1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GetElementPtrTypeIterator.h" 71 #include "llvm/IR/InlineAsm.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsAArch64.h" 77 #include "llvm/IR/IntrinsicsWebAssembly.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Statepoint.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/Support/AtomicOrdering.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Target/TargetIntrinsicInfo.h" 96 #include "llvm/Target/TargetMachine.h" 97 #include "llvm/Target/TargetOptions.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include <cstddef> 100 #include <iterator> 101 #include <limits> 102 #include <optional> 103 #include <tuple> 104 105 using namespace llvm; 106 using namespace PatternMatch; 107 using namespace SwitchCG; 108 109 #define DEBUG_TYPE "isel" 110 111 /// LimitFloatPrecision - Generate low-precision inline sequences for 112 /// some float libcalls (6, 8 or 12 bits). 113 static unsigned LimitFloatPrecision; 114 115 static cl::opt<bool> 116 InsertAssertAlign("insert-assert-align", cl::init(true), 117 cl::desc("Insert the experimental `assertalign` node."), 118 cl::ReallyHidden); 119 120 static cl::opt<unsigned, true> 121 LimitFPPrecision("limit-float-precision", 122 cl::desc("Generate low-precision inline sequences " 123 "for some float libcalls"), 124 cl::location(LimitFloatPrecision), cl::Hidden, 125 cl::init(0)); 126 127 static cl::opt<unsigned> SwitchPeelThreshold( 128 "switch-peel-threshold", cl::Hidden, cl::init(66), 129 cl::desc("Set the case probability threshold for peeling the case from a " 130 "switch statement. A value greater than 100 will void this " 131 "optimization")); 132 133 // Limit the width of DAG chains. This is important in general to prevent 134 // DAG-based analysis from blowing up. For example, alias analysis and 135 // load clustering may not complete in reasonable time. It is difficult to 136 // recognize and avoid this situation within each individual analysis, and 137 // future analyses are likely to have the same behavior. Limiting DAG width is 138 // the safe approach and will be especially important with global DAGs. 139 // 140 // MaxParallelChains default is arbitrarily high to avoid affecting 141 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 142 // sequence over this should have been converted to llvm.memcpy by the 143 // frontend. It is easy to induce this behavior with .ll code such as: 144 // %buffer = alloca [4096 x i8] 145 // %data = load [4096 x i8]* %argPtr 146 // store [4096 x i8] %data, [4096 x i8]* %buffer 147 static const unsigned MaxParallelChains = 64; 148 149 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 150 const SDValue *Parts, unsigned NumParts, 151 MVT PartVT, EVT ValueVT, const Value *V, 152 std::optional<CallingConv::ID> CC); 153 154 /// getCopyFromParts - Create a value that contains the specified legal parts 155 /// combined into the value they represent. If the parts combine to a type 156 /// larger than ValueVT then AssertOp can be used to specify whether the extra 157 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 158 /// (ISD::AssertSext). 159 static SDValue 160 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 161 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 162 std::optional<CallingConv::ID> CC = std::nullopt, 163 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 164 // Let the target assemble the parts if it wants to 165 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 166 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 167 PartVT, ValueVT, CC)) 168 return Val; 169 170 if (ValueVT.isVector()) 171 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 172 CC); 173 174 assert(NumParts > 0 && "No parts to assemble!"); 175 SDValue Val = Parts[0]; 176 177 if (NumParts > 1) { 178 // Assemble the value from multiple parts. 179 if (ValueVT.isInteger()) { 180 unsigned PartBits = PartVT.getSizeInBits(); 181 unsigned ValueBits = ValueVT.getSizeInBits(); 182 183 // Assemble the power of 2 part. 184 unsigned RoundParts = 185 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 186 unsigned RoundBits = PartBits * RoundParts; 187 EVT RoundVT = RoundBits == ValueBits ? 188 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 189 SDValue Lo, Hi; 190 191 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 192 193 if (RoundParts > 2) { 194 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 195 PartVT, HalfVT, V); 196 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 197 RoundParts / 2, PartVT, HalfVT, V); 198 } else { 199 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 200 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 201 } 202 203 if (DAG.getDataLayout().isBigEndian()) 204 std::swap(Lo, Hi); 205 206 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 207 208 if (RoundParts < NumParts) { 209 // Assemble the trailing non-power-of-2 part. 210 unsigned OddParts = NumParts - RoundParts; 211 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 212 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 213 OddVT, V, CC); 214 215 // Combine the round and odd parts. 216 Lo = Val; 217 if (DAG.getDataLayout().isBigEndian()) 218 std::swap(Lo, Hi); 219 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 220 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 221 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 222 DAG.getConstant(Lo.getValueSizeInBits(), DL, 223 TLI.getShiftAmountTy( 224 TotalVT, DAG.getDataLayout()))); 225 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 226 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 227 } 228 } else if (PartVT.isFloatingPoint()) { 229 // FP split into multiple FP parts (for ppcf128) 230 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 231 "Unexpected split"); 232 SDValue Lo, Hi; 233 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 235 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 236 std::swap(Lo, Hi); 237 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 238 } else { 239 // FP split into integer parts (soft fp) 240 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 241 !PartVT.isVector() && "Unexpected split"); 242 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 243 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 244 } 245 } 246 247 // There is now one part, held in Val. Correct it to match ValueVT. 248 // PartEVT is the type of the register class that holds the value. 249 // ValueVT is the type of the inline asm operation. 250 EVT PartEVT = Val.getValueType(); 251 252 if (PartEVT == ValueVT) 253 return Val; 254 255 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 256 ValueVT.bitsLT(PartEVT)) { 257 // For an FP value in an integer part, we need to truncate to the right 258 // width first. 259 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 260 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 261 } 262 263 // Handle types that have the same size. 264 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 265 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 266 267 // Handle types with different sizes. 268 if (PartEVT.isInteger() && ValueVT.isInteger()) { 269 if (ValueVT.bitsLT(PartEVT)) { 270 // For a truncate, see if we have any information to 271 // indicate whether the truncated bits will always be 272 // zero or sign-extension. 273 if (AssertOp) 274 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 275 DAG.getValueType(ValueVT)); 276 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 277 } 278 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 279 } 280 281 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 282 // FP_ROUND's are always exact here. 283 if (ValueVT.bitsLT(Val.getValueType())) 284 return DAG.getNode( 285 ISD::FP_ROUND, DL, ValueVT, Val, 286 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 287 288 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 289 } 290 291 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 292 // then truncating. 293 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 294 ValueVT.bitsLT(PartEVT)) { 295 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 296 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 297 } 298 299 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 300 } 301 302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 303 const Twine &ErrMsg) { 304 const Instruction *I = dyn_cast_or_null<Instruction>(V); 305 if (!V) 306 return Ctx.emitError(ErrMsg); 307 308 const char *AsmError = ", possible invalid constraint for vector type"; 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (CI->isInlineAsm()) 311 return Ctx.emitError(I, ErrMsg + AsmError); 312 313 return Ctx.emitError(I, ErrMsg); 314 } 315 316 /// getCopyFromPartsVector - Create a value that contains the specified legal 317 /// parts combined into the value they represent. If the parts combine to a 318 /// type larger than ValueVT then AssertOp can be used to specify whether the 319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 320 /// ValueVT (ISD::AssertSext). 321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 322 const SDValue *Parts, unsigned NumParts, 323 MVT PartVT, EVT ValueVT, const Value *V, 324 std::optional<CallingConv::ID> CallConv) { 325 assert(ValueVT.isVector() && "Not a vector value"); 326 assert(NumParts > 0 && "No parts to assemble!"); 327 const bool IsABIRegCopy = CallConv.has_value(); 328 329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 330 SDValue Val = Parts[0]; 331 332 // Handle a multi-element vector. 333 if (NumParts > 1) { 334 EVT IntermediateVT; 335 MVT RegisterVT; 336 unsigned NumIntermediates; 337 unsigned NumRegs; 338 339 if (IsABIRegCopy) { 340 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 341 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 342 NumIntermediates, RegisterVT); 343 } else { 344 NumRegs = 345 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 346 NumIntermediates, RegisterVT); 347 } 348 349 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 350 NumParts = NumRegs; // Silence a compiler warning. 351 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 352 assert(RegisterVT.getSizeInBits() == 353 Parts[0].getSimpleValueType().getSizeInBits() && 354 "Part type sizes don't match!"); 355 356 // Assemble the parts into intermediate operands. 357 SmallVector<SDValue, 8> Ops(NumIntermediates); 358 if (NumIntermediates == NumParts) { 359 // If the register was not expanded, truncate or copy the value, 360 // as appropriate. 361 for (unsigned i = 0; i != NumParts; ++i) 362 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 363 PartVT, IntermediateVT, V, CallConv); 364 } else if (NumParts > 0) { 365 // If the intermediate type was expanded, build the intermediate 366 // operands from the parts. 367 assert(NumParts % NumIntermediates == 0 && 368 "Must expand into a divisible number of parts!"); 369 unsigned Factor = NumParts / NumIntermediates; 370 for (unsigned i = 0; i != NumIntermediates; ++i) 371 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 372 PartVT, IntermediateVT, V, CallConv); 373 } 374 375 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 376 // intermediate operands. 377 EVT BuiltVectorTy = 378 IntermediateVT.isVector() 379 ? EVT::getVectorVT( 380 *DAG.getContext(), IntermediateVT.getScalarType(), 381 IntermediateVT.getVectorElementCount() * NumParts) 382 : EVT::getVectorVT(*DAG.getContext(), 383 IntermediateVT.getScalarType(), 384 NumIntermediates); 385 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 386 : ISD::BUILD_VECTOR, 387 DL, BuiltVectorTy, Ops); 388 } 389 390 // There is now one part, held in Val. Correct it to match ValueVT. 391 EVT PartEVT = Val.getValueType(); 392 393 if (PartEVT == ValueVT) 394 return Val; 395 396 if (PartEVT.isVector()) { 397 // Vector/Vector bitcast. 398 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 399 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 401 // If the parts vector has more elements than the value vector, then we 402 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 403 // Extract the elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 421 // Promoted vector extract 422 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 423 } 424 425 // Trivial bitcast if the types are the same size and the destination 426 // vector type is legal. 427 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 428 TLI.isTypeLegal(ValueVT)) 429 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 430 431 if (ValueVT.getVectorNumElements() != 1) { 432 // Certain ABIs require that vectors are passed as integers. For vectors 433 // are the same size, this is an obvious bitcast. 434 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 } else if (ValueVT.bitsLT(PartEVT)) { 437 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 438 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 439 // Drop the extra bits. 440 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 441 return DAG.getBitcast(ValueVT, Val); 442 } 443 444 diagnosePossiblyInvalidConstraint( 445 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 446 return DAG.getUNDEF(ValueVT); 447 } 448 449 // Handle cases such as i8 -> <1 x i1> 450 EVT ValueSVT = ValueVT.getVectorElementType(); 451 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 452 unsigned ValueSize = ValueSVT.getSizeInBits(); 453 if (ValueSize == PartEVT.getSizeInBits()) { 454 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 455 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 456 // It's possible a scalar floating point type gets softened to integer and 457 // then promoted to a larger integer. If PartEVT is the larger integer 458 // we need to truncate it and then bitcast to the FP type. 459 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 Val = DAG.getBitcast(ValueSVT, Val); 463 } else { 464 Val = ValueVT.isFloatingPoint() 465 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 } 468 } 469 470 return DAG.getBuildVector(ValueVT, DL, Val); 471 } 472 473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V, 476 std::optional<CallingConv::ID> CallConv); 477 478 /// getCopyToParts - Create a series of nodes that contain the specified value 479 /// split into legal parts. If the parts contain more bits than Val, then, for 480 /// integers, ExtendKind can be used to specify how to generate the extra bits. 481 static void 482 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 483 unsigned NumParts, MVT PartVT, const Value *V, 484 std::optional<CallingConv::ID> CallConv = std::nullopt, 485 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 486 // Let the target split the parts if it wants to 487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 488 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 489 CallConv)) 490 return; 491 EVT ValueVT = Val.getValueType(); 492 493 // Handle the vector case separately. 494 if (ValueVT.isVector()) 495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 496 CallConv); 497 498 unsigned PartBits = PartVT.getSizeInBits(); 499 unsigned OrigNumParts = NumParts; 500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 501 "Copying to an illegal type!"); 502 503 if (NumParts == 0) 504 return; 505 506 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 507 EVT PartEVT = PartVT; 508 if (PartEVT == ValueVT) { 509 assert(NumParts == 1 && "No-op copy with multiple parts!"); 510 Parts[0] = Val; 511 return; 512 } 513 514 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 515 // If the parts cover more bits than the value has, promote the value. 516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 517 assert(NumParts == 1 && "Do not know what to promote to!"); 518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 519 } else { 520 if (ValueVT.isFloatingPoint()) { 521 // FP values need to be bitcast, then extended if they are being put 522 // into a larger container. 523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 525 } 526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 527 ValueVT.isInteger() && 528 "Unknown mismatch!"); 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 531 if (PartVT == MVT::x86mmx) 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } 534 } else if (PartBits == ValueVT.getSizeInBits()) { 535 // Different types of the same size. 536 assert(NumParts == 1 && PartEVT != ValueVT); 537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 539 // If the parts cover less bits than value has, truncate the value. 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 // The value may have changed - recompute ValueVT. 550 ValueVT = Val.getValueType(); 551 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 552 "Failed to tile the value with PartVT!"); 553 554 if (NumParts == 1) { 555 if (PartEVT != ValueVT) { 556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 557 "scalar-to-vector conversion failed"); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 Parts[0] = Val; 562 return; 563 } 564 565 // Expand the value into multiple parts. 566 if (NumParts & (NumParts - 1)) { 567 // The number of parts is not a power of 2. Split off and copy the tail. 568 assert(PartVT.isInteger() && ValueVT.isInteger() && 569 "Do not know what to expand to!"); 570 unsigned RoundParts = 1 << Log2_32(NumParts); 571 unsigned RoundBits = RoundParts * PartBits; 572 unsigned OddParts = NumParts - RoundParts; 573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 574 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 575 576 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 577 CallConv); 578 579 if (DAG.getDataLayout().isBigEndian()) 580 // The odd parts were reversed by getCopyToParts - unreverse them. 581 std::reverse(Parts + RoundParts, Parts + NumParts); 582 583 NumParts = RoundParts; 584 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 585 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 586 } 587 588 // The number of parts is a power of 2. Repeatedly bisect the value using 589 // EXTRACT_ELEMENT. 590 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 591 EVT::getIntegerVT(*DAG.getContext(), 592 ValueVT.getSizeInBits()), 593 Val); 594 595 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 596 for (unsigned i = 0; i < NumParts; i += StepSize) { 597 unsigned ThisBits = StepSize * PartBits / 2; 598 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 599 SDValue &Part0 = Parts[i]; 600 SDValue &Part1 = Parts[i+StepSize/2]; 601 602 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 603 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 604 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 606 607 if (ThisBits == PartBits && ThisVT != PartVT) { 608 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 609 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 610 } 611 } 612 } 613 614 if (DAG.getDataLayout().isBigEndian()) 615 std::reverse(Parts, Parts + OrigNumParts); 616 } 617 618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 619 const SDLoc &DL, EVT PartVT) { 620 if (!PartVT.isVector()) 621 return SDValue(); 622 623 EVT ValueVT = Val.getValueType(); 624 ElementCount PartNumElts = PartVT.getVectorElementCount(); 625 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 626 627 // We only support widening vectors with equivalent element types and 628 // fixed/scalable properties. If a target needs to widen a fixed-length type 629 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 630 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 631 PartNumElts.isScalable() != ValueNumElts.isScalable() || 632 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 633 return SDValue(); 634 635 // Widening a scalable vector to another scalable vector is done by inserting 636 // the vector into a larger undef one. 637 if (PartNumElts.isScalable()) 638 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 639 Val, DAG.getVectorIdxConstant(0, DL)); 640 641 EVT ElementVT = PartVT.getVectorElementType(); 642 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 643 // undef elements. 644 SmallVector<SDValue, 16> Ops; 645 DAG.ExtractVectorElements(Val, Ops); 646 SDValue EltUndef = DAG.getUNDEF(ElementVT); 647 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 /// getCopyToPartsVector - Create a series of nodes that contain the specified 654 /// value split into legal parts. 655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 656 SDValue Val, SDValue *Parts, unsigned NumParts, 657 MVT PartVT, const Value *V, 658 std::optional<CallingConv::ID> CallConv) { 659 EVT ValueVT = Val.getValueType(); 660 assert(ValueVT.isVector() && "Not a vector"); 661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 662 const bool IsABIRegCopy = CallConv.has_value(); 663 664 if (NumParts == 1) { 665 EVT PartEVT = PartVT; 666 if (PartEVT == ValueVT) { 667 // Nothing to do. 668 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 669 // Bitconvert vector->vector case. 670 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 671 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 672 Val = Widened; 673 } else if (PartVT.isVector() && 674 PartEVT.getVectorElementType().bitsGE( 675 ValueVT.getVectorElementType()) && 676 PartEVT.getVectorElementCount() == 677 ValueVT.getVectorElementCount()) { 678 679 // Promoted vector extract 680 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 681 } else if (PartEVT.isVector() && 682 PartEVT.getVectorElementType() != 683 ValueVT.getVectorElementType() && 684 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 685 TargetLowering::TypeWidenVector) { 686 // Combination of widening and promotion. 687 EVT WidenVT = 688 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 689 PartVT.getVectorElementCount()); 690 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 691 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 692 } else { 693 // Don't extract an integer from a float vector. This can happen if the 694 // FP type gets softened to integer and then promoted. The promotion 695 // prevents it from being picked up by the earlier bitcast case. 696 if (ValueVT.getVectorElementCount().isScalar() && 697 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 698 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 699 DAG.getVectorIdxConstant(0, DL)); 700 } else { 701 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 702 assert(PartVT.getFixedSizeInBits() > ValueSize && 703 "lossy conversion of vector to scalar type"); 704 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 705 Val = DAG.getBitcast(IntermediateType, Val); 706 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 707 } 708 } 709 710 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 711 Parts[0] = Val; 712 return; 713 } 714 715 // Handle a multi-element vector. 716 EVT IntermediateVT; 717 MVT RegisterVT; 718 unsigned NumIntermediates; 719 unsigned NumRegs; 720 if (IsABIRegCopy) { 721 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 722 *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, 723 NumIntermediates, RegisterVT); 724 } else { 725 NumRegs = 726 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 727 NumIntermediates, RegisterVT); 728 } 729 730 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 731 NumParts = NumRegs; // Silence a compiler warning. 732 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 733 734 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 735 "Mixing scalable and fixed vectors when copying in parts"); 736 737 std::optional<ElementCount> DestEltCnt; 738 739 if (IntermediateVT.isVector()) 740 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 741 else 742 DestEltCnt = ElementCount::getFixed(NumIntermediates); 743 744 EVT BuiltVectorTy = EVT::getVectorVT( 745 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 746 747 if (ValueVT == BuiltVectorTy) { 748 // Nothing to do. 749 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 750 // Bitconvert vector->vector case. 751 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 752 } else { 753 if (BuiltVectorTy.getVectorElementType().bitsGT( 754 ValueVT.getVectorElementType())) { 755 // Integer promotion. 756 ValueVT = EVT::getVectorVT(*DAG.getContext(), 757 BuiltVectorTy.getVectorElementType(), 758 ValueVT.getVectorElementCount()); 759 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 760 } 761 762 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 763 Val = Widened; 764 } 765 } 766 767 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 768 769 // Split the vector into intermediate operands. 770 SmallVector<SDValue, 8> Ops(NumIntermediates); 771 for (unsigned i = 0; i != NumIntermediates; ++i) { 772 if (IntermediateVT.isVector()) { 773 // This does something sensible for scalable vectors - see the 774 // definition of EXTRACT_SUBVECTOR for further details. 775 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 776 Ops[i] = 777 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 778 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 779 } else { 780 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 781 DAG.getVectorIdxConstant(i, DL)); 782 } 783 } 784 785 // Split the intermediate operands into legal parts. 786 if (NumParts == NumIntermediates) { 787 // If the register was not expanded, promote or copy the value, 788 // as appropriate. 789 for (unsigned i = 0; i != NumParts; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 791 } else if (NumParts > 0) { 792 // If the intermediate type was expanded, split each the value into 793 // legal parts. 794 assert(NumIntermediates != 0 && "division by zero"); 795 assert(NumParts % NumIntermediates == 0 && 796 "Must expand into a divisible number of parts!"); 797 unsigned Factor = NumParts / NumIntermediates; 798 for (unsigned i = 0; i != NumIntermediates; ++i) 799 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 800 CallConv); 801 } 802 } 803 804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 805 EVT valuevt, std::optional<CallingConv::ID> CC) 806 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 807 RegCount(1, regs.size()), CallConv(CC) {} 808 809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 810 const DataLayout &DL, unsigned Reg, Type *Ty, 811 std::optional<CallingConv::ID> CC) { 812 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 813 814 CallConv = CC; 815 816 for (EVT ValueVT : ValueVTs) { 817 unsigned NumRegs = 818 isABIMangled() 819 ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) 820 : TLI.getNumRegisters(Context, ValueVT); 821 MVT RegisterVT = 822 isABIMangled() 823 ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) 824 : TLI.getRegisterType(Context, ValueVT); 825 for (unsigned i = 0; i != NumRegs; ++i) 826 Regs.push_back(Reg + i); 827 RegVTs.push_back(RegisterVT); 828 RegCount.push_back(NumRegs); 829 Reg += NumRegs; 830 } 831 } 832 833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 834 FunctionLoweringInfo &FuncInfo, 835 const SDLoc &dl, SDValue &Chain, 836 SDValue *Flag, const Value *V) const { 837 // A Value with type {} or [0 x %t] needs no registers. 838 if (ValueVTs.empty()) 839 return SDValue(); 840 841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 842 843 // Assemble the legal parts into the final values. 844 SmallVector<SDValue, 4> Values(ValueVTs.size()); 845 SmallVector<SDValue, 8> Parts; 846 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 // Copy the legal parts from the registers. 848 EVT ValueVT = ValueVTs[Value]; 849 unsigned NumRegs = RegCount[Value]; 850 MVT RegisterVT = 851 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 852 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 853 : RegVTs[Value]; 854 855 Parts.resize(NumRegs); 856 for (unsigned i = 0; i != NumRegs; ++i) { 857 SDValue P; 858 if (!Flag) { 859 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 860 } else { 861 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 862 *Flag = P.getValue(2); 863 } 864 865 Chain = P.getValue(1); 866 Parts[i] = P; 867 868 // If the source register was virtual and if we know something about it, 869 // add an assert node. 870 if (!Register::isVirtualRegister(Regs[Part + i]) || 871 !RegisterVT.isInteger()) 872 continue; 873 874 const FunctionLoweringInfo::LiveOutInfo *LOI = 875 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 876 if (!LOI) 877 continue; 878 879 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 880 unsigned NumSignBits = LOI->NumSignBits; 881 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 882 883 if (NumZeroBits == RegSize) { 884 // The current value is a zero. 885 // Explicitly express that as it would be easier for 886 // optimizations to kick in. 887 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 888 continue; 889 } 890 891 // FIXME: We capture more information than the dag can represent. For 892 // now, just use the tightest assertzext/assertsext possible. 893 bool isSExt; 894 EVT FromVT(MVT::Other); 895 if (NumZeroBits) { 896 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 897 isSExt = false; 898 } else if (NumSignBits > 1) { 899 FromVT = 900 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 901 isSExt = true; 902 } else { 903 continue; 904 } 905 // Add an assertion node. 906 assert(FromVT != MVT::Other); 907 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 908 RegisterVT, P, DAG.getValueType(FromVT)); 909 } 910 911 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 912 RegisterVT, ValueVT, V, CallConv); 913 Part += NumRegs; 914 Parts.clear(); 915 } 916 917 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 918 } 919 920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 921 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 922 const Value *V, 923 ISD::NodeType PreferredExtendType) const { 924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 925 ISD::NodeType ExtendKind = PreferredExtendType; 926 927 // Get the list of the values's legal parts. 928 unsigned NumRegs = Regs.size(); 929 SmallVector<SDValue, 8> Parts(NumRegs); 930 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 931 unsigned NumParts = RegCount[Value]; 932 933 MVT RegisterVT = 934 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 935 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 936 : RegVTs[Value]; 937 938 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 939 ExtendKind = ISD::ZERO_EXTEND; 940 941 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 942 NumParts, RegisterVT, V, CallConv, ExtendKind); 943 Part += NumParts; 944 } 945 946 // Copy the parts into the registers. 947 SmallVector<SDValue, 8> Chains(NumRegs); 948 for (unsigned i = 0; i != NumRegs; ++i) { 949 SDValue Part; 950 if (!Flag) { 951 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 952 } else { 953 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 954 *Flag = Part.getValue(1); 955 } 956 957 Chains[i] = Part.getValue(0); 958 } 959 960 if (NumRegs == 1 || Flag) 961 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 962 // flagged to it. That is the CopyToReg nodes and the user are considered 963 // a single scheduling unit. If we create a TokenFactor and return it as 964 // chain, then the TokenFactor is both a predecessor (operand) of the 965 // user as well as a successor (the TF operands are flagged to the user). 966 // c1, f1 = CopyToReg 967 // c2, f2 = CopyToReg 968 // c3 = TokenFactor c1, c2 969 // ... 970 // = op c3, ..., f2 971 Chain = Chains[NumRegs-1]; 972 else 973 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 974 } 975 976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 977 unsigned MatchingIdx, const SDLoc &dl, 978 SelectionDAG &DAG, 979 std::vector<SDValue> &Ops) const { 980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 981 982 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 983 if (HasMatching) 984 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 985 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 986 // Put the register class of the virtual registers in the flag word. That 987 // way, later passes can recompute register class constraints for inline 988 // assembly as well as normal instructions. 989 // Don't do this for tied operands that can use the regclass information 990 // from the def. 991 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 992 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 993 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 994 } 995 996 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 997 Ops.push_back(Res); 998 999 if (Code == InlineAsm::Kind_Clobber) { 1000 // Clobbers should always have a 1:1 mapping with registers, and may 1001 // reference registers that have illegal (e.g. vector) types. Hence, we 1002 // shouldn't try to apply any sort of splitting logic to them. 1003 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1004 "No 1:1 mapping from clobbers to regs?"); 1005 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1006 (void)SP; 1007 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1008 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1009 assert( 1010 (Regs[I] != SP || 1011 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1012 "If we clobbered the stack pointer, MFI should know about it."); 1013 } 1014 return; 1015 } 1016 1017 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1018 MVT RegisterVT = RegVTs[Value]; 1019 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1020 RegisterVT); 1021 for (unsigned i = 0; i != NumRegs; ++i) { 1022 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1023 unsigned TheReg = Regs[Reg++]; 1024 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1025 } 1026 } 1027 } 1028 1029 SmallVector<std::pair<unsigned, TypeSize>, 4> 1030 RegsForValue::getRegsAndSizes() const { 1031 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1032 unsigned I = 0; 1033 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1034 unsigned RegCount = std::get<0>(CountAndVT); 1035 MVT RegisterVT = std::get<1>(CountAndVT); 1036 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1037 for (unsigned E = I + RegCount; I != E; ++I) 1038 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1039 } 1040 return OutVec; 1041 } 1042 1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1044 AssumptionCache *ac, 1045 const TargetLibraryInfo *li) { 1046 AA = aa; 1047 AC = ac; 1048 GFI = gfi; 1049 LibInfo = li; 1050 Context = DAG.getContext(); 1051 LPadToCallSiteMap.clear(); 1052 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1053 } 1054 1055 void SelectionDAGBuilder::clear() { 1056 NodeMap.clear(); 1057 UnusedArgNodeMap.clear(); 1058 PendingLoads.clear(); 1059 PendingExports.clear(); 1060 PendingConstrainedFP.clear(); 1061 PendingConstrainedFPStrict.clear(); 1062 CurInst = nullptr; 1063 HasTailCall = false; 1064 SDNodeOrder = LowestSDNodeOrder; 1065 StatepointLowering.clear(); 1066 } 1067 1068 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1069 DanglingDebugInfoMap.clear(); 1070 } 1071 1072 // Update DAG root to include dependencies on Pending chains. 1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1074 SDValue Root = DAG.getRoot(); 1075 1076 if (Pending.empty()) 1077 return Root; 1078 1079 // Add current root to PendingChains, unless we already indirectly 1080 // depend on it. 1081 if (Root.getOpcode() != ISD::EntryToken) { 1082 unsigned i = 0, e = Pending.size(); 1083 for (; i != e; ++i) { 1084 assert(Pending[i].getNode()->getNumOperands() > 1); 1085 if (Pending[i].getNode()->getOperand(0) == Root) 1086 break; // Don't add the root if we already indirectly depend on it. 1087 } 1088 1089 if (i == e) 1090 Pending.push_back(Root); 1091 } 1092 1093 if (Pending.size() == 1) 1094 Root = Pending[0]; 1095 else 1096 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1097 1098 DAG.setRoot(Root); 1099 Pending.clear(); 1100 return Root; 1101 } 1102 1103 SDValue SelectionDAGBuilder::getMemoryRoot() { 1104 return updateRoot(PendingLoads); 1105 } 1106 1107 SDValue SelectionDAGBuilder::getRoot() { 1108 // Chain up all pending constrained intrinsics together with all 1109 // pending loads, by simply appending them to PendingLoads and 1110 // then calling getMemoryRoot(). 1111 PendingLoads.reserve(PendingLoads.size() + 1112 PendingConstrainedFP.size() + 1113 PendingConstrainedFPStrict.size()); 1114 PendingLoads.append(PendingConstrainedFP.begin(), 1115 PendingConstrainedFP.end()); 1116 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1117 PendingConstrainedFPStrict.end()); 1118 PendingConstrainedFP.clear(); 1119 PendingConstrainedFPStrict.clear(); 1120 return getMemoryRoot(); 1121 } 1122 1123 SDValue SelectionDAGBuilder::getControlRoot() { 1124 // We need to emit pending fpexcept.strict constrained intrinsics, 1125 // so append them to the PendingExports list. 1126 PendingExports.append(PendingConstrainedFPStrict.begin(), 1127 PendingConstrainedFPStrict.end()); 1128 PendingConstrainedFPStrict.clear(); 1129 return updateRoot(PendingExports); 1130 } 1131 1132 void SelectionDAGBuilder::visit(const Instruction &I) { 1133 // Set up outgoing PHI node register values before emitting the terminator. 1134 if (I.isTerminator()) { 1135 HandlePHINodesInSuccessorBlocks(I.getParent()); 1136 } 1137 1138 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1139 if (!isa<DbgInfoIntrinsic>(I)) 1140 ++SDNodeOrder; 1141 1142 CurInst = &I; 1143 1144 // Set inserted listener only if required. 1145 bool NodeInserted = false; 1146 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1147 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1148 if (PCSectionsMD) { 1149 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1150 DAG, [&](SDNode *) { NodeInserted = true; }); 1151 } 1152 1153 visit(I.getOpcode(), I); 1154 1155 if (!I.isTerminator() && !HasTailCall && 1156 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1157 CopyToExportRegsIfNeeded(&I); 1158 1159 // Handle metadata. 1160 if (PCSectionsMD) { 1161 auto It = NodeMap.find(&I); 1162 if (It != NodeMap.end()) { 1163 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1164 } else if (NodeInserted) { 1165 // This should not happen; if it does, don't let it go unnoticed so we can 1166 // fix it. Relevant visit*() function is probably missing a setValue(). 1167 errs() << "warning: loosing !pcsections metadata [" 1168 << I.getModule()->getName() << "]\n"; 1169 LLVM_DEBUG(I.dump()); 1170 assert(false); 1171 } 1172 } 1173 1174 CurInst = nullptr; 1175 } 1176 1177 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1178 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1179 } 1180 1181 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1182 // Note: this doesn't use InstVisitor, because it has to work with 1183 // ConstantExpr's in addition to instructions. 1184 switch (Opcode) { 1185 default: llvm_unreachable("Unknown instruction type encountered!"); 1186 // Build the switch statement using the Instruction.def file. 1187 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1188 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1189 #include "llvm/IR/Instruction.def" 1190 } 1191 } 1192 1193 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1194 unsigned Order) { 1195 // We treat variadic dbg_values differently at this stage. 1196 if (DI->hasArgList()) { 1197 // For variadic dbg_values we will now insert an undef. 1198 // FIXME: We can potentially recover these! 1199 SmallVector<SDDbgOperand, 2> Locs; 1200 for (const Value *V : DI->getValues()) { 1201 auto Undef = UndefValue::get(V->getType()); 1202 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1203 } 1204 SDDbgValue *SDV = DAG.getDbgValueList( 1205 DI->getVariable(), DI->getExpression(), Locs, {}, 1206 /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true); 1207 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1208 } else { 1209 // TODO: Dangling debug info will eventually either be resolved or produce 1210 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1211 // between the original dbg.value location and its resolved DBG_VALUE, 1212 // which we should ideally fill with an extra Undef DBG_VALUE. 1213 assert(DI->getNumVariableLocationOps() == 1 && 1214 "DbgValueInst without an ArgList should have a single location " 1215 "operand."); 1216 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1217 } 1218 } 1219 1220 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1221 const DIExpression *Expr) { 1222 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1223 DIVariable *DanglingVariable = DDI.getVariable(); 1224 DIExpression *DanglingExpr = DDI.getExpression(); 1225 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1226 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << DDI << "\n"); 1227 return true; 1228 } 1229 return false; 1230 }; 1231 1232 for (auto &DDIMI : DanglingDebugInfoMap) { 1233 DanglingDebugInfoVector &DDIV = DDIMI.second; 1234 1235 // If debug info is to be dropped, run it through final checks to see 1236 // whether it can be salvaged. 1237 for (auto &DDI : DDIV) 1238 if (isMatchingDbgValue(DDI)) 1239 salvageUnresolvedDbgValue(DDI); 1240 1241 erase_if(DDIV, isMatchingDbgValue); 1242 } 1243 } 1244 1245 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1246 // generate the debug data structures now that we've seen its definition. 1247 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1248 SDValue Val) { 1249 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1250 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1251 return; 1252 1253 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1254 for (auto &DDI : DDIV) { 1255 DebugLoc DL = DDI.getDebugLoc(); 1256 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1257 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1258 DILocalVariable *Variable = DDI.getVariable(); 1259 DIExpression *Expr = DDI.getExpression(); 1260 assert(Variable->isValidLocationForIntrinsic(DL) && 1261 "Expected inlined-at fields to agree"); 1262 SDDbgValue *SDV; 1263 if (Val.getNode()) { 1264 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1265 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1266 // we couldn't resolve it directly when examining the DbgValue intrinsic 1267 // in the first place we should not be more successful here). Unless we 1268 // have some test case that prove this to be correct we should avoid 1269 // calling EmitFuncArgumentDbgValue here. 1270 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1271 FuncArgumentDbgValueKind::Value, Val)) { 1272 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << DDI << "\n"); 1273 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1274 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1275 // inserted after the definition of Val when emitting the instructions 1276 // after ISel. An alternative could be to teach 1277 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1278 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1279 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1280 << ValSDNodeOrder << "\n"); 1281 SDV = getDbgValue(Val, Variable, Expr, DL, 1282 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1283 DAG.AddDbgValue(SDV, false); 1284 } else 1285 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << DDI 1286 << "in EmitFuncArgumentDbgValue\n"); 1287 } else { 1288 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DDI << "\n"); 1289 auto Undef = UndefValue::get(V->getType()); 1290 auto SDV = 1291 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1292 DAG.AddDbgValue(SDV, false); 1293 } 1294 } 1295 DDIV.clear(); 1296 } 1297 1298 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1299 // TODO: For the variadic implementation, instead of only checking the fail 1300 // state of `handleDebugValue`, we need know specifically which values were 1301 // invalid, so that we attempt to salvage only those values when processing 1302 // a DIArgList. 1303 Value *V = DDI.getVariableLocationOp(0); 1304 Value *OrigV = V; 1305 DILocalVariable *Var = DDI.getVariable(); 1306 DIExpression *Expr = DDI.getExpression(); 1307 DebugLoc DL = DDI.getDebugLoc(); 1308 unsigned SDOrder = DDI.getSDNodeOrder(); 1309 1310 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1311 // that DW_OP_stack_value is desired. 1312 bool StackValue = true; 1313 1314 // Can this Value can be encoded without any further work? 1315 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1316 return; 1317 1318 // Attempt to salvage back through as many instructions as possible. Bail if 1319 // a non-instruction is seen, such as a constant expression or global 1320 // variable. FIXME: Further work could recover those too. 1321 while (isa<Instruction>(V)) { 1322 Instruction &VAsInst = *cast<Instruction>(V); 1323 // Temporary "0", awaiting real implementation. 1324 SmallVector<uint64_t, 16> Ops; 1325 SmallVector<Value *, 4> AdditionalValues; 1326 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1327 AdditionalValues); 1328 // If we cannot salvage any further, and haven't yet found a suitable debug 1329 // expression, bail out. 1330 if (!V) 1331 break; 1332 1333 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1334 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1335 // here for variadic dbg_values, remove that condition. 1336 if (!AdditionalValues.empty()) 1337 break; 1338 1339 // New value and expr now represent this debuginfo. 1340 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1341 1342 // Some kind of simplification occurred: check whether the operand of the 1343 // salvaged debug expression can be encoded in this DAG. 1344 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1345 LLVM_DEBUG( 1346 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1347 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1348 return; 1349 } 1350 } 1351 1352 // This was the final opportunity to salvage this debug information, and it 1353 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1354 // any earlier variable location. 