1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 #define DEBUG_TYPE "isel" 65 66 /// LimitFloatPrecision - Generate low-precision inline sequences for 67 /// some float libcalls (6, 8 or 12 bits). 68 static unsigned LimitFloatPrecision; 69 70 static cl::opt<unsigned, true> 71 LimitFPPrecision("limit-float-precision", 72 cl::desc("Generate low-precision inline sequences " 73 "for some float libcalls"), 74 cl::location(LimitFloatPrecision), 75 cl::init(0)); 76 77 // Limit the width of DAG chains. This is important in general to prevent 78 // prevent DAG-based analysis from blowing up. For example, alias analysis and 79 // load clustering may not complete in reasonable time. It is difficult to 80 // recognize and avoid this situation within each individual analysis, and 81 // future analyses are likely to have the same behavior. Limiting DAG width is 82 // the safe approach, and will be especially important with global DAGs. 83 // 84 // MaxParallelChains default is arbitrarily high to avoid affecting 85 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 86 // sequence over this should have been converted to llvm.memcpy by the 87 // frontend. It easy to induce this behavior with .ll code such as: 88 // %buffer = alloca [4096 x i8] 89 // %data = load [4096 x i8]* %argPtr 90 // store [4096 x i8] %data, [4096 x i8]* %buffer 91 static const unsigned MaxParallelChains = 64; 92 93 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 94 const SDValue *Parts, unsigned NumParts, 95 MVT PartVT, EVT ValueVT, const Value *V); 96 97 /// getCopyFromParts - Create a value that contains the specified legal parts 98 /// combined into the value they represent. If the parts combine to a type 99 /// larger then ValueVT then AssertOp can be used to specify whether the extra 100 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 101 /// (ISD::AssertSext). 102 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, 104 unsigned NumParts, MVT PartVT, EVT ValueVT, 105 const Value *V, 106 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 107 if (ValueVT.isVector()) 108 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 109 PartVT, ValueVT, V); 110 111 assert(NumParts > 0 && "No parts to assemble!"); 112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 113 SDValue Val = Parts[0]; 114 115 if (NumParts > 1) { 116 // Assemble the value from multiple parts. 117 if (ValueVT.isInteger()) { 118 unsigned PartBits = PartVT.getSizeInBits(); 119 unsigned ValueBits = ValueVT.getSizeInBits(); 120 121 // Assemble the power of 2 part. 122 unsigned RoundParts = NumParts & (NumParts - 1) ? 123 1 << Log2_32(NumParts) : NumParts; 124 unsigned RoundBits = PartBits * RoundParts; 125 EVT RoundVT = RoundBits == ValueBits ? 126 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 127 SDValue Lo, Hi; 128 129 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 130 131 if (RoundParts > 2) { 132 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 133 PartVT, HalfVT, V); 134 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 135 RoundParts / 2, PartVT, HalfVT, V); 136 } else { 137 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 138 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 139 } 140 141 if (TLI.isBigEndian()) 142 std::swap(Lo, Hi); 143 144 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 145 146 if (RoundParts < NumParts) { 147 // Assemble the trailing non-power-of-2 part. 148 unsigned OddParts = NumParts - RoundParts; 149 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 150 Hi = getCopyFromParts(DAG, DL, 151 Parts + RoundParts, OddParts, PartVT, OddVT, V); 152 153 // Combine the round and odd parts. 154 Lo = Val; 155 if (TLI.isBigEndian()) 156 std::swap(Lo, Hi); 157 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 158 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 159 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 160 DAG.getConstant(Lo.getValueType().getSizeInBits(), 161 TLI.getPointerTy())); 162 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 163 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 164 } 165 } else if (PartVT.isFloatingPoint()) { 166 // FP split into multiple FP parts (for ppcf128) 167 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 168 "Unexpected split"); 169 SDValue Lo, Hi; 170 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 171 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 172 if (TLI.hasBigEndianPartOrdering(ValueVT)) 173 std::swap(Lo, Hi); 174 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 175 } else { 176 // FP split into integer parts (soft fp) 177 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 178 !PartVT.isVector() && "Unexpected split"); 179 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 180 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 181 } 182 } 183 184 // There is now one part, held in Val. Correct it to match ValueVT. 185 EVT PartEVT = Val.getValueType(); 186 187 if (PartEVT == ValueVT) 188 return Val; 189 190 if (PartEVT.isInteger() && ValueVT.isInteger()) { 191 if (ValueVT.bitsLT(PartEVT)) { 192 // For a truncate, see if we have any information to 193 // indicate whether the truncated bits will always be 194 // zero or sign-extension. 195 if (AssertOp != ISD::DELETED_NODE) 196 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 197 DAG.getValueType(ValueVT)); 198 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 199 } 200 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 201 } 202 203 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 204 // FP_ROUND's are always exact here. 205 if (ValueVT.bitsLT(Val.getValueType())) 206 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 207 DAG.getTargetConstant(1, TLI.getPointerTy())); 208 209 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 213 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 214 215 llvm_unreachable("Unknown mismatch!"); 216 } 217 218 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 219 const Twine &ErrMsg) { 220 const Instruction *I = dyn_cast_or_null<Instruction>(V); 221 if (!V) 222 return Ctx.emitError(ErrMsg); 223 224 const char *AsmError = ", possible invalid constraint for vector type"; 225 if (const CallInst *CI = dyn_cast<CallInst>(I)) 226 if (isa<InlineAsm>(CI->getCalledValue())) 227 return Ctx.emitError(I, ErrMsg + AsmError); 228 229 return Ctx.emitError(I, ErrMsg); 230 } 231 232 /// getCopyFromPartsVector - Create a value that contains the specified legal 233 /// parts combined into the value they represent. If the parts combine to a 234 /// type larger then ValueVT then AssertOp can be used to specify whether the 235 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 236 /// ValueVT (ISD::AssertSext). 237 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 238 const SDValue *Parts, unsigned NumParts, 239 MVT PartVT, EVT ValueVT, const Value *V) { 240 assert(ValueVT.isVector() && "Not a vector value"); 241 assert(NumParts > 0 && "No parts to assemble!"); 242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 243 SDValue Val = Parts[0]; 244 245 // Handle a multi-element vector. 246 if (NumParts > 1) { 247 EVT IntermediateVT; 248 MVT RegisterVT; 249 unsigned NumIntermediates; 250 unsigned NumRegs = 251 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 252 NumIntermediates, RegisterVT); 253 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 254 NumParts = NumRegs; // Silence a compiler warning. 255 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 256 assert(RegisterVT == Parts[0].getSimpleValueType() && 257 "Part type doesn't match part!"); 258 259 // Assemble the parts into intermediate operands. 260 SmallVector<SDValue, 8> Ops(NumIntermediates); 261 if (NumIntermediates == NumParts) { 262 // If the register was not expanded, truncate or copy the value, 263 // as appropriate. 264 for (unsigned i = 0; i != NumParts; ++i) 265 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 266 PartVT, IntermediateVT, V); 267 } else if (NumParts > 0) { 268 // If the intermediate type was expanded, build the intermediate 269 // operands from the parts. 270 assert(NumParts % NumIntermediates == 0 && 271 "Must expand into a divisible number of parts!"); 272 unsigned Factor = NumParts / NumIntermediates; 273 for (unsigned i = 0; i != NumIntermediates; ++i) 274 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 275 PartVT, IntermediateVT, V); 276 } 277 278 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 279 // intermediate operands. 280 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 281 : ISD::BUILD_VECTOR, 282 DL, ValueVT, Ops); 283 } 284 285 // There is now one part, held in Val. Correct it to match ValueVT. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isVector()) { 292 // If the element type of the source/dest vectors are the same, but the 293 // parts vector has more elements than the value vector, then we have a 294 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 295 // elements we want. 296 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 297 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 298 "Cannot narrow, it would be a lossy transformation"); 299 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 300 DAG.getConstant(0, TLI.getVectorIdxTy())); 301 } 302 303 // Vector/Vector bitcast. 304 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 308 "Cannot handle this kind of promotion"); 309 // Promoted vector extract 310 bool Smaller = ValueVT.bitsLE(PartEVT); 311 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 312 DL, ValueVT, Val); 313 314 } 315 316 // Trivial bitcast if the types are the same size and the destination 317 // vector type is legal. 318 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 319 TLI.isTypeLegal(ValueVT)) 320 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 321 322 // Handle cases such as i8 -> <1 x i1> 323 if (ValueVT.getVectorNumElements() != 1) { 324 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 325 "non-trivial scalar-to-vector conversion"); 326 return DAG.getUNDEF(ValueVT); 327 } 328 329 if (ValueVT.getVectorNumElements() == 1 && 330 ValueVT.getVectorElementType() != PartEVT) { 331 bool Smaller = ValueVT.bitsLE(PartEVT); 332 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 333 DL, ValueVT.getScalarType(), Val); 334 } 335 336 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 337 } 338 339 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V); 342 343 /// getCopyToParts - Create a series of nodes that contain the specified value 344 /// split into legal parts. If the parts contain more bits than Val, then, for 345 /// integers, ExtendKind can be used to specify how to generate the extra bits. 346 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V, 349 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 350 EVT ValueVT = Val.getValueType(); 351 352 // Handle the vector case separately. 353 if (ValueVT.isVector()) 354 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 355 356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 357 unsigned PartBits = PartVT.getSizeInBits(); 358 unsigned OrigNumParts = NumParts; 359 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 360 361 if (NumParts == 0) 362 return; 363 364 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 365 EVT PartEVT = PartVT; 366 if (PartEVT == ValueVT) { 367 assert(NumParts == 1 && "No-op copy with multiple parts!"); 368 Parts[0] = Val; 369 return; 370 } 371 372 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 373 // If the parts cover more bits than the value has, promote the value. 374 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 375 assert(NumParts == 1 && "Do not know what to promote to!"); 376 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 377 } else { 378 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 379 ValueVT.isInteger() && 380 "Unknown mismatch!"); 381 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 382 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 383 if (PartVT == MVT::x86mmx) 384 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 385 } 386 } else if (PartBits == ValueVT.getSizeInBits()) { 387 // Different types of the same size. 388 assert(NumParts == 1 && PartEVT != ValueVT); 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 391 // If the parts cover less bits than value has, truncate the value. 392 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 393 ValueVT.isInteger() && 394 "Unknown mismatch!"); 395 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 396 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 397 if (PartVT == MVT::x86mmx) 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } 400 401 // The value may have changed - recompute ValueVT. 402 ValueVT = Val.getValueType(); 403 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 404 "Failed to tile the value with PartVT!"); 405 406 if (NumParts == 1) { 407 if (PartEVT != ValueVT) 408 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 409 "scalar-to-vector conversion failed"); 410 411 Parts[0] = Val; 412 return; 413 } 414 415 // Expand the value into multiple parts. 416 if (NumParts & (NumParts - 1)) { 417 // The number of parts is not a power of 2. Split off and copy the tail. 418 assert(PartVT.isInteger() && ValueVT.isInteger() && 419 "Do not know what to expand to!"); 420 unsigned RoundParts = 1 << Log2_32(NumParts); 421 unsigned RoundBits = RoundParts * PartBits; 422 unsigned OddParts = NumParts - RoundParts; 423 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 424 DAG.getIntPtrConstant(RoundBits)); 425 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 426 427 if (TLI.isBigEndian()) 428 // The odd parts were reversed by getCopyToParts - unreverse them. 429 std::reverse(Parts + RoundParts, Parts + NumParts); 430 431 NumParts = RoundParts; 432 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 433 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 434 } 435 436 // The number of parts is a power of 2. Repeatedly bisect the value using 437 // EXTRACT_ELEMENT. 438 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 439 EVT::getIntegerVT(*DAG.getContext(), 440 ValueVT.getSizeInBits()), 441 Val); 442 443 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 444 for (unsigned i = 0; i < NumParts; i += StepSize) { 445 unsigned ThisBits = StepSize * PartBits / 2; 446 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 447 SDValue &Part0 = Parts[i]; 448 SDValue &Part1 = Parts[i+StepSize/2]; 449 450 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 451 ThisVT, Part0, DAG.getIntPtrConstant(1)); 452 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(0)); 454 455 if (ThisBits == PartBits && ThisVT != PartVT) { 456 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 458 } 459 } 460 } 461 462 if (TLI.isBigEndian()) 463 std::reverse(Parts, Parts + OrigNumParts); 464 } 465 466 467 /// getCopyToPartsVector - Create a series of nodes that contain the specified 468 /// value split into legal parts. 469 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 470 SDValue Val, SDValue *Parts, unsigned NumParts, 471 MVT PartVT, const Value *V) { 472 EVT ValueVT = Val.getValueType(); 473 assert(ValueVT.isVector() && "Not a vector"); 474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 475 476 if (NumParts == 1) { 477 EVT PartEVT = PartVT; 478 if (PartEVT == ValueVT) { 479 // Nothing to do. 480 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 481 // Bitconvert vector->vector case. 482 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 483 } else if (PartVT.isVector() && 484 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 485 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 486 EVT ElementVT = PartVT.getVectorElementType(); 487 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 488 // undef elements. 489 SmallVector<SDValue, 16> Ops; 490 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 491 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 ElementVT, Val, DAG.getConstant(i, 493 TLI.getVectorIdxTy()))); 494 495 for (unsigned i = ValueVT.getVectorNumElements(), 496 e = PartVT.getVectorNumElements(); i != e; ++i) 497 Ops.push_back(DAG.getUNDEF(ElementVT)); 498 499 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 500 501 // FIXME: Use CONCAT for 2x -> 4x. 502 503 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 504 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 505 } else if (PartVT.isVector() && 506 PartEVT.getVectorElementType().bitsGE( 507 ValueVT.getVectorElementType()) && 508 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 509 510 // Promoted vector extract 511 bool Smaller = PartEVT.bitsLE(ValueVT); 512 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 513 DL, PartVT, Val); 514 } else{ 515 // Vector -> scalar conversion. 516 assert(ValueVT.getVectorNumElements() == 1 && 517 "Only trivial vector-to-scalar conversions should get here!"); 518 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 519 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 520 521 bool Smaller = ValueVT.bitsLE(PartVT); 522 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 523 DL, PartVT, Val); 524 } 525 526 Parts[0] = Val; 527 return; 528 } 529 530 // Handle a multi-element vector. 531 EVT IntermediateVT; 532 MVT RegisterVT; 533 unsigned NumIntermediates; 534 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 535 IntermediateVT, 536 NumIntermediates, RegisterVT); 537 unsigned NumElements = ValueVT.getVectorNumElements(); 538 539 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 540 NumParts = NumRegs; // Silence a compiler warning. 541 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 542 543 // Split the vector into intermediate operands. 544 SmallVector<SDValue, 8> Ops(NumIntermediates); 545 for (unsigned i = 0; i != NumIntermediates; ++i) { 546 if (IntermediateVT.isVector()) 547 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 548 IntermediateVT, Val, 549 DAG.getConstant(i * (NumElements / NumIntermediates), 550 TLI.getVectorIdxTy())); 551 else 552 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i, TLI.getVectorIdxTy())); 555 } 556 557 // Split the intermediate operands into legal parts. 558 if (NumParts == NumIntermediates) { 559 // If the register was not expanded, promote or copy the value, 560 // as appropriate. 561 for (unsigned i = 0; i != NumParts; ++i) 562 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 563 } else if (NumParts > 0) { 564 // If the intermediate type was expanded, split each the value into 565 // legal parts. 566 assert(NumParts % NumIntermediates == 0 && 567 "Must expand into a divisible number of parts!"); 568 unsigned Factor = NumParts / NumIntermediates; 569 for (unsigned i = 0; i != NumIntermediates; ++i) 570 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 571 } 572 } 573 574 namespace { 575 /// RegsForValue - This struct represents the registers (physical or virtual) 576 /// that a particular set of values is assigned, and the type information 577 /// about the value. The most common situation is to represent one value at a 578 /// time, but struct or array values are handled element-wise as multiple 579 /// values. The splitting of aggregates is performed recursively, so that we 580 /// never have aggregate-typed registers. The values at this point do not 581 /// necessarily have legal types, so each value may require one or more 582 /// registers of some legal type. 583 /// 584 struct RegsForValue { 585 /// ValueVTs - The value types of the values, which may not be legal, and 586 /// may need be promoted or synthesized from one or more registers. 587 /// 588 SmallVector<EVT, 4> ValueVTs; 589 590 /// RegVTs - The value types of the registers. This is the same size as 591 /// ValueVTs and it records, for each value, what the type of the assigned 592 /// register or registers are. (Individual values are never synthesized 593 /// from more than one type of register.) 594 /// 595 /// With virtual registers, the contents of RegVTs is redundant with TLI's 596 /// getRegisterType member function, however when with physical registers 597 /// it is necessary to have a separate record of the types. 598 /// 599 SmallVector<MVT, 4> RegVTs; 600 601 /// Regs - This list holds the registers assigned to the values. 602 /// Each legal or promoted value requires one register, and each 603 /// expanded value requires multiple registers. 604 /// 605 SmallVector<unsigned, 4> Regs; 606 607 RegsForValue() {} 608 609 RegsForValue(const SmallVector<unsigned, 4> ®s, 610 MVT regvt, EVT valuevt) 611 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 612 613 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 614 unsigned Reg, Type *Ty) { 615 ComputeValueVTs(tli, Ty, ValueVTs); 616 617 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 EVT ValueVT = ValueVTs[Value]; 619 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 620 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 621 for (unsigned i = 0; i != NumRegs; ++i) 622 Regs.push_back(Reg + i); 623 RegVTs.push_back(RegisterVT); 624 Reg += NumRegs; 625 } 626 } 627 628 /// append - Add the specified values to this one. 629 void append(const RegsForValue &RHS) { 630 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 631 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 632 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 633 } 634 635 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 636 /// this value and returns the result as a ValueVTs value. This uses 637 /// Chain/Flag as the input and updates them for the output Chain/Flag. 638 /// If the Flag pointer is NULL, no flag is used. 639 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V = nullptr) const; 643 644 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 645 /// specified value into the registers specified by this object. This uses 646 /// Chain/Flag as the input and updates them for the output Chain/Flag. 647 /// If the Flag pointer is NULL, no flag is used. 648 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 649 SDValue &Chain, SDValue *Flag, const Value *V) const; 650 651 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 652 /// operand list. This adds the code marker, matching input operand index 653 /// (if applicable), and includes the number of values added into it. 654 void AddInlineAsmOperands(unsigned Kind, 655 bool HasMatching, unsigned MatchingIdx, 656 SelectionDAG &DAG, 657 std::vector<SDValue> &Ops) const; 658 }; 659 } 660 661 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 662 /// this value and returns the result as a ValueVT value. This uses 663 /// Chain/Flag as the input and updates them for the output Chain/Flag. 664 /// If the Flag pointer is NULL, no flag is used. 665 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 666 FunctionLoweringInfo &FuncInfo, 667 SDLoc dl, 668 SDValue &Chain, SDValue *Flag, 669 const Value *V) const { 670 // A Value with type {} or [0 x %t] needs no registers. 671 if (ValueVTs.empty()) 672 return SDValue(); 673 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 676 // Assemble the legal parts into the final values. 677 SmallVector<SDValue, 4> Values(ValueVTs.size()); 678 SmallVector<SDValue, 8> Parts; 679 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 680 // Copy the legal parts from the registers. 681 EVT ValueVT = ValueVTs[Value]; 682 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 683 MVT RegisterVT = RegVTs[Value]; 684 685 Parts.resize(NumRegs); 686 for (unsigned i = 0; i != NumRegs; ++i) { 687 SDValue P; 688 if (!Flag) { 689 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 690 } else { 691 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 692 *Flag = P.getValue(2); 693 } 694 695 Chain = P.getValue(1); 696 Parts[i] = P; 697 698 // If the source register was virtual and if we know something about it, 699 // add an assert node. 700 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 701 !RegisterVT.isInteger() || RegisterVT.isVector()) 702 continue; 703 704 const FunctionLoweringInfo::LiveOutInfo *LOI = 705 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 706 if (!LOI) 707 continue; 708 709 unsigned RegSize = RegisterVT.getSizeInBits(); 710 unsigned NumSignBits = LOI->NumSignBits; 711 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 712 713 if (NumZeroBits == RegSize) { 714 // The current value is a zero. 715 // Explicitly express that as it would be easier for 716 // optimizations to kick in. 717 Parts[i] = DAG.getConstant(0, RegisterVT); 718 continue; 719 } 720 721 // FIXME: We capture more information than the dag can represent. For 722 // now, just use the tightest assertzext/assertsext possible. 723 bool isSExt = true; 724 EVT FromVT(MVT::Other); 725 if (NumSignBits == RegSize) 726 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 727 else if (NumZeroBits >= RegSize-1) 728 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 729 else if (NumSignBits > RegSize-8) 730 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 731 else if (NumZeroBits >= RegSize-8) 732 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 733 else if (NumSignBits > RegSize-16) 734 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 735 else if (NumZeroBits >= RegSize-16) 736 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 737 else if (NumSignBits > RegSize-32) 738 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 739 else if (NumZeroBits >= RegSize-32) 740 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 741 else 742 continue; 743 744 // Add an assertion node. 745 assert(FromVT != MVT::Other); 746 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 747 RegisterVT, P, DAG.getValueType(FromVT)); 748 } 749 750 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 751 NumRegs, RegisterVT, ValueVT, V); 752 Part += NumRegs; 753 Parts.clear(); 754 } 755 756 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 757 } 758 759 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 760 /// specified value into the registers specified by this object. This uses 761 /// Chain/Flag as the input and updates them for the output Chain/Flag. 762 /// If the Flag pointer is NULL, no flag is used. 763 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 764 SDValue &Chain, SDValue *Flag, 765 const Value *V) const { 766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 767 768 // Get the list of the values's legal parts. 769 unsigned NumRegs = Regs.size(); 770 SmallVector<SDValue, 8> Parts(NumRegs); 771 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 772 EVT ValueVT = ValueVTs[Value]; 773 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 774 MVT RegisterVT = RegVTs[Value]; 775 ISD::NodeType ExtendKind = 776 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 777 778 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 779 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 780 Part += NumParts; 781 } 782 783 // Copy the parts into the registers. 784 SmallVector<SDValue, 8> Chains(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue Part; 787 if (!Flag) { 788 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 789 } else { 790 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 791 *Flag = Part.getValue(1); 792 } 793 794 Chains[i] = Part.getValue(0); 795 } 796 797 if (NumRegs == 1 || Flag) 798 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 799 // flagged to it. That is the CopyToReg nodes and the user are considered 800 // a single scheduling unit. If we create a TokenFactor and return it as 801 // chain, then the TokenFactor is both a predecessor (operand) of the 802 // user as well as a successor (the TF operands are flagged to the user). 803 // c1, f1 = CopyToReg 804 // c2, f2 = CopyToReg 805 // c3 = TokenFactor c1, c2 806 // ... 807 // = op c3, ..., f2 808 Chain = Chains[NumRegs-1]; 809 else 810 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 811 } 812 813 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 814 /// operand list. This adds the code marker and includes the number of 815 /// values added into it. 816 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 817 unsigned MatchingIdx, 818 SelectionDAG &DAG, 819 std::vector<SDValue> &Ops) const { 820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 821 822 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 823 if (HasMatching) 824 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 825 else if (!Regs.empty() && 826 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 827 // Put the register class of the virtual registers in the flag word. That 828 // way, later passes can recompute register class constraints for inline 829 // assembly as well as normal instructions. 830 // Don't do this for tied operands that can use the regclass information 831 // from the def. 832 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 833 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 834 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 835 } 836 837 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 838 Ops.push_back(Res); 839 840 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 841 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 842 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 843 MVT RegisterVT = RegVTs[Value]; 844 for (unsigned i = 0; i != NumRegs; ++i) { 845 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 846 unsigned TheReg = Regs[Reg++]; 847 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 848 849 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 850 // If we clobbered the stack pointer, MFI should know about it. 851 assert(DAG.getMachineFunction().getFrameInfo()-> 852 hasInlineAsmWithSPAdjust()); 853 } 854 } 855 } 856 } 857 858 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 859 const TargetLibraryInfo *li) { 860 AA = &aa; 861 GFI = gfi; 862 LibInfo = li; 863 DL = DAG.getTarget().getDataLayout(); 864 Context = DAG.getContext(); 865 LPadToCallSiteMap.clear(); 866 } 867 868 /// clear - Clear out the current SelectionDAG and the associated 869 /// state and prepare this SelectionDAGBuilder object to be used 870 /// for a new block. This doesn't clear out information about 871 /// additional blocks that are needed to complete switch lowering 872 /// or PHI node updating; that information is cleared out as it is 873 /// consumed. 874 void SelectionDAGBuilder::clear() { 875 NodeMap.clear(); 876 UnusedArgNodeMap.clear(); 877 PendingLoads.clear(); 878 PendingExports.clear(); 879 CurInst = nullptr; 880 HasTailCall = false; 881 SDNodeOrder = LowestSDNodeOrder; 882 } 883 884 /// clearDanglingDebugInfo - Clear the dangling debug information 885 /// map. This function is separated from the clear so that debug 886 /// information that is dangling in a basic block can be properly 887 /// resolved in a different basic block. This allows the 888 /// SelectionDAG to resolve dangling debug information attached 889 /// to PHI nodes. 890 void SelectionDAGBuilder::clearDanglingDebugInfo() { 891 DanglingDebugInfoMap.clear(); 892 } 893 894 /// getRoot - Return the current virtual root of the Selection DAG, 895 /// flushing any PendingLoad items. This must be done before emitting 896 /// a store or any other node that may need to be ordered after any 897 /// prior load instructions. 898 /// 899 SDValue SelectionDAGBuilder::getRoot() { 900 if (PendingLoads.empty()) 901 return DAG.getRoot(); 902 903 if (PendingLoads.size() == 1) { 904 SDValue Root = PendingLoads[0]; 905 DAG.setRoot(Root); 906 PendingLoads.clear(); 907 return Root; 908 } 909 910 // Otherwise, we have to make a token factor node. 911 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 912 PendingLoads); 913 PendingLoads.clear(); 914 DAG.setRoot(Root); 915 return Root; 916 } 917 918 /// getControlRoot - Similar to getRoot, but instead of flushing all the 919 /// PendingLoad items, flush all the PendingExports items. It is necessary 920 /// to do this before emitting a terminator instruction. 921 /// 922 SDValue SelectionDAGBuilder::getControlRoot() { 923 SDValue Root = DAG.getRoot(); 924 925 if (PendingExports.empty()) 926 return Root; 927 928 // Turn all of the CopyToReg chains into one factored node. 929 if (Root.getOpcode() != ISD::EntryToken) { 930 unsigned i = 0, e = PendingExports.size(); 931 for (; i != e; ++i) { 932 assert(PendingExports[i].getNode()->getNumOperands() > 1); 933 if (PendingExports[i].getNode()->getOperand(0) == Root) 934 break; // Don't add the root if we already indirectly depend on it. 935 } 936 937 if (i == e) 938 PendingExports.push_back(Root); 939 } 940 941 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 942 PendingExports); 943 PendingExports.clear(); 944 DAG.setRoot(Root); 945 return Root; 946 } 947 948 void SelectionDAGBuilder::visit(const Instruction &I) { 949 // Set up outgoing PHI node register values before emitting the terminator. 950 if (isa<TerminatorInst>(&I)) 951 HandlePHINodesInSuccessorBlocks(I.getParent()); 952 953 ++SDNodeOrder; 954 955 CurInst = &I; 956 957 visit(I.getOpcode(), I); 958 959 if (!isa<TerminatorInst>(&I) && !HasTailCall) 960 CopyToExportRegsIfNeeded(&I); 961 962 CurInst = nullptr; 963 } 964 965 void SelectionDAGBuilder::visitPHI(const PHINode &) { 966 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 967 } 968 969 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 970 // Note: this doesn't use InstVisitor, because it has to work with 971 // ConstantExpr's in addition to instructions. 972 switch (Opcode) { 973 default: llvm_unreachable("Unknown instruction type encountered!"); 974 // Build the switch statement using the Instruction.def file. 975 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 976 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 977 #include "llvm/IR/Instruction.def" 978 } 979 } 980 981 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 982 // generate the debug data structures now that we've seen its definition. 983 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 984 SDValue Val) { 985 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 986 if (DDI.getDI()) { 987 const DbgValueInst *DI = DDI.getDI(); 988 DebugLoc dl = DDI.getdl(); 989 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 990 MDNode *Variable = DI->getVariable(); 991 uint64_t Offset = DI->getOffset(); 992 // A dbg.value for an alloca is always indirect. 993 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 994 SDDbgValue *SDV; 995 if (Val.getNode()) { 996 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 997 SDV = DAG.getDbgValue(Variable, Val.getNode(), 998 Val.getResNo(), IsIndirect, 999 Offset, dl, DbgSDNodeOrder); 1000 DAG.AddDbgValue(SDV, Val.getNode(), false); 1001 } 1002 } else 1003 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1004 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1005 } 1006 } 1007 1008 /// getValue - Return an SDValue for the given Value. 1009 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1010 // If we already have an SDValue for this value, use it. It's important 1011 // to do this first, so that we don't create a CopyFromReg if we already 1012 // have a regular SDValue. 