned AssignedReg = PhysReg.first) { 7175 const TargetRegisterClass *RC = PhysReg.second; 7176 if (OpInfo.ConstraintVT == MVT::Other) 7177 ValueVT = *TRI.legalclasstypes_begin(*RC); 7178 7179 // Get the actual register value type. This is important, because the user 7180 // may have asked for (e.g.) the AX register in i32 type. We need to 7181 // remember that AX is actually i16 to get the right extension. 7182 RegVT = *TRI.legalclasstypes_begin(*RC); 7183 7184 // This is a explicit reference to a physical register. 7185 Regs.push_back(AssignedReg); 7186 7187 // If this is an expanded reference, add the rest of the regs to Regs. 7188 if (NumRegs != 1) { 7189 TargetRegisterClass::iterator I = RC->begin(); 7190 for (; *I != AssignedReg; ++I) 7191 assert(I != RC->end() && "Didn't find reg!"); 7192 7193 // Already added the first reg. 7194 --NumRegs; ++I; 7195 for (; NumRegs; --NumRegs, ++I) { 7196 assert(I != RC->end() && "Ran out of registers to allocate!"); 7197 Regs.push_back(*I); 7198 } 7199 } 7200 7201 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7202 return; 7203 } 7204 7205 // Otherwise, if this was a reference to an LLVM register class, create vregs 7206 // for this reference. 7207 if (const TargetRegisterClass *RC = PhysReg.second) { 7208 RegVT = *TRI.legalclasstypes_begin(*RC); 7209 if (OpInfo.ConstraintVT == MVT::Other) 7210 ValueVT = RegVT; 7211 7212 // Create the appropriate number of virtual registers. 7213 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7214 for (; NumRegs; --NumRegs) 7215 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7216 7217 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7218 return; 7219 } 7220 7221 // Otherwise, we couldn't allocate enough registers for this. 7222 } 7223 7224 static unsigned 7225 findMatchingInlineAsmOperand(unsigned OperandNo, 7226 const std::vector<SDValue> &AsmNodeOperands) { 7227 // Scan until we find the definition we already emitted of this operand. 7228 unsigned CurOp = InlineAsm::Op_FirstOperand; 7229 for (; OperandNo; --OperandNo) { 7230 // Advance to the next operand. 7231 unsigned OpFlag = 7232 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7233 assert((InlineAsm::isRegDefKind(OpFlag) || 7234 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7235 InlineAsm::isMemKind(OpFlag)) && 7236 "Skipped past definitions?"); 7237 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7238 } 7239 return CurOp; 7240 } 7241 7242 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7243 /// \return true if it has succeeded, false otherwise 7244 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7245 MVT RegVT, SelectionDAG &DAG) { 7246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7247 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7248 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7249 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7250 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7251 else 7252 return false; 7253 } 7254 return true; 7255 } 7256 7257 namespace { 7258 7259 class ExtraFlags { 7260 unsigned Flags = 0; 7261 7262 public: 7263 explicit ExtraFlags(ImmutableCallSite CS) { 7264 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7265 if (IA->hasSideEffects()) 7266 Flags |= InlineAsm::Extra_HasSideEffects; 7267 if (IA->isAlignStack()) 7268 Flags |= InlineAsm::Extra_IsAlignStack; 7269 if (CS.isConvergent()) 7270 Flags |= InlineAsm::Extra_IsConvergent; 7271 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7272 } 7273 7274 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7275 // Ideally, we would only check against memory constraints. However, the 7276 // meaning of an Other constraint can be target-specific and we can't easily 7277 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7278 // for Other constraints as well. 7279 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7280 OpInfo.ConstraintType == TargetLowering::C_Other) { 7281 if (OpInfo.Type == InlineAsm::isInput) 7282 Flags |= InlineAsm::Extra_MayLoad; 7283 else if (OpInfo.Type == InlineAsm::isOutput) 7284 Flags |= InlineAsm::Extra_MayStore; 7285 else if (OpInfo.Type == InlineAsm::isClobber) 7286 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7287 } 7288 } 7289 7290 unsigned get() const { return Flags; } 7291 }; 7292 7293 } // end anonymous namespace 7294 7295 /// visitInlineAsm - Handle a call to an InlineAsm object. 7296 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7297 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7298 7299 /// ConstraintOperands - Information about all of the constraints. 7300 SDISelAsmOperandInfoVector ConstraintOperands; 7301 7302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7303 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7304 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7305 7306 bool hasMemory = false; 7307 7308 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7309 ExtraFlags ExtraInfo(CS); 7310 7311 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7312 unsigned ResNo = 0; // ResNo - The result number of the next output. 7313 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7314 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7315 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7316 7317 MVT OpVT = MVT::Other; 7318 7319 // Compute the value type for each operand. 7320 if (OpInfo.Type == InlineAsm::isInput || 7321 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7322 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7323 7324 // Process the call argument. BasicBlocks are labels, currently appearing 7325 // only in asm's. 7326 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7327 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7328 } else { 7329 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7330 } 7331 7332 OpVT = 7333 OpInfo 7334 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7335 .getSimpleVT(); 7336 } 7337 7338 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7339 // The return value of the call is this value. As such, there is no 7340 // corresponding argument. 7341 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7342 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7343 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7344 STy->getElementType(ResNo)); 7345 } else { 7346 assert(ResNo == 0 && "Asm only has one result!"); 7347 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7348 } 7349 ++ResNo; 7350 } 7351 7352 OpInfo.ConstraintVT = OpVT; 7353 7354 if (!hasMemory) 7355 hasMemory = OpInfo.hasMemory(TLI); 7356 7357 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7358 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7359 auto TargetConstraint = TargetConstraints[i]; 7360 7361 // Compute the constraint code and ConstraintType to use. 7362 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7363 7364 ExtraInfo.update(TargetConstraint); 7365 } 7366 7367 SDValue Chain, Flag; 7368 7369 // We won't need to flush pending loads if this asm doesn't touch 7370 // memory and is nonvolatile. 7371 if (hasMemory || IA->hasSideEffects()) 7372 Chain = getRoot(); 7373 else 7374 Chain = DAG.getRoot(); 7375 7376 // Second pass over the constraints: compute which constraint option to use 7377 // and assign registers to constraints that want a specific physreg. 7378 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7379 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7380 7381 // If this is an output operand with a matching input operand, look up the 7382 // matching input. If their types mismatch, e.g. one is an integer, the 7383 // other is floating point, or their sizes are different, flag it as an 7384 // error. 7385 if (OpInfo.hasMatchingInput()) { 7386 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7387 patchMatchingInput(OpInfo, Input, DAG); 7388 } 7389 7390 // Compute the constraint code and ConstraintType to use. 7391 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7392 7393 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7394 OpInfo.Type == InlineAsm::isClobber) 7395 continue; 7396 7397 // If this is a memory input, and if the operand is not indirect, do what we 7398 // need to provide an address for the memory input. 7399 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7400 !OpInfo.isIndirect) { 7401 assert((OpInfo.isMultipleAlternative || 7402 (OpInfo.Type == InlineAsm::isInput)) && 7403 "Can only indirectify direct input operands!"); 7404 7405 // Memory operands really want the address of the value. 7406 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7407 7408 // There is no longer a Value* corresponding to this operand. 7409 OpInfo.CallOperandVal = nullptr; 7410 7411 // It is now an indirect operand. 7412 OpInfo.isIndirect = true; 7413 } 7414 7415 // If this constraint is for a specific register, allocate it before 7416 // anything else. 7417 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7418 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7419 } 7420 7421 // Third pass - Loop over all of the operands, assigning virtual or physregs 7422 // to register class operands. 7423 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7424 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7425 7426 // C_Register operands have already been allocated, Other/Memory don't need 7427 // to be. 7428 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7429 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7430 } 7431 7432 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7433 std::vector<SDValue> AsmNodeOperands; 7434 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7435 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7436 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7437 7438 // If we have a !srcloc metadata node associated with it, we want to attach 7439 // this to the ultimately generated inline asm machineinstr. To do this, we 7440 // pass in the third operand as this (potentially null) inline asm MDNode. 7441 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7442 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7443 7444 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7445 // bits as operand 3. 7446 AsmNodeOperands.push_back(DAG.getTargetConstant( 7447 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7448 7449 // Loop over all of the inputs, copying the operand values into the 7450 // appropriate registers and processing the output regs. 7451 RegsForValue RetValRegs; 7452 7453 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7454 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7455 7456 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7457 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7458 7459 switch (OpInfo.Type) { 7460 case InlineAsm::isOutput: 7461 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7462 OpInfo.ConstraintType != TargetLowering::C_Register) { 7463 // Memory output, or 'other' output (e.g. 'X' constraint). 7464 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7465 7466 unsigned ConstraintID = 7467 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7468 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7469 "Failed to convert memory constraint code to constraint id."); 7470 7471 // Add information to the INLINEASM node to know about this output. 7472 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7473 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7474 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7475 MVT::i32)); 7476 AsmNodeOperands.push_back(OpInfo.CallOperand); 7477 break; 7478 } 7479 7480 // Otherwise, this is a register or register class output. 7481 7482 // Copy the output from the appropriate register. Find a register that 7483 // we can use. 7484 if (OpInfo.AssignedRegs.Regs.empty()) { 7485 emitInlineAsmError( 7486 CS, "couldn't allocate output register for constraint '" + 7487 Twine(OpInfo.ConstraintCode) + "'"); 7488 return; 7489 } 7490 7491 // If this is an indirect operand, store through the pointer after the 7492 // asm. 7493 if (OpInfo.isIndirect) { 7494 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7495 OpInfo.CallOperandVal)); 7496 } else { 7497 // This is the result value of the call. 7498 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7499 // Concatenate this output onto the outputs list. 7500 RetValRegs.append(OpInfo.AssignedRegs); 7501 } 7502 7503 // Add information to the INLINEASM node to know that this register is 7504 // set. 7505 OpInfo.AssignedRegs 7506 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7507 ? InlineAsm::Kind_RegDefEarlyClobber 7508 : InlineAsm::Kind_RegDef, 7509 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7510 break; 7511 7512 case InlineAsm::isInput: { 7513 SDValue InOperandVal = OpInfo.CallOperand; 7514 7515 if (OpInfo.isMatchingInputConstraint()) { 7516 // If this is required to match an output register we have already set, 7517 // just use its register. 7518 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7519 AsmNodeOperands); 7520 unsigned OpFlag = 7521 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7522 if (InlineAsm::isRegDefKind(OpFlag) || 7523 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7524 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7525 if (OpInfo.isIndirect) { 7526 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7527 emitInlineAsmError(CS, "inline asm not supported yet:" 7528 " don't know how to handle tied " 7529 "indirect register inputs"); 7530 return; 7531 } 7532 7533 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7534 SmallVector<unsigned, 4> Regs; 7535 7536 if (!createVirtualRegs(Regs, 7537 InlineAsm::getNumOperandRegisters(OpFlag), 7538 RegVT, DAG)) { 7539 emitInlineAsmError(CS, "inline asm error: This value type register " 7540 "class is not natively supported!"); 7541 return; 7542 } 7543 7544 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7545 7546 SDLoc dl = getCurSDLoc(); 7547 // Use the produced MatchedRegs object to 7548 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7549 CS.getInstruction()); 7550 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7551 true, OpInfo.getMatchedOperand(), dl, 7552 DAG, AsmNodeOperands); 7553 break; 7554 } 7555 7556 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7557 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7558 "Unexpected number of operands"); 7559 // Add information to the INLINEASM node to know about this input. 