1355 assert(OrigV && "V shouldn't be null"); 1356 auto *Undef = UndefValue::get(OrigV->getType()); 1357 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1358 DAG.AddDbgValue(SDV, false); 1359 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI << "\n"); 1360 } 1361 1362 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1363 DILocalVariable *Var, 1364 DIExpression *Expr, DebugLoc DbgLoc, 1365 unsigned Order, bool IsVariadic) { 1366 if (Values.empty()) 1367 return true; 1368 SmallVector<SDDbgOperand> LocationOps; 1369 SmallVector<SDNode *> Dependencies; 1370 for (const Value *V : Values) { 1371 // Constant value. 1372 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1373 isa<ConstantPointerNull>(V)) { 1374 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1375 continue; 1376 } 1377 1378 // Look through IntToPtr constants. 1379 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1380 if (CE->getOpcode() == Instruction::IntToPtr) { 1381 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1382 continue; 1383 } 1384 1385 // If the Value is a frame index, we can create a FrameIndex debug value 1386 // without relying on the DAG at all. 1387 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1388 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1389 if (SI != FuncInfo.StaticAllocaMap.end()) { 1390 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1391 continue; 1392 } 1393 } 1394 1395 // Do not use getValue() in here; we don't want to generate code at 1396 // this point if it hasn't been done yet. 1397 SDValue N = NodeMap[V]; 1398 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1399 N = UnusedArgNodeMap[V]; 1400 if (N.getNode()) { 1401 // Only emit func arg dbg value for non-variadic dbg.values for now. 1402 if (!IsVariadic && 1403 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1404 FuncArgumentDbgValueKind::Value, N)) 1405 return true; 1406 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1407 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1408 // describe stack slot locations. 1409 // 1410 // Consider "int x = 0; int *px = &x;". There are two kinds of 1411 // interesting debug values here after optimization: 1412 // 1413 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1414 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1415 // 1416 // Both describe the direct values of their associated variables. 1417 Dependencies.push_back(N.getNode()); 1418 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1419 continue; 1420 } 1421 LocationOps.emplace_back( 1422 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1423 continue; 1424 } 1425 1426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1427 // Special rules apply for the first dbg.values of parameter variables in a 1428 // function. Identify them by the fact they reference Argument Values, that 1429 // they're parameters, and they are parameters of the current function. We 1430 // need to let them dangle until they get an SDNode. 1431 bool IsParamOfFunc = 1432 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1433 if (IsParamOfFunc) 1434 return false; 1435 1436 // The value is not used in this block yet (or it would have an SDNode). 1437 // We still want the value to appear for the user if possible -- if it has 1438 // an associated VReg, we can refer to that instead. 1439 auto VMI = FuncInfo.ValueMap.find(V); 1440 if (VMI != FuncInfo.ValueMap.end()) { 1441 unsigned Reg = VMI->second; 1442 // If this is a PHI node, it may be split up into several MI PHI nodes 1443 // (in FunctionLoweringInfo::set). 1444 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1445 V->getType(), std::nullopt); 1446 if (RFV.occupiesMultipleRegs()) { 1447 // FIXME: We could potentially support variadic dbg_values here. 1448 if (IsVariadic) 1449 return false; 1450 unsigned Offset = 0; 1451 unsigned BitsToDescribe = 0; 1452 if (auto VarSize = Var->getSizeInBits()) 1453 BitsToDescribe = *VarSize; 1454 if (auto Fragment = Expr->getFragmentInfo()) 1455 BitsToDescribe = Fragment->SizeInBits; 1456 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1457 // Bail out if all bits are described already. 1458 if (Offset >= BitsToDescribe) 1459 break; 1460 // TODO: handle scalable vectors. 1461 unsigned RegisterSize = RegAndSize.second; 1462 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1463 ? BitsToDescribe - Offset 1464 : RegisterSize; 1465 auto FragmentExpr = DIExpression::createFragmentExpression( 1466 Expr, Offset, FragmentSize); 1467 if (!FragmentExpr) 1468 continue; 1469 SDDbgValue *SDV = DAG.getVRegDbgValue( 1470 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1471 DAG.AddDbgValue(SDV, false); 1472 Offset += RegisterSize; 1473 } 1474 return true; 1475 } 1476 // We can use simple vreg locations for variadic dbg_values as well. 1477 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1478 continue; 1479 } 1480 // We failed to create a SDDbgOperand for V. 1481 return false; 1482 } 1483 1484 // We have created a SDDbgOperand for each Value in Values. 1485 // Should use Order instead of SDNodeOrder? 1486 assert(!LocationOps.empty()); 1487 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1488 /*IsIndirect=*/false, DbgLoc, 1489 SDNodeOrder, IsVariadic); 1490 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1491 return true; 1492 } 1493 1494 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1495 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1496 for (auto &Pair : DanglingDebugInfoMap) 1497 for (auto &DDI : Pair.second) 1498 salvageUnresolvedDbgValue(DDI); 1499 clearDanglingDebugInfo(); 1500 } 1501 1502 /// getCopyFromRegs - If there was virtual register allocated for the value V 1503 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1504 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1505 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1506 SDValue Result; 1507 1508 if (It != FuncInfo.ValueMap.end()) { 1509 Register InReg = It->second; 1510 1511 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1512 DAG.getDataLayout(), InReg, Ty, 1513 std::nullopt); // This is not an ABI copy. 1514 SDValue Chain = DAG.getEntryNode(); 1515 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1516 V); 1517 resolveDanglingDebugInfo(V, Result); 1518 } 1519 1520 return Result; 1521 } 1522 1523 /// getValue - Return an SDValue for the given Value. 1524 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1525 // If we already have an SDValue for this value, use it. It's important 1526 // to do this first, so that we don't create a CopyFromReg if we already 1527 // have a regular SDValue. 1528 SDValue &N = NodeMap[V]; 1529 if (N.getNode()) return N; 1530 1531 // If there's a virtual register allocated and initialized for this 1532 // value, use it. 1533 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1534 return copyFromReg; 1535 1536 // Otherwise create a new SDValue and remember it. 1537 SDValue Val = getValueImpl(V); 1538 NodeMap[V] = Val; 1539 resolveDanglingDebugInfo(V, Val); 1540 return Val; 1541 } 1542 1543 /// getNonRegisterValue - Return an SDValue for the given Value, but 1544 /// don't look in FuncInfo.ValueMap for a virtual register. 1545 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1546 // If we already have an SDValue for this value, use it. 1547 SDValue &N = NodeMap[V]; 1548 if (N.getNode()) { 1549 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1550 // Remove the debug location from the node as the node is about to be used 1551 // in a location which may differ from the original debug location. This 1552 // is relevant to Constant and ConstantFP nodes because they can appear 1553 // as constant expressions inside PHI nodes. 1554 N->setDebugLoc(DebugLoc()); 1555 } 1556 return N; 1557 } 1558 1559 // Otherwise create a new SDValue and remember it. 1560 SDValue Val = getValueImpl(V); 1561 NodeMap[V] = Val; 1562 resolveDanglingDebugInfo(V, Val); 1563 return Val; 1564 } 1565 1566 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1567 /// Create an SDValue for the given value. 1568 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1570 1571 if (const Constant *C = dyn_cast<Constant>(V)) { 1572 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1573 1574 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1575 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1576 1577 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1578 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1579 1580 if (isa<ConstantPointerNull>(C)) { 1581 unsigned AS = V->getType()->getPointerAddressSpace(); 1582 return DAG.getConstant(0, getCurSDLoc(), 1583 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1584 } 1585 1586 if (match(C, m_VScale(DAG.getDataLayout()))) 1587 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1588 1589 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1590 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1591 1592 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1593 return DAG.getUNDEF(VT); 1594 1595 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1596 visit(CE->getOpcode(), *CE); 1597 SDValue N1 = NodeMap[V]; 1598 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1599 return N1; 1600 } 1601 1602 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1603 SmallVector<SDValue, 4> Constants; 1604 for (const Use &U : C->operands()) { 1605 SDNode *Val = getValue(U).getNode(); 1606 // If the operand is an empty aggregate, there are no values. 1607 if (!Val) continue; 1608 // Add each leaf value from the operand to the Constants list 1609 // to form a flattened list of all the values. 1610 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1611 Constants.push_back(SDValue(Val, i)); 1612 } 1613 1614 return DAG.getMergeValues(Constants, getCurSDLoc()); 1615 } 1616 1617 if (const ConstantDataSequential *CDS = 1618 dyn_cast<ConstantDataSequential>(C)) { 1619 SmallVector<SDValue, 4> Ops; 1620 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1621 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1622 // Add each leaf value from the operand to the Constants list 1623 // to form a flattened list of all the values. 1624 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1625 Ops.push_back(SDValue(Val, i)); 1626 } 1627 1628 if (isa<ArrayType>(CDS->getType())) 1629 return DAG.getMergeValues(Ops, getCurSDLoc()); 1630 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1631 } 1632 1633 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1634 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1635 "Unknown struct or array constant!"); 1636 1637 SmallVector<EVT, 4> ValueVTs; 1638 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1639 unsigned NumElts = ValueVTs.size(); 1640 if (NumElts == 0) 1641 return SDValue(); // empty struct 1642 SmallVector<SDValue, 4> Constants(NumElts); 1643 for (unsigned i = 0; i != NumElts; ++i) { 1644 EVT EltVT = ValueVTs[i]; 1645 if (isa<UndefValue>(C)) 1646 Constants[i] = DAG.getUNDEF(EltVT); 1647 else if (EltVT.isFloatingPoint()) 1648 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1649 else 1650 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1651 } 1652 1653 return DAG.getMergeValues(Constants, getCurSDLoc()); 1654 } 1655 1656 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1657 return DAG.getBlockAddress(BA, VT); 1658 1659 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1660 return getValue(Equiv->getGlobalValue()); 1661 1662 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1663 return getValue(NC->getGlobalValue()); 1664 1665 VectorType *VecTy = cast<VectorType>(V->getType()); 1666 1667 // Now that we know the number and type of the elements, get that number of 1668 // elements into the Ops array based on what kind of constant it is. 1669 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1670 SmallVector<SDValue, 16> Ops; 1671 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1672 for (unsigned i = 0; i != NumElements; ++i) 1673 Ops.push_back(getValue(CV->getOperand(i))); 1674 1675 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1676 } 1677 1678 if (isa<ConstantAggregateZero>(C)) { 1679 EVT EltVT = 1680 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1681 1682 SDValue Op; 1683 if (EltVT.isFloatingPoint()) 1684 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1685 else 1686 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1687 1688 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1689 } 1690 1691 llvm_unreachable("Unknown vector constant"); 1692 } 1693 1694 // If this is a static alloca, generate it as the frameindex instead of 1695 // computation. 1696 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1697 DenseMap<const AllocaInst*, int>::iterator SI = 1698 FuncInfo.StaticAllocaMap.find(AI); 1699 if (SI != FuncInfo.StaticAllocaMap.end()) 1700 return DAG.getFrameIndex( 1701 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1702 } 1703 1704 // If this is an instruction which fast-isel has deferred, select it now. 1705 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1706 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1707 1708 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1709 Inst->getType(), std::nullopt); 1710 SDValue Chain = DAG.getEntryNode(); 1711 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1712 } 1713 1714 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1715 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1716 1717 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1718 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1719 1720 llvm_unreachable("Can't get register for value!"); 1721 } 1722 1723 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1724 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1725 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1726 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1727 bool IsSEH = isAsynchronousEHPersonality(Pers); 1728 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1729 if (!IsSEH) 1730 CatchPadMBB->setIsEHScopeEntry(); 1731 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1732 if (IsMSVCCXX || IsCoreCLR) 1733 CatchPadMBB->setIsEHFuncletEntry(); 1734 } 1735 1736 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1737 // Update machine-CFG edge. 1738 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1739 FuncInfo.MBB->addSuccessor(TargetMBB); 1740 TargetMBB->setIsEHCatchretTarget(true); 1741 DAG.getMachineFunction().setHasEHCatchret(true); 1742 1743 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1744 bool IsSEH = isAsynchronousEHPersonality(Pers); 1745 if (IsSEH) { 1746 // If this is not a fall-through branch or optimizations are switched off, 1747 // emit the branch. 1748 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1749 TM.getOptLevel() == CodeGenOpt::None) 1750 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1751 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1752 return; 1753 } 1754 1755 // Figure out the funclet membership for the catchret's successor. 1756 // This will be used by the FuncletLayout pass to determine how to order the 1757 // BB's. 1758 // A 'catchret' returns to the outer scope's color. 1759 Value *ParentPad = I.getCatchSwitchParentPad(); 1760 const BasicBlock *SuccessorColor; 1761 if (isa<ConstantTokenNone>(ParentPad)) 1762 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1763 else 1764 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1765 assert(SuccessorColor && "No parent funclet for catchret!"); 1766 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1767 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1768 1769 // Create the terminator node. 1770 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1771 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1772 DAG.getBasicBlock(SuccessorColorMBB)); 1773 DAG.setRoot(Ret); 1774 } 1775 1776 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1777 // Don't emit any special code for the cleanuppad instruction. It just marks 1778 // the start of an EH scope/funclet. 1779 FuncInfo.MBB->setIsEHScopeEntry(); 1780 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1781 if (Pers != EHPersonality::Wasm_CXX) { 1782 FuncInfo.MBB->setIsEHFuncletEntry(); 1783 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1784 } 1785 } 1786 1787 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1788 // not match, it is OK to add only the first unwind destination catchpad to the 1789 // successors, because there will be at least one invoke instruction within the 1790 // catch scope that points to the next unwind destination, if one exists, so 1791 // CFGSort cannot mess up with BB sorting order. 1792 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1793 // call within them, and catchpads only consisting of 'catch (...)' have a 1794 // '__cxa_end_catch' call within them, both of which generate invokes in case 1795 // the next unwind destination exists, i.e., the next unwind destination is not 1796 // the caller.) 1797 // 1798 // Having at most one EH pad successor is also simpler and helps later 1799 // transformations. 1800 // 1801 // For example, 1802 // current: 1803 // invoke void @foo to ... unwind label %catch.dispatch 1804 // catch.dispatch: 1805 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1806 // catch.start: 1807 // ... 1808 // ... in this BB or some other child BB dominated by this BB there will be an 1809 // invoke that points to 'next' BB as an unwind destination 1810 // 1811 // next: ; We don't need to add this to 'current' BB's successor 1812 // ... 1813 static void findWasmUnwindDestinations( 1814 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1815 BranchProbability Prob, 1816 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1817 &UnwindDests) { 1818 while (EHPadBB) { 1819 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1820 if (isa<CleanupPadInst>(Pad)) { 1821 // Stop on cleanup pads. 1822 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1823 UnwindDests.back().first->setIsEHScopeEntry(); 1824 break; 1825 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1826 // Add the catchpad handlers to the possible destinations. We don't 1827 // continue to the unwind destination of the catchswitch for wasm. 1828 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1829 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1830 UnwindDests.back().first->setIsEHScopeEntry(); 1831 } 1832 break; 1833 } else { 1834 continue; 1835 } 1836 } 1837 } 1838 1839 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1840 /// many places it could ultimately go. In the IR, we have a single unwind 1841 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1842 /// This function skips over imaginary basic blocks that hold catchswitch 1843 /// instructions, and finds all the "real" machine 1844 /// basic block destinations. As those destinations may not be successors of 1845 /// EHPadBB, here we also calculate the edge probability to those destinations. 1846 /// The passed-in Prob is the edge probability to EHPadBB. 1847 static void findUnwindDestinations( 1848 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1849 BranchProbability Prob, 1850 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1851 &UnwindDests) { 1852 EHPersonality Personality = 1853 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1854 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1855 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1856 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1857 bool IsSEH = isAsynchronousEHPersonality(Personality); 1858 1859 if (IsWasmCXX) { 1860 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1861 assert(UnwindDests.size() <= 1 && 1862 "There should be at most one unwind destination for wasm"); 1863 return; 1864 } 1865 1866 while (EHPadBB) { 1867 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1868 BasicBlock *NewEHPadBB = nullptr; 1869 if (isa<LandingPadInst>(Pad)) { 1870 // Stop on landingpads. They are not funclets. 1871 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1872 break; 1873 } else if (isa<CleanupPadInst>(Pad)) { 1874 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1875 // personalities. 1876 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1877 UnwindDests.back().first->setIsEHScopeEntry(); 1878 UnwindDests.back().first->setIsEHFuncletEntry(); 1879 break; 1880 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1881 // Add the catchpad handlers to the possible destinations. 1882 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1883 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1884 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1885 if (IsMSVCCXX || IsCoreCLR) 1886 UnwindDests.back().first->setIsEHFuncletEntry(); 1887 if (!IsSEH) 1888 UnwindDests.back().first->setIsEHScopeEntry(); 1889 } 1890 NewEHPadBB = CatchSwitch->getUnwindDest(); 1891 } else { 1892 continue; 1893 } 1894 1895 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1896 if (BPI && NewEHPadBB) 1897 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1898 EHPadBB = NewEHPadBB; 1899 } 1900 } 1901 1902 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1903 // Update successor info. 1904 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1905 auto UnwindDest = I.getUnwindDest(); 1906 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1907 BranchProbability UnwindDestProb = 1908 (BPI && UnwindDest) 1909 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1910 : BranchProbability::getZero(); 1911 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1912 for (auto &UnwindDest : UnwindDests) { 1913 UnwindDest.first->setIsEHPad(); 1914 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1915 } 1916 FuncInfo.MBB->normalizeSuccProbs(); 1917 1918 // Create the terminator node. 1919 SDValue Ret = 1920 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1921 DAG.setRoot(Ret); 1922 } 1923 1924 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1925 report_fatal_error("visitCatchSwitch not yet implemented!"); 1926 } 1927 1928 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1930 auto &DL = DAG.getDataLayout(); 1931 SDValue Chain = getControlRoot(); 1932 SmallVector<ISD::OutputArg, 8> Outs; 1933 SmallVector<SDValue, 8> OutVals; 1934 1935 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1936 // lower 1937 // 1938 // %val = call <ty> @llvm.experimental.deoptimize() 1939 // ret <ty> %val 1940 // 1941 // differently. 1942 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1943 LowerDeoptimizingReturn(); 1944 return; 1945 } 1946 1947 if (!FuncInfo.CanLowerReturn) { 1948 unsigned DemoteReg = FuncInfo.DemoteRegister; 1949 const Function *F = I.getParent()->getParent(); 1950 1951 // Emit a store of the return value through the virtual register. 1952 // Leave Outs empty so that LowerReturn won't try to load return 1953 // registers the usual way. 1954 SmallVector<EVT, 1> PtrValueVTs; 1955 ComputeValueVTs(TLI, DL, 1956 F->getReturnType()->getPointerTo( 1957 DAG.getDataLayout().getAllocaAddrSpace()), 1958 PtrValueVTs); 1959 1960 SDValue RetPtr = 1961 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1962 SDValue RetOp = getValue(I.getOperand(0)); 1963 1964 SmallVector<EVT, 4> ValueVTs, MemVTs; 1965 SmallVector<uint64_t, 4> Offsets; 1966 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1967 &Offsets); 1968 unsigned NumValues = ValueVTs.size(); 1969 1970 SmallVector<SDValue, 4> Chains(NumValues); 1971 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1972 for (unsigned i = 0; i != NumValues; ++i) { 1973 // An aggregate return value cannot wrap around the address space, so 1974 // offsets to its parts don't wrap either. 1975 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1976 TypeSize::Fixed(Offsets[i])); 1977 1978 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1979 if (MemVTs[i] != ValueVTs[i]) 1980 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1981 Chains[i] = DAG.getStore( 1982 Chain, getCurSDLoc(), Val, 1983 // FIXME: better loc info would be nice. 1984 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1985 commonAlignment(BaseAlign, Offsets[i])); 1986 } 1987 1988 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1989 MVT::Other, Chains); 1990 } else if (I.getNumOperands() != 0) { 1991 SmallVector<EVT, 4> ValueVTs; 1992 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1993 unsigned NumValues = ValueVTs.size(); 1994 if (NumValues) { 1995 SDValue RetOp = getValue(I.getOperand(0)); 1996 1997 const Function *F = I.getParent()->getParent(); 1998 1999 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2000 I.getOperand(0)->getType(), F->getCallingConv(), 2001 /*IsVarArg*/ false, DL); 2002 2003 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2004 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2005 ExtendKind = ISD::SIGN_EXTEND; 2006 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2007 ExtendKind = ISD::ZERO_EXTEND; 2008 2009 LLVMContext &Context = F->getContext(); 2010 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2011 2012 for (unsigned j = 0; j != NumValues; ++j) { 2013 EVT VT = ValueVTs[j]; 2014 2015 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2016 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2017 2018 CallingConv::ID CC = F->getCallingConv(); 2019 2020 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2021 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2022 SmallVector<SDValue, 4> Parts(NumParts); 2023 getCopyToParts(DAG, getCurSDLoc(), 2024 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2025 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2026 2027 // 'inreg' on function refers to return value 2028 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2029 if (RetInReg) 2030 Flags.setInReg(); 2031 2032 if (I.getOperand(0)->getType()->isPointerTy()) { 2033 Flags.setPointer(); 2034 Flags.setPointerAddrSpace( 2035 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2036 } 2037 2038 if (NeedsRegBlock) { 2039 Flags.setInConsecutiveRegs(); 2040 if (j == NumValues - 1) 2041 Flags.setInConsecutiveRegsLast(); 2042 } 2043 2044 // Propagate extension type if any 2045 if (ExtendKind == ISD::SIGN_EXTEND) 2046 Flags.setSExt(); 2047 else if (ExtendKind == ISD::ZERO_EXTEND) 2048 Flags.setZExt(); 2049 2050 for (unsigned i = 0; i < NumParts; ++i) { 2051 Outs.push_back(ISD::OutputArg(Flags, 2052 Parts[i].getValueType().getSimpleVT(), 2053 VT, /*isfixed=*/true, 0, 0)); 2054 OutVals.push_back(Parts[i]); 2055 } 2056 } 2057 } 2058 } 2059 2060 // Push in swifterror virtual register as the last element of Outs. This makes 2061 // sure swifterror virtual register will be returned in the swifterror 2062 // physical register. 2063 const Function *F = I.getParent()->getParent(); 2064 if (TLI.supportSwiftError() && 2065 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2066 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2067 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2068 Flags.setSwiftError(); 2069 Outs.push_back(ISD::OutputArg( 2070 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2071 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2072 // Create SDNode for the swifterror virtual register. 2073 OutVals.push_back( 2074 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2075 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2076 EVT(TLI.getPointerTy(DL)))); 2077 } 2078 2079 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2080 CallingConv::ID CallConv = 2081 DAG.getMachineFunction().getFunction().getCallingConv(); 2082 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2083 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2084 2085 // Verify that the target's LowerReturn behaved as expected. 2086 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2087 "LowerReturn didn't return a valid chain!"); 2088 2089 // Update the DAG with the new chain value resulting from return lowering. 2090 DAG.setRoot(Chain); 2091 } 2092 2093 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2094 /// created for it, emit nodes to copy the value into the virtual 2095 /// registers. 2096 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2097 // Skip empty types 2098 if (V->getType()->isEmptyTy()) 2099 return; 2100 2101 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2102 if (VMI != FuncInfo.ValueMap.end()) { 2103 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2104 CopyValueToVirtualRegister(V, VMI->second); 2105 } 2106 } 2107 2108 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2109 /// the current basic block, add it to ValueMap now so that we'll get a 2110 /// CopyTo/FromReg. 2111 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2112 // No need to export constants. 2113 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2114 2115 // Already exported? 2116 if (FuncInfo.isExportedInst(V)) return; 2117 2118 Register Reg = FuncInfo.InitializeRegForValue(V); 2119 CopyValueToVirtualRegister(V, Reg); 2120 } 2121 2122 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2123 const BasicBlock *FromBB) { 2124 // The operands of the setcc have to be in this block. We don't know 2125 // how to export them from some other block. 2126 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2127 // Can export from current BB. 2128 if (VI->getParent() == FromBB) 2129 return true; 2130 2131 // Is already exported, noop. 2132 return FuncInfo.isExportedInst(V); 2133 } 2134 2135 // If this is an argument, we can export it if the BB is the entry block or 2136 // if it is already exported. 2137 if (isa<Argument>(V)) { 2138 if (FromBB->isEntryBlock()) 2139 return true; 2140 2141 // Otherwise, can only export this if it is already exported. 2142 return FuncInfo.isExportedInst(V); 2143 } 2144 2145 // Otherwise, constants can always be exported. 2146 return true; 2147 } 2148 2149 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2150 BranchProbability 2151 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2152 const MachineBasicBlock *Dst) const { 2153 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2154 const BasicBlock *SrcBB = Src->getBasicBlock(); 2155 const BasicBlock *DstBB = Dst->getBasicBlock(); 2156 if (!BPI) { 2157 // If BPI is not available, set the default probability as 1 / N, where N is 2158 // the number of successors. 2159 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2160 return BranchProbability(1, SuccSize); 2161 } 2162 return BPI->getEdgeProbability(SrcBB, DstBB); 2163 } 2164 2165 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2166 MachineBasicBlock *Dst, 2167 BranchProbability Prob) { 2168 if (!FuncInfo.BPI) 2169 Src->addSuccessorWithoutProb(Dst); 2170 else { 2171 if (Prob.isUnknown()) 2172 Prob = getEdgeProbability(Src, Dst); 2173 Src->addSuccessor(Dst, Prob); 2174 } 2175 } 2176 2177 static bool InBlock(const Value *V, const BasicBlock *BB) { 2178 if (const Instruction *I = dyn_cast<Instruction>(V)) 2179 return I->getParent() == BB; 2180 return true; 2181 } 2182 2183 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2184 /// This function emits a branch and is used at the leaves of an OR or an 2185 /// AND operator tree. 2186 void 2187 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2188 MachineBasicBlock *TBB, 2189 MachineBasicBlock *FBB, 2190 MachineBasicBlock *CurBB, 2191 MachineBasicBlock *SwitchBB, 2192 BranchProbability TProb, 2193 BranchProbability FProb, 2194 bool InvertCond) { 2195 const BasicBlock *BB = CurBB->getBasicBlock(); 2196 2197 // If the leaf of the tree is a comparison, merge the condition into 2198 // the caseblock. 2199 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2200 // The operands of the cmp have to be in this block. We don't know 2201 // how to export them from some other block. If this is the first block 2202 // of the sequence, no exporting is needed. 2203 if (CurBB == SwitchBB || 2204 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2205 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2206 ISD::CondCode Condition; 2207 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2208 ICmpInst::Predicate Pred = 2209 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2210 Condition = getICmpCondCode(Pred); 2211 } else { 2212 const FCmpInst *FC = cast<FCmpInst>(Cond); 2213 FCmpInst::Predicate Pred = 2214 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2215 Condition = getFCmpCondCode(Pred); 2216 if (TM.Options.NoNaNsFPMath) 2217 Condition = getFCmpCodeWithoutNaN(Condition); 2218 } 2219 2220 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2221 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2222 SL->SwitchCases.push_back(CB); 2223 return; 2224 } 2225 } 2226 2227 // Create a CaseBlock record representing this branch. 2228 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2229 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2230 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2231 SL->SwitchCases.push_back(CB); 2232 } 2233 2234 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2235 MachineBasicBlock *TBB, 2236 MachineBasicBlock *FBB, 2237 MachineBasicBlock *CurBB, 2238 MachineBasicBlock *SwitchBB, 2239 Instruction::BinaryOps Opc, 2240 BranchProbability TProb, 2241 BranchProbability FProb, 2242 bool InvertCond) { 2243 // Skip over not part of the tree and remember to invert op and operands at 2244 // next level. 2245 Value *NotCond; 2246 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2247 InBlock(NotCond, CurBB->getBasicBlock())) { 2248 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2249 !InvertCond); 2250 return; 2251 } 2252 2253 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2254 const Value *BOpOp0, *BOpOp1; 2255 // Compute the effective opcode for Cond, taking into account whether it needs 2256 // to be inverted, e.g. 2257 // and (not (or A, B)), C 2258 // gets lowered as 2259 // and (and (not A, not B), C) 2260 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2261 if (BOp) { 2262 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2263 ? Instruction::And 2264 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2265 ? Instruction::Or 2266 : (Instruction::BinaryOps)0); 2267 if (InvertCond) { 2268 if (BOpc == Instruction::And) 2269 BOpc = Instruction::Or; 2270 else if (BOpc == Instruction::Or) 2271 BOpc = Instruction::And; 2272 } 2273 } 2274 2275 // If this node is not part of the or/and tree, emit it as a branch. 2276 // Note that all nodes in the tree should have same opcode. 2277 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2278 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2279 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2280 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2281 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2282 TProb, FProb, InvertCond); 2283 return; 2284 } 2285 2286 // Create TmpBB after CurBB. 2287 MachineFunction::iterator BBI(CurBB); 2288 MachineFunction &MF = DAG.getMachineFunction(); 2289 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2290 CurBB->getParent()->insert(++BBI, TmpBB); 2291 2292 if (Opc == Instruction::Or) { 2293 // Codegen X | Y as: 2294 // BB1: 2295 // jmp_if_X TBB 2296 // jmp TmpBB 2297 // TmpBB: 2298 // jmp_if_Y TBB 2299 // jmp FBB 2300 // 2301 2302 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2303 // The requirement is that 2304 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2305 // = TrueProb for original BB. 2306 // Assuming the original probabilities are A and B, one choice is to set 2307 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2308 // A/(1+B) and 2B/(1+B). This choice assumes that 2309 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2310 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2311 // TmpBB, but the math is more complicated. 2312 2313 auto NewTrueProb = TProb / 2; 2314 auto NewFalseProb = TProb / 2 + FProb; 2315 // Emit the LHS condition. 2316 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2317 NewFalseProb, InvertCond); 2318 2319 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2320 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2321 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2322 // Emit the RHS condition into TmpBB. 2323 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2324 Probs[1], InvertCond); 2325 } else { 2326 assert(Opc == Instruction::And && "Unknown merge op!"); 2327 // Codegen X & Y as: 2328 // BB1: 2329 // jmp_if_X TmpBB 2330 // jmp FBB 2331 // TmpBB: 2332 // jmp_if_Y TBB 2333 // jmp FBB 2334 // 2335 // This requires creation of TmpBB after CurBB. 2336 2337 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2338 // The requirement is that 2339 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2340 // = FalseProb for original BB. 2341 // Assuming the original probabilities are A and B, one choice is to set 2342 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2343 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2344 // TrueProb for BB1 * FalseProb for TmpBB. 2345 2346 auto NewTrueProb = TProb + FProb / 2; 2347 auto NewFalseProb = FProb / 2; 2348 // Emit the LHS condition. 2349 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2350 NewFalseProb, InvertCond); 2351 2352 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2353 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2354 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2355 // Emit the RHS condition into TmpBB. 2356 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2357 Probs[1], InvertCond); 2358 } 2359 } 2360 2361 /// If the set of cases should be emitted as a series of branches, return true. 2362 /// If we should emit this as a bunch of and/or'd together conditions, return 2363 /// false. 2364 bool 2365 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2366 if (Cases.size() != 2) return true; 2367 2368 // If this is two comparisons of the same values or'd or and'd together, they 2369 // will get folded into a single comparison, so don't emit two blocks. 2370 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2371 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2372 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2373 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2374 return false; 2375 } 2376 2377 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2378 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2379 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2380 Cases[0].CC == Cases[1].CC && 2381 isa<Constant>(Cases[0].CmpRHS) && 2382 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2383 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2384 return false; 2385 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2386 return false; 2387 } 2388 2389 return true; 2390 } 2391 2392 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2393 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2394 2395 // Update machine-CFG edges. 2396 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2397 2398 if (I.isUnconditional()) { 2399 // Update machine-CFG edges. 2400 BrMBB->addSuccessor(Succ0MBB); 2401 2402 // If this is not a fall-through branch or optimizations are switched off, 2403 // emit the branch. 2404 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2405 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2406 MVT::Other, getControlRoot(), 2407 DAG.getBasicBlock(Succ0MBB))); 2408 2409 return; 2410 } 2411 2412 // If this condition is one of the special cases we handle, do special stuff 2413 // now. 2414 const Value *CondVal = I.getCondition(); 2415 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2416 2417 // If this is a series of conditions that are or'd or and'd together, emit 2418 // this as a sequence of branches instead of setcc's with and/or operations. 2419 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2420 // unpredictable branches, and vector extracts because those jumps are likely 2421 // expensive for any target), this should improve performance. 2422 // For example, instead of something like: 2423 // cmp A, B 2424 // C = seteq 2425 // cmp D, E 2426 // F = setle 2427 // or C, F 2428 // jnz foo 2429 // Emit: 2430 // cmp A, B 2431 // je foo 2432 // cmp D, E 2433 // jle foo 2434 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2435 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2436 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2437 Value *Vec; 2438 const Value *BOp0, *BOp1; 2439 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2440 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2441 Opcode = Instruction::And; 2442 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2443 Opcode = Instruction::Or; 2444 2445 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2446 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2447 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2448 getEdgeProbability(BrMBB, Succ0MBB), 2449 getEdgeProbability(BrMBB, Succ1MBB), 2450 /*InvertCond=*/false); 2451 // If the compares in later blocks need to use values not currently 2452 // exported from this block, export them now. This block should always 2453 // be the first entry. 2454 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2455 2456 // Allow some cases to be rejected. 2457 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2458 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2459 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2460 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2461 } 2462 2463 // Emit the branch for this block. 2464 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2465 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2466 return; 2467 } 2468 2469 // Okay, we decided not to do this, remove any inserted MBB's and clear 2470 // SwitchCases. 2471 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2472 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2473 2474 SL->SwitchCases.clear(); 2475 } 2476 } 2477 2478 // Create a CaseBlock record representing this branch. 2479 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2480 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2481 2482 // Use visitSwitchCase to actually insert the fast branch sequence for this 2483 // cond branch. 2484 visitSwitchCase(CB, BrMBB); 2485 } 2486 2487 /// visitSwitchCase - Emits the necessary code to represent a single node in 2488 /// the binary search tree resulting from lowering a switch instruction. 2489 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2490 MachineBasicBlock *SwitchBB) { 2491 SDValue Cond; 2492 SDValue CondLHS = getValue(CB.CmpLHS); 2493 SDLoc dl = CB.DL; 2494 2495 if (CB.CC == ISD::SETTRUE) { 2496 // Branch or fall through to TrueBB. 2497 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2498 SwitchBB->normalizeSuccProbs(); 2499 if (CB.TrueBB != NextBlock(SwitchBB)) { 2500 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2501 DAG.getBasicBlock(CB.TrueBB))); 2502 } 2503 return; 2504 } 2505 2506 auto &TLI = DAG.getTargetLoweringInfo(); 2507 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2508 2509 // Build the setcc now. 2510 if (!CB.CmpMHS) { 2511 // Fold "(X == true)" to X and "(X == false)" to !X to 2512 // handle common cases produced by branch lowering. 2513 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2514 CB.CC == ISD::SETEQ) 2515 Cond = CondLHS; 2516 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2517 CB.CC == ISD::SETEQ) { 2518 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2519 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2520 } else { 2521 SDValue CondRHS = getValue(CB.CmpRHS); 2522 2523 // If a pointer's DAG type is larger than its memory type then the DAG 2524 // values are zero-extended. This breaks signed comparisons so truncate 2525 // back to the underlying type before doing the compare. 2526 if (CondLHS.getValueType() != MemVT) { 2527 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2528 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2529 } 2530 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2531 } 2532 } else { 2533 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2534 2535 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2536 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2537 2538 SDValue CmpOp = getValue(CB.CmpMHS); 2539 EVT VT = CmpOp.getValueType(); 2540 2541 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2542 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2543 ISD::SETLE); 2544 } else { 2545 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2546 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2547 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2548 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2549 } 2550 } 2551 2552 // Update successor info 2553 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2554 // TrueBB and FalseBB are always different unless the incoming IR is 2555 // degenerate. This only happens when running llc on weird IR. 2556 if (CB.TrueBB != CB.FalseBB) 2557 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2558 SwitchBB->normalizeSuccProbs(); 2559 2560 // If the lhs block is the next block, invert the condition so that we can 2561 // fall through to the lhs instead of the rhs block. 2562 if (CB.TrueBB == NextBlock(SwitchBB)) { 2563 std::swap(CB.TrueBB, CB.FalseBB); 2564 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2565 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2566 } 2567 2568 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2569 MVT::Other, getControlRoot(), Cond, 2570 DAG.getBasicBlock(CB.TrueBB)); 2571 2572 setValue(CurInst, BrCond); 2573 2574 // Insert the false branch. Do this even if it's a fall through branch, 2575 // this makes it easier to do DAG optimizations which require inverting 2576 // the branch condition. 