1013 SDValue &N = NodeMap[V]; 1014 if (N.getNode()) return N; 1015 1016 // If there's a virtual register allocated and initialized for this 1017 // value, use it. 1018 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1019 if (It != FuncInfo.ValueMap.end()) { 1020 unsigned InReg = It->second; 1021 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1022 InReg, V->getType()); 1023 SDValue Chain = DAG.getEntryNode(); 1024 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1025 resolveDanglingDebugInfo(V, N); 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getNonRegisterValue - Return an SDValue for the given Value, but 1037 /// don't look in FuncInfo.ValueMap for a virtual register. 1038 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1039 // If we already have an SDValue for this value, use it. 1040 SDValue &N = NodeMap[V]; 1041 if (N.getNode()) return N; 1042 1043 // Otherwise create a new SDValue and remember it. 1044 SDValue Val = getValueImpl(V); 1045 NodeMap[V] = Val; 1046 resolveDanglingDebugInfo(V, Val); 1047 return Val; 1048 } 1049 1050 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1051 /// Create an SDValue for the given value. 1052 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1053 const TargetLowering *TLI = TM.getTargetLowering(); 1054 1055 if (const Constant *C = dyn_cast<Constant>(V)) { 1056 EVT VT = TLI->getValueType(V->getType(), true); 1057 1058 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1059 return DAG.getConstant(*CI, VT); 1060 1061 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1062 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1063 1064 if (isa<ConstantPointerNull>(C)) { 1065 unsigned AS = V->getType()->getPointerAddressSpace(); 1066 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1067 } 1068 1069 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1070 return DAG.getConstantFP(*CFP, VT); 1071 1072 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1073 return DAG.getUNDEF(VT); 1074 1075 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1076 visit(CE->getOpcode(), *CE); 1077 SDValue N1 = NodeMap[V]; 1078 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1079 return N1; 1080 } 1081 1082 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1083 SmallVector<SDValue, 4> Constants; 1084 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1085 OI != OE; ++OI) { 1086 SDNode *Val = getValue(*OI).getNode(); 1087 // If the operand is an empty aggregate, there are no values. 1088 if (!Val) continue; 1089 // Add each leaf value from the operand to the Constants list 1090 // to form a flattened list of all the values. 1091 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1092 Constants.push_back(SDValue(Val, i)); 1093 } 1094 1095 return DAG.getMergeValues(Constants, getCurSDLoc()); 1096 } 1097 1098 if (const ConstantDataSequential *CDS = 1099 dyn_cast<ConstantDataSequential>(C)) { 1100 SmallVector<SDValue, 4> Ops; 1101 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1102 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1103 // Add each leaf value from the operand to the Constants list 1104 // to form a flattened list of all the values. 1105 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1106 Ops.push_back(SDValue(Val, i)); 1107 } 1108 1109 if (isa<ArrayType>(CDS->getType())) 1110 return DAG.getMergeValues(Ops, getCurSDLoc()); 1111 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1112 VT, Ops); 1113 } 1114 1115 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1116 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1117 "Unknown struct or array constant!"); 1118 1119 SmallVector<EVT, 4> ValueVTs; 1120 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1121 unsigned NumElts = ValueVTs.size(); 1122 if (NumElts == 0) 1123 return SDValue(); // empty struct 1124 SmallVector<SDValue, 4> Constants(NumElts); 1125 for (unsigned i = 0; i != NumElts; ++i) { 1126 EVT EltVT = ValueVTs[i]; 1127 if (isa<UndefValue>(C)) 1128 Constants[i] = DAG.getUNDEF(EltVT); 1129 else if (EltVT.isFloatingPoint()) 1130 Constants[i] = DAG.getConstantFP(0, EltVT); 1131 else 1132 Constants[i] = DAG.getConstant(0, EltVT); 1133 } 1134 1135 return DAG.getMergeValues(Constants, getCurSDLoc()); 1136 } 1137 1138 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1139 return DAG.getBlockAddress(BA, VT); 1140 1141 VectorType *VecTy = cast<VectorType>(V->getType()); 1142 unsigned NumElements = VecTy->getNumElements(); 1143 1144 // Now that we know the number and type of the elements, get that number of 1145 // elements into the Ops array based on what kind of constant it is. 1146 SmallVector<SDValue, 16> Ops; 1147 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1148 for (unsigned i = 0; i != NumElements; ++i) 1149 Ops.push_back(getValue(CV->getOperand(i))); 1150 } else { 1151 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1152 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1153 1154 SDValue Op; 1155 if (EltVT.isFloatingPoint()) 1156 Op = DAG.getConstantFP(0, EltVT); 1157 else 1158 Op = DAG.getConstant(0, EltVT); 1159 Ops.assign(NumElements, Op); 1160 } 1161 1162 // Create a BUILD_VECTOR node. 1163 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1164 } 1165 1166 // If this is a static alloca, generate it as the frameindex instead of 1167 // computation. 1168 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1169 DenseMap<const AllocaInst*, int>::iterator SI = 1170 FuncInfo.StaticAllocaMap.find(AI); 1171 if (SI != FuncInfo.StaticAllocaMap.end()) 1172 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1173 } 1174 1175 // If this is an instruction which fast-isel has deferred, select it now. 1176 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1177 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1178 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1179 SDValue Chain = DAG.getEntryNode(); 1180 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1181 } 1182 1183 llvm_unreachable("Can't get register for value!"); 1184 } 1185 1186 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1187 const TargetLowering *TLI = TM.getTargetLowering(); 1188 SDValue Chain = getControlRoot(); 1189 SmallVector<ISD::OutputArg, 8> Outs; 1190 SmallVector<SDValue, 8> OutVals; 1191 1192 if (!FuncInfo.CanLowerReturn) { 1193 unsigned DemoteReg = FuncInfo.DemoteRegister; 1194 const Function *F = I.getParent()->getParent(); 1195 1196 // Emit a store of the return value through the virtual register. 1197 // Leave Outs empty so that LowerReturn won't try to load return 1198 // registers the usual way. 1199 SmallVector<EVT, 1> PtrValueVTs; 1200 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1201 PtrValueVTs); 1202 1203 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1204 SDValue RetOp = getValue(I.getOperand(0)); 1205 1206 SmallVector<EVT, 4> ValueVTs; 1207 SmallVector<uint64_t, 4> Offsets; 1208 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1209 unsigned NumValues = ValueVTs.size(); 1210 1211 SmallVector<SDValue, 4> Chains(NumValues); 1212 for (unsigned i = 0; i != NumValues; ++i) { 1213 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1214 RetPtr.getValueType(), RetPtr, 1215 DAG.getIntPtrConstant(Offsets[i])); 1216 Chains[i] = 1217 DAG.getStore(Chain, getCurSDLoc(), 1218 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1219 // FIXME: better loc info would be nice. 1220 Add, MachinePointerInfo(), false, false, 0); 1221 } 1222 1223 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1224 MVT::Other, Chains); 1225 } else if (I.getNumOperands() != 0) { 1226 SmallVector<EVT, 4> ValueVTs; 1227 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1228 unsigned NumValues = ValueVTs.size(); 1229 if (NumValues) { 1230 SDValue RetOp = getValue(I.getOperand(0)); 1231 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1232 EVT VT = ValueVTs[j]; 1233 1234 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1235 1236 const Function *F = I.getParent()->getParent(); 1237 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1238 Attribute::SExt)) 1239 ExtendKind = ISD::SIGN_EXTEND; 1240 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1241 Attribute::ZExt)) 1242 ExtendKind = ISD::ZERO_EXTEND; 1243 1244 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1245 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1246 1247 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1248 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1249 SmallVector<SDValue, 4> Parts(NumParts); 1250 getCopyToParts(DAG, getCurSDLoc(), 1251 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1252 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1253 1254 // 'inreg' on function refers to return value 1255 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1256 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1257 Attribute::InReg)) 1258 Flags.setInReg(); 1259 1260 // Propagate extension type if any 1261 if (ExtendKind == ISD::SIGN_EXTEND) 1262 Flags.setSExt(); 1263 else if (ExtendKind == ISD::ZERO_EXTEND) 1264 Flags.setZExt(); 1265 1266 for (unsigned i = 0; i < NumParts; ++i) { 1267 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1268 VT, /*isfixed=*/true, 0, 0)); 1269 OutVals.push_back(Parts[i]); 1270 } 1271 } 1272 } 1273 } 1274 1275 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1276 CallingConv::ID CallConv = 1277 DAG.getMachineFunction().getFunction()->getCallingConv(); 1278 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1279 Outs, OutVals, getCurSDLoc(), 1280 DAG); 1281 1282 // Verify that the target's LowerReturn behaved as expected. 1283 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1284 "LowerReturn didn't return a valid chain!"); 1285 1286 // Update the DAG with the new chain value resulting from return lowering. 1287 DAG.setRoot(Chain); 1288 } 1289 1290 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1291 /// created for it, emit nodes to copy the value into the virtual 1292 /// registers. 1293 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1294 // Skip empty types 1295 if (V->getType()->isEmptyTy()) 1296 return; 1297 1298 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1299 if (VMI != FuncInfo.ValueMap.end()) { 1300 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1301 CopyValueToVirtualRegister(V, VMI->second); 1302 } 1303 } 1304 1305 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1306 /// the current basic block, add it to ValueMap now so that we'll get a 1307 /// CopyTo/FromReg. 1308 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1309 // No need to export constants. 1310 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1311 1312 // Already exported? 1313 if (FuncInfo.isExportedInst(V)) return; 1314 1315 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1316 CopyValueToVirtualRegister(V, Reg); 1317 } 1318 1319 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1320 const BasicBlock *FromBB) { 1321 // The operands of the setcc have to be in this block. We don't know 1322 // how to export them from some other block. 1323 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1324 // Can export from current BB. 1325 if (VI->getParent() == FromBB) 1326 return true; 1327 1328 // Is already exported, noop. 1329 return FuncInfo.isExportedInst(V); 1330 } 1331 1332 // If this is an argument, we can export it if the BB is the entry block or 1333 // if it is already exported. 1334 if (isa<Argument>(V)) { 1335 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1336 return true; 1337 1338 // Otherwise, can only export this if it is already exported. 1339 return FuncInfo.isExportedInst(V); 1340 } 1341 1342 // Otherwise, constants can always be exported. 1343 return true; 1344 } 1345 1346 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1347 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1348 const MachineBasicBlock *Dst) const { 1349 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1350 if (!BPI) 1351 return 0; 1352 const BasicBlock *SrcBB = Src->getBasicBlock(); 1353 const BasicBlock *DstBB = Dst->getBasicBlock(); 1354 return BPI->getEdgeWeight(SrcBB, DstBB); 1355 } 1356 1357 void SelectionDAGBuilder:: 1358 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1359 uint32_t Weight /* = 0 */) { 1360 if (!Weight) 1361 Weight = getEdgeWeight(Src, Dst); 1362 Src->addSuccessor(Dst, Weight); 1363 } 1364 1365 1366 static bool InBlock(const Value *V, const BasicBlock *BB) { 1367 if (const Instruction *I = dyn_cast<Instruction>(V)) 1368 return I->getParent() == BB; 1369 return true; 1370 } 1371 1372 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1373 /// This function emits a branch and is used at the leaves of an OR or an 1374 /// AND operator tree. 1375 /// 1376 void 1377 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1378 MachineBasicBlock *TBB, 1379 MachineBasicBlock *FBB, 1380 MachineBasicBlock *CurBB, 1381 MachineBasicBlock *SwitchBB, 1382 uint32_t TWeight, 1383 uint32_t FWeight) { 1384 const BasicBlock *BB = CurBB->getBasicBlock(); 1385 1386 // If the leaf of the tree is a comparison, merge the condition into 1387 // the caseblock. 1388 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1389 // The operands of the cmp have to be in this block. We don't know 1390 // how to export them from some other block. If this is the first block 1391 // of the sequence, no exporting is needed. 1392 if (CurBB == SwitchBB || 1393 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1394 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1395 ISD::CondCode Condition; 1396 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1397 Condition = getICmpCondCode(IC->getPredicate()); 1398 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1399 Condition = getFCmpCondCode(FC->getPredicate()); 1400 if (TM.Options.NoNaNsFPMath) 1401 Condition = getFCmpCodeWithoutNaN(Condition); 1402 } else { 1403 Condition = ISD::SETEQ; // silence warning. 1404 llvm_unreachable("Unknown compare instruction"); 1405 } 1406 1407 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1408 TBB, FBB, CurBB, TWeight, FWeight); 1409 SwitchCases.push_back(CB); 1410 return; 1411 } 1412 } 1413 1414 // Create a CaseBlock record representing this branch. 1415 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1416 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1417 SwitchCases.push_back(CB); 1418 } 1419 1420 /// Scale down both weights to fit into uint32_t. 1421 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1422 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1423 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1424 NewTrue = NewTrue / Scale; 1425 NewFalse = NewFalse / Scale; 1426 } 1427 1428 /// FindMergedConditions - If Cond is an expression like 1429 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1430 MachineBasicBlock *TBB, 1431 MachineBasicBlock *FBB, 1432 MachineBasicBlock *CurBB, 1433 MachineBasicBlock *SwitchBB, 1434 unsigned Opc, uint32_t TWeight, 1435 uint32_t FWeight) { 1436 // If this node is not part of the or/and tree, emit it as a branch. 1437 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1438 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1439 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1440 BOp->getParent() != CurBB->getBasicBlock() || 1441 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1442 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1443 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1444 TWeight, FWeight); 1445 return; 1446 } 1447 1448 // Create TmpBB after CurBB. 1449 MachineFunction::iterator BBI = CurBB; 1450 MachineFunction &MF = DAG.getMachineFunction(); 1451 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1452 CurBB->getParent()->insert(++BBI, TmpBB); 1453 1454 if (Opc == Instruction::Or) { 1455 // Codegen X | Y as: 1456 // BB1: 1457 // jmp_if_X TBB 1458 // jmp TmpBB 1459 // TmpBB: 1460 // jmp_if_Y TBB 1461 // jmp FBB 1462 // 1463 1464 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1465 // The requirement is that 1466 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1467 // = TrueProb for orignal BB. 1468 // Assuming the orignal weights are A and B, one choice is to set BB1's 1469 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1470 // assumes that 1471 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1472 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1473 // TmpBB, but the math is more complicated. 1474 1475 uint64_t NewTrueWeight = TWeight; 1476 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1477 ScaleWeights(NewTrueWeight, NewFalseWeight); 1478 // Emit the LHS condition. 1479 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1480 NewTrueWeight, NewFalseWeight); 1481 1482 NewTrueWeight = TWeight; 1483 NewFalseWeight = 2 * (uint64_t)FWeight; 1484 ScaleWeights(NewTrueWeight, NewFalseWeight); 1485 // Emit the RHS condition into TmpBB. 1486 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1487 NewTrueWeight, NewFalseWeight); 1488 } else { 1489 assert(Opc == Instruction::And && "Unknown merge op!"); 1490 // Codegen X & Y as: 1491 // BB1: 1492 // jmp_if_X TmpBB 1493 // jmp FBB 1494 // TmpBB: 1495 // jmp_if_Y TBB 1496 // jmp FBB 1497 // 1498 // This requires creation of TmpBB after CurBB. 1499 1500 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1501 // The requirement is that 1502 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1503 // = FalseProb for orignal BB. 1504 // Assuming the orignal weights are A and B, one choice is to set BB1's 1505 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1506 // assumes that 1507 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1508 1509 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1510 uint64_t NewFalseWeight = FWeight; 1511 ScaleWeights(NewTrueWeight, NewFalseWeight); 1512 // Emit the LHS condition. 1513 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1514 NewTrueWeight, NewFalseWeight); 1515 1516 NewTrueWeight = 2 * (uint64_t)TWeight; 1517 NewFalseWeight = FWeight; 1518 ScaleWeights(NewTrueWeight, NewFalseWeight); 1519 // Emit the RHS condition into TmpBB. 1520 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1521 NewTrueWeight, NewFalseWeight); 1522 } 1523 } 1524 1525 /// If the set of cases should be emitted as a series of branches, return true. 1526 /// If we should emit this as a bunch of and/or'd together conditions, return 1527 /// false. 1528 bool 1529 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1530 if (Cases.size() != 2) return true; 1531 1532 // If this is two comparisons of the same values or'd or and'd together, they 1533 // will get folded into a single comparison, so don't emit two blocks. 1534 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1535 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1536 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1537 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1538 return false; 1539 } 1540 1541 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1542 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1543 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1544 Cases[0].CC == Cases[1].CC && 1545 isa<Constant>(Cases[0].CmpRHS) && 1546 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1547 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1548 return false; 1549 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1550 return false; 1551 } 1552 1553 return true; 1554 } 1555 1556 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1557 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1558 1559 // Update machine-CFG edges. 1560 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1561 1562 // Figure out which block is immediately after the current one. 1563 MachineBasicBlock *NextBlock = nullptr; 1564 MachineFunction::iterator BBI = BrMBB; 1565 if (++BBI != FuncInfo.MF->end()) 1566 NextBlock = BBI; 1567 1568 if (I.isUnconditional()) { 1569 // Update machine-CFG edges. 1570 BrMBB->addSuccessor(Succ0MBB); 1571 1572 // If this is not a fall-through branch or optimizations are switched off, 1573 // emit the branch. 1574 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1575 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1576 MVT::Other, getControlRoot(), 1577 DAG.getBasicBlock(Succ0MBB))); 1578 1579 return; 1580 } 1581 1582 // If this condition is one of the special cases we handle, do special stuff 1583 // now. 1584 const Value *CondVal = I.getCondition(); 1585 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1586 1587 // If this is a series of conditions that are or'd or and'd together, emit 1588 // this as a sequence of branches instead of setcc's with and/or operations. 1589 // As long as jumps are not expensive, this should improve performance. 1590 // For example, instead of something like: 1591 // cmp A, B 1592 // C = seteq 1593 // cmp D, E 1594 // F = setle 1595 // or C, F 1596 // jnz foo 1597 // Emit: 1598 // cmp A, B 1599 // je foo 1600 // cmp D, E 1601 // jle foo 1602 // 1603 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1604 if (!TM.getTargetLowering()->isJumpExpensive() && 1605 BOp->hasOneUse() && 1606 (BOp->getOpcode() == Instruction::And || 1607 BOp->getOpcode() == Instruction::Or)) { 1608 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1609 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1610 getEdgeWeight(BrMBB, Succ1MBB)); 1611 // If the compares in later blocks need to use values not currently 1612 // exported from this block, export them now. This block should always 1613 // be the first entry. 1614 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1615 1616 // Allow some cases to be rejected. 1617 if (ShouldEmitAsBranches(SwitchCases)) { 1618 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1619 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1620 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1621 } 1622 1623 // Emit the branch for this block. 1624 visitSwitchCase(SwitchCases[0], BrMBB); 1625 SwitchCases.erase(SwitchCases.begin()); 1626 return; 1627 } 1628 1629 // Okay, we decided not to do this, remove any inserted MBB's and clear 1630 // SwitchCases. 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1632 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1633 1634 SwitchCases.clear(); 1635 } 1636 } 1637 1638 // Create a CaseBlock record representing this branch. 1639 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1640 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1641 1642 // Use visitSwitchCase to actually insert the fast branch sequence for this 1643 // cond branch. 1644 visitSwitchCase(CB, BrMBB); 1645 } 1646 1647 /// visitSwitchCase - Emits the necessary code to represent a single node in 1648 /// the binary search tree resulting from lowering a switch instruction. 1649 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1650 MachineBasicBlock *SwitchBB) { 1651 SDValue Cond; 1652 SDValue CondLHS = getValue(CB.CmpLHS); 1653 SDLoc dl = getCurSDLoc(); 1654 1655 // Build the setcc now. 1656 if (!CB.CmpMHS) { 1657 // Fold "(X == true)" to X and "(X == false)" to !X to 1658 // handle common cases produced by branch lowering. 1659 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1660 CB.CC == ISD::SETEQ) 1661 Cond = CondLHS; 1662 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1663 CB.CC == ISD::SETEQ) { 1664 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1665 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1666 } else 1667 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1668 } else { 1669 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1670 1671 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1672 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1673 1674 SDValue CmpOp = getValue(CB.CmpMHS); 1675 EVT VT = CmpOp.getValueType(); 1676 1677 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1678 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1679 ISD::SETLE); 1680 } else { 1681 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1682 VT, CmpOp, DAG.getConstant(Low, VT)); 1683 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1684 DAG.getConstant(High-Low, VT), ISD::SETULE); 1685 } 1686 } 1687 1688 // Update successor info 1689 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1690 // TrueBB and FalseBB are always different unless the incoming IR is 1691 // degenerate. This only happens when running llc on weird IR. 1692 if (CB.TrueBB != CB.FalseBB) 1693 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1694 1695 // Set NextBlock to be the MBB immediately after the current one, if any. 1696 // This is used to avoid emitting unnecessary branches to the next block. 1697 MachineBasicBlock *NextBlock = nullptr; 1698 MachineFunction::iterator BBI = SwitchBB; 1699 if (++BBI != FuncInfo.MF->end()) 1700 NextBlock = BBI; 1701 1702 // If the lhs block is the next block, invert the condition so that we can 1703 // fall through to the lhs instead of the rhs block. 1704 if (CB.TrueBB == NextBlock) { 1705 std::swap(CB.TrueBB, CB.FalseBB); 1706 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1707 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1708 } 1709 1710 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1711 MVT::Other, getControlRoot(), Cond, 1712 DAG.getBasicBlock(CB.TrueBB)); 1713 1714 // Insert the false branch. Do this even if it's a fall through branch, 1715 // this makes it easier to do DAG optimizations which require inverting 1716 // the branch condition. 1717 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1718 DAG.getBasicBlock(CB.FalseBB)); 1719 1720 DAG.setRoot(BrCond); 1721 } 1722 1723 /// visitJumpTable - Emit JumpTable node in the current MBB 1724 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1725 // Emit the code for the jump table 1726 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1727 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1728 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1729 JT.Reg, PTy); 1730 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1731 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1732 MVT::Other, Index.getValue(1), 1733 Table, Index); 1734 DAG.setRoot(BrJumpTable); 1735 } 1736 1737 /// visitJumpTableHeader - This function emits necessary code to produce index 1738 /// in the JumpTable from switch case. 1739 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1740 JumpTableHeader &JTH, 1741 MachineBasicBlock *SwitchBB) { 1742 // Subtract the lowest switch case value from the value being switched on and 1743 // conditional branch to default mbb if the result is greater than the 1744 // difference between smallest and largest cases. 1745 SDValue SwitchOp = getValue(JTH.SValue); 1746 EVT VT = SwitchOp.getValueType(); 1747 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1748 DAG.getConstant(JTH.First, VT)); 1749 1750 // The SDNode we just created, which holds the value being switched on minus 1751 // the smallest case value, needs to be copied to a virtual register so it 1752 // can be used as an index into the jump table in a subsequent basic block. 1753 // This value may be smaller or larger than the target's pointer type, and 1754 // therefore require extension or truncating. 1755 const TargetLowering *TLI = TM.getTargetLowering(); 1756 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1757 1758 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1759 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1760 JumpTableReg, SwitchOp); 1761 JT.Reg = JumpTableReg; 1762 1763 // Emit the range check for the jump table, and branch to the default block 1764 // for the switch statement if the value being switched on exceeds the largest 1765 // case in the switch. 1766 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1767 TLI->getSetCCResultType(*DAG.getContext(), 1768 Sub.getValueType()), 1769 Sub, 1770 DAG.getConstant(JTH.Last - JTH.First,VT), 1771 ISD::SETUGT); 1772 1773 // Set NextBlock to be the MBB immediately after the current one, if any. 1774 // This is used to avoid emitting unnecessary branches to the next block. 1775 MachineBasicBlock *NextBlock = nullptr; 1776 MachineFunction::iterator BBI = SwitchBB; 1777 1778 if (++BBI != FuncInfo.MF->end()) 1779 NextBlock = BBI; 1780 1781 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1782 MVT::Other, CopyTo, CMP, 1783 DAG.getBasicBlock(JT.Default)); 1784 1785 if (JT.MBB != NextBlock) 1786 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1787 DAG.getBasicBlock(JT.MBB)); 1788 1789 DAG.setRoot(BrCond); 1790 } 1791 1792 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1793 /// tail spliced into a stack protector check success bb. 1794 /// 1795 /// For a high level explanation of how this fits into the stack protector 1796 /// generation see the comment on the declaration of class 1797 /// StackProtectorDescriptor. 1798 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1799 MachineBasicBlock *ParentBB) { 1800 1801 // First create the loads to the guard/stack slot for the comparison. 1802 const TargetLowering *TLI = TM.getTargetLowering(); 1803 EVT PtrTy = TLI->getPointerTy(); 1804 1805 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1806 int FI = MFI->getStackProtectorIndex(); 1807 1808 const Value *IRGuard = SPD.getGuard(); 1809 SDValue GuardPtr = getValue(IRGuard); 1810 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1811 1812 unsigned Align = 1813 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1814 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1815 GuardPtr, MachinePointerInfo(IRGuard, 0), 1816 true, false, false, Align); 1817 1818 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1819 StackSlotPtr, 1820 MachinePointerInfo::getFixedStack(FI), 1821 true, false, false, Align); 1822 1823 // Perform the comparison via a subtract/getsetcc. 1824 EVT VT = Guard.getValueType(); 1825 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1826 1827 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1828 TLI->getSetCCResultType(*DAG.getContext(), 1829 Sub.getValueType()), 1830 Sub, DAG.getConstant(0, VT), 1831 ISD::SETNE); 1832 1833 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1834 // branch to failure MBB. 1835 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1836 MVT::Other, StackSlot.getOperand(0), 1837 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1838 // Otherwise branch to success MBB. 1839 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1840 MVT::Other, BrCond, 1841 DAG.getBasicBlock(SPD.getSuccessMBB())); 1842 1843 DAG.setRoot(Br); 1844 } 1845 1846 /// Codegen the failure basic block for a stack protector check. 1847 /// 1848 /// A failure stack protector machine basic block consists simply of a call to 1849 /// __stack_chk_fail(). 1850 /// 1851 /// For a high level explanation of how this fits into the stack protector 1852 /// generation see the comment on the declaration of class 1853 /// StackProtectorDescriptor. 1854 void 1855 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1856 const TargetLowering *TLI = TM.getTargetLowering(); 1857 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1858 MVT::isVoid, nullptr, 0, false, 1859 getCurSDLoc(), false, false).second; 1860 DAG.setRoot(Chain); 1861 } 1862 1863 /// visitBitTestHeader - This function emits necessary code to produce value 1864 /// suitable for "bit tests" 1865 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1866 MachineBasicBlock *SwitchBB) { 1867 // Subtract the minimum value 1868 SDValue SwitchOp = getValue(B.SValue); 1869 EVT VT = SwitchOp.getValueType(); 1870 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1871 DAG.getConstant(B.First, VT)); 1872 1873 // Check range 1874 const TargetLowering *TLI = TM.getTargetLowering(); 1875 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1876 TLI->getSetCCResultType(*DAG.getContext(), 1877 Sub.getValueType()), 1878 Sub, DAG.getConstant(B.Range, VT), 1879 ISD::SETUGT); 1880 1881 // Determine the type of the test operands. 1882 bool UsePtrType = false; 1883 if (!TLI->isTypeLegal(VT)) 1884 UsePtrType = true; 1885 else { 1886 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1887 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1888 // Switch table case range are encoded into series of masks. 1889 // Just use pointer type, it's guaranteed to fit. 1890 UsePtrType = true; 1891 break; 1892 } 1893 } 1894 if (UsePtrType) { 1895 VT = TLI->getPointerTy(); 1896 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1897 } 1898 1899 B.RegVT = VT.getSimpleVT(); 1900 B.Reg = FuncInfo.CreateReg(B.RegVT); 1901 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1902 B.Reg, Sub); 1903 1904 // Set NextBlock to be the MBB immediately after the current one, if any. 1905 // This is used to avoid emitting unnecessary branches to the next block. 1906 MachineBasicBlock *NextBlock = nullptr; 1907 MachineFunction::iterator BBI = SwitchBB; 1908 if (++BBI != FuncInfo.MF->end()) 1909 NextBlock = BBI; 1910 1911 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1912 1913 addSuccessorWithWeight(SwitchBB, B.Default); 1914 addSuccessorWithWeight(SwitchBB, MBB); 1915 1916 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1917 MVT::Other, CopyTo, RangeCmp, 1918 DAG.getBasicBlock(B.Default)); 1919 1920 if (MBB != NextBlock) 1921 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1922 DAG.getBasicBlock(MBB)); 1923 1924 DAG.setRoot(BrRange); 1925 } 1926 1927 /// visitBitTestCase - this function produces one "bit test" 1928 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1929 MachineBasicBlock* NextMBB, 1930 uint32_t BranchWeightToNext, 1931 unsigned Reg, 1932 BitTestCase &B, 1933 MachineBasicBlock *SwitchBB) { 1934 MVT VT = BB.RegVT; 1935 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1936 Reg, VT); 1937 SDValue Cmp; 1938 unsigned PopCount = CountPopulation_64(B.Mask); 1939 const TargetLowering *TLI = TM.getTargetLowering(); 1940 if (PopCount == 1) { 1941 // Testing for a single bit; just compare the shift count with what it 1942 // would need to be to shift a 1 bit in that position. 1943 Cmp = DAG.getSetCC(getCurSDLoc(), 1944 TLI->getSetCCResultType(*DAG.getContext(), VT), 1945 ShiftOp, 1946 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1947 ISD::SETEQ); 1948 } else if (PopCount == BB.Range) { 1949 // There is only one zero bit in the range, test for it directly. 1950 Cmp = DAG.getSetCC(getCurSDLoc(), 1951 TLI->getSetCCResultType(*DAG.getContext(), VT), 1952 ShiftOp, 1953 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1954 ISD::SETNE); 1955 } else { 1956 // Make desired shift 1957 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1958 DAG.getConstant(1, VT), ShiftOp); 1959 1960 // Emit bit tests and jumps 1961 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1962 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1963 Cmp = DAG.getSetCC(getCurSDLoc(), 1964 TLI->getSetCCResultType(*DAG.getContext(), VT), 1965 AndOp, DAG.getConstant(0, VT), 1966 ISD::SETNE); 1967 } 1968 1969 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1970 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1971 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1972 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1973 1974 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1975 MVT::Other, getControlRoot(), 1976 Cmp, DAG.getBasicBlock(B.TargetBB)); 1977 1978 // Set NextBlock to be the MBB immediately after the current one, if any. 1979 // This is used to avoid emitting unnecessary branches to the next block. 