7560 // See InlineAsm.h isUseOperandTiedToDef. 7561 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7562 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7563 OpInfo.getMatchedOperand()); 7564 AsmNodeOperands.push_back(DAG.getTargetConstant( 7565 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7566 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7567 break; 7568 } 7569 7570 // Treat indirect 'X' constraint as memory. 7571 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7572 OpInfo.isIndirect) 7573 OpInfo.ConstraintType = TargetLowering::C_Memory; 7574 7575 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7576 std::vector<SDValue> Ops; 7577 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7578 Ops, DAG); 7579 if (Ops.empty()) { 7580 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7581 Twine(OpInfo.ConstraintCode) + "'"); 7582 return; 7583 } 7584 7585 // Add information to the INLINEASM node to know about this input. 7586 unsigned ResOpType = 7587 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7588 AsmNodeOperands.push_back(DAG.getTargetConstant( 7589 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7590 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7591 break; 7592 } 7593 7594 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7595 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7596 assert(InOperandVal.getValueType() == 7597 TLI.getPointerTy(DAG.getDataLayout()) && 7598 "Memory operands expect pointer values"); 7599 7600 unsigned ConstraintID = 7601 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7602 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7603 "Failed to convert memory constraint code to constraint id."); 7604 7605 // Add information to the INLINEASM node to know about this input. 7606 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7607 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7608 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7609 getCurSDLoc(), 7610 MVT::i32)); 7611 AsmNodeOperands.push_back(InOperandVal); 7612 break; 7613 } 7614 7615 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7616 OpInfo.ConstraintType == TargetLowering::C_Register) && 7617 "Unknown constraint type!"); 7618 7619 // TODO: Support this. 7620 if (OpInfo.isIndirect) { 7621 emitInlineAsmError( 7622 CS, "Don't know how to handle indirect register inputs yet " 7623 "for constraint '" + 7624 Twine(OpInfo.ConstraintCode) + "'"); 7625 return; 7626 } 7627 7628 // Copy the input into the appropriate registers. 7629 if (OpInfo.AssignedRegs.Regs.empty()) { 7630 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7631 Twine(OpInfo.ConstraintCode) + "'"); 7632 return; 7633 } 7634 7635 SDLoc dl = getCurSDLoc(); 7636 7637 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7638 Chain, &Flag, CS.getInstruction()); 7639 7640 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7641 dl, DAG, AsmNodeOperands); 7642 break; 7643 } 7644 case InlineAsm::isClobber: 7645 // Add the clobbered value to the operand list, so that the register 7646 // allocator is aware that the physreg got clobbered. 7647 if (!OpInfo.AssignedRegs.Regs.empty()) 7648 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7649 false, 0, getCurSDLoc(), DAG, 7650 AsmNodeOperands); 7651 break; 7652 } 7653 } 7654 7655 // Finish up input operands. Set the input chain and add the flag last. 7656 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7657 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7658 7659 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7660 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7661 Flag = Chain.getValue(1); 7662 7663 // If this asm returns a register value, copy the result from that register 7664 // and set it as the value of the call. 7665 if (!RetValRegs.Regs.empty()) { 7666 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7667 Chain, &Flag, CS.getInstruction()); 7668 7669 // FIXME: Why don't we do this for inline asms with MRVs? 7670 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7671 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7672 7673 // If any of the results of the inline asm is a vector, it may have the 7674 // wrong width/num elts. This can happen for register classes that can 7675 // contain multiple different value types. The preg or vreg allocated may 7676 // not have the same VT as was expected. Convert it to the right type 7677 // with bit_convert. 7678 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7679 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7680 ResultType, Val); 7681 7682 } else if (ResultType != Val.getValueType() && 7683 ResultType.isInteger() && Val.getValueType().isInteger()) { 7684 // If a result value was tied to an input value, the computed result may 7685 // have a wider width than the expected result. Extract the relevant 7686 // portion. 7687 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7688 } 7689 7690 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7691 } 7692 7693 setValue(CS.getInstruction(), Val); 7694 // Don't need to use this as a chain in this case. 7695 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7696 return; 7697 } 7698 7699 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7700 7701 // Process indirect outputs, first output all of the flagged copies out of 7702 // physregs. 7703 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7704 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7705 const Value *Ptr = IndirectStoresToEmit[i].second; 7706 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7707 Chain, &Flag, IA); 7708 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7709 } 7710 7711 // Emit the non-flagged stores from the physregs. 7712 SmallVector<SDValue, 8> OutChains; 7713 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7714 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7715 getValue(StoresToEmit[i].second), 7716 MachinePointerInfo(StoresToEmit[i].second)); 7717 OutChains.push_back(Val); 7718 } 7719 7720 if (!OutChains.empty()) 7721 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7722 7723 DAG.setRoot(Chain); 7724 } 7725 7726 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7727 const Twine &Message) { 7728 LLVMContext &Ctx = *DAG.getContext(); 7729 Ctx.emitError(CS.getInstruction(), Message); 7730 7731 // Make sure we leave the DAG in a valid state 7732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7733 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7734 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7735 } 7736 7737 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7738 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7739 MVT::Other, getRoot(), 7740 getValue(I.getArgOperand(0)), 7741 DAG.getSrcValue(I.getArgOperand(0)))); 7742 } 7743 7744 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7745 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7746 const DataLayout &DL = DAG.getDataLayout(); 7747 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7748 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7749 DAG.getSrcValue(I.getOperand(0)), 7750 DL.getABITypeAlignment(I.getType())); 7751 setValue(&I, V); 7752 DAG.setRoot(V.getValue(1)); 7753 } 7754 7755 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7756 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7757 MVT::Other, getRoot(), 7758 getValue(I.getArgOperand(0)), 7759 DAG.getSrcValue(I.getArgOperand(0)))); 7760 } 7761 7762 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7763 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7764 MVT::Other, getRoot(), 7765 getValue(I.getArgOperand(0)), 7766 getValue(I.getArgOperand(1)), 7767 DAG.getSrcValue(I.getArgOperand(0)), 7768 DAG.getSrcValue(I.getArgOperand(1)))); 7769 } 7770 7771 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7772 const Instruction &I, 7773 SDValue Op) { 7774 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7775 if (!Range) 7776 return Op; 7777 7778 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7779 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7780 return Op; 7781 7782 APInt Lo = CR.getUnsignedMin(); 7783 if (!Lo.isMinValue()) 7784 return Op; 7785 7786 APInt Hi = CR.getUnsignedMax(); 7787 unsigned Bits = Hi.getActiveBits(); 7788 7789 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7790 7791 SDLoc SL = getCurSDLoc(); 7792 7793 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7794 DAG.getValueType(SmallVT)); 7795 unsigned NumVals = Op.getNode()->getNumValues(); 7796 if (NumVals == 1) 7797 return ZExt; 7798 7799 SmallVector<SDValue, 4> Ops; 7800 7801 Ops.push_back(ZExt); 7802 for (unsigned I = 1; I != NumVals; ++I) 7803 Ops.push_back(Op.getValue(I)); 7804 7805 return DAG.getMergeValues(Ops, SL); 7806 } 7807 7808 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7809 /// the call being lowered. 7810 /// 7811 /// This is a helper for lowering intrinsics that follow a target calling 7812 /// convention or require stack pointer adjustment. Only a subset of the 7813 /// intrinsic's operands need to participate in the calling convention. 7814 void SelectionDAGBuilder::populateCallLoweringInfo( 7815 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7816 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7817 bool IsPatchPoint) { 7818 TargetLowering::ArgListTy Args; 7819 Args.reserve(NumArgs); 7820 7821 // Populate the argument list. 7822 // Attributes for args start at offset 1, after the return attribute. 7823 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7824 ArgI != ArgE; ++ArgI) { 7825 const Value *V = CS->getOperand(ArgI); 7826 7827 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7828 7829 TargetLowering::ArgListEntry Entry; 7830 Entry.Node = getValue(V); 7831 Entry.Ty = V->getType(); 7832 Entry.setAttributes(&CS, ArgI); 7833 Args.push_back(Entry); 7834 } 7835 7836 CLI.setDebugLoc(getCurSDLoc()) 7837 .setChain(getRoot()) 7838 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7839 .setDiscardResult(CS->use_empty()) 7840 .setIsPatchPoint(IsPatchPoint); 7841 } 7842 7843 /// Add a stack map intrinsic call's live variable operands to a stackmap 7844 /// or patchpoint target node's operand list. 7845 /// 7846 /// Constants are converted to TargetConstants purely as an optimization to 7847 /// avoid constant materialization and register allocation. 7848 /// 7849 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7850 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7851 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7852 /// address materialization and register allocation, but may also be required 7853 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7854 /// alloca in the entry block, then the runtime may assume that the alloca's 7855 /// StackMap location can be read immediately after compilation and that the 7856 /// location is valid at any point during execution (this is similar to the 7857 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7858 /// only available in a register, then the runtime would need to trap when 7859 /// execution reaches the StackMap in order to read the alloca's location. 7860 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7861 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7862 SelectionDAGBuilder &Builder) { 7863 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7864 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7865 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7866 Ops.push_back( 7867 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7868 Ops.push_back( 7869 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7870 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7871 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7872 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7873 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7874 } else 7875 Ops.push_back(OpVal); 7876 } 7877 } 7878 7879 /// Lower llvm.experimental.stackmap directly to its target opcode. 7880 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7881 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7882 // [live variables...]) 7883 7884 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7885 7886 SDValue Chain, InFlag, Callee, NullPtr; 7887 SmallVector<SDValue, 32> Ops; 7888 7889 SDLoc DL = getCurSDLoc(); 7890 Callee = getValue(CI.getCalledValue()); 7891 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7892 7893 // The stackmap intrinsic only records the live variables (the arguemnts 7894 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7895 // intrinsic, this won't be lowered to a function call. This means we don't 7896 // have to worry about calling conventions and target specific lowering code. 7897 // Instead we perform the call lowering right here. 7898 // 7899 // chain, flag = CALLSEQ_START(chain, 0, 0) 7900 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7901 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7902 // 7903 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7904 InFlag = Chain.getValue(1); 7905 7906 // Add the <id> and <numBytes> constants. 7907 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7908 Ops.push_back(DAG.getTargetConstant( 7909 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7910 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7911 Ops.push_back(DAG.getTargetConstant( 7912 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7913 MVT::i32)); 7914 7915 // Push live variables for the stack map. 7916 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7917 7918 // We are not pushing any register mask info here on the operands list, 7919 // because the stackmap doesn't clobber anything. 