2577 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2578 DAG.getBasicBlock(CB.FalseBB)); 2579 2580 DAG.setRoot(BrCond); 2581 } 2582 2583 /// visitJumpTable - Emit JumpTable node in the current MBB 2584 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2585 // Emit the code for the jump table 2586 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2587 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2588 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2589 JT.Reg, PTy); 2590 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2591 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2592 MVT::Other, Index.getValue(1), 2593 Table, Index); 2594 DAG.setRoot(BrJumpTable); 2595 } 2596 2597 /// visitJumpTableHeader - This function emits necessary code to produce index 2598 /// in the JumpTable from switch case. 2599 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2600 JumpTableHeader &JTH, 2601 MachineBasicBlock *SwitchBB) { 2602 SDLoc dl = getCurSDLoc(); 2603 2604 // Subtract the lowest switch case value from the value being switched on. 2605 SDValue SwitchOp = getValue(JTH.SValue); 2606 EVT VT = SwitchOp.getValueType(); 2607 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2608 DAG.getConstant(JTH.First, dl, VT)); 2609 2610 // The SDNode we just created, which holds the value being switched on minus 2611 // the smallest case value, needs to be copied to a virtual register so it 2612 // can be used as an index into the jump table in a subsequent basic block. 2613 // This value may be smaller or larger than the target's pointer type, and 2614 // therefore require extension or truncating. 2615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2616 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2617 2618 unsigned JumpTableReg = 2619 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2620 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2621 JumpTableReg, SwitchOp); 2622 JT.Reg = JumpTableReg; 2623 2624 if (!JTH.FallthroughUnreachable) { 2625 // Emit the range check for the jump table, and branch to the default block 2626 // for the switch statement if the value being switched on exceeds the 2627 // largest case in the switch. 2628 SDValue CMP = DAG.getSetCC( 2629 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2630 Sub.getValueType()), 2631 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2632 2633 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2634 MVT::Other, CopyTo, CMP, 2635 DAG.getBasicBlock(JT.Default)); 2636 2637 // Avoid emitting unnecessary branches to the next block. 2638 if (JT.MBB != NextBlock(SwitchBB)) 2639 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2640 DAG.getBasicBlock(JT.MBB)); 2641 2642 DAG.setRoot(BrCond); 2643 } else { 2644 // Avoid emitting unnecessary branches to the next block. 2645 if (JT.MBB != NextBlock(SwitchBB)) 2646 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2647 DAG.getBasicBlock(JT.MBB))); 2648 else 2649 DAG.setRoot(CopyTo); 2650 } 2651 } 2652 2653 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2654 /// variable if there exists one. 2655 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2656 SDValue &Chain) { 2657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2658 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2659 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2660 MachineFunction &MF = DAG.getMachineFunction(); 2661 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2662 MachineSDNode *Node = 2663 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2664 if (Global) { 2665 MachinePointerInfo MPInfo(Global); 2666 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2667 MachineMemOperand::MODereferenceable; 2668 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2669 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2670 DAG.setNodeMemRefs(Node, {MemRef}); 2671 } 2672 if (PtrTy != PtrMemTy) 2673 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2674 return SDValue(Node, 0); 2675 } 2676 2677 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2678 /// tail spliced into a stack protector check success bb. 2679 /// 2680 /// For a high level explanation of how this fits into the stack protector 2681 /// generation see the comment on the declaration of class 2682 /// StackProtectorDescriptor. 2683 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2684 MachineBasicBlock *ParentBB) { 2685 2686 // First create the loads to the guard/stack slot for the comparison. 2687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2688 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2689 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2690 2691 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2692 int FI = MFI.getStackProtectorIndex(); 2693 2694 SDValue Guard; 2695 SDLoc dl = getCurSDLoc(); 2696 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2697 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2698 Align Align = 2699 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2700 2701 // Generate code to load the content of the guard slot. 2702 SDValue GuardVal = DAG.getLoad( 2703 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2704 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2705 MachineMemOperand::MOVolatile); 2706 2707 if (TLI.useStackGuardXorFP()) 2708 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2709 2710 // Retrieve guard check function, nullptr if instrumentation is inlined. 2711 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2712 // The target provides a guard check function to validate the guard value. 2713 // Generate a call to that function with the content of the guard slot as 2714 // argument. 2715 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2716 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2717 2718 TargetLowering::ArgListTy Args; 2719 TargetLowering::ArgListEntry Entry; 2720 Entry.Node = GuardVal; 2721 Entry.Ty = FnTy->getParamType(0); 2722 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2723 Entry.IsInReg = true; 2724 Args.push_back(Entry); 2725 2726 TargetLowering::CallLoweringInfo CLI(DAG); 2727 CLI.setDebugLoc(getCurSDLoc()) 2728 .setChain(DAG.getEntryNode()) 2729 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2730 getValue(GuardCheckFn), std::move(Args)); 2731 2732 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2733 DAG.setRoot(Result.second); 2734 return; 2735 } 2736 2737 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2738 // Otherwise, emit a volatile load to retrieve the stack guard value. 2739 SDValue Chain = DAG.getEntryNode(); 2740 if (TLI.useLoadStackGuardNode()) { 2741 Guard = getLoadStackGuard(DAG, dl, Chain); 2742 } else { 2743 const Value *IRGuard = TLI.getSDagStackGuard(M); 2744 SDValue GuardPtr = getValue(IRGuard); 2745 2746 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2747 MachinePointerInfo(IRGuard, 0), Align, 2748 MachineMemOperand::MOVolatile); 2749 } 2750 2751 // Perform the comparison via a getsetcc. 2752 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2753 *DAG.getContext(), 2754 Guard.getValueType()), 2755 Guard, GuardVal, ISD::SETNE); 2756 2757 // If the guard/stackslot do not equal, branch to failure MBB. 2758 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2759 MVT::Other, GuardVal.getOperand(0), 2760 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2761 // Otherwise branch to success MBB. 2762 SDValue Br = DAG.getNode(ISD::BR, dl, 2763 MVT::Other, BrCond, 2764 DAG.getBasicBlock(SPD.getSuccessMBB())); 2765 2766 DAG.setRoot(Br); 2767 } 2768 2769 /// Codegen the failure basic block for a stack protector check. 2770 /// 2771 /// A failure stack protector machine basic block consists simply of a call to 2772 /// __stack_chk_fail(). 2773 /// 2774 /// For a high level explanation of how this fits into the stack protector 2775 /// generation see the comment on the declaration of class 2776 /// StackProtectorDescriptor. 2777 void 2778 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2780 TargetLowering::MakeLibCallOptions CallOptions; 2781 CallOptions.setDiscardResult(true); 2782 SDValue Chain = 2783 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2784 std::nullopt, CallOptions, getCurSDLoc()) 2785 .second; 2786 // On PS4/PS5, the "return address" must still be within the calling 2787 // function, even if it's at the very end, so emit an explicit TRAP here. 2788 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2789 if (TM.getTargetTriple().isPS()) 2790 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2791 // WebAssembly needs an unreachable instruction after a non-returning call, 2792 // because the function return type can be different from __stack_chk_fail's 2793 // return type (void). 2794 if (TM.getTargetTriple().isWasm()) 2795 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2796 2797 DAG.setRoot(Chain); 2798 } 2799 2800 /// visitBitTestHeader - This function emits necessary code to produce value 2801 /// suitable for "bit tests" 2802 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2803 MachineBasicBlock *SwitchBB) { 2804 SDLoc dl = getCurSDLoc(); 2805 2806 // Subtract the minimum value. 2807 SDValue SwitchOp = getValue(B.SValue); 2808 EVT VT = SwitchOp.getValueType(); 2809 SDValue RangeSub = 2810 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2811 2812 // Determine the type of the test operands. 2813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2814 bool UsePtrType = false; 2815 if (!TLI.isTypeLegal(VT)) { 2816 UsePtrType = true; 2817 } else { 2818 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2819 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2820 // Switch table case range are encoded into series of masks. 2821 // Just use pointer type, it's guaranteed to fit. 2822 UsePtrType = true; 2823 break; 2824 } 2825 } 2826 SDValue Sub = RangeSub; 2827 if (UsePtrType) { 2828 VT = TLI.getPointerTy(DAG.getDataLayout()); 2829 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2830 } 2831 2832 B.RegVT = VT.getSimpleVT(); 2833 B.Reg = FuncInfo.CreateReg(B.RegVT); 2834 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2835 2836 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2837 2838 if (!B.FallthroughUnreachable) 2839 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2840 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2841 SwitchBB->normalizeSuccProbs(); 2842 2843 SDValue Root = CopyTo; 2844 if (!B.FallthroughUnreachable) { 2845 // Conditional branch to the default block. 2846 SDValue RangeCmp = DAG.getSetCC(dl, 2847 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2848 RangeSub.getValueType()), 2849 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2850 ISD::SETUGT); 2851 2852 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2853 DAG.getBasicBlock(B.Default)); 2854 } 2855 2856 // Avoid emitting unnecessary branches to the next block. 2857 if (MBB != NextBlock(SwitchBB)) 2858 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2859 2860 DAG.setRoot(Root); 2861 } 2862 2863 /// visitBitTestCase - this function produces one "bit test" 2864 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2865 MachineBasicBlock* NextMBB, 2866 BranchProbability BranchProbToNext, 2867 unsigned Reg, 2868 BitTestCase &B, 2869 MachineBasicBlock *SwitchBB) { 2870 SDLoc dl = getCurSDLoc(); 2871 MVT VT = BB.RegVT; 2872 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2873 SDValue Cmp; 2874 unsigned PopCount = countPopulation(B.Mask); 2875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2876 if (PopCount == 1) { 2877 // Testing for a single bit; just compare the shift count with what it 2878 // would need to be to shift a 1 bit in that position. 2879 Cmp = DAG.getSetCC( 2880 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2881 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2882 ISD::SETEQ); 2883 } else if (PopCount == BB.Range) { 2884 // There is only one zero bit in the range, test for it directly. 2885 Cmp = DAG.getSetCC( 2886 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2887 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2888 ISD::SETNE); 2889 } else { 2890 // Make desired shift 2891 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2892 DAG.getConstant(1, dl, VT), ShiftOp); 2893 2894 // Emit bit tests and jumps 2895 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2896 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2897 Cmp = DAG.getSetCC( 2898 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2899 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2900 } 2901 2902 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2903 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2904 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2905 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2906 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2907 // one as they are relative probabilities (and thus work more like weights), 2908 // and hence we need to normalize them to let the sum of them become one. 2909 SwitchBB->normalizeSuccProbs(); 2910 2911 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2912 MVT::Other, getControlRoot(), 2913 Cmp, DAG.getBasicBlock(B.TargetBB)); 2914 2915 // Avoid emitting unnecessary branches to the next block. 2916 if (NextMBB != NextBlock(SwitchBB)) 2917 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2918 DAG.getBasicBlock(NextMBB)); 2919 2920 DAG.setRoot(BrAnd); 2921 } 2922 2923 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2924 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2925 2926 // Retrieve successors. Look through artificial IR level blocks like 2927 // catchswitch for successors. 2928 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2929 const BasicBlock *EHPadBB = I.getSuccessor(1); 2930 2931 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2932 // have to do anything here to lower funclet bundles. 2933 assert(!I.hasOperandBundlesOtherThan( 2934 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2935 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2936 LLVMContext::OB_cfguardtarget, 2937 LLVMContext::OB_clang_arc_attachedcall}) && 2938 "Cannot lower invokes with arbitrary operand bundles yet!"); 2939 2940 const Value *Callee(I.getCalledOperand()); 2941 const Function *Fn = dyn_cast<Function>(Callee); 2942 if (isa<InlineAsm>(Callee)) 2943 visitInlineAsm(I, EHPadBB); 2944 else if (Fn && Fn->isIntrinsic()) { 2945 switch (Fn->getIntrinsicID()) { 2946 default: 2947 llvm_unreachable("Cannot invoke this intrinsic"); 2948 case Intrinsic::donothing: 2949 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2950 case Intrinsic::seh_try_begin: 2951 case Intrinsic::seh_scope_begin: 2952 case Intrinsic::seh_try_end: 2953 case Intrinsic::seh_scope_end: 2954 break; 2955 case Intrinsic::experimental_patchpoint_void: 2956 case Intrinsic::experimental_patchpoint_i64: 2957 visitPatchpoint(I, EHPadBB); 2958 break; 2959 case Intrinsic::experimental_gc_statepoint: 2960 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2961 break; 2962 case Intrinsic::wasm_rethrow: { 2963 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2964 // special because it can be invoked, so we manually lower it to a DAG 2965 // node here. 2966 SmallVector<SDValue, 8> Ops; 2967 Ops.push_back(getRoot()); // inchain 2968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2969 Ops.push_back( 2970 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2971 TLI.getPointerTy(DAG.getDataLayout()))); 2972 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2973 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2974 break; 2975 } 2976 } 2977 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2978 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2979 // Eventually we will support lowering the @llvm.experimental.deoptimize 2980 // intrinsic, and right now there are no plans to support other intrinsics 2981 // with deopt state. 2982 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2983 } else { 2984 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2985 } 2986 2987 // If the value of the invoke is used outside of its defining block, make it 2988 // available as a virtual register. 2989 // We already took care of the exported value for the statepoint instruction 2990 // during call to the LowerStatepoint. 2991 if (!isa<GCStatepointInst>(I)) { 2992 CopyToExportRegsIfNeeded(&I); 2993 } 2994 2995 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2996 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2997 BranchProbability EHPadBBProb = 2998 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2999 : BranchProbability::getZero(); 3000 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3001 3002 // Update successor info. 3003 addSuccessorWithProb(InvokeMBB, Return); 3004 for (auto &UnwindDest : UnwindDests) { 3005 UnwindDest.first->setIsEHPad(); 3006 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3007 } 3008 InvokeMBB->normalizeSuccProbs(); 3009 3010 // Drop into normal successor. 3011 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3012 DAG.getBasicBlock(Return))); 3013 } 3014 3015 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3016 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3017 3018 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3019 // have to do anything here to lower funclet bundles. 3020 assert(!I.hasOperandBundlesOtherThan( 3021 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3022 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3023 3024 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3025 visitInlineAsm(I); 3026 CopyToExportRegsIfNeeded(&I); 3027 3028 // Retrieve successors. 3029 SmallPtrSet<BasicBlock *, 8> Dests; 3030 Dests.insert(I.getDefaultDest()); 3031 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3032 3033 // Update successor info. 3034 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3035 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3036 BasicBlock *Dest = I.getIndirectDest(i); 3037 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3038 Target->setIsInlineAsmBrIndirectTarget(); 3039 Target->setMachineBlockAddressTaken(); 3040 Target->setLabelMustBeEmitted(); 3041 // Don't add duplicate machine successors. 3042 if (Dests.insert(Dest).second) 3043 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3044 } 3045 CallBrMBB->normalizeSuccProbs(); 3046 3047 // Drop into default successor. 3048 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3049 MVT::Other, getControlRoot(), 3050 DAG.getBasicBlock(Return))); 3051 } 3052 3053 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3054 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3055 } 3056 3057 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3058 assert(FuncInfo.MBB->isEHPad() && 3059 "Call to landingpad not in landing pad!"); 3060 3061 // If there aren't registers to copy the values into (e.g., during SjLj 3062 // exceptions), then don't bother to create these DAG nodes. 3063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3064 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3065 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3066 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3067 return; 3068 3069 // If landingpad's return type is token type, we don't create DAG nodes 3070 // for its exception pointer and selector value. The extraction of exception 3071 // pointer or selector value from token type landingpads is not currently 3072 // supported. 3073 if (LP.getType()->isTokenTy()) 3074 return; 3075 3076 SmallVector<EVT, 2> ValueVTs; 3077 SDLoc dl = getCurSDLoc(); 3078 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3079 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3080 3081 // Get the two live-in registers as SDValues. The physregs have already been 3082 // copied into virtual registers. 3083 SDValue Ops[2]; 3084 if (FuncInfo.ExceptionPointerVirtReg) { 3085 Ops[0] = DAG.getZExtOrTrunc( 3086 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3087 FuncInfo.ExceptionPointerVirtReg, 3088 TLI.getPointerTy(DAG.getDataLayout())), 3089 dl, ValueVTs[0]); 3090 } else { 3091 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3092 } 3093 Ops[1] = DAG.getZExtOrTrunc( 3094 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3095 FuncInfo.ExceptionSelectorVirtReg, 3096 TLI.getPointerTy(DAG.getDataLayout())), 3097 dl, ValueVTs[1]); 3098 3099 // Merge into one. 3100 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3101 DAG.getVTList(ValueVTs), Ops); 3102 setValue(&LP, Res); 3103 } 3104 3105 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3106 MachineBasicBlock *Last) { 3107 // Update JTCases. 3108 for (JumpTableBlock &JTB : SL->JTCases) 3109 if (JTB.first.HeaderBB == First) 3110 JTB.first.HeaderBB = Last; 3111 3112 // Update BitTestCases. 3113 for (BitTestBlock &BTB : SL->BitTestCases) 3114 if (BTB.Parent == First) 3115 BTB.Parent = Last; 3116 } 3117 3118 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3119 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3120 3121 // Update machine-CFG edges with unique successors. 3122 SmallSet<BasicBlock*, 32> Done; 3123 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3124 BasicBlock *BB = I.getSuccessor(i); 3125 bool Inserted = Done.insert(BB).second; 3126 if (!Inserted) 3127 continue; 3128 3129 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3130 addSuccessorWithProb(IndirectBrMBB, Succ); 3131 } 3132 IndirectBrMBB->normalizeSuccProbs(); 3133 3134 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3135 MVT::Other, getControlRoot(), 3136 getValue(I.getAddress()))); 3137 } 3138 3139 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3140 if (!DAG.getTarget().Options.TrapUnreachable) 3141 return; 3142 3143 // We may be able to ignore unreachable behind a noreturn call. 3144 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3145 const BasicBlock &BB = *I.getParent(); 3146 if (&I != &BB.front()) { 3147 BasicBlock::const_iterator PredI = 3148 std::prev(BasicBlock::const_iterator(&I)); 3149 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3150 if (Call->doesNotReturn()) 3151 return; 3152 } 3153 } 3154 } 3155 3156 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3157 } 3158 3159 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3160 SDNodeFlags Flags; 3161 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3162 Flags.copyFMF(*FPOp); 3163 3164 SDValue Op = getValue(I.getOperand(0)); 3165 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3166 Op, Flags); 3167 setValue(&I, UnNodeValue); 3168 } 3169 3170 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3171 SDNodeFlags Flags; 3172 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3173 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3174 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3175 } 3176 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3177 Flags.setExact(ExactOp->isExact()); 3178 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3179 Flags.copyFMF(*FPOp); 3180 3181 SDValue Op1 = getValue(I.getOperand(0)); 3182 SDValue Op2 = getValue(I.getOperand(1)); 3183 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3184 Op1, Op2, Flags); 3185 setValue(&I, BinNodeValue); 3186 } 3187 3188 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3189 SDValue Op1 = getValue(I.getOperand(0)); 3190 SDValue Op2 = getValue(I.getOperand(1)); 3191 3192 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3193 Op1.getValueType(), DAG.getDataLayout()); 3194 3195 // Coerce the shift amount to the right type if we can. This exposes the 3196 // truncate or zext to optimization early. 3197 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3198 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3199 "Unexpected shift type"); 3200 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3201 } 3202 3203 bool nuw = false; 3204 bool nsw = false; 3205 bool exact = false; 3206 3207 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3208 3209 if (const OverflowingBinaryOperator *OFBinOp = 3210 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3211 nuw = OFBinOp->hasNoUnsignedWrap(); 3212 nsw = OFBinOp->hasNoSignedWrap(); 3213 } 3214 if (const PossiblyExactOperator *ExactOp = 3215 dyn_cast<const PossiblyExactOperator>(&I)) 3216 exact = ExactOp->isExact(); 3217 } 3218 SDNodeFlags Flags; 3219 Flags.setExact(exact); 3220 Flags.setNoSignedWrap(nsw); 3221 Flags.setNoUnsignedWrap(nuw); 3222 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3223 Flags); 3224 setValue(&I, Res); 3225 } 3226 3227 void SelectionDAGBuilder::visitSDiv(const User &I) { 3228 SDValue Op1 = getValue(I.getOperand(0)); 3229 SDValue Op2 = getValue(I.getOperand(1)); 3230 3231 SDNodeFlags Flags; 3232 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3233 cast<PossiblyExactOperator>(&I)->isExact()); 3234 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3235 Op2, Flags)); 3236 } 3237 3238 void SelectionDAGBuilder::visitICmp(const User &I) { 3239 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3240 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3241 predicate = IC->getPredicate(); 3242 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3243 predicate = ICmpInst::Predicate(IC->getPredicate()); 3244 SDValue Op1 = getValue(I.getOperand(0)); 3245 SDValue Op2 = getValue(I.getOperand(1)); 3246 ISD::CondCode Opcode = getICmpCondCode(predicate); 3247 3248 auto &TLI = DAG.getTargetLoweringInfo(); 3249 EVT MemVT = 3250 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3251 3252 // If a pointer's DAG type is larger than its memory type then the DAG values 3253 // are zero-extended. This breaks signed comparisons so truncate back to the 3254 // underlying type before doing the compare. 3255 if (Op1.getValueType() != MemVT) { 3256 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3257 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3258 } 3259 3260 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3261 I.getType()); 3262 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3263 } 3264 3265 void SelectionDAGBuilder::visitFCmp(const User &I) { 3266 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3267 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3268 predicate = FC->getPredicate(); 3269 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3270 predicate = FCmpInst::Predicate(FC->getPredicate()); 3271 SDValue Op1 = getValue(I.getOperand(0)); 3272 SDValue Op2 = getValue(I.getOperand(1)); 3273 3274 ISD::CondCode Condition = getFCmpCondCode(predicate); 3275 auto *FPMO = cast<FPMathOperator>(&I); 3276 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3277 Condition = getFCmpCodeWithoutNaN(Condition); 3278 3279 SDNodeFlags Flags; 3280 Flags.copyFMF(*FPMO); 3281 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3282 3283 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3284 I.getType()); 3285 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3286 } 3287 3288 // Check if the condition of the select has one use or two users that are both 3289 // selects with the same condition. 3290 static bool hasOnlySelectUsers(const Value *Cond) { 3291 return llvm::all_of(Cond->users(), [](const Value *V) { 3292 return isa<SelectInst>(V); 3293 }); 3294 } 3295 3296 void SelectionDAGBuilder::visitSelect(const User &I) { 3297 SmallVector<EVT, 4> ValueVTs; 3298 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3299 ValueVTs); 3300 unsigned NumValues = ValueVTs.size(); 3301 if (NumValues == 0) return; 3302 3303 SmallVector<SDValue, 4> Values(NumValues); 3304 SDValue Cond = getValue(I.getOperand(0)); 3305 SDValue LHSVal = getValue(I.getOperand(1)); 3306 SDValue RHSVal = getValue(I.getOperand(2)); 3307 SmallVector<SDValue, 1> BaseOps(1, Cond); 3308 ISD::NodeType OpCode = 3309 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3310 3311 bool IsUnaryAbs = false; 3312 bool Negate = false; 3313 3314 SDNodeFlags Flags; 3315 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3316 Flags.copyFMF(*FPOp); 3317 3318 // Min/max matching is only viable if all output VTs are the same. 3319 if (all_equal(ValueVTs)) { 3320 EVT VT = ValueVTs[0]; 3321 LLVMContext &Ctx = *DAG.getContext(); 3322 auto &TLI = DAG.getTargetLoweringInfo(); 3323 3324 // We care about the legality of the operation after it has been type 3325 // legalized. 3326 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3327 VT = TLI.getTypeToTransformTo(Ctx, VT); 3328 3329 // If the vselect is legal, assume we want to leave this as a vector setcc + 3330 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3331 // min/max is legal on the scalar type. 3332 bool UseScalarMinMax = VT.isVector() && 3333 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3334 3335 Value *LHS, *RHS; 3336 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3337 ISD::NodeType Opc = ISD::DELETED_NODE; 3338 switch (SPR.Flavor) { 3339 case SPF_UMAX: Opc = ISD::UMAX; break; 3340 case SPF_UMIN: Opc = ISD::UMIN; break; 3341 case SPF_SMAX: Opc = ISD::SMAX; break; 3342 case SPF_SMIN: Opc = ISD::SMIN; break; 3343 case SPF_FMINNUM: 3344 switch (SPR.NaNBehavior) { 3345 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3346 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3347 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3348 case SPNB_RETURNS_ANY: { 3349 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3350 Opc = ISD::FMINNUM; 3351 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3352 Opc = ISD::FMINIMUM; 3353 else if (UseScalarMinMax) 3354 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3355 ISD::FMINNUM : ISD::FMINIMUM; 3356 break; 3357 } 3358 } 3359 break; 3360 case SPF_FMAXNUM: 3361 switch (SPR.NaNBehavior) { 3362 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3363 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3364 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3365 case SPNB_RETURNS_ANY: 3366 3367 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3368 Opc = ISD::FMAXNUM; 3369 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3370 Opc = ISD::FMAXIMUM; 3371 else if (UseScalarMinMax) 3372 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3373 ISD::FMAXNUM : ISD::FMAXIMUM; 3374 break; 3375 } 3376 break; 3377 case SPF_NABS: 3378 Negate = true; 3379 [[fallthrough]]; 3380 case SPF_ABS: 3381 IsUnaryAbs = true; 3382 Opc = ISD::ABS; 3383 break; 3384 default: break; 3385 } 3386 3387 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3388 (TLI.isOperationLegalOrCustom(Opc, VT) || 3389 (UseScalarMinMax && 3390 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3391 // If the underlying comparison instruction is used by any other 3392 // instruction, the consumed instructions won't be destroyed, so it is 3393 // not profitable to convert to a min/max. 3394 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3395 OpCode = Opc; 3396 LHSVal = getValue(LHS); 3397 RHSVal = getValue(RHS); 3398 BaseOps.clear(); 3399 } 3400 3401 if (IsUnaryAbs) { 3402 OpCode = Opc; 3403 LHSVal = getValue(LHS); 3404 BaseOps.clear(); 3405 } 3406 } 3407 3408 if (IsUnaryAbs) { 3409 for (unsigned i = 0; i != NumValues; ++i) { 3410 SDLoc dl = getCurSDLoc(); 3411 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3412 Values[i] = 3413 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3414 if (Negate) 3415 Values[i] = DAG.getNegative(Values[i], dl, VT); 3416 } 3417 } else { 3418 for (unsigned i = 0; i != NumValues; ++i) { 3419 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3420 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3421 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3422 Values[i] = DAG.getNode( 3423 OpCode, getCurSDLoc(), 3424 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3425 } 3426 } 3427 3428 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3429 DAG.getVTList(ValueVTs), Values)); 3430 } 3431 3432 void SelectionDAGBuilder::visitTrunc(const User &I) { 3433 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3434 SDValue N = getValue(I.getOperand(0)); 3435 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3436 I.getType()); 3437 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3438 } 3439 3440 void SelectionDAGBuilder::visitZExt(const User &I) { 3441 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3442 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3443 SDValue N = getValue(I.getOperand(0)); 3444 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3445 I.getType()); 3446 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3447 } 3448 3449 void SelectionDAGBuilder::visitSExt(const User &I) { 3450 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3451 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3452 SDValue N = getValue(I.getOperand(0)); 3453 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3454 I.getType()); 3455 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3456 } 3457 3458 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3459 // FPTrunc is never a no-op cast, no need to check 3460 SDValue N = getValue(I.getOperand(0)); 3461 SDLoc dl = getCurSDLoc(); 3462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3463 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3464 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3465 DAG.getTargetConstant( 3466 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3467 } 3468 3469 void SelectionDAGBuilder::visitFPExt(const User &I) { 3470 // FPExt is never a no-op cast, no need to check 3471 SDValue N = getValue(I.getOperand(0)); 3472 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3473 I.getType()); 3474 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3475 } 3476 3477 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3478 // FPToUI is never a no-op cast, no need to check 3479 SDValue N = getValue(I.getOperand(0)); 3480 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3481 I.getType()); 3482 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3483 } 3484 3485 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3486 // FPToSI is never a no-op cast, no need to check 3487 SDValue N = getValue(I.getOperand(0)); 3488 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3489 I.getType()); 3490 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3491 } 3492 3493 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3494 // UIToFP is never a no-op cast, no need to check 3495 SDValue N = getValue(I.getOperand(0)); 3496 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3497 I.getType()); 3498 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3499 } 3500 3501 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3502 // SIToFP is never a no-op cast, no need to check 3503 SDValue N = getValue(I.getOperand(0)); 3504 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3505 I.getType()); 3506 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3507 } 3508 3509 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3510 // What to do depends on the size of the integer and the size of the pointer. 3511 // We can either truncate, zero extend, or no-op, accordingly. 3512 SDValue N = getValue(I.getOperand(0)); 3513 auto &TLI = DAG.getTargetLoweringInfo(); 3514 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3515 I.getType()); 3516 EVT PtrMemVT = 3517 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3518 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3519 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3520 setValue(&I, N); 3521 } 3522 3523 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3524 // What to do depends on the size of the integer and the size of the pointer. 3525 // We can either truncate, zero extend, or no-op, accordingly. 3526 SDValue N = getValue(I.getOperand(0)); 3527 auto &TLI = DAG.getTargetLoweringInfo(); 3528 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3529 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3530 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3531 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3532 setValue(&I, N); 3533 } 3534 3535 void SelectionDAGBuilder::visitBitCast(const User &I) { 3536 SDValue N = getValue(I.getOperand(0)); 3537 SDLoc dl = getCurSDLoc(); 3538 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3539 I.getType()); 3540 3541 // BitCast assures us that source and destination are the same size so this is 3542 // either a BITCAST or a no-op. 3543 if (DestVT != N.getValueType()) 3544 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3545 DestVT, N)); // convert types. 3546 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3547 // might fold any kind of constant expression to an integer constant and that 3548 // is not what we are looking for. Only recognize a bitcast of a genuine 3549 // constant integer as an opaque constant. 3550 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3551 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3552 /*isOpaque*/true)); 3553 else 3554 setValue(&I, N); // noop cast. 3555 } 3556 3557 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3558 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3559 const Value *SV = I.getOperand(0); 3560 SDValue N = getValue(SV); 3561 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3562 3563 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3564 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3565 3566 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3567 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3568 3569 setValue(&I, N); 3570 } 3571 3572 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3574 SDValue InVec = getValue(I.getOperand(0)); 3575 SDValue InVal = getValue(I.getOperand(1)); 3576 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3577 TLI.getVectorIdxTy(DAG.getDataLayout())); 3578 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3579 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3580 InVec, InVal, InIdx)); 3581 } 3582 3583 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3584 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3585 SDValue InVec = getValue(I.getOperand(0)); 3586 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3587 TLI.getVectorIdxTy(DAG.getDataLayout())); 3588 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3589 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3590 InVec, InIdx)); 3591 } 3592 3593 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3594 SDValue Src1 = getValue(I.getOperand(0)); 3595 SDValue Src2 = getValue(I.getOperand(1)); 3596 ArrayRef<int> Mask; 3597 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3598 Mask = SVI->getShuffleMask(); 3599 else 3600 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3601 SDLoc DL = getCurSDLoc(); 3602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3603 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3604 EVT SrcVT = Src1.getValueType(); 3605 3606 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3607 VT.isScalableVector()) { 3608 // Canonical splat form of first element of first input vector. 3609 SDValue FirstElt = 3610 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3611 DAG.getVectorIdxConstant(0, DL)); 3612 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3613 return; 3614 } 3615 3616 // For now, we only handle splats for scalable vectors. 3617 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3618 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3619 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3620 3621 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3622 unsigned MaskNumElts = Mask.size(); 3623 3624 if (SrcNumElts == MaskNumElts) { 3625 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3626 return; 3627 } 3628 3629 // Normalize the shuffle vector since mask and vector length don't match. 3630 if (SrcNumElts < MaskNumElts) { 3631 // Mask is longer than the source vectors. We can use concatenate vector to 3632 // make the mask and vectors lengths match. 3633 3634 if (MaskNumElts % SrcNumElts == 0) { 3635 // Mask length is a multiple of the source vector length. 3636 // Check if the shuffle is some kind of concatenation of the input 3637 // vectors. 3638 unsigned NumConcat = MaskNumElts / SrcNumElts; 3639 bool IsConcat = true; 3640 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3641 for (unsigned i = 0; i != MaskNumElts; ++i) { 3642 int Idx = Mask[i]; 3643 if (Idx < 0) 3644 continue; 3645 // Ensure the indices in each SrcVT sized piece are sequential and that 3646 // the same source is used for the whole piece. 3647 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3648 (ConcatSrcs[i / SrcNumElts] >= 0 && 3649 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3650 IsConcat = false; 3651 break; 3652 } 3653 // Remember which source this index came from. 3654 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3655 } 3656 3657 // The shuffle is concatenating multiple vectors together. Just emit 3658 // a CONCAT_VECTORS operation. 3659 if (IsConcat) { 3660 SmallVector<SDValue, 8> ConcatOps; 3661 for (auto Src : ConcatSrcs) { 3662 if (Src < 0) 3663 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3664 else if (Src == 0) 3665 ConcatOps.push_back(Src1); 3666 else 3667 ConcatOps.push_back(Src2); 3668 } 3669 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3670 return; 3671 } 3672 } 3673 3674 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3675 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3676 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3677 PaddedMaskNumElts); 3678 3679 // Pad both vectors with undefs to make them the same length as the mask. 3680 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3681 3682 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3683 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3684 MOps1[0] = Src1; 3685 MOps2[0] = Src2; 3686 3687 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3688 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3689 3690 // Readjust mask for new input vector length. 3691 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3692 for (unsigned i = 0; i != MaskNumElts; ++i) { 3693 int Idx = Mask[i]; 3694 if (Idx >= (int)SrcNumElts) 3695 Idx -= SrcNumElts - PaddedMaskNumElts; 3696 MappedOps[i] = Idx; 3697 } 3698 3699 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3700 3701 // If the concatenated vector was padded, extract a subvector with the 3702 // correct number of elements. 3703 if (MaskNumElts != PaddedMaskNumElts) 3704 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3705 DAG.getVectorIdxConstant(0, DL)); 3706 3707 setValue(&I, Result); 3708 return; 3709 } 3710 3711 if (SrcNumElts > MaskNumElts) { 3712 // Analyze the access pattern of the vector to see if we can extract 3713 // two subvectors and do the shuffle. 3714 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3715 bool CanExtract = true; 3716 for (int Idx : Mask) { 3717 unsigned Input = 0; 3718 if (Idx < 0) 3719 continue; 3720 3721 if (Idx >= (int)SrcNumElts) { 3722 Input = 1; 3723 Idx -= SrcNumElts; 3724 } 3725 3726 // If all the indices come from the same MaskNumElts sized portion of 3727 // the sources we can use extract. Also make sure the extract wouldn't 3728 // extract past the end of the source. 3729 int NewStartIdx = alignDown(Idx, MaskNumElts); 3730 if (NewStartIdx + MaskNumElts > SrcNumElts || 3731 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3732 CanExtract = false; 3733 // Make sure we always update StartIdx as we use it to track if all 3734 // elements are undef. 3735 StartIdx[Input] = NewStartIdx; 3736 } 3737 3738 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3739 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3740 return; 3741 } 3742 if (CanExtract) { 3743 // Extract appropriate subvector and generate a vector shuffle 3744 for (unsigned Input = 0; Input < 2; ++Input) { 3745 SDValue &Src = Input == 0 ? Src1 : Src2; 3746 if (StartIdx[Input] < 0) 3747 Src = DAG.getUNDEF(VT); 3748 else { 3749 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3750 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3751 } 3752 } 3753 3754 // Calculate new mask. 3755 SmallVector<int, 8> MappedOps(Mask); 3756 for (int &Idx : MappedOps) { 3757 if (Idx >= (int)SrcNumElts) 3758 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3759 else if (Idx >= 0) 3760 Idx -= StartIdx[0]; 3761 } 3762 3763 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3764 return; 3765 } 3766 } 3767 3768 // We can't use either concat vectors or extract subvectors so fall back to 3769 // replacing the shuffle with extract and build vector. 3770 // to insert and build vector. 3771 EVT EltVT = VT.getVectorElementType(); 3772 SmallVector<SDValue,8> Ops; 3773 for (int Idx : Mask) { 3774 SDValue Res; 3775 3776 if (Idx < 0) { 3777 Res = DAG.getUNDEF(EltVT); 3778 } else { 3779 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3780 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3781 3782 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3783 DAG.getVectorIdxConstant(Idx, DL)); 3784 } 3785 3786 Ops.push_back(Res); 3787 } 3788 3789 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3790 } 3791 3792 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3793 ArrayRef<unsigned> Indices = I.getIndices(); 3794 const Value *Op0 = I.getOperand(0); 3795 const Value *Op1 = I.getOperand(1); 3796 Type *AggTy = I.getType(); 3797 Type *ValTy = Op1->getType(); 3798 bool IntoUndef = isa<UndefValue>(Op0); 3799 bool FromUndef = isa<UndefValue>(Op1); 3800 3801 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3802 3803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3804 SmallVector<EVT, 4> AggValueVTs; 3805 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3806 SmallVector<EVT, 4> ValValueVTs; 3807 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3808 3809 unsigned NumAggValues = AggValueVTs.size(); 3810 unsigned NumValValues = ValValueVTs.size(); 3811 SmallVector<SDValue, 4> Values(NumAggValues); 3812 3813 // Ignore an insertvalue that produces an empty object 3814 if (!NumAggValues) { 3815 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3816 return; 3817 } 3818 3819 SDValue Agg = getValue(Op0); 3820 unsigned i = 0; 3821 // Copy the beginning value(s) from the original aggregate. 