1980 MachineBasicBlock *NextBlock = nullptr; 1981 MachineFunction::iterator BBI = SwitchBB; 1982 if (++BBI != FuncInfo.MF->end()) 1983 NextBlock = BBI; 1984 1985 if (NextMBB != NextBlock) 1986 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1987 DAG.getBasicBlock(NextMBB)); 1988 1989 DAG.setRoot(BrAnd); 1990 } 1991 1992 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1993 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1994 1995 // Retrieve successors. 1996 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1997 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1998 1999 const Value *Callee(I.getCalledValue()); 2000 const Function *Fn = dyn_cast<Function>(Callee); 2001 if (isa<InlineAsm>(Callee)) 2002 visitInlineAsm(&I); 2003 else if (Fn && Fn->isIntrinsic()) { 2004 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2005 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2006 } else 2007 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2008 2009 // If the value of the invoke is used outside of its defining block, make it 2010 // available as a virtual register. 2011 CopyToExportRegsIfNeeded(&I); 2012 2013 // Update successor info 2014 addSuccessorWithWeight(InvokeMBB, Return); 2015 addSuccessorWithWeight(InvokeMBB, LandingPad); 2016 2017 // Drop into normal successor. 2018 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2019 MVT::Other, getControlRoot(), 2020 DAG.getBasicBlock(Return))); 2021 } 2022 2023 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2024 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2025 } 2026 2027 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2028 assert(FuncInfo.MBB->isLandingPad() && 2029 "Call to landingpad not in landing pad!"); 2030 2031 MachineBasicBlock *MBB = FuncInfo.MBB; 2032 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2033 AddLandingPadInfo(LP, MMI, MBB); 2034 2035 // If there aren't registers to copy the values into (e.g., during SjLj 2036 // exceptions), then don't bother to create these DAG nodes. 2037 const TargetLowering *TLI = TM.getTargetLowering(); 2038 if (TLI->getExceptionPointerRegister() == 0 && 2039 TLI->getExceptionSelectorRegister() == 0) 2040 return; 2041 2042 SmallVector<EVT, 2> ValueVTs; 2043 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2044 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2045 2046 // Get the two live-in registers as SDValues. The physregs have already been 2047 // copied into virtual registers. 2048 SDValue Ops[2]; 2049 Ops[0] = DAG.getZExtOrTrunc( 2050 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2051 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2052 getCurSDLoc(), ValueVTs[0]); 2053 Ops[1] = DAG.getZExtOrTrunc( 2054 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2055 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2056 getCurSDLoc(), ValueVTs[1]); 2057 2058 // Merge into one. 2059 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2060 DAG.getVTList(ValueVTs), Ops); 2061 setValue(&LP, Res); 2062 } 2063 2064 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2065 /// small case ranges). 2066 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2067 CaseRecVector& WorkList, 2068 const Value* SV, 2069 MachineBasicBlock *Default, 2070 MachineBasicBlock *SwitchBB) { 2071 // Size is the number of Cases represented by this range. 2072 size_t Size = CR.Range.second - CR.Range.first; 2073 if (Size > 3) 2074 return false; 2075 2076 // Get the MachineFunction which holds the current MBB. This is used when 2077 // inserting any additional MBBs necessary to represent the switch. 2078 MachineFunction *CurMF = FuncInfo.MF; 2079 2080 // Figure out which block is immediately after the current one. 2081 MachineBasicBlock *NextBlock = nullptr; 2082 MachineFunction::iterator BBI = CR.CaseBB; 2083 2084 if (++BBI != FuncInfo.MF->end()) 2085 NextBlock = BBI; 2086 2087 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2088 // If any two of the cases has the same destination, and if one value 2089 // is the same as the other, but has one bit unset that the other has set, 2090 // use bit manipulation to do two compares at once. For example: 2091 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2092 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2093 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2094 if (Size == 2 && CR.CaseBB == SwitchBB) { 2095 Case &Small = *CR.Range.first; 2096 Case &Big = *(CR.Range.second-1); 2097 2098 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2099 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2100 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2101 2102 // Check that there is only one bit different. 2103 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2104 (SmallValue | BigValue) == BigValue) { 2105 // Isolate the common bit. 2106 APInt CommonBit = BigValue & ~SmallValue; 2107 assert((SmallValue | CommonBit) == BigValue && 2108 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2109 2110 SDValue CondLHS = getValue(SV); 2111 EVT VT = CondLHS.getValueType(); 2112 SDLoc DL = getCurSDLoc(); 2113 2114 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2115 DAG.getConstant(CommonBit, VT)); 2116 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2117 Or, DAG.getConstant(BigValue, VT), 2118 ISD::SETEQ); 2119 2120 // Update successor info. 2121 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2122 addSuccessorWithWeight(SwitchBB, Small.BB, 2123 Small.ExtraWeight + Big.ExtraWeight); 2124 addSuccessorWithWeight(SwitchBB, Default, 2125 // The default destination is the first successor in IR. 2126 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2127 2128 // Insert the true branch. 2129 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2130 getControlRoot(), Cond, 2131 DAG.getBasicBlock(Small.BB)); 2132 2133 // Insert the false branch. 2134 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2135 DAG.getBasicBlock(Default)); 2136 2137 DAG.setRoot(BrCond); 2138 return true; 2139 } 2140 } 2141 } 2142 2143 // Order cases by weight so the most likely case will be checked first. 2144 uint32_t UnhandledWeights = 0; 2145 if (BPI) { 2146 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2147 uint32_t IWeight = I->ExtraWeight; 2148 UnhandledWeights += IWeight; 2149 for (CaseItr J = CR.Range.first; J < I; ++J) { 2150 uint32_t JWeight = J->ExtraWeight; 2151 if (IWeight > JWeight) 2152 std::swap(*I, *J); 2153 } 2154 } 2155 } 2156 // Rearrange the case blocks so that the last one falls through if possible. 2157 Case &BackCase = *(CR.Range.second-1); 2158 if (Size > 1 && 2159 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2160 // The last case block won't fall through into 'NextBlock' if we emit the 2161 // branches in this order. See if rearranging a case value would help. 2162 // We start at the bottom as it's the case with the least weight. 2163 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2164 if (I->BB == NextBlock) { 2165 std::swap(*I, BackCase); 2166 break; 2167 } 2168 } 2169 2170 // Create a CaseBlock record representing a conditional branch to 2171 // the Case's target mbb if the value being switched on SV is equal 2172 // to C. 2173 MachineBasicBlock *CurBlock = CR.CaseBB; 2174 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2175 MachineBasicBlock *FallThrough; 2176 if (I != E-1) { 2177 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2178 CurMF->insert(BBI, FallThrough); 2179 2180 // Put SV in a virtual register to make it available from the new blocks. 2181 ExportFromCurrentBlock(SV); 2182 } else { 2183 // If the last case doesn't match, go to the default block. 2184 FallThrough = Default; 2185 } 2186 2187 const Value *RHS, *LHS, *MHS; 2188 ISD::CondCode CC; 2189 if (I->High == I->Low) { 2190 // This is just small small case range :) containing exactly 1 case 2191 CC = ISD::SETEQ; 2192 LHS = SV; RHS = I->High; MHS = nullptr; 2193 } else { 2194 CC = ISD::SETLE; 2195 LHS = I->Low; MHS = SV; RHS = I->High; 2196 } 2197 2198 // The false weight should be sum of all un-handled cases. 2199 UnhandledWeights -= I->ExtraWeight; 2200 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2201 /* me */ CurBlock, 2202 /* trueweight */ I->ExtraWeight, 2203 /* falseweight */ UnhandledWeights); 2204 2205 // If emitting the first comparison, just call visitSwitchCase to emit the 2206 // code into the current block. Otherwise, push the CaseBlock onto the 2207 // vector to be later processed by SDISel, and insert the node's MBB 2208 // before the next MBB. 2209 if (CurBlock == SwitchBB) 2210 visitSwitchCase(CB, SwitchBB); 2211 else 2212 SwitchCases.push_back(CB); 2213 2214 CurBlock = FallThrough; 2215 } 2216 2217 return true; 2218 } 2219 2220 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2221 return TLI.supportJumpTables() && 2222 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2223 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2224 } 2225 2226 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2227 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2228 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2229 return (LastExt - FirstExt + 1ULL); 2230 } 2231 2232 /// handleJTSwitchCase - Emit jumptable for current switch case range 2233 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2234 CaseRecVector &WorkList, 2235 const Value *SV, 2236 MachineBasicBlock *Default, 2237 MachineBasicBlock *SwitchBB) { 2238 Case& FrontCase = *CR.Range.first; 2239 Case& BackCase = *(CR.Range.second-1); 2240 2241 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2242 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2243 2244 APInt TSize(First.getBitWidth(), 0); 2245 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2246 TSize += I->size(); 2247 2248 const TargetLowering *TLI = TM.getTargetLowering(); 2249 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2250 return false; 2251 2252 APInt Range = ComputeRange(First, Last); 2253 // The density is TSize / Range. Require at least 40%. 2254 // It should not be possible for IntTSize to saturate for sane code, but make 2255 // sure we handle Range saturation correctly. 2256 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2257 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2258 if (IntTSize * 10 < IntRange * 4) 2259 return false; 2260 2261 DEBUG(dbgs() << "Lowering jump table\n" 2262 << "First entry: " << First << ". Last entry: " << Last << '\n' 2263 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2264 2265 // Get the MachineFunction which holds the current MBB. This is used when 2266 // inserting any additional MBBs necessary to represent the switch. 2267 MachineFunction *CurMF = FuncInfo.MF; 2268 2269 // Figure out which block is immediately after the current one. 2270 MachineFunction::iterator BBI = CR.CaseBB; 2271 ++BBI; 2272 2273 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2274 2275 // Create a new basic block to hold the code for loading the address 2276 // of the jump table, and jumping to it. Update successor information; 2277 // we will either branch to the default case for the switch, or the jump 2278 // table. 2279 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2280 CurMF->insert(BBI, JumpTableBB); 2281 2282 addSuccessorWithWeight(CR.CaseBB, Default); 2283 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2284 2285 // Build a vector of destination BBs, corresponding to each target 2286 // of the jump table. If the value of the jump table slot corresponds to 2287 // a case statement, push the case's BB onto the vector, otherwise, push 2288 // the default BB. 2289 std::vector<MachineBasicBlock*> DestBBs; 2290 APInt TEI = First; 2291 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2292 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2293 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2294 2295 if (Low.sle(TEI) && TEI.sle(High)) { 2296 DestBBs.push_back(I->BB); 2297 if (TEI==High) 2298 ++I; 2299 } else { 2300 DestBBs.push_back(Default); 2301 } 2302 } 2303 2304 // Calculate weight for each unique destination in CR. 2305 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2306 if (FuncInfo.BPI) 2307 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2308 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2309 DestWeights.find(I->BB); 2310 if (Itr != DestWeights.end()) 2311 Itr->second += I->ExtraWeight; 2312 else 2313 DestWeights[I->BB] = I->ExtraWeight; 2314 } 2315 2316 // Update successor info. Add one edge to each unique successor. 2317 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2318 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2319 E = DestBBs.end(); I != E; ++I) { 2320 if (!SuccsHandled[(*I)->getNumber()]) { 2321 SuccsHandled[(*I)->getNumber()] = true; 2322 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2323 DestWeights.find(*I); 2324 addSuccessorWithWeight(JumpTableBB, *I, 2325 Itr != DestWeights.end() ? Itr->second : 0); 2326 } 2327 } 2328 2329 // Create a jump table index for this jump table. 2330 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2331 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2332 ->createJumpTableIndex(DestBBs); 2333 2334 // Set the jump table information so that we can codegen it as a second 2335 // MachineBasicBlock 2336 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2337 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2338 if (CR.CaseBB == SwitchBB) 2339 visitJumpTableHeader(JT, JTH, SwitchBB); 2340 2341 JTCases.push_back(JumpTableBlock(JTH, JT)); 2342 return true; 2343 } 2344 2345 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2346 /// 2 subtrees. 2347 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2348 CaseRecVector& WorkList, 2349 const Value* SV, 2350 MachineBasicBlock* Default, 2351 MachineBasicBlock* SwitchBB) { 2352 // Get the MachineFunction which holds the current MBB. This is used when 2353 // inserting any additional MBBs necessary to represent the switch. 2354 MachineFunction *CurMF = FuncInfo.MF; 2355 2356 // Figure out which block is immediately after the current one. 2357 MachineFunction::iterator BBI = CR.CaseBB; 2358 ++BBI; 2359 2360 Case& FrontCase = *CR.Range.first; 2361 Case& BackCase = *(CR.Range.second-1); 2362 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2363 2364 // Size is the number of Cases represented by this range. 2365 unsigned Size = CR.Range.second - CR.Range.first; 2366 2367 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2368 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2369 double FMetric = 0; 2370 CaseItr Pivot = CR.Range.first + Size/2; 2371 2372 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2373 // (heuristically) allow us to emit JumpTable's later. 2374 APInt TSize(First.getBitWidth(), 0); 2375 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2376 I!=E; ++I) 2377 TSize += I->size(); 2378 2379 APInt LSize = FrontCase.size(); 2380 APInt RSize = TSize-LSize; 2381 DEBUG(dbgs() << "Selecting best pivot: \n" 2382 << "First: " << First << ", Last: " << Last <<'\n' 2383 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2384 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2385 J!=E; ++I, ++J) { 2386 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2387 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2388 APInt Range = ComputeRange(LEnd, RBegin); 2389 assert((Range - 2ULL).isNonNegative() && 2390 "Invalid case distance"); 2391 // Use volatile double here to avoid excess precision issues on some hosts, 2392 // e.g. that use 80-bit X87 registers. 2393 volatile double LDensity = 2394 (double)LSize.roundToDouble() / 2395 (LEnd - First + 1ULL).roundToDouble(); 2396 volatile double RDensity = 2397 (double)RSize.roundToDouble() / 2398 (Last - RBegin + 1ULL).roundToDouble(); 2399 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2400 // Should always split in some non-trivial place 2401 DEBUG(dbgs() <<"=>Step\n" 2402 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2403 << "LDensity: " << LDensity 2404 << ", RDensity: " << RDensity << '\n' 2405 << "Metric: " << Metric << '\n'); 2406 if (FMetric < Metric) { 2407 Pivot = J; 2408 FMetric = Metric; 2409 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2410 } 2411 2412 LSize += J->size(); 2413 RSize -= J->size(); 2414 } 2415 2416 const TargetLowering *TLI = TM.getTargetLowering(); 2417 if (areJTsAllowed(*TLI)) { 2418 // If our case is dense we *really* should handle it earlier! 2419 assert((FMetric > 0) && "Should handle dense range earlier!"); 2420 } else { 2421 Pivot = CR.Range.first + Size/2; 2422 } 2423 2424 CaseRange LHSR(CR.Range.first, Pivot); 2425 CaseRange RHSR(Pivot, CR.Range.second); 2426 const Constant *C = Pivot->Low; 2427 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2428 2429 // We know that we branch to the LHS if the Value being switched on is 2430 // less than the Pivot value, C. We use this to optimize our binary 2431 // tree a bit, by recognizing that if SV is greater than or equal to the 2432 // LHS's Case Value, and that Case Value is exactly one less than the 2433 // Pivot's Value, then we can branch directly to the LHS's Target, 2434 // rather than creating a leaf node for it. 2435 if ((LHSR.second - LHSR.first) == 1 && 2436 LHSR.first->High == CR.GE && 2437 cast<ConstantInt>(C)->getValue() == 2438 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2439 TrueBB = LHSR.first->BB; 2440 } else { 2441 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2442 CurMF->insert(BBI, TrueBB); 2443 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2444 2445 // Put SV in a virtual register to make it available from the new blocks. 2446 ExportFromCurrentBlock(SV); 2447 } 2448 2449 // Similar to the optimization above, if the Value being switched on is 2450 // known to be less than the Constant CR.LT, and the current Case Value 2451 // is CR.LT - 1, then we can branch directly to the target block for 2452 // the current Case Value, rather than emitting a RHS leaf node for it. 2453 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2454 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2455 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2456 FalseBB = RHSR.first->BB; 2457 } else { 2458 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2459 CurMF->insert(BBI, FalseBB); 2460 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2461 2462 // Put SV in a virtual register to make it available from the new blocks. 2463 ExportFromCurrentBlock(SV); 2464 } 2465 2466 // Create a CaseBlock record representing a conditional branch to 2467 // the LHS node if the value being switched on SV is less than C. 2468 // Otherwise, branch to LHS. 2469 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2470 2471 if (CR.CaseBB == SwitchBB) 2472 visitSwitchCase(CB, SwitchBB); 2473 else 2474 SwitchCases.push_back(CB); 2475 2476 return true; 2477 } 2478 2479 /// handleBitTestsSwitchCase - if current case range has few destination and 2480 /// range span less, than machine word bitwidth, encode case range into series 2481 /// of masks and emit bit tests with these masks. 2482 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2483 CaseRecVector& WorkList, 2484 const Value* SV, 2485 MachineBasicBlock* Default, 2486 MachineBasicBlock* SwitchBB) { 2487 const TargetLowering *TLI = TM.getTargetLowering(); 2488 EVT PTy = TLI->getPointerTy(); 2489 unsigned IntPtrBits = PTy.getSizeInBits(); 2490 2491 Case& FrontCase = *CR.Range.first; 2492 Case& BackCase = *(CR.Range.second-1); 2493 2494 // Get the MachineFunction which holds the current MBB. This is used when 2495 // inserting any additional MBBs necessary to represent the switch. 2496 MachineFunction *CurMF = FuncInfo.MF; 2497 2498 // If target does not have legal shift left, do not emit bit tests at all. 2499 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2500 return false; 2501 2502 size_t numCmps = 0; 2503 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2504 I!=E; ++I) { 2505 // Single case counts one, case range - two. 2506 numCmps += (I->Low == I->High ? 1 : 2); 2507 } 2508 2509 // Count unique destinations 2510 SmallSet<MachineBasicBlock*, 4> Dests; 2511 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2512 Dests.insert(I->BB); 2513 if (Dests.size() > 3) 2514 // Don't bother the code below, if there are too much unique destinations 2515 return false; 2516 } 2517 DEBUG(dbgs() << "Total number of unique destinations: " 2518 << Dests.size() << '\n' 2519 << "Total number of comparisons: " << numCmps << '\n'); 2520 2521 // Compute span of values. 2522 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2523 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2524 APInt cmpRange = maxValue - minValue; 2525 2526 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2527 << "Low bound: " << minValue << '\n' 2528 << "High bound: " << maxValue << '\n'); 2529 2530 if (cmpRange.uge(IntPtrBits) || 2531 (!(Dests.size() == 1 && numCmps >= 3) && 2532 !(Dests.size() == 2 && numCmps >= 5) && 2533 !(Dests.size() >= 3 && numCmps >= 6))) 2534 return false; 2535 2536 DEBUG(dbgs() << "Emitting bit tests\n"); 2537 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2538 2539 // Optimize the case where all the case values fit in a 2540 // word without having to subtract minValue. In this case, 2541 // we can optimize away the subtraction. 2542 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2543 cmpRange = maxValue; 2544 } else { 2545 lowBound = minValue; 2546 } 2547 2548 CaseBitsVector CasesBits; 2549 unsigned i, count = 0; 2550 2551 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2552 MachineBasicBlock* Dest = I->BB; 2553 for (i = 0; i < count; ++i) 2554 if (Dest == CasesBits[i].BB) 2555 break; 2556 2557 if (i == count) { 2558 assert((count < 3) && "Too much destinations to test!"); 2559 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2560 count++; 2561 } 2562 2563 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2564 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2565 2566 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2567 uint64_t hi = (highValue - lowBound).getZExtValue(); 2568 CasesBits[i].ExtraWeight += I->ExtraWeight; 2569 2570 for (uint64_t j = lo; j <= hi; j++) { 2571 CasesBits[i].Mask |= 1ULL << j; 2572 CasesBits[i].Bits++; 2573 } 2574 2575 } 2576 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2577 2578 BitTestInfo BTC; 2579 2580 // Figure out which block is immediately after the current one. 2581 MachineFunction::iterator BBI = CR.CaseBB; 2582 ++BBI; 2583 2584 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2585 2586 DEBUG(dbgs() << "Cases:\n"); 2587 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2588 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2589 << ", Bits: " << CasesBits[i].Bits 2590 << ", BB: " << CasesBits[i].BB << '\n'); 2591 2592 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2593 CurMF->insert(BBI, CaseBB); 2594 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2595 CaseBB, 2596 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2597 2598 // Put SV in a virtual register to make it available from the new blocks. 2599 ExportFromCurrentBlock(SV); 2600 } 2601 2602 BitTestBlock BTB(lowBound, cmpRange, SV, 2603 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2604 CR.CaseBB, Default, BTC); 2605 2606 if (CR.CaseBB == SwitchBB) 2607 visitBitTestHeader(BTB, SwitchBB); 2608 2609 BitTestCases.push_back(BTB); 2610 2611 return true; 2612 } 2613 2614 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2615 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2616 const SwitchInst& SI) { 2617 size_t numCmps = 0; 2618 2619 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2620 // Start with "simple" cases 2621 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2622 i != e; ++i) { 2623 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2624 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2625 2626 uint32_t ExtraWeight = 2627 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2628 2629 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2630 SMBB, ExtraWeight)); 2631 } 2632 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2633 2634 // Merge case into clusters 2635 if (Cases.size() >= 2) 2636 // Must recompute end() each iteration because it may be 2637 // invalidated by erase if we hold on to it 2638 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2639 J != Cases.end(); ) { 2640 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2641 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2642 MachineBasicBlock* nextBB = J->BB; 2643 MachineBasicBlock* currentBB = I->BB; 2644 2645 // If the two neighboring cases go to the same destination, merge them 2646 // into a single case. 2647 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2648 I->High = J->High; 2649 I->ExtraWeight += J->ExtraWeight; 2650 J = Cases.erase(J); 2651 } else { 2652 I = J++; 2653 } 2654 } 2655 2656 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2657 if (I->Low != I->High) 2658 // A range counts double, since it requires two compares. 2659 ++numCmps; 2660 } 2661 2662 return numCmps; 2663 } 2664 2665 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2666 MachineBasicBlock *Last) { 2667 // Update JTCases. 2668 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2669 if (JTCases[i].first.HeaderBB == First) 2670 JTCases[i].first.HeaderBB = Last; 2671 2672 // Update BitTestCases. 2673 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2674 if (BitTestCases[i].Parent == First) 2675 BitTestCases[i].Parent = Last; 2676 } 2677 2678 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2679 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2680 2681 // Figure out which block is immediately after the current one. 2682 MachineBasicBlock *NextBlock = nullptr; 2683 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2684 2685 // If there is only the default destination, branch to it if it is not the 2686 // next basic block. Otherwise, just fall through. 2687 if (!SI.getNumCases()) { 2688 // Update machine-CFG edges. 2689 2690 // If this is not a fall-through branch, emit the branch. 2691 SwitchMBB->addSuccessor(Default); 2692 if (Default != NextBlock) 2693 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2694 MVT::Other, getControlRoot(), 2695 DAG.getBasicBlock(Default))); 2696 2697 return; 2698 } 2699 2700 // If there are any non-default case statements, create a vector of Cases 2701 // representing each one, and sort the vector so that we can efficiently 2702 // create a binary search tree from them. 2703 CaseVector Cases; 2704 size_t numCmps = Clusterify(Cases, SI); 2705 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2706 << ". Total compares: " << numCmps << '\n'); 2707 (void)numCmps; 2708 2709 // Get the Value to be switched on and default basic blocks, which will be 2710 // inserted into CaseBlock records, representing basic blocks in the binary 2711 // search tree. 2712 const Value *SV = SI.getCondition(); 2713 2714 // Push the initial CaseRec onto the worklist 2715 CaseRecVector WorkList; 2716 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2717 CaseRange(Cases.begin(),Cases.end()))); 2718 2719 while (!WorkList.empty()) { 2720 // Grab a record representing a case range to process off the worklist 2721 CaseRec CR = WorkList.back(); 2722 WorkList.pop_back(); 2723 2724 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2725 continue; 2726 2727 // If the range has few cases (two or less) emit a series of specific 2728 // tests. 2729 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2730 continue; 2731 2732 // If the switch has more than N blocks, and is at least 40% dense, and the 2733 // target supports indirect branches, then emit a jump table rather than 2734 // lowering the switch to a binary tree of conditional branches. 2735 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2736 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2737 continue; 2738 2739 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2740 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2741 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2742 } 2743 } 2744 2745 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2746 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2747 2748 // Update machine-CFG edges with unique successors. 2749 SmallSet<BasicBlock*, 32> Done; 2750 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2751 BasicBlock *BB = I.getSuccessor(i); 2752 bool Inserted = Done.insert(BB); 2753 if (!Inserted) 2754 continue; 2755 2756 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2757 addSuccessorWithWeight(IndirectBrMBB, Succ); 2758 } 2759 2760 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2761 MVT::Other, getControlRoot(), 2762 getValue(I.getAddress()))); 2763 } 2764 2765 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2766 if (DAG.getTarget().Options.TrapUnreachable) 2767 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2768 } 2769 2770 void SelectionDAGBuilder::visitFSub(const User &I) { 2771 // -0.0 - X --> fneg 2772 Type *Ty = I.getType(); 2773 if (isa<Constant>(I.getOperand(0)) && 2774 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2775 SDValue Op2 = getValue(I.getOperand(1)); 2776 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2777 Op2.getValueType(), Op2)); 2778 return; 2779 } 2780 2781 visitBinary(I, ISD::FSUB); 2782 } 2783 2784 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2785 SDValue Op1 = getValue(I.getOperand(0)); 2786 SDValue Op2 = getValue(I.getOperand(1)); 2787 2788 bool nuw = false; 2789 bool nsw = false; 2790 bool exact = false; 2791 if (const OverflowingBinaryOperator *OFBinOp = 2792 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2793 nuw = OFBinOp->hasNoUnsignedWrap(); 2794 nsw = OFBinOp->hasNoSignedWrap(); 2795 } 2796 if (const PossiblyExactOperator *ExactOp = 2797 dyn_cast<const PossiblyExactOperator>(&I)) 2798 exact = ExactOp->isExact(); 2799 2800 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2801 Op1, Op2, nuw, nsw, exact); 2802 setValue(&I, BinNodeValue); 2803 } 2804 2805 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2806 SDValue Op1 = getValue(I.getOperand(0)); 2807 SDValue Op2 = getValue(I.getOperand(1)); 2808 2809 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2810 2811 // Coerce the shift amount to the right type if we can. 2812 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2813 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2814 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2815 SDLoc DL = getCurSDLoc(); 2816 2817 // If the operand is smaller than the shift count type, promote it. 2818 if (ShiftSize > Op2Size) 2819 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2820 2821 // If the operand is larger than the shift count type but the shift 2822 // count type has enough bits to represent any shift value, truncate 2823 // it now. This is a common case and it exposes the truncate to 2824 // optimization early. 2825 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2826 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2827 // Otherwise we'll need to temporarily settle for some other convenient 2828 // type. Type legalization will make adjustments once the shiftee is split. 2829 else 2830 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2831 } 2832 2833 bool nuw = false; 2834 bool nsw = false; 2835 bool exact = false; 2836 2837 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2838 2839 if (const OverflowingBinaryOperator *OFBinOp = 2840 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2841 nuw = OFBinOp->hasNoUnsignedWrap(); 2842 nsw = OFBinOp->hasNoSignedWrap(); 2843 } 2844 if (const PossiblyExactOperator *ExactOp = 2845 dyn_cast<const PossiblyExactOperator>(&I)) 2846 exact = ExactOp->isExact(); 2847 } 2848 2849 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2850 nuw, nsw, exact); 2851 setValue(&I, Res); 2852 } 2853 2854 void SelectionDAGBuilder::visitSDiv(const User &I) { 2855 SDValue Op1 = getValue(I.getOperand(0)); 2856 SDValue Op2 = getValue(I.getOperand(1)); 2857 2858 // Turn exact SDivs into multiplications. 2859 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2860 // exact bit. 2861 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2862 !isa<ConstantSDNode>(Op1) && 2863 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2864 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2865 getCurSDLoc(), DAG)); 2866 else 2867 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2868 Op1, Op2)); 2869 } 2870 2871 void SelectionDAGBuilder::visitICmp(const User &I) { 2872 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2873 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2874 predicate = IC->getPredicate(); 2875 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2876 predicate = ICmpInst::Predicate(IC->getPredicate()); 2877 SDValue Op1 = getValue(I.getOperand(0)); 2878 SDValue Op2 = getValue(I.getOperand(1)); 2879 ISD::CondCode Opcode = getICmpCondCode(predicate); 2880 2881 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2882 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2883 } 2884 2885 void SelectionDAGBuilder::visitFCmp(const User &I) { 2886 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2887 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2888 predicate = FC->getPredicate(); 2889 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2890 predicate = FCmpInst::Predicate(FC->getPredicate()); 2891 SDValue Op1 = getValue(I.getOperand(0)); 2892 SDValue Op2 = getValue(I.getOperand(1)); 2893 ISD::CondCode Condition = getFCmpCondCode(predicate); 2894 if (TM.Options.NoNaNsFPMath) 2895 Condition = getFCmpCodeWithoutNaN(Condition); 2896 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2897 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2898 } 2899 2900 void SelectionDAGBuilder::visitSelect(const User &I) { 2901 SmallVector<EVT, 4> ValueVTs; 2902 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2903 unsigned NumValues = ValueVTs.size(); 2904 if (NumValues == 0) return; 2905 2906 SmallVector<SDValue, 4> Values(NumValues); 2907 SDValue Cond = getValue(I.getOperand(0)); 2908 SDValue TrueVal = getValue(I.getOperand(1)); 2909 SDValue FalseVal = getValue(I.getOperand(2)); 2910 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2911 ISD::VSELECT : ISD::SELECT; 2912 2913 for (unsigned i = 0; i != NumValues; ++i) 2914 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2915 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2916 Cond, 2917 SDValue(TrueVal.getNode(), 2918 TrueVal.getResNo() + i), 2919 SDValue(FalseVal.getNode(), 2920 FalseVal.getResNo() + i)); 2921 2922 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2923 DAG.getVTList(ValueVTs), Values)); 2924 } 2925 2926 void SelectionDAGBuilder::visitTrunc(const User &I) { 2927 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2928 SDValue N = getValue(I.getOperand(0)); 2929 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2930 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2931 } 2932 2933 void SelectionDAGBuilder::visitZExt(const User &I) { 2934 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2935 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2936 SDValue N = getValue(I.getOperand(0)); 2937 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2938 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2939 } 2940 2941 void SelectionDAGBuilder::visitSExt(const User &I) { 2942 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2943 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2944 SDValue N = getValue(I.getOperand(0)); 2945 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2946 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2947 } 2948 2949 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2950 // FPTrunc is never a no-op cast, no need to check 2951 SDValue N = getValue(I.getOperand(0)); 2952 const TargetLowering *TLI = TM.getTargetLowering(); 2953 EVT DestVT = TLI->getValueType(I.getType()); 2954 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2955 DestVT, N, 2956 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2957 } 2958 2959 void SelectionDAGBuilder::visitFPExt(const User &I) { 2960 // FPExt is never a no-op cast, no need to check 2961 SDValue N = getValue(I.getOperand(0)); 2962 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2963 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2964 } 2965 2966 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2967 // FPToUI is never a no-op cast, no need to check 2968 SDValue N = getValue(I.getOperand(0)); 2969 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2970 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2971 } 2972 2973 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2974 // FPToSI is never a no-op cast, no need to check 2975 SDValue N = getValue(I.getOperand(0)); 2976 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2977 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2978 } 2979 2980 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2981 // UIToFP is never a no-op cast, no need to check 2982 SDValue N = getValue(I.getOperand(0)); 2983 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2984 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2985 } 2986 2987 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2988 // SIToFP is never a no-op cast, no need to check 2989 SDValue N = getValue(I.getOperand(0)); 2990 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2991 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2992 } 2993 2994 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2995 // What to do depends on the size of the integer and the size of the pointer. 