7920 7921 // Push the chain and the glue flag. 7922 Ops.push_back(Chain); 7923 Ops.push_back(InFlag); 7924 7925 // Create the STACKMAP node. 7926 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7927 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7928 Chain = SDValue(SM, 0); 7929 InFlag = Chain.getValue(1); 7930 7931 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7932 7933 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7934 7935 // Set the root to the target-lowered call chain. 7936 DAG.setRoot(Chain); 7937 7938 // Inform the Frame Information that we have a stackmap in this function. 7939 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7940 } 7941 7942 /// Lower llvm.experimental.patchpoint directly to its target opcode. 7943 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7944 const BasicBlock *EHPadBB) { 7945 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7946 // i32 <numBytes>, 7947 // i8* <target>, 7948 // i32 <numArgs>, 7949 // [Args...], 7950 // [live variables...]) 7951 7952 CallingConv::ID CC = CS.getCallingConv(); 7953 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7954 bool HasDef = !CS->getType()->isVoidTy(); 7955 SDLoc dl = getCurSDLoc(); 7956 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7957 7958 // Handle immediate and symbolic callees. 7959 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7960 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7961 /*isTarget=*/true); 7962 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7963 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7964 SDLoc(SymbolicCallee), 7965 SymbolicCallee->getValueType(0)); 7966 7967 // Get the real number of arguments participating in the call <numArgs> 7968 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7969 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7970 7971 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7972 // Intrinsics include all meta-operands up to but not including CC. 7973 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7974 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7975 "Not enough arguments provided to the patchpoint intrinsic"); 7976 7977 // For AnyRegCC the arguments are lowered later on manually. 7978 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7979 Type *ReturnTy = 7980 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7981 7982 TargetLowering::CallLoweringInfo CLI(DAG); 7983 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7984 true); 7985 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7986 7987 SDNode *CallEnd = Result.second.getNode(); 7988 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7989 CallEnd = CallEnd->getOperand(0).getNode(); 7990 7991 /// Get a call instruction from the call sequence chain. 7992 /// Tail calls are not allowed. 7993 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7994 "Expected a callseq node."); 7995 SDNode *Call = CallEnd->getOperand(0).getNode(); 7996 bool HasGlue = Call->getGluedNode(); 7997 7998 // Replace the target specific call node with the patchable intrinsic. 7999 SmallVector<SDValue, 8> Ops; 8000 8001 // Add the <id> and <numBytes> constants. 8002 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8003 Ops.push_back(DAG.getTargetConstant( 8004 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8005 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8006 Ops.push_back(DAG.getTargetConstant( 8007 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8008 MVT::i32)); 8009 8010 // Add the callee. 8011 Ops.push_back(Callee); 8012 8013 // Adjust <numArgs> to account for any arguments that have been passed on the 8014 // stack instead. 8015 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8016 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8017 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8018 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8019 8020 // Add the calling convention 8021 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8022 8023 // Add the arguments we omitted previously. The register allocator should 8024 // place these in any free register. 8025 if (IsAnyRegCC) 8026 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8027 Ops.push_back(getValue(CS.getArgument(i))); 8028 8029 // Push the arguments from the call instruction up to the register mask. 8030 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8031 Ops.append(Call->op_begin() + 2, e); 8032 8033 // Push live variables for the stack map. 8034 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8035 8036 // Push the register mask info. 8037 if (HasGlue) 8038 Ops.push_back(*(Call->op_end()-2)); 8039 else 8040 Ops.push_back(*(Call->op_end()-1)); 8041 8042 // Push the chain (this is originally the first operand of the call, but 8043 // becomes now the last or second to last operand). 8044 Ops.push_back(*(Call->op_begin())); 8045 8046 // Push the glue flag (last operand). 8047 if (HasGlue) 8048 Ops.push_back(*(Call->op_end()-1)); 8049 8050 SDVTList NodeTys; 8051 if (IsAnyRegCC && HasDef) { 8052 // Create the return types based on the intrinsic definition 8053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8054 SmallVector<EVT, 3> ValueVTs; 8055 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8056 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8057 8058 // There is always a chain and a glue type at the end 8059 ValueVTs.push_back(MVT::Other); 8060 ValueVTs.push_back(MVT::Glue); 8061 NodeTys = DAG.getVTList(ValueVTs); 8062 } else 8063 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8064 8065 // Replace the target specific call node with a PATCHPOINT node. 8066 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8067 dl, NodeTys, Ops); 8068 8069 // Update the NodeMap. 8070 if (HasDef) { 8071 if (IsAnyRegCC) 8072 setValue(CS.getInstruction(), SDValue(MN, 0)); 8073 else 8074 setValue(CS.getInstruction(), Result.first); 8075 } 8076 8077 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8078 // call sequence. Furthermore the location of the chain and glue can change 8079 // when the AnyReg calling convention is used and the intrinsic returns a 8080 // value. 8081 if (IsAnyRegCC && HasDef) { 8082 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8083 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8084 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8085 } else 8086 DAG.ReplaceAllUsesWith(Call, MN); 8087 DAG.DeleteNode(Call); 8088 8089 // Inform the Frame Information that we have a patchpoint in this function. 8090 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8091 } 8092 8093 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8094 unsigned Intrinsic) { 8095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8096 SDValue Op1 = getValue(I.getArgOperand(0)); 8097 SDValue Op2; 8098 if (I.getNumArgOperands() > 1) 8099 Op2 = getValue(I.getArgOperand(1)); 8100 SDLoc dl = getCurSDLoc(); 8101 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8102 SDValue Res; 8103 FastMathFlags FMF; 8104 if (isa<FPMathOperator>(I)) 8105 FMF = I.getFastMathFlags(); 8106 SDNodeFlags SDFlags; 8107 SDFlags.setNoNaNs(FMF.noNaNs()); 8108 8109 switch (Intrinsic) { 8110 case Intrinsic::experimental_vector_reduce_fadd: 8111 if (FMF.isFast()) 8112 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8113 else 8114 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8115 break; 8116 case Intrinsic::experimental_vector_reduce_fmul: 8117 if (FMF.isFast()) 8118 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8119 else 8120 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8121 break; 8122 case Intrinsic::experimental_vector_reduce_add: 8123 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8124 break; 8125 case Intrinsic::experimental_vector_reduce_mul: 8126 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8127 break; 8128 case Intrinsic::experimental_vector_reduce_and: 8129 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8130 break; 8131 case Intrinsic::experimental_vector_reduce_or: 8132 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8133 break; 8134 case Intrinsic::experimental_vector_reduce_xor: 8135 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8136 break; 8137 case Intrinsic::experimental_vector_reduce_smax: 8138 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8139 break; 8140 case Intrinsic::experimental_vector_reduce_smin: 8141 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8142 break; 8143 case Intrinsic::experimental_vector_reduce_umax: 8144 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8145 break; 8146 case Intrinsic::experimental_vector_reduce_umin: 8147 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8148 break; 8149 case Intrinsic::experimental_vector_reduce_fmax: 8150 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 8151 break; 8152 case Intrinsic::experimental_vector_reduce_fmin: 8153 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8154 break; 8155 default: 8156 llvm_unreachable("Unhandled vector reduce intrinsic"); 8157 } 8158 setValue(&I, Res); 8159 } 8160 8161 /// Returns an AttributeList representing the attributes applied to the return 8162 /// value of the given call. 8163 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8164 SmallVector<Attribute::AttrKind, 2> Attrs; 8165 if (CLI.RetSExt) 8166 Attrs.push_back(Attribute::SExt); 8167 if (CLI.RetZExt) 8168 Attrs.push_back(Attribute::ZExt); 8169 if (CLI.IsInReg) 8170 Attrs.push_back(Attribute::InReg); 8171 8172 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8173 Attrs); 8174 } 8175 8176 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8177 /// implementation, which just calls LowerCall. 8178 /// FIXME: When all targets are 8179 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8180 std::pair<SDValue, SDValue> 8181 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8182 // Handle the incoming return values from the call. 8183 CLI.Ins.clear(); 8184 Type *OrigRetTy = CLI.RetTy; 8185 SmallVector<EVT, 4> RetTys; 8186 SmallVector<uint64_t, 4> Offsets; 8187 auto &DL = CLI.DAG.getDataLayout(); 8188 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8189 8190 if (CLI.IsPostTypeLegalization) { 8191 // If we are lowering a libcall after legalization, split the return type. 8192 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8193 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8194 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8195 EVT RetVT = OldRetTys[i]; 8196 uint64_t Offset = OldOffsets[i]; 8197 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8198 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8199 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8200 RetTys.append(NumRegs, RegisterVT); 8201 for (unsigned j = 0; j != NumRegs; ++j) 8202 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8203 } 8204 } 8205 8206 SmallVector<ISD::OutputArg, 4> Outs; 8207 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8208 8209 bool CanLowerReturn = 8210 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8211 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8212 8213 SDValue DemoteStackSlot; 8214 int DemoteStackIdx = -100; 8215 if (!CanLowerReturn) { 8216 // FIXME: equivalent assert? 8217 // assert(!CS.hasInAllocaArgument() && 8218 // "sret demotion is incompatible with inalloca"); 8219 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8220 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8221 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8222 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8223 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8224 8225 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8226 ArgListEntry Entry; 8227 Entry.Node = DemoteStackSlot; 8228 Entry.Ty = StackSlotPtrType; 8229 Entry.IsSExt = false; 8230 Entry.IsZExt = false; 8231 Entry.IsInReg = false; 8232 Entry.IsSRet = true; 8233 Entry.IsNest = false; 8234 Entry.IsByVal = false; 8235 Entry.IsReturned = false; 8236 Entry.IsSwiftSelf = false; 8237 Entry.IsSwiftError = false; 8238 Entry.Alignment = Align; 8239 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8240 CLI.NumFixedArgs += 1; 8241 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8242 8243 // sret demotion isn't compatible with tail-calls, since the sret argument 8244 // points into the callers stack frame. 8245 CLI.IsTailCall = false; 8246 } else { 8247 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8248 EVT VT = RetTys[I]; 8249 MVT RegisterVT = 8250 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8251 unsigned NumRegs = 8252 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8253 for (unsigned i = 0; i != NumRegs; ++i) { 8254 ISD::InputArg MyFlags; 8255 MyFlags.VT = RegisterVT; 8256 MyFlags.ArgVT = VT; 8257 MyFlags.Used = CLI.IsReturnValueUsed; 8258 if (CLI.RetSExt) 8259 MyFlags.Flags.setSExt(); 8260 if (CLI.RetZExt) 8261 MyFlags.Flags.setZExt(); 8262 if (CLI.IsInReg) 8263 MyFlags.Flags.setInReg(); 8264 CLI.Ins.push_back(MyFlags); 8265 } 8266 } 8267 } 8268 8269 // We push in swifterror return as the last element of CLI.Ins. 8270 ArgListTy &Args = CLI.getArgs(); 8271 if (supportSwiftError()) { 8272 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8273 if (Args[i].IsSwiftError) { 8274 ISD::InputArg MyFlags; 8275 MyFlags.VT = getPointerTy(DL); 8276 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8277 MyFlags.Flags.setSwiftError(); 8278 CLI.Ins.push_back(MyFlags); 8279 } 8280 } 8281 } 8282 8283 // Handle all of the outgoing arguments. 8284 CLI.Outs.clear(); 8285 CLI.OutVals.clear(); 8286 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8287 SmallVector<EVT, 4> ValueVTs; 8288 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8289 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8290 Type *FinalType = Args[i].Ty; 8291 if (Args[i].IsByVal) 8292 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8293 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8294 FinalType, CLI.CallConv, CLI.IsVarArg); 8295 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8296 ++Value) { 8297 EVT VT = ValueVTs[Value]; 8298 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8299 SDValue Op = SDValue(Args[i].Node.getNode(), 8300 Args[i].Node.getResNo() + Value); 8301 ISD::ArgFlagsTy Flags; 8302 8303 // Certain targets (such as MIPS), may have a different ABI alignment 8304 // for a type depending on the context. Give the target a chance to 8305 // specify the alignment it wants. 