3822 for (; i != LinearIndex; ++i) 3823 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3824 SDValue(Agg.getNode(), Agg.getResNo() + i); 3825 // Copy values from the inserted value(s). 3826 if (NumValValues) { 3827 SDValue Val = getValue(Op1); 3828 for (; i != LinearIndex + NumValValues; ++i) 3829 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3830 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3831 } 3832 // Copy remaining value(s) from the original aggregate. 3833 for (; i != NumAggValues; ++i) 3834 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3835 SDValue(Agg.getNode(), Agg.getResNo() + i); 3836 3837 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3838 DAG.getVTList(AggValueVTs), Values)); 3839 } 3840 3841 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3842 ArrayRef<unsigned> Indices = I.getIndices(); 3843 const Value *Op0 = I.getOperand(0); 3844 Type *AggTy = Op0->getType(); 3845 Type *ValTy = I.getType(); 3846 bool OutOfUndef = isa<UndefValue>(Op0); 3847 3848 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3849 3850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3851 SmallVector<EVT, 4> ValValueVTs; 3852 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3853 3854 unsigned NumValValues = ValValueVTs.size(); 3855 3856 // Ignore a extractvalue that produces an empty object 3857 if (!NumValValues) { 3858 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3859 return; 3860 } 3861 3862 SmallVector<SDValue, 4> Values(NumValValues); 3863 3864 SDValue Agg = getValue(Op0); 3865 // Copy out the selected value(s). 3866 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3867 Values[i - LinearIndex] = 3868 OutOfUndef ? 3869 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3870 SDValue(Agg.getNode(), Agg.getResNo() + i); 3871 3872 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3873 DAG.getVTList(ValValueVTs), Values)); 3874 } 3875 3876 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3877 Value *Op0 = I.getOperand(0); 3878 // Note that the pointer operand may be a vector of pointers. Take the scalar 3879 // element which holds a pointer. 3880 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3881 SDValue N = getValue(Op0); 3882 SDLoc dl = getCurSDLoc(); 3883 auto &TLI = DAG.getTargetLoweringInfo(); 3884 3885 // Normalize Vector GEP - all scalar operands should be converted to the 3886 // splat vector. 3887 bool IsVectorGEP = I.getType()->isVectorTy(); 3888 ElementCount VectorElementCount = 3889 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3890 : ElementCount::getFixed(0); 3891 3892 if (IsVectorGEP && !N.getValueType().isVector()) { 3893 LLVMContext &Context = *DAG.getContext(); 3894 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3895 N = DAG.getSplat(VT, dl, N); 3896 } 3897 3898 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3899 GTI != E; ++GTI) { 3900 const Value *Idx = GTI.getOperand(); 3901 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3902 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3903 if (Field) { 3904 // N = N + Offset 3905 uint64_t Offset = 3906 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3907 3908 // In an inbounds GEP with an offset that is nonnegative even when 3909 // interpreted as signed, assume there is no unsigned overflow. 3910 SDNodeFlags Flags; 3911 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3912 Flags.setNoUnsignedWrap(true); 3913 3914 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3915 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3916 } 3917 } else { 3918 // IdxSize is the width of the arithmetic according to IR semantics. 3919 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3920 // (and fix up the result later). 3921 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3922 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3923 TypeSize ElementSize = 3924 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3925 // We intentionally mask away the high bits here; ElementSize may not 3926 // fit in IdxTy. 3927 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3928 bool ElementScalable = ElementSize.isScalable(); 3929 3930 // If this is a scalar constant or a splat vector of constants, 3931 // handle it quickly. 3932 const auto *C = dyn_cast<Constant>(Idx); 3933 if (C && isa<VectorType>(C->getType())) 3934 C = C->getSplatValue(); 3935 3936 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3937 if (CI && CI->isZero()) 3938 continue; 3939 if (CI && !ElementScalable) { 3940 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3941 LLVMContext &Context = *DAG.getContext(); 3942 SDValue OffsVal; 3943 if (IsVectorGEP) 3944 OffsVal = DAG.getConstant( 3945 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3946 else 3947 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3948 3949 // In an inbounds GEP with an offset that is nonnegative even when 3950 // interpreted as signed, assume there is no unsigned overflow. 3951 SDNodeFlags Flags; 3952 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3953 Flags.setNoUnsignedWrap(true); 3954 3955 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3956 3957 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3958 continue; 3959 } 3960 3961 // N = N + Idx * ElementMul; 3962 SDValue IdxN = getValue(Idx); 3963 3964 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3965 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3966 VectorElementCount); 3967 IdxN = DAG.getSplat(VT, dl, IdxN); 3968 } 3969 3970 // If the index is smaller or larger than intptr_t, truncate or extend 3971 // it. 3972 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3973 3974 if (ElementScalable) { 3975 EVT VScaleTy = N.getValueType().getScalarType(); 3976 SDValue VScale = DAG.getNode( 3977 ISD::VSCALE, dl, VScaleTy, 3978 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3979 if (IsVectorGEP) 3980 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3981 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3982 } else { 3983 // If this is a multiply by a power of two, turn it into a shl 3984 // immediately. This is a very common case. 3985 if (ElementMul != 1) { 3986 if (ElementMul.isPowerOf2()) { 3987 unsigned Amt = ElementMul.logBase2(); 3988 IdxN = DAG.getNode(ISD::SHL, dl, 3989 N.getValueType(), IdxN, 3990 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3991 } else { 3992 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3993 IdxN.getValueType()); 3994 IdxN = DAG.getNode(ISD::MUL, dl, 3995 N.getValueType(), IdxN, Scale); 3996 } 3997 } 3998 } 3999 4000 N = DAG.getNode(ISD::ADD, dl, 4001 N.getValueType(), N, IdxN); 4002 } 4003 } 4004 4005 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4006 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4007 if (IsVectorGEP) { 4008 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4009 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4010 } 4011 4012 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4013 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4014 4015 setValue(&I, N); 4016 } 4017 4018 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4019 // If this is a fixed sized alloca in the entry block of the function, 4020 // allocate it statically on the stack. 4021 if (FuncInfo.StaticAllocaMap.count(&I)) 4022 return; // getValue will auto-populate this. 4023 4024 SDLoc dl = getCurSDLoc(); 4025 Type *Ty = I.getAllocatedType(); 4026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4027 auto &DL = DAG.getDataLayout(); 4028 TypeSize TySize = DL.getTypeAllocSize(Ty); 4029 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4030 4031 SDValue AllocSize = getValue(I.getArraySize()); 4032 4033 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4034 if (AllocSize.getValueType() != IntPtr) 4035 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4036 4037 if (TySize.isScalable()) 4038 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4039 DAG.getVScale(dl, IntPtr, 4040 APInt(IntPtr.getScalarSizeInBits(), 4041 TySize.getKnownMinValue()))); 4042 else 4043 AllocSize = 4044 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4045 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4046 4047 // Handle alignment. If the requested alignment is less than or equal to 4048 // the stack alignment, ignore it. If the size is greater than or equal to 4049 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4050 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4051 if (*Alignment <= StackAlign) 4052 Alignment = std::nullopt; 4053 4054 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4055 // Round the size of the allocation up to the stack alignment size 4056 // by add SA-1 to the size. This doesn't overflow because we're computing 4057 // an address inside an alloca. 4058 SDNodeFlags Flags; 4059 Flags.setNoUnsignedWrap(true); 4060 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4061 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4062 4063 // Mask out the low bits for alignment purposes. 4064 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4065 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4066 4067 SDValue Ops[] = { 4068 getRoot(), AllocSize, 4069 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4070 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4071 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4072 setValue(&I, DSA); 4073 DAG.setRoot(DSA.getValue(1)); 4074 4075 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4076 } 4077 4078 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4079 if (I.isAtomic()) 4080 return visitAtomicLoad(I); 4081 4082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4083 const Value *SV = I.getOperand(0); 4084 if (TLI.supportSwiftError()) { 4085 // Swifterror values can come from either a function parameter with 4086 // swifterror attribute or an alloca with swifterror attribute. 4087 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4088 if (Arg->hasSwiftErrorAttr()) 4089 return visitLoadFromSwiftError(I); 4090 } 4091 4092 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4093 if (Alloca->isSwiftError()) 4094 return visitLoadFromSwiftError(I); 4095 } 4096 } 4097 4098 SDValue Ptr = getValue(SV); 4099 4100 Type *Ty = I.getType(); 4101 SmallVector<EVT, 4> ValueVTs, MemVTs; 4102 SmallVector<uint64_t, 4> Offsets; 4103 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4104 unsigned NumValues = ValueVTs.size(); 4105 if (NumValues == 0) 4106 return; 4107 4108 Align Alignment = I.getAlign(); 4109 AAMDNodes AAInfo = I.getAAMetadata(); 4110 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4111 bool isVolatile = I.isVolatile(); 4112 MachineMemOperand::Flags MMOFlags = 4113 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4114 4115 SDValue Root; 4116 bool ConstantMemory = false; 4117 if (isVolatile) 4118 // Serialize volatile loads with other side effects. 4119 Root = getRoot(); 4120 else if (NumValues > MaxParallelChains) 4121 Root = getMemoryRoot(); 4122 else if (AA && 4123 AA->pointsToConstantMemory(MemoryLocation( 4124 SV, 4125 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4126 AAInfo))) { 4127 // Do not serialize (non-volatile) loads of constant memory with anything. 4128 Root = DAG.getEntryNode(); 4129 ConstantMemory = true; 4130 MMOFlags |= MachineMemOperand::MOInvariant; 4131 } else { 4132 // Do not serialize non-volatile loads against each other. 4133 Root = DAG.getRoot(); 4134 } 4135 4136 if (isDereferenceableAndAlignedPointer(SV, Ty, Alignment, DAG.getDataLayout(), 4137 &I, AC, nullptr, LibInfo)) 4138 MMOFlags |= MachineMemOperand::MODereferenceable; 4139 4140 SDLoc dl = getCurSDLoc(); 4141 4142 if (isVolatile) 4143 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4144 4145 // An aggregate load cannot wrap around the address space, so offsets to its 4146 // parts don't wrap either. 4147 SDNodeFlags Flags; 4148 Flags.setNoUnsignedWrap(true); 4149 4150 SmallVector<SDValue, 4> Values(NumValues); 4151 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4152 EVT PtrVT = Ptr.getValueType(); 4153 4154 unsigned ChainI = 0; 4155 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4156 // Serializing loads here may result in excessive register pressure, and 4157 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4158 // could recover a bit by hoisting nodes upward in the chain by recognizing 4159 // they are side-effect free or do not alias. The optimizer should really 4160 // avoid this case by converting large object/array copies to llvm.memcpy 4161 // (MaxParallelChains should always remain as failsafe). 4162 if (ChainI == MaxParallelChains) { 4163 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4164 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4165 makeArrayRef(Chains.data(), ChainI)); 4166 Root = Chain; 4167 ChainI = 0; 4168 } 4169 SDValue A = DAG.getNode(ISD::ADD, dl, 4170 PtrVT, Ptr, 4171 DAG.getConstant(Offsets[i], dl, PtrVT), 4172 Flags); 4173 4174 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4175 MachinePointerInfo(SV, Offsets[i]), Alignment, 4176 MMOFlags, AAInfo, Ranges); 4177 Chains[ChainI] = L.getValue(1); 4178 4179 if (MemVTs[i] != ValueVTs[i]) 4180 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4181 4182 Values[i] = L; 4183 } 4184 4185 if (!ConstantMemory) { 4186 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4187 makeArrayRef(Chains.data(), ChainI)); 4188 if (isVolatile) 4189 DAG.setRoot(Chain); 4190 else 4191 PendingLoads.push_back(Chain); 4192 } 4193 4194 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4195 DAG.getVTList(ValueVTs), Values)); 4196 } 4197 4198 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4199 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4200 "call visitStoreToSwiftError when backend supports swifterror"); 4201 4202 SmallVector<EVT, 4> ValueVTs; 4203 SmallVector<uint64_t, 4> Offsets; 4204 const Value *SrcV = I.getOperand(0); 4205 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4206 SrcV->getType(), ValueVTs, &Offsets); 4207 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4208 "expect a single EVT for swifterror"); 4209 4210 SDValue Src = getValue(SrcV); 4211 // Create a virtual register, then update the virtual register. 4212 Register VReg = 4213 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4214 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4215 // Chain can be getRoot or getControlRoot. 4216 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4217 SDValue(Src.getNode(), Src.getResNo())); 4218 DAG.setRoot(CopyNode); 4219 } 4220 4221 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4222 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4223 "call visitLoadFromSwiftError when backend supports swifterror"); 4224 4225 assert(!I.isVolatile() && 4226 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4227 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4228 "Support volatile, non temporal, invariant for load_from_swift_error"); 4229 4230 const Value *SV = I.getOperand(0); 4231 Type *Ty = I.getType(); 4232 assert( 4233 (!AA || 4234 !AA->pointsToConstantMemory(MemoryLocation( 4235 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4236 I.getAAMetadata()))) && 4237 "load_from_swift_error should not be constant memory"); 4238 4239 SmallVector<EVT, 4> ValueVTs; 4240 SmallVector<uint64_t, 4> Offsets; 4241 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4242 ValueVTs, &Offsets); 4243 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4244 "expect a single EVT for swifterror"); 4245 4246 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4247 SDValue L = DAG.getCopyFromReg( 4248 getRoot(), getCurSDLoc(), 4249 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4250 4251 setValue(&I, L); 4252 } 4253 4254 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4255 if (I.isAtomic()) 4256 return visitAtomicStore(I); 4257 4258 const Value *SrcV = I.getOperand(0); 4259 const Value *PtrV = I.getOperand(1); 4260 4261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4262 if (TLI.supportSwiftError()) { 4263 // Swifterror values can come from either a function parameter with 4264 // swifterror attribute or an alloca with swifterror attribute. 4265 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4266 if (Arg->hasSwiftErrorAttr()) 4267 return visitStoreToSwiftError(I); 4268 } 4269 4270 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4271 if (Alloca->isSwiftError()) 4272 return visitStoreToSwiftError(I); 4273 } 4274 } 4275 4276 SmallVector<EVT, 4> ValueVTs, MemVTs; 4277 SmallVector<uint64_t, 4> Offsets; 4278 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4279 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4280 unsigned NumValues = ValueVTs.size(); 4281 if (NumValues == 0) 4282 return; 4283 4284 // Get the lowered operands. Note that we do this after 4285 // checking if NumResults is zero, because with zero results 4286 // the operands won't have values in the map. 4287 SDValue Src = getValue(SrcV); 4288 SDValue Ptr = getValue(PtrV); 4289 4290 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4291 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4292 SDLoc dl = getCurSDLoc(); 4293 Align Alignment = I.getAlign(); 4294 AAMDNodes AAInfo = I.getAAMetadata(); 4295 4296 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4297 4298 // An aggregate load cannot wrap around the address space, so offsets to its 4299 // parts don't wrap either. 4300 SDNodeFlags Flags; 4301 Flags.setNoUnsignedWrap(true); 4302 4303 unsigned ChainI = 0; 4304 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4305 // See visitLoad comments. 4306 if (ChainI == MaxParallelChains) { 4307 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4308 makeArrayRef(Chains.data(), ChainI)); 4309 Root = Chain; 4310 ChainI = 0; 4311 } 4312 SDValue Add = 4313 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4314 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4315 if (MemVTs[i] != ValueVTs[i]) 4316 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4317 SDValue St = 4318 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4319 Alignment, MMOFlags, AAInfo); 4320 Chains[ChainI] = St; 4321 } 4322 4323 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4324 makeArrayRef(Chains.data(), ChainI)); 4325 setValue(&I, StoreNode); 4326 DAG.setRoot(StoreNode); 4327 } 4328 4329 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4330 bool IsCompressing) { 4331 SDLoc sdl = getCurSDLoc(); 4332 4333 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4334 MaybeAlign &Alignment) { 4335 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4336 Src0 = I.getArgOperand(0); 4337 Ptr = I.getArgOperand(1); 4338 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4339 Mask = I.getArgOperand(3); 4340 }; 4341 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4342 MaybeAlign &Alignment) { 4343 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4344 Src0 = I.getArgOperand(0); 4345 Ptr = I.getArgOperand(1); 4346 Mask = I.getArgOperand(2); 4347 Alignment = std::nullopt; 4348 }; 4349 4350 Value *PtrOperand, *MaskOperand, *Src0Operand; 4351 MaybeAlign Alignment; 4352 if (IsCompressing) 4353 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4354 else 4355 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4356 4357 SDValue Ptr = getValue(PtrOperand); 4358 SDValue Src0 = getValue(Src0Operand); 4359 SDValue Mask = getValue(MaskOperand); 4360 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4361 4362 EVT VT = Src0.getValueType(); 4363 if (!Alignment) 4364 Alignment = DAG.getEVTAlign(VT); 4365 4366 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4367 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4368 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4369 SDValue StoreNode = 4370 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4371 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4372 DAG.setRoot(StoreNode); 4373 setValue(&I, StoreNode); 4374 } 4375 4376 // Get a uniform base for the Gather/Scatter intrinsic. 4377 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4378 // We try to represent it as a base pointer + vector of indices. 4379 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4380 // The first operand of the GEP may be a single pointer or a vector of pointers 4381 // Example: 4382 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4383 // or 4384 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4385 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4386 // 4387 // When the first GEP operand is a single pointer - it is the uniform base we 4388 // are looking for. If first operand of the GEP is a splat vector - we 4389 // extract the splat value and use it as a uniform base. 4390 // In all other cases the function returns 'false'. 4391 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4392 ISD::MemIndexType &IndexType, SDValue &Scale, 4393 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4394 uint64_t ElemSize) { 4395 SelectionDAG& DAG = SDB->DAG; 4396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4397 const DataLayout &DL = DAG.getDataLayout(); 4398 4399 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4400 4401 // Handle splat constant pointer. 4402 if (auto *C = dyn_cast<Constant>(Ptr)) { 4403 C = C->getSplatValue(); 4404 if (!C) 4405 return false; 4406 4407 Base = SDB->getValue(C); 4408 4409 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4410 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4411 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4412 IndexType = ISD::SIGNED_SCALED; 4413 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4414 return true; 4415 } 4416 4417 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4418 if (!GEP || GEP->getParent() != CurBB) 4419 return false; 4420 4421 if (GEP->getNumOperands() != 2) 4422 return false; 4423 4424 const Value *BasePtr = GEP->getPointerOperand(); 4425 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4426 4427 // Make sure the base is scalar and the index is a vector. 4428 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4429 return false; 4430 4431 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4432 4433 // Target may not support the required addressing mode. 4434 if (ScaleVal != 1 && 4435 !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) 4436 return false; 4437 4438 Base = SDB->getValue(BasePtr); 4439 Index = SDB->getValue(IndexVal); 4440 IndexType = ISD::SIGNED_SCALED; 4441 4442 Scale = 4443 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4444 return true; 4445 } 4446 4447 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4448 SDLoc sdl = getCurSDLoc(); 4449 4450 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4451 const Value *Ptr = I.getArgOperand(1); 4452 SDValue Src0 = getValue(I.getArgOperand(0)); 4453 SDValue Mask = getValue(I.getArgOperand(3)); 4454 EVT VT = Src0.getValueType(); 4455 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4456 ->getMaybeAlignValue() 4457 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4459 4460 SDValue Base; 4461 SDValue Index; 4462 ISD::MemIndexType IndexType; 4463 SDValue Scale; 4464 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4465 I.getParent(), VT.getScalarStoreSize()); 4466 4467 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4468 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4469 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4470 // TODO: Make MachineMemOperands aware of scalable 4471 // vectors. 4472 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4473 if (!UniformBase) { 4474 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4475 Index = getValue(Ptr); 4476 IndexType = ISD::SIGNED_SCALED; 4477 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4478 } 4479 4480 EVT IdxVT = Index.getValueType(); 4481 EVT EltTy = IdxVT.getVectorElementType(); 4482 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4483 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4484 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4485 } 4486 4487 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4488 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4489 Ops, MMO, IndexType, false); 4490 DAG.setRoot(Scatter); 4491 setValue(&I, Scatter); 4492 } 4493 4494 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4495 SDLoc sdl = getCurSDLoc(); 4496 4497 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4498 MaybeAlign &Alignment) { 4499 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4500 Ptr = I.getArgOperand(0); 4501 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4502 Mask = I.getArgOperand(2); 4503 Src0 = I.getArgOperand(3); 4504 }; 4505 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4506 MaybeAlign &Alignment) { 4507 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4508 Ptr = I.getArgOperand(0); 4509 Alignment = std::nullopt; 4510 Mask = I.getArgOperand(1); 4511 Src0 = I.getArgOperand(2); 4512 }; 4513 4514 Value *PtrOperand, *MaskOperand, *Src0Operand; 4515 MaybeAlign Alignment; 4516 if (IsExpanding) 4517 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4518 else 4519 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4520 4521 SDValue Ptr = getValue(PtrOperand); 4522 SDValue Src0 = getValue(Src0Operand); 4523 SDValue Mask = getValue(MaskOperand); 4524 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4525 4526 EVT VT = Src0.getValueType(); 4527 if (!Alignment) 4528 Alignment = DAG.getEVTAlign(VT); 4529 4530 AAMDNodes AAInfo = I.getAAMetadata(); 4531 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4532 4533 // Do not serialize masked loads of constant memory with anything. 4534 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4535 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4536 4537 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4538 4539 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4540 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4541 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4542 4543 SDValue Load = 4544 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4545 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4546 if (AddToChain) 4547 PendingLoads.push_back(Load.getValue(1)); 4548 setValue(&I, Load); 4549 } 4550 4551 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4552 SDLoc sdl = getCurSDLoc(); 4553 4554 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4555 const Value *Ptr = I.getArgOperand(0); 4556 SDValue Src0 = getValue(I.getArgOperand(3)); 4557 SDValue Mask = getValue(I.getArgOperand(2)); 4558 4559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4560 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4561 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4562 ->getMaybeAlignValue() 4563 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4564 4565 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4566 4567 SDValue Root = DAG.getRoot(); 4568 SDValue Base; 4569 SDValue Index; 4570 ISD::MemIndexType IndexType; 4571 SDValue Scale; 4572 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4573 I.getParent(), VT.getScalarStoreSize()); 4574 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4575 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4576 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4577 // TODO: Make MachineMemOperands aware of scalable 4578 // vectors. 4579 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4580 4581 if (!UniformBase) { 4582 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4583 Index = getValue(Ptr); 4584 IndexType = ISD::SIGNED_SCALED; 4585 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4586 } 4587 4588 EVT IdxVT = Index.getValueType(); 4589 EVT EltTy = IdxVT.getVectorElementType(); 4590 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4591 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4592 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4593 } 4594 4595 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4596 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4597 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4598 4599 PendingLoads.push_back(Gather.getValue(1)); 4600 setValue(&I, Gather); 4601 } 4602 4603 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4604 SDLoc dl = getCurSDLoc(); 4605 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4606 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4607 SyncScope::ID SSID = I.getSyncScopeID(); 4608 4609 SDValue InChain = getRoot(); 4610 4611 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4612 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4613 4614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4615 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4616 4617 MachineFunction &MF = DAG.getMachineFunction(); 4618 MachineMemOperand *MMO = MF.getMachineMemOperand( 4619 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4620 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4621 FailureOrdering); 4622 4623 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4624 dl, MemVT, VTs, InChain, 4625 getValue(I.getPointerOperand()), 4626 getValue(I.getCompareOperand()), 4627 getValue(I.getNewValOperand()), MMO); 4628 4629 SDValue OutChain = L.getValue(2); 4630 4631 setValue(&I, L); 4632 DAG.setRoot(OutChain); 4633 } 4634 4635 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4636 SDLoc dl = getCurSDLoc(); 4637 ISD::NodeType NT; 4638 switch (I.getOperation()) { 4639 default: llvm_unreachable("Unknown atomicrmw operation"); 4640 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4641 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4642 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4643 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4644 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4645 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4646 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4647 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4648 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4649 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4650 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4651 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4652 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4653 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4654 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4655 } 4656 AtomicOrdering Ordering = I.getOrdering(); 4657 SyncScope::ID SSID = I.getSyncScopeID(); 4658 4659 SDValue InChain = getRoot(); 4660 4661 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4663 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4664 4665 MachineFunction &MF = DAG.getMachineFunction(); 4666 MachineMemOperand *MMO = MF.getMachineMemOperand( 4667 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4668 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4669 4670 SDValue L = 4671 DAG.getAtomic(NT, dl, MemVT, InChain, 4672 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4673 MMO); 4674 4675 SDValue OutChain = L.getValue(1); 4676 4677 setValue(&I, L); 4678 DAG.setRoot(OutChain); 4679 } 4680 4681 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4682 SDLoc dl = getCurSDLoc(); 4683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4684 SDValue Ops[3]; 4685 Ops[0] = getRoot(); 4686 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4687 TLI.getFenceOperandTy(DAG.getDataLayout())); 4688 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4689 TLI.getFenceOperandTy(DAG.getDataLayout())); 4690 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4691 setValue(&I, N); 4692 DAG.setRoot(N); 4693 } 4694 4695 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4696 SDLoc dl = getCurSDLoc(); 4697 AtomicOrdering Order = I.getOrdering(); 4698 SyncScope::ID SSID = I.getSyncScopeID(); 4699 4700 SDValue InChain = getRoot(); 4701 4702 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4703 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4704 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4705 4706 if (!TLI.supportsUnalignedAtomics() && 4707 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4708 report_fatal_error("Cannot generate unaligned atomic load"); 4709 4710 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4711 4712 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4713 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4714 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4715 4716 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4717 4718 SDValue Ptr = getValue(I.getPointerOperand()); 4719 4720 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4721 // TODO: Once this is better exercised by tests, it should be merged with 4722 // the normal path for loads to prevent future divergence. 4723 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4724 if (MemVT != VT) 4725 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4726 4727 setValue(&I, L); 4728 SDValue OutChain = L.getValue(1); 4729 if (!I.isUnordered()) 4730 DAG.setRoot(OutChain); 4731 else 4732 PendingLoads.push_back(OutChain); 4733 return; 4734 } 4735 4736 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4737 Ptr, MMO); 4738 4739 SDValue OutChain = L.getValue(1); 4740 if (MemVT != VT) 4741 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4742 4743 setValue(&I, L); 4744 DAG.setRoot(OutChain); 4745 } 4746 4747 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4748 SDLoc dl = getCurSDLoc(); 4749 4750 AtomicOrdering Ordering = I.getOrdering(); 4751 SyncScope::ID SSID = I.getSyncScopeID(); 4752 4753 SDValue InChain = getRoot(); 4754 4755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4756 EVT MemVT = 4757 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4758 4759 if (!TLI.supportsUnalignedAtomics() && 4760 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4761 report_fatal_error("Cannot generate unaligned atomic store"); 4762 4763 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4764 4765 MachineFunction &MF = DAG.getMachineFunction(); 4766 MachineMemOperand *MMO = MF.getMachineMemOperand( 4767 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4768 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4769 4770 SDValue Val = getValue(I.getValueOperand()); 4771 if (Val.getValueType() != MemVT) 4772 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4773 SDValue Ptr = getValue(I.getPointerOperand()); 4774 4775 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4776 // TODO: Once this is better exercised by tests, it should be merged with 4777 // the normal path for stores to prevent future divergence. 4778 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4779 setValue(&I, S); 4780 DAG.setRoot(S); 4781 return; 4782 } 4783 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4784 Ptr, Val, MMO); 4785 4786 setValue(&I, OutChain); 4787 DAG.setRoot(OutChain); 4788 } 4789 4790 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4791 /// node. 4792 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4793 unsigned Intrinsic) { 4794 // Ignore the callsite's attributes. A specific call site may be marked with 4795 // readnone, but the lowering code will expect the chain based on the 4796 // definition. 4797 const Function *F = I.getCalledFunction(); 4798 bool HasChain = !F->doesNotAccessMemory(); 4799 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4800 4801 // Build the operand list. 4802 SmallVector<SDValue, 8> Ops; 4803 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4804 if (OnlyLoad) { 4805 // We don't need to serialize loads against other loads. 4806 Ops.push_back(DAG.getRoot()); 4807 } else { 4808 Ops.push_back(getRoot()); 4809 } 4810 } 4811 4812 // Info is set by getTgtMemIntrinsic 4813 TargetLowering::IntrinsicInfo Info; 4814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4815 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4816 DAG.getMachineFunction(), 4817 Intrinsic); 4818 4819 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4820 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4821 Info.opc == ISD::INTRINSIC_W_CHAIN) 4822 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4823 TLI.getPointerTy(DAG.getDataLayout()))); 4824 4825 // Add all operands of the call to the operand list. 4826 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4827 const Value *Arg = I.getArgOperand(i); 4828 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4829 Ops.push_back(getValue(Arg)); 4830 continue; 4831 } 4832 4833 // Use TargetConstant instead of a regular constant for immarg. 4834 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4835 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4836 assert(CI->getBitWidth() <= 64 && 4837 "large intrinsic immediates not handled"); 4838 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4839 } else { 4840 Ops.push_back( 4841 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4842 } 4843 } 4844 4845 SmallVector<EVT, 4> ValueVTs; 4846 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4847 4848 if (HasChain) 4849 ValueVTs.push_back(MVT::Other); 4850 4851 SDVTList VTs = DAG.getVTList(ValueVTs); 4852 4853 // Propagate fast-math-flags from IR to node(s). 4854 SDNodeFlags Flags; 4855 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4856 Flags.copyFMF(*FPMO); 4857 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4858 4859 // Create the node. 4860 SDValue Result; 4861 // In some cases, custom collection of operands from CallInst I may be needed. 4862 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4863 if (IsTgtIntrinsic) { 4864 // This is target intrinsic that touches memory 4865 // 4866 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4867 // didn't yield anything useful. 4868 MachinePointerInfo MPI; 4869 if (Info.ptrVal) 4870 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4871 else if (Info.fallbackAddressSpace) 4872 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4873 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4874 Info.memVT, MPI, Info.align, Info.flags, 4875 Info.size, I.getAAMetadata()); 4876 } else if (!HasChain) { 4877 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4878 } else if (!I.getType()->isVoidTy()) { 4879 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4880 } else { 4881 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4882 } 4883 4884 if (HasChain) { 4885 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4886 if (OnlyLoad) 4887 PendingLoads.push_back(Chain); 4888 else 4889 DAG.setRoot(Chain); 4890 } 4891 4892 if (!I.getType()->isVoidTy()) { 4893 if (!isa<VectorType>(I.getType())) 4894 Result = lowerRangeToAssertZExt(DAG, I, Result); 4895 4896 MaybeAlign Alignment = I.getRetAlign(); 4897 if (!Alignment) 4898 Alignment = F->getAttributes().getRetAlignment(); 4899 // Insert `assertalign` node if there's an alignment. 4900 if (InsertAssertAlign && Alignment) { 4901 Result = 4902 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4903 } 4904 4905 setValue(&I, Result); 4906 } 4907 } 4908 4909 /// GetSignificand - Get the significand and build it into a floating-point 4910 /// number with exponent of 1: 4911 /// 4912 /// Op = (Op & 0x007fffff) | 0x3f800000; 4913 /// 4914 /// where Op is the hexadecimal representation of floating point value. 4915 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4916 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4917 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4918 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4919 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4920 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4921 } 4922 4923 /// GetExponent - Get the exponent: 4924 /// 4925 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4926 /// 4927 /// where Op is the hexadecimal representation of floating point value. 4928 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4929 const TargetLowering &TLI, const SDLoc &dl) { 4930 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4931 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4932 SDValue t1 = DAG.getNode( 4933 ISD::SRL, dl, MVT::i32, t0, 4934 DAG.getConstant(23, dl, 4935 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4936 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4937 DAG.getConstant(127, dl, MVT::i32)); 4938 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4939 } 4940 4941 /// getF32Constant - Get 32-bit floating point constant. 4942 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4943 const SDLoc &dl) { 4944 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4945 MVT::f32); 4946 } 4947 4948 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4949 SelectionDAG &DAG) { 4950 // TODO: What fast-math-flags should be set on the floating-point nodes? 4951 4952 // IntegerPartOfX = ((int32_t)(t0); 4953 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4954 4955 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4956 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4957 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4958 4959 // IntegerPartOfX <<= 23; 4960 IntegerPartOfX = 4961 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4962 DAG.getConstant(23, dl, 4963 DAG.getTargetLoweringInfo().getShiftAmountTy( 4964 MVT::i32, DAG.getDataLayout()))); 4965 4966 SDValue TwoToFractionalPartOfX; 4967 if (LimitFloatPrecision <= 6) { 4968 // For floating-point precision of 6: 4969 // 4970 // TwoToFractionalPartOfX = 4971 // 0.997535578f + 4972 // (0.735607626f + 0.252464424f * x) * x; 4973 // 4974 // error 0.0144103317, which is 6 bits 4975 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4976 getF32Constant(DAG, 0x3e814304, dl)); 4977 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4978 getF32Constant(DAG, 0x3f3c50c8, dl)); 4979 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4980 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4981 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4982 } else if (LimitFloatPrecision <= 12) { 4983 // For floating-point precision of 12: 4984 // 4985 // TwoToFractionalPartOfX = 4986 // 0.999892986f + 4987 // (0.696457318f + 4988 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4989 // 4990 // error 0.000107046256, which is 13 to 14 bits 4991 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4992 getF32Constant(DAG, 0x3da235e3, dl)); 4993 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4994 getF32Constant(DAG, 0x3e65b8f3, dl)); 4995 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4996 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4997 getF32Constant(DAG, 0x3f324b07, dl)); 4998 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4999 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5000 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5001 } else { // LimitFloatPrecision <= 18 5002 // For floating-point precision of 18: 5003 // 5004 // TwoToFractionalPartOfX = 5005 // 0.999999982f + 5006 // (0.693148872f + 5007 // (0.240227044f + 5008 // (0.554906021e-1f + 5009 // (0.961591928e-2f + 5010 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5011 // error 2.47208000*10^(-7), which is better than 18 bits 5012 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5013 getF32Constant(DAG, 0x3924b03e, dl)); 5014 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5015 getF32Constant(DAG, 0x3ab24b87, dl)); 5016 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5017 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5018 getF32Constant(DAG, 0x3c1d8c17, dl)); 5019 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5020 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5021 getF32Constant(DAG, 0x3d634a1d, dl)); 5022 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5023 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5024 getF32Constant(DAG, 0x3e75fe14, dl)); 5025 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5026 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5027 getF32Constant(DAG, 0x3f317234, dl)); 5028 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5029 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5030 getF32Constant(DAG, 0x3f800000, dl)); 5031 } 5032 5033 // Add the exponent into the result in integer domain. 5034 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5035 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5036 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5037 } 5038 5039 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5040 /// limited-precision mode. 5041 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5042 const TargetLowering &TLI, SDNodeFlags Flags) { 5043 if (Op.getValueType() == MVT::f32 && 5044 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5045 5046 // Put the exponent in the right bit position for later addition to the 5047 // final result: 5048 // 5049 // t0 = Op * log2(e) 5050 5051 // TODO: What fast-math-flags should be set here? 5052 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5053 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5054 return getLimitedPrecisionExp2(t0, dl, DAG); 5055 } 5056 5057 // No special expansion. 