2996 // We can either truncate, zero extend, or no-op, accordingly. 2997 SDValue N = getValue(I.getOperand(0)); 2998 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2999 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3000 } 3001 3002 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3003 // What to do depends on the size of the integer and the size of the pointer. 3004 // We can either truncate, zero extend, or no-op, accordingly. 3005 SDValue N = getValue(I.getOperand(0)); 3006 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3007 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3008 } 3009 3010 void SelectionDAGBuilder::visitBitCast(const User &I) { 3011 SDValue N = getValue(I.getOperand(0)); 3012 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3013 3014 // BitCast assures us that source and destination are the same size so this is 3015 // either a BITCAST or a no-op. 3016 if (DestVT != N.getValueType()) 3017 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3018 DestVT, N)); // convert types. 3019 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3020 // might fold any kind of constant expression to an integer constant and that 3021 // is not what we are looking for. Only regcognize a bitcast of a genuine 3022 // constant integer as an opaque constant. 3023 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3024 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3025 /*isOpaque*/true)); 3026 else 3027 setValue(&I, N); // noop cast. 3028 } 3029 3030 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3032 const Value *SV = I.getOperand(0); 3033 SDValue N = getValue(SV); 3034 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3035 3036 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3037 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3038 3039 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3040 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3041 3042 setValue(&I, N); 3043 } 3044 3045 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3046 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3047 SDValue InVec = getValue(I.getOperand(0)); 3048 SDValue InVal = getValue(I.getOperand(1)); 3049 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3050 getCurSDLoc(), TLI.getVectorIdxTy()); 3051 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3052 TM.getTargetLowering()->getValueType(I.getType()), 3053 InVec, InVal, InIdx)); 3054 } 3055 3056 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3058 SDValue InVec = getValue(I.getOperand(0)); 3059 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3060 getCurSDLoc(), TLI.getVectorIdxTy()); 3061 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3062 TM.getTargetLowering()->getValueType(I.getType()), 3063 InVec, InIdx)); 3064 } 3065 3066 // Utility for visitShuffleVector - Return true if every element in Mask, 3067 // beginning from position Pos and ending in Pos+Size, falls within the 3068 // specified sequential range [L, L+Pos). or is undef. 3069 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3070 unsigned Pos, unsigned Size, int Low) { 3071 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3072 if (Mask[i] >= 0 && Mask[i] != Low) 3073 return false; 3074 return true; 3075 } 3076 3077 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3078 SDValue Src1 = getValue(I.getOperand(0)); 3079 SDValue Src2 = getValue(I.getOperand(1)); 3080 3081 SmallVector<int, 8> Mask; 3082 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3083 unsigned MaskNumElts = Mask.size(); 3084 3085 const TargetLowering *TLI = TM.getTargetLowering(); 3086 EVT VT = TLI->getValueType(I.getType()); 3087 EVT SrcVT = Src1.getValueType(); 3088 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3089 3090 if (SrcNumElts == MaskNumElts) { 3091 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3092 &Mask[0])); 3093 return; 3094 } 3095 3096 // Normalize the shuffle vector since mask and vector length don't match. 3097 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3098 // Mask is longer than the source vectors and is a multiple of the source 3099 // vectors. We can use concatenate vector to make the mask and vectors 3100 // lengths match. 3101 if (SrcNumElts*2 == MaskNumElts) { 3102 // First check for Src1 in low and Src2 in high 3103 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3104 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3105 // The shuffle is concatenating two vectors together. 3106 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3107 VT, Src1, Src2)); 3108 return; 3109 } 3110 // Then check for Src2 in low and Src1 in high 3111 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3112 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3113 // The shuffle is concatenating two vectors together. 3114 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3115 VT, Src2, Src1)); 3116 return; 3117 } 3118 } 3119 3120 // Pad both vectors with undefs to make them the same length as the mask. 3121 unsigned NumConcat = MaskNumElts / SrcNumElts; 3122 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3123 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3124 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3125 3126 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3127 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3128 MOps1[0] = Src1; 3129 MOps2[0] = Src2; 3130 3131 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3132 getCurSDLoc(), VT, MOps1); 3133 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3134 getCurSDLoc(), VT, MOps2); 3135 3136 // Readjust mask for new input vector length. 3137 SmallVector<int, 8> MappedOps; 3138 for (unsigned i = 0; i != MaskNumElts; ++i) { 3139 int Idx = Mask[i]; 3140 if (Idx >= (int)SrcNumElts) 3141 Idx -= SrcNumElts - MaskNumElts; 3142 MappedOps.push_back(Idx); 3143 } 3144 3145 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3146 &MappedOps[0])); 3147 return; 3148 } 3149 3150 if (SrcNumElts > MaskNumElts) { 3151 // Analyze the access pattern of the vector to see if we can extract 3152 // two subvectors and do the shuffle. The analysis is done by calculating 3153 // the range of elements the mask access on both vectors. 3154 int MinRange[2] = { static_cast<int>(SrcNumElts), 3155 static_cast<int>(SrcNumElts)}; 3156 int MaxRange[2] = {-1, -1}; 3157 3158 for (unsigned i = 0; i != MaskNumElts; ++i) { 3159 int Idx = Mask[i]; 3160 unsigned Input = 0; 3161 if (Idx < 0) 3162 continue; 3163 3164 if (Idx >= (int)SrcNumElts) { 3165 Input = 1; 3166 Idx -= SrcNumElts; 3167 } 3168 if (Idx > MaxRange[Input]) 3169 MaxRange[Input] = Idx; 3170 if (Idx < MinRange[Input]) 3171 MinRange[Input] = Idx; 3172 } 3173 3174 // Check if the access is smaller than the vector size and can we find 3175 // a reasonable extract index. 3176 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3177 // Extract. 3178 int StartIdx[2]; // StartIdx to extract from 3179 for (unsigned Input = 0; Input < 2; ++Input) { 3180 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3181 RangeUse[Input] = 0; // Unused 3182 StartIdx[Input] = 0; 3183 continue; 3184 } 3185 3186 // Find a good start index that is a multiple of the mask length. Then 3187 // see if the rest of the elements are in range. 3188 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3189 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3190 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3191 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3192 } 3193 3194 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3195 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3196 return; 3197 } 3198 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3199 // Extract appropriate subvector and generate a vector shuffle 3200 for (unsigned Input = 0; Input < 2; ++Input) { 3201 SDValue &Src = Input == 0 ? Src1 : Src2; 3202 if (RangeUse[Input] == 0) 3203 Src = DAG.getUNDEF(VT); 3204 else 3205 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3206 Src, DAG.getConstant(StartIdx[Input], 3207 TLI->getVectorIdxTy())); 3208 } 3209 3210 // Calculate new mask. 3211 SmallVector<int, 8> MappedOps; 3212 for (unsigned i = 0; i != MaskNumElts; ++i) { 3213 int Idx = Mask[i]; 3214 if (Idx >= 0) { 3215 if (Idx < (int)SrcNumElts) 3216 Idx -= StartIdx[0]; 3217 else 3218 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3219 } 3220 MappedOps.push_back(Idx); 3221 } 3222 3223 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3224 &MappedOps[0])); 3225 return; 3226 } 3227 } 3228 3229 // We can't use either concat vectors or extract subvectors so fall back to 3230 // replacing the shuffle with extract and build vector. 3231 // to insert and build vector. 3232 EVT EltVT = VT.getVectorElementType(); 3233 EVT IdxVT = TLI->getVectorIdxTy(); 3234 SmallVector<SDValue,8> Ops; 3235 for (unsigned i = 0; i != MaskNumElts; ++i) { 3236 int Idx = Mask[i]; 3237 SDValue Res; 3238 3239 if (Idx < 0) { 3240 Res = DAG.getUNDEF(EltVT); 3241 } else { 3242 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3243 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3244 3245 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3246 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3247 } 3248 3249 Ops.push_back(Res); 3250 } 3251 3252 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3253 } 3254 3255 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3256 const Value *Op0 = I.getOperand(0); 3257 const Value *Op1 = I.getOperand(1); 3258 Type *AggTy = I.getType(); 3259 Type *ValTy = Op1->getType(); 3260 bool IntoUndef = isa<UndefValue>(Op0); 3261 bool FromUndef = isa<UndefValue>(Op1); 3262 3263 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3264 3265 const TargetLowering *TLI = TM.getTargetLowering(); 3266 SmallVector<EVT, 4> AggValueVTs; 3267 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3268 SmallVector<EVT, 4> ValValueVTs; 3269 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3270 3271 unsigned NumAggValues = AggValueVTs.size(); 3272 unsigned NumValValues = ValValueVTs.size(); 3273 SmallVector<SDValue, 4> Values(NumAggValues); 3274 3275 SDValue Agg = getValue(Op0); 3276 unsigned i = 0; 3277 // Copy the beginning value(s) from the original aggregate. 3278 for (; i != LinearIndex; ++i) 3279 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3280 SDValue(Agg.getNode(), Agg.getResNo() + i); 3281 // Copy values from the inserted value(s). 3282 if (NumValValues) { 3283 SDValue Val = getValue(Op1); 3284 for (; i != LinearIndex + NumValValues; ++i) 3285 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3286 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3287 } 3288 // Copy remaining value(s) from the original aggregate. 3289 for (; i != NumAggValues; ++i) 3290 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3291 SDValue(Agg.getNode(), Agg.getResNo() + i); 3292 3293 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3294 DAG.getVTList(AggValueVTs), Values)); 3295 } 3296 3297 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3298 const Value *Op0 = I.getOperand(0); 3299 Type *AggTy = Op0->getType(); 3300 Type *ValTy = I.getType(); 3301 bool OutOfUndef = isa<UndefValue>(Op0); 3302 3303 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3304 3305 const TargetLowering *TLI = TM.getTargetLowering(); 3306 SmallVector<EVT, 4> ValValueVTs; 3307 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3308 3309 unsigned NumValValues = ValValueVTs.size(); 3310 3311 // Ignore a extractvalue that produces an empty object 3312 if (!NumValValues) { 3313 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3314 return; 3315 } 3316 3317 SmallVector<SDValue, 4> Values(NumValValues); 3318 3319 SDValue Agg = getValue(Op0); 3320 // Copy out the selected value(s). 3321 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3322 Values[i - LinearIndex] = 3323 OutOfUndef ? 3324 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3325 SDValue(Agg.getNode(), Agg.getResNo() + i); 3326 3327 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3328 DAG.getVTList(ValValueVTs), Values)); 3329 } 3330 3331 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3332 Value *Op0 = I.getOperand(0); 3333 // Note that the pointer operand may be a vector of pointers. Take the scalar 3334 // element which holds a pointer. 3335 Type *Ty = Op0->getType()->getScalarType(); 3336 unsigned AS = Ty->getPointerAddressSpace(); 3337 SDValue N = getValue(Op0); 3338 3339 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3340 OI != E; ++OI) { 3341 const Value *Idx = *OI; 3342 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3343 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3344 if (Field) { 3345 // N = N + Offset 3346 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3347 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3348 DAG.getConstant(Offset, N.getValueType())); 3349 } 3350 3351 Ty = StTy->getElementType(Field); 3352 } else { 3353 Ty = cast<SequentialType>(Ty)->getElementType(); 3354 3355 // If this is a constant subscript, handle it quickly. 3356 const TargetLowering *TLI = TM.getTargetLowering(); 3357 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3358 if (CI->isZero()) continue; 3359 uint64_t Offs = 3360 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3361 SDValue OffsVal; 3362 EVT PTy = TLI->getPointerTy(AS); 3363 unsigned PtrBits = PTy.getSizeInBits(); 3364 if (PtrBits < 64) 3365 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3366 DAG.getConstant(Offs, MVT::i64)); 3367 else 3368 OffsVal = DAG.getConstant(Offs, PTy); 3369 3370 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3371 OffsVal); 3372 continue; 3373 } 3374 3375 // N = N + Idx * ElementSize; 3376 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3377 DL->getTypeAllocSize(Ty)); 3378 SDValue IdxN = getValue(Idx); 3379 3380 // If the index is smaller or larger than intptr_t, truncate or extend 3381 // it. 3382 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3383 3384 // If this is a multiply by a power of two, turn it into a shl 3385 // immediately. This is a very common case. 3386 if (ElementSize != 1) { 3387 if (ElementSize.isPowerOf2()) { 3388 unsigned Amt = ElementSize.logBase2(); 3389 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3390 N.getValueType(), IdxN, 3391 DAG.getConstant(Amt, IdxN.getValueType())); 3392 } else { 3393 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3394 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3395 N.getValueType(), IdxN, Scale); 3396 } 3397 } 3398 3399 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3400 N.getValueType(), N, IdxN); 3401 } 3402 } 3403 3404 setValue(&I, N); 3405 } 3406 3407 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3408 // If this is a fixed sized alloca in the entry block of the function, 3409 // allocate it statically on the stack. 3410 if (FuncInfo.StaticAllocaMap.count(&I)) 3411 return; // getValue will auto-populate this. 3412 3413 Type *Ty = I.getAllocatedType(); 3414 const TargetLowering *TLI = TM.getTargetLowering(); 3415 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3416 unsigned Align = 3417 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3418 I.getAlignment()); 3419 3420 SDValue AllocSize = getValue(I.getArraySize()); 3421 3422 EVT IntPtr = TLI->getPointerTy(); 3423 if (AllocSize.getValueType() != IntPtr) 3424 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3425 3426 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3427 AllocSize, 3428 DAG.getConstant(TySize, IntPtr)); 3429 3430 // Handle alignment. If the requested alignment is less than or equal to 3431 // the stack alignment, ignore it. If the size is greater than or equal to 3432 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3433 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3434 if (Align <= StackAlign) 3435 Align = 0; 3436 3437 // Round the size of the allocation up to the stack alignment size 3438 // by add SA-1 to the size. 3439 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3440 AllocSize.getValueType(), AllocSize, 3441 DAG.getIntPtrConstant(StackAlign-1)); 3442 3443 // Mask out the low bits for alignment purposes. 3444 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3445 AllocSize.getValueType(), AllocSize, 3446 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3447 3448 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3449 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3450 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3451 setValue(&I, DSA); 3452 DAG.setRoot(DSA.getValue(1)); 3453 3454 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3455 } 3456 3457 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3458 if (I.isAtomic()) 3459 return visitAtomicLoad(I); 3460 3461 const Value *SV = I.getOperand(0); 3462 SDValue Ptr = getValue(SV); 3463 3464 Type *Ty = I.getType(); 3465 3466 bool isVolatile = I.isVolatile(); 3467 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3468 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3469 unsigned Alignment = I.getAlignment(); 3470 3471 AAMDNodes AAInfo; 3472 I.getAAMetadata(AAInfo); 3473 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3474 3475 SmallVector<EVT, 4> ValueVTs; 3476 SmallVector<uint64_t, 4> Offsets; 3477 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3478 unsigned NumValues = ValueVTs.size(); 3479 if (NumValues == 0) 3480 return; 3481 3482 SDValue Root; 3483 bool ConstantMemory = false; 3484 if (isVolatile || NumValues > MaxParallelChains) 3485 // Serialize volatile loads with other side effects. 3486 Root = getRoot(); 3487 else if (AA->pointsToConstantMemory( 3488 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3489 // Do not serialize (non-volatile) loads of constant memory with anything. 3490 Root = DAG.getEntryNode(); 3491 ConstantMemory = true; 3492 } else { 3493 // Do not serialize non-volatile loads against each other. 3494 Root = DAG.getRoot(); 3495 } 3496 3497 const TargetLowering *TLI = TM.getTargetLowering(); 3498 if (isVolatile) 3499 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3500 3501 SmallVector<SDValue, 4> Values(NumValues); 3502 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3503 NumValues)); 3504 EVT PtrVT = Ptr.getValueType(); 3505 unsigned ChainI = 0; 3506 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3507 // Serializing loads here may result in excessive register pressure, and 3508 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3509 // could recover a bit by hoisting nodes upward in the chain by recognizing 3510 // they are side-effect free or do not alias. The optimizer should really 3511 // avoid this case by converting large object/array copies to llvm.memcpy 3512 // (MaxParallelChains should always remain as failsafe). 3513 if (ChainI == MaxParallelChains) { 3514 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3515 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3516 makeArrayRef(Chains.data(), ChainI)); 3517 Root = Chain; 3518 ChainI = 0; 3519 } 3520 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3521 PtrVT, Ptr, 3522 DAG.getConstant(Offsets[i], PtrVT)); 3523 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3524 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3525 isNonTemporal, isInvariant, Alignment, AAInfo, 3526 Ranges); 3527 3528 Values[i] = L; 3529 Chains[ChainI] = L.getValue(1); 3530 } 3531 3532 if (!ConstantMemory) { 3533 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3534 makeArrayRef(Chains.data(), ChainI)); 3535 if (isVolatile) 3536 DAG.setRoot(Chain); 3537 else 3538 PendingLoads.push_back(Chain); 3539 } 3540 3541 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3542 DAG.getVTList(ValueVTs), Values)); 3543 } 3544 3545 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3546 if (I.isAtomic()) 3547 return visitAtomicStore(I); 3548 3549 const Value *SrcV = I.getOperand(0); 3550 const Value *PtrV = I.getOperand(1); 3551 3552 SmallVector<EVT, 4> ValueVTs; 3553 SmallVector<uint64_t, 4> Offsets; 3554 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3555 unsigned NumValues = ValueVTs.size(); 3556 if (NumValues == 0) 3557 return; 3558 3559 // Get the lowered operands. Note that we do this after 3560 // checking if NumResults is zero, because with zero results 3561 // the operands won't have values in the map. 3562 SDValue Src = getValue(SrcV); 3563 SDValue Ptr = getValue(PtrV); 3564 3565 SDValue Root = getRoot(); 3566 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3567 NumValues)); 3568 EVT PtrVT = Ptr.getValueType(); 3569 bool isVolatile = I.isVolatile(); 3570 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3571 unsigned Alignment = I.getAlignment(); 3572 3573 AAMDNodes AAInfo; 3574 I.getAAMetadata(AAInfo); 3575 3576 unsigned ChainI = 0; 3577 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3578 // See visitLoad comments. 3579 if (ChainI == MaxParallelChains) { 3580 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3581 makeArrayRef(Chains.data(), ChainI)); 3582 Root = Chain; 3583 ChainI = 0; 3584 } 3585 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3586 DAG.getConstant(Offsets[i], PtrVT)); 3587 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3588 SDValue(Src.getNode(), Src.getResNo() + i), 3589 Add, MachinePointerInfo(PtrV, Offsets[i]), 3590 isVolatile, isNonTemporal, Alignment, AAInfo); 3591 Chains[ChainI] = St; 3592 } 3593 3594 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3595 makeArrayRef(Chains.data(), ChainI)); 3596 DAG.setRoot(StoreNode); 3597 } 3598 3599 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3600 SynchronizationScope Scope, 3601 bool Before, SDLoc dl, 3602 SelectionDAG &DAG, 3603 const TargetLowering &TLI) { 3604 // Fence, if necessary 3605 if (Before) { 3606 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3607 Order = Release; 3608 else if (Order == Acquire || Order == Monotonic || Order == Unordered) 3609 return Chain; 3610 } else { 3611 if (Order == AcquireRelease) 3612 Order = Acquire; 3613 else if (Order == Release || Order == Monotonic || Order == Unordered) 3614 return Chain; 3615 } 3616 SDValue Ops[3]; 3617 Ops[0] = Chain; 3618 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3619 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3620 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3621 } 3622 3623 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3624 SDLoc dl = getCurSDLoc(); 3625 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3626 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3627 SynchronizationScope Scope = I.getSynchScope(); 3628 3629 SDValue InChain = getRoot(); 3630 3631 const TargetLowering *TLI = TM.getTargetLowering(); 3632 if (TLI->getInsertFencesForAtomic()) 3633 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3634 DAG, *TLI); 3635 3636 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3637 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3638 SDValue L = DAG.getAtomicCmpSwap( 3639 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3640 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3641 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3642 0 /* Alignment */, 3643 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3644 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope); 3645 3646 SDValue OutChain = L.getValue(2); 3647 3648 if (TLI->getInsertFencesForAtomic()) 3649 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3650 DAG, *TLI); 3651 3652 setValue(&I, L); 3653 DAG.setRoot(OutChain); 3654 } 3655 3656 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3657 SDLoc dl = getCurSDLoc(); 3658 ISD::NodeType NT; 3659 switch (I.getOperation()) { 3660 default: llvm_unreachable("Unknown atomicrmw operation"); 3661 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3662 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3663 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3664 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3665 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3666 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3667 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3668 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3669 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3670 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3671 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3672 } 3673 AtomicOrdering Order = I.getOrdering(); 3674 SynchronizationScope Scope = I.getSynchScope(); 3675 3676 SDValue InChain = getRoot(); 3677 3678 const TargetLowering *TLI = TM.getTargetLowering(); 3679 if (TLI->getInsertFencesForAtomic()) 3680 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3681 DAG, *TLI); 3682 3683 SDValue L = 3684 DAG.getAtomic(NT, dl, 3685 getValue(I.getValOperand()).getSimpleValueType(), 3686 InChain, 3687 getValue(I.getPointerOperand()), 3688 getValue(I.getValOperand()), 3689 I.getPointerOperand(), 0 /* Alignment */, 3690 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3691 Scope); 3692 3693 SDValue OutChain = L.getValue(1); 3694 3695 if (TLI->getInsertFencesForAtomic()) 3696 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3697 DAG, *TLI); 3698 3699 setValue(&I, L); 3700 DAG.setRoot(OutChain); 3701 } 3702 3703 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3704 SDLoc dl = getCurSDLoc(); 3705 const TargetLowering *TLI = TM.getTargetLowering(); 3706 SDValue Ops[3]; 3707 Ops[0] = getRoot(); 3708 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3709 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3710 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3711 } 3712 3713 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3714 SDLoc dl = getCurSDLoc(); 3715 AtomicOrdering Order = I.getOrdering(); 3716 SynchronizationScope Scope = I.getSynchScope(); 3717 3718 SDValue InChain = getRoot(); 3719 3720 const TargetLowering *TLI = TM.getTargetLowering(); 3721 EVT VT = TLI->getValueType(I.getType()); 3722 3723 if (I.getAlignment() < VT.getSizeInBits() / 8) 3724 report_fatal_error("Cannot generate unaligned atomic load"); 3725 3726 MachineMemOperand *MMO = 3727 DAG.getMachineFunction(). 3728 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3729 MachineMemOperand::MOVolatile | 3730 MachineMemOperand::MOLoad, 3731 VT.getStoreSize(), 3732 I.getAlignment() ? I.getAlignment() : 3733 DAG.getEVTAlignment(VT)); 3734 3735 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3736 SDValue L = 3737 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3738 getValue(I.getPointerOperand()), MMO, 3739 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3740 Scope); 3741 3742 SDValue OutChain = L.getValue(1); 3743 3744 if (TLI->getInsertFencesForAtomic()) 3745 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3746 DAG, *TLI); 3747 3748 setValue(&I, L); 3749 DAG.setRoot(OutChain); 3750 } 3751 3752 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3753 SDLoc dl = getCurSDLoc(); 3754 3755 AtomicOrdering Order = I.getOrdering(); 3756 SynchronizationScope Scope = I.getSynchScope(); 3757 3758 SDValue InChain = getRoot(); 3759 3760 const TargetLowering *TLI = TM.getTargetLowering(); 3761 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3762 3763 if (I.getAlignment() < VT.getSizeInBits() / 8) 3764 report_fatal_error("Cannot generate unaligned atomic store"); 3765 3766 if (TLI->getInsertFencesForAtomic()) 3767 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3768 DAG, *TLI); 3769 3770 SDValue OutChain = 3771 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3772 InChain, 3773 getValue(I.getPointerOperand()), 3774 getValue(I.getValueOperand()), 3775 I.getPointerOperand(), I.getAlignment(), 3776 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3777 Scope); 3778 3779 if (TLI->getInsertFencesForAtomic()) 3780 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3781 DAG, *TLI); 3782 3783 DAG.setRoot(OutChain); 3784 } 3785 3786 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3787 /// node. 3788 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3789 unsigned Intrinsic) { 3790 bool HasChain = !I.doesNotAccessMemory(); 3791 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3792 3793 // Build the operand list. 3794 SmallVector<SDValue, 8> Ops; 3795 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3796 if (OnlyLoad) { 3797 // We don't need to serialize loads against other loads. 3798 Ops.push_back(DAG.getRoot()); 3799 } else { 3800 Ops.push_back(getRoot()); 3801 } 3802 } 3803 3804 // Info is set by getTgtMemInstrinsic 3805 TargetLowering::IntrinsicInfo Info; 3806 const TargetLowering *TLI = TM.getTargetLowering(); 3807 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3808 3809 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3810 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3811 Info.opc == ISD::INTRINSIC_W_CHAIN) 3812 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3813 3814 // Add all operands of the call to the operand list. 3815 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3816 SDValue Op = getValue(I.getArgOperand(i)); 3817 Ops.push_back(Op); 3818 } 3819 3820 SmallVector<EVT, 4> ValueVTs; 3821 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3822 3823 if (HasChain) 3824 ValueVTs.push_back(MVT::Other); 3825 3826 SDVTList VTs = DAG.getVTList(ValueVTs); 3827 3828 // Create the node. 3829 SDValue Result; 3830 if (IsTgtIntrinsic) { 3831 // This is target intrinsic that touches memory 3832 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3833 VTs, Ops, Info.memVT, 3834 MachinePointerInfo(Info.ptrVal, Info.offset), 3835 Info.align, Info.vol, 3836 Info.readMem, Info.writeMem); 3837 } else if (!HasChain) { 3838 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3839 } else if (!I.getType()->isVoidTy()) { 3840 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3841 } else { 3842 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3843 } 3844 3845 if (HasChain) { 3846 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3847 if (OnlyLoad) 3848 PendingLoads.push_back(Chain); 3849 else 3850 DAG.setRoot(Chain); 3851 } 3852 3853 if (!I.getType()->isVoidTy()) { 3854 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3855 EVT VT = TLI->getValueType(PTy); 3856 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3857 } 3858 3859 setValue(&I, Result); 3860 } 3861 } 3862 3863 /// GetSignificand - Get the significand and build it into a floating-point 3864 /// number with exponent of 1: 3865 /// 3866 /// Op = (Op & 0x007fffff) | 0x3f800000; 3867 /// 3868 /// where Op is the hexadecimal representation of floating point value. 3869 static SDValue 3870 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3871 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3872 DAG.getConstant(0x007fffff, MVT::i32)); 3873 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3874 DAG.getConstant(0x3f800000, MVT::i32)); 3875 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3876 } 3877 3878 /// GetExponent - Get the exponent: 3879 /// 3880 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3881 /// 3882 /// where Op is the hexadecimal representation of floating point value. 3883 static SDValue 3884 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3885 SDLoc dl) { 3886 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3887 DAG.getConstant(0x7f800000, MVT::i32)); 3888 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3889 DAG.getConstant(23, TLI.getPointerTy())); 3890 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3891 DAG.getConstant(127, MVT::i32)); 3892 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3893 } 3894 3895 /// getF32Constant - Get 32-bit floating point constant. 