8306 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8307 8308 if (Args[i].IsZExt) 8309 Flags.setZExt(); 8310 if (Args[i].IsSExt) 8311 Flags.setSExt(); 8312 if (Args[i].IsInReg) { 8313 // If we are using vectorcall calling convention, a structure that is 8314 // passed InReg - is surely an HVA 8315 if (CLI.CallConv == CallingConv::X86_VectorCall && 8316 isa<StructType>(FinalType)) { 8317 // The first value of a structure is marked 8318 if (0 == Value) 8319 Flags.setHvaStart(); 8320 Flags.setHva(); 8321 } 8322 // Set InReg Flag 8323 Flags.setInReg(); 8324 } 8325 if (Args[i].IsSRet) 8326 Flags.setSRet(); 8327 if (Args[i].IsSwiftSelf) 8328 Flags.setSwiftSelf(); 8329 if (Args[i].IsSwiftError) 8330 Flags.setSwiftError(); 8331 if (Args[i].IsByVal) 8332 Flags.setByVal(); 8333 if (Args[i].IsInAlloca) { 8334 Flags.setInAlloca(); 8335 // Set the byval flag for CCAssignFn callbacks that don't know about 8336 // inalloca. This way we can know how many bytes we should've allocated 8337 // and how many bytes a callee cleanup function will pop. If we port 8338 // inalloca to more targets, we'll have to add custom inalloca handling 8339 // in the various CC lowering callbacks. 8340 Flags.setByVal(); 8341 } 8342 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8343 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8344 Type *ElementTy = Ty->getElementType(); 8345 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8346 // For ByVal, alignment should come from FE. BE will guess if this 8347 // info is not there but there are cases it cannot get right. 8348 unsigned FrameAlign; 8349 if (Args[i].Alignment) 8350 FrameAlign = Args[i].Alignment; 8351 else 8352 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8353 Flags.setByValAlign(FrameAlign); 8354 } 8355 if (Args[i].IsNest) 8356 Flags.setNest(); 8357 if (NeedsRegBlock) 8358 Flags.setInConsecutiveRegs(); 8359 Flags.setOrigAlign(OriginalAlignment); 8360 8361 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8362 unsigned NumParts = 8363 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8364 SmallVector<SDValue, 4> Parts(NumParts); 8365 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8366 8367 if (Args[i].IsSExt) 8368 ExtendKind = ISD::SIGN_EXTEND; 8369 else if (Args[i].IsZExt) 8370 ExtendKind = ISD::ZERO_EXTEND; 8371 8372 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8373 // for now. 8374 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8375 CanLowerReturn) { 8376 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8377 "unexpected use of 'returned'"); 8378 // Before passing 'returned' to the target lowering code, ensure that 8379 // either the register MVT and the actual EVT are the same size or that 8380 // the return value and argument are extended in the same way; in these 8381 // cases it's safe to pass the argument register value unchanged as the 8382 // return register value (although it's at the target's option whether 8383 // to do so) 8384 // TODO: allow code generation to take advantage of partially preserved 8385 // registers rather than clobbering the entire register when the 8386 // parameter extension method is not compatible with the return 8387 // extension method 8388 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8389 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8390 CLI.RetZExt == Args[i].IsZExt)) 8391 Flags.setReturned(); 8392 } 8393 8394 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8395 CLI.CS.getInstruction(), ExtendKind, true); 8396 8397 for (unsigned j = 0; j != NumParts; ++j) { 8398 // if it isn't first piece, alignment must be 1 8399 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8400 i < CLI.NumFixedArgs, 8401 i, j*Parts[j].getValueType().getStoreSize()); 8402 if (NumParts > 1 && j == 0) 8403 MyFlags.Flags.setSplit(); 8404 else if (j != 0) { 8405 MyFlags.Flags.setOrigAlign(1); 8406 if (j == NumParts - 1) 8407 MyFlags.Flags.setSplitEnd(); 8408 } 8409 8410 CLI.Outs.push_back(MyFlags); 8411 CLI.OutVals.push_back(Parts[j]); 8412 } 8413 8414 if (NeedsRegBlock && Value == NumValues - 1) 8415 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8416 } 8417 } 8418 8419 SmallVector<SDValue, 4> InVals; 8420 CLI.Chain = LowerCall(CLI, InVals); 8421 8422 // Update CLI.InVals to use outside of this function. 8423 CLI.InVals = InVals; 8424 8425 // Verify that the target's LowerCall behaved as expected. 8426 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8427 "LowerCall didn't return a valid chain!"); 8428 assert((!CLI.IsTailCall || InVals.empty()) && 8429 "LowerCall emitted a return value for a tail call!"); 8430 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8431 "LowerCall didn't emit the correct number of values!"); 8432 8433 // For a tail call, the return value is merely live-out and there aren't 8434 // any nodes in the DAG representing it. Return a special value to 8435 // indicate that a tail call has been emitted and no more Instructions 8436 // should be processed in the current block. 8437 if (CLI.IsTailCall) { 8438 CLI.DAG.setRoot(CLI.Chain); 8439 return std::make_pair(SDValue(), SDValue()); 8440 } 8441 8442 #ifndef NDEBUG 8443 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8444 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8445 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8446 "LowerCall emitted a value with the wrong type!"); 8447 } 8448 #endif 8449 8450 SmallVector<SDValue, 4> ReturnValues; 8451 if (!CanLowerReturn) { 8452 // The instruction result is the result of loading from the 8453 // hidden sret parameter. 8454 SmallVector<EVT, 1> PVTs; 8455 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8456 8457 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8458 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8459 EVT PtrVT = PVTs[0]; 8460 8461 unsigned NumValues = RetTys.size(); 8462 ReturnValues.resize(NumValues); 8463 SmallVector<SDValue, 4> Chains(NumValues); 8464 8465 // An aggregate return value cannot wrap around the address space, so 8466 // offsets to its parts don't wrap either. 8467 SDNodeFlags Flags; 8468 Flags.setNoUnsignedWrap(true); 8469 8470 for (unsigned i = 0; i < NumValues; ++i) { 8471 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8472 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8473 PtrVT), Flags); 8474 SDValue L = CLI.DAG.getLoad( 8475 RetTys[i], CLI.DL, CLI.Chain, Add, 8476 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8477 DemoteStackIdx, Offsets[i]), 8478 /* Alignment = */ 1); 8479 ReturnValues[i] = L; 8480 Chains[i] = L.getValue(1); 8481 } 8482 8483 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8484 } else { 8485 // Collect the legal value parts into potentially illegal values 8486 // that correspond to the original function's return values. 8487 Optional<ISD::NodeType> AssertOp; 8488 if (CLI.RetSExt) 8489 AssertOp = ISD::AssertSext; 8490 else if (CLI.RetZExt) 8491 AssertOp = ISD::AssertZext; 8492 unsigned CurReg = 0; 8493 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8494 EVT VT = RetTys[I]; 8495 MVT RegisterVT = 8496 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8497 unsigned NumRegs = 8498 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8499 8500 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8501 NumRegs, RegisterVT, VT, nullptr, 8502 AssertOp, true)); 8503 CurReg += NumRegs; 8504 } 8505 8506 // For a function returning void, there is no return value. We can't create 8507 // such a node, so we just return a null return value in that case. In 8508 // that case, nothing will actually look at the value. 8509 if (ReturnValues.empty()) 8510 return std::make_pair(SDValue(), CLI.Chain); 8511 } 8512 8513 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8514 CLI.DAG.getVTList(RetTys), ReturnValues); 8515 return std::make_pair(Res, CLI.Chain); 8516 } 8517 8518 void TargetLowering::LowerOperationWrapper(SDNode *N, 8519 SmallVectorImpl<SDValue> &Results, 8520 SelectionDAG &DAG) const { 8521 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8522 Results.push_back(Res); 8523 } 8524 8525 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8526 llvm_unreachable("LowerOperation not implemented for this target!"); 8527 } 8528 8529 void 8530 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8531 SDValue Op = getNonRegisterValue(V); 8532 assert((Op.getOpcode() != ISD::CopyFromReg || 8533 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8534 "Copy from a reg to the same reg!"); 8535 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8536 8537 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8538 // If this is an InlineAsm we have to match the registers required, not the 8539 // notional registers required by the type. 8540 8541 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8542 V->getType(), isABIRegCopy(V)); 8543 SDValue Chain = DAG.getEntryNode(); 8544 8545 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8546 FuncInfo.PreferredExtendType.end()) 8547 ? ISD::ANY_EXTEND 8548 : FuncInfo.PreferredExtendType[V]; 8549 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8550 PendingExports.push_back(Chain); 8551 } 8552 8553 #include "llvm/CodeGen/SelectionDAGISel.h" 8554 8555 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8556 /// entry block, return true. This includes arguments used by switches, since 8557 /// the switch may expand into multiple basic blocks. 8558 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8559 // With FastISel active, we may be splitting blocks, so force creation 8560 // of virtual registers for all non-dead arguments. 8561 if (FastISel) 8562 return A->use_empty(); 8563 8564 const BasicBlock &Entry = A->getParent()->front(); 8565 for (const User *U : A->users()) 8566 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8567 return false; // Use not in entry block. 8568 8569 return true; 8570 } 8571 8572 using ArgCopyElisionMapTy = 8573 DenseMap<const Argument *, 8574 std::pair<const AllocaInst *, const StoreInst *>>; 8575 8576 /// Scan the entry block of the function in FuncInfo for arguments that look 8577 /// like copies into a local alloca. Record any copied arguments in 8578 /// ArgCopyElisionCandidates. 8579 static void 8580 findArgumentCopyElisionCandidates(const DataLayout &DL, 8581 FunctionLoweringInfo *FuncInfo, 8582 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8583 // Record the state of every static alloca used in the entry block. Argument 8584 // allocas are all used in the entry block, so we need approximately as many 8585 // entries as we have arguments. 8586 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8587 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8588 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8589 StaticAllocas.reserve(NumArgs * 2); 8590 8591 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8592 if (!V) 8593 return nullptr; 8594 V = V->stripPointerCasts(); 8595 const auto *AI = dyn_cast<AllocaInst>(V); 8596 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8597 return nullptr; 8598 auto Iter = StaticAllocas.insert({AI, Unknown}); 8599 return &Iter.first->second; 8600 }; 8601 8602 // Look for stores of arguments to static allocas. Look through bitcasts and 8603 // GEPs to handle type coercions, as long as the alloca is fully initialized 8604 // by the store. Any non-store use of an alloca escapes it and any subsequent 8605 // unanalyzed store might write it. 8606 // FIXME: Handle structs initialized with multiple stores. 8607 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8608 // Look for stores, and handle non-store uses conservatively. 8609 const auto *SI = dyn_cast<StoreInst>(&I); 8610 if (!SI) { 8611 // We will look through cast uses, so ignore them completely. 8612 if (I.isCast()) 8613 continue; 8614 // Ignore debug info intrinsics, they don't escape or store to allocas. 8615 if (isa<DbgInfoIntrinsic>(I)) 8616 continue; 8617 // This is an unknown instruction. Assume it escapes or writes to all 8618 // static alloca operands. 8619 for (const Use &U : I.operands()) { 8620 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8621 *Info = StaticAllocaInfo::Clobbered; 8622 } 8623 continue; 8624 } 8625 8626 // If the stored value is a static alloca, mark it as escaped. 8627 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8628 *Info = StaticAllocaInfo::Clobbered; 8629 8630 // Check if the destination is a static alloca. 8631 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8632 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8633 if (!Info) 8634 continue; 8635 const AllocaInst *AI = cast<AllocaInst>(Dst); 8636 8637 // Skip allocas that have been initialized or clobbered. 8638 if (*Info != StaticAllocaInfo::Unknown) 8639 continue; 8640 8641 // Check if the stored value is an argument, and that this store fully 8642 // initializes the alloca. Don't elide copies from the same argument twice. 8643 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8644 const auto *Arg = dyn_cast<Argument>(Val); 8645 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8646 Arg->getType()->isEmptyTy() || 8647 DL.getTypeStoreSize(Arg->getType()) != 8648 DL.getTypeAllocSize(AI->getAllocatedType()) || 8649 ArgCopyElisionCandidates.count(Arg)) { 8650 *Info = StaticAllocaInfo::Clobbered; 8651 continue; 8652 } 8653 8654 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8655 8656 // Mark this alloca and store for argument copy elision. 8657 *Info = StaticAllocaInfo::Elidable; 8658 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8659 8660 // Stop scanning if we've seen all arguments. This will happen early in -O0 8661 // builds, which is useful, because -O0 builds have large entry blocks and 8662 // many allocas. 