5058 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5059 } 5060 5061 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5062 /// limited-precision mode. 5063 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5064 const TargetLowering &TLI, SDNodeFlags Flags) { 5065 // TODO: What fast-math-flags should be set on the floating-point nodes? 5066 5067 if (Op.getValueType() == MVT::f32 && 5068 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5069 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5070 5071 // Scale the exponent by log(2). 5072 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5073 SDValue LogOfExponent = 5074 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5075 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5076 5077 // Get the significand and build it into a floating-point number with 5078 // exponent of 1. 5079 SDValue X = GetSignificand(DAG, Op1, dl); 5080 5081 SDValue LogOfMantissa; 5082 if (LimitFloatPrecision <= 6) { 5083 // For floating-point precision of 6: 5084 // 5085 // LogofMantissa = 5086 // -1.1609546f + 5087 // (1.4034025f - 0.23903021f * x) * x; 5088 // 5089 // error 0.0034276066, which is better than 8 bits 5090 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5091 getF32Constant(DAG, 0xbe74c456, dl)); 5092 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5093 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5094 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5095 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5096 getF32Constant(DAG, 0x3f949a29, dl)); 5097 } else if (LimitFloatPrecision <= 12) { 5098 // For floating-point precision of 12: 5099 // 5100 // LogOfMantissa = 5101 // -1.7417939f + 5102 // (2.8212026f + 5103 // (-1.4699568f + 5104 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5105 // 5106 // error 0.000061011436, which is 14 bits 5107 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5108 getF32Constant(DAG, 0xbd67b6d6, dl)); 5109 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5110 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5111 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5112 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5113 getF32Constant(DAG, 0x3fbc278b, dl)); 5114 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5115 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5116 getF32Constant(DAG, 0x40348e95, dl)); 5117 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5118 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5119 getF32Constant(DAG, 0x3fdef31a, dl)); 5120 } else { // LimitFloatPrecision <= 18 5121 // For floating-point precision of 18: 5122 // 5123 // LogOfMantissa = 5124 // -2.1072184f + 5125 // (4.2372794f + 5126 // (-3.7029485f + 5127 // (2.2781945f + 5128 // (-0.87823314f + 5129 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5130 // 5131 // error 0.0000023660568, which is better than 18 bits 5132 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5133 getF32Constant(DAG, 0xbc91e5ac, dl)); 5134 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5135 getF32Constant(DAG, 0x3e4350aa, dl)); 5136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5137 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5138 getF32Constant(DAG, 0x3f60d3e3, dl)); 5139 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5140 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5141 getF32Constant(DAG, 0x4011cdf0, dl)); 5142 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5143 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5144 getF32Constant(DAG, 0x406cfd1c, dl)); 5145 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5146 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5147 getF32Constant(DAG, 0x408797cb, dl)); 5148 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5149 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5150 getF32Constant(DAG, 0x4006dcab, dl)); 5151 } 5152 5153 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5154 } 5155 5156 // No special expansion. 5157 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5158 } 5159 5160 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5161 /// limited-precision mode. 5162 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5163 const TargetLowering &TLI, SDNodeFlags Flags) { 5164 // TODO: What fast-math-flags should be set on the floating-point nodes? 5165 5166 if (Op.getValueType() == MVT::f32 && 5167 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5168 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5169 5170 // Get the exponent. 5171 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5172 5173 // Get the significand and build it into a floating-point number with 5174 // exponent of 1. 5175 SDValue X = GetSignificand(DAG, Op1, dl); 5176 5177 // Different possible minimax approximations of significand in 5178 // floating-point for various degrees of accuracy over [1,2]. 5179 SDValue Log2ofMantissa; 5180 if (LimitFloatPrecision <= 6) { 5181 // For floating-point precision of 6: 5182 // 5183 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5184 // 5185 // error 0.0049451742, which is more than 7 bits 5186 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5187 getF32Constant(DAG, 0xbeb08fe0, dl)); 5188 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5189 getF32Constant(DAG, 0x40019463, dl)); 5190 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5191 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5192 getF32Constant(DAG, 0x3fd6633d, dl)); 5193 } else if (LimitFloatPrecision <= 12) { 5194 // For floating-point precision of 12: 5195 // 5196 // Log2ofMantissa = 5197 // -2.51285454f + 5198 // (4.07009056f + 5199 // (-2.12067489f + 5200 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5201 // 5202 // error 0.0000876136000, which is better than 13 bits 5203 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5204 getF32Constant(DAG, 0xbda7262e, dl)); 5205 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5206 getF32Constant(DAG, 0x3f25280b, dl)); 5207 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5208 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5209 getF32Constant(DAG, 0x4007b923, dl)); 5210 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5211 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5212 getF32Constant(DAG, 0x40823e2f, dl)); 5213 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5214 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5215 getF32Constant(DAG, 0x4020d29c, dl)); 5216 } else { // LimitFloatPrecision <= 18 5217 // For floating-point precision of 18: 5218 // 5219 // Log2ofMantissa = 5220 // -3.0400495f + 5221 // (6.1129976f + 5222 // (-5.3420409f + 5223 // (3.2865683f + 5224 // (-1.2669343f + 5225 // (0.27515199f - 5226 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5227 // 5228 // error 0.0000018516, which is better than 18 bits 5229 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5230 getF32Constant(DAG, 0xbcd2769e, dl)); 5231 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5232 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5233 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5234 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5235 getF32Constant(DAG, 0x3fa22ae7, dl)); 5236 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5237 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5238 getF32Constant(DAG, 0x40525723, dl)); 5239 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5240 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5241 getF32Constant(DAG, 0x40aaf200, dl)); 5242 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5243 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5244 getF32Constant(DAG, 0x40c39dad, dl)); 5245 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5246 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5247 getF32Constant(DAG, 0x4042902c, dl)); 5248 } 5249 5250 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5251 } 5252 5253 // No special expansion. 5254 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5255 } 5256 5257 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5258 /// limited-precision mode. 5259 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5260 const TargetLowering &TLI, SDNodeFlags Flags) { 5261 // TODO: What fast-math-flags should be set on the floating-point nodes? 5262 5263 if (Op.getValueType() == MVT::f32 && 5264 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5265 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5266 5267 // Scale the exponent by log10(2) [0.30102999f]. 5268 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5269 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5270 getF32Constant(DAG, 0x3e9a209a, dl)); 5271 5272 // Get the significand and build it into a floating-point number with 5273 // exponent of 1. 5274 SDValue X = GetSignificand(DAG, Op1, dl); 5275 5276 SDValue Log10ofMantissa; 5277 if (LimitFloatPrecision <= 6) { 5278 // For floating-point precision of 6: 5279 // 5280 // Log10ofMantissa = 5281 // -0.50419619f + 5282 // (0.60948995f - 0.10380950f * x) * x; 5283 // 5284 // error 0.0014886165, which is 6 bits 5285 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5286 getF32Constant(DAG, 0xbdd49a13, dl)); 5287 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5288 getF32Constant(DAG, 0x3f1c0789, dl)); 5289 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5290 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5291 getF32Constant(DAG, 0x3f011300, dl)); 5292 } else if (LimitFloatPrecision <= 12) { 5293 // For floating-point precision of 12: 5294 // 5295 // Log10ofMantissa = 5296 // -0.64831180f + 5297 // (0.91751397f + 5298 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5299 // 5300 // error 0.00019228036, which is better than 12 bits 5301 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5302 getF32Constant(DAG, 0x3d431f31, dl)); 5303 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5304 getF32Constant(DAG, 0x3ea21fb2, dl)); 5305 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5306 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5307 getF32Constant(DAG, 0x3f6ae232, dl)); 5308 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5309 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5310 getF32Constant(DAG, 0x3f25f7c3, dl)); 5311 } else { // LimitFloatPrecision <= 18 5312 // For floating-point precision of 18: 5313 // 5314 // Log10ofMantissa = 5315 // -0.84299375f + 5316 // (1.5327582f + 5317 // (-1.0688956f + 5318 // (0.49102474f + 5319 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5320 // 5321 // error 0.0000037995730, which is better than 18 bits 5322 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5323 getF32Constant(DAG, 0x3c5d51ce, dl)); 5324 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5325 getF32Constant(DAG, 0x3e00685a, dl)); 5326 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5327 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5328 getF32Constant(DAG, 0x3efb6798, dl)); 5329 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5330 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5331 getF32Constant(DAG, 0x3f88d192, dl)); 5332 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5333 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5334 getF32Constant(DAG, 0x3fc4316c, dl)); 5335 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5336 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5337 getF32Constant(DAG, 0x3f57ce70, dl)); 5338 } 5339 5340 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5341 } 5342 5343 // No special expansion. 5344 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5345 } 5346 5347 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5348 /// limited-precision mode. 5349 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5350 const TargetLowering &TLI, SDNodeFlags Flags) { 5351 if (Op.getValueType() == MVT::f32 && 5352 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5353 return getLimitedPrecisionExp2(Op, dl, DAG); 5354 5355 // No special expansion. 5356 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5357 } 5358 5359 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5360 /// limited-precision mode with x == 10.0f. 5361 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5362 SelectionDAG &DAG, const TargetLowering &TLI, 5363 SDNodeFlags Flags) { 5364 bool IsExp10 = false; 5365 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5366 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5367 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5368 APFloat Ten(10.0f); 5369 IsExp10 = LHSC->isExactlyValue(Ten); 5370 } 5371 } 5372 5373 // TODO: What fast-math-flags should be set on the FMUL node? 5374 if (IsExp10) { 5375 // Put the exponent in the right bit position for later addition to the 5376 // final result: 5377 // 5378 // #define LOG2OF10 3.3219281f 5379 // t0 = Op * LOG2OF10; 5380 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5381 getF32Constant(DAG, 0x40549a78, dl)); 5382 return getLimitedPrecisionExp2(t0, dl, DAG); 5383 } 5384 5385 // No special expansion. 5386 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5387 } 5388 5389 /// ExpandPowI - Expand a llvm.powi intrinsic. 5390 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5391 SelectionDAG &DAG) { 5392 // If RHS is a constant, we can expand this out to a multiplication tree if 5393 // it's beneficial on the target, otherwise we end up lowering to a call to 5394 // __powidf2 (for example). 5395 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5396 unsigned Val = RHSC->getSExtValue(); 5397 5398 // powi(x, 0) -> 1.0 5399 if (Val == 0) 5400 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5401 5402 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5403 Val, DAG.shouldOptForSize())) { 5404 // Get the exponent as a positive value. 5405 if ((int)Val < 0) 5406 Val = -Val; 5407 // We use the simple binary decomposition method to generate the multiply 5408 // sequence. There are more optimal ways to do this (for example, 5409 // powi(x,15) generates one more multiply than it should), but this has 5410 // the benefit of being both really simple and much better than a libcall. 5411 SDValue Res; // Logically starts equal to 1.0 5412 SDValue CurSquare = LHS; 5413 // TODO: Intrinsics should have fast-math-flags that propagate to these 5414 // nodes. 5415 while (Val) { 5416 if (Val & 1) { 5417 if (Res.getNode()) 5418 Res = 5419 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5420 else 5421 Res = CurSquare; // 1.0*CurSquare. 5422 } 5423 5424 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5425 CurSquare, CurSquare); 5426 Val >>= 1; 5427 } 5428 5429 // If the original was negative, invert the result, producing 1/(x*x*x). 5430 if (RHSC->getSExtValue() < 0) 5431 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5432 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5433 return Res; 5434 } 5435 } 5436 5437 // Otherwise, expand to a libcall. 5438 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5439 } 5440 5441 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5442 SDValue LHS, SDValue RHS, SDValue Scale, 5443 SelectionDAG &DAG, const TargetLowering &TLI) { 5444 EVT VT = LHS.getValueType(); 5445 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5446 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5447 LLVMContext &Ctx = *DAG.getContext(); 5448 5449 // If the type is legal but the operation isn't, this node might survive all 5450 // the way to operation legalization. If we end up there and we do not have 5451 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5452 // node. 5453 5454 // Coax the legalizer into expanding the node during type legalization instead 5455 // by bumping the size by one bit. This will force it to Promote, enabling the 5456 // early expansion and avoiding the need to expand later. 5457 5458 // We don't have to do this if Scale is 0; that can always be expanded, unless 5459 // it's a saturating signed operation. Those can experience true integer 5460 // division overflow, a case which we must avoid. 5461 5462 // FIXME: We wouldn't have to do this (or any of the early 5463 // expansion/promotion) if it was possible to expand a libcall of an 5464 // illegal type during operation legalization. But it's not, so things 5465 // get a bit hacky. 5466 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5467 if ((ScaleInt > 0 || (Saturating && Signed)) && 5468 (TLI.isTypeLegal(VT) || 5469 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5470 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5471 Opcode, VT, ScaleInt); 5472 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5473 EVT PromVT; 5474 if (VT.isScalarInteger()) 5475 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5476 else if (VT.isVector()) { 5477 PromVT = VT.getVectorElementType(); 5478 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5479 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5480 } else 5481 llvm_unreachable("Wrong VT for DIVFIX?"); 5482 if (Signed) { 5483 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5484 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5485 } else { 5486 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5487 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5488 } 5489 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5490 // For saturating operations, we need to shift up the LHS to get the 5491 // proper saturation width, and then shift down again afterwards. 5492 if (Saturating) 5493 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5494 DAG.getConstant(1, DL, ShiftTy)); 5495 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5496 if (Saturating) 5497 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5498 DAG.getConstant(1, DL, ShiftTy)); 5499 return DAG.getZExtOrTrunc(Res, DL, VT); 5500 } 5501 } 5502 5503 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5504 } 5505 5506 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5507 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5508 static void 5509 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5510 const SDValue &N) { 5511 switch (N.getOpcode()) { 5512 case ISD::CopyFromReg: { 5513 SDValue Op = N.getOperand(1); 5514 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5515 Op.getValueType().getSizeInBits()); 5516 return; 5517 } 5518 case ISD::BITCAST: 5519 case ISD::AssertZext: 5520 case ISD::AssertSext: 5521 case ISD::TRUNCATE: 5522 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5523 return; 5524 case ISD::BUILD_PAIR: 5525 case ISD::BUILD_VECTOR: 5526 case ISD::CONCAT_VECTORS: 5527 for (SDValue Op : N->op_values()) 5528 getUnderlyingArgRegs(Regs, Op); 5529 return; 5530 default: 5531 return; 5532 } 5533 } 5534 5535 /// If the DbgValueInst is a dbg_value of a function argument, create the 5536 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5537 /// instruction selection, they will be inserted to the entry BB. 5538 /// We don't currently support this for variadic dbg_values, as they shouldn't 5539 /// appear for function arguments or in the prologue. 5540 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5541 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5542 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5543 const Argument *Arg = dyn_cast<Argument>(V); 5544 if (!Arg) 5545 return false; 5546 5547 MachineFunction &MF = DAG.getMachineFunction(); 5548 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5549 5550 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5551 // we've been asked to pursue. 5552 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5553 bool Indirect) { 5554 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5555 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5556 // pointing at the VReg, which will be patched up later. 5557 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5558 auto MIB = BuildMI(MF, DL, Inst); 5559 MIB.addReg(Reg); 5560 MIB.addImm(0); 5561 MIB.addMetadata(Variable); 5562 auto *NewDIExpr = FragExpr; 5563 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5564 // the DIExpression. 5565 if (Indirect) 5566 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5567 MIB.addMetadata(NewDIExpr); 5568 return MIB; 5569 } else { 5570 // Create a completely standard DBG_VALUE. 5571 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5572 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5573 } 5574 }; 5575 5576 if (Kind == FuncArgumentDbgValueKind::Value) { 5577 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5578 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5579 // the entry block. 5580 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5581 if (!IsInEntryBlock) 5582 return false; 5583 5584 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5585 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5586 // variable that also is a param. 5587 // 5588 // Although, if we are at the top of the entry block already, we can still 5589 // emit using ArgDbgValue. This might catch some situations when the 5590 // dbg.value refers to an argument that isn't used in the entry block, so 5591 // any CopyToReg node would be optimized out and the only way to express 5592 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5593 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5594 // we should only emit as ArgDbgValue if the Variable is an argument to the 5595 // current function, and the dbg.value intrinsic is found in the entry 5596 // block. 5597 bool VariableIsFunctionInputArg = Variable->isParameter() && 5598 !DL->getInlinedAt(); 5599 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5600 if (!IsInPrologue && !VariableIsFunctionInputArg) 5601 return false; 5602 5603 // Here we assume that a function argument on IR level only can be used to 5604 // describe one input parameter on source level. If we for example have 5605 // source code like this 5606 // 5607 // struct A { long x, y; }; 5608 // void foo(struct A a, long b) { 5609 // ... 5610 // b = a.x; 5611 // ... 5612 // } 5613 // 5614 // and IR like this 5615 // 5616 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5617 // entry: 5618 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5619 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5620 // call void @llvm.dbg.value(metadata i32 %b, "b", 5621 // ... 5622 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5623 // ... 5624 // 5625 // then the last dbg.value is describing a parameter "b" using a value that 5626 // is an argument. But since we already has used %a1 to describe a parameter 5627 // we should not handle that last dbg.value here (that would result in an 5628 // incorrect hoisting of the DBG_VALUE to the function entry). 5629 // Notice that we allow one dbg.value per IR level argument, to accommodate 5630 // for the situation with fragments above. 5631 if (VariableIsFunctionInputArg) { 5632 unsigned ArgNo = Arg->getArgNo(); 5633 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5634 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5635 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5636 return false; 5637 FuncInfo.DescribedArgs.set(ArgNo); 5638 } 5639 } 5640 5641 bool IsIndirect = false; 5642 std::optional<MachineOperand> Op; 5643 // Some arguments' frame index is recorded during argument lowering. 5644 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5645 if (FI != std::numeric_limits<int>::max()) 5646 Op = MachineOperand::CreateFI(FI); 5647 5648 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5649 if (!Op && N.getNode()) { 5650 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5651 Register Reg; 5652 if (ArgRegsAndSizes.size() == 1) 5653 Reg = ArgRegsAndSizes.front().first; 5654 5655 if (Reg && Reg.isVirtual()) { 5656 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5657 Register PR = RegInfo.getLiveInPhysReg(Reg); 5658 if (PR) 5659 Reg = PR; 5660 } 5661 if (Reg) { 5662 Op = MachineOperand::CreateReg(Reg, false); 5663 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5664 } 5665 } 5666 5667 if (!Op && N.getNode()) { 5668 // Check if frame index is available. 5669 SDValue LCandidate = peekThroughBitcasts(N); 5670 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5671 if (FrameIndexSDNode *FINode = 5672 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5673 Op = MachineOperand::CreateFI(FINode->getIndex()); 5674 } 5675 5676 if (!Op) { 5677 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5678 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5679 SplitRegs) { 5680 unsigned Offset = 0; 5681 for (const auto &RegAndSize : SplitRegs) { 5682 // If the expression is already a fragment, the current register 5683 // offset+size might extend beyond the fragment. In this case, only 5684 // the register bits that are inside the fragment are relevant. 5685 int RegFragmentSizeInBits = RegAndSize.second; 5686 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5687 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5688 // The register is entirely outside the expression fragment, 5689 // so is irrelevant for debug info. 5690 if (Offset >= ExprFragmentSizeInBits) 5691 break; 5692 // The register is partially outside the expression fragment, only 5693 // the low bits within the fragment are relevant for debug info. 5694 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5695 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5696 } 5697 } 5698 5699 auto FragmentExpr = DIExpression::createFragmentExpression( 5700 Expr, Offset, RegFragmentSizeInBits); 5701 Offset += RegAndSize.second; 5702 // If a valid fragment expression cannot be created, the variable's 5703 // correct value cannot be determined and so it is set as Undef. 5704 if (!FragmentExpr) { 5705 SDDbgValue *SDV = DAG.getConstantDbgValue( 5706 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5707 DAG.AddDbgValue(SDV, false); 5708 continue; 5709 } 5710 MachineInstr *NewMI = 5711 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5712 Kind != FuncArgumentDbgValueKind::Value); 5713 FuncInfo.ArgDbgValues.push_back(NewMI); 5714 } 5715 }; 5716 5717 // Check if ValueMap has reg number. 5718 DenseMap<const Value *, Register>::const_iterator 5719 VMI = FuncInfo.ValueMap.find(V); 5720 if (VMI != FuncInfo.ValueMap.end()) { 5721 const auto &TLI = DAG.getTargetLoweringInfo(); 5722 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5723 V->getType(), std::nullopt); 5724 if (RFV.occupiesMultipleRegs()) { 5725 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5726 return true; 5727 } 5728 5729 Op = MachineOperand::CreateReg(VMI->second, false); 5730 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5731 } else if (ArgRegsAndSizes.size() > 1) { 5732 // This was split due to the calling convention, and no virtual register 5733 // mapping exists for the value. 5734 splitMultiRegDbgValue(ArgRegsAndSizes); 5735 return true; 5736 } 5737 } 5738 5739 if (!Op) 5740 return false; 5741 5742 assert(Variable->isValidLocationForIntrinsic(DL) && 5743 "Expected inlined-at fields to agree"); 5744 MachineInstr *NewMI = nullptr; 5745 5746 if (Op->isReg()) 5747 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5748 else 5749 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5750 Variable, Expr); 5751 5752 // Otherwise, use ArgDbgValues. 5753 FuncInfo.ArgDbgValues.push_back(NewMI); 5754 return true; 5755 } 5756 5757 /// Return the appropriate SDDbgValue based on N. 5758 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5759 DILocalVariable *Variable, 5760 DIExpression *Expr, 5761 const DebugLoc &dl, 5762 unsigned DbgSDNodeOrder) { 5763 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5764 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5765 // stack slot locations. 5766 // 5767 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5768 // debug values here after optimization: 5769 // 5770 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5771 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5772 // 5773 // Both describe the direct values of their associated variables. 5774 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5775 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5776 } 5777 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5778 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5779 } 5780 5781 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5782 switch (Intrinsic) { 5783 case Intrinsic::smul_fix: 5784 return ISD::SMULFIX; 5785 case Intrinsic::umul_fix: 5786 return ISD::UMULFIX; 5787 case Intrinsic::smul_fix_sat: 5788 return ISD::SMULFIXSAT; 5789 case Intrinsic::umul_fix_sat: 5790 return ISD::UMULFIXSAT; 5791 case Intrinsic::sdiv_fix: 5792 return ISD::SDIVFIX; 5793 case Intrinsic::udiv_fix: 5794 return ISD::UDIVFIX; 5795 case Intrinsic::sdiv_fix_sat: 5796 return ISD::SDIVFIXSAT; 5797 case Intrinsic::udiv_fix_sat: 5798 return ISD::UDIVFIXSAT; 5799 default: 5800 llvm_unreachable("Unhandled fixed point intrinsic"); 5801 } 5802 } 5803 5804 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5805 const char *FunctionName) { 5806 assert(FunctionName && "FunctionName must not be nullptr"); 5807 SDValue Callee = DAG.getExternalSymbol( 5808 FunctionName, 5809 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5810 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5811 } 5812 5813 /// Given a @llvm.call.preallocated.setup, return the corresponding 5814 /// preallocated call. 5815 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5816 assert(cast<CallBase>(PreallocatedSetup) 5817 ->getCalledFunction() 5818 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5819 "expected call_preallocated_setup Value"); 5820 for (const auto *U : PreallocatedSetup->users()) { 5821 auto *UseCall = cast<CallBase>(U); 5822 const Function *Fn = UseCall->getCalledFunction(); 5823 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5824 return UseCall; 5825 } 5826 } 5827 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5828 } 5829 5830 /// Lower the call to the specified intrinsic function. 5831 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5832 unsigned Intrinsic) { 5833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5834 SDLoc sdl = getCurSDLoc(); 5835 DebugLoc dl = getCurDebugLoc(); 5836 SDValue Res; 5837 5838 SDNodeFlags Flags; 5839 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5840 Flags.copyFMF(*FPOp); 5841 5842 switch (Intrinsic) { 5843 default: 5844 // By default, turn this into a target intrinsic node. 5845 visitTargetIntrinsic(I, Intrinsic); 5846 return; 5847 case Intrinsic::vscale: { 5848 match(&I, m_VScale(DAG.getDataLayout())); 5849 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5850 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5851 return; 5852 } 5853 case Intrinsic::vastart: visitVAStart(I); return; 5854 case Intrinsic::vaend: visitVAEnd(I); return; 5855 case Intrinsic::vacopy: visitVACopy(I); return; 5856 case Intrinsic::returnaddress: 5857 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5858 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5859 getValue(I.getArgOperand(0)))); 5860 return; 5861 case Intrinsic::addressofreturnaddress: 5862 setValue(&I, 5863 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5864 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5865 return; 5866 case Intrinsic::sponentry: 5867 setValue(&I, 5868 DAG.getNode(ISD::SPONENTRY, sdl, 5869 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5870 return; 5871 case Intrinsic::frameaddress: 5872 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5873 TLI.getFrameIndexTy(DAG.getDataLayout()), 5874 getValue(I.getArgOperand(0)))); 5875 return; 5876 case Intrinsic::read_volatile_register: 5877 case Intrinsic::read_register: { 5878 Value *Reg = I.getArgOperand(0); 5879 SDValue Chain = getRoot(); 5880 SDValue RegName = 5881 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5882 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5883 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5884 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5885 setValue(&I, Res); 5886 DAG.setRoot(Res.getValue(1)); 5887 return; 5888 } 5889 case Intrinsic::write_register: { 5890 Value *Reg = I.getArgOperand(0); 5891 Value *RegValue = I.getArgOperand(1); 5892 SDValue Chain = getRoot(); 5893 SDValue RegName = 5894 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5895 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5896 RegName, getValue(RegValue))); 5897 return; 5898 } 5899 case Intrinsic::memcpy: { 5900 const auto &MCI = cast<MemCpyInst>(I); 5901 SDValue Op1 = getValue(I.getArgOperand(0)); 5902 SDValue Op2 = getValue(I.getArgOperand(1)); 5903 SDValue Op3 = getValue(I.getArgOperand(2)); 5904 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5905 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5906 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5907 Align Alignment = std::min(DstAlign, SrcAlign); 5908 bool isVol = MCI.isVolatile(); 5909 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5910 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5911 // node. 5912 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5913 SDValue MC = DAG.getMemcpy( 5914 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5915 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5916 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5917 updateDAGForMaybeTailCall(MC); 5918 return; 5919 } 5920 case Intrinsic::memcpy_inline: { 5921 const auto &MCI = cast<MemCpyInlineInst>(I); 5922 SDValue Dst = getValue(I.getArgOperand(0)); 5923 SDValue Src = getValue(I.getArgOperand(1)); 5924 SDValue Size = getValue(I.getArgOperand(2)); 5925 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5926 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5927 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5928 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5929 Align Alignment = std::min(DstAlign, SrcAlign); 5930 bool isVol = MCI.isVolatile(); 5931 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5932 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5933 // node. 5934 SDValue MC = DAG.getMemcpy( 5935 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5936 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5937 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5938 updateDAGForMaybeTailCall(MC); 5939 return; 5940 } 5941 case Intrinsic::memset: { 5942 const auto &MSI = cast<MemSetInst>(I); 5943 SDValue Op1 = getValue(I.getArgOperand(0)); 5944 SDValue Op2 = getValue(I.getArgOperand(1)); 5945 SDValue Op3 = getValue(I.getArgOperand(2)); 5946 // @llvm.memset defines 0 and 1 to both mean no alignment. 5947 Align Alignment = MSI.getDestAlign().valueOrOne(); 5948 bool isVol = MSI.isVolatile(); 5949 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5950 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5951 SDValue MS = DAG.getMemset( 5952 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5953 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5954 updateDAGForMaybeTailCall(MS); 5955 return; 5956 } 5957 case Intrinsic::memset_inline: { 5958 const auto &MSII = cast<MemSetInlineInst>(I); 5959 SDValue Dst = getValue(I.getArgOperand(0)); 5960 SDValue Value = getValue(I.getArgOperand(1)); 5961 SDValue Size = getValue(I.getArgOperand(2)); 5962 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5963 // @llvm.memset defines 0 and 1 to both mean no alignment. 5964 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5965 bool isVol = MSII.isVolatile(); 5966 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5967 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5968 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5969 /* AlwaysInline */ true, isTC, 5970 MachinePointerInfo(I.getArgOperand(0)), 5971 I.getAAMetadata()); 5972 updateDAGForMaybeTailCall(MC); 5973 return; 5974 } 5975 case Intrinsic::memmove: { 5976 const auto &MMI = cast<MemMoveInst>(I); 5977 SDValue Op1 = getValue(I.getArgOperand(0)); 5978 SDValue Op2 = getValue(I.getArgOperand(1)); 5979 SDValue Op3 = getValue(I.getArgOperand(2)); 5980 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5981 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5982 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5983 Align Alignment = std::min(DstAlign, SrcAlign); 5984 bool isVol = MMI.isVolatile(); 5985 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5986 // FIXME: Support passing different dest/src alignments to the memmove DAG 5987 // node. 5988 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5989 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5990 isTC, MachinePointerInfo(I.getArgOperand(0)), 5991 MachinePointerInfo(I.getArgOperand(1)), 5992 I.getAAMetadata(), AA); 5993 updateDAGForMaybeTailCall(MM); 5994 return; 5995 } 5996 case Intrinsic::memcpy_element_unordered_atomic: { 5997 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5998 SDValue Dst = getValue(MI.getRawDest()); 5999 SDValue Src = getValue(MI.getRawSource()); 6000 SDValue Length = getValue(MI.getLength()); 6001 6002 Type *LengthTy = MI.getLength()->getType(); 6003 unsigned ElemSz = MI.getElementSizeInBytes(); 6004 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6005 SDValue MC = 6006 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6007 isTC, MachinePointerInfo(MI.getRawDest()), 6008 MachinePointerInfo(MI.getRawSource())); 6009 updateDAGForMaybeTailCall(MC); 6010 return; 6011 } 6012 case Intrinsic::memmove_element_unordered_atomic: { 6013 auto &MI = cast<AtomicMemMoveInst>(I); 6014 SDValue Dst = getValue(MI.getRawDest()); 6015 SDValue Src = getValue(MI.getRawSource()); 6016 SDValue Length = getValue(MI.getLength()); 6017 6018 Type *LengthTy = MI.getLength()->getType(); 6019 unsigned ElemSz = MI.getElementSizeInBytes(); 6020 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6021 SDValue MC = 6022 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6023 isTC, MachinePointerInfo(MI.getRawDest()), 6024 MachinePointerInfo(MI.getRawSource())); 6025 updateDAGForMaybeTailCall(MC); 6026 return; 6027 } 6028 case Intrinsic::memset_element_unordered_atomic: { 6029 auto &MI = cast<AtomicMemSetInst>(I); 6030 SDValue Dst = getValue(MI.getRawDest()); 6031 SDValue Val = getValue(MI.getValue()); 6032 SDValue Length = getValue(MI.getLength()); 6033 6034 Type *LengthTy = MI.getLength()->getType(); 6035 unsigned ElemSz = MI.getElementSizeInBytes(); 6036 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6037 SDValue MC = 6038 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6039 isTC, MachinePointerInfo(MI.getRawDest())); 6040 updateDAGForMaybeTailCall(MC); 6041 return; 6042 } 6043 case Intrinsic::call_preallocated_setup: { 6044 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6045 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6046 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6047 getRoot(), SrcValue); 6048 setValue(&I, Res); 6049 DAG.setRoot(Res); 6050 return; 6051 } 6052 case Intrinsic::call_preallocated_arg: { 6053 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6054 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6055 SDValue Ops[3]; 6056 Ops[0] = getRoot(); 6057 Ops[1] = SrcValue; 6058 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6059 MVT::i32); // arg index 6060 SDValue Res = DAG.getNode( 6061 ISD::PREALLOCATED_ARG, sdl, 6062 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6063 setValue(&I, Res); 6064 DAG.setRoot(Res.getValue(1)); 6065 return; 6066 } 6067 case Intrinsic::dbg_addr: 6068 case Intrinsic::dbg_declare: { 6069 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6070 // they are non-variadic. 6071 const auto &DI = cast<DbgVariableIntrinsic>(I); 6072 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6073 DILocalVariable *Variable = DI.getVariable(); 6074 DIExpression *Expression = DI.getExpression(); 6075 dropDanglingDebugInfo(Variable, Expression); 6076 assert(Variable && "Missing variable"); 6077 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6078 << "\n"); 6079 // Check if address has undef value. 6080 const Value *Address = DI.getVariableLocationOp(0); 6081 if (!Address || isa<UndefValue>(Address) || 6082 (Address->use_empty() && !isa<Argument>(Address))) { 6083 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6084 << " (bad/undef/unused-arg address)\n"); 6085 return; 6086 } 6087 6088 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6089 6090 // Check if this variable can be described by a frame index, typically 6091 // either as a static alloca or a byval parameter. 6092 int FI = std::numeric_limits<int>::max(); 6093 if (const auto *AI = 6094 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6095 if (AI->isStaticAlloca()) { 6096 auto I = FuncInfo.StaticAllocaMap.find(AI); 6097 if (I != FuncInfo.StaticAllocaMap.end()) 6098 FI = I->second; 6099 } 6100 } else if (const auto *Arg = dyn_cast<Argument>( 6101 Address->stripInBoundsConstantOffsets())) { 6102 FI = FuncInfo.getArgumentFrameIndex(Arg); 6103 } 6104 6105 // llvm.dbg.addr is control dependent and always generates indirect 6106 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6107 // the MachineFunction variable table. 6108 if (FI != std::numeric_limits<int>::max()) { 6109 if (Intrinsic == Intrinsic::dbg_addr) { 6110 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6111 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6112 dl, SDNodeOrder); 6113 DAG.AddDbgValue(SDV, isParameter); 6114 } else { 6115 LLVM_DEBUG(dbgs() << "Skipping " << DI 6116 << " (variable info stashed in MF side table)\n"); 6117 } 6118 return; 6119 } 6120 6121 SDValue &N = NodeMap[Address]; 6122 if (!N.getNode() && isa<Argument>(Address)) 6123 // Check unused arguments map. 6124 N = UnusedArgNodeMap[Address]; 6125 SDDbgValue *SDV; 6126 if (N.getNode()) { 6127 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6128 Address = BCI->getOperand(0); 6129 // Parameters are handled specially. 6130 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6131 if (isParameter && FINode) { 6132 // Byval parameter. We have a frame index at this point. 6133 SDV = 6134 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6135 /*IsIndirect*/ true, dl, SDNodeOrder); 6136 } else if (isa<Argument>(Address)) { 6137 // Address is an argument, so try to emit its dbg value using 6138 // virtual register info from the FuncInfo.ValueMap. 6139 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6140 FuncArgumentDbgValueKind::Declare, N); 6141 return; 6142 } else { 6143 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6144 true, dl, SDNodeOrder); 6145 } 6146 DAG.AddDbgValue(SDV, isParameter); 6147 } else { 6148 // If Address is an argument then try to emit its dbg value using 6149 // virtual register info from the FuncInfo.ValueMap. 6150 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6151 FuncArgumentDbgValueKind::Declare, N)) { 6152 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6153 << " (could not emit func-arg dbg_value)\n"); 6154 } 6155 } 6156 return; 6157 } 6158 case Intrinsic::dbg_label: { 6159 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6160 DILabel *Label = DI.getLabel(); 6161 assert(Label && "Missing label"); 6162 6163 SDDbgLabel *SDV; 6164 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6165 DAG.AddDbgLabel(SDV); 6166 return; 6167 } 6168 case Intrinsic::dbg_value: { 6169 const DbgValueInst &DI = cast<DbgValueInst>(I); 6170 assert(DI.getVariable() && "Missing variable"); 6171 6172 DILocalVariable *Variable = DI.getVariable(); 6173 DIExpression *Expression = DI.getExpression(); 6174 dropDanglingDebugInfo(Variable, Expression); 6175 SmallVector<Value *, 4> Values(DI.getValues()); 6176 if (Values.empty()) 6177 return; 6178 6179 if (llvm::is_contained(Values, nullptr)) 6180 return; 6181 6182 bool IsVariadic = DI.hasArgList(); 6183 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6184 SDNodeOrder, IsVariadic)) 6185 addDanglingDebugInfo(&DI, SDNodeOrder); 6186 return; 6187 } 6188 6189 case Intrinsic::eh_typeid_for: { 6190 // Find the type id for the given typeinfo. 6191 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6192 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6193 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6194 setValue(&I, Res); 6195 return; 6196 } 6197 6198 case Intrinsic::eh_return_i32: 6199 case Intrinsic::eh_return_i64: 6200 DAG.getMachineFunction().setCallsEHReturn(true); 6201 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6202 MVT::Other, 6203 getControlRoot(), 6204 getValue(I.getArgOperand(0)), 6205 getValue(I.getArgOperand(1)))); 6206 return; 6207 case Intrinsic::eh_unwind_init: 6208 DAG.getMachineFunction().setCallsUnwindInit(true); 6209 return; 6210 case Intrinsic::eh_dwarf_cfa: 6211 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6212 TLI.getPointerTy(DAG.getDataLayout()), 6213 getValue(I.getArgOperand(0)))); 6214 return; 6215 case Intrinsic::eh_sjlj_callsite: { 6216 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6217 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6218 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6219 6220 MMI.setCurrentCallSite(CI->getZExtValue()); 6221 return; 6222 } 6223 case Intrinsic::eh_sjlj_functioncontext: { 6224 // Get and store the index of the function context. 