3896 static SDValue 3897 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3898 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3899 MVT::f32); 3900 } 3901 3902 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3903 /// limited-precision mode. 3904 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3905 const TargetLowering &TLI) { 3906 if (Op.getValueType() == MVT::f32 && 3907 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3908 3909 // Put the exponent in the right bit position for later addition to the 3910 // final result: 3911 // 3912 // #define LOG2OFe 1.4426950f 3913 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3914 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3915 getF32Constant(DAG, 0x3fb8aa3b)); 3916 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3917 3918 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3919 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3920 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3921 3922 // IntegerPartOfX <<= 23; 3923 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3924 DAG.getConstant(23, TLI.getPointerTy())); 3925 3926 SDValue TwoToFracPartOfX; 3927 if (LimitFloatPrecision <= 6) { 3928 // For floating-point precision of 6: 3929 // 3930 // TwoToFractionalPartOfX = 3931 // 0.997535578f + 3932 // (0.735607626f + 0.252464424f * x) * x; 3933 // 3934 // error 0.0144103317, which is 6 bits 3935 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3936 getF32Constant(DAG, 0x3e814304)); 3937 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3938 getF32Constant(DAG, 0x3f3c50c8)); 3939 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3940 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3941 getF32Constant(DAG, 0x3f7f5e7e)); 3942 } else if (LimitFloatPrecision <= 12) { 3943 // For floating-point precision of 12: 3944 // 3945 // TwoToFractionalPartOfX = 3946 // 0.999892986f + 3947 // (0.696457318f + 3948 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3949 // 3950 // 0.000107046256 error, which is 13 to 14 bits 3951 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3952 getF32Constant(DAG, 0x3da235e3)); 3953 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3954 getF32Constant(DAG, 0x3e65b8f3)); 3955 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3956 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3957 getF32Constant(DAG, 0x3f324b07)); 3958 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3959 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3960 getF32Constant(DAG, 0x3f7ff8fd)); 3961 } else { // LimitFloatPrecision <= 18 3962 // For floating-point precision of 18: 3963 // 3964 // TwoToFractionalPartOfX = 3965 // 0.999999982f + 3966 // (0.693148872f + 3967 // (0.240227044f + 3968 // (0.554906021e-1f + 3969 // (0.961591928e-2f + 3970 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3971 // 3972 // error 2.47208000*10^(-7), which is better than 18 bits 3973 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3974 getF32Constant(DAG, 0x3924b03e)); 3975 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3976 getF32Constant(DAG, 0x3ab24b87)); 3977 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3978 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3979 getF32Constant(DAG, 0x3c1d8c17)); 3980 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3981 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3982 getF32Constant(DAG, 0x3d634a1d)); 3983 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3984 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3985 getF32Constant(DAG, 0x3e75fe14)); 3986 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3987 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3988 getF32Constant(DAG, 0x3f317234)); 3989 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3990 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3991 getF32Constant(DAG, 0x3f800000)); 3992 } 3993 3994 // Add the exponent into the result in integer domain. 3995 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3996 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3997 DAG.getNode(ISD::ADD, dl, MVT::i32, 3998 t13, IntegerPartOfX)); 3999 } 4000 4001 // No special expansion. 4002 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4003 } 4004 4005 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4006 /// limited-precision mode. 4007 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4008 const TargetLowering &TLI) { 4009 if (Op.getValueType() == MVT::f32 && 4010 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4011 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4012 4013 // Scale the exponent by log(2) [0.69314718f]. 4014 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4015 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4016 getF32Constant(DAG, 0x3f317218)); 4017 4018 // Get the significand and build it into a floating-point number with 4019 // exponent of 1. 4020 SDValue X = GetSignificand(DAG, Op1, dl); 4021 4022 SDValue LogOfMantissa; 4023 if (LimitFloatPrecision <= 6) { 4024 // For floating-point precision of 6: 4025 // 4026 // LogofMantissa = 4027 // -1.1609546f + 4028 // (1.4034025f - 0.23903021f * x) * x; 4029 // 4030 // error 0.0034276066, which is better than 8 bits 4031 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4032 getF32Constant(DAG, 0xbe74c456)); 4033 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4034 getF32Constant(DAG, 0x3fb3a2b1)); 4035 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4036 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4037 getF32Constant(DAG, 0x3f949a29)); 4038 } else if (LimitFloatPrecision <= 12) { 4039 // For floating-point precision of 12: 4040 // 4041 // LogOfMantissa = 4042 // -1.7417939f + 4043 // (2.8212026f + 4044 // (-1.4699568f + 4045 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4046 // 4047 // error 0.000061011436, which is 14 bits 4048 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4049 getF32Constant(DAG, 0xbd67b6d6)); 4050 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4051 getF32Constant(DAG, 0x3ee4f4b8)); 4052 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4053 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4054 getF32Constant(DAG, 0x3fbc278b)); 4055 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4056 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4057 getF32Constant(DAG, 0x40348e95)); 4058 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4059 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4060 getF32Constant(DAG, 0x3fdef31a)); 4061 } else { // LimitFloatPrecision <= 18 4062 // For floating-point precision of 18: 4063 // 4064 // LogOfMantissa = 4065 // -2.1072184f + 4066 // (4.2372794f + 4067 // (-3.7029485f + 4068 // (2.2781945f + 4069 // (-0.87823314f + 4070 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4071 // 4072 // error 0.0000023660568, which is better than 18 bits 4073 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4074 getF32Constant(DAG, 0xbc91e5ac)); 4075 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4076 getF32Constant(DAG, 0x3e4350aa)); 4077 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4078 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4079 getF32Constant(DAG, 0x3f60d3e3)); 4080 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4081 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4082 getF32Constant(DAG, 0x4011cdf0)); 4083 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4084 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4085 getF32Constant(DAG, 0x406cfd1c)); 4086 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4087 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4088 getF32Constant(DAG, 0x408797cb)); 4089 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4090 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4091 getF32Constant(DAG, 0x4006dcab)); 4092 } 4093 4094 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4095 } 4096 4097 // No special expansion. 4098 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4099 } 4100 4101 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4102 /// limited-precision mode. 4103 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4104 const TargetLowering &TLI) { 4105 if (Op.getValueType() == MVT::f32 && 4106 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4107 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4108 4109 // Get the exponent. 4110 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4111 4112 // Get the significand and build it into a floating-point number with 4113 // exponent of 1. 4114 SDValue X = GetSignificand(DAG, Op1, dl); 4115 4116 // Different possible minimax approximations of significand in 4117 // floating-point for various degrees of accuracy over [1,2]. 4118 SDValue Log2ofMantissa; 4119 if (LimitFloatPrecision <= 6) { 4120 // For floating-point precision of 6: 4121 // 4122 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4123 // 4124 // error 0.0049451742, which is more than 7 bits 4125 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4126 getF32Constant(DAG, 0xbeb08fe0)); 4127 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4128 getF32Constant(DAG, 0x40019463)); 4129 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4130 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4131 getF32Constant(DAG, 0x3fd6633d)); 4132 } else if (LimitFloatPrecision <= 12) { 4133 // For floating-point precision of 12: 4134 // 4135 // Log2ofMantissa = 4136 // -2.51285454f + 4137 // (4.07009056f + 4138 // (-2.12067489f + 4139 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4140 // 4141 // error 0.0000876136000, which is better than 13 bits 4142 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4143 getF32Constant(DAG, 0xbda7262e)); 4144 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4145 getF32Constant(DAG, 0x3f25280b)); 4146 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4147 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4148 getF32Constant(DAG, 0x4007b923)); 4149 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4150 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4151 getF32Constant(DAG, 0x40823e2f)); 4152 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4153 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4154 getF32Constant(DAG, 0x4020d29c)); 4155 } else { // LimitFloatPrecision <= 18 4156 // For floating-point precision of 18: 4157 // 4158 // Log2ofMantissa = 4159 // -3.0400495f + 4160 // (6.1129976f + 4161 // (-5.3420409f + 4162 // (3.2865683f + 4163 // (-1.2669343f + 4164 // (0.27515199f - 4165 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4166 // 4167 // error 0.0000018516, which is better than 18 bits 4168 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4169 getF32Constant(DAG, 0xbcd2769e)); 4170 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4171 getF32Constant(DAG, 0x3e8ce0b9)); 4172 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4173 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4174 getF32Constant(DAG, 0x3fa22ae7)); 4175 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4176 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4177 getF32Constant(DAG, 0x40525723)); 4178 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4179 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4180 getF32Constant(DAG, 0x40aaf200)); 4181 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4182 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4183 getF32Constant(DAG, 0x40c39dad)); 4184 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4185 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4186 getF32Constant(DAG, 0x4042902c)); 4187 } 4188 4189 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4190 } 4191 4192 // No special expansion. 4193 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4194 } 4195 4196 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4197 /// limited-precision mode. 4198 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4199 const TargetLowering &TLI) { 4200 if (Op.getValueType() == MVT::f32 && 4201 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4202 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4203 4204 // Scale the exponent by log10(2) [0.30102999f]. 4205 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4206 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4207 getF32Constant(DAG, 0x3e9a209a)); 4208 4209 // Get the significand and build it into a floating-point number with 4210 // exponent of 1. 4211 SDValue X = GetSignificand(DAG, Op1, dl); 4212 4213 SDValue Log10ofMantissa; 4214 if (LimitFloatPrecision <= 6) { 4215 // For floating-point precision of 6: 4216 // 4217 // Log10ofMantissa = 4218 // -0.50419619f + 4219 // (0.60948995f - 0.10380950f * x) * x; 4220 // 4221 // error 0.0014886165, which is 6 bits 4222 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4223 getF32Constant(DAG, 0xbdd49a13)); 4224 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4225 getF32Constant(DAG, 0x3f1c0789)); 4226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4227 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4228 getF32Constant(DAG, 0x3f011300)); 4229 } else if (LimitFloatPrecision <= 12) { 4230 // For floating-point precision of 12: 4231 // 4232 // Log10ofMantissa = 4233 // -0.64831180f + 4234 // (0.91751397f + 4235 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4236 // 4237 // error 0.00019228036, which is better than 12 bits 4238 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4239 getF32Constant(DAG, 0x3d431f31)); 4240 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4241 getF32Constant(DAG, 0x3ea21fb2)); 4242 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4243 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4244 getF32Constant(DAG, 0x3f6ae232)); 4245 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4246 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4247 getF32Constant(DAG, 0x3f25f7c3)); 4248 } else { // LimitFloatPrecision <= 18 4249 // For floating-point precision of 18: 4250 // 4251 // Log10ofMantissa = 4252 // -0.84299375f + 4253 // (1.5327582f + 4254 // (-1.0688956f + 4255 // (0.49102474f + 4256 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4257 // 4258 // error 0.0000037995730, which is better than 18 bits 4259 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4260 getF32Constant(DAG, 0x3c5d51ce)); 4261 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4262 getF32Constant(DAG, 0x3e00685a)); 4263 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4264 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4265 getF32Constant(DAG, 0x3efb6798)); 4266 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4267 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4268 getF32Constant(DAG, 0x3f88d192)); 4269 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4270 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4271 getF32Constant(DAG, 0x3fc4316c)); 4272 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4273 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4274 getF32Constant(DAG, 0x3f57ce70)); 4275 } 4276 4277 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4278 } 4279 4280 // No special expansion. 4281 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4282 } 4283 4284 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4285 /// limited-precision mode. 4286 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4287 const TargetLowering &TLI) { 4288 if (Op.getValueType() == MVT::f32 && 4289 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4290 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4291 4292 // FractionalPartOfX = x - (float)IntegerPartOfX; 4293 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4294 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4295 4296 // IntegerPartOfX <<= 23; 4297 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4298 DAG.getConstant(23, TLI.getPointerTy())); 4299 4300 SDValue TwoToFractionalPartOfX; 4301 if (LimitFloatPrecision <= 6) { 4302 // For floating-point precision of 6: 4303 // 4304 // TwoToFractionalPartOfX = 4305 // 0.997535578f + 4306 // (0.735607626f + 0.252464424f * x) * x; 4307 // 4308 // error 0.0144103317, which is 6 bits 4309 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4310 getF32Constant(DAG, 0x3e814304)); 4311 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4312 getF32Constant(DAG, 0x3f3c50c8)); 4313 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4314 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4315 getF32Constant(DAG, 0x3f7f5e7e)); 4316 } else if (LimitFloatPrecision <= 12) { 4317 // For floating-point precision of 12: 4318 // 4319 // TwoToFractionalPartOfX = 4320 // 0.999892986f + 4321 // (0.696457318f + 4322 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4323 // 4324 // error 0.000107046256, which is 13 to 14 bits 4325 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4326 getF32Constant(DAG, 0x3da235e3)); 4327 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4328 getF32Constant(DAG, 0x3e65b8f3)); 4329 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4330 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4331 getF32Constant(DAG, 0x3f324b07)); 4332 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4333 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4334 getF32Constant(DAG, 0x3f7ff8fd)); 4335 } else { // LimitFloatPrecision <= 18 4336 // For floating-point precision of 18: 4337 // 4338 // TwoToFractionalPartOfX = 4339 // 0.999999982f + 4340 // (0.693148872f + 4341 // (0.240227044f + 4342 // (0.554906021e-1f + 4343 // (0.961591928e-2f + 4344 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4345 // error 2.47208000*10^(-7), which is better than 18 bits 4346 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4347 getF32Constant(DAG, 0x3924b03e)); 4348 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4349 getF32Constant(DAG, 0x3ab24b87)); 4350 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4351 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4352 getF32Constant(DAG, 0x3c1d8c17)); 4353 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4354 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4355 getF32Constant(DAG, 0x3d634a1d)); 4356 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4357 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4358 getF32Constant(DAG, 0x3e75fe14)); 4359 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4360 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4361 getF32Constant(DAG, 0x3f317234)); 4362 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4363 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4364 getF32Constant(DAG, 0x3f800000)); 4365 } 4366 4367 // Add the exponent into the result in integer domain. 4368 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4369 TwoToFractionalPartOfX); 4370 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4371 DAG.getNode(ISD::ADD, dl, MVT::i32, 4372 t13, IntegerPartOfX)); 4373 } 4374 4375 // No special expansion. 4376 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4377 } 4378 4379 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4380 /// limited-precision mode with x == 10.0f. 4381 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4382 SelectionDAG &DAG, const TargetLowering &TLI) { 4383 bool IsExp10 = false; 4384 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4385 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4386 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4387 APFloat Ten(10.0f); 4388 IsExp10 = LHSC->isExactlyValue(Ten); 4389 } 4390 } 4391 4392 if (IsExp10) { 4393 // Put the exponent in the right bit position for later addition to the 4394 // final result: 4395 // 4396 // #define LOG2OF10 3.3219281f 4397 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4398 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4399 getF32Constant(DAG, 0x40549a78)); 4400 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4401 4402 // FractionalPartOfX = x - (float)IntegerPartOfX; 4403 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4404 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4405 4406 // IntegerPartOfX <<= 23; 4407 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4408 DAG.getConstant(23, TLI.getPointerTy())); 4409 4410 SDValue TwoToFractionalPartOfX; 4411 if (LimitFloatPrecision <= 6) { 4412 // For floating-point precision of 6: 4413 // 4414 // twoToFractionalPartOfX = 4415 // 0.997535578f + 4416 // (0.735607626f + 0.252464424f * x) * x; 4417 // 4418 // error 0.0144103317, which is 6 bits 4419 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4420 getF32Constant(DAG, 0x3e814304)); 4421 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4422 getF32Constant(DAG, 0x3f3c50c8)); 4423 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4424 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4425 getF32Constant(DAG, 0x3f7f5e7e)); 4426 } else if (LimitFloatPrecision <= 12) { 4427 // For floating-point precision of 12: 4428 // 4429 // TwoToFractionalPartOfX = 4430 // 0.999892986f + 4431 // (0.696457318f + 4432 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4433 // 4434 // error 0.000107046256, which is 13 to 14 bits 4435 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4436 getF32Constant(DAG, 0x3da235e3)); 4437 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4438 getF32Constant(DAG, 0x3e65b8f3)); 4439 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4440 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4441 getF32Constant(DAG, 0x3f324b07)); 4442 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4443 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4444 getF32Constant(DAG, 0x3f7ff8fd)); 4445 } else { // LimitFloatPrecision <= 18 4446 // For floating-point precision of 18: 4447 // 4448 // TwoToFractionalPartOfX = 4449 // 0.999999982f + 4450 // (0.693148872f + 4451 // (0.240227044f + 4452 // (0.554906021e-1f + 4453 // (0.961591928e-2f + 4454 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4455 // error 2.47208000*10^(-7), which is better than 18 bits 4456 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4457 getF32Constant(DAG, 0x3924b03e)); 4458 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4459 getF32Constant(DAG, 0x3ab24b87)); 4460 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4461 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4462 getF32Constant(DAG, 0x3c1d8c17)); 4463 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4464 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4465 getF32Constant(DAG, 0x3d634a1d)); 4466 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4467 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4468 getF32Constant(DAG, 0x3e75fe14)); 4469 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4470 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4471 getF32Constant(DAG, 0x3f317234)); 4472 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4473 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4474 getF32Constant(DAG, 0x3f800000)); 4475 } 4476 4477 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4478 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4479 DAG.getNode(ISD::ADD, dl, MVT::i32, 4480 t13, IntegerPartOfX)); 4481 } 4482 4483 // No special expansion. 4484 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4485 } 4486 4487 4488 /// ExpandPowI - Expand a llvm.powi intrinsic. 4489 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4490 SelectionDAG &DAG) { 4491 // If RHS is a constant, we can expand this out to a multiplication tree, 4492 // otherwise we end up lowering to a call to __powidf2 (for example). When 4493 // optimizing for size, we only want to do this if the expansion would produce 4494 // a small number of multiplies, otherwise we do the full expansion. 4495 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4496 // Get the exponent as a positive value. 4497 unsigned Val = RHSC->getSExtValue(); 4498 if ((int)Val < 0) Val = -Val; 4499 4500 // powi(x, 0) -> 1.0 4501 if (Val == 0) 4502 return DAG.getConstantFP(1.0, LHS.getValueType()); 4503 4504 const Function *F = DAG.getMachineFunction().getFunction(); 4505 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4506 Attribute::OptimizeForSize) || 4507 // If optimizing for size, don't insert too many multiplies. This 4508 // inserts up to 5 multiplies. 4509 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4510 // We use the simple binary decomposition method to generate the multiply 4511 // sequence. There are more optimal ways to do this (for example, 4512 // powi(x,15) generates one more multiply than it should), but this has 4513 // the benefit of being both really simple and much better than a libcall. 4514 SDValue Res; // Logically starts equal to 1.0 4515 SDValue CurSquare = LHS; 4516 while (Val) { 4517 if (Val & 1) { 4518 if (Res.getNode()) 4519 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4520 else 4521 Res = CurSquare; // 1.0*CurSquare. 4522 } 4523 4524 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4525 CurSquare, CurSquare); 4526 Val >>= 1; 4527 } 4528 4529 // If the original was negative, invert the result, producing 1/(x*x*x). 4530 if (RHSC->getSExtValue() < 0) 4531 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4532 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4533 return Res; 4534 } 4535 } 4536 4537 // Otherwise, expand to a libcall. 4538 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4539 } 4540 4541 // getTruncatedArgReg - Find underlying register used for an truncated 4542 // argument. 4543 static unsigned getTruncatedArgReg(const SDValue &N) { 4544 if (N.getOpcode() != ISD::TRUNCATE) 4545 return 0; 4546 4547 const SDValue &Ext = N.getOperand(0); 4548 if (Ext.getOpcode() == ISD::AssertZext || 4549 Ext.getOpcode() == ISD::AssertSext) { 4550 const SDValue &CFR = Ext.getOperand(0); 4551 if (CFR.getOpcode() == ISD::CopyFromReg) 4552 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4553 if (CFR.getOpcode() == ISD::TRUNCATE) 4554 return getTruncatedArgReg(CFR); 4555 } 4556 return 0; 4557 } 4558 4559 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4560 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4561 /// At the end of instruction selection, they will be inserted to the entry BB. 4562 bool 4563 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4564 int64_t Offset, bool IsIndirect, 4565 const SDValue &N) { 4566 const Argument *Arg = dyn_cast<Argument>(V); 4567 if (!Arg) 4568 return false; 4569 4570 MachineFunction &MF = DAG.getMachineFunction(); 4571 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4572 4573 // Ignore inlined function arguments here. 4574 DIVariable DV(Variable); 4575 if (DV.isInlinedFnArgument(MF.getFunction())) 4576 return false; 4577 4578 Optional<MachineOperand> Op; 4579 // Some arguments' frame index is recorded during argument lowering. 4580 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4581 Op = MachineOperand::CreateFI(FI); 4582 4583 if (!Op && N.getNode()) { 4584 unsigned Reg; 4585 if (N.getOpcode() == ISD::CopyFromReg) 4586 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4587 else 4588 Reg = getTruncatedArgReg(N); 4589 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4590 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4591 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4592 if (PR) 4593 Reg = PR; 4594 } 4595 if (Reg) 4596 Op = MachineOperand::CreateReg(Reg, false); 4597 } 4598 4599 if (!Op) { 4600 // Check if ValueMap has reg number. 4601 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4602 if (VMI != FuncInfo.ValueMap.end()) 4603 Op = MachineOperand::CreateReg(VMI->second, false); 4604 } 4605 4606 if (!Op && N.getNode()) 4607 // Check if frame index is available. 4608 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4609 if (FrameIndexSDNode *FINode = 4610 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4611 Op = MachineOperand::CreateFI(FINode->getIndex()); 4612 4613 if (!Op) 4614 return false; 4615 4616 if (Op->isReg()) 4617 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4618 TII->get(TargetOpcode::DBG_VALUE), 4619 IsIndirect, 4620 Op->getReg(), Offset, Variable)); 4621 else 4622 FuncInfo.ArgDbgValues.push_back( 4623 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4624 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4625 4626 return true; 4627 } 4628 4629 // VisualStudio defines setjmp as _setjmp 4630 #if defined(_MSC_VER) && defined(setjmp) && \ 4631 !defined(setjmp_undefined_for_msvc) 4632 # pragma push_macro("setjmp") 4633 # undef setjmp 4634 # define setjmp_undefined_for_msvc 4635 #endif 4636 4637 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4638 /// we want to emit this as a call to a named external function, return the name 4639 /// otherwise lower it and return null. 4640 const char * 4641 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4642 const TargetLowering *TLI = TM.getTargetLowering(); 4643 SDLoc sdl = getCurSDLoc(); 4644 DebugLoc dl = getCurDebugLoc(); 4645 SDValue Res; 4646 4647 switch (Intrinsic) { 4648 default: 4649 // By default, turn this into a target intrinsic node. 4650 visitTargetIntrinsic(I, Intrinsic); 4651 return nullptr; 4652 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4653 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4654 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4655 case Intrinsic::returnaddress: 4656 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4657 getValue(I.getArgOperand(0)))); 4658 return nullptr; 4659 case Intrinsic::frameaddress: 4660 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4661 getValue(I.getArgOperand(0)))); 4662 return nullptr; 4663 case Intrinsic::read_register: { 4664 Value *Reg = I.getArgOperand(0); 4665 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4666 EVT VT = TM.getTargetLowering()->getValueType(I.getType()); 4667 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4668 return nullptr; 4669 } 4670 case Intrinsic::write_register: { 4671 Value *Reg = I.getArgOperand(0); 4672 Value *RegValue = I.getArgOperand(1); 4673 SDValue Chain = getValue(RegValue).getOperand(0); 4674 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4675 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4676 RegName, getValue(RegValue))); 4677 return nullptr; 4678 } 4679 case Intrinsic::setjmp: 4680 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4681 case Intrinsic::longjmp: 4682 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4683 case Intrinsic::memcpy: { 4684 // Assert for address < 256 since we support only user defined address 4685 // spaces. 4686 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4687 < 256 && 4688 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4689 < 256 && 4690 "Unknown address space"); 4691 SDValue Op1 = getValue(I.getArgOperand(0)); 4692 SDValue Op2 = getValue(I.getArgOperand(1)); 4693 SDValue Op3 = getValue(I.getArgOperand(2)); 4694 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4695 if (!Align) 4696 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4697 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4698 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4699 MachinePointerInfo(I.getArgOperand(0)), 4700 MachinePointerInfo(I.getArgOperand(1)))); 4701 return nullptr; 4702 } 4703 case Intrinsic::memset: { 4704 // Assert for address < 256 since we support only user defined address 4705 // spaces. 4706 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4707 < 256 && 4708 "Unknown address space"); 4709 SDValue Op1 = getValue(I.getArgOperand(0)); 4710 SDValue Op2 = getValue(I.getArgOperand(1)); 4711 SDValue Op3 = getValue(I.getArgOperand(2)); 4712 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4713 if (!Align) 4714 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4715 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4716 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4717 MachinePointerInfo(I.getArgOperand(0)))); 4718 return nullptr; 4719 } 4720 case Intrinsic::memmove: { 4721 // Assert for address < 256 since we support only user defined address 4722 // spaces. 4723 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4724 < 256 && 4725 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4726 < 256 && 4727 "Unknown address space"); 4728 SDValue Op1 = getValue(I.getArgOperand(0)); 4729 SDValue Op2 = getValue(I.getArgOperand(1)); 4730 SDValue Op3 = getValue(I.getArgOperand(2)); 4731 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4732 if (!Align) 4733 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4734 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4735 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4736 MachinePointerInfo(I.getArgOperand(0)), 4737 MachinePointerInfo(I.getArgOperand(1)))); 4738 return nullptr; 4739 } 4740 case Intrinsic::dbg_declare: { 4741 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4742 MDNode *Variable = DI.getVariable(); 4743 const Value *Address = DI.getAddress(); 4744 DIVariable DIVar(Variable); 4745 assert((!DIVar || DIVar.isVariable()) && 4746 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4747 if (!Address || !DIVar) { 4748 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4749 return nullptr; 4750 } 4751 4752 // Check if address has undef value. 4753 if (isa<UndefValue>(Address) || 4754 (Address->use_empty() && !isa<Argument>(Address))) { 4755 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4756 return nullptr; 4757 } 4758 4759 SDValue &N = NodeMap[Address]; 4760 if (!N.getNode() && isa<Argument>(Address)) 4761 // Check unused arguments map. 4762 N = UnusedArgNodeMap[Address]; 4763 SDDbgValue *SDV; 4764 if (N.getNode()) { 4765 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4766 Address = BCI->getOperand(0); 4767 // Parameters are handled specially. 4768 bool isParameter = 4769 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4770 isa<Argument>(Address)); 4771 4772 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4773 4774 if (isParameter && !AI) { 4775 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4776 if (FINode) 4777 // Byval parameter. We have a frame index at this point. 4778 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4779 0, dl, SDNodeOrder); 4780 else { 4781 // Address is an argument, so try to emit its dbg value using 4782 // virtual register info from the FuncInfo.ValueMap. 4783 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4784 return nullptr; 4785 } 4786 } else if (AI) 4787 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4788 true, 0, dl, SDNodeOrder); 4789 else { 4790 // Can't do anything with other non-AI cases yet. 4791 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4792 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4793 DEBUG(Address->dump()); 4794 return nullptr; 4795 } 4796 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4797 } else { 4798 // If Address is an argument then try to emit its dbg value using 4799 // virtual register info from the FuncInfo.ValueMap. 4800 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4801 // If variable is pinned by a alloca in dominating bb then 4802 // use StaticAllocaMap. 4803 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4804 if (AI->getParent() != DI.getParent()) { 4805 DenseMap<const AllocaInst*, int>::iterator SI = 4806 FuncInfo.StaticAllocaMap.find(AI); 4807 if (SI != FuncInfo.StaticAllocaMap.end()) { 4808 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4809 0, dl, SDNodeOrder); 4810 DAG.AddDbgValue(SDV, nullptr, false); 4811 return nullptr; 4812 } 4813 } 4814 } 4815 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4816 } 4817 } 4818 return nullptr; 4819 } 4820 case Intrinsic::dbg_value: { 4821 const DbgValueInst &DI = cast<DbgValueInst>(I); 4822 DIVariable DIVar(DI.getVariable()); 4823 assert((!DIVar || DIVar.isVariable()) && 4824 "Variable in DbgValueInst should be either null or a DIVariable."); 4825 if (!DIVar) 4826 return nullptr; 4827 4828 MDNode *Variable = DI.getVariable(); 4829 uint64_t Offset = DI.getOffset(); 4830 const Value *V = DI.getValue(); 4831 if (!V) 4832 return nullptr; 4833 4834 SDDbgValue *SDV; 4835 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4836 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4837 DAG.AddDbgValue(SDV, nullptr, false); 4838 } else { 4839 // Do not use getValue() in here; we don't want to generate code at 4840 // this point if it hasn't been done yet. 4841 SDValue N = NodeMap[V]; 4842 if (!N.getNode() && isa<Argument>(V)) 4843 // Check unused arguments map. 4844 N = UnusedArgNodeMap[V]; 4845 if (N.getNode()) { 4846 // A dbg.value for an alloca is always indirect. 