8663 if (ArgCopyElisionCandidates.size() == NumArgs) 8664 break; 8665 } 8666 } 8667 8668 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8669 /// ArgVal is a load from a suitable fixed stack object. 8670 static void tryToElideArgumentCopy( 8671 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8672 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8673 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8674 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8675 SDValue ArgVal, bool &ArgHasUses) { 8676 // Check if this is a load from a fixed stack object. 8677 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8678 if (!LNode) 8679 return; 8680 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8681 if (!FINode) 8682 return; 8683 8684 // Check that the fixed stack object is the right size and alignment. 8685 // Look at the alignment that the user wrote on the alloca instead of looking 8686 // at the stack object. 8687 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8688 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8689 const AllocaInst *AI = ArgCopyIter->second.first; 8690 int FixedIndex = FINode->getIndex(); 8691 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8692 int OldIndex = AllocaIndex; 8693 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8694 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8695 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8696 "object size\n"); 8697 return; 8698 } 8699 unsigned RequiredAlignment = AI->getAlignment(); 8700 if (!RequiredAlignment) { 8701 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8702 AI->getAllocatedType()); 8703 } 8704 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8705 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8706 "greater than stack argument alignment (" 8707 << RequiredAlignment << " vs " 8708 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8709 return; 8710 } 8711 8712 // Perform the elision. Delete the old stack object and replace its only use 8713 // in the variable info map. Mark the stack object as mutable. 8714 DEBUG({ 8715 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8716 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8717 << '\n'; 8718 }); 8719 MFI.RemoveStackObject(OldIndex); 8720 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8721 AllocaIndex = FixedIndex; 8722 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8723 Chains.push_back(ArgVal.getValue(1)); 8724 8725 // Avoid emitting code for the store implementing the copy. 8726 const StoreInst *SI = ArgCopyIter->second.second; 8727 ElidedArgCopyInstrs.insert(SI); 8728 8729 // Check for uses of the argument again so that we can avoid exporting ArgVal 8730 // if it is't used by anything other than the store. 8731 for (const Value *U : Arg.users()) { 8732 if (U != SI) { 8733 ArgHasUses = true; 8734 break; 8735 } 8736 } 8737 } 8738 8739 void SelectionDAGISel::LowerArguments(const Function &F) { 8740 SelectionDAG &DAG = SDB->DAG; 8741 SDLoc dl = SDB->getCurSDLoc(); 8742 const DataLayout &DL = DAG.getDataLayout(); 8743 SmallVector<ISD::InputArg, 16> Ins; 8744 8745 if (!FuncInfo->CanLowerReturn) { 8746 // Put in an sret pointer parameter before all the other parameters. 8747 SmallVector<EVT, 1> ValueVTs; 8748 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8749 F.getReturnType()->getPointerTo( 8750 DAG.getDataLayout().getAllocaAddrSpace()), 8751 ValueVTs); 8752 8753 // NOTE: Assuming that a pointer will never break down to more than one VT 8754 // or one register. 8755 ISD::ArgFlagsTy Flags; 8756 Flags.setSRet(); 8757 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8758 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8759 ISD::InputArg::NoArgIndex, 0); 8760 Ins.push_back(RetArg); 8761 } 8762 8763 // Look for stores of arguments to static allocas. Mark such arguments with a 8764 // flag to ask the target to give us the memory location of that argument if 8765 // available. 8766 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8767 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8768 8769 // Set up the incoming argument description vector. 8770 for (const Argument &Arg : F.args()) { 8771 unsigned ArgNo = Arg.getArgNo(); 8772 SmallVector<EVT, 4> ValueVTs; 8773 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8774 bool isArgValueUsed = !Arg.use_empty(); 8775 unsigned PartBase = 0; 8776 Type *FinalType = Arg.getType(); 8777 if (Arg.hasAttribute(Attribute::ByVal)) 8778 FinalType = cast<PointerType>(FinalType)->getElementType(); 8779 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8780 FinalType, F.getCallingConv(), F.isVarArg()); 8781 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8782 Value != NumValues; ++Value) { 8783 EVT VT = ValueVTs[Value]; 8784 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8785 ISD::ArgFlagsTy Flags; 8786 8787 // Certain targets (such as MIPS), may have a different ABI alignment 8788 // for a type depending on the context. Give the target a chance to 8789 // specify the alignment it wants. 8790 unsigned OriginalAlignment = 8791 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8792 8793 if (Arg.hasAttribute(Attribute::ZExt)) 8794 Flags.setZExt(); 8795 if (Arg.hasAttribute(Attribute::SExt)) 8796 Flags.setSExt(); 8797 if (Arg.hasAttribute(Attribute::InReg)) { 8798 // If we are using vectorcall calling convention, a structure that is 8799 // passed InReg - is surely an HVA 8800 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8801 isa<StructType>(Arg.getType())) { 8802 // The first value of a structure is marked 8803 if (0 == Value) 8804 Flags.setHvaStart(); 8805 Flags.setHva(); 8806 } 8807 // Set InReg Flag 8808 Flags.setInReg(); 8809 } 8810 if (Arg.hasAttribute(Attribute::StructRet)) 8811 Flags.setSRet(); 8812 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8813 Flags.setSwiftSelf(); 8814 if (Arg.hasAttribute(Attribute::SwiftError)) 8815 Flags.setSwiftError(); 8816 if (Arg.hasAttribute(Attribute::ByVal)) 8817 Flags.setByVal(); 8818 if (Arg.hasAttribute(Attribute::InAlloca)) { 8819 Flags.setInAlloca(); 8820 // Set the byval flag for CCAssignFn callbacks that don't know about 8821 // inalloca. This way we can know how many bytes we should've allocated 8822 // and how many bytes a callee cleanup function will pop. If we port 8823 // inalloca to more targets, we'll have to add custom inalloca handling 8824 // in the various CC lowering callbacks. 8825 Flags.setByVal(); 8826 } 8827 if (F.getCallingConv() == CallingConv::X86_INTR) { 8828 // IA Interrupt passes frame (1st parameter) by value in the stack. 8829 if (ArgNo == 0) 8830 Flags.setByVal(); 8831 } 8832 if (Flags.isByVal() || Flags.isInAlloca()) { 8833 PointerType *Ty = cast<PointerType>(Arg.getType()); 8834 Type *ElementTy = Ty->getElementType(); 8835 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8836 // For ByVal, alignment should be passed from FE. BE will guess if 8837 // this info is not there but there are cases it cannot get right. 8838 unsigned FrameAlign; 8839 if (Arg.getParamAlignment()) 8840 FrameAlign = Arg.getParamAlignment(); 8841 else 8842 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8843 Flags.setByValAlign(FrameAlign); 8844 } 8845 if (Arg.hasAttribute(Attribute::Nest)) 8846 Flags.setNest(); 8847 if (NeedsRegBlock) 8848 Flags.setInConsecutiveRegs(); 8849 Flags.setOrigAlign(OriginalAlignment); 8850 if (ArgCopyElisionCandidates.count(&Arg)) 8851 Flags.setCopyElisionCandidate(); 8852 8853 MVT RegisterVT = 8854 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8855 unsigned NumRegs = 8856 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8857 for (unsigned i = 0; i != NumRegs; ++i) { 8858 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8859 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8860 if (NumRegs > 1 && i == 0) 8861 MyFlags.Flags.setSplit(); 8862 // if it isn't first piece, alignment must be 1 8863 else if (i > 0) { 8864 MyFlags.Flags.setOrigAlign(1); 8865 if (i == NumRegs - 1) 8866 MyFlags.Flags.setSplitEnd(); 8867 } 8868 Ins.push_back(MyFlags); 8869 } 8870 if (NeedsRegBlock && Value == NumValues - 1) 8871 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8872 PartBase += VT.getStoreSize(); 8873 } 8874 } 8875 8876 // Call the target to set up the argument values. 8877 SmallVector<SDValue, 8> InVals; 8878 SDValue NewRoot = TLI->LowerFormalArguments( 8879 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8880 8881 // Verify that the target's LowerFormalArguments behaved as expected. 8882 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8883 "LowerFormalArguments didn't return a valid chain!"); 8884 assert(InVals.size() == Ins.size() && 8885 "LowerFormalArguments didn't emit the correct number of values!"); 8886 DEBUG({ 8887 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8888 assert(InVals[i].getNode() && 8889 "LowerFormalArguments emitted a null value!"); 8890 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8891 "LowerFormalArguments emitted a value with the wrong type!"); 8892 } 8893 }); 8894 8895 // Update the DAG with the new chain value resulting from argument lowering. 8896 DAG.setRoot(NewRoot); 8897 8898 // Set up the argument values. 8899 unsigned i = 0; 8900 if (!FuncInfo->CanLowerReturn) { 8901 // Create a virtual register for the sret pointer, and put in a copy 8902 // from the sret argument into it. 8903 SmallVector<EVT, 1> ValueVTs; 8904 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8905 F.getReturnType()->getPointerTo( 8906 DAG.getDataLayout().getAllocaAddrSpace()), 8907 ValueVTs); 8908 MVT VT = ValueVTs[0].getSimpleVT(); 8909 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8910 Optional<ISD::NodeType> AssertOp = None; 8911 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8912 RegVT, VT, nullptr, AssertOp); 8913 8914 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8915 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8916 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8917 FuncInfo->DemoteRegister = SRetReg; 8918 NewRoot = 8919 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8920 DAG.setRoot(NewRoot); 8921 8922 // i indexes lowered arguments. Bump it past the hidden sret argument. 8923 ++i; 8924 } 8925 8926 SmallVector<SDValue, 4> Chains; 8927 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8928 for (const Argument &Arg : F.args()) { 8929 SmallVector<SDValue, 4> ArgValues; 8930 SmallVector<EVT, 4> ValueVTs; 8931 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8932 unsigned NumValues = ValueVTs.size(); 8933 if (NumValues == 0) 8934 continue; 8935 8936 bool ArgHasUses = !Arg.use_empty(); 8937 8938 // Elide the copying store if the target loaded this argument from a 8939 // suitable fixed stack object. 8940 if (Ins[i].Flags.isCopyElisionCandidate()) { 8941 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8942 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8943 InVals[i], ArgHasUses); 8944 } 8945 8946 // If this argument is unused then remember its value. It is used to generate 8947 // debugging information. 8948 bool isSwiftErrorArg = 8949 TLI->supportSwiftError() && 8950 Arg.hasAttribute(Attribute::SwiftError); 8951 if (!ArgHasUses && !isSwiftErrorArg) { 8952 SDB->setUnusedArgValue(&Arg, InVals[i]); 8953 8954 // Also remember any frame index for use in FastISel. 8955 if (FrameIndexSDNode *FI = 8956 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8957 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8958 } 8959 8960 for (unsigned Val = 0; Val != NumValues; ++Val) { 8961 EVT VT = ValueVTs[Val]; 8962 MVT PartVT = 8963 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8964 unsigned NumParts = 8965 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8966 8967 // Even an apparant 'unused' swifterror argument needs to be returned. So 8968 // we do generate a copy for it that can be used on return from the 8969 // function. 8970 if (ArgHasUses || isSwiftErrorArg) { 8971 Optional<ISD::NodeType> AssertOp; 8972 if (Arg.hasAttribute(Attribute::SExt)) 8973 AssertOp = ISD::AssertSext; 8974 else if (Arg.hasAttribute(Attribute::ZExt)) 8975 AssertOp = ISD::AssertZext; 8976 8977 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8978 PartVT, VT, nullptr, AssertOp, 8979 true)); 8980 } 8981 8982 i += NumParts; 8983 } 8984 8985 // We don't need to do anything else for unused arguments. 8986 if (ArgValues.empty()) 8987 continue; 8988 8989 // Note down frame index. 8990 if (FrameIndexSDNode *FI = 8991 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8992 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8993 8994 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8995 SDB->getCurSDLoc()); 8996 8997 SDB->setValue(&Arg, Res); 8998 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8999 // We want to associate the argument with the frame index, among 9000 // involved operands, that correspond to the lowest address. The 9001 // getCopyFromParts function, called earlier, is swapping the order of 9002 // the operands to BUILD_PAIR depending on endianness. The result of 9003 // that swapping is that the least significant bits of the argument will 9004 // be in the first operand of the BUILD_PAIR node, and the most 9005 // significant bits will be in the second operand. 9006 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9007 if (LoadSDNode *LNode = 9008 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9009 if (FrameIndexSDNode *FI = 9010 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9011 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9012 } 9013 9014 // Update the SwiftErrorVRegDefMap. 9015 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9016 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9017 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9018 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9019 FuncInfo->SwiftErrorArg, Reg); 9020 } 9021 9022 // If this argument is live outside of the entry block, insert a copy from 9023 // wherever we got it to the vreg that other BB's will reference it as. 9024 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9025 // If we can, though, try to skip creating an unnecessary vreg. 9026 // FIXME: This isn't very clean... it would be nice to make this more 9027 // general. It's also subtly incompatible with the hacks FastISel 9028 // uses with vregs. 