6225 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6226 AllocaInst *FnCtx = 6227 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6228 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6229 MFI.setFunctionContextIndex(FI); 6230 return; 6231 } 6232 case Intrinsic::eh_sjlj_setjmp: { 6233 SDValue Ops[2]; 6234 Ops[0] = getRoot(); 6235 Ops[1] = getValue(I.getArgOperand(0)); 6236 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6237 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6238 setValue(&I, Op.getValue(0)); 6239 DAG.setRoot(Op.getValue(1)); 6240 return; 6241 } 6242 case Intrinsic::eh_sjlj_longjmp: 6243 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6244 getRoot(), getValue(I.getArgOperand(0)))); 6245 return; 6246 case Intrinsic::eh_sjlj_setup_dispatch: 6247 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6248 getRoot())); 6249 return; 6250 case Intrinsic::masked_gather: 6251 visitMaskedGather(I); 6252 return; 6253 case Intrinsic::masked_load: 6254 visitMaskedLoad(I); 6255 return; 6256 case Intrinsic::masked_scatter: 6257 visitMaskedScatter(I); 6258 return; 6259 case Intrinsic::masked_store: 6260 visitMaskedStore(I); 6261 return; 6262 case Intrinsic::masked_expandload: 6263 visitMaskedLoad(I, true /* IsExpanding */); 6264 return; 6265 case Intrinsic::masked_compressstore: 6266 visitMaskedStore(I, true /* IsCompressing */); 6267 return; 6268 case Intrinsic::powi: 6269 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6270 getValue(I.getArgOperand(1)), DAG)); 6271 return; 6272 case Intrinsic::log: 6273 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6274 return; 6275 case Intrinsic::log2: 6276 setValue(&I, 6277 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6278 return; 6279 case Intrinsic::log10: 6280 setValue(&I, 6281 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6282 return; 6283 case Intrinsic::exp: 6284 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6285 return; 6286 case Intrinsic::exp2: 6287 setValue(&I, 6288 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6289 return; 6290 case Intrinsic::pow: 6291 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6292 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6293 return; 6294 case Intrinsic::sqrt: 6295 case Intrinsic::fabs: 6296 case Intrinsic::sin: 6297 case Intrinsic::cos: 6298 case Intrinsic::floor: 6299 case Intrinsic::ceil: 6300 case Intrinsic::trunc: 6301 case Intrinsic::rint: 6302 case Intrinsic::nearbyint: 6303 case Intrinsic::round: 6304 case Intrinsic::roundeven: 6305 case Intrinsic::canonicalize: { 6306 unsigned Opcode; 6307 switch (Intrinsic) { 6308 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6309 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6310 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6311 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6312 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6313 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6314 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6315 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6316 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6317 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6318 case Intrinsic::round: Opcode = ISD::FROUND; break; 6319 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6320 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6321 } 6322 6323 setValue(&I, DAG.getNode(Opcode, sdl, 6324 getValue(I.getArgOperand(0)).getValueType(), 6325 getValue(I.getArgOperand(0)), Flags)); 6326 return; 6327 } 6328 case Intrinsic::lround: 6329 case Intrinsic::llround: 6330 case Intrinsic::lrint: 6331 case Intrinsic::llrint: { 6332 unsigned Opcode; 6333 switch (Intrinsic) { 6334 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6335 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6336 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6337 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6338 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6339 } 6340 6341 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6342 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6343 getValue(I.getArgOperand(0)))); 6344 return; 6345 } 6346 case Intrinsic::minnum: 6347 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6348 getValue(I.getArgOperand(0)).getValueType(), 6349 getValue(I.getArgOperand(0)), 6350 getValue(I.getArgOperand(1)), Flags)); 6351 return; 6352 case Intrinsic::maxnum: 6353 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6354 getValue(I.getArgOperand(0)).getValueType(), 6355 getValue(I.getArgOperand(0)), 6356 getValue(I.getArgOperand(1)), Flags)); 6357 return; 6358 case Intrinsic::minimum: 6359 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6360 getValue(I.getArgOperand(0)).getValueType(), 6361 getValue(I.getArgOperand(0)), 6362 getValue(I.getArgOperand(1)), Flags)); 6363 return; 6364 case Intrinsic::maximum: 6365 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6366 getValue(I.getArgOperand(0)).getValueType(), 6367 getValue(I.getArgOperand(0)), 6368 getValue(I.getArgOperand(1)), Flags)); 6369 return; 6370 case Intrinsic::copysign: 6371 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6372 getValue(I.getArgOperand(0)).getValueType(), 6373 getValue(I.getArgOperand(0)), 6374 getValue(I.getArgOperand(1)), Flags)); 6375 return; 6376 case Intrinsic::arithmetic_fence: { 6377 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6378 getValue(I.getArgOperand(0)).getValueType(), 6379 getValue(I.getArgOperand(0)), Flags)); 6380 return; 6381 } 6382 case Intrinsic::fma: 6383 setValue(&I, DAG.getNode( 6384 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6385 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6386 getValue(I.getArgOperand(2)), Flags)); 6387 return; 6388 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6389 case Intrinsic::INTRINSIC: 6390 #include "llvm/IR/ConstrainedOps.def" 6391 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6392 return; 6393 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6394 #include "llvm/IR/VPIntrinsics.def" 6395 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6396 return; 6397 case Intrinsic::fptrunc_round: { 6398 // Get the last argument, the metadata and convert it to an integer in the 6399 // call 6400 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6401 std::optional<RoundingMode> RoundMode = 6402 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6403 6404 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6405 6406 // Propagate fast-math-flags from IR to node(s). 6407 SDNodeFlags Flags; 6408 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6409 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6410 6411 SDValue Result; 6412 Result = DAG.getNode( 6413 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6414 DAG.getTargetConstant((int)*RoundMode, sdl, 6415 TLI.getPointerTy(DAG.getDataLayout()))); 6416 setValue(&I, Result); 6417 6418 return; 6419 } 6420 case Intrinsic::fmuladd: { 6421 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6422 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6423 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6424 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6425 getValue(I.getArgOperand(0)).getValueType(), 6426 getValue(I.getArgOperand(0)), 6427 getValue(I.getArgOperand(1)), 6428 getValue(I.getArgOperand(2)), Flags)); 6429 } else { 6430 // TODO: Intrinsic calls should have fast-math-flags. 6431 SDValue Mul = DAG.getNode( 6432 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6433 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6434 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6435 getValue(I.getArgOperand(0)).getValueType(), 6436 Mul, getValue(I.getArgOperand(2)), Flags); 6437 setValue(&I, Add); 6438 } 6439 return; 6440 } 6441 case Intrinsic::convert_to_fp16: 6442 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6443 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6444 getValue(I.getArgOperand(0)), 6445 DAG.getTargetConstant(0, sdl, 6446 MVT::i32)))); 6447 return; 6448 case Intrinsic::convert_from_fp16: 6449 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6450 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6451 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6452 getValue(I.getArgOperand(0))))); 6453 return; 6454 case Intrinsic::fptosi_sat: { 6455 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6456 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6457 getValue(I.getArgOperand(0)), 6458 DAG.getValueType(VT.getScalarType()))); 6459 return; 6460 } 6461 case Intrinsic::fptoui_sat: { 6462 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6463 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6464 getValue(I.getArgOperand(0)), 6465 DAG.getValueType(VT.getScalarType()))); 6466 return; 6467 } 6468 case Intrinsic::set_rounding: 6469 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6470 {getRoot(), getValue(I.getArgOperand(0))}); 6471 setValue(&I, Res); 6472 DAG.setRoot(Res.getValue(0)); 6473 return; 6474 case Intrinsic::is_fpclass: { 6475 const DataLayout DLayout = DAG.getDataLayout(); 6476 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6477 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6478 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6479 MachineFunction &MF = DAG.getMachineFunction(); 6480 const Function &F = MF.getFunction(); 6481 SDValue Op = getValue(I.getArgOperand(0)); 6482 SDNodeFlags Flags; 6483 Flags.setNoFPExcept( 6484 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6485 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6486 // expansion can use illegal types. Making expansion early allows 6487 // legalizing these types prior to selection. 6488 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6489 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6490 setValue(&I, Result); 6491 return; 6492 } 6493 6494 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6495 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6496 setValue(&I, V); 6497 return; 6498 } 6499 case Intrinsic::pcmarker: { 6500 SDValue Tmp = getValue(I.getArgOperand(0)); 6501 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6502 return; 6503 } 6504 case Intrinsic::readcyclecounter: { 6505 SDValue Op = getRoot(); 6506 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6507 DAG.getVTList(MVT::i64, MVT::Other), Op); 6508 setValue(&I, Res); 6509 DAG.setRoot(Res.getValue(1)); 6510 return; 6511 } 6512 case Intrinsic::bitreverse: 6513 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6514 getValue(I.getArgOperand(0)).getValueType(), 6515 getValue(I.getArgOperand(0)))); 6516 return; 6517 case Intrinsic::bswap: 6518 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6519 getValue(I.getArgOperand(0)).getValueType(), 6520 getValue(I.getArgOperand(0)))); 6521 return; 6522 case Intrinsic::cttz: { 6523 SDValue Arg = getValue(I.getArgOperand(0)); 6524 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6525 EVT Ty = Arg.getValueType(); 6526 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6527 sdl, Ty, Arg)); 6528 return; 6529 } 6530 case Intrinsic::ctlz: { 6531 SDValue Arg = getValue(I.getArgOperand(0)); 6532 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6533 EVT Ty = Arg.getValueType(); 6534 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6535 sdl, Ty, Arg)); 6536 return; 6537 } 6538 case Intrinsic::ctpop: { 6539 SDValue Arg = getValue(I.getArgOperand(0)); 6540 EVT Ty = Arg.getValueType(); 6541 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6542 return; 6543 } 6544 case Intrinsic::fshl: 6545 case Intrinsic::fshr: { 6546 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6547 SDValue X = getValue(I.getArgOperand(0)); 6548 SDValue Y = getValue(I.getArgOperand(1)); 6549 SDValue Z = getValue(I.getArgOperand(2)); 6550 EVT VT = X.getValueType(); 6551 6552 if (X == Y) { 6553 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6554 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6555 } else { 6556 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6557 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6558 } 6559 return; 6560 } 6561 case Intrinsic::sadd_sat: { 6562 SDValue Op1 = getValue(I.getArgOperand(0)); 6563 SDValue Op2 = getValue(I.getArgOperand(1)); 6564 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6565 return; 6566 } 6567 case Intrinsic::uadd_sat: { 6568 SDValue Op1 = getValue(I.getArgOperand(0)); 6569 SDValue Op2 = getValue(I.getArgOperand(1)); 6570 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6571 return; 6572 } 6573 case Intrinsic::ssub_sat: { 6574 SDValue Op1 = getValue(I.getArgOperand(0)); 6575 SDValue Op2 = getValue(I.getArgOperand(1)); 6576 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6577 return; 6578 } 6579 case Intrinsic::usub_sat: { 6580 SDValue Op1 = getValue(I.getArgOperand(0)); 6581 SDValue Op2 = getValue(I.getArgOperand(1)); 6582 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6583 return; 6584 } 6585 case Intrinsic::sshl_sat: { 6586 SDValue Op1 = getValue(I.getArgOperand(0)); 6587 SDValue Op2 = getValue(I.getArgOperand(1)); 6588 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6589 return; 6590 } 6591 case Intrinsic::ushl_sat: { 6592 SDValue Op1 = getValue(I.getArgOperand(0)); 6593 SDValue Op2 = getValue(I.getArgOperand(1)); 6594 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6595 return; 6596 } 6597 case Intrinsic::smul_fix: 6598 case Intrinsic::umul_fix: 6599 case Intrinsic::smul_fix_sat: 6600 case Intrinsic::umul_fix_sat: { 6601 SDValue Op1 = getValue(I.getArgOperand(0)); 6602 SDValue Op2 = getValue(I.getArgOperand(1)); 6603 SDValue Op3 = getValue(I.getArgOperand(2)); 6604 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6605 Op1.getValueType(), Op1, Op2, Op3)); 6606 return; 6607 } 6608 case Intrinsic::sdiv_fix: 6609 case Intrinsic::udiv_fix: 6610 case Intrinsic::sdiv_fix_sat: 6611 case Intrinsic::udiv_fix_sat: { 6612 SDValue Op1 = getValue(I.getArgOperand(0)); 6613 SDValue Op2 = getValue(I.getArgOperand(1)); 6614 SDValue Op3 = getValue(I.getArgOperand(2)); 6615 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6616 Op1, Op2, Op3, DAG, TLI)); 6617 return; 6618 } 6619 case Intrinsic::smax: { 6620 SDValue Op1 = getValue(I.getArgOperand(0)); 6621 SDValue Op2 = getValue(I.getArgOperand(1)); 6622 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6623 return; 6624 } 6625 case Intrinsic::smin: { 6626 SDValue Op1 = getValue(I.getArgOperand(0)); 6627 SDValue Op2 = getValue(I.getArgOperand(1)); 6628 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6629 return; 6630 } 6631 case Intrinsic::umax: { 6632 SDValue Op1 = getValue(I.getArgOperand(0)); 6633 SDValue Op2 = getValue(I.getArgOperand(1)); 6634 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6635 return; 6636 } 6637 case Intrinsic::umin: { 6638 SDValue Op1 = getValue(I.getArgOperand(0)); 6639 SDValue Op2 = getValue(I.getArgOperand(1)); 6640 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6641 return; 6642 } 6643 case Intrinsic::abs: { 6644 // TODO: Preserve "int min is poison" arg in SDAG? 6645 SDValue Op1 = getValue(I.getArgOperand(0)); 6646 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6647 return; 6648 } 6649 case Intrinsic::stacksave: { 6650 SDValue Op = getRoot(); 6651 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6652 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6653 setValue(&I, Res); 6654 DAG.setRoot(Res.getValue(1)); 6655 return; 6656 } 6657 case Intrinsic::stackrestore: 6658 Res = getValue(I.getArgOperand(0)); 6659 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6660 return; 6661 case Intrinsic::get_dynamic_area_offset: { 6662 SDValue Op = getRoot(); 6663 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6664 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6665 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6666 // target. 6667 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6668 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6669 " intrinsic!"); 6670 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6671 Op); 6672 DAG.setRoot(Op); 6673 setValue(&I, Res); 6674 return; 6675 } 6676 case Intrinsic::stackguard: { 6677 MachineFunction &MF = DAG.getMachineFunction(); 6678 const Module &M = *MF.getFunction().getParent(); 6679 SDValue Chain = getRoot(); 6680 if (TLI.useLoadStackGuardNode()) { 6681 Res = getLoadStackGuard(DAG, sdl, Chain); 6682 } else { 6683 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6684 const Value *Global = TLI.getSDagStackGuard(M); 6685 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6686 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6687 MachinePointerInfo(Global, 0), Align, 6688 MachineMemOperand::MOVolatile); 6689 } 6690 if (TLI.useStackGuardXorFP()) 6691 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6692 DAG.setRoot(Chain); 6693 setValue(&I, Res); 6694 return; 6695 } 6696 case Intrinsic::stackprotector: { 6697 // Emit code into the DAG to store the stack guard onto the stack. 6698 MachineFunction &MF = DAG.getMachineFunction(); 6699 MachineFrameInfo &MFI = MF.getFrameInfo(); 6700 SDValue Src, Chain = getRoot(); 6701 6702 if (TLI.useLoadStackGuardNode()) 6703 Src = getLoadStackGuard(DAG, sdl, Chain); 6704 else 6705 Src = getValue(I.getArgOperand(0)); // The guard's value. 6706 6707 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6708 6709 int FI = FuncInfo.StaticAllocaMap[Slot]; 6710 MFI.setStackProtectorIndex(FI); 6711 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6712 6713 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6714 6715 // Store the stack protector onto the stack. 6716 Res = DAG.getStore( 6717 Chain, sdl, Src, FIN, 6718 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6719 MaybeAlign(), MachineMemOperand::MOVolatile); 6720 setValue(&I, Res); 6721 DAG.setRoot(Res); 6722 return; 6723 } 6724 case Intrinsic::objectsize: 6725 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6726 6727 case Intrinsic::is_constant: 6728 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6729 6730 case Intrinsic::annotation: 6731 case Intrinsic::ptr_annotation: 6732 case Intrinsic::launder_invariant_group: 6733 case Intrinsic::strip_invariant_group: 6734 // Drop the intrinsic, but forward the value 6735 setValue(&I, getValue(I.getOperand(0))); 6736 return; 6737 6738 case Intrinsic::assume: 6739 case Intrinsic::experimental_noalias_scope_decl: 6740 case Intrinsic::var_annotation: 6741 case Intrinsic::sideeffect: 6742 // Discard annotate attributes, noalias scope declarations, assumptions, and 6743 // artificial side-effects. 6744 return; 6745 6746 case Intrinsic::codeview_annotation: { 6747 // Emit a label associated with this metadata. 6748 MachineFunction &MF = DAG.getMachineFunction(); 6749 MCSymbol *Label = 6750 MF.getMMI().getContext().createTempSymbol("annotation", true); 6751 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6752 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6753 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6754 DAG.setRoot(Res); 6755 return; 6756 } 6757 6758 case Intrinsic::init_trampoline: { 6759 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6760 6761 SDValue Ops[6]; 6762 Ops[0] = getRoot(); 6763 Ops[1] = getValue(I.getArgOperand(0)); 6764 Ops[2] = getValue(I.getArgOperand(1)); 6765 Ops[3] = getValue(I.getArgOperand(2)); 6766 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6767 Ops[5] = DAG.getSrcValue(F); 6768 6769 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6770 6771 DAG.setRoot(Res); 6772 return; 6773 } 6774 case Intrinsic::adjust_trampoline: 6775 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6776 TLI.getPointerTy(DAG.getDataLayout()), 6777 getValue(I.getArgOperand(0)))); 6778 return; 6779 case Intrinsic::gcroot: { 6780 assert(DAG.getMachineFunction().getFunction().hasGC() && 6781 "only valid in functions with gc specified, enforced by Verifier"); 6782 assert(GFI && "implied by previous"); 6783 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6784 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6785 6786 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6787 GFI->addStackRoot(FI->getIndex(), TypeMap); 6788 return; 6789 } 6790 case Intrinsic::gcread: 6791 case Intrinsic::gcwrite: 6792 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6793 case Intrinsic::flt_rounds: 6794 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6795 setValue(&I, Res); 6796 DAG.setRoot(Res.getValue(1)); 6797 return; 6798 6799 case Intrinsic::expect: 6800 // Just replace __builtin_expect(exp, c) with EXP. 6801 setValue(&I, getValue(I.getArgOperand(0))); 6802 return; 6803 6804 case Intrinsic::ubsantrap: 6805 case Intrinsic::debugtrap: 6806 case Intrinsic::trap: { 6807 StringRef TrapFuncName = 6808 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6809 if (TrapFuncName.empty()) { 6810 switch (Intrinsic) { 6811 case Intrinsic::trap: 6812 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6813 break; 6814 case Intrinsic::debugtrap: 6815 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6816 break; 6817 case Intrinsic::ubsantrap: 6818 DAG.setRoot(DAG.getNode( 6819 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6820 DAG.getTargetConstant( 6821 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6822 MVT::i32))); 6823 break; 6824 default: llvm_unreachable("unknown trap intrinsic"); 6825 } 6826 return; 6827 } 6828 TargetLowering::ArgListTy Args; 6829 if (Intrinsic == Intrinsic::ubsantrap) { 6830 Args.push_back(TargetLoweringBase::ArgListEntry()); 6831 Args[0].Val = I.getArgOperand(0); 6832 Args[0].Node = getValue(Args[0].Val); 6833 Args[0].Ty = Args[0].Val->getType(); 6834 } 6835 6836 TargetLowering::CallLoweringInfo CLI(DAG); 6837 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6838 CallingConv::C, I.getType(), 6839 DAG.getExternalSymbol(TrapFuncName.data(), 6840 TLI.getPointerTy(DAG.getDataLayout())), 6841 std::move(Args)); 6842 6843 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6844 DAG.setRoot(Result.second); 6845 return; 6846 } 6847 6848 case Intrinsic::uadd_with_overflow: 6849 case Intrinsic::sadd_with_overflow: 6850 case Intrinsic::usub_with_overflow: 6851 case Intrinsic::ssub_with_overflow: 6852 case Intrinsic::umul_with_overflow: 6853 case Intrinsic::smul_with_overflow: { 6854 ISD::NodeType Op; 6855 switch (Intrinsic) { 6856 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6857 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6858 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6859 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6860 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6861 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6862 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6863 } 6864 SDValue Op1 = getValue(I.getArgOperand(0)); 6865 SDValue Op2 = getValue(I.getArgOperand(1)); 6866 6867 EVT ResultVT = Op1.getValueType(); 6868 EVT OverflowVT = MVT::i1; 6869 if (ResultVT.isVector()) 6870 OverflowVT = EVT::getVectorVT( 6871 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6872 6873 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6874 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6875 return; 6876 } 6877 case Intrinsic::prefetch: { 6878 SDValue Ops[5]; 6879 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6880 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6881 Ops[0] = DAG.getRoot(); 6882 Ops[1] = getValue(I.getArgOperand(0)); 6883 Ops[2] = getValue(I.getArgOperand(1)); 6884 Ops[3] = getValue(I.getArgOperand(2)); 6885 Ops[4] = getValue(I.getArgOperand(3)); 6886 SDValue Result = DAG.getMemIntrinsicNode( 6887 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6888 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6889 /* align */ std::nullopt, Flags); 6890 6891 // Chain the prefetch in parallell with any pending loads, to stay out of 6892 // the way of later optimizations. 6893 PendingLoads.push_back(Result); 6894 Result = getRoot(); 6895 DAG.setRoot(Result); 6896 return; 6897 } 6898 case Intrinsic::lifetime_start: 6899 case Intrinsic::lifetime_end: { 6900 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6901 // Stack coloring is not enabled in O0, discard region information. 6902 if (TM.getOptLevel() == CodeGenOpt::None) 6903 return; 6904 6905 const int64_t ObjectSize = 6906 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6907 Value *const ObjectPtr = I.getArgOperand(1); 6908 SmallVector<const Value *, 4> Allocas; 6909 getUnderlyingObjects(ObjectPtr, Allocas); 6910 6911 for (const Value *Alloca : Allocas) { 6912 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6913 6914 // Could not find an Alloca. 6915 if (!LifetimeObject) 6916 continue; 6917 6918 // First check that the Alloca is static, otherwise it won't have a 6919 // valid frame index. 6920 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6921 if (SI == FuncInfo.StaticAllocaMap.end()) 6922 return; 6923 6924 const int FrameIndex = SI->second; 6925 int64_t Offset; 6926 if (GetPointerBaseWithConstantOffset( 6927 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6928 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6929 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6930 Offset); 6931 DAG.setRoot(Res); 6932 } 6933 return; 6934 } 6935 case Intrinsic::pseudoprobe: { 6936 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6937 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6938 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6939 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6940 DAG.setRoot(Res); 6941 return; 6942 } 6943 case Intrinsic::invariant_start: 6944 // Discard region information. 6945 setValue(&I, 6946 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6947 return; 6948 case Intrinsic::invariant_end: 6949 // Discard region information. 6950 return; 6951 case Intrinsic::clear_cache: 6952 /// FunctionName may be null. 6953 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6954 lowerCallToExternalSymbol(I, FunctionName); 6955 return; 6956 case Intrinsic::donothing: 6957 case Intrinsic::seh_try_begin: 6958 case Intrinsic::seh_scope_begin: 6959 case Intrinsic::seh_try_end: 6960 case Intrinsic::seh_scope_end: 6961 // ignore 6962 return; 6963 case Intrinsic::experimental_stackmap: 6964 visitStackmap(I); 6965 return; 6966 case Intrinsic::experimental_patchpoint_void: 6967 case Intrinsic::experimental_patchpoint_i64: 6968 visitPatchpoint(I); 6969 return; 6970 case Intrinsic::experimental_gc_statepoint: 6971 LowerStatepoint(cast<GCStatepointInst>(I)); 6972 return; 6973 case Intrinsic::experimental_gc_result: 6974 visitGCResult(cast<GCResultInst>(I)); 6975 return; 6976 case Intrinsic::experimental_gc_relocate: 6977 visitGCRelocate(cast<GCRelocateInst>(I)); 6978 return; 6979 case Intrinsic::instrprof_cover: 6980 llvm_unreachable("instrprof failed to lower a cover"); 6981 case Intrinsic::instrprof_increment: 6982 llvm_unreachable("instrprof failed to lower an increment"); 6983 case Intrinsic::instrprof_value_profile: 6984 llvm_unreachable("instrprof failed to lower a value profiling call"); 6985 case Intrinsic::localescape: { 6986 MachineFunction &MF = DAG.getMachineFunction(); 6987 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6988 6989 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6990 // is the same on all targets. 6991 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6992 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6993 if (isa<ConstantPointerNull>(Arg)) 6994 continue; // Skip null pointers. They represent a hole in index space. 6995 AllocaInst *Slot = cast<AllocaInst>(Arg); 6996 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6997 "can only escape static allocas"); 6998 int FI = FuncInfo.StaticAllocaMap[Slot]; 6999 MCSymbol *FrameAllocSym = 7000 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7001 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7002 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7003 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7004 .addSym(FrameAllocSym) 7005 .addFrameIndex(FI); 7006 } 7007 7008 return; 7009 } 7010 7011 case Intrinsic::localrecover: { 7012 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7013 MachineFunction &MF = DAG.getMachineFunction(); 7014 7015 // Get the symbol that defines the frame offset. 7016 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7017 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7018 unsigned IdxVal = 7019 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7020 MCSymbol *FrameAllocSym = 7021 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7022 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7023 7024 Value *FP = I.getArgOperand(1); 7025 SDValue FPVal = getValue(FP); 7026 EVT PtrVT = FPVal.getValueType(); 7027 7028 // Create a MCSymbol for the label to avoid any target lowering 7029 // that would make this PC relative. 7030 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7031 SDValue OffsetVal = 7032 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7033 7034 // Add the offset to the FP. 7035 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7036 setValue(&I, Add); 7037 7038 return; 7039 } 7040 7041 case Intrinsic::eh_exceptionpointer: 7042 case Intrinsic::eh_exceptioncode: { 7043 // Get the exception pointer vreg, copy from it, and resize it to fit. 7044 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7045 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7046 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7047 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7048 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7049 if (Intrinsic == Intrinsic::eh_exceptioncode) 7050 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7051 setValue(&I, N); 7052 return; 7053 } 7054 case Intrinsic::xray_customevent: { 7055 // Here we want to make sure that the intrinsic behaves as if it has a 7056 // specific calling convention, and only for x86_64. 7057 // FIXME: Support other platforms later. 7058 const auto &Triple = DAG.getTarget().getTargetTriple(); 7059 if (Triple.getArch() != Triple::x86_64) 7060 return; 7061 7062 SmallVector<SDValue, 8> Ops; 7063 7064 // We want to say that we always want the arguments in registers. 7065 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7066 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7067 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7068 SDValue Chain = getRoot(); 7069 Ops.push_back(LogEntryVal); 7070 Ops.push_back(StrSizeVal); 7071 Ops.push_back(Chain); 7072 7073 // We need to enforce the calling convention for the callsite, so that 7074 // argument ordering is enforced correctly, and that register allocation can 7075 // see that some registers may be assumed clobbered and have to preserve 7076 // them across calls to the intrinsic. 7077 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7078 sdl, NodeTys, Ops); 7079 SDValue patchableNode = SDValue(MN, 0); 7080 DAG.setRoot(patchableNode); 7081 setValue(&I, patchableNode); 7082 return; 7083 } 7084 case Intrinsic::xray_typedevent: { 7085 // Here we want to make sure that the intrinsic behaves as if it has a 7086 // specific calling convention, and only for x86_64. 7087 // FIXME: Support other platforms later. 7088 const auto &Triple = DAG.getTarget().getTargetTriple(); 7089 if (Triple.getArch() != Triple::x86_64) 7090 return; 7091 7092 SmallVector<SDValue, 8> Ops; 7093 7094 // We want to say that we always want the arguments in registers. 7095 // It's unclear to me how manipulating the selection DAG here forces callers 7096 // to provide arguments in registers instead of on the stack. 7097 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7098 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7099 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7100 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7101 SDValue Chain = getRoot(); 7102 Ops.push_back(LogTypeId); 7103 Ops.push_back(LogEntryVal); 7104 Ops.push_back(StrSizeVal); 7105 Ops.push_back(Chain); 7106 7107 // We need to enforce the calling convention for the callsite, so that 7108 // argument ordering is enforced correctly, and that register allocation can 7109 // see that some registers may be assumed clobbered and have to preserve 7110 // them across calls to the intrinsic. 7111 MachineSDNode *MN = DAG.getMachineNode( 7112 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7113 SDValue patchableNode = SDValue(MN, 0); 7114 DAG.setRoot(patchableNode); 7115 setValue(&I, patchableNode); 7116 return; 7117 } 7118 case Intrinsic::experimental_deoptimize: 7119 LowerDeoptimizeCall(&I); 7120 return; 7121 case Intrinsic::experimental_stepvector: 7122 visitStepVector(I); 7123 return; 7124 case Intrinsic::vector_reduce_fadd: 7125 case Intrinsic::vector_reduce_fmul: 7126 case Intrinsic::vector_reduce_add: 7127 case Intrinsic::vector_reduce_mul: 7128 case Intrinsic::vector_reduce_and: 7129 case Intrinsic::vector_reduce_or: 7130 case Intrinsic::vector_reduce_xor: 7131 case Intrinsic::vector_reduce_smax: 7132 case Intrinsic::vector_reduce_smin: 7133 case Intrinsic::vector_reduce_umax: 7134 case Intrinsic::vector_reduce_umin: 7135 case Intrinsic::vector_reduce_fmax: 7136 case Intrinsic::vector_reduce_fmin: 7137 visitVectorReduce(I, Intrinsic); 7138 return; 7139 7140 case Intrinsic::icall_branch_funnel: { 7141 SmallVector<SDValue, 16> Ops; 7142 Ops.push_back(getValue(I.getArgOperand(0))); 7143 7144 int64_t Offset; 7145 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7146 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7147 if (!Base) 7148 report_fatal_error( 7149 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7150 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7151 7152 struct BranchFunnelTarget { 7153 int64_t Offset; 7154 SDValue Target; 7155 }; 7156 SmallVector<BranchFunnelTarget, 8> Targets; 7157 7158 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7159 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7160 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7161 if (ElemBase != Base) 7162 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7163 "to the same GlobalValue"); 7164 7165 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7166 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7167 if (!GA) 7168 report_fatal_error( 7169 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7170 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7171 GA->getGlobal(), sdl, Val.getValueType(), 7172 GA->getOffset())}); 7173 } 7174 llvm::sort(Targets, 7175 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7176 return T1.Offset < T2.Offset; 7177 }); 7178 7179 for (auto &T : Targets) { 7180 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7181 Ops.push_back(T.Target); 7182 } 7183 7184 Ops.push_back(DAG.getRoot()); // Chain 7185 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7186 MVT::Other, Ops), 7187 0); 7188 DAG.setRoot(N); 7189 setValue(&I, N); 7190 HasTailCall = true; 7191 return; 7192 } 7193 7194 case Intrinsic::wasm_landingpad_index: 7195 // Information this intrinsic contained has been transferred to 7196 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7197 // delete it now. 7198 return; 7199 7200 case Intrinsic::aarch64_settag: 7201 case Intrinsic::aarch64_settag_zero: { 7202 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7203 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7204 SDValue Val = TSI.EmitTargetCodeForSetTag( 7205 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7206 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7207 ZeroMemory); 7208 DAG.setRoot(Val); 7209 setValue(&I, Val); 7210 return; 7211 } 7212 case Intrinsic::ptrmask: { 7213 SDValue Ptr = getValue(I.getOperand(0)); 7214 SDValue Const = getValue(I.getOperand(1)); 7215 7216 EVT PtrVT = Ptr.getValueType(); 7217 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7218 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7219 return; 7220 } 7221 case Intrinsic::threadlocal_address: { 7222 setValue(&I, getValue(I.getOperand(0))); 7223 return; 7224 } 7225 case Intrinsic::get_active_lane_mask: { 7226 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7227 SDValue Index = getValue(I.getOperand(0)); 7228 EVT ElementVT = Index.getValueType(); 7229 7230 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7231 visitTargetIntrinsic(I, Intrinsic); 7232 return; 7233 } 7234 7235 SDValue TripCount = getValue(I.getOperand(1)); 7236 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7237 7238 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7239 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7240 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7241 SDValue VectorInduction = DAG.getNode( 7242 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7243 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7244 VectorTripCount, ISD::CondCode::SETULT); 7245 setValue(&I, SetCC); 7246 return; 7247 } 7248 case Intrinsic::vector_insert: { 7249 SDValue Vec = getValue(I.getOperand(0)); 7250 SDValue SubVec = getValue(I.getOperand(1)); 7251 SDValue Index = getValue(I.getOperand(2)); 7252 7253 // The intrinsic's index type is i64, but the SDNode requires an index type 7254 // suitable for the target. Convert the index as required. 7255 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7256 if (Index.getValueType() != VectorIdxTy) 7257 Index = DAG.getVectorIdxConstant( 7258 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7259 7260 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7261 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7262 Index)); 7263 return; 7264 } 7265 case Intrinsic::vector_extract: { 7266 SDValue Vec = getValue(I.getOperand(0)); 7267 SDValue Index = getValue(I.getOperand(1)); 7268 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7269 7270 // The intrinsic's index type is i64, but the SDNode requires an index type 7271 // suitable for the target. Convert the index as required. 7272 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7273 if (Index.getValueType() != VectorIdxTy) 7274 Index = DAG.getVectorIdxConstant( 7275 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7276 7277 setValue(&I, 7278 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7279 return; 7280 } 7281 case Intrinsic::experimental_vector_reverse: 7282 visitVectorReverse(I); 7283 return; 7284 case Intrinsic::experimental_vector_splice: 7285 visitVectorSplice(I); 7286 return; 7287 } 7288 } 7289 7290 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7291 const ConstrainedFPIntrinsic &FPI) { 7292 SDLoc sdl = getCurSDLoc(); 7293 7294 // We do not need to serialize constrained FP intrinsics against 7295 // each other or against (nonvolatile) loads, so they can be 7296 // chained like loads. 7297 SDValue Chain = DAG.getRoot(); 7298 SmallVector<SDValue, 4> Opers; 7299 Opers.push_back(Chain); 7300 if (FPI.isUnaryOp()) { 7301 Opers.push_back(getValue(FPI.getArgOperand(0))); 7302 } else if (FPI.isTernaryOp()) { 7303 Opers.push_back(getValue(FPI.getArgOperand(0))); 7304 Opers.push_back(getValue(FPI.getArgOperand(1))); 7305 Opers.push_back(getValue(FPI.getArgOperand(2))); 7306 } else { 7307 Opers.push_back(getValue(FPI.getArgOperand(0))); 7308 Opers.push_back(getValue(FPI.getArgOperand(1))); 7309 } 7310 7311 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7312 assert(Result.getNode()->getNumValues() == 2); 7313 7314 // Push node to the appropriate list so that future instructions can be 7315 // chained up correctly. 7316 SDValue OutChain = Result.getValue(1); 7317 switch (EB) { 7318 case fp::ExceptionBehavior::ebIgnore: 7319 // The only reason why ebIgnore nodes still need to be chained is that 7320 // they might depend on the current rounding mode, and therefore must 7321 // not be moved across instruction that may change that mode. 7322 [[fallthrough]]; 7323 case fp::ExceptionBehavior::ebMayTrap: 7324 // These must not be moved across calls or instructions that may change 7325 // floating-point exception masks. 7326 PendingConstrainedFP.push_back(OutChain); 7327 break; 7328 case fp::ExceptionBehavior::ebStrict: 7329 // These must not be moved across calls or instructions that may change 7330 // floating-point exception masks or read floating-point exception flags. 7331 // In addition, they cannot be optimized out even if unused. 7332 PendingConstrainedFPStrict.push_back(OutChain); 7333 break; 7334 } 7335 }; 7336 7337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7338 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7339 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7340 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7341 7342 SDNodeFlags Flags; 7343 if (EB == fp::ExceptionBehavior::ebIgnore) 7344 Flags.setNoFPExcept(true); 7345 7346 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7347 Flags.copyFMF(*FPOp); 7348 7349 unsigned Opcode; 7350 switch (FPI.getIntrinsicID()) { 7351 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7352 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7353 case Intrinsic::INTRINSIC: \ 7354 Opcode = ISD::STRICT_##DAGN; \ 7355 break; 7356 #include "llvm/IR/ConstrainedOps.def" 7357 case Intrinsic::experimental_constrained_fmuladd: { 7358 Opcode = ISD::STRICT_FMA; 7359 // Break fmuladd into fmul and fadd. 7360 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7361 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7362 Opers.pop_back(); 7363 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7364 pushOutChain(Mul, EB); 7365 Opcode = ISD::STRICT_FADD; 7366 Opers.clear(); 7367 Opers.push_back(Mul.getValue(1)); 7368 Opers.push_back(Mul.getValue(0)); 7369 Opers.push_back(getValue(FPI.getArgOperand(2))); 7370 } 7371 break; 7372 } 7373 } 7374 7375 // A few strict DAG nodes carry additional operands that are not 7376 // set up by the default code above. 7377 switch (Opcode) { 7378 default: break; 7379 case ISD::STRICT_FP_ROUND: 7380 Opers.push_back( 7381 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7382 break; 7383 case ISD::STRICT_FSETCC: 7384 case ISD::STRICT_FSETCCS: { 7385 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7386 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7387 if (TM.Options.NoNaNsFPMath) 7388 Condition = getFCmpCodeWithoutNaN(Condition); 7389 Opers.push_back(DAG.getCondCode(Condition)); 7390 break; 7391 } 7392 } 7393 7394 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7395 pushOutChain(Result, EB); 7396 7397 SDValue FPResult = Result.getValue(0); 7398 setValue(&FPI, FPResult); 7399 } 7400 7401 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7402 std::optional<unsigned> ResOPC; 7403 switch (VPIntrin.getIntrinsicID()) { 7404 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7405 case Intrinsic::VPID: \ 7406 ResOPC = ISD::VPSD; \ 7407 break; 7408 #include "llvm/IR/VPIntrinsics.def" 7409 } 7410 7411 if (!ResOPC) 7412 llvm_unreachable( 7413 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7414 7415 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7416 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7417 if (VPIntrin.getFastMathFlags().allowReassoc()) 7418 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7419 : ISD::VP_REDUCE_FMUL; 7420 } 7421 7422 return *ResOPC; 7423 } 7424 7425 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT, 7426 SmallVector<SDValue, 7> &OpValues) { 7427 SDLoc DL = getCurSDLoc(); 7428 Value *PtrOperand = VPIntrin.getArgOperand(0); 7429 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7430 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7431 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7432 SDValue LD; 7433 bool AddToChain = true; 7434 // Do not serialize variable-length loads of constant memory with 7435 // anything. 