4847 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4848 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4849 SDV = DAG.getDbgValue(Variable, N.getNode(), 4850 N.getResNo(), IsIndirect, 4851 Offset, dl, SDNodeOrder); 4852 DAG.AddDbgValue(SDV, N.getNode(), false); 4853 } 4854 } else if (!V->use_empty() ) { 4855 // Do not call getValue(V) yet, as we don't want to generate code. 4856 // Remember it for later. 4857 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4858 DanglingDebugInfoMap[V] = DDI; 4859 } else { 4860 // We may expand this to cover more cases. One case where we have no 4861 // data available is an unreferenced parameter. 4862 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4863 } 4864 } 4865 4866 // Build a debug info table entry. 4867 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4868 V = BCI->getOperand(0); 4869 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4870 // Don't handle byval struct arguments or VLAs, for example. 4871 if (!AI) { 4872 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4873 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4874 return nullptr; 4875 } 4876 DenseMap<const AllocaInst*, int>::iterator SI = 4877 FuncInfo.StaticAllocaMap.find(AI); 4878 if (SI == FuncInfo.StaticAllocaMap.end()) 4879 return nullptr; // VLAs. 4880 return nullptr; 4881 } 4882 4883 case Intrinsic::eh_typeid_for: { 4884 // Find the type id for the given typeinfo. 4885 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4886 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4887 Res = DAG.getConstant(TypeID, MVT::i32); 4888 setValue(&I, Res); 4889 return nullptr; 4890 } 4891 4892 case Intrinsic::eh_return_i32: 4893 case Intrinsic::eh_return_i64: 4894 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4895 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4896 MVT::Other, 4897 getControlRoot(), 4898 getValue(I.getArgOperand(0)), 4899 getValue(I.getArgOperand(1)))); 4900 return nullptr; 4901 case Intrinsic::eh_unwind_init: 4902 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4903 return nullptr; 4904 case Intrinsic::eh_dwarf_cfa: { 4905 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4906 TLI->getPointerTy()); 4907 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4908 CfaArg.getValueType(), 4909 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4910 CfaArg.getValueType()), 4911 CfaArg); 4912 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4913 TLI->getPointerTy(), 4914 DAG.getConstant(0, TLI->getPointerTy())); 4915 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4916 FA, Offset)); 4917 return nullptr; 4918 } 4919 case Intrinsic::eh_sjlj_callsite: { 4920 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4921 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4922 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4923 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4924 4925 MMI.setCurrentCallSite(CI->getZExtValue()); 4926 return nullptr; 4927 } 4928 case Intrinsic::eh_sjlj_functioncontext: { 4929 // Get and store the index of the function context. 4930 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4931 AllocaInst *FnCtx = 4932 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4933 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4934 MFI->setFunctionContextIndex(FI); 4935 return nullptr; 4936 } 4937 case Intrinsic::eh_sjlj_setjmp: { 4938 SDValue Ops[2]; 4939 Ops[0] = getRoot(); 4940 Ops[1] = getValue(I.getArgOperand(0)); 4941 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4942 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4943 setValue(&I, Op.getValue(0)); 4944 DAG.setRoot(Op.getValue(1)); 4945 return nullptr; 4946 } 4947 case Intrinsic::eh_sjlj_longjmp: { 4948 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4949 getRoot(), getValue(I.getArgOperand(0)))); 4950 return nullptr; 4951 } 4952 4953 case Intrinsic::x86_mmx_pslli_w: 4954 case Intrinsic::x86_mmx_pslli_d: 4955 case Intrinsic::x86_mmx_pslli_q: 4956 case Intrinsic::x86_mmx_psrli_w: 4957 case Intrinsic::x86_mmx_psrli_d: 4958 case Intrinsic::x86_mmx_psrli_q: 4959 case Intrinsic::x86_mmx_psrai_w: 4960 case Intrinsic::x86_mmx_psrai_d: { 4961 SDValue ShAmt = getValue(I.getArgOperand(1)); 4962 if (isa<ConstantSDNode>(ShAmt)) { 4963 visitTargetIntrinsic(I, Intrinsic); 4964 return nullptr; 4965 } 4966 unsigned NewIntrinsic = 0; 4967 EVT ShAmtVT = MVT::v2i32; 4968 switch (Intrinsic) { 4969 case Intrinsic::x86_mmx_pslli_w: 4970 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4971 break; 4972 case Intrinsic::x86_mmx_pslli_d: 4973 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4974 break; 4975 case Intrinsic::x86_mmx_pslli_q: 4976 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4977 break; 4978 case Intrinsic::x86_mmx_psrli_w: 4979 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4980 break; 4981 case Intrinsic::x86_mmx_psrli_d: 4982 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4983 break; 4984 case Intrinsic::x86_mmx_psrli_q: 4985 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4986 break; 4987 case Intrinsic::x86_mmx_psrai_w: 4988 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4989 break; 4990 case Intrinsic::x86_mmx_psrai_d: 4991 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4992 break; 4993 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4994 } 4995 4996 // The vector shift intrinsics with scalars uses 32b shift amounts but 4997 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4998 // to be zero. 4999 // We must do this early because v2i32 is not a legal type. 5000 SDValue ShOps[2]; 5001 ShOps[0] = ShAmt; 5002 ShOps[1] = DAG.getConstant(0, MVT::i32); 5003 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5004 EVT DestVT = TLI->getValueType(I.getType()); 5005 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5006 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5007 DAG.getConstant(NewIntrinsic, MVT::i32), 5008 getValue(I.getArgOperand(0)), ShAmt); 5009 setValue(&I, Res); 5010 return nullptr; 5011 } 5012 case Intrinsic::x86_avx_vinsertf128_pd_256: 5013 case Intrinsic::x86_avx_vinsertf128_ps_256: 5014 case Intrinsic::x86_avx_vinsertf128_si_256: 5015 case Intrinsic::x86_avx2_vinserti128: { 5016 EVT DestVT = TLI->getValueType(I.getType()); 5017 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 5018 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5019 ElVT.getVectorNumElements(); 5020 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5021 getValue(I.getArgOperand(0)), 5022 getValue(I.getArgOperand(1)), 5023 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5024 setValue(&I, Res); 5025 return nullptr; 5026 } 5027 case Intrinsic::x86_avx_vextractf128_pd_256: 5028 case Intrinsic::x86_avx_vextractf128_ps_256: 5029 case Intrinsic::x86_avx_vextractf128_si_256: 5030 case Intrinsic::x86_avx2_vextracti128: { 5031 EVT DestVT = TLI->getValueType(I.getType()); 5032 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5033 DestVT.getVectorNumElements(); 5034 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5035 getValue(I.getArgOperand(0)), 5036 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5037 setValue(&I, Res); 5038 return nullptr; 5039 } 5040 case Intrinsic::convertff: 5041 case Intrinsic::convertfsi: 5042 case Intrinsic::convertfui: 5043 case Intrinsic::convertsif: 5044 case Intrinsic::convertuif: 5045 case Intrinsic::convertss: 5046 case Intrinsic::convertsu: 5047 case Intrinsic::convertus: 5048 case Intrinsic::convertuu: { 5049 ISD::CvtCode Code = ISD::CVT_INVALID; 5050 switch (Intrinsic) { 5051 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5052 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5053 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5054 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5055 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5056 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5057 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5058 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5059 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5060 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5061 } 5062 EVT DestVT = TLI->getValueType(I.getType()); 5063 const Value *Op1 = I.getArgOperand(0); 5064 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5065 DAG.getValueType(DestVT), 5066 DAG.getValueType(getValue(Op1).getValueType()), 5067 getValue(I.getArgOperand(1)), 5068 getValue(I.getArgOperand(2)), 5069 Code); 5070 setValue(&I, Res); 5071 return nullptr; 5072 } 5073 case Intrinsic::powi: 5074 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5075 getValue(I.getArgOperand(1)), DAG)); 5076 return nullptr; 5077 case Intrinsic::log: 5078 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5079 return nullptr; 5080 case Intrinsic::log2: 5081 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5082 return nullptr; 5083 case Intrinsic::log10: 5084 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5085 return nullptr; 5086 case Intrinsic::exp: 5087 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5088 return nullptr; 5089 case Intrinsic::exp2: 5090 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5091 return nullptr; 5092 case Intrinsic::pow: 5093 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5094 getValue(I.getArgOperand(1)), DAG, *TLI)); 5095 return nullptr; 5096 case Intrinsic::sqrt: 5097 case Intrinsic::fabs: 5098 case Intrinsic::sin: 5099 case Intrinsic::cos: 5100 case Intrinsic::floor: 5101 case Intrinsic::ceil: 5102 case Intrinsic::trunc: 5103 case Intrinsic::rint: 5104 case Intrinsic::nearbyint: 5105 case Intrinsic::round: { 5106 unsigned Opcode; 5107 switch (Intrinsic) { 5108 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5109 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5110 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5111 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5112 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5113 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5114 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5115 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5116 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5117 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5118 case Intrinsic::round: Opcode = ISD::FROUND; break; 5119 } 5120 5121 setValue(&I, DAG.getNode(Opcode, sdl, 5122 getValue(I.getArgOperand(0)).getValueType(), 5123 getValue(I.getArgOperand(0)))); 5124 return nullptr; 5125 } 5126 case Intrinsic::copysign: 5127 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5128 getValue(I.getArgOperand(0)).getValueType(), 5129 getValue(I.getArgOperand(0)), 5130 getValue(I.getArgOperand(1)))); 5131 return nullptr; 5132 case Intrinsic::fma: 5133 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5134 getValue(I.getArgOperand(0)).getValueType(), 5135 getValue(I.getArgOperand(0)), 5136 getValue(I.getArgOperand(1)), 5137 getValue(I.getArgOperand(2)))); 5138 return nullptr; 5139 case Intrinsic::fmuladd: { 5140 EVT VT = TLI->getValueType(I.getType()); 5141 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5142 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5143 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5144 getValue(I.getArgOperand(0)).getValueType(), 5145 getValue(I.getArgOperand(0)), 5146 getValue(I.getArgOperand(1)), 5147 getValue(I.getArgOperand(2)))); 5148 } else { 5149 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5150 getValue(I.getArgOperand(0)).getValueType(), 5151 getValue(I.getArgOperand(0)), 5152 getValue(I.getArgOperand(1))); 5153 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5154 getValue(I.getArgOperand(0)).getValueType(), 5155 Mul, 5156 getValue(I.getArgOperand(2))); 5157 setValue(&I, Add); 5158 } 5159 return nullptr; 5160 } 5161 case Intrinsic::convert_to_fp16: 5162 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5163 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5164 getValue(I.getArgOperand(0)), 5165 DAG.getTargetConstant(0, MVT::i32)))); 5166 return nullptr; 5167 case Intrinsic::convert_from_fp16: 5168 setValue(&I, 5169 DAG.getNode(ISD::FP_EXTEND, sdl, TLI->getValueType(I.getType()), 5170 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5171 getValue(I.getArgOperand(0))))); 5172 return nullptr; 5173 case Intrinsic::pcmarker: { 5174 SDValue Tmp = getValue(I.getArgOperand(0)); 5175 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5176 return nullptr; 5177 } 5178 case Intrinsic::readcyclecounter: { 5179 SDValue Op = getRoot(); 5180 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5181 DAG.getVTList(MVT::i64, MVT::Other), Op); 5182 setValue(&I, Res); 5183 DAG.setRoot(Res.getValue(1)); 5184 return nullptr; 5185 } 5186 case Intrinsic::bswap: 5187 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5188 getValue(I.getArgOperand(0)).getValueType(), 5189 getValue(I.getArgOperand(0)))); 5190 return nullptr; 5191 case Intrinsic::cttz: { 5192 SDValue Arg = getValue(I.getArgOperand(0)); 5193 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5194 EVT Ty = Arg.getValueType(); 5195 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5196 sdl, Ty, Arg)); 5197 return nullptr; 5198 } 5199 case Intrinsic::ctlz: { 5200 SDValue Arg = getValue(I.getArgOperand(0)); 5201 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5202 EVT Ty = Arg.getValueType(); 5203 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5204 sdl, Ty, Arg)); 5205 return nullptr; 5206 } 5207 case Intrinsic::ctpop: { 5208 SDValue Arg = getValue(I.getArgOperand(0)); 5209 EVT Ty = Arg.getValueType(); 5210 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5211 return nullptr; 5212 } 5213 case Intrinsic::stacksave: { 5214 SDValue Op = getRoot(); 5215 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5216 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5217 setValue(&I, Res); 5218 DAG.setRoot(Res.getValue(1)); 5219 return nullptr; 5220 } 5221 case Intrinsic::stackrestore: { 5222 Res = getValue(I.getArgOperand(0)); 5223 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5224 return nullptr; 5225 } 5226 case Intrinsic::stackprotector: { 5227 // Emit code into the DAG to store the stack guard onto the stack. 5228 MachineFunction &MF = DAG.getMachineFunction(); 5229 MachineFrameInfo *MFI = MF.getFrameInfo(); 5230 EVT PtrTy = TLI->getPointerTy(); 5231 5232 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5233 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5234 5235 int FI = FuncInfo.StaticAllocaMap[Slot]; 5236 MFI->setStackProtectorIndex(FI); 5237 5238 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5239 5240 // Store the stack protector onto the stack. 5241 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5242 MachinePointerInfo::getFixedStack(FI), 5243 true, false, 0); 5244 setValue(&I, Res); 5245 DAG.setRoot(Res); 5246 return nullptr; 5247 } 5248 case Intrinsic::objectsize: { 5249 // If we don't know by now, we're never going to know. 5250 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5251 5252 assert(CI && "Non-constant type in __builtin_object_size?"); 5253 5254 SDValue Arg = getValue(I.getCalledValue()); 5255 EVT Ty = Arg.getValueType(); 5256 5257 if (CI->isZero()) 5258 Res = DAG.getConstant(-1ULL, Ty); 5259 else 5260 Res = DAG.getConstant(0, Ty); 5261 5262 setValue(&I, Res); 5263 return nullptr; 5264 } 5265 case Intrinsic::annotation: 5266 case Intrinsic::ptr_annotation: 5267 // Drop the intrinsic, but forward the value 5268 setValue(&I, getValue(I.getOperand(0))); 5269 return nullptr; 5270 case Intrinsic::var_annotation: 5271 // Discard annotate attributes 5272 return nullptr; 5273 5274 case Intrinsic::init_trampoline: { 5275 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5276 5277 SDValue Ops[6]; 5278 Ops[0] = getRoot(); 5279 Ops[1] = getValue(I.getArgOperand(0)); 5280 Ops[2] = getValue(I.getArgOperand(1)); 5281 Ops[3] = getValue(I.getArgOperand(2)); 5282 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5283 Ops[5] = DAG.getSrcValue(F); 5284 5285 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5286 5287 DAG.setRoot(Res); 5288 return nullptr; 5289 } 5290 case Intrinsic::adjust_trampoline: { 5291 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5292 TLI->getPointerTy(), 5293 getValue(I.getArgOperand(0)))); 5294 return nullptr; 5295 } 5296 case Intrinsic::gcroot: 5297 if (GFI) { 5298 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5299 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5300 5301 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5302 GFI->addStackRoot(FI->getIndex(), TypeMap); 5303 } 5304 return nullptr; 5305 case Intrinsic::gcread: 5306 case Intrinsic::gcwrite: 5307 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5308 case Intrinsic::flt_rounds: 5309 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5310 return nullptr; 5311 5312 case Intrinsic::expect: { 5313 // Just replace __builtin_expect(exp, c) with EXP. 5314 setValue(&I, getValue(I.getArgOperand(0))); 5315 return nullptr; 5316 } 5317 5318 case Intrinsic::debugtrap: 5319 case Intrinsic::trap: { 5320 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5321 if (TrapFuncName.empty()) { 5322 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5323 ISD::TRAP : ISD::DEBUGTRAP; 5324 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5325 return nullptr; 5326 } 5327 TargetLowering::ArgListTy Args; 5328 5329 TargetLowering::CallLoweringInfo CLI(DAG); 5330 CLI.setDebugLoc(sdl).setChain(getRoot()) 5331 .setCallee(CallingConv::C, I.getType(), 5332 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()), 5333 std::move(Args), 0); 5334 5335 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5336 DAG.setRoot(Result.second); 5337 return nullptr; 5338 } 5339 5340 case Intrinsic::uadd_with_overflow: 5341 case Intrinsic::sadd_with_overflow: 5342 case Intrinsic::usub_with_overflow: 5343 case Intrinsic::ssub_with_overflow: 5344 case Intrinsic::umul_with_overflow: 5345 case Intrinsic::smul_with_overflow: { 5346 ISD::NodeType Op; 5347 switch (Intrinsic) { 5348 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5349 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5350 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5351 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5352 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5353 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5354 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5355 } 5356 SDValue Op1 = getValue(I.getArgOperand(0)); 5357 SDValue Op2 = getValue(I.getArgOperand(1)); 5358 5359 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5360 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5361 return nullptr; 5362 } 5363 case Intrinsic::prefetch: { 5364 SDValue Ops[5]; 5365 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5366 Ops[0] = getRoot(); 5367 Ops[1] = getValue(I.getArgOperand(0)); 5368 Ops[2] = getValue(I.getArgOperand(1)); 5369 Ops[3] = getValue(I.getArgOperand(2)); 5370 Ops[4] = getValue(I.getArgOperand(3)); 5371 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5372 DAG.getVTList(MVT::Other), Ops, 5373 EVT::getIntegerVT(*Context, 8), 5374 MachinePointerInfo(I.getArgOperand(0)), 5375 0, /* align */ 5376 false, /* volatile */ 5377 rw==0, /* read */ 5378 rw==1)); /* write */ 5379 return nullptr; 5380 } 5381 case Intrinsic::lifetime_start: 5382 case Intrinsic::lifetime_end: { 5383 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5384 // Stack coloring is not enabled in O0, discard region information. 5385 if (TM.getOptLevel() == CodeGenOpt::None) 5386 return nullptr; 5387 5388 SmallVector<Value *, 4> Allocas; 5389 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5390 5391 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5392 E = Allocas.end(); Object != E; ++Object) { 5393 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5394 5395 // Could not find an Alloca. 5396 if (!LifetimeObject) 5397 continue; 5398 5399 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5400 5401 SDValue Ops[2]; 5402 Ops[0] = getRoot(); 5403 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5404 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5405 5406 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5407 DAG.setRoot(Res); 5408 } 5409 return nullptr; 5410 } 5411 case Intrinsic::invariant_start: 5412 // Discard region information. 5413 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5414 return nullptr; 5415 case Intrinsic::invariant_end: 5416 // Discard region information. 5417 return nullptr; 5418 case Intrinsic::stackprotectorcheck: { 5419 // Do not actually emit anything for this basic block. Instead we initialize 5420 // the stack protector descriptor and export the guard variable so we can 5421 // access it in FinishBasicBlock. 5422 const BasicBlock *BB = I.getParent(); 5423 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5424 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5425 5426 // Flush our exports since we are going to process a terminator. 5427 (void)getControlRoot(); 5428 return nullptr; 5429 } 5430 case Intrinsic::clear_cache: 5431 return TLI->getClearCacheBuiltinName(); 5432 case Intrinsic::donothing: 5433 // ignore 5434 return nullptr; 5435 case Intrinsic::experimental_stackmap: { 5436 visitStackmap(I); 5437 return nullptr; 5438 } 5439 case Intrinsic::experimental_patchpoint_void: 5440 case Intrinsic::experimental_patchpoint_i64: { 5441 visitPatchpoint(I); 5442 return nullptr; 5443 } 5444 } 5445 } 5446 5447 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5448 bool isTailCall, 5449 MachineBasicBlock *LandingPad) { 5450 const TargetLowering *TLI = TM.getTargetLowering(); 5451 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5452 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5453 Type *RetTy = FTy->getReturnType(); 5454 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5455 MCSymbol *BeginLabel = nullptr; 5456 5457 TargetLowering::ArgListTy Args; 5458 TargetLowering::ArgListEntry Entry; 5459 Args.reserve(CS.arg_size()); 5460 5461 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5462 i != e; ++i) { 5463 const Value *V = *i; 5464 5465 // Skip empty types 5466 if (V->getType()->isEmptyTy()) 5467 continue; 5468 5469 SDValue ArgNode = getValue(V); 5470 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5471 5472 // Skip the first return-type Attribute to get to params. 5473 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5474 Args.push_back(Entry); 5475 } 5476 5477 if (LandingPad) { 5478 // Insert a label before the invoke call to mark the try range. This can be 5479 // used to detect deletion of the invoke via the MachineModuleInfo. 5480 BeginLabel = MMI.getContext().CreateTempSymbol(); 5481 5482 // For SjLj, keep track of which landing pads go with which invokes 5483 // so as to maintain the ordering of pads in the LSDA. 5484 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5485 if (CallSiteIndex) { 5486 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5487 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5488 5489 // Now that the call site is handled, stop tracking it. 5490 MMI.setCurrentCallSite(0); 5491 } 5492 5493 // Both PendingLoads and PendingExports must be flushed here; 5494 // this call might not return. 5495 (void)getRoot(); 5496 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5497 } 5498 5499 // Check if target-independent constraints permit a tail call here. 5500 // Target-dependent constraints are checked within TLI->LowerCallTo. 5501 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5502 isTailCall = false; 5503 5504 TargetLowering::CallLoweringInfo CLI(DAG); 5505 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5506 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5507 5508 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5509 assert((isTailCall || Result.second.getNode()) && 5510 "Non-null chain expected with non-tail call!"); 5511 assert((Result.second.getNode() || !Result.first.getNode()) && 5512 "Null value expected with tail call!"); 5513 if (Result.first.getNode()) 5514 setValue(CS.getInstruction(), Result.first); 5515 5516 if (!Result.second.getNode()) { 5517 // As a special case, a null chain means that a tail call has been emitted 5518 // and the DAG root is already updated. 5519 HasTailCall = true; 5520 5521 // Since there's no actual continuation from this block, nothing can be 5522 // relying on us setting vregs for them. 5523 PendingExports.clear(); 5524 } else { 5525 DAG.setRoot(Result.second); 5526 } 5527 5528 if (LandingPad) { 5529 // Insert a label at the end of the invoke call to mark the try range. This 5530 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5531 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5532 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5533 5534 // Inform MachineModuleInfo of range. 5535 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5536 } 5537 } 5538 5539 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5540 /// value is equal or not-equal to zero. 5541 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5542 for (const User *U : V->users()) { 5543 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5544 if (IC->isEquality()) 5545 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5546 if (C->isNullValue()) 5547 continue; 5548 // Unknown instruction. 5549 return false; 5550 } 5551 return true; 5552 } 5553 5554 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5555 Type *LoadTy, 5556 SelectionDAGBuilder &Builder) { 5557 5558 // Check to see if this load can be trivially constant folded, e.g. if the 5559 // input is from a string literal. 5560 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5561 // Cast pointer to the type we really want to load. 5562 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5563 PointerType::getUnqual(LoadTy)); 5564 5565 if (const Constant *LoadCst = 5566 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5567 Builder.DL)) 5568 return Builder.getValue(LoadCst); 5569 } 5570 5571 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5572 // still constant memory, the input chain can be the entry node. 5573 SDValue Root; 5574 bool ConstantMemory = false; 5575 5576 // Do not serialize (non-volatile) loads of constant memory with anything. 5577 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5578 Root = Builder.DAG.getEntryNode(); 5579 ConstantMemory = true; 5580 } else { 5581 // Do not serialize non-volatile loads against each other. 5582 Root = Builder.DAG.getRoot(); 5583 } 5584 5585 SDValue Ptr = Builder.getValue(PtrVal); 5586 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5587 Ptr, MachinePointerInfo(PtrVal), 5588 false /*volatile*/, 5589 false /*nontemporal*/, 5590 false /*isinvariant*/, 1 /* align=1 */); 5591 5592 if (!ConstantMemory) 5593 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5594 return LoadVal; 5595 } 5596 5597 /// processIntegerCallValue - Record the value for an instruction that 5598 /// produces an integer result, converting the type where necessary. 5599 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5600 SDValue Value, 5601 bool IsSigned) { 5602 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5603 if (IsSigned) 5604 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5605 else 5606 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5607 setValue(&I, Value); 5608 } 5609 5610 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5611 /// If so, return true and lower it, otherwise return false and it will be 5612 /// lowered like a normal call. 5613 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5614 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5615 if (I.getNumArgOperands() != 3) 5616 return false; 5617 5618 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5619 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5620 !I.getArgOperand(2)->getType()->isIntegerTy() || 5621 !I.getType()->isIntegerTy()) 5622 return false; 5623 5624 const Value *Size = I.getArgOperand(2); 5625 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5626 if (CSize && CSize->getZExtValue() == 0) { 5627 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5628 setValue(&I, DAG.getConstant(0, CallVT)); 5629 return true; 5630 } 5631 5632 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5633 std::pair<SDValue, SDValue> Res = 5634 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5635 getValue(LHS), getValue(RHS), getValue(Size), 5636 MachinePointerInfo(LHS), 5637 MachinePointerInfo(RHS)); 5638 if (Res.first.getNode()) { 5639 processIntegerCallValue(I, Res.first, true); 5640 PendingLoads.push_back(Res.second); 5641 return true; 5642 } 5643 5644 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5645 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5646 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5647 bool ActuallyDoIt = true; 5648 MVT LoadVT; 5649 Type *LoadTy; 5650 switch (CSize->getZExtValue()) { 5651 default: 5652 LoadVT = MVT::Other; 5653 LoadTy = nullptr; 5654 ActuallyDoIt = false; 5655 break; 5656 case 2: 5657 LoadVT = MVT::i16; 5658 LoadTy = Type::getInt16Ty(CSize->getContext()); 5659 break; 5660 case 4: 5661 LoadVT = MVT::i32; 5662 LoadTy = Type::getInt32Ty(CSize->getContext()); 5663 break; 5664 case 8: 5665 LoadVT = MVT::i64; 5666 LoadTy = Type::getInt64Ty(CSize->getContext()); 5667 break; 5668 /* 5669 case 16: 5670 LoadVT = MVT::v4i32; 5671 LoadTy = Type::getInt32Ty(CSize->getContext()); 5672 LoadTy = VectorType::get(LoadTy, 4); 5673 break; 5674 */ 5675 } 5676 5677 // This turns into unaligned loads. We only do this if the target natively 5678 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5679 // we'll only produce a small number of byte loads. 5680 5681 // Require that we can find a legal MVT, and only do this if the target 5682 // supports unaligned loads of that type. Expanding into byte loads would 5683 // bloat the code. 5684 const TargetLowering *TLI = TM.getTargetLowering(); 5685 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5686 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5687 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5688 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5689 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5690 if (!TLI->isTypeLegal(LoadVT) || 5691 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5692 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5693 ActuallyDoIt = false; 5694 } 5695 5696 if (ActuallyDoIt) { 5697 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5698 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5699 5700 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5701 ISD::SETNE); 5702 processIntegerCallValue(I, Res, false); 5703 return true; 5704 } 5705 } 5706 5707 5708 return false; 5709 } 5710 5711 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5712 /// form. If so, return true and lower it, otherwise return false and it 5713 /// will be lowered like a normal call. 5714 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5715 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5716 if (I.getNumArgOperands() != 3) 5717 return false; 5718 5719 const Value *Src = I.getArgOperand(0); 5720 const Value *Char = I.getArgOperand(1); 5721 const Value *Length = I.getArgOperand(2); 5722 if (!Src->getType()->isPointerTy() || 5723 !Char->getType()->isIntegerTy() || 5724 !Length->getType()->isIntegerTy() || 5725 !I.getType()->isPointerTy()) 5726 return false; 5727 5728 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5729 std::pair<SDValue, SDValue> Res = 5730 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5731 getValue(Src), getValue(Char), getValue(Length), 5732 MachinePointerInfo(Src)); 5733 if (Res.first.getNode()) { 5734 setValue(&I, Res.first); 5735 PendingLoads.push_back(Res.second); 5736 return true; 5737 } 5738 5739 return false; 5740 } 5741 5742 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5743 /// optimized form. If so, return true and lower it, otherwise return false 5744 /// and it will be lowered like a normal call. 5745 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5746 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5747 if (I.getNumArgOperands() != 2) 5748 return false; 5749 5750 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5751 if (!Arg0->getType()->isPointerTy() || 5752 !Arg1->getType()->isPointerTy() || 5753 !I.getType()->isPointerTy()) 5754 return false; 5755 5756 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5757 std::pair<SDValue, SDValue> Res = 5758 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5759 getValue(Arg0), getValue(Arg1), 5760 MachinePointerInfo(Arg0), 5761 MachinePointerInfo(Arg1), isStpcpy); 5762 if (Res.first.getNode()) { 5763 setValue(&I, Res.first); 5764 DAG.setRoot(Res.second); 5765 return true; 5766 } 5767 5768 return false; 5769 } 5770 5771 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5772 /// If so, return true and lower it, otherwise return false and it will be 5773 /// lowered like a normal call. 5774 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5775 // Verify that the prototype makes sense. int strcmp(void*,void*) 5776 if (I.getNumArgOperands() != 2) 5777 return false; 5778 5779 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5780 if (!Arg0->getType()->isPointerTy() || 5781 !Arg1->getType()->isPointerTy() || 5782 !I.getType()->isIntegerTy()) 5783 return false; 5784 5785 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5786 std::pair<SDValue, SDValue> Res = 5787 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5788 getValue(Arg0), getValue(Arg1), 5789 MachinePointerInfo(Arg0), 5790 MachinePointerInfo(Arg1)); 5791 if (Res.first.getNode()) { 5792 processIntegerCallValue(I, Res.first, true); 5793 PendingLoads.push_back(Res.second); 5794 return true; 5795 } 5796 5797 return false; 5798 } 5799 5800 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5801 /// form. If so, return true and lower it, otherwise return false and it 5802 /// will be lowered like a normal call. 5803 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5804 // Verify that the prototype makes sense. size_t strlen(char *) 5805 if (I.getNumArgOperands() != 1) 5806 return false; 5807 5808 const Value *Arg0 = I.getArgOperand(0); 5809 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5810 return false; 5811 5812 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5813 std::pair<SDValue, SDValue> Res = 5814 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5815 getValue(Arg0), MachinePointerInfo(Arg0)); 5816 if (Res.first.getNode()) { 5817 processIntegerCallValue(I, Res.first, false); 5818 PendingLoads.push_back(Res.second); 5819 return true; 5820 } 5821 5822 return false; 5823 } 5824 5825 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5826 /// form. If so, return true and lower it, otherwise return false and it 5827 /// will be lowered like a normal call. 5828 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5829 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5830 if (I.getNumArgOperands() != 2) 5831 return false; 5832 5833 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5834 if (!Arg0->getType()->isPointerTy() || 5835 !Arg1->getType()->isIntegerTy() || 5836 !I.getType()->isIntegerTy()) 5837 return false; 5838 5839 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5840 std::pair<SDValue, SDValue> Res = 5841 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5842 getValue(Arg0), getValue(Arg1), 5843 MachinePointerInfo(Arg0)); 5844 if (Res.first.getNode()) { 5845 processIntegerCallValue(I, Res.first, false); 5846 PendingLoads.push_back(Res.second); 5847 return true; 5848 } 5849 5850 return false; 5851 } 5852 5853 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5854 /// operation (as expected), translate it to an SDNode with the specified opcode 5855 /// and return true. 5856 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5857 unsigned Opcode) { 5858 // Sanity check that it really is a unary floating-point call. 5859 if (I.getNumArgOperands() != 1 || 5860 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5861 I.getType() != I.getArgOperand(0)->getType() || 5862 !I.onlyReadsMemory()) 5863 return false; 5864 5865 SDValue Tmp = getValue(I.getArgOperand(0)); 5866 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5867 return true; 5868 } 5869 5870 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5871 // Handle inline assembly differently. 