9029 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9030 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9031 FuncInfo->ValueMap[&Arg] = Reg; 9032 continue; 9033 } 9034 } 9035 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9036 FuncInfo->InitializeRegForValue(&Arg); 9037 SDB->CopyToExportRegsIfNeeded(&Arg); 9038 } 9039 } 9040 9041 if (!Chains.empty()) { 9042 Chains.push_back(NewRoot); 9043 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9044 } 9045 9046 DAG.setRoot(NewRoot); 9047 9048 assert(i == InVals.size() && "Argument register count mismatch!"); 9049 9050 // If any argument copy elisions occurred and we have debug info, update the 9051 // stale frame indices used in the dbg.declare variable info table. 9052 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9053 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9054 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9055 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9056 if (I != ArgCopyElisionFrameIndexMap.end()) 9057 VI.Slot = I->second; 9058 } 9059 } 9060 9061 // Finally, if the target has anything special to do, allow it to do so. 9062 EmitFunctionEntryCode(); 9063 } 9064 9065 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9066 /// ensure constants are generated when needed. Remember the virtual registers 9067 /// that need to be added to the Machine PHI nodes as input. We cannot just 9068 /// directly add them, because expansion might result in multiple MBB's for one 9069 /// BB. As such, the start of the BB might correspond to a different MBB than 9070 /// the end. 9071 void 9072 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9073 const TerminatorInst *TI = LLVMBB->getTerminator(); 9074 9075 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9076 9077 // Check PHI nodes in successors that expect a value to be available from this 9078 // block. 9079 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9080 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9081 if (!isa<PHINode>(SuccBB->begin())) continue; 9082 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9083 9084 // If this terminator has multiple identical successors (common for 9085 // switches), only handle each succ once. 9086 if (!SuccsHandled.insert(SuccMBB).second) 9087 continue; 9088 9089 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9090 9091 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9092 // nodes and Machine PHI nodes, but the incoming operands have not been 9093 // emitted yet. 9094 for (const PHINode &PN : SuccBB->phis()) { 9095 // Ignore dead phi's. 9096 if (PN.use_empty()) 9097 continue; 9098 9099 // Skip empty types 9100 if (PN.getType()->isEmptyTy()) 9101 continue; 9102 9103 unsigned Reg; 9104 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9105 9106 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9107 unsigned &RegOut = ConstantsOut[C]; 9108 if (RegOut == 0) { 9109 RegOut = FuncInfo.CreateRegs(C->getType()); 9110 CopyValueToVirtualRegister(C, RegOut); 9111 } 9112 Reg = RegOut; 9113 } else { 9114 DenseMap<const Value *, unsigned>::iterator I = 9115 FuncInfo.ValueMap.find(PHIOp); 9116 if (I != FuncInfo.ValueMap.end()) 9117 Reg = I->second; 9118 else { 9119 assert(isa<AllocaInst>(PHIOp) && 9120 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9121 "Didn't codegen value into a register!??"); 9122 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9123 CopyValueToVirtualRegister(PHIOp, Reg); 9124 } 9125 } 9126 9127 // Remember that this register needs to added to the machine PHI node as 9128 // the input for this MBB. 9129 SmallVector<EVT, 4> ValueVTs; 9130 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9131 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9132 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9133 EVT VT = ValueVTs[vti]; 9134 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9135 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9136 FuncInfo.PHINodesToUpdate.push_back( 9137 std::make_pair(&*MBBI++, Reg + i)); 9138 Reg += NumRegisters; 9139 } 9140 } 9141 } 9142 9143 ConstantsOut.clear(); 9144 } 9145 9146 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9147 /// is 0. 9148 MachineBasicBlock * 9149 SelectionDAGBuilder::StackProtectorDescriptor:: 9150 AddSuccessorMBB(const BasicBlock *BB, 9151 MachineBasicBlock *ParentMBB, 9152 bool IsLikely, 9153 MachineBasicBlock *SuccMBB) { 9154 // If SuccBB has not been created yet, create it. 9155 if (!SuccMBB) { 9156 MachineFunction *MF = ParentMBB->getParent(); 9157 MachineFunction::iterator BBI(ParentMBB); 9158 SuccMBB = MF->CreateMachineBasicBlock(BB); 9159 MF->insert(++BBI, SuccMBB); 9160 } 9161 // Add it as a successor of ParentMBB. 9162 ParentMBB->addSuccessor( 9163 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9164 return SuccMBB; 9165 } 9166 9167 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9168 MachineFunction::iterator I(MBB); 9169 if (++I == FuncInfo.MF->end()) 9170 return nullptr; 9171 return &*I; 9172 } 9173 9174 /// During lowering new call nodes can be created (such as memset, etc.). 9175 /// Those will become new roots of the current DAG, but complications arise 9176 /// when they are tail calls. In such cases, the call lowering will update 9177 /// the root, but the builder still needs to know that a tail call has been 9178 /// lowered in order to avoid generating an additional return. 9179 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9180 // If the node is null, we do have a tail call. 9181 if (MaybeTC.getNode() != nullptr) 9182 DAG.setRoot(MaybeTC); 9183 else 9184 HasTailCall = true; 9185 } 9186 9187 uint64_t 9188 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9189 unsigned First, unsigned Last) const { 9190 assert(Last >= First); 9191 const APInt &LowCase = Clusters[First].Low->getValue(); 9192 const APInt &HighCase = Clusters[Last].High->getValue(); 9193 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9194 9195 // FIXME: A range of consecutive cases has 100% density, but only requires one 9196 // comparison to lower. We should discriminate against such consecutive ranges 9197 // in jump tables. 9198 9199 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9200 } 9201 9202 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9203 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9204 unsigned Last) const { 9205 assert(Last >= First); 9206 assert(TotalCases[Last] >= TotalCases[First]); 9207 uint64_t NumCases = 9208 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9209 return NumCases; 9210 } 9211 9212 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9213 unsigned First, unsigned Last, 9214 const SwitchInst *SI, 9215 MachineBasicBlock *DefaultMBB, 9216 CaseCluster &JTCluster) { 9217 assert(First <= Last); 9218 9219 auto Prob = BranchProbability::getZero(); 9220 unsigned NumCmps = 0; 9221 std::vector<MachineBasicBlock*> Table; 9222 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9223 9224 // Initialize probabilities in JTProbs. 9225 for (unsigned I = First; I <= Last; ++I) 9226 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9227 9228 for (unsigned I = First; I <= Last; ++I) { 9229 assert(Clusters[I].Kind == CC_Range); 9230 Prob += Clusters[I].Prob; 9231 const APInt &Low = Clusters[I].Low->getValue(); 9232 const APInt &High = Clusters[I].High->getValue(); 9233 NumCmps += (Low == High) ? 1 : 2; 9234 if (I != First) { 9235 // Fill the gap between this and the previous cluster. 9236 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9237 assert(PreviousHigh.slt(Low)); 9238 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9239 for (uint64_t J = 0; J < Gap; J++) 9240 Table.push_back(DefaultMBB); 9241 } 9242 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9243 for (uint64_t J = 0; J < ClusterSize; ++J) 9244 Table.push_back(Clusters[I].MBB); 9245 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9246 } 9247 9248 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9249 unsigned NumDests = JTProbs.size(); 9250 if (TLI.isSuitableForBitTests( 9251 NumDests, NumCmps, Clusters[First].Low->getValue(), 9252 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9253 // Clusters[First..Last] should be lowered as bit tests instead. 9254 return false; 9255 } 9256 9257 // Create the MBB that will load from and jump through the table. 9258 // Note: We create it here, but it's not inserted into the function yet. 9259 MachineFunction *CurMF = FuncInfo.MF; 9260 MachineBasicBlock *JumpTableMBB = 9261 CurMF->CreateMachineBasicBlock(SI->getParent()); 9262 9263 // Add successors. Note: use table order for determinism. 9264 SmallPtrSet<MachineBasicBlock *, 8> Done; 9265 for (MachineBasicBlock *Succ : Table) { 9266 if (Done.count(Succ)) 9267 continue; 9268 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9269 Done.insert(Succ); 9270 } 9271 JumpTableMBB->normalizeSuccProbs(); 9272 9273 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9274 ->createJumpTableIndex(Table); 9275 9276 // Set up the jump table info. 9277 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9278 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9279 Clusters[Last].High->getValue(), SI->getCondition(), 9280 nullptr, false); 9281 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9282 9283 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9284 JTCases.size() - 1, Prob); 9285 return true; 9286 } 9287 9288 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9289 const SwitchInst *SI, 9290 MachineBasicBlock *DefaultMBB) { 9291 #ifndef NDEBUG 9292 // Clusters must be non-empty, sorted, and only contain Range clusters. 9293 assert(!Clusters.empty()); 9294 for (CaseCluster &C : Clusters) 9295 assert(C.Kind == CC_Range); 9296 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9297 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9298 #endif 9299 9300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9301 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9302 return; 9303 9304 const int64_t N = Clusters.size(); 9305 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9306 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9307 9308 if (N < 2 || N < MinJumpTableEntries) 9309 return; 9310 9311 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9312 SmallVector<unsigned, 8> TotalCases(N); 9313 for (unsigned i = 0; i < N; ++i) { 9314 const APInt &Hi = Clusters[i].High->getValue(); 9315 const APInt &Lo = Clusters[i].Low->getValue(); 9316 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9317 if (i != 0) 9318 TotalCases[i] += TotalCases[i - 1]; 9319 } 9320 9321 // Cheap case: the whole range may be suitable for jump table. 9322 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9323 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9324 assert(NumCases < UINT64_MAX / 100); 9325 assert(Range >= NumCases); 9326 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9327 CaseCluster JTCluster; 9328 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9329 Clusters[0] = JTCluster; 9330 Clusters.resize(1); 9331 return; 9332 } 9333 } 9334 9335 // The algorithm below is not suitable for -O0. 9336 if (TM.getOptLevel() == CodeGenOpt::None) 9337 return; 9338 9339 // Split Clusters into minimum number of dense partitions. The algorithm uses 9340 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9341 // for the Case Statement'" (1994), but builds the MinPartitions array in 9342 // reverse order to make it easier to reconstruct the partitions in ascending 9343 // order. In the choice between two optimal partitionings, it picks the one 9344 // which yields more jump tables. 9345 9346 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9347 SmallVector<unsigned, 8> MinPartitions(N); 9348 // LastElement[i] is the last element of the partition starting at i. 9349 SmallVector<unsigned, 8> LastElement(N); 9350 // PartitionsScore[i] is used to break ties when choosing between two 9351 // partitionings resulting in the same number of partitions. 9352 SmallVector<unsigned, 8> PartitionsScore(N); 9353 // For PartitionsScore, a small number of comparisons is considered as good as 9354 // a jump table and a single comparison is considered better than a jump 9355 // table. 9356 enum PartitionScores : unsigned { 9357 NoTable = 0, 9358 Table = 1, 9359 FewCases = 1, 9360 SingleCase = 2 9361 }; 9362 9363 // Base case: There is only one way to partition Clusters[N-1]. 9364 MinPartitions[N - 1] = 1; 9365 LastElement[N - 1] = N - 1; 9366 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9367 9368 // Note: loop indexes are signed to avoid underflow. 9369 for (int64_t i = N - 2; i >= 0; i--) { 9370 // Find optimal partitioning of Clusters[i..N-1]. 9371 // Baseline: Put Clusters[i] into a partition on its own. 9372 MinPartitions[i] = MinPartitions[i + 1] + 1; 9373 LastElement[i] = i; 9374 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9375 9376 // Search for a solution that results in fewer partitions. 9377 for (int64_t j = N - 1; j > i; j--) { 9378 // Try building a partition from Clusters[i..j]. 9379 uint64_t Range = getJumpTableRange(Clusters, i, j); 9380 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9381 assert(NumCases < UINT64_MAX / 100); 9382 assert(Range >= NumCases); 9383 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9384 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9385 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9386 int64_t NumEntries = j - i + 1; 9387 9388 if (NumEntries == 1) 9389 Score += PartitionScores::SingleCase; 9390 else if (NumEntries <= SmallNumberOfEntries) 9391 Score += PartitionScores::FewCases; 9392 else if (NumEntries >= MinJumpTableEntries) 9393 Score += PartitionScores::Table; 9394 9395 // If this leads to fewer partitions, or to the same number of 9396 // partitions with better score, it is a better partitioning. 