7436 if (!Alignment) 7437 Alignment = DAG.getEVTAlign(VT); 7438 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7439 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7440 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7441 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7442 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7443 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7444 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7445 MMO, false /*IsExpanding */); 7446 if (AddToChain) 7447 PendingLoads.push_back(LD.getValue(1)); 7448 setValue(&VPIntrin, LD); 7449 } 7450 7451 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT, 7452 SmallVector<SDValue, 7> &OpValues) { 7453 SDLoc DL = getCurSDLoc(); 7454 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7455 Value *PtrOperand = VPIntrin.getArgOperand(0); 7456 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7457 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7458 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7459 SDValue LD; 7460 if (!Alignment) 7461 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7462 unsigned AS = 7463 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7464 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7465 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7466 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7467 SDValue Base, Index, Scale; 7468 ISD::MemIndexType IndexType; 7469 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7470 this, VPIntrin.getParent(), 7471 VT.getScalarStoreSize()); 7472 if (!UniformBase) { 7473 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7474 Index = getValue(PtrOperand); 7475 IndexType = ISD::SIGNED_SCALED; 7476 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7477 } 7478 EVT IdxVT = Index.getValueType(); 7479 EVT EltTy = IdxVT.getVectorElementType(); 7480 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7481 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7482 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7483 } 7484 LD = DAG.getGatherVP( 7485 DAG.getVTList(VT, MVT::Other), VT, DL, 7486 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7487 IndexType); 7488 PendingLoads.push_back(LD.getValue(1)); 7489 setValue(&VPIntrin, LD); 7490 } 7491 7492 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin, 7493 SmallVector<SDValue, 7> &OpValues) { 7494 SDLoc DL = getCurSDLoc(); 7495 Value *PtrOperand = VPIntrin.getArgOperand(1); 7496 EVT VT = OpValues[0].getValueType(); 7497 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7498 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7499 SDValue ST; 7500 if (!Alignment) 7501 Alignment = DAG.getEVTAlign(VT); 7502 SDValue Ptr = OpValues[1]; 7503 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7504 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7505 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7506 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7507 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7508 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7509 /* IsTruncating */ false, /*IsCompressing*/ false); 7510 DAG.setRoot(ST); 7511 setValue(&VPIntrin, ST); 7512 } 7513 7514 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin, 7515 SmallVector<SDValue, 7> &OpValues) { 7516 SDLoc DL = getCurSDLoc(); 7517 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7518 Value *PtrOperand = VPIntrin.getArgOperand(1); 7519 EVT VT = OpValues[0].getValueType(); 7520 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7521 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7522 SDValue ST; 7523 if (!Alignment) 7524 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7525 unsigned AS = 7526 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7527 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7528 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7529 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7530 SDValue Base, Index, Scale; 7531 ISD::MemIndexType IndexType; 7532 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7533 this, VPIntrin.getParent(), 7534 VT.getScalarStoreSize()); 7535 if (!UniformBase) { 7536 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7537 Index = getValue(PtrOperand); 7538 IndexType = ISD::SIGNED_SCALED; 7539 Scale = 7540 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7541 } 7542 EVT IdxVT = Index.getValueType(); 7543 EVT EltTy = IdxVT.getVectorElementType(); 7544 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7545 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7546 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7547 } 7548 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7549 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7550 OpValues[2], OpValues[3]}, 7551 MMO, IndexType); 7552 DAG.setRoot(ST); 7553 setValue(&VPIntrin, ST); 7554 } 7555 7556 void SelectionDAGBuilder::visitVPStridedLoad( 7557 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7558 SDLoc DL = getCurSDLoc(); 7559 Value *PtrOperand = VPIntrin.getArgOperand(0); 7560 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7561 if (!Alignment) 7562 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7563 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7564 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7565 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7566 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7567 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7568 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7569 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7570 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7571 7572 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7573 OpValues[2], OpValues[3], MMO, 7574 false /*IsExpanding*/); 7575 7576 if (AddToChain) 7577 PendingLoads.push_back(LD.getValue(1)); 7578 setValue(&VPIntrin, LD); 7579 } 7580 7581 void SelectionDAGBuilder::visitVPStridedStore( 7582 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7583 SDLoc DL = getCurSDLoc(); 7584 Value *PtrOperand = VPIntrin.getArgOperand(1); 7585 EVT VT = OpValues[0].getValueType(); 7586 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7587 if (!Alignment) 7588 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7589 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7590 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7591 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7592 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7593 7594 SDValue ST = DAG.getStridedStoreVP( 7595 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7596 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7597 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7598 /*IsCompressing*/ false); 7599 7600 DAG.setRoot(ST); 7601 setValue(&VPIntrin, ST); 7602 } 7603 7604 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7606 SDLoc DL = getCurSDLoc(); 7607 7608 ISD::CondCode Condition; 7609 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7610 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7611 if (IsFP) { 7612 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7613 // flags, but calls that don't return floating-point types can't be 7614 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7615 Condition = getFCmpCondCode(CondCode); 7616 if (TM.Options.NoNaNsFPMath) 7617 Condition = getFCmpCodeWithoutNaN(Condition); 7618 } else { 7619 Condition = getICmpCondCode(CondCode); 7620 } 7621 7622 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7623 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7624 // #2 is the condition code 7625 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7626 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7627 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7628 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7629 "Unexpected target EVL type"); 7630 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7631 7632 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7633 VPIntrin.getType()); 7634 setValue(&VPIntrin, 7635 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7636 } 7637 7638 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7639 const VPIntrinsic &VPIntrin) { 7640 SDLoc DL = getCurSDLoc(); 7641 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7642 7643 auto IID = VPIntrin.getIntrinsicID(); 7644 7645 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7646 return visitVPCmp(*CmpI); 7647 7648 SmallVector<EVT, 4> ValueVTs; 7649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7650 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7651 SDVTList VTs = DAG.getVTList(ValueVTs); 7652 7653 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7654 7655 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7656 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7657 "Unexpected target EVL type"); 7658 7659 // Request operands. 7660 SmallVector<SDValue, 7> OpValues; 7661 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7662 auto Op = getValue(VPIntrin.getArgOperand(I)); 7663 if (I == EVLParamPos) 7664 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7665 OpValues.push_back(Op); 7666 } 7667 7668 switch (Opcode) { 7669 default: { 7670 SDNodeFlags SDFlags; 7671 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7672 SDFlags.copyFMF(*FPMO); 7673 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7674 setValue(&VPIntrin, Result); 7675 break; 7676 } 7677 case ISD::VP_LOAD: 7678 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7679 break; 7680 case ISD::VP_GATHER: 7681 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7682 break; 7683 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7684 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7685 break; 7686 case ISD::VP_STORE: 7687 visitVPStore(VPIntrin, OpValues); 7688 break; 7689 case ISD::VP_SCATTER: 7690 visitVPScatter(VPIntrin, OpValues); 7691 break; 7692 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7693 visitVPStridedStore(VPIntrin, OpValues); 7694 break; 7695 case ISD::VP_FMULADD: { 7696 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7697 SDNodeFlags SDFlags; 7698 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7699 SDFlags.copyFMF(*FPMO); 7700 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7701 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7702 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7703 } else { 7704 SDValue Mul = DAG.getNode( 7705 ISD::VP_FMUL, DL, VTs, 7706 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7707 SDValue Add = 7708 DAG.getNode(ISD::VP_FADD, DL, VTs, 7709 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7710 setValue(&VPIntrin, Add); 7711 } 7712 break; 7713 } 7714 case ISD::VP_INTTOPTR: { 7715 SDValue N = OpValues[0]; 7716 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 7717 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 7718 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7719 OpValues[2]); 7720 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7721 OpValues[2]); 7722 setValue(&VPIntrin, N); 7723 break; 7724 } 7725 case ISD::VP_PTRTOINT: { 7726 SDValue N = OpValues[0]; 7727 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7728 VPIntrin.getType()); 7729 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 7730 VPIntrin.getOperand(0)->getType()); 7731 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7732 OpValues[2]); 7733 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7734 OpValues[2]); 7735 setValue(&VPIntrin, N); 7736 break; 7737 } 7738 } 7739 } 7740 7741 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7742 const BasicBlock *EHPadBB, 7743 MCSymbol *&BeginLabel) { 7744 MachineFunction &MF = DAG.getMachineFunction(); 7745 MachineModuleInfo &MMI = MF.getMMI(); 7746 7747 // Insert a label before the invoke call to mark the try range. This can be 7748 // used to detect deletion of the invoke via the MachineModuleInfo. 7749 BeginLabel = MMI.getContext().createTempSymbol(); 7750 7751 // For SjLj, keep track of which landing pads go with which invokes 7752 // so as to maintain the ordering of pads in the LSDA. 7753 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7754 if (CallSiteIndex) { 7755 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7756 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7757 7758 // Now that the call site is handled, stop tracking it. 7759 MMI.setCurrentCallSite(0); 7760 } 7761 7762 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7763 } 7764 7765 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7766 const BasicBlock *EHPadBB, 7767 MCSymbol *BeginLabel) { 7768 assert(BeginLabel && "BeginLabel should've been set"); 7769 7770 MachineFunction &MF = DAG.getMachineFunction(); 7771 MachineModuleInfo &MMI = MF.getMMI(); 7772 7773 // Insert a label at the end of the invoke call to mark the try range. This 7774 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7775 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7776 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7777 7778 // Inform MachineModuleInfo of range. 7779 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7780 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7781 // actually use outlined funclets and their LSDA info style. 7782 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7783 assert(II && "II should've been set"); 7784 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7785 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7786 } else if (!isScopedEHPersonality(Pers)) { 7787 assert(EHPadBB); 7788 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7789 } 7790 7791 return Chain; 7792 } 7793 7794 std::pair<SDValue, SDValue> 7795 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7796 const BasicBlock *EHPadBB) { 7797 MCSymbol *BeginLabel = nullptr; 7798 7799 if (EHPadBB) { 7800 // Both PendingLoads and PendingExports must be flushed here; 7801 // this call might not return. 7802 (void)getRoot(); 7803 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7804 CLI.setChain(getRoot()); 7805 } 7806 7807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7808 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7809 7810 assert((CLI.IsTailCall || Result.second.getNode()) && 7811 "Non-null chain expected with non-tail call!"); 7812 assert((Result.second.getNode() || !Result.first.getNode()) && 7813 "Null value expected with tail call!"); 7814 7815 if (!Result.second.getNode()) { 7816 // As a special case, a null chain means that a tail call has been emitted 7817 // and the DAG root is already updated. 7818 HasTailCall = true; 7819 7820 // Since there's no actual continuation from this block, nothing can be 7821 // relying on us setting vregs for them. 7822 PendingExports.clear(); 7823 } else { 7824 DAG.setRoot(Result.second); 7825 } 7826 7827 if (EHPadBB) { 7828 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7829 BeginLabel)); 7830 } 7831 7832 return Result; 7833 } 7834 7835 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7836 bool isTailCall, 7837 bool isMustTailCall, 7838 const BasicBlock *EHPadBB) { 7839 auto &DL = DAG.getDataLayout(); 7840 FunctionType *FTy = CB.getFunctionType(); 7841 Type *RetTy = CB.getType(); 7842 7843 TargetLowering::ArgListTy Args; 7844 Args.reserve(CB.arg_size()); 7845 7846 const Value *SwiftErrorVal = nullptr; 7847 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7848 7849 if (isTailCall) { 7850 // Avoid emitting tail calls in functions with the disable-tail-calls 7851 // attribute. 7852 auto *Caller = CB.getParent()->getParent(); 7853 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7854 "true" && !isMustTailCall) 7855 isTailCall = false; 7856 7857 // We can't tail call inside a function with a swifterror argument. Lowering 7858 // does not support this yet. It would have to move into the swifterror 7859 // register before the call. 7860 if (TLI.supportSwiftError() && 7861 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7862 isTailCall = false; 7863 } 7864 7865 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7866 TargetLowering::ArgListEntry Entry; 7867 const Value *V = *I; 7868 7869 // Skip empty types 7870 if (V->getType()->isEmptyTy()) 7871 continue; 7872 7873 SDValue ArgNode = getValue(V); 7874 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7875 7876 Entry.setAttributes(&CB, I - CB.arg_begin()); 7877 7878 // Use swifterror virtual register as input to the call. 7879 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7880 SwiftErrorVal = V; 7881 // We find the virtual register for the actual swifterror argument. 7882 // Instead of using the Value, we use the virtual register instead. 7883 Entry.Node = 7884 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7885 EVT(TLI.getPointerTy(DL))); 7886 } 7887 7888 Args.push_back(Entry); 7889 7890 // If we have an explicit sret argument that is an Instruction, (i.e., it 7891 // might point to function-local memory), we can't meaningfully tail-call. 7892 if (Entry.IsSRet && isa<Instruction>(V)) 7893 isTailCall = false; 7894 } 7895 7896 // If call site has a cfguardtarget operand bundle, create and add an 7897 // additional ArgListEntry. 7898 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7899 TargetLowering::ArgListEntry Entry; 7900 Value *V = Bundle->Inputs[0]; 7901 SDValue ArgNode = getValue(V); 7902 Entry.Node = ArgNode; 7903 Entry.Ty = V->getType(); 7904 Entry.IsCFGuardTarget = true; 7905 Args.push_back(Entry); 7906 } 7907 7908 // Check if target-independent constraints permit a tail call here. 7909 // Target-dependent constraints are checked within TLI->LowerCallTo. 7910 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7911 isTailCall = false; 7912 7913 // Disable tail calls if there is an swifterror argument. Targets have not 7914 // been updated to support tail calls. 7915 if (TLI.supportSwiftError() && SwiftErrorVal) 7916 isTailCall = false; 7917 7918 ConstantInt *CFIType = nullptr; 7919 if (CB.isIndirectCall()) { 7920 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7921 if (!TLI.supportKCFIBundles()) 7922 report_fatal_error( 7923 "Target doesn't support calls with kcfi operand bundles."); 7924 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7925 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7926 } 7927 } 7928 7929 TargetLowering::CallLoweringInfo CLI(DAG); 7930 CLI.setDebugLoc(getCurSDLoc()) 7931 .setChain(getRoot()) 7932 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7933 .setTailCall(isTailCall) 7934 .setConvergent(CB.isConvergent()) 7935 .setIsPreallocated( 7936 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 7937 .setCFIType(CFIType); 7938 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7939 7940 if (Result.first.getNode()) { 7941 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7942 setValue(&CB, Result.first); 7943 } 7944 7945 // The last element of CLI.InVals has the SDValue for swifterror return. 7946 // Here we copy it to a virtual register and update SwiftErrorMap for 7947 // book-keeping. 7948 if (SwiftErrorVal && TLI.supportSwiftError()) { 7949 // Get the last element of InVals. 7950 SDValue Src = CLI.InVals.back(); 7951 Register VReg = 7952 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7953 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7954 DAG.setRoot(CopyNode); 7955 } 7956 } 7957 7958 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7959 SelectionDAGBuilder &Builder) { 7960 // Check to see if this load can be trivially constant folded, e.g. if the 7961 // input is from a string literal. 7962 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7963 // Cast pointer to the type we really want to load. 7964 Type *LoadTy = 7965 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7966 if (LoadVT.isVector()) 7967 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7968 7969 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7970 PointerType::getUnqual(LoadTy)); 7971 7972 if (const Constant *LoadCst = 7973 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7974 LoadTy, Builder.DAG.getDataLayout())) 7975 return Builder.getValue(LoadCst); 7976 } 7977 7978 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7979 // still constant memory, the input chain can be the entry node. 7980 SDValue Root; 7981 bool ConstantMemory = false; 7982 7983 // Do not serialize (non-volatile) loads of constant memory with anything. 7984 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7985 Root = Builder.DAG.getEntryNode(); 7986 ConstantMemory = true; 7987 } else { 7988 // Do not serialize non-volatile loads against each other. 7989 Root = Builder.DAG.getRoot(); 7990 } 7991 7992 SDValue Ptr = Builder.getValue(PtrVal); 7993 SDValue LoadVal = 7994 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7995 MachinePointerInfo(PtrVal), Align(1)); 7996 7997 if (!ConstantMemory) 7998 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7999 return LoadVal; 8000 } 8001 8002 /// Record the value for an instruction that produces an integer result, 8003 /// converting the type where necessary. 8004 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8005 SDValue Value, 8006 bool IsSigned) { 8007 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8008 I.getType(), true); 8009 if (IsSigned) 8010 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 8011 else 8012 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 8013 setValue(&I, Value); 8014 } 8015 8016 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8017 /// true and lower it. Otherwise return false, and it will be lowered like a 8018 /// normal call. 8019 /// The caller already checked that \p I calls the appropriate LibFunc with a 8020 /// correct prototype. 8021 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8022 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8023 const Value *Size = I.getArgOperand(2); 8024 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8025 if (CSize && CSize->getZExtValue() == 0) { 8026 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8027 I.getType(), true); 8028 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8029 return true; 8030 } 8031 8032 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8033 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8034 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8035 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8036 if (Res.first.getNode()) { 8037 processIntegerCallValue(I, Res.first, true); 8038 PendingLoads.push_back(Res.second); 8039 return true; 8040 } 8041 8042 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8043 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8044 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8045 return false; 8046 8047 // If the target has a fast compare for the given size, it will return a 8048 // preferred load type for that size. Require that the load VT is legal and 8049 // that the target supports unaligned loads of that type. Otherwise, return 8050 // INVALID. 8051 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8053 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8054 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8055 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8056 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8057 // TODO: Check alignment of src and dest ptrs. 8058 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8059 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8060 if (!TLI.isTypeLegal(LVT) || 8061 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8062 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8063 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8064 } 8065 8066 return LVT; 8067 }; 8068 8069 // This turns into unaligned loads. We only do this if the target natively 8070 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8071 // we'll only produce a small number of byte loads. 8072 MVT LoadVT; 8073 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8074 switch (NumBitsToCompare) { 8075 default: 8076 return false; 8077 case 16: 8078 LoadVT = MVT::i16; 8079 break; 8080 case 32: 8081 LoadVT = MVT::i32; 8082 break; 8083 case 64: 8084 case 128: 8085 case 256: 8086 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8087 break; 8088 } 8089 8090 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8091 return false; 8092 8093 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8094 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8095 8096 // Bitcast to a wide integer type if the loads are vectors. 8097 if (LoadVT.isVector()) { 8098 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8099 LoadL = DAG.getBitcast(CmpVT, LoadL); 8100 LoadR = DAG.getBitcast(CmpVT, LoadR); 8101 } 8102 8103 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8104 processIntegerCallValue(I, Cmp, false); 8105 return true; 8106 } 8107 8108 /// See if we can lower a memchr call into an optimized form. If so, return 8109 /// true and lower it. Otherwise return false, and it will be lowered like a 8110 /// normal call. 8111 /// The caller already checked that \p I calls the appropriate LibFunc with a 8112 /// correct prototype. 8113 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8114 const Value *Src = I.getArgOperand(0); 8115 const Value *Char = I.getArgOperand(1); 8116 const Value *Length = I.getArgOperand(2); 8117 8118 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8119 std::pair<SDValue, SDValue> Res = 8120 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8121 getValue(Src), getValue(Char), getValue(Length), 8122 MachinePointerInfo(Src)); 8123 if (Res.first.getNode()) { 8124 setValue(&I, Res.first); 8125 PendingLoads.push_back(Res.second); 8126 return true; 8127 } 8128 8129 return false; 8130 } 8131 8132 /// See if we can lower a mempcpy call into an optimized form. If so, return 8133 /// true and lower it. Otherwise return false, and it will be lowered like a 8134 /// normal call. 8135 /// The caller already checked that \p I calls the appropriate LibFunc with a 8136 /// correct prototype. 8137 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8138 SDValue Dst = getValue(I.getArgOperand(0)); 8139 SDValue Src = getValue(I.getArgOperand(1)); 8140 SDValue Size = getValue(I.getArgOperand(2)); 8141 8142 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8143 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8144 // DAG::getMemcpy needs Alignment to be defined. 8145 Align Alignment = std::min(DstAlign, SrcAlign); 8146 8147 bool isVol = false; 8148 SDLoc sdl = getCurSDLoc(); 8149 8150 // In the mempcpy context we need to pass in a false value for isTailCall 8151 // because the return pointer needs to be adjusted by the size of 8152 // the copied memory. 8153 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8154 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8155 /*isTailCall=*/false, 8156 MachinePointerInfo(I.getArgOperand(0)), 8157 MachinePointerInfo(I.getArgOperand(1)), 8158 I.getAAMetadata()); 8159 assert(MC.getNode() != nullptr && 8160 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8161 DAG.setRoot(MC); 8162 8163 // Check if Size needs to be truncated or extended. 8164 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8165 8166 // Adjust return pointer to point just past the last dst byte. 8167 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8168 Dst, Size); 8169 setValue(&I, DstPlusSize); 8170 return true; 8171 } 8172 8173 /// See if we can lower a strcpy call into an optimized form. If so, return 8174 /// true and lower it, otherwise return false and it will be lowered like a 8175 /// normal call. 8176 /// The caller already checked that \p I calls the appropriate LibFunc with a 8177 /// correct prototype. 8178 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8179 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8180 8181 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8182 std::pair<SDValue, SDValue> Res = 8183 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8184 getValue(Arg0), getValue(Arg1), 8185 MachinePointerInfo(Arg0), 8186 MachinePointerInfo(Arg1), isStpcpy); 8187 if (Res.first.getNode()) { 8188 setValue(&I, Res.first); 8189 DAG.setRoot(Res.second); 8190 return true; 8191 } 8192 8193 return false; 8194 } 8195 8196 /// See if we can lower a strcmp call into an optimized form. If so, return 8197 /// true and lower it, otherwise return false and it will be lowered like a 8198 /// normal call. 8199 /// The caller already checked that \p I calls the appropriate LibFunc with a 8200 /// correct prototype. 8201 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8202 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8203 8204 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8205 std::pair<SDValue, SDValue> Res = 8206 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8207 getValue(Arg0), getValue(Arg1), 8208 MachinePointerInfo(Arg0), 8209 MachinePointerInfo(Arg1)); 8210 if (Res.first.getNode()) { 8211 processIntegerCallValue(I, Res.first, true); 8212 PendingLoads.push_back(Res.second); 8213 return true; 8214 } 8215 8216 return false; 8217 } 8218 8219 /// See if we can lower a strlen call into an optimized form. If so, return 8220 /// true and lower it, otherwise return false and it will be lowered like a 8221 /// normal call. 8222 /// The caller already checked that \p I calls the appropriate LibFunc with a 8223 /// correct prototype. 8224 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8225 const Value *Arg0 = I.getArgOperand(0); 8226 8227 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8228 std::pair<SDValue, SDValue> Res = 8229 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8230 getValue(Arg0), MachinePointerInfo(Arg0)); 8231 if (Res.first.getNode()) { 8232 processIntegerCallValue(I, Res.first, false); 8233 PendingLoads.push_back(Res.second); 8234 return true; 8235 } 8236 8237 return false; 8238 } 8239 8240 /// See if we can lower a strnlen call into an optimized form. If so, return 8241 /// true and lower it, otherwise return false and it will be lowered like a 8242 /// normal call. 8243 /// The caller already checked that \p I calls the appropriate LibFunc with a 8244 /// correct prototype. 8245 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8246 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8247 8248 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8249 std::pair<SDValue, SDValue> Res = 8250 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8251 getValue(Arg0), getValue(Arg1), 8252 MachinePointerInfo(Arg0)); 8253 if (Res.first.getNode()) { 8254 processIntegerCallValue(I, Res.first, false); 8255 PendingLoads.push_back(Res.second); 8256 return true; 8257 } 8258 8259 return false; 8260 } 8261 8262 /// See if we can lower a unary floating-point operation into an SDNode with 8263 /// the specified Opcode. If so, return true and lower it, otherwise return 8264 /// false and it will be lowered like a normal call. 8265 /// The caller already checked that \p I calls the appropriate LibFunc with a 8266 /// correct prototype. 8267 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8268 unsigned Opcode) { 8269 // We already checked this call's prototype; verify it doesn't modify errno. 8270 if (!I.onlyReadsMemory()) 8271 return false; 8272 8273 SDNodeFlags Flags; 8274 Flags.copyFMF(cast<FPMathOperator>(I)); 8275 8276 SDValue Tmp = getValue(I.getArgOperand(0)); 8277 setValue(&I, 8278 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8279 return true; 8280 } 8281 8282 /// See if we can lower a binary floating-point operation into an SDNode with 8283 /// the specified Opcode. If so, return true and lower it. Otherwise return 8284 /// false, and it will be lowered like a normal call. 8285 /// The caller already checked that \p I calls the appropriate LibFunc with a 8286 /// correct prototype. 8287 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8288 unsigned Opcode) { 8289 // We already checked this call's prototype; verify it doesn't modify errno. 8290 if (!I.onlyReadsMemory()) 8291 return false; 8292 8293 SDNodeFlags Flags; 8294 Flags.copyFMF(cast<FPMathOperator>(I)); 8295 8296 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8297 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8298 EVT VT = Tmp0.getValueType(); 8299 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8300 return true; 8301 } 8302 8303 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8304 // Handle inline assembly differently. 8305 if (I.isInlineAsm()) { 8306 visitInlineAsm(I); 8307 return; 8308 } 8309 8310 if (Function *F = I.getCalledFunction()) { 8311 diagnoseDontCall(I); 8312 8313 if (F->isDeclaration()) { 8314 // Is this an LLVM intrinsic or a target-specific intrinsic? 8315 unsigned IID = F->getIntrinsicID(); 8316 if (!IID) 8317 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8318 IID = II->getIntrinsicID(F); 8319 8320 if (IID) { 8321 visitIntrinsicCall(I, IID); 8322 return; 8323 } 8324 } 8325 8326 // Check for well-known libc/libm calls. If the function is internal, it 8327 // can't be a library call. Don't do the check if marked as nobuiltin for 8328 // some reason or the call site requires strict floating point semantics. 8329 LibFunc Func; 8330 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8331 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8332 LibInfo->hasOptimizedCodeGen(Func)) { 8333 switch (Func) { 8334 default: break; 8335 case LibFunc_bcmp: 8336 if (visitMemCmpBCmpCall(I)) 8337 return; 8338 break; 8339 case LibFunc_copysign: 8340 case LibFunc_copysignf: 8341 case LibFunc_copysignl: 8342 // We already checked this call's prototype; verify it doesn't modify 8343 // errno. 8344 if (I.onlyReadsMemory()) { 8345 SDValue LHS = getValue(I.getArgOperand(0)); 8346 SDValue RHS = getValue(I.getArgOperand(1)); 8347 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8348 LHS.getValueType(), LHS, RHS)); 8349 return; 8350 } 8351 break; 8352 case LibFunc_fabs: 8353 case LibFunc_fabsf: 8354 case LibFunc_fabsl: 8355 if (visitUnaryFloatCall(I, ISD::FABS)) 8356 return; 8357 break; 8358 case LibFunc_fmin: 8359 case LibFunc_fminf: 8360 case LibFunc_fminl: 8361 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8362 return; 8363 break; 8364 case LibFunc_fmax: 8365 case LibFunc_fmaxf: 8366 case LibFunc_fmaxl: 8367 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8368 return; 8369 break; 8370 case LibFunc_sin: 8371 case LibFunc_sinf: 8372 case LibFunc_sinl: 8373 if (visitUnaryFloatCall(I, ISD::FSIN)) 8374 return; 8375 break; 8376 case LibFunc_cos: 8377 case LibFunc_cosf: 8378 case LibFunc_cosl: 8379 if (visitUnaryFloatCall(I, ISD::FCOS)) 8380 return; 8381 break; 8382 case LibFunc_sqrt: 8383 case LibFunc_sqrtf: 8384 case LibFunc_sqrtl: 8385 case LibFunc_sqrt_finite: 8386 case LibFunc_sqrtf_finite: 8387 case LibFunc_sqrtl_finite: 8388 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8389 return; 8390 break; 8391 case LibFunc_floor: 8392 case LibFunc_floorf: 8393 case LibFunc_floorl: 8394 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8395 return; 8396 break; 8397 case LibFunc_nearbyint: 8398 case LibFunc_nearbyintf: 8399 case LibFunc_nearbyintl: 8400 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8401 return; 8402 break; 8403 case LibFunc_ceil: 8404 case LibFunc_ceilf: 8405 case LibFunc_ceill: 8406 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8407 return; 8408 break; 8409 case LibFunc_rint: 8410 case LibFunc_rintf: 8411 case LibFunc_rintl: 8412 if (visitUnaryFloatCall(I, ISD::FRINT)) 8413 return; 8414 break; 8415 case LibFunc_round: 8416 case LibFunc_roundf: 8417 case LibFunc_roundl: 8418 if (visitUnaryFloatCall(I, ISD::FROUND)) 8419 return; 8420 break; 8421 case LibFunc_trunc: 8422 case LibFunc_truncf: 8423 case LibFunc_truncl: 8424 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8425 return; 8426 break; 8427 case LibFunc_log2: 8428 case LibFunc_log2f: 8429 case LibFunc_log2l: 8430 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8431 return; 8432 break; 8433 case LibFunc_exp2: 8434 case LibFunc_exp2f: 8435 case LibFunc_exp2l: 8436 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8437 return; 8438 break; 8439 case LibFunc_memcmp: 8440 if (visitMemCmpBCmpCall(I)) 8441 return; 8442 break; 8443 case LibFunc_mempcpy: 8444 if (visitMemPCpyCall(I)) 8445 return; 8446 break; 8447 case LibFunc_memchr: 8448 if (visitMemChrCall(I)) 8449 return; 8450 break; 8451 case LibFunc_strcpy: 8452 if (visitStrCpyCall(I, false)) 8453 return; 8454 break; 8455 case LibFunc_stpcpy: 8456 if (visitStrCpyCall(I, true)) 8457 return; 8458 break; 8459 case LibFunc_strcmp: 8460 if (visitStrCmpCall(I)) 8461 return; 8462 break; 8463 case LibFunc_strlen: 8464 if (visitStrLenCall(I)) 8465 return; 8466 break; 8467 case LibFunc_strnlen: 8468 if (visitStrNLenCall(I)) 8469 return; 8470 break; 8471 } 8472 } 8473 } 8474 8475 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8476 // have to do anything here to lower funclet bundles. 8477 // CFGuardTarget bundles are lowered in LowerCallTo. 8478 assert(!I.hasOperandBundlesOtherThan( 8479 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8480 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8481 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8482 "Cannot lower calls with arbitrary operand bundles!"); 8483 8484 SDValue Callee = getValue(I.getCalledOperand()); 8485 8486 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8487 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8488 else 8489 // Check if we can potentially perform a tail call. More detailed checking 8490 // is be done within LowerCallTo, after more information about the call is 8491 // known. 8492 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8493 } 8494 8495 namespace { 8496 8497 /// AsmOperandInfo - This contains information for each constraint that we are 8498 /// lowering. 8499 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8500 public: 8501 /// CallOperand - If this is the result output operand or a clobber 8502 /// this is null, otherwise it is the incoming operand to the CallInst. 8503 /// This gets modified as the asm is processed. 8504 SDValue CallOperand; 8505 8506 /// AssignedRegs - If this is a register or register class operand, this 8507 /// contains the set of register corresponding to the operand. 8508 RegsForValue AssignedRegs; 8509 8510 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8511 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8512 } 8513 8514 /// Whether or not this operand accesses memory 8515 bool hasMemory(const TargetLowering &TLI) const { 8516 // Indirect operand accesses access memory. 8517 if (isIndirect) 8518 return true; 8519 8520 for (const auto &Code : Codes) 8521 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8522 return true; 8523 8524 return false; 8525 } 8526 }; 8527 8528 8529 } // end anonymous namespace 8530 8531 /// Make sure that the output operand \p OpInfo and its corresponding input 8532 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8533 /// out). 8534 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8535 SDISelAsmOperandInfo &MatchingOpInfo, 8536 SelectionDAG &DAG) { 8537 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8538 return; 8539 8540 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8541 const auto &TLI = DAG.getTargetLoweringInfo(); 8542 8543 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8544 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8545 OpInfo.ConstraintVT); 8546 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8547 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8548 MatchingOpInfo.ConstraintVT); 8549 if ((OpInfo.ConstraintVT.isInteger() != 8550 MatchingOpInfo.ConstraintVT.isInteger()) || 8551 (MatchRC.second != InputRC.second)) { 8552 // FIXME: error out in a more elegant fashion 8553 report_fatal_error("Unsupported asm: input constraint" 8554 " with a matching output constraint of" 8555 " incompatible type!"); 8556 } 8557 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8558 } 8559 8560 /// Get a direct memory input to behave well as an indirect operand. 8561 /// This may introduce stores, hence the need for a \p Chain. 8562 /// \return The (possibly updated) chain. 8563 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8564 SDISelAsmOperandInfo &OpInfo, 8565 SelectionDAG &DAG) { 8566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8567 8568 // If we don't have an indirect input, put it in the constpool if we can, 8569 // otherwise spill it to a stack slot. 8570 // TODO: This isn't quite right. We need to handle these according to 8571 // the addressing mode that the constraint wants. Also, this may take 8572 // an additional register for the computation and we don't want that 8573 // either. 8574 8575 // If the operand is a float, integer, or vector constant, spill to a 8576 // constant pool entry to get its address. 8577 const Value *OpVal = OpInfo.CallOperandVal; 8578 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8579 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8580 OpInfo.CallOperand = DAG.getConstantPool( 8581 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8582 return Chain; 8583 } 8584 8585 // Otherwise, create a stack slot and emit a store to it before the asm. 8586 Type *Ty = OpVal->getType(); 8587 auto &DL = DAG.getDataLayout(); 8588 uint64_t TySize = DL.getTypeAllocSize(Ty); 8589 MachineFunction &MF = DAG.getMachineFunction(); 8590 int SSFI = MF.getFrameInfo().CreateStackObject( 8591 TySize, DL.getPrefTypeAlign(Ty), false); 8592 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8593 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8594 MachinePointerInfo::getFixedStack(MF, SSFI), 8595 TLI.getMemValueType(DL, Ty)); 8596 OpInfo.CallOperand = StackSlot; 8597 8598 return Chain; 8599 } 8600 8601 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8602 /// specified operand. We prefer to assign virtual registers, to allow the 8603 /// register allocator to handle the assignment process. However, if the asm 8604 /// uses features that we can't model on machineinstrs, we have SDISel do the 8605 /// allocation. This produces generally horrible, but correct, code. 8606 /// 8607 /// OpInfo describes the operand 8608 /// RefOpInfo describes the matching operand if any, the operand otherwise 8609 static std::optional<unsigned> 8610 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8611 SDISelAsmOperandInfo &OpInfo, 8612 SDISelAsmOperandInfo &RefOpInfo) { 8613 LLVMContext &Context = *DAG.getContext(); 8614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8615 8616 MachineFunction &MF = DAG.getMachineFunction(); 8617 SmallVector<unsigned, 4> Regs; 8618 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8619 8620 // No work to do for memory/address operands. 8621 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8622 OpInfo.ConstraintType == TargetLowering::C_Address) 8623 return std::nullopt; 8624 8625 // If this is a constraint for a single physreg, or a constraint for a 8626 // register class, find it. 8627 unsigned AssignedReg; 8628 const TargetRegisterClass *RC; 8629 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8630 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8631 // RC is unset only on failure. Return immediately. 8632 if (!RC) 8633 return std::nullopt; 8634 8635 // Get the actual register value type. This is important, because the user 8636 // may have asked for (e.g.) the AX register in i32 type. We need to 8637 // remember that AX is actually i16 to get the right extension. 8638 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8639 8640 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8641 // If this is an FP operand in an integer register (or visa versa), or more 8642 // generally if the operand value disagrees with the register class we plan 8643 // to stick it in, fix the operand type. 8644 // 8645 // If this is an input value, the bitcast to the new type is done now. 8646 // Bitcast for output value is done at the end of visitInlineAsm(). 8647 if ((OpInfo.Type == InlineAsm::isOutput || 8648 OpInfo.Type == InlineAsm::isInput) && 8649 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8650 // Try to convert to the first EVT that the reg class contains. If the 8651 // types are identical size, use a bitcast to convert (e.g. two differing 8652 // vector types). Note: output bitcast is done at the end of 8653 // visitInlineAsm(). 8654 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8655 // Exclude indirect inputs while they are unsupported because the code 8656 // to perform the load is missing and thus OpInfo.CallOperand still 8657 // refers to the input address rather than the pointed-to value. 8658 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8659 OpInfo.CallOperand = 8660 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8661 OpInfo.ConstraintVT = RegVT; 8662 // If the operand is an FP value and we want it in integer registers, 8663 // use the corresponding integer type. This turns an f64 value into 8664 // i64, which can be passed with two i32 values on a 32-bit machine. 8665 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8666 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8667 if (OpInfo.Type == InlineAsm::isInput) 8668 OpInfo.CallOperand = 8669 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8670 OpInfo.ConstraintVT = VT; 8671 } 8672 } 8673 } 8674 8675 // No need to allocate a matching input constraint since the constraint it's 8676 // matching to has already been allocated. 8677 if (OpInfo.isMatchingInputConstraint()) 8678 return std::nullopt; 8679 8680 EVT ValueVT = OpInfo.ConstraintVT; 8681 if (OpInfo.ConstraintVT == MVT::Other) 8682 ValueVT = RegVT; 8683 8684 // Initialize NumRegs. 8685 unsigned NumRegs = 1; 8686 if (OpInfo.ConstraintVT != MVT::Other) 8687 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8688 8689 // If this is a constraint for a specific physical register, like {r17}, 8690 // assign it now. 8691 8692 // If this associated to a specific register, initialize iterator to correct 8693 // place. If virtual, make sure we have enough registers 8694 8695 // Initialize iterator if necessary 8696 TargetRegisterClass::iterator I = RC->begin(); 8697 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8698 8699 // Do not check for single registers. 8700 if (AssignedReg) { 8701 I = std::find(I, RC->end(), AssignedReg); 8702 if (I == RC->end()) { 8703 // RC does not contain the selected register, which indicates a 8704 // mismatch between the register and the required type/bitwidth. 8705 return {AssignedReg}; 8706 } 8707 } 8708 8709 for (; NumRegs; --NumRegs, ++I) { 8710 assert(I != RC->end() && "Ran out of registers to allocate!"); 8711 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8712 Regs.push_back(R); 8713 } 8714 8715 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8716 return std::nullopt; 8717 } 8718 8719 static unsigned 8720 findMatchingInlineAsmOperand(unsigned OperandNo, 8721 const std::vector<SDValue> &AsmNodeOperands) { 8722 // Scan until we find the definition we already emitted of this operand. 8723 unsigned CurOp = InlineAsm::Op_FirstOperand; 8724 for (; OperandNo; --OperandNo) { 8725 // Advance to the next operand. 