5872 if (isa<InlineAsm>(I.getCalledValue())) { 5873 visitInlineAsm(&I); 5874 return; 5875 } 5876 5877 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5878 ComputeUsesVAFloatArgument(I, &MMI); 5879 5880 const char *RenameFn = nullptr; 5881 if (Function *F = I.getCalledFunction()) { 5882 if (F->isDeclaration()) { 5883 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5884 if (unsigned IID = II->getIntrinsicID(F)) { 5885 RenameFn = visitIntrinsicCall(I, IID); 5886 if (!RenameFn) 5887 return; 5888 } 5889 } 5890 if (unsigned IID = F->getIntrinsicID()) { 5891 RenameFn = visitIntrinsicCall(I, IID); 5892 if (!RenameFn) 5893 return; 5894 } 5895 } 5896 5897 // Check for well-known libc/libm calls. If the function is internal, it 5898 // can't be a library call. 5899 LibFunc::Func Func; 5900 if (!F->hasLocalLinkage() && F->hasName() && 5901 LibInfo->getLibFunc(F->getName(), Func) && 5902 LibInfo->hasOptimizedCodeGen(Func)) { 5903 switch (Func) { 5904 default: break; 5905 case LibFunc::copysign: 5906 case LibFunc::copysignf: 5907 case LibFunc::copysignl: 5908 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5909 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5910 I.getType() == I.getArgOperand(0)->getType() && 5911 I.getType() == I.getArgOperand(1)->getType() && 5912 I.onlyReadsMemory()) { 5913 SDValue LHS = getValue(I.getArgOperand(0)); 5914 SDValue RHS = getValue(I.getArgOperand(1)); 5915 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5916 LHS.getValueType(), LHS, RHS)); 5917 return; 5918 } 5919 break; 5920 case LibFunc::fabs: 5921 case LibFunc::fabsf: 5922 case LibFunc::fabsl: 5923 if (visitUnaryFloatCall(I, ISD::FABS)) 5924 return; 5925 break; 5926 case LibFunc::sin: 5927 case LibFunc::sinf: 5928 case LibFunc::sinl: 5929 if (visitUnaryFloatCall(I, ISD::FSIN)) 5930 return; 5931 break; 5932 case LibFunc::cos: 5933 case LibFunc::cosf: 5934 case LibFunc::cosl: 5935 if (visitUnaryFloatCall(I, ISD::FCOS)) 5936 return; 5937 break; 5938 case LibFunc::sqrt: 5939 case LibFunc::sqrtf: 5940 case LibFunc::sqrtl: 5941 case LibFunc::sqrt_finite: 5942 case LibFunc::sqrtf_finite: 5943 case LibFunc::sqrtl_finite: 5944 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5945 return; 5946 break; 5947 case LibFunc::floor: 5948 case LibFunc::floorf: 5949 case LibFunc::floorl: 5950 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5951 return; 5952 break; 5953 case LibFunc::nearbyint: 5954 case LibFunc::nearbyintf: 5955 case LibFunc::nearbyintl: 5956 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5957 return; 5958 break; 5959 case LibFunc::ceil: 5960 case LibFunc::ceilf: 5961 case LibFunc::ceill: 5962 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5963 return; 5964 break; 5965 case LibFunc::rint: 5966 case LibFunc::rintf: 5967 case LibFunc::rintl: 5968 if (visitUnaryFloatCall(I, ISD::FRINT)) 5969 return; 5970 break; 5971 case LibFunc::round: 5972 case LibFunc::roundf: 5973 case LibFunc::roundl: 5974 if (visitUnaryFloatCall(I, ISD::FROUND)) 5975 return; 5976 break; 5977 case LibFunc::trunc: 5978 case LibFunc::truncf: 5979 case LibFunc::truncl: 5980 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5981 return; 5982 break; 5983 case LibFunc::log2: 5984 case LibFunc::log2f: 5985 case LibFunc::log2l: 5986 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5987 return; 5988 break; 5989 case LibFunc::exp2: 5990 case LibFunc::exp2f: 5991 case LibFunc::exp2l: 5992 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5993 return; 5994 break; 5995 case LibFunc::memcmp: 5996 if (visitMemCmpCall(I)) 5997 return; 5998 break; 5999 case LibFunc::memchr: 6000 if (visitMemChrCall(I)) 6001 return; 6002 break; 6003 case LibFunc::strcpy: 6004 if (visitStrCpyCall(I, false)) 6005 return; 6006 break; 6007 case LibFunc::stpcpy: 6008 if (visitStrCpyCall(I, true)) 6009 return; 6010 break; 6011 case LibFunc::strcmp: 6012 if (visitStrCmpCall(I)) 6013 return; 6014 break; 6015 case LibFunc::strlen: 6016 if (visitStrLenCall(I)) 6017 return; 6018 break; 6019 case LibFunc::strnlen: 6020 if (visitStrNLenCall(I)) 6021 return; 6022 break; 6023 } 6024 } 6025 } 6026 6027 SDValue Callee; 6028 if (!RenameFn) 6029 Callee = getValue(I.getCalledValue()); 6030 else 6031 Callee = DAG.getExternalSymbol(RenameFn, 6032 TM.getTargetLowering()->getPointerTy()); 6033 6034 // Check if we can potentially perform a tail call. More detailed checking is 6035 // be done within LowerCallTo, after more information about the call is known. 6036 LowerCallTo(&I, Callee, I.isTailCall()); 6037 } 6038 6039 namespace { 6040 6041 /// AsmOperandInfo - This contains information for each constraint that we are 6042 /// lowering. 6043 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6044 public: 6045 /// CallOperand - If this is the result output operand or a clobber 6046 /// this is null, otherwise it is the incoming operand to the CallInst. 6047 /// This gets modified as the asm is processed. 6048 SDValue CallOperand; 6049 6050 /// AssignedRegs - If this is a register or register class operand, this 6051 /// contains the set of register corresponding to the operand. 6052 RegsForValue AssignedRegs; 6053 6054 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6055 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6056 } 6057 6058 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6059 /// corresponds to. If there is no Value* for this operand, it returns 6060 /// MVT::Other. 6061 EVT getCallOperandValEVT(LLVMContext &Context, 6062 const TargetLowering &TLI, 6063 const DataLayout *DL) const { 6064 if (!CallOperandVal) return MVT::Other; 6065 6066 if (isa<BasicBlock>(CallOperandVal)) 6067 return TLI.getPointerTy(); 6068 6069 llvm::Type *OpTy = CallOperandVal->getType(); 6070 6071 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6072 // If this is an indirect operand, the operand is a pointer to the 6073 // accessed type. 6074 if (isIndirect) { 6075 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6076 if (!PtrTy) 6077 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6078 OpTy = PtrTy->getElementType(); 6079 } 6080 6081 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6082 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6083 if (STy->getNumElements() == 1) 6084 OpTy = STy->getElementType(0); 6085 6086 // If OpTy is not a single value, it may be a struct/union that we 6087 // can tile with integers. 6088 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6089 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6090 switch (BitSize) { 6091 default: break; 6092 case 1: 6093 case 8: 6094 case 16: 6095 case 32: 6096 case 64: 6097 case 128: 6098 OpTy = IntegerType::get(Context, BitSize); 6099 break; 6100 } 6101 } 6102 6103 return TLI.getValueType(OpTy, true); 6104 } 6105 }; 6106 6107 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6108 6109 } // end anonymous namespace 6110 6111 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6112 /// specified operand. We prefer to assign virtual registers, to allow the 6113 /// register allocator to handle the assignment process. However, if the asm 6114 /// uses features that we can't model on machineinstrs, we have SDISel do the 6115 /// allocation. This produces generally horrible, but correct, code. 6116 /// 6117 /// OpInfo describes the operand. 6118 /// 6119 static void GetRegistersForValue(SelectionDAG &DAG, 6120 const TargetLowering &TLI, 6121 SDLoc DL, 6122 SDISelAsmOperandInfo &OpInfo) { 6123 LLVMContext &Context = *DAG.getContext(); 6124 6125 MachineFunction &MF = DAG.getMachineFunction(); 6126 SmallVector<unsigned, 4> Regs; 6127 6128 // If this is a constraint for a single physreg, or a constraint for a 6129 // register class, find it. 6130 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6131 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6132 OpInfo.ConstraintVT); 6133 6134 unsigned NumRegs = 1; 6135 if (OpInfo.ConstraintVT != MVT::Other) { 6136 // If this is a FP input in an integer register (or visa versa) insert a bit 6137 // cast of the input value. More generally, handle any case where the input 6138 // value disagrees with the register class we plan to stick this in. 6139 if (OpInfo.Type == InlineAsm::isInput && 6140 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6141 // Try to convert to the first EVT that the reg class contains. If the 6142 // types are identical size, use a bitcast to convert (e.g. two differing 6143 // vector types). 6144 MVT RegVT = *PhysReg.second->vt_begin(); 6145 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6146 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6147 RegVT, OpInfo.CallOperand); 6148 OpInfo.ConstraintVT = RegVT; 6149 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6150 // If the input is a FP value and we want it in FP registers, do a 6151 // bitcast to the corresponding integer type. This turns an f64 value 6152 // into i64, which can be passed with two i32 values on a 32-bit 6153 // machine. 6154 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6155 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6156 RegVT, OpInfo.CallOperand); 6157 OpInfo.ConstraintVT = RegVT; 6158 } 6159 } 6160 6161 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6162 } 6163 6164 MVT RegVT; 6165 EVT ValueVT = OpInfo.ConstraintVT; 6166 6167 // If this is a constraint for a specific physical register, like {r17}, 6168 // assign it now. 6169 if (unsigned AssignedReg = PhysReg.first) { 6170 const TargetRegisterClass *RC = PhysReg.second; 6171 if (OpInfo.ConstraintVT == MVT::Other) 6172 ValueVT = *RC->vt_begin(); 6173 6174 // Get the actual register value type. This is important, because the user 6175 // may have asked for (e.g.) the AX register in i32 type. We need to 6176 // remember that AX is actually i16 to get the right extension. 6177 RegVT = *RC->vt_begin(); 6178 6179 // This is a explicit reference to a physical register. 6180 Regs.push_back(AssignedReg); 6181 6182 // If this is an expanded reference, add the rest of the regs to Regs. 6183 if (NumRegs != 1) { 6184 TargetRegisterClass::iterator I = RC->begin(); 6185 for (; *I != AssignedReg; ++I) 6186 assert(I != RC->end() && "Didn't find reg!"); 6187 6188 // Already added the first reg. 6189 --NumRegs; ++I; 6190 for (; NumRegs; --NumRegs, ++I) { 6191 assert(I != RC->end() && "Ran out of registers to allocate!"); 6192 Regs.push_back(*I); 6193 } 6194 } 6195 6196 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6197 return; 6198 } 6199 6200 // Otherwise, if this was a reference to an LLVM register class, create vregs 6201 // for this reference. 6202 if (const TargetRegisterClass *RC = PhysReg.second) { 6203 RegVT = *RC->vt_begin(); 6204 if (OpInfo.ConstraintVT == MVT::Other) 6205 ValueVT = RegVT; 6206 6207 // Create the appropriate number of virtual registers. 6208 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6209 for (; NumRegs; --NumRegs) 6210 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6211 6212 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6213 return; 6214 } 6215 6216 // Otherwise, we couldn't allocate enough registers for this. 6217 } 6218 6219 /// visitInlineAsm - Handle a call to an InlineAsm object. 6220 /// 6221 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6222 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6223 6224 /// ConstraintOperands - Information about all of the constraints. 6225 SDISelAsmOperandInfoVector ConstraintOperands; 6226 6227 const TargetLowering *TLI = TM.getTargetLowering(); 6228 TargetLowering::AsmOperandInfoVector 6229 TargetConstraints = TLI->ParseConstraints(CS); 6230 6231 bool hasMemory = false; 6232 6233 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6234 unsigned ResNo = 0; // ResNo - The result number of the next output. 6235 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6236 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6237 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6238 6239 MVT OpVT = MVT::Other; 6240 6241 // Compute the value type for each operand. 6242 switch (OpInfo.Type) { 6243 case InlineAsm::isOutput: 6244 // Indirect outputs just consume an argument. 6245 if (OpInfo.isIndirect) { 6246 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6247 break; 6248 } 6249 6250 // The return value of the call is this value. As such, there is no 6251 // corresponding argument. 6252 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6253 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6254 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6255 } else { 6256 assert(ResNo == 0 && "Asm only has one result!"); 6257 OpVT = TLI->getSimpleValueType(CS.getType()); 6258 } 6259 ++ResNo; 6260 break; 6261 case InlineAsm::isInput: 6262 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6263 break; 6264 case InlineAsm::isClobber: 6265 // Nothing to do. 6266 break; 6267 } 6268 6269 // If this is an input or an indirect output, process the call argument. 6270 // BasicBlocks are labels, currently appearing only in asm's. 6271 if (OpInfo.CallOperandVal) { 6272 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6273 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6274 } else { 6275 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6276 } 6277 6278 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6279 getSimpleVT(); 6280 } 6281 6282 OpInfo.ConstraintVT = OpVT; 6283 6284 // Indirect operand accesses access memory. 6285 if (OpInfo.isIndirect) 6286 hasMemory = true; 6287 else { 6288 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6289 TargetLowering::ConstraintType 6290 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6291 if (CType == TargetLowering::C_Memory) { 6292 hasMemory = true; 6293 break; 6294 } 6295 } 6296 } 6297 } 6298 6299 SDValue Chain, Flag; 6300 6301 // We won't need to flush pending loads if this asm doesn't touch 6302 // memory and is nonvolatile. 6303 if (hasMemory || IA->hasSideEffects()) 6304 Chain = getRoot(); 6305 else 6306 Chain = DAG.getRoot(); 6307 6308 // Second pass over the constraints: compute which constraint option to use 6309 // and assign registers to constraints that want a specific physreg. 6310 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6311 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6312 6313 // If this is an output operand with a matching input operand, look up the 6314 // matching input. If their types mismatch, e.g. one is an integer, the 6315 // other is floating point, or their sizes are different, flag it as an 6316 // error. 6317 if (OpInfo.hasMatchingInput()) { 6318 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6319 6320 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6321 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6322 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6323 OpInfo.ConstraintVT); 6324 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6325 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6326 Input.ConstraintVT); 6327 if ((OpInfo.ConstraintVT.isInteger() != 6328 Input.ConstraintVT.isInteger()) || 6329 (MatchRC.second != InputRC.second)) { 6330 report_fatal_error("Unsupported asm: input constraint" 6331 " with a matching output constraint of" 6332 " incompatible type!"); 6333 } 6334 Input.ConstraintVT = OpInfo.ConstraintVT; 6335 } 6336 } 6337 6338 // Compute the constraint code and ConstraintType to use. 6339 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6340 6341 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6342 OpInfo.Type == InlineAsm::isClobber) 6343 continue; 6344 6345 // If this is a memory input, and if the operand is not indirect, do what we 6346 // need to to provide an address for the memory input. 6347 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6348 !OpInfo.isIndirect) { 6349 assert((OpInfo.isMultipleAlternative || 6350 (OpInfo.Type == InlineAsm::isInput)) && 6351 "Can only indirectify direct input operands!"); 6352 6353 // Memory operands really want the address of the value. If we don't have 6354 // an indirect input, put it in the constpool if we can, otherwise spill 6355 // it to a stack slot. 6356 // TODO: This isn't quite right. We need to handle these according to 6357 // the addressing mode that the constraint wants. Also, this may take 6358 // an additional register for the computation and we don't want that 6359 // either. 6360 6361 // If the operand is a float, integer, or vector constant, spill to a 6362 // constant pool entry to get its address. 6363 const Value *OpVal = OpInfo.CallOperandVal; 6364 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6365 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6366 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6367 TLI->getPointerTy()); 6368 } else { 6369 // Otherwise, create a stack slot and emit a store to it before the 6370 // asm. 6371 Type *Ty = OpVal->getType(); 6372 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6373 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6374 MachineFunction &MF = DAG.getMachineFunction(); 6375 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6376 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6377 Chain = DAG.getStore(Chain, getCurSDLoc(), 6378 OpInfo.CallOperand, StackSlot, 6379 MachinePointerInfo::getFixedStack(SSFI), 6380 false, false, 0); 6381 OpInfo.CallOperand = StackSlot; 6382 } 6383 6384 // There is no longer a Value* corresponding to this operand. 6385 OpInfo.CallOperandVal = nullptr; 6386 6387 // It is now an indirect operand. 6388 OpInfo.isIndirect = true; 6389 } 6390 6391 // If this constraint is for a specific register, allocate it before 6392 // anything else. 6393 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6394 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6395 } 6396 6397 // Second pass - Loop over all of the operands, assigning virtual or physregs 6398 // to register class operands. 6399 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6400 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6401 6402 // C_Register operands have already been allocated, Other/Memory don't need 6403 // to be. 6404 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6405 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6406 } 6407 6408 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6409 std::vector<SDValue> AsmNodeOperands; 6410 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6411 AsmNodeOperands.push_back( 6412 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6413 TLI->getPointerTy())); 6414 6415 // If we have a !srcloc metadata node associated with it, we want to attach 6416 // this to the ultimately generated inline asm machineinstr. To do this, we 6417 // pass in the third operand as this (potentially null) inline asm MDNode. 6418 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6419 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6420 6421 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6422 // bits as operand 3. 6423 unsigned ExtraInfo = 0; 6424 if (IA->hasSideEffects()) 6425 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6426 if (IA->isAlignStack()) 6427 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6428 // Set the asm dialect. 6429 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6430 6431 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6432 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6433 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6434 6435 // Compute the constraint code and ConstraintType to use. 6436 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6437 6438 // Ideally, we would only check against memory constraints. However, the 6439 // meaning of an other constraint can be target-specific and we can't easily 6440 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6441 // for other constriants as well. 6442 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6443 OpInfo.ConstraintType == TargetLowering::C_Other) { 6444 if (OpInfo.Type == InlineAsm::isInput) 6445 ExtraInfo |= InlineAsm::Extra_MayLoad; 6446 else if (OpInfo.Type == InlineAsm::isOutput) 6447 ExtraInfo |= InlineAsm::Extra_MayStore; 6448 else if (OpInfo.Type == InlineAsm::isClobber) 6449 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6450 } 6451 } 6452 6453 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6454 TLI->getPointerTy())); 6455 6456 // Loop over all of the inputs, copying the operand values into the 6457 // appropriate registers and processing the output regs. 6458 RegsForValue RetValRegs; 6459 6460 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6461 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6462 6463 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6464 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6465 6466 switch (OpInfo.Type) { 6467 case InlineAsm::isOutput: { 6468 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6469 OpInfo.ConstraintType != TargetLowering::C_Register) { 6470 // Memory output, or 'other' output (e.g. 'X' constraint). 6471 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6472 6473 // Add information to the INLINEASM node to know about this output. 6474 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6475 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6476 TLI->getPointerTy())); 6477 AsmNodeOperands.push_back(OpInfo.CallOperand); 6478 break; 6479 } 6480 6481 // Otherwise, this is a register or register class output. 6482 6483 // Copy the output from the appropriate register. Find a register that 6484 // we can use. 6485 if (OpInfo.AssignedRegs.Regs.empty()) { 6486 LLVMContext &Ctx = *DAG.getContext(); 6487 Ctx.emitError(CS.getInstruction(), 6488 "couldn't allocate output register for constraint '" + 6489 Twine(OpInfo.ConstraintCode) + "'"); 6490 return; 6491 } 6492 6493 // If this is an indirect operand, store through the pointer after the 6494 // asm. 6495 if (OpInfo.isIndirect) { 6496 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6497 OpInfo.CallOperandVal)); 6498 } else { 6499 // This is the result value of the call. 6500 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6501 // Concatenate this output onto the outputs list. 6502 RetValRegs.append(OpInfo.AssignedRegs); 6503 } 6504 6505 // Add information to the INLINEASM node to know that this register is 6506 // set. 6507 OpInfo.AssignedRegs 6508 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6509 ? InlineAsm::Kind_RegDefEarlyClobber 6510 : InlineAsm::Kind_RegDef, 6511 false, 0, DAG, AsmNodeOperands); 6512 break; 6513 } 6514 case InlineAsm::isInput: { 6515 SDValue InOperandVal = OpInfo.CallOperand; 6516 6517 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6518 // If this is required to match an output register we have already set, 6519 // just use its register. 6520 unsigned OperandNo = OpInfo.getMatchedOperand(); 6521 6522 // Scan until we find the definition we already emitted of this operand. 6523 // When we find it, create a RegsForValue operand. 6524 unsigned CurOp = InlineAsm::Op_FirstOperand; 6525 for (; OperandNo; --OperandNo) { 6526 // Advance to the next operand. 6527 unsigned OpFlag = 6528 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6529 assert((InlineAsm::isRegDefKind(OpFlag) || 6530 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6531 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6532 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6533 } 6534 6535 unsigned OpFlag = 6536 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6537 if (InlineAsm::isRegDefKind(OpFlag) || 6538 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6539 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6540 if (OpInfo.isIndirect) { 6541 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6542 LLVMContext &Ctx = *DAG.getContext(); 6543 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6544 " don't know how to handle tied " 6545 "indirect register inputs"); 6546 return; 6547 } 6548 6549 RegsForValue MatchedRegs; 6550 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6551 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6552 MatchedRegs.RegVTs.push_back(RegVT); 6553 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6554 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6555 i != e; ++i) { 6556 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6557 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6558 else { 6559 LLVMContext &Ctx = *DAG.getContext(); 6560 Ctx.emitError(CS.getInstruction(), 6561 "inline asm error: This value" 6562 " type register class is not natively supported!"); 6563 return; 6564 } 6565 } 6566 // Use the produced MatchedRegs object to 6567 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6568 Chain, &Flag, CS.getInstruction()); 6569 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6570 true, OpInfo.getMatchedOperand(), 6571 DAG, AsmNodeOperands); 6572 break; 6573 } 6574 6575 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6576 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6577 "Unexpected number of operands"); 6578 // Add information to the INLINEASM node to know about this input. 6579 // See InlineAsm.h isUseOperandTiedToDef. 6580 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6581 OpInfo.getMatchedOperand()); 6582 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6583 TLI->getPointerTy())); 6584 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6585 break; 6586 } 6587 6588 // Treat indirect 'X' constraint as memory. 6589 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6590 OpInfo.isIndirect) 6591 OpInfo.ConstraintType = TargetLowering::C_Memory; 6592 6593 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6594 std::vector<SDValue> Ops; 6595 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6596 Ops, DAG); 6597 if (Ops.empty()) { 6598 LLVMContext &Ctx = *DAG.getContext(); 6599 Ctx.emitError(CS.getInstruction(), 6600 "invalid operand for inline asm constraint '" + 6601 Twine(OpInfo.ConstraintCode) + "'"); 6602 return; 6603 } 6604 6605 // Add information to the INLINEASM node to know about this input. 6606 unsigned ResOpType = 6607 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6608 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6609 TLI->getPointerTy())); 6610 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6611 break; 6612 } 6613 6614 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6615 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6616 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6617 "Memory operands expect pointer values"); 6618 6619 // Add information to the INLINEASM node to know about this input. 6620 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6621 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6622 TLI->getPointerTy())); 6623 AsmNodeOperands.push_back(InOperandVal); 6624 break; 6625 } 6626 6627 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6628 OpInfo.ConstraintType == TargetLowering::C_Register) && 6629 "Unknown constraint type!"); 6630 6631 // TODO: Support this. 6632 if (OpInfo.isIndirect) { 6633 LLVMContext &Ctx = *DAG.getContext(); 6634 Ctx.emitError(CS.getInstruction(), 6635 "Don't know how to handle indirect register inputs yet " 6636 "for constraint '" + 6637 Twine(OpInfo.ConstraintCode) + "'"); 6638 return; 6639 } 6640 6641 // Copy the input into the appropriate registers. 6642 if (OpInfo.AssignedRegs.Regs.empty()) { 6643 LLVMContext &Ctx = *DAG.getContext(); 6644 Ctx.emitError(CS.getInstruction(), 6645 "couldn't allocate input reg for constraint '" + 6646 Twine(OpInfo.ConstraintCode) + "'"); 6647 return; 6648 } 6649 6650 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6651 Chain, &Flag, CS.getInstruction()); 6652 6653 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6654 DAG, AsmNodeOperands); 6655 break; 6656 } 6657 case InlineAsm::isClobber: { 6658 // Add the clobbered value to the operand list, so that the register 6659 // allocator is aware that the physreg got clobbered. 6660 if (!OpInfo.AssignedRegs.Regs.empty()) 6661 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6662 false, 0, DAG, 6663 AsmNodeOperands); 6664 break; 6665 } 6666 } 6667 } 6668 6669 // Finish up input operands. Set the input chain and add the flag last. 6670 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6671 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6672 6673 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6674 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6675 Flag = Chain.getValue(1); 6676 6677 // If this asm returns a register value, copy the result from that register 6678 // and set it as the value of the call. 6679 if (!RetValRegs.Regs.empty()) { 6680 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6681 Chain, &Flag, CS.getInstruction()); 6682 6683 // FIXME: Why don't we do this for inline asms with MRVs? 6684 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6685 EVT ResultType = TLI->getValueType(CS.getType()); 6686 6687 // If any of the results of the inline asm is a vector, it may have the 6688 // wrong width/num elts. This can happen for register classes that can 6689 // contain multiple different value types. The preg or vreg allocated may 6690 // not have the same VT as was expected. Convert it to the right type 6691 // with bit_convert. 6692 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6693 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6694 ResultType, Val); 6695 6696 } else if (ResultType != Val.getValueType() && 6697 ResultType.isInteger() && Val.getValueType().isInteger()) { 6698 // If a result value was tied to an input value, the computed result may 6699 // have a wider width than the expected result. Extract the relevant 6700 // portion. 6701 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6702 } 6703 6704 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6705 } 6706 6707 setValue(CS.getInstruction(), Val); 6708 // Don't need to use this as a chain in this case. 6709 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6710 return; 6711 } 6712 6713 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6714 6715 // Process indirect outputs, first output all of the flagged copies out of 6716 // physregs. 6717 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6718 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6719 const Value *Ptr = IndirectStoresToEmit[i].second; 6720 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6721 Chain, &Flag, IA); 6722 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6723 } 6724 6725 // Emit the non-flagged stores from the physregs. 6726 SmallVector<SDValue, 8> OutChains; 6727 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6728 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6729 StoresToEmit[i].first, 6730 getValue(StoresToEmit[i].second), 6731 MachinePointerInfo(StoresToEmit[i].second), 6732 false, false, 0); 6733 OutChains.push_back(Val); 6734 } 6735 6736 if (!OutChains.empty()) 6737 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6738 6739 DAG.setRoot(Chain); 6740 } 6741 6742 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6743 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6744 MVT::Other, getRoot(), 6745 getValue(I.getArgOperand(0)), 6746 DAG.getSrcValue(I.getArgOperand(0)))); 6747 } 6748 6749 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6750 const TargetLowering *TLI = TM.getTargetLowering(); 6751 const DataLayout &DL = *TLI->getDataLayout(); 6752 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6753 getRoot(), getValue(I.getOperand(0)), 6754 DAG.getSrcValue(I.getOperand(0)), 6755 DL.getABITypeAlignment(I.getType())); 6756 setValue(&I, V); 6757 DAG.setRoot(V.getValue(1)); 6758 } 6759 6760 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6761 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6762 MVT::Other, getRoot(), 6763 getValue(I.getArgOperand(0)), 6764 DAG.getSrcValue(I.getArgOperand(0)))); 6765 } 6766 6767 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6768 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6769 MVT::Other, getRoot(), 6770 getValue(I.getArgOperand(0)), 6771 getValue(I.getArgOperand(1)), 6772 DAG.getSrcValue(I.getArgOperand(0)), 6773 DAG.getSrcValue(I.getArgOperand(1)))); 6774 } 6775 6776 /// \brief Lower an argument list according to the target calling convention. 6777 /// 6778 /// \return A tuple of <return-value, token-chain> 6779 /// 6780 /// This is a helper for lowering intrinsics that follow a target calling 6781 /// convention or require stack pointer adjustment. Only a subset of the 6782 /// intrinsic's operands need to participate in the calling convention. 6783 std::pair<SDValue, SDValue> 6784 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6785 unsigned NumArgs, SDValue Callee, 6786 bool useVoidTy) { 6787 TargetLowering::ArgListTy Args; 6788 Args.reserve(NumArgs); 6789 6790 // Populate the argument list. 6791 // Attributes for args start at offset 1, after the return attribute. 