9397 if (NumPartitions < MinPartitions[i] || 9398 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9399 MinPartitions[i] = NumPartitions; 9400 LastElement[i] = j; 9401 PartitionsScore[i] = Score; 9402 } 9403 } 9404 } 9405 } 9406 9407 // Iterate over the partitions, replacing some with jump tables in-place. 9408 unsigned DstIndex = 0; 9409 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9410 Last = LastElement[First]; 9411 assert(Last >= First); 9412 assert(DstIndex <= First); 9413 unsigned NumClusters = Last - First + 1; 9414 9415 CaseCluster JTCluster; 9416 if (NumClusters >= MinJumpTableEntries && 9417 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9418 Clusters[DstIndex++] = JTCluster; 9419 } else { 9420 for (unsigned I = First; I <= Last; ++I) 9421 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9422 } 9423 } 9424 Clusters.resize(DstIndex); 9425 } 9426 9427 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9428 unsigned First, unsigned Last, 9429 const SwitchInst *SI, 9430 CaseCluster &BTCluster) { 9431 assert(First <= Last); 9432 if (First == Last) 9433 return false; 9434 9435 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9436 unsigned NumCmps = 0; 9437 for (int64_t I = First; I <= Last; ++I) { 9438 assert(Clusters[I].Kind == CC_Range); 9439 Dests.set(Clusters[I].MBB->getNumber()); 9440 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9441 } 9442 unsigned NumDests = Dests.count(); 9443 9444 APInt Low = Clusters[First].Low->getValue(); 9445 APInt High = Clusters[Last].High->getValue(); 9446 assert(Low.slt(High)); 9447 9448 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9449 const DataLayout &DL = DAG.getDataLayout(); 9450 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9451 return false; 9452 9453 APInt LowBound; 9454 APInt CmpRange; 9455 9456 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9457 assert(TLI.rangeFitsInWord(Low, High, DL) && 9458 "Case range must fit in bit mask!"); 9459 9460 // Check if the clusters cover a contiguous range such that no value in the 9461 // range will jump to the default statement. 9462 bool ContiguousRange = true; 9463 for (int64_t I = First + 1; I <= Last; ++I) { 9464 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9465 ContiguousRange = false; 9466 break; 9467 } 9468 } 9469 9470 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9471 // Optimize the case where all the case values fit in a word without having 9472 // to subtract minValue. In this case, we can optimize away the subtraction. 9473 LowBound = APInt::getNullValue(Low.getBitWidth()); 9474 CmpRange = High; 9475 ContiguousRange = false; 9476 } else { 9477 LowBound = Low; 9478 CmpRange = High - Low; 9479 } 9480 9481 CaseBitsVector CBV; 9482 auto TotalProb = BranchProbability::getZero(); 9483 for (unsigned i = First; i <= Last; ++i) { 9484 // Find the CaseBits for this destination. 9485 unsigned j; 9486 for (j = 0; j < CBV.size(); ++j) 9487 if (CBV[j].BB == Clusters[i].MBB) 9488 break; 9489 if (j == CBV.size()) 9490 CBV.push_back( 9491 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9492 CaseBits *CB = &CBV[j]; 9493 9494 // Update Mask, Bits and ExtraProb. 9495 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9496 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9497 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9498 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9499 CB->Bits += Hi - Lo + 1; 9500 CB->ExtraProb += Clusters[i].Prob; 9501 TotalProb += Clusters[i].Prob; 9502 } 9503 9504 BitTestInfo BTI; 9505 llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9506 // Sort by probability first, number of bits second, bit mask third. 9507 if (a.ExtraProb != b.ExtraProb) 9508 return a.ExtraProb > b.ExtraProb; 9509 if (a.Bits != b.Bits) 9510 return a.Bits > b.Bits; 9511 return a.Mask < b.Mask; 9512 }); 9513 9514 for (auto &CB : CBV) { 9515 MachineBasicBlock *BitTestBB = 9516 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9517 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9518 } 9519 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9520 SI->getCondition(), -1U, MVT::Other, false, 9521 ContiguousRange, nullptr, nullptr, std::move(BTI), 9522 TotalProb); 9523 9524 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9525 BitTestCases.size() - 1, TotalProb); 9526 return true; 9527 } 9528 9529 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9530 const SwitchInst *SI) { 9531 // Partition Clusters into as few subsets as possible, where each subset has a 9532 // range that fits in a machine word and has <= 3 unique destinations. 9533 9534 #ifndef NDEBUG 9535 // Clusters must be sorted and contain Range or JumpTable clusters. 9536 assert(!Clusters.empty()); 9537 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9538 for (const CaseCluster &C : Clusters) 9539 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9540 for (unsigned i = 1; i < Clusters.size(); ++i) 9541 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9542 #endif 9543 9544 // The algorithm below is not suitable for -O0. 9545 if (TM.getOptLevel() == CodeGenOpt::None) 9546 return; 9547 9548 // If target does not have legal shift left, do not emit bit tests at all. 9549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9550 const DataLayout &DL = DAG.getDataLayout(); 9551 9552 EVT PTy = TLI.getPointerTy(DL); 9553 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9554 return; 9555 9556 int BitWidth = PTy.getSizeInBits(); 9557 const int64_t N = Clusters.size(); 9558 9559 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9560 SmallVector<unsigned, 8> MinPartitions(N); 9561 // LastElement[i] is the last element of the partition starting at i. 9562 SmallVector<unsigned, 8> LastElement(N); 9563 9564 // FIXME: This might not be the best algorithm for finding bit test clusters. 9565 9566 // Base case: There is only one way to partition Clusters[N-1]. 9567 MinPartitions[N - 1] = 1; 9568 LastElement[N - 1] = N - 1; 9569 9570 // Note: loop indexes are signed to avoid underflow. 9571 for (int64_t i = N - 2; i >= 0; --i) { 9572 // Find optimal partitioning of Clusters[i..N-1]. 9573 // Baseline: Put Clusters[i] into a partition on its own. 9574 MinPartitions[i] = MinPartitions[i + 1] + 1; 9575 LastElement[i] = i; 9576 9577 // Search for a solution that results in fewer partitions. 9578 // Note: the search is limited by BitWidth, reducing time complexity. 9579 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9580 // Try building a partition from Clusters[i..j]. 9581 9582 // Check the range. 9583 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9584 Clusters[j].High->getValue(), DL)) 9585 continue; 9586 9587 // Check nbr of destinations and cluster types. 9588 // FIXME: This works, but doesn't seem very efficient. 9589 bool RangesOnly = true; 9590 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9591 for (int64_t k = i; k <= j; k++) { 9592 if (Clusters[k].Kind != CC_Range) { 9593 RangesOnly = false; 9594 break; 9595 } 9596 Dests.set(Clusters[k].MBB->getNumber()); 9597 } 9598 if (!RangesOnly || Dests.count() > 3) 9599 break; 9600 9601 // Check if it's a better partition. 9602 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9603 if (NumPartitions < MinPartitions[i]) { 9604 // Found a better partition. 9605 MinPartitions[i] = NumPartitions; 9606 LastElement[i] = j; 9607 } 9608 } 9609 } 9610 9611 // Iterate over the partitions, replacing with bit-test clusters in-place. 9612 unsigned DstIndex = 0; 9613 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9614 Last = LastElement[First]; 9615 assert(First <= Last); 9616 assert(DstIndex <= First); 9617 9618 CaseCluster BitTestCluster; 9619 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9620 Clusters[DstIndex++] = BitTestCluster; 9621 } else { 9622 size_t NumClusters = Last - First + 1; 9623 std::memmove(&Clusters[DstIndex], &Clusters[First], 9624 sizeof(Clusters[0]) * NumClusters); 9625 DstIndex += NumClusters; 9626 } 9627 } 9628 Clusters.resize(DstIndex); 9629 } 9630 9631 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9632 MachineBasicBlock *SwitchMBB, 9633 MachineBasicBlock *DefaultMBB) { 9634 MachineFunction *CurMF = FuncInfo.MF; 9635 MachineBasicBlock *NextMBB = nullptr; 9636 MachineFunction::iterator BBI(W.MBB); 9637 if (++BBI != FuncInfo.MF->end()) 9638 NextMBB = &*BBI; 9639 9640 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9641 9642 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9643 9644 if (Size == 2 && W.MBB == SwitchMBB) { 9645 // If any two of the cases has the same destination, and if one value 9646 // is the same as the other, but has one bit unset that the other has set, 9647 // use bit manipulation to do two compares at once. For example: 9648 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9649 // TODO: This could be extended to merge any 2 cases in switches with 3 9650 // cases. 9651 // TODO: Handle cases where W.CaseBB != SwitchBB. 9652 CaseCluster &Small = *W.FirstCluster; 9653 CaseCluster &Big = *W.LastCluster; 9654 9655 if (Small.Low == Small.High && Big.Low == Big.High && 9656 Small.MBB == Big.MBB) { 9657 const APInt &SmallValue = Small.Low->getValue(); 9658 const APInt &BigValue = Big.Low->getValue(); 9659 9660 // Check that there is only one bit different. 9661 APInt CommonBit = BigValue ^ SmallValue; 9662 if (CommonBit.isPowerOf2()) { 9663 SDValue CondLHS = getValue(Cond); 9664 EVT VT = CondLHS.getValueType(); 9665 SDLoc DL = getCurSDLoc(); 9666 9667 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9668 DAG.getConstant(CommonBit, DL, VT)); 9669 SDValue Cond = DAG.getSetCC( 9670 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9671 ISD::SETEQ); 9672 9673 // Update successor info. 9674 // Both Small and Big will jump to Small.BB, so we sum up the 9675 // probabilities. 9676 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9677 if (BPI) 9678 addSuccessorWithProb( 9679 SwitchMBB, DefaultMBB, 9680 // The default destination is the first successor in IR. 9681 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9682 else 9683 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9684 9685 // Insert the true branch. 9686 SDValue BrCond = 9687 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9688 DAG.getBasicBlock(Small.MBB)); 9689 // Insert the false branch. 9690 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9691 DAG.getBasicBlock(DefaultMBB)); 9692 9693 DAG.setRoot(BrCond); 9694 return; 9695 } 9696 } 9697 } 9698 9699 if (TM.getOptLevel() != CodeGenOpt::None) { 9700 // Here, we order cases by probability so the most likely case will be 9701 // checked first. However, two clusters can have the same probability in 9702 // which case their relative ordering is non-deterministic. So we use Low 9703 // as a tie-breaker as clusters are guaranteed to never overlap. 9704 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9705 [](const CaseCluster &a, const CaseCluster &b) { 9706 return a.Prob != b.Prob ? 9707 a.Prob > b.Prob : 9708 a.Low->getValue().slt(b.Low->getValue()); 9709 }); 9710 9711 // Rearrange the case blocks so that the last one falls through if possible 9712 // without changing the order of probabilities. 9713 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9714 --I; 9715 if (I->Prob > W.LastCluster->Prob) 9716 break; 9717 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9718 std::swap(*I, *W.LastCluster); 9719 break; 9720 } 9721 } 9722 } 9723 9724 // Compute total probability. 9725 BranchProbability DefaultProb = W.DefaultProb; 9726 BranchProbability UnhandledProbs = DefaultProb; 9727 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9728 UnhandledProbs += I->Prob; 9729 9730 MachineBasicBlock *CurMBB = W.MBB; 9731 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9732 MachineBasicBlock *Fallthrough; 9733 if (I == W.LastCluster) { 9734 // For the last cluster, fall through to the default destination. 9735 Fallthrough = DefaultMBB; 9736 } else { 9737 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9738 CurMF->insert(BBI, Fallthrough); 9739 // Put Cond in a virtual register to make it available from the new blocks. 9740 ExportFromCurrentBlock(Cond); 9741 } 9742 UnhandledProbs -= I->Prob; 9743 9744 switch (I->Kind) { 9745 case CC_JumpTable: { 9746 // FIXME: Optimize away range check based on pivot comparisons. 9747 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9748 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9749 9750 // The jump block hasn't been inserted yet; insert it here. 9751 MachineBasicBlock *JumpMBB = JT->MBB; 9752 CurMF->insert(BBI, JumpMBB); 9753 9754 auto JumpProb = I->Prob; 9755 auto FallthroughProb = UnhandledProbs; 9756 9757 // If the default statement is a target of the jump table, we evenly 9758 // distribute the default probability to successors of CurMBB. Also 9759 // update the probability on the edge from JumpMBB to Fallthrough. 9760 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9761 SE = JumpMBB->succ_end(); 9762 SI != SE; ++SI) { 9763 if (*SI == DefaultMBB) { 9764 JumpProb += DefaultProb / 2; 9765 FallthroughProb -= DefaultProb / 2; 9766 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9767 JumpMBB->normalizeSuccProbs(); 9768 break; 9769 } 9770 } 9771 9772 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9773 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9774 CurMBB->normalizeSuccProbs(); 9775 9776 // The jump table header will be inserted in our current block, do the 9777 // range check, and fall through to our fallthrough block. 9778 JTH->HeaderBB = CurMBB; 9779 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9780 9781 // If we're in the right place, emit the jump table header right now. 9782 if (CurMBB == SwitchMBB) { 9783 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9784 JTH->Emitted = true; 9785 } 9786 break; 9787 } 9788 case CC_BitTests: { 9789 // FIXME: Optimize away range check based on pivot comparisons. 9790 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9791 9792 // The bit test blocks haven't been inserted yet; insert them here. 9793 for (BitTestCase &BTC : BTB->Cases) 9794 CurMF->insert(BBI, BTC.ThisBB); 9795 9796 // Fill in fields of the BitTestBlock. 9797 BTB->Parent = CurMBB; 9798 BTB->Default = Fallthrough; 9799 9800 BTB->DefaultProb = UnhandledProbs; 9801 // If the cases in bit test don't form a contiguous range, we evenly 9802 // distribute the probability on the edge to Fallthrough to two 9803 // successors of CurMBB. 9804 if (!BTB->ContiguousRange) { 9805 BTB->Prob += DefaultProb / 2; 9806 BTB->DefaultProb -= DefaultProb / 2; 9807 } 9808 9809 // If we're in the right place, emit the bit test header right now. 9810 if (CurMBB == SwitchMBB) { 9811 visitBitTestHeader(*BTB, SwitchMBB); 9812 BTB->Emitted = true; 9813 } 9814 break; 9815 } 9816 case CC_Range: { 9817 const Value *RHS, *LHS, *MHS; 9818 ISD::CondCode CC; 9819 if (I->Low == I->High) { 9820 // Check Cond == I->Low. 9821 CC = ISD::SETEQ; 9822 LHS = Cond; 9823 RHS=I->Low; 9824 MHS = nullptr; 9825 } else { 9826 // Check I->Low <= Cond <= I->High. 9827 CC = ISD::SETLE; 9828 LHS = I->Low; 9829 MHS = Cond; 9830 RHS = I->High; 9831 } 9832 9833 // The false probability is the sum of all unhandled cases. 9834 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9835 getCurSDLoc(), I->Prob, UnhandledProbs); 9836 9837 if (CurMBB == SwitchMBB) 9838 visitSwitchCase(CB, SwitchMBB); 9839 else 9840 SwitchCases.push_back(CB); 9841 9842 break; 9843 } 9844 } 9845 CurMBB = Fallthrough; 9846 } 9847 } 9848 9849 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9850 CaseClusterIt First, 9851 CaseClusterIt Last) { 9852 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9853 if (X.Prob != CC.Prob) 9854 return X.Prob > CC.Prob; 9855 9856 // Ties are broken by comparing the case value. 9857 return X.Low->getValue().slt(CC.Low->getValue()); 9858 }); 9859 } 9860 9861 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9862 const SwitchWorkListItem &W, 9863 Value *Cond, 9864 MachineBasicBlock *SwitchMBB) { 9865 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9866 "Clusters not sorted?"); 9867 9868 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9869 9870 // Balance the tree based on branch probabilities to create a near-optimal (in 9871 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9872 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9873 CaseClusterIt LastLeft = W.FirstCluster; 9874 CaseClusterIt FirstRight = W.LastCluster; 9875 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9876 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9877 9878 // Move LastLeft and FirstRight towards each other from opposite directions to 9879 // find a partitioning of the clusters which balances the probability on both 9880 // sides. If LeftProb and RightProb are equal, alternate which side is 9881 // taken to ensure 0-probability nodes are distributed evenly. 9882 unsigned I = 0; 9883 while (LastLeft + 1 < FirstRight) { 9884 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9885 LeftProb += (++LastLeft)->Prob; 9886 else 9887 RightProb += (--FirstRight)->Prob; 9888 I++; 9889 } 9890 9891 while (true) { 9892 // Our binary search tree differs from a typical BST in that ours can have up 9893 // to three values in each leaf. The pivot selection above doesn't take that 9894 // into account, which means the tree might require more nodes and be less 9895 // efficient. We compensate for this here. 9896 9897 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9898 unsigned NumRight = W.LastCluster - FirstRight + 1; 9899 9900 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9901 // If one side has less than 3 clusters, and the other has more than 3, 9902 // consider taking a cluster from the other side. 9903 9904 if (NumLeft < NumRight) { 9905 // Consider moving the first cluster on the right to the left side. 9906 CaseCluster &CC = *FirstRight; 9907 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9908 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9909 if (LeftSideRank <= RightSideRank) { 9910 // Moving the cluster to the left does not demote it. 9911 ++LastLeft; 9912 ++FirstRight; 9913 continue; 9914 } 9915 } else { 9916 assert(NumRight < NumLeft); 9917 // Consider moving the last element on the left to the right side. 9918 CaseCluster &CC = *LastLeft; 9919 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9920 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9921 if (RightSideRank <= LeftSideRank) { 9922 // Moving the cluster to the right does not demot it. 9923 --LastLeft; 9924 --FirstRight; 9925 continue; 9926 } 9927 } 9928 } 9929 break; 9930 } 9931 9932 assert(LastLeft + 1 == FirstRight); 9933 assert(LastLeft >= W.FirstCluster); 9934 assert(FirstRight <= W.LastCluster); 9935 9936 // Use the first element on the right as pivot since we will make less-than 9937 // comparisons against it. 9938 CaseClusterIt PivotCluster = FirstRight; 9939 assert(PivotCluster > W.FirstCluster); 9940 assert(PivotCluster <= W.LastCluster); 9941 9942 CaseClusterIt FirstLeft = W.FirstCluster; 9943 CaseClusterIt LastRight = W.LastCluster; 9944 9945 const ConstantInt *Pivot = PivotCluster->Low; 9946 9947 // New blocks will be inserted immediately after the current one. 9948 MachineFunction::iterator BBI(W.MBB); 9949 ++BBI; 9950 9951 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9952 // we can branch to its destination directly if it's squeezed exactly in 9953 // between the known lower bound and Pivot - 1. 9954 MachineBasicBlock *LeftMBB; 9955 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9956 FirstLeft->Low == W.GE && 9957 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9958 LeftMBB = FirstLeft->MBB; 9959 } else { 9960 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9961 FuncInfo.MF->insert(BBI, LeftMBB); 9962 WorkList.push_back( 9963 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9964 // Put Cond in a virtual register to make it available from the new blocks. 9965 ExportFromCurrentBlock(Cond); 9966 } 9967 9968 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9969 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9970 // directly if RHS.High equals the current upper bound. 9971 MachineBasicBlock *RightMBB; 9972 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9973 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9974 RightMBB = FirstRight->MBB; 9975 } else { 9976 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9977 FuncInfo.MF->insert(BBI, RightMBB); 9978 WorkList.push_back( 9979 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9980 // Put Cond in a virtual register to make it available from the new blocks. 9981 ExportFromCurrentBlock(Cond); 9982 } 9983 9984 // Create the CaseBlock record that will be used to lower the branch. 9985 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9986 getCurSDLoc(), LeftProb, RightProb); 9987 9988 if (W.MBB == SwitchMBB) 9989 visitSwitchCase(CB, SwitchMBB); 9990 else 9991 SwitchCases.push_back(CB); 9992 } 9993 9994 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 9995 // from the swith statement. 9996 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 9997 BranchProbability PeeledCaseProb) { 9998 if (PeeledCaseProb == BranchProbability::getOne()) 9999 return BranchProbability::getZero(); 10000 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10001 10002 uint32_t Numerator = CaseProb.getNumerator(); 10003 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10004 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10005 } 10006 10007 // Try to peel the top probability case if it exceeds the threshold. 10008 // Return current MachineBasicBlock for the switch statement if the peeling 10009 // does not occur. 10010 // If the peeling is performed, return the newly created MachineBasicBlock 10011 // for the peeled switch statement. Also update Clusters to remove the peeled 10012 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10013 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10014 const SwitchInst &SI, CaseClusterVector &Clusters, 10015 BranchProbability &PeeledCaseProb) { 10016 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10017 // Don't perform if there is only one cluster or optimizing for size. 10018 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10019 TM.getOptLevel() == CodeGenOpt::None || 10020 SwitchMBB->getParent()->getFunction().optForMinSize()) 10021 return SwitchMBB; 10022 10023 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10024 unsigned PeeledCaseIndex = 0; 10025 bool SwitchPeeled = false; 10026 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10027 CaseCluster &CC = Clusters[Index]; 10028 if (CC.Prob < TopCaseProb) 10029 continue; 10030 TopCaseProb = CC.Prob; 10031 PeeledCaseIndex = Index; 10032 SwitchPeeled = true; 10033 } 10034 if (!SwitchPeeled) 10035 return SwitchMBB; 10036 10037 DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb 10038 << "\n"); 10039 10040 // Record the MBB for the peeled switch statement. 10041 MachineFunction::iterator BBI(SwitchMBB); 10042 ++BBI; 10043 MachineBasicBlock *PeeledSwitchMBB = 10044 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10045 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10046 10047 ExportFromCurrentBlock(SI.getCondition()); 10048 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10049 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10050 nullptr, nullptr, TopCaseProb.getCompl()}; 10051 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10052 10053 Clusters.erase(PeeledCaseIt); 10054 for (CaseCluster &CC : Clusters) { 10055 DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: " 10056 << CC.Prob << "\n"); 10057 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10058 DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10059 } 10060 PeeledCaseProb = TopCaseProb; 10061 return PeeledSwitchMBB; 10062 } 10063 10064 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10065 // Extract cases from the switch. 10066 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10067 CaseClusterVector Clusters; 10068 Clusters.reserve(SI.getNumCases()); 10069 for (auto I : SI.cases()) { 10070 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10071 const ConstantInt *CaseVal = I.getCaseValue(); 10072 BranchProbability Prob = 10073 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10074 : BranchProbability(1, SI.getNumCases() + 1); 10075 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10076 } 10077 10078 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10079 10080 // Cluster adjacent cases with the same destination. We do this at all 10081 // optimization levels because it's cheap to do and will make codegen faster 10082 // if there are many clusters. 10083 sortAndRangeify(Clusters); 10084 10085 if (TM.getOptLevel() != CodeGenOpt::None) { 10086 // Replace an unreachable default with the most popular destination. 10087 // FIXME: Exploit unreachable default more aggressively. 10088 bool UnreachableDefault = 10089 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10090 if (UnreachableDefault && !Clusters.empty()) { 10091 DenseMap<const BasicBlock *, unsigned> Popularity; 10092 unsigned MaxPop = 0; 10093 const BasicBlock *MaxBB = nullptr; 10094 for (auto I : SI.cases()) { 10095 const BasicBlock *BB = I.getCaseSuccessor(); 10096 if (++Popularity[BB] > MaxPop) { 10097 MaxPop = Popularity[BB]; 10098 MaxBB = BB; 10099 } 10100 } 10101 // Set new default. 10102 assert(MaxPop > 0 && MaxBB); 10103 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10104 10105 // Remove cases that were pointing to the destination that is now the 10106 // default. 10107 CaseClusterVector New; 10108 New.reserve(Clusters.size()); 10109 for (CaseCluster &CC : Clusters) { 10110 if (CC.MBB != DefaultMBB) 10111 New.push_back(CC); 10112 } 10113 Clusters = std::move(New); 10114 } 10115 } 10116 10117 // The branch probablity of the peeled case. 10118 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10119 MachineBasicBlock *PeeledSwitchMBB = 10120 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10121 10122 // If there is only the default destination, jump there directly. 10123 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10124 if (Clusters.empty()) { 10125 assert(PeeledSwitchMBB == SwitchMBB); 10126 SwitchMBB->addSuccessor(DefaultMBB); 10127 if (DefaultMBB != NextBlock(SwitchMBB)) { 10128 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10129 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10130 } 10131 return; 10132 } 10133 10134 findJumpTables(Clusters, &SI, DefaultMBB); 10135 findBitTestClusters(Clusters, &SI); 10136 10137 DEBUG({ 10138 dbgs() << "Case clusters: "; 10139 for (const CaseCluster &C : Clusters) { 10140 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 10141 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 10142 10143 C.Low->getValue().print(dbgs(), true); 10144 if (C.Low != C.High) { 10145 dbgs() << '-'; 10146 C.High->getValue().print(dbgs(), true); 10147 } 10148 dbgs() << ' '; 10149 } 10150 dbgs() << '\n'; 10151 }); 10152 10153 assert(!Clusters.empty()); 10154 SwitchWorkList WorkList; 10155 CaseClusterIt First = Clusters.begin(); 10156 CaseClusterIt Last = Clusters.end() - 1; 10157 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10158 // Scale the branchprobability for DefaultMBB if the peel occurs and 10159 // DefaultMBB is not replaced. 10160 if (PeeledCaseProb != BranchProbability::getZero() && 10161 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10162 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10163 WorkList.push_back( 10164 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10165 10166 while (!WorkList.empty()) { 10167 SwitchWorkListItem W = WorkList.back(); 10168 WorkList.pop_back(); 10169 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10170 10171 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10172 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10173 // For optimized builds, lower large range as a balanced binary tree. 10174 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10175 continue; 10176 } 10177 10178 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10179 } 10180 } 10181