6792 ImmutableCallSite CS(&CI); 6793 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6794 ArgI != ArgE; ++ArgI) { 6795 const Value *V = CI.getOperand(ArgI); 6796 6797 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6798 6799 TargetLowering::ArgListEntry Entry; 6800 Entry.Node = getValue(V); 6801 Entry.Ty = V->getType(); 6802 Entry.setAttributes(&CS, AttrI); 6803 Args.push_back(Entry); 6804 } 6805 6806 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6807 TargetLowering::CallLoweringInfo CLI(DAG); 6808 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6809 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6810 .setDiscardResult(!CI.use_empty()); 6811 6812 const TargetLowering *TLI = TM.getTargetLowering(); 6813 return TLI->LowerCallTo(CLI); 6814 } 6815 6816 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6817 /// or patchpoint target node's operand list. 6818 /// 6819 /// Constants are converted to TargetConstants purely as an optimization to 6820 /// avoid constant materialization and register allocation. 6821 /// 6822 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6823 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6824 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6825 /// address materialization and register allocation, but may also be required 6826 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6827 /// alloca in the entry block, then the runtime may assume that the alloca's 6828 /// StackMap location can be read immediately after compilation and that the 6829 /// location is valid at any point during execution (this is similar to the 6830 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6831 /// only available in a register, then the runtime would need to trap when 6832 /// execution reaches the StackMap in order to read the alloca's location. 6833 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6834 SmallVectorImpl<SDValue> &Ops, 6835 SelectionDAGBuilder &Builder) { 6836 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6837 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6838 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6839 Ops.push_back( 6840 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6841 Ops.push_back( 6842 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6843 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6844 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6845 Ops.push_back( 6846 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6847 } else 6848 Ops.push_back(OpVal); 6849 } 6850 } 6851 6852 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6853 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6854 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6855 // [live variables...]) 6856 6857 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6858 6859 SDValue Chain, InFlag, Callee, NullPtr; 6860 SmallVector<SDValue, 32> Ops; 6861 6862 SDLoc DL = getCurSDLoc(); 6863 Callee = getValue(CI.getCalledValue()); 6864 NullPtr = DAG.getIntPtrConstant(0, true); 6865 6866 // The stackmap intrinsic only records the live variables (the arguemnts 6867 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6868 // intrinsic, this won't be lowered to a function call. This means we don't 6869 // have to worry about calling conventions and target specific lowering code. 6870 // Instead we perform the call lowering right here. 6871 // 6872 // chain, flag = CALLSEQ_START(chain, 0) 6873 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6874 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6875 // 6876 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6877 InFlag = Chain.getValue(1); 6878 6879 // Add the <id> and <numBytes> constants. 6880 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6881 Ops.push_back(DAG.getTargetConstant( 6882 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6883 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6884 Ops.push_back(DAG.getTargetConstant( 6885 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6886 6887 // Push live variables for the stack map. 6888 addStackMapLiveVars(CI, 2, Ops, *this); 6889 6890 // We are not pushing any register mask info here on the operands list, 6891 // because the stackmap doesn't clobber anything. 6892 6893 // Push the chain and the glue flag. 6894 Ops.push_back(Chain); 6895 Ops.push_back(InFlag); 6896 6897 // Create the STACKMAP node. 6898 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6899 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6900 Chain = SDValue(SM, 0); 6901 InFlag = Chain.getValue(1); 6902 6903 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6904 6905 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6906 6907 // Set the root to the target-lowered call chain. 6908 DAG.setRoot(Chain); 6909 6910 // Inform the Frame Information that we have a stackmap in this function. 6911 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6912 } 6913 6914 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6915 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6916 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6917 // i32 <numBytes>, 6918 // i8* <target>, 6919 // i32 <numArgs>, 6920 // [Args...], 6921 // [live variables...]) 6922 6923 CallingConv::ID CC = CI.getCallingConv(); 6924 bool isAnyRegCC = CC == CallingConv::AnyReg; 6925 bool hasDef = !CI.getType()->isVoidTy(); 6926 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6927 6928 // Get the real number of arguments participating in the call <numArgs> 6929 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6930 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6931 6932 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6933 // Intrinsics include all meta-operands up to but not including CC. 6934 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6935 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6936 "Not enough arguments provided to the patchpoint intrinsic"); 6937 6938 // For AnyRegCC the arguments are lowered later on manually. 6939 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6940 std::pair<SDValue, SDValue> Result = 6941 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6942 6943 // Set the root to the target-lowered call chain. 6944 SDValue Chain = Result.second; 6945 DAG.setRoot(Chain); 6946 6947 SDNode *CallEnd = Chain.getNode(); 6948 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6949 CallEnd = CallEnd->getOperand(0).getNode(); 6950 6951 /// Get a call instruction from the call sequence chain. 6952 /// Tail calls are not allowed. 6953 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6954 "Expected a callseq node."); 6955 SDNode *Call = CallEnd->getOperand(0).getNode(); 6956 bool hasGlue = Call->getGluedNode(); 6957 6958 // Replace the target specific call node with the patchable intrinsic. 6959 SmallVector<SDValue, 8> Ops; 6960 6961 // Add the <id> and <numBytes> constants. 6962 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6963 Ops.push_back(DAG.getTargetConstant( 6964 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6965 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6966 Ops.push_back(DAG.getTargetConstant( 6967 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6968 6969 // Assume that the Callee is a constant address. 6970 // FIXME: handle function symbols in the future. 6971 Ops.push_back( 6972 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 6973 /*isTarget=*/true)); 6974 6975 // Adjust <numArgs> to account for any arguments that have been passed on the 6976 // stack instead. 6977 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6978 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 6979 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 6980 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 6981 6982 // Add the calling convention 6983 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 6984 6985 // Add the arguments we omitted previously. The register allocator should 6986 // place these in any free register. 6987 if (isAnyRegCC) 6988 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6989 Ops.push_back(getValue(CI.getArgOperand(i))); 6990 6991 // Push the arguments from the call instruction up to the register mask. 6992 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 6993 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 6994 Ops.push_back(*i); 6995 6996 // Push live variables for the stack map. 6997 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 6998 6999 // Push the register mask info. 7000 if (hasGlue) 7001 Ops.push_back(*(Call->op_end()-2)); 7002 else 7003 Ops.push_back(*(Call->op_end()-1)); 7004 7005 // Push the chain (this is originally the first operand of the call, but 7006 // becomes now the last or second to last operand). 7007 Ops.push_back(*(Call->op_begin())); 7008 7009 // Push the glue flag (last operand). 7010 if (hasGlue) 7011 Ops.push_back(*(Call->op_end()-1)); 7012 7013 SDVTList NodeTys; 7014 if (isAnyRegCC && hasDef) { 7015 // Create the return types based on the intrinsic definition 7016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7017 SmallVector<EVT, 3> ValueVTs; 7018 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7019 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7020 7021 // There is always a chain and a glue type at the end 7022 ValueVTs.push_back(MVT::Other); 7023 ValueVTs.push_back(MVT::Glue); 7024 NodeTys = DAG.getVTList(ValueVTs); 7025 } else 7026 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7027 7028 // Replace the target specific call node with a PATCHPOINT node. 7029 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7030 getCurSDLoc(), NodeTys, Ops); 7031 7032 // Update the NodeMap. 7033 if (hasDef) { 7034 if (isAnyRegCC) 7035 setValue(&CI, SDValue(MN, 0)); 7036 else 7037 setValue(&CI, Result.first); 7038 } 7039 7040 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7041 // call sequence. Furthermore the location of the chain and glue can change 7042 // when the AnyReg calling convention is used and the intrinsic returns a 7043 // value. 7044 if (isAnyRegCC && hasDef) { 7045 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7046 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7047 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7048 } else 7049 DAG.ReplaceAllUsesWith(Call, MN); 7050 DAG.DeleteNode(Call); 7051 7052 // Inform the Frame Information that we have a patchpoint in this function. 7053 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7054 } 7055 7056 /// Returns an AttributeSet representing the attributes applied to the return 7057 /// value of the given call. 7058 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7059 SmallVector<Attribute::AttrKind, 2> Attrs; 7060 if (CLI.RetSExt) 7061 Attrs.push_back(Attribute::SExt); 7062 if (CLI.RetZExt) 7063 Attrs.push_back(Attribute::ZExt); 7064 if (CLI.IsInReg) 7065 Attrs.push_back(Attribute::InReg); 7066 7067 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7068 Attrs); 7069 } 7070 7071 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7072 /// implementation, which just calls LowerCall. 7073 /// FIXME: When all targets are 7074 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7075 std::pair<SDValue, SDValue> 7076 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7077 // Handle the incoming return values from the call. 7078 CLI.Ins.clear(); 7079 Type *OrigRetTy = CLI.RetTy; 7080 SmallVector<EVT, 4> RetTys; 7081 SmallVector<uint64_t, 4> Offsets; 7082 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7083 7084 SmallVector<ISD::OutputArg, 4> Outs; 7085 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7086 7087 bool CanLowerReturn = 7088 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7089 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7090 7091 SDValue DemoteStackSlot; 7092 int DemoteStackIdx = -100; 7093 if (!CanLowerReturn) { 7094 // FIXME: equivalent assert? 7095 // assert(!CS.hasInAllocaArgument() && 7096 // "sret demotion is incompatible with inalloca"); 7097 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7098 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7099 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7100 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7101 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7102 7103 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7104 ArgListEntry Entry; 7105 Entry.Node = DemoteStackSlot; 7106 Entry.Ty = StackSlotPtrType; 7107 Entry.isSExt = false; 7108 Entry.isZExt = false; 7109 Entry.isInReg = false; 7110 Entry.isSRet = true; 7111 Entry.isNest = false; 7112 Entry.isByVal = false; 7113 Entry.isReturned = false; 7114 Entry.Alignment = Align; 7115 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7116 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7117 } else { 7118 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7119 EVT VT = RetTys[I]; 7120 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7121 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7122 for (unsigned i = 0; i != NumRegs; ++i) { 7123 ISD::InputArg MyFlags; 7124 MyFlags.VT = RegisterVT; 7125 MyFlags.ArgVT = VT; 7126 MyFlags.Used = CLI.IsReturnValueUsed; 7127 if (CLI.RetSExt) 7128 MyFlags.Flags.setSExt(); 7129 if (CLI.RetZExt) 7130 MyFlags.Flags.setZExt(); 7131 if (CLI.IsInReg) 7132 MyFlags.Flags.setInReg(); 7133 CLI.Ins.push_back(MyFlags); 7134 } 7135 } 7136 } 7137 7138 // Handle all of the outgoing arguments. 7139 CLI.Outs.clear(); 7140 CLI.OutVals.clear(); 7141 ArgListTy &Args = CLI.getArgs(); 7142 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7143 SmallVector<EVT, 4> ValueVTs; 7144 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7145 Type *FinalType = Args[i].Ty; 7146 if (Args[i].isByVal) 7147 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7148 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7149 FinalType, CLI.CallConv, CLI.IsVarArg); 7150 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7151 ++Value) { 7152 EVT VT = ValueVTs[Value]; 7153 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7154 SDValue Op = SDValue(Args[i].Node.getNode(), 7155 Args[i].Node.getResNo() + Value); 7156 ISD::ArgFlagsTy Flags; 7157 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7158 7159 if (Args[i].isZExt) 7160 Flags.setZExt(); 7161 if (Args[i].isSExt) 7162 Flags.setSExt(); 7163 if (Args[i].isInReg) 7164 Flags.setInReg(); 7165 if (Args[i].isSRet) 7166 Flags.setSRet(); 7167 if (Args[i].isByVal) 7168 Flags.setByVal(); 7169 if (Args[i].isInAlloca) { 7170 Flags.setInAlloca(); 7171 // Set the byval flag for CCAssignFn callbacks that don't know about 7172 // inalloca. This way we can know how many bytes we should've allocated 7173 // and how many bytes a callee cleanup function will pop. If we port 7174 // inalloca to more targets, we'll have to add custom inalloca handling 7175 // in the various CC lowering callbacks. 7176 Flags.setByVal(); 7177 } 7178 if (Args[i].isByVal || Args[i].isInAlloca) { 7179 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7180 Type *ElementTy = Ty->getElementType(); 7181 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7182 // For ByVal, alignment should come from FE. BE will guess if this 7183 // info is not there but there are cases it cannot get right. 7184 unsigned FrameAlign; 7185 if (Args[i].Alignment) 7186 FrameAlign = Args[i].Alignment; 7187 else 7188 FrameAlign = getByValTypeAlignment(ElementTy); 7189 Flags.setByValAlign(FrameAlign); 7190 } 7191 if (Args[i].isNest) 7192 Flags.setNest(); 7193 if (NeedsRegBlock) 7194 Flags.setInConsecutiveRegs(); 7195 Flags.setOrigAlign(OriginalAlignment); 7196 7197 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7198 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7199 SmallVector<SDValue, 4> Parts(NumParts); 7200 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7201 7202 if (Args[i].isSExt) 7203 ExtendKind = ISD::SIGN_EXTEND; 7204 else if (Args[i].isZExt) 7205 ExtendKind = ISD::ZERO_EXTEND; 7206 7207 // Conservatively only handle 'returned' on non-vectors for now 7208 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7209 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7210 "unexpected use of 'returned'"); 7211 // Before passing 'returned' to the target lowering code, ensure that 7212 // either the register MVT and the actual EVT are the same size or that 7213 // the return value and argument are extended in the same way; in these 7214 // cases it's safe to pass the argument register value unchanged as the 7215 // return register value (although it's at the target's option whether 7216 // to do so) 7217 // TODO: allow code generation to take advantage of partially preserved 7218 // registers rather than clobbering the entire register when the 7219 // parameter extension method is not compatible with the return 7220 // extension method 7221 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7222 (ExtendKind != ISD::ANY_EXTEND && 7223 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7224 Flags.setReturned(); 7225 } 7226 7227 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7228 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7229 7230 for (unsigned j = 0; j != NumParts; ++j) { 7231 // if it isn't first piece, alignment must be 1 7232 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7233 i < CLI.NumFixedArgs, 7234 i, j*Parts[j].getValueType().getStoreSize()); 7235 if (NumParts > 1 && j == 0) 7236 MyFlags.Flags.setSplit(); 7237 else if (j != 0) 7238 MyFlags.Flags.setOrigAlign(1); 7239 7240 // Only mark the end at the last register of the last value. 7241 if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1) 7242 MyFlags.Flags.setInConsecutiveRegsLast(); 7243 7244 CLI.Outs.push_back(MyFlags); 7245 CLI.OutVals.push_back(Parts[j]); 7246 } 7247 } 7248 } 7249 7250 SmallVector<SDValue, 4> InVals; 7251 CLI.Chain = LowerCall(CLI, InVals); 7252 7253 // Verify that the target's LowerCall behaved as expected. 7254 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7255 "LowerCall didn't return a valid chain!"); 7256 assert((!CLI.IsTailCall || InVals.empty()) && 7257 "LowerCall emitted a return value for a tail call!"); 7258 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7259 "LowerCall didn't emit the correct number of values!"); 7260 7261 // For a tail call, the return value is merely live-out and there aren't 7262 // any nodes in the DAG representing it. Return a special value to 7263 // indicate that a tail call has been emitted and no more Instructions 7264 // should be processed in the current block. 7265 if (CLI.IsTailCall) { 7266 CLI.DAG.setRoot(CLI.Chain); 7267 return std::make_pair(SDValue(), SDValue()); 7268 } 7269 7270 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7271 assert(InVals[i].getNode() && 7272 "LowerCall emitted a null value!"); 7273 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7274 "LowerCall emitted a value with the wrong type!"); 7275 }); 7276 7277 SmallVector<SDValue, 4> ReturnValues; 7278 if (!CanLowerReturn) { 7279 // The instruction result is the result of loading from the 7280 // hidden sret parameter. 7281 SmallVector<EVT, 1> PVTs; 7282 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7283 7284 ComputeValueVTs(*this, PtrRetTy, PVTs); 7285 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7286 EVT PtrVT = PVTs[0]; 7287 7288 unsigned NumValues = RetTys.size(); 7289 ReturnValues.resize(NumValues); 7290 SmallVector<SDValue, 4> Chains(NumValues); 7291 7292 for (unsigned i = 0; i < NumValues; ++i) { 7293 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7294 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7295 SDValue L = CLI.DAG.getLoad( 7296 RetTys[i], CLI.DL, CLI.Chain, Add, 7297 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7298 false, false, 1); 7299 ReturnValues[i] = L; 7300 Chains[i] = L.getValue(1); 7301 } 7302 7303 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7304 } else { 7305 // Collect the legal value parts into potentially illegal values 7306 // that correspond to the original function's return values. 7307 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7308 if (CLI.RetSExt) 7309 AssertOp = ISD::AssertSext; 7310 else if (CLI.RetZExt) 7311 AssertOp = ISD::AssertZext; 7312 unsigned CurReg = 0; 7313 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7314 EVT VT = RetTys[I]; 7315 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7316 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7317 7318 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7319 NumRegs, RegisterVT, VT, nullptr, 7320 AssertOp)); 7321 CurReg += NumRegs; 7322 } 7323 7324 // For a function returning void, there is no return value. We can't create 7325 // such a node, so we just return a null return value in that case. In 7326 // that case, nothing will actually look at the value. 7327 if (ReturnValues.empty()) 7328 return std::make_pair(SDValue(), CLI.Chain); 7329 } 7330 7331 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7332 CLI.DAG.getVTList(RetTys), ReturnValues); 7333 return std::make_pair(Res, CLI.Chain); 7334 } 7335 7336 void TargetLowering::LowerOperationWrapper(SDNode *N, 7337 SmallVectorImpl<SDValue> &Results, 7338 SelectionDAG &DAG) const { 7339 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7340 if (Res.getNode()) 7341 Results.push_back(Res); 7342 } 7343 7344 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7345 llvm_unreachable("LowerOperation not implemented for this target!"); 7346 } 7347 7348 void 7349 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7350 SDValue Op = getNonRegisterValue(V); 7351 assert((Op.getOpcode() != ISD::CopyFromReg || 7352 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7353 "Copy from a reg to the same reg!"); 7354 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7355 7356 const TargetLowering *TLI = TM.getTargetLowering(); 7357 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7358 SDValue Chain = DAG.getEntryNode(); 7359 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7360 PendingExports.push_back(Chain); 7361 } 7362 7363 #include "llvm/CodeGen/SelectionDAGISel.h" 7364 7365 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7366 /// entry block, return true. This includes arguments used by switches, since 7367 /// the switch may expand into multiple basic blocks. 7368 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7369 // With FastISel active, we may be splitting blocks, so force creation 7370 // of virtual registers for all non-dead arguments. 7371 if (FastISel) 7372 return A->use_empty(); 7373 7374 const BasicBlock *Entry = A->getParent()->begin(); 7375 for (const User *U : A->users()) 7376 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7377 return false; // Use not in entry block. 7378 7379 return true; 7380 } 7381 7382 void SelectionDAGISel::LowerArguments(const Function &F) { 7383 SelectionDAG &DAG = SDB->DAG; 7384 SDLoc dl = SDB->getCurSDLoc(); 7385 const TargetLowering *TLI = getTargetLowering(); 7386 const DataLayout *DL = TLI->getDataLayout(); 7387 SmallVector<ISD::InputArg, 16> Ins; 7388 7389 if (!FuncInfo->CanLowerReturn) { 7390 // Put in an sret pointer parameter before all the other parameters. 7391 SmallVector<EVT, 1> ValueVTs; 7392 ComputeValueVTs(*getTargetLowering(), 7393 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7394 7395 // NOTE: Assuming that a pointer will never break down to more than one VT 7396 // or one register. 7397 ISD::ArgFlagsTy Flags; 7398 Flags.setSRet(); 7399 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7400 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7401 Ins.push_back(RetArg); 7402 } 7403 7404 // Set up the incoming argument description vector. 7405 unsigned Idx = 1; 7406 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7407 I != E; ++I, ++Idx) { 7408 SmallVector<EVT, 4> ValueVTs; 7409 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7410 bool isArgValueUsed = !I->use_empty(); 7411 unsigned PartBase = 0; 7412 Type *FinalType = I->getType(); 7413 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7414 FinalType = cast<PointerType>(FinalType)->getElementType(); 7415 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7416 FinalType, F.getCallingConv(), F.isVarArg()); 7417 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7418 Value != NumValues; ++Value) { 7419 EVT VT = ValueVTs[Value]; 7420 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7421 ISD::ArgFlagsTy Flags; 7422 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7423 7424 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7425 Flags.setZExt(); 7426 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7427 Flags.setSExt(); 7428 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7429 Flags.setInReg(); 7430 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7431 Flags.setSRet(); 7432 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7433 Flags.setByVal(); 7434 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7435 Flags.setInAlloca(); 7436 // Set the byval flag for CCAssignFn callbacks that don't know about 7437 // inalloca. This way we can know how many bytes we should've allocated 7438 // and how many bytes a callee cleanup function will pop. If we port 7439 // inalloca to more targets, we'll have to add custom inalloca handling 7440 // in the various CC lowering callbacks. 7441 Flags.setByVal(); 7442 } 7443 if (Flags.isByVal() || Flags.isInAlloca()) { 7444 PointerType *Ty = cast<PointerType>(I->getType()); 7445 Type *ElementTy = Ty->getElementType(); 7446 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7447 // For ByVal, alignment should be passed from FE. BE will guess if 7448 // this info is not there but there are cases it cannot get right. 7449 unsigned FrameAlign; 7450 if (F.getParamAlignment(Idx)) 7451 FrameAlign = F.getParamAlignment(Idx); 7452 else 7453 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7454 Flags.setByValAlign(FrameAlign); 7455 } 7456 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7457 Flags.setNest(); 7458 if (NeedsRegBlock) 7459 Flags.setInConsecutiveRegs(); 7460 Flags.setOrigAlign(OriginalAlignment); 7461 7462 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7463 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7464 for (unsigned i = 0; i != NumRegs; ++i) { 7465 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7466 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7467 if (NumRegs > 1 && i == 0) 7468 MyFlags.Flags.setSplit(); 7469 // if it isn't first piece, alignment must be 1 7470 else if (i > 0) 7471 MyFlags.Flags.setOrigAlign(1); 7472 7473 // Only mark the end at the last register of the last value. 7474 if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1) 7475 MyFlags.Flags.setInConsecutiveRegsLast(); 7476 7477 Ins.push_back(MyFlags); 7478 } 7479 PartBase += VT.getStoreSize(); 7480 } 7481 } 7482 7483 // Call the target to set up the argument values. 7484 SmallVector<SDValue, 8> InVals; 7485 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7486 F.isVarArg(), Ins, 7487 dl, DAG, InVals); 7488 7489 // Verify that the target's LowerFormalArguments behaved as expected. 7490 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7491 "LowerFormalArguments didn't return a valid chain!"); 7492 assert(InVals.size() == Ins.size() && 7493 "LowerFormalArguments didn't emit the correct number of values!"); 7494 DEBUG({ 7495 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7496 assert(InVals[i].getNode() && 7497 "LowerFormalArguments emitted a null value!"); 7498 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7499 "LowerFormalArguments emitted a value with the wrong type!"); 7500 } 7501 }); 7502 7503 // Update the DAG with the new chain value resulting from argument lowering. 7504 DAG.setRoot(NewRoot); 7505 7506 // Set up the argument values. 7507 unsigned i = 0; 7508 Idx = 1; 7509 if (!FuncInfo->CanLowerReturn) { 7510 // Create a virtual register for the sret pointer, and put in a copy 7511 // from the sret argument into it. 7512 SmallVector<EVT, 1> ValueVTs; 7513 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7514 MVT VT = ValueVTs[0].getSimpleVT(); 7515 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7516 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7517 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7518 RegVT, VT, nullptr, AssertOp); 7519 7520 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7521 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7522 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7523 FuncInfo->DemoteRegister = SRetReg; 7524 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7525 SRetReg, ArgValue); 7526 DAG.setRoot(NewRoot); 7527 7528 // i indexes lowered arguments. Bump it past the hidden sret argument. 7529 // Idx indexes LLVM arguments. Don't touch it. 7530 ++i; 7531 } 7532 7533 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7534 ++I, ++Idx) { 7535 SmallVector<SDValue, 4> ArgValues; 7536 SmallVector<EVT, 4> ValueVTs; 7537 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7538 unsigned NumValues = ValueVTs.size(); 7539 7540 // If this argument is unused then remember its value. It is used to generate 7541 // debugging information. 7542 if (I->use_empty() && NumValues) { 7543 SDB->setUnusedArgValue(I, InVals[i]); 7544 7545 // Also remember any frame index for use in FastISel. 7546 if (FrameIndexSDNode *FI = 7547 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7548 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7549 } 7550 7551 for (unsigned Val = 0; Val != NumValues; ++Val) { 7552 EVT VT = ValueVTs[Val]; 7553 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7554 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7555 7556 if (!I->use_empty()) { 7557 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7558 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7559 AssertOp = ISD::AssertSext; 7560 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7561 AssertOp = ISD::AssertZext; 7562 7563 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7564 NumParts, PartVT, VT, 7565 nullptr, AssertOp)); 7566 } 7567 7568 i += NumParts; 7569 } 7570 7571 // We don't need to do anything else for unused arguments. 7572 if (ArgValues.empty()) 7573 continue; 7574 7575 // Note down frame index. 7576 if (FrameIndexSDNode *FI = 7577 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7578 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7579 7580 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7581 SDB->getCurSDLoc()); 7582 7583 SDB->setValue(I, Res); 7584 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7585 if (LoadSDNode *LNode = 7586 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7587 if (FrameIndexSDNode *FI = 7588 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7589 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7590 } 7591 7592 // If this argument is live outside of the entry block, insert a copy from 7593 // wherever we got it to the vreg that other BB's will reference it as. 7594 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7595 // If we can, though, try to skip creating an unnecessary vreg. 7596 // FIXME: This isn't very clean... it would be nice to make this more 7597 // general. It's also subtly incompatible with the hacks FastISel 7598 // uses with vregs. 7599 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7600 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7601 FuncInfo->ValueMap[I] = Reg; 7602 continue; 7603 } 7604 } 7605 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7606 FuncInfo->InitializeRegForValue(I); 7607 SDB->CopyToExportRegsIfNeeded(I); 7608 } 7609 } 7610 7611 assert(i == InVals.size() && "Argument register count mismatch!"); 7612 7613 // Finally, if the target has anything special to do, allow it to do so. 7614 // FIXME: this should insert code into the DAG! 7615 EmitFunctionEntryCode(); 7616 } 7617 7618 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7619 /// ensure constants are generated when needed. Remember the virtual registers 7620 /// that need to be added to the Machine PHI nodes as input. We cannot just 7621 /// directly add them, because expansion might result in multiple MBB's for one 7622 /// BB. As such, the start of the BB might correspond to a different MBB than 7623 /// the end. 7624 /// 7625 void 7626 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7627 const TerminatorInst *TI = LLVMBB->getTerminator(); 7628 7629 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7630 7631 // Check successor nodes' PHI nodes that expect a constant to be available 7632 // from this block. 7633 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7634 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7635 if (!isa<PHINode>(SuccBB->begin())) continue; 7636 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7637 7638 // If this terminator has multiple identical successors (common for 7639 // switches), only handle each succ once. 7640 if (!SuccsHandled.insert(SuccMBB)) continue; 7641 7642 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7643 7644 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7645 // nodes and Machine PHI nodes, but the incoming operands have not been 7646 // emitted yet. 7647 for (BasicBlock::const_iterator I = SuccBB->begin(); 7648 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7649 // Ignore dead phi's. 7650 if (PN->use_empty()) continue; 7651 7652 // Skip empty types 7653 if (PN->getType()->isEmptyTy()) 7654 continue; 7655 7656 unsigned Reg; 7657 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7658 7659 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7660 unsigned &RegOut = ConstantsOut[C]; 7661 if (RegOut == 0) { 7662 RegOut = FuncInfo.CreateRegs(C->getType()); 7663 CopyValueToVirtualRegister(C, RegOut); 7664 } 7665 Reg = RegOut; 7666 } else { 7667 DenseMap<const Value *, unsigned>::iterator I = 7668 FuncInfo.ValueMap.find(PHIOp); 7669 if (I != FuncInfo.ValueMap.end()) 7670 Reg = I->second; 7671 else { 7672 assert(isa<AllocaInst>(PHIOp) && 7673 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7674 "Didn't codegen value into a register!??"); 7675 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7676 CopyValueToVirtualRegister(PHIOp, Reg); 7677 } 7678 } 7679 7680 // Remember that this register needs to added to the machine PHI node as 7681 // the input for this MBB. 7682 SmallVector<EVT, 4> ValueVTs; 7683 const TargetLowering *TLI = TM.getTargetLowering(); 7684 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7685 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7686 EVT VT = ValueVTs[vti]; 7687 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7688 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7689 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7690 Reg += NumRegisters; 7691 } 7692 } 7693 } 7694 7695 ConstantsOut.clear(); 7696 } 7697 7698 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7699 /// is 0. 7700 MachineBasicBlock * 7701 SelectionDAGBuilder::StackProtectorDescriptor:: 7702 AddSuccessorMBB(const BasicBlock *BB, 7703 MachineBasicBlock *ParentMBB, 7704 MachineBasicBlock *SuccMBB) { 7705 // If SuccBB has not been created yet, create it. 7706 if (!SuccMBB) { 7707 MachineFunction *MF = ParentMBB->getParent(); 7708 MachineFunction::iterator BBI = ParentMBB; 7709 SuccMBB = MF->CreateMachineBasicBlock(BB); 7710 MF->insert(++BBI, SuccMBB); 7711 } 7712 // Add it as a successor of ParentMBB. 7713 ParentMBB->addSuccessor(SuccMBB); 7714 return SuccMBB; 7715 } 7716