8726 unsigned OpFlag = 8727 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8728 assert((InlineAsm::isRegDefKind(OpFlag) || 8729 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8730 InlineAsm::isMemKind(OpFlag)) && 8731 "Skipped past definitions?"); 8732 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8733 } 8734 return CurOp; 8735 } 8736 8737 namespace { 8738 8739 class ExtraFlags { 8740 unsigned Flags = 0; 8741 8742 public: 8743 explicit ExtraFlags(const CallBase &Call) { 8744 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8745 if (IA->hasSideEffects()) 8746 Flags |= InlineAsm::Extra_HasSideEffects; 8747 if (IA->isAlignStack()) 8748 Flags |= InlineAsm::Extra_IsAlignStack; 8749 if (Call.isConvergent()) 8750 Flags |= InlineAsm::Extra_IsConvergent; 8751 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8752 } 8753 8754 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8755 // Ideally, we would only check against memory constraints. However, the 8756 // meaning of an Other constraint can be target-specific and we can't easily 8757 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8758 // for Other constraints as well. 8759 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8760 OpInfo.ConstraintType == TargetLowering::C_Other) { 8761 if (OpInfo.Type == InlineAsm::isInput) 8762 Flags |= InlineAsm::Extra_MayLoad; 8763 else if (OpInfo.Type == InlineAsm::isOutput) 8764 Flags |= InlineAsm::Extra_MayStore; 8765 else if (OpInfo.Type == InlineAsm::isClobber) 8766 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8767 } 8768 } 8769 8770 unsigned get() const { return Flags; } 8771 }; 8772 8773 } // end anonymous namespace 8774 8775 static bool isFunction(SDValue Op) { 8776 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 8777 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 8778 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 8779 8780 // In normal "call dllimport func" instruction (non-inlineasm) it force 8781 // indirect access by specifing call opcode. And usually specially print 8782 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 8783 // not do in this way now. (In fact, this is similar with "Data Access" 8784 // action). So here we ignore dllimport function. 8785 if (Fn && !Fn->hasDLLImportStorageClass()) 8786 return true; 8787 } 8788 } 8789 return false; 8790 } 8791 8792 /// visitInlineAsm - Handle a call to an InlineAsm object. 8793 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8794 const BasicBlock *EHPadBB) { 8795 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8796 8797 /// ConstraintOperands - Information about all of the constraints. 8798 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8799 8800 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8801 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8802 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8803 8804 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8805 // AsmDialect, MayLoad, MayStore). 8806 bool HasSideEffect = IA->hasSideEffects(); 8807 ExtraFlags ExtraInfo(Call); 8808 8809 for (auto &T : TargetConstraints) { 8810 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8811 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8812 8813 if (OpInfo.CallOperandVal) 8814 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8815 8816 if (!HasSideEffect) 8817 HasSideEffect = OpInfo.hasMemory(TLI); 8818 8819 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8820 // FIXME: Could we compute this on OpInfo rather than T? 8821 8822 // Compute the constraint code and ConstraintType to use. 8823 TLI.ComputeConstraintToUse(T, SDValue()); 8824 8825 if (T.ConstraintType == TargetLowering::C_Immediate && 8826 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8827 // We've delayed emitting a diagnostic like the "n" constraint because 8828 // inlining could cause an integer showing up. 8829 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8830 "' expects an integer constant " 8831 "expression"); 8832 8833 ExtraInfo.update(T); 8834 } 8835 8836 // We won't need to flush pending loads if this asm doesn't touch 8837 // memory and is nonvolatile. 8838 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8839 8840 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8841 if (EmitEHLabels) { 8842 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8843 } 8844 bool IsCallBr = isa<CallBrInst>(Call); 8845 8846 if (IsCallBr || EmitEHLabels) { 8847 // If this is a callbr or invoke we need to flush pending exports since 8848 // inlineasm_br and invoke are terminators. 8849 // We need to do this before nodes are glued to the inlineasm_br node. 8850 Chain = getControlRoot(); 8851 } 8852 8853 MCSymbol *BeginLabel = nullptr; 8854 if (EmitEHLabels) { 8855 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8856 } 8857 8858 int OpNo = -1; 8859 SmallVector<StringRef> AsmStrs; 8860 IA->collectAsmStrs(AsmStrs); 8861 8862 // Second pass over the constraints: compute which constraint option to use. 8863 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8864 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 8865 OpNo++; 8866 8867 // If this is an output operand with a matching input operand, look up the 8868 // matching input. If their types mismatch, e.g. one is an integer, the 8869 // other is floating point, or their sizes are different, flag it as an 8870 // error. 8871 if (OpInfo.hasMatchingInput()) { 8872 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8873 patchMatchingInput(OpInfo, Input, DAG); 8874 } 8875 8876 // Compute the constraint code and ConstraintType to use. 8877 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8878 8879 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8880 OpInfo.Type == InlineAsm::isClobber) || 8881 OpInfo.ConstraintType == TargetLowering::C_Address) 8882 continue; 8883 8884 // In Linux PIC model, there are 4 cases about value/label addressing: 8885 // 8886 // 1: Function call or Label jmp inside the module. 8887 // 2: Data access (such as global variable, static variable) inside module. 8888 // 3: Function call or Label jmp outside the module. 8889 // 4: Data access (such as global variable) outside the module. 8890 // 8891 // Due to current llvm inline asm architecture designed to not "recognize" 8892 // the asm code, there are quite troubles for us to treat mem addressing 8893 // differently for same value/adress used in different instuctions. 8894 // For example, in pic model, call a func may in plt way or direclty 8895 // pc-related, but lea/mov a function adress may use got. 8896 // 8897 // Here we try to "recognize" function call for the case 1 and case 3 in 8898 // inline asm. And try to adjust the constraint for them. 8899 // 8900 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 8901 // label, so here we don't handle jmp function label now, but we need to 8902 // enhance it (especilly in PIC model) if we meet meaningful requirements. 8903 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 8904 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 8905 TM.getCodeModel() != CodeModel::Large) { 8906 OpInfo.isIndirect = false; 8907 OpInfo.ConstraintType = TargetLowering::C_Address; 8908 } 8909 8910 // If this is a memory input, and if the operand is not indirect, do what we 8911 // need to provide an address for the memory input. 8912 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8913 !OpInfo.isIndirect) { 8914 assert((OpInfo.isMultipleAlternative || 8915 (OpInfo.Type == InlineAsm::isInput)) && 8916 "Can only indirectify direct input operands!"); 8917 8918 // Memory operands really want the address of the value. 8919 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8920 8921 // There is no longer a Value* corresponding to this operand. 8922 OpInfo.CallOperandVal = nullptr; 8923 8924 // It is now an indirect operand. 8925 OpInfo.isIndirect = true; 8926 } 8927 8928 } 8929 8930 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8931 std::vector<SDValue> AsmNodeOperands; 8932 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8933 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8934 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8935 8936 // If we have a !srcloc metadata node associated with it, we want to attach 8937 // this to the ultimately generated inline asm machineinstr. To do this, we 8938 // pass in the third operand as this (potentially null) inline asm MDNode. 8939 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8940 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8941 8942 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8943 // bits as operand 3. 8944 AsmNodeOperands.push_back(DAG.getTargetConstant( 8945 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8946 8947 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8948 // this, assign virtual and physical registers for inputs and otput. 8949 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8950 // Assign Registers. 8951 SDISelAsmOperandInfo &RefOpInfo = 8952 OpInfo.isMatchingInputConstraint() 8953 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8954 : OpInfo; 8955 const auto RegError = 8956 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8957 if (RegError) { 8958 const MachineFunction &MF = DAG.getMachineFunction(); 8959 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8960 const char *RegName = TRI.getName(RegError.value()); 8961 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8962 "' allocated for constraint '" + 8963 Twine(OpInfo.ConstraintCode) + 8964 "' does not match required type"); 8965 return; 8966 } 8967 8968 auto DetectWriteToReservedRegister = [&]() { 8969 const MachineFunction &MF = DAG.getMachineFunction(); 8970 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8971 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8972 if (Register::isPhysicalRegister(Reg) && 8973 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8974 const char *RegName = TRI.getName(Reg); 8975 emitInlineAsmError(Call, "write to reserved register '" + 8976 Twine(RegName) + "'"); 8977 return true; 8978 } 8979 } 8980 return false; 8981 }; 8982 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8983 (OpInfo.Type == InlineAsm::isInput && 8984 !OpInfo.isMatchingInputConstraint())) && 8985 "Only address as input operand is allowed."); 8986 8987 switch (OpInfo.Type) { 8988 case InlineAsm::isOutput: 8989 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8990 unsigned ConstraintID = 8991 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8992 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8993 "Failed to convert memory constraint code to constraint id."); 8994 8995 // Add information to the INLINEASM node to know about this output. 8996 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8997 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8998 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8999 MVT::i32)); 9000 AsmNodeOperands.push_back(OpInfo.CallOperand); 9001 } else { 9002 // Otherwise, this outputs to a register (directly for C_Register / 9003 // C_RegisterClass, and a target-defined fashion for 9004 // C_Immediate/C_Other). Find a register that we can use. 9005 if (OpInfo.AssignedRegs.Regs.empty()) { 9006 emitInlineAsmError( 9007 Call, "couldn't allocate output register for constraint '" + 9008 Twine(OpInfo.ConstraintCode) + "'"); 9009 return; 9010 } 9011 9012 if (DetectWriteToReservedRegister()) 9013 return; 9014 9015 // Add information to the INLINEASM node to know that this register is 9016 // set. 9017 OpInfo.AssignedRegs.AddInlineAsmOperands( 9018 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 9019 : InlineAsm::Kind_RegDef, 9020 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9021 } 9022 break; 9023 9024 case InlineAsm::isInput: 9025 case InlineAsm::isLabel: { 9026 SDValue InOperandVal = OpInfo.CallOperand; 9027 9028 if (OpInfo.isMatchingInputConstraint()) { 9029 // If this is required to match an output register we have already set, 9030 // just use its register. 9031 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9032 AsmNodeOperands); 9033 unsigned OpFlag = 9034 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9035 if (InlineAsm::isRegDefKind(OpFlag) || 9036 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 9037 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 9038 if (OpInfo.isIndirect) { 9039 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9040 emitInlineAsmError(Call, "inline asm not supported yet: " 9041 "don't know how to handle tied " 9042 "indirect register inputs"); 9043 return; 9044 } 9045 9046 SmallVector<unsigned, 4> Regs; 9047 MachineFunction &MF = DAG.getMachineFunction(); 9048 MachineRegisterInfo &MRI = MF.getRegInfo(); 9049 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9050 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9051 Register TiedReg = R->getReg(); 9052 MVT RegVT = R->getSimpleValueType(0); 9053 const TargetRegisterClass *RC = 9054 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9055 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9056 : TRI.getMinimalPhysRegClass(TiedReg); 9057 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9058 for (unsigned i = 0; i != NumRegs; ++i) 9059 Regs.push_back(MRI.createVirtualRegister(RC)); 9060 9061 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9062 9063 SDLoc dl = getCurSDLoc(); 9064 // Use the produced MatchedRegs object to 9065 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 9066 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9067 true, OpInfo.getMatchedOperand(), dl, 9068 DAG, AsmNodeOperands); 9069 break; 9070 } 9071 9072 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9073 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9074 "Unexpected number of operands"); 9075 // Add information to the INLINEASM node to know about this input. 9076 // See InlineAsm.h isUseOperandTiedToDef. 9077 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9078 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9079 OpInfo.getMatchedOperand()); 9080 AsmNodeOperands.push_back(DAG.getTargetConstant( 9081 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9082 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9083 break; 9084 } 9085 9086 // Treat indirect 'X' constraint as memory. 9087 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9088 OpInfo.isIndirect) 9089 OpInfo.ConstraintType = TargetLowering::C_Memory; 9090 9091 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9092 OpInfo.ConstraintType == TargetLowering::C_Other) { 9093 std::vector<SDValue> Ops; 9094 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9095 Ops, DAG); 9096 if (Ops.empty()) { 9097 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9098 if (isa<ConstantSDNode>(InOperandVal)) { 9099 emitInlineAsmError(Call, "value out of range for constraint '" + 9100 Twine(OpInfo.ConstraintCode) + "'"); 9101 return; 9102 } 9103 9104 emitInlineAsmError(Call, 9105 "invalid operand for inline asm constraint '" + 9106 Twine(OpInfo.ConstraintCode) + "'"); 9107 return; 9108 } 9109 9110 // Add information to the INLINEASM node to know about this input. 9111 unsigned ResOpType = 9112 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9113 AsmNodeOperands.push_back(DAG.getTargetConstant( 9114 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9115 llvm::append_range(AsmNodeOperands, Ops); 9116 break; 9117 } 9118 9119 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9120 assert((OpInfo.isIndirect || 9121 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9122 "Operand must be indirect to be a mem!"); 9123 assert(InOperandVal.getValueType() == 9124 TLI.getPointerTy(DAG.getDataLayout()) && 9125 "Memory operands expect pointer values"); 9126 9127 unsigned ConstraintID = 9128 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9129 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9130 "Failed to convert memory constraint code to constraint id."); 9131 9132 // Add information to the INLINEASM node to know about this input. 9133 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9134 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9135 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9136 getCurSDLoc(), 9137 MVT::i32)); 9138 AsmNodeOperands.push_back(InOperandVal); 9139 break; 9140 } 9141 9142 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9143 assert(InOperandVal.getValueType() == 9144 TLI.getPointerTy(DAG.getDataLayout()) && 9145 "Address operands expect pointer values"); 9146 9147 unsigned ConstraintID = 9148 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9149 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9150 "Failed to convert memory constraint code to constraint id."); 9151 9152 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9153 9154 SDValue AsmOp = InOperandVal; 9155 if (isFunction(InOperandVal)) { 9156 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9157 ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1); 9158 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9159 InOperandVal.getValueType(), 9160 GA->getOffset()); 9161 } 9162 9163 // Add information to the INLINEASM node to know about this input. 9164 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9165 9166 AsmNodeOperands.push_back( 9167 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9168 9169 AsmNodeOperands.push_back(AsmOp); 9170 break; 9171 } 9172 9173 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9174 OpInfo.ConstraintType == TargetLowering::C_Register) && 9175 "Unknown constraint type!"); 9176 9177 // TODO: Support this. 9178 if (OpInfo.isIndirect) { 9179 emitInlineAsmError( 9180 Call, "Don't know how to handle indirect register inputs yet " 9181 "for constraint '" + 9182 Twine(OpInfo.ConstraintCode) + "'"); 9183 return; 9184 } 9185 9186 // Copy the input into the appropriate registers. 9187 if (OpInfo.AssignedRegs.Regs.empty()) { 9188 emitInlineAsmError(Call, 9189 "couldn't allocate input reg for constraint '" + 9190 Twine(OpInfo.ConstraintCode) + "'"); 9191 return; 9192 } 9193 9194 if (DetectWriteToReservedRegister()) 9195 return; 9196 9197 SDLoc dl = getCurSDLoc(); 9198 9199 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9200 &Call); 9201 9202 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9203 dl, DAG, AsmNodeOperands); 9204 break; 9205 } 9206 case InlineAsm::isClobber: 9207 // Add the clobbered value to the operand list, so that the register 9208 // allocator is aware that the physreg got clobbered. 9209 if (!OpInfo.AssignedRegs.Regs.empty()) 9210 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9211 false, 0, getCurSDLoc(), DAG, 9212 AsmNodeOperands); 9213 break; 9214 } 9215 } 9216 9217 // Finish up input operands. Set the input chain and add the flag last. 9218 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9219 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9220 9221 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9222 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9223 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9224 Flag = Chain.getValue(1); 9225 9226 // Do additional work to generate outputs. 9227 9228 SmallVector<EVT, 1> ResultVTs; 9229 SmallVector<SDValue, 1> ResultValues; 9230 SmallVector<SDValue, 8> OutChains; 9231 9232 llvm::Type *CallResultType = Call.getType(); 9233 ArrayRef<Type *> ResultTypes; 9234 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9235 ResultTypes = StructResult->elements(); 9236 else if (!CallResultType->isVoidTy()) 9237 ResultTypes = makeArrayRef(CallResultType); 9238 9239 auto CurResultType = ResultTypes.begin(); 9240 auto handleRegAssign = [&](SDValue V) { 9241 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9242 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9243 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9244 ++CurResultType; 9245 // If the type of the inline asm call site return value is different but has 9246 // same size as the type of the asm output bitcast it. One example of this 9247 // is for vectors with different width / number of elements. This can 9248 // happen for register classes that can contain multiple different value 9249 // types. The preg or vreg allocated may not have the same VT as was 9250 // expected. 9251 // 9252 // This can also happen for a return value that disagrees with the register 9253 // class it is put in, eg. a double in a general-purpose register on a 9254 // 32-bit machine. 9255 if (ResultVT != V.getValueType() && 9256 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9257 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9258 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9259 V.getValueType().isInteger()) { 9260 // If a result value was tied to an input value, the computed result 9261 // may have a wider width than the expected result. Extract the 9262 // relevant portion. 9263 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9264 } 9265 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9266 ResultVTs.push_back(ResultVT); 9267 ResultValues.push_back(V); 9268 }; 9269 9270 // Deal with output operands. 9271 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9272 if (OpInfo.Type == InlineAsm::isOutput) { 9273 SDValue Val; 9274 // Skip trivial output operands. 9275 if (OpInfo.AssignedRegs.Regs.empty()) 9276 continue; 9277 9278 switch (OpInfo.ConstraintType) { 9279 case TargetLowering::C_Register: 9280 case TargetLowering::C_RegisterClass: 9281 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9282 Chain, &Flag, &Call); 9283 break; 9284 case TargetLowering::C_Immediate: 9285 case TargetLowering::C_Other: 9286 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9287 OpInfo, DAG); 9288 break; 9289 case TargetLowering::C_Memory: 9290 break; // Already handled. 9291 case TargetLowering::C_Address: 9292 break; // Silence warning. 9293 case TargetLowering::C_Unknown: 9294 assert(false && "Unexpected unknown constraint"); 9295 } 9296 9297 // Indirect output manifest as stores. Record output chains. 9298 if (OpInfo.isIndirect) { 9299 const Value *Ptr = OpInfo.CallOperandVal; 9300 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9301 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9302 MachinePointerInfo(Ptr)); 9303 OutChains.push_back(Store); 9304 } else { 9305 // generate CopyFromRegs to associated registers. 9306 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9307 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9308 for (const SDValue &V : Val->op_values()) 9309 handleRegAssign(V); 9310 } else 9311 handleRegAssign(Val); 9312 } 9313 } 9314 } 9315 9316 // Set results. 9317 if (!ResultValues.empty()) { 9318 assert(CurResultType == ResultTypes.end() && 9319 "Mismatch in number of ResultTypes"); 9320 assert(ResultValues.size() == ResultTypes.size() && 9321 "Mismatch in number of output operands in asm result"); 9322 9323 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9324 DAG.getVTList(ResultVTs), ResultValues); 9325 setValue(&Call, V); 9326 } 9327 9328 // Collect store chains. 9329 if (!OutChains.empty()) 9330 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9331 9332 if (EmitEHLabels) { 9333 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9334 } 9335 9336 // Only Update Root if inline assembly has a memory effect. 9337 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9338 EmitEHLabels) 9339 DAG.setRoot(Chain); 9340 } 9341 9342 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9343 const Twine &Message) { 9344 LLVMContext &Ctx = *DAG.getContext(); 9345 Ctx.emitError(&Call, Message); 9346 9347 // Make sure we leave the DAG in a valid state 9348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9349 SmallVector<EVT, 1> ValueVTs; 9350 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9351 9352 if (ValueVTs.empty()) 9353 return; 9354 9355 SmallVector<SDValue, 1> Ops; 9356 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9357 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9358 9359 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9360 } 9361 9362 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9363 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9364 MVT::Other, getRoot(), 9365 getValue(I.getArgOperand(0)), 9366 DAG.getSrcValue(I.getArgOperand(0)))); 9367 } 9368 9369 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9370 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9371 const DataLayout &DL = DAG.getDataLayout(); 9372 SDValue V = DAG.getVAArg( 9373 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9374 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9375 DL.getABITypeAlign(I.getType()).value()); 9376 DAG.setRoot(V.getValue(1)); 9377 9378 if (I.getType()->isPointerTy()) 9379 V = DAG.getPtrExtOrTrunc( 9380 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9381 setValue(&I, V); 9382 } 9383 9384 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9385 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9386 MVT::Other, getRoot(), 9387 getValue(I.getArgOperand(0)), 9388 DAG.getSrcValue(I.getArgOperand(0)))); 9389 } 9390 9391 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9392 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9393 MVT::Other, getRoot(), 9394 getValue(I.getArgOperand(0)), 9395 getValue(I.getArgOperand(1)), 9396 DAG.getSrcValue(I.getArgOperand(0)), 9397 DAG.getSrcValue(I.getArgOperand(1)))); 9398 } 9399 9400 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9401 const Instruction &I, 9402 SDValue Op) { 9403 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9404 if (!Range) 9405 return Op; 9406 9407 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9408 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9409 return Op; 9410 9411 APInt Lo = CR.getUnsignedMin(); 9412 if (!Lo.isMinValue()) 9413 return Op; 9414 9415 APInt Hi = CR.getUnsignedMax(); 9416 unsigned Bits = std::max(Hi.getActiveBits(), 9417 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9418 9419 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9420 9421 SDLoc SL = getCurSDLoc(); 9422 9423 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9424 DAG.getValueType(SmallVT)); 9425 unsigned NumVals = Op.getNode()->getNumValues(); 9426 if (NumVals == 1) 9427 return ZExt; 9428 9429 SmallVector<SDValue, 4> Ops; 9430 9431 Ops.push_back(ZExt); 9432 for (unsigned I = 1; I != NumVals; ++I) 9433 Ops.push_back(Op.getValue(I)); 9434 9435 return DAG.getMergeValues(Ops, SL); 9436 } 9437 9438 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9439 /// the call being lowered. 9440 /// 9441 /// This is a helper for lowering intrinsics that follow a target calling 9442 /// convention or require stack pointer adjustment. Only a subset of the 9443 /// intrinsic's operands need to participate in the calling convention. 9444 void SelectionDAGBuilder::populateCallLoweringInfo( 9445 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9446 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9447 bool IsPatchPoint) { 9448 TargetLowering::ArgListTy Args; 9449 Args.reserve(NumArgs); 9450 9451 // Populate the argument list. 9452 // Attributes for args start at offset 1, after the return attribute. 9453 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9454 ArgI != ArgE; ++ArgI) { 9455 const Value *V = Call->getOperand(ArgI); 9456 9457 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9458 9459 TargetLowering::ArgListEntry Entry; 9460 Entry.Node = getValue(V); 9461 Entry.Ty = V->getType(); 9462 Entry.setAttributes(Call, ArgI); 9463 Args.push_back(Entry); 9464 } 9465 9466 CLI.setDebugLoc(getCurSDLoc()) 9467 .setChain(getRoot()) 9468 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9469 .setDiscardResult(Call->use_empty()) 9470 .setIsPatchPoint(IsPatchPoint) 9471 .setIsPreallocated( 9472 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9473 } 9474 9475 /// Add a stack map intrinsic call's live variable operands to a stackmap 9476 /// or patchpoint target node's operand list. 9477 /// 9478 /// Constants are converted to TargetConstants purely as an optimization to 9479 /// avoid constant materialization and register allocation. 9480 /// 9481 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9482 /// generate addess computation nodes, and so FinalizeISel can convert the 9483 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9484 /// address materialization and register allocation, but may also be required 9485 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9486 /// alloca in the entry block, then the runtime may assume that the alloca's 9487 /// StackMap location can be read immediately after compilation and that the 9488 /// location is valid at any point during execution (this is similar to the 9489 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9490 /// only available in a register, then the runtime would need to trap when 9491 /// execution reaches the StackMap in order to read the alloca's location. 9492 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9493 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9494 SelectionDAGBuilder &Builder) { 9495 SelectionDAG &DAG = Builder.DAG; 9496 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9497 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9498 9499 // Things on the stack are pointer-typed, meaning that they are already 9500 // legal and can be emitted directly to target nodes. 9501 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9502 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9503 } else { 9504 // Otherwise emit a target independent node to be legalised. 9505 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9506 } 9507 } 9508 } 9509 9510 /// Lower llvm.experimental.stackmap. 9511 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9512 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9513 // [live variables...]) 9514 9515 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9516 9517 SDValue Chain, InFlag, Callee; 9518 SmallVector<SDValue, 32> Ops; 9519 9520 SDLoc DL = getCurSDLoc(); 9521 Callee = getValue(CI.getCalledOperand()); 9522 9523 // The stackmap intrinsic only records the live variables (the arguments 9524 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9525 // intrinsic, this won't be lowered to a function call. This means we don't 9526 // have to worry about calling conventions and target specific lowering code. 9527 // Instead we perform the call lowering right here. 9528 // 9529 // chain, flag = CALLSEQ_START(chain, 0, 0) 9530 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9531 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9532 // 9533 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9534 InFlag = Chain.getValue(1); 9535 9536 // Add the STACKMAP operands, starting with DAG house-keeping. 9537 Ops.push_back(Chain); 9538 Ops.push_back(InFlag); 9539 9540 // Add the <id>, <numShadowBytes> operands. 9541 // 9542 // These do not require legalisation, and can be emitted directly to target 9543 // constant nodes. 9544 SDValue ID = getValue(CI.getArgOperand(0)); 9545 assert(ID.getValueType() == MVT::i64); 9546 SDValue IDConst = DAG.getTargetConstant( 9547 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9548 Ops.push_back(IDConst); 9549 9550 SDValue Shad = getValue(CI.getArgOperand(1)); 9551 assert(Shad.getValueType() == MVT::i32); 9552 SDValue ShadConst = DAG.getTargetConstant( 9553 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9554 Ops.push_back(ShadConst); 9555 9556 // Add the live variables. 9557 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9558 9559 // Create the STACKMAP node. 9560 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9561 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9562 InFlag = Chain.getValue(1); 9563 9564 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); 9565 9566 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9567 9568 // Set the root to the target-lowered call chain. 9569 DAG.setRoot(Chain); 9570 9571 // Inform the Frame Information that we have a stackmap in this function. 9572 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9573 } 9574 9575 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9576 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9577 const BasicBlock *EHPadBB) { 9578 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9579 // i32 <numBytes>, 9580 // i8* <target>, 9581 // i32 <numArgs>, 9582 // [Args...], 9583 // [live variables...]) 9584 9585 CallingConv::ID CC = CB.getCallingConv(); 9586 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9587 bool HasDef = !CB.getType()->isVoidTy(); 9588 SDLoc dl = getCurSDLoc(); 9589 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9590 9591 // Handle immediate and symbolic callees. 9592 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9593 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9594 /*isTarget=*/true); 9595 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9596 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9597 SDLoc(SymbolicCallee), 9598 SymbolicCallee->getValueType(0)); 9599 9600 // Get the real number of arguments participating in the call <numArgs> 9601 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9602 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9603 9604 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9605 // Intrinsics include all meta-operands up to but not including CC. 9606 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9607 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9608 "Not enough arguments provided to the patchpoint intrinsic"); 9609 9610 // For AnyRegCC the arguments are lowered later on manually. 9611 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9612 Type *ReturnTy = 9613 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9614 9615 TargetLowering::CallLoweringInfo CLI(DAG); 9616 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9617 ReturnTy, true); 9618 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9619 9620 SDNode *CallEnd = Result.second.getNode(); 9621 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9622 CallEnd = CallEnd->getOperand(0).getNode(); 9623 9624 /// Get a call instruction from the call sequence chain. 9625 /// Tail calls are not allowed. 9626 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9627 "Expected a callseq node."); 9628 SDNode *Call = CallEnd->getOperand(0).getNode(); 9629 bool HasGlue = Call->getGluedNode(); 9630 9631 // Replace the target specific call node with the patchable intrinsic. 9632 SmallVector<SDValue, 8> Ops; 9633 9634 // Push the chain. 9635 Ops.push_back(*(Call->op_begin())); 9636 9637 // Optionally, push the glue (if any). 9638 if (HasGlue) 9639 Ops.push_back(*(Call->op_end() - 1)); 9640 9641 // Push the register mask info. 9642 if (HasGlue) 9643 Ops.push_back(*(Call->op_end() - 2)); 9644 else 9645 Ops.push_back(*(Call->op_end() - 1)); 9646 9647 // Add the <id> and <numBytes> constants. 9648 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9649 Ops.push_back(DAG.getTargetConstant( 9650 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9651 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9652 Ops.push_back(DAG.getTargetConstant( 9653 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9654 MVT::i32)); 9655 9656 // Add the callee. 9657 Ops.push_back(Callee); 9658 9659 // Adjust <numArgs> to account for any arguments that have been passed on the 9660 // stack instead. 9661 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9662 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9663 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9664 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9665 9666 // Add the calling convention 9667 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9668 9669 // Add the arguments we omitted previously. The register allocator should 9670 // place these in any free register. 9671 if (IsAnyRegCC) 9672 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9673 Ops.push_back(getValue(CB.getArgOperand(i))); 9674 9675 // Push the arguments from the call instruction. 9676 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9677 Ops.append(Call->op_begin() + 2, e); 9678 9679 // Push live variables for the stack map. 9680 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9681 9682 SDVTList NodeTys; 9683 if (IsAnyRegCC && HasDef) { 9684 // Create the return types based on the intrinsic definition 9685 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9686 SmallVector<EVT, 3> ValueVTs; 9687 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9688 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9689 9690 // There is always a chain and a glue type at the end 9691 ValueVTs.push_back(MVT::Other); 9692 ValueVTs.push_back(MVT::Glue); 9693 NodeTys = DAG.getVTList(ValueVTs); 9694 } else 9695 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9696 9697 // Replace the target specific call node with a PATCHPOINT node. 9698 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9699 9700 // Update the NodeMap. 9701 if (HasDef) { 9702 if (IsAnyRegCC) 9703 setValue(&CB, SDValue(PPV.getNode(), 0)); 9704 else 9705 setValue(&CB, Result.first); 9706 } 9707 9708 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9709 // call sequence. Furthermore the location of the chain and glue can change 9710 // when the AnyReg calling convention is used and the intrinsic returns a 9711 // value. 9712 if (IsAnyRegCC && HasDef) { 9713 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9714 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9715 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9716 } else 9717 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9718 DAG.DeleteNode(Call); 9719 9720 // Inform the Frame Information that we have a patchpoint in this function. 9721 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9722 } 9723 9724 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9725 unsigned Intrinsic) { 9726 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9727 SDValue Op1 = getValue(I.getArgOperand(0)); 9728 SDValue Op2; 9729 if (I.arg_size() > 1) 9730 Op2 = getValue(I.getArgOperand(1)); 9731 SDLoc dl = getCurSDLoc(); 9732 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9733 SDValue Res; 9734 SDNodeFlags SDFlags; 9735 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9736 SDFlags.copyFMF(*FPMO); 9737 9738 switch (Intrinsic) { 9739 case Intrinsic::vector_reduce_fadd: 9740 if (SDFlags.hasAllowReassociation()) 9741 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9742 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9743 SDFlags); 9744 else 9745 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9746 break; 9747 case Intrinsic::vector_reduce_fmul: 9748 if (SDFlags.hasAllowReassociation()) 9749 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9750 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9751 SDFlags); 9752 else 9753 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9754 break; 9755 case Intrinsic::vector_reduce_add: 9756 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9757 break; 9758 case Intrinsic::vector_reduce_mul: 9759 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9760 break; 9761 case Intrinsic::vector_reduce_and: 9762 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9763 break; 9764 case Intrinsic::vector_reduce_or: 9765 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9766 break; 9767 case Intrinsic::vector_reduce_xor: 9768 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9769 break; 9770 case Intrinsic::vector_reduce_smax: 9771 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9772 break; 9773 case Intrinsic::vector_reduce_smin: 9774 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9775 break; 9776 case Intrinsic::vector_reduce_umax: 9777 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9778 break; 9779 case Intrinsic::vector_reduce_umin: 9780 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9781 break; 9782 case Intrinsic::vector_reduce_fmax: 9783 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9784 break; 9785 case Intrinsic::vector_reduce_fmin: 9786 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9787 break; 9788 default: 9789 llvm_unreachable("Unhandled vector reduce intrinsic"); 9790 } 9791 setValue(&I, Res); 9792 } 9793 9794 /// Returns an AttributeList representing the attributes applied to the return 9795 /// value of the given call. 9796 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9797 SmallVector<Attribute::AttrKind, 2> Attrs; 9798 if (CLI.RetSExt) 9799 Attrs.push_back(Attribute::SExt); 9800 if (CLI.RetZExt) 9801 Attrs.push_back(Attribute::ZExt); 9802 if (CLI.IsInReg) 9803 Attrs.push_back(Attribute::InReg); 9804 9805 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9806 Attrs); 9807 } 9808 9809 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9810 /// implementation, which just calls LowerCall. 9811 /// FIXME: When all targets are 9812 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9813 std::pair<SDValue, SDValue> 9814 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9815 // Handle the incoming return values from the call. 9816 CLI.Ins.clear(); 9817 Type *OrigRetTy = CLI.RetTy; 9818 SmallVector<EVT, 4> RetTys; 9819 SmallVector<uint64_t, 4> Offsets; 9820 auto &DL = CLI.DAG.getDataLayout(); 9821 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9822 9823 if (CLI.IsPostTypeLegalization) { 9824 // If we are lowering a libcall after legalization, split the return type. 9825 SmallVector<EVT, 4> OldRetTys; 9826 SmallVector<uint64_t, 4> OldOffsets; 9827 RetTys.swap(OldRetTys); 9828 Offsets.swap(OldOffsets); 9829 9830 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9831 EVT RetVT = OldRetTys[i]; 9832 uint64_t Offset = OldOffsets[i]; 9833 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9834 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9835 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9836 RetTys.append(NumRegs, RegisterVT); 9837 for (unsigned j = 0; j != NumRegs; ++j) 9838 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9839 } 9840 } 9841 9842 SmallVector<ISD::OutputArg, 4> Outs; 9843 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9844 9845 bool CanLowerReturn = 9846 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9847 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9848 9849 SDValue DemoteStackSlot; 9850 int DemoteStackIdx = -100; 9851 if (!CanLowerReturn) { 9852 // FIXME: equivalent assert? 9853 // assert(!CS.hasInAllocaArgument() && 9854 // "sret demotion is incompatible with inalloca"); 9855 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9856 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9857 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9858 DemoteStackIdx = 9859 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9860 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9861 DL.getAllocaAddrSpace()); 9862 9863 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9864 ArgListEntry Entry; 9865 Entry.Node = DemoteStackSlot; 9866 Entry.Ty = StackSlotPtrType; 9867 Entry.IsSExt = false; 9868 Entry.IsZExt = false; 9869 Entry.IsInReg = false; 9870 Entry.IsSRet = true; 9871 Entry.IsNest = false; 9872 Entry.IsByVal = false; 9873 Entry.IsByRef = false; 9874 Entry.IsReturned = false; 9875 Entry.IsSwiftSelf = false; 9876 Entry.IsSwiftAsync = false; 9877 Entry.IsSwiftError = false; 9878 Entry.IsCFGuardTarget = false; 9879 Entry.Alignment = Alignment; 9880 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9881 CLI.NumFixedArgs += 1; 9882 CLI.getArgs()[0].IndirectType = CLI.RetTy; 9883 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9884 9885 // sret demotion isn't compatible with tail-calls, since the sret argument 9886 // points into the callers stack frame. 9887 CLI.IsTailCall = false; 9888 } else { 9889 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9890 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9891 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9892 ISD::ArgFlagsTy Flags; 9893 if (NeedsRegBlock) { 9894 Flags.setInConsecutiveRegs(); 9895 if (I == RetTys.size() - 1) 9896 Flags.setInConsecutiveRegsLast(); 9897 } 9898 EVT VT = RetTys[I]; 9899 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9900 CLI.CallConv, VT); 9901 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9902 CLI.CallConv, VT); 9903 for (unsigned i = 0; i != NumRegs; ++i) { 9904 ISD::InputArg MyFlags; 9905 MyFlags.Flags = Flags; 9906 MyFlags.VT = RegisterVT; 9907 MyFlags.ArgVT = VT; 9908 MyFlags.Used = CLI.IsReturnValueUsed; 9909 if (CLI.RetTy->isPointerTy()) { 9910 MyFlags.Flags.setPointer(); 9911 MyFlags.Flags.setPointerAddrSpace( 9912 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9913 } 9914 if (CLI.RetSExt) 9915 MyFlags.Flags.setSExt(); 9916 if (CLI.RetZExt) 9917 MyFlags.Flags.setZExt(); 9918 if (CLI.IsInReg) 9919 MyFlags.Flags.setInReg(); 9920 CLI.Ins.push_back(MyFlags); 9921 } 9922 } 9923 } 9924 9925 // We push in swifterror return as the last element of CLI.Ins. 9926 ArgListTy &Args = CLI.getArgs(); 9927 if (supportSwiftError()) { 9928 for (const ArgListEntry &Arg : Args) { 9929 if (Arg.IsSwiftError) { 9930 ISD::InputArg MyFlags; 9931 MyFlags.VT = getPointerTy(DL); 9932 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9933 MyFlags.Flags.setSwiftError(); 9934 CLI.Ins.push_back(MyFlags); 9935 } 9936 } 9937 } 9938 9939 // Handle all of the outgoing arguments. 9940 CLI.Outs.clear(); 9941 CLI.OutVals.clear(); 9942 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9943 SmallVector<EVT, 4> ValueVTs; 9944 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9945 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9946 Type *FinalType = Args[i].Ty; 9947 if (Args[i].IsByVal) 9948 FinalType = Args[i].IndirectType; 9949 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9950 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9951 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9952 ++Value) { 9953 EVT VT = ValueVTs[Value]; 9954 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9955 SDValue Op = SDValue(Args[i].Node.getNode(), 9956 Args[i].Node.getResNo() + Value); 9957 ISD::ArgFlagsTy Flags; 9958 9959 // Certain targets (such as MIPS), may have a different ABI alignment 9960 // for a type depending on the context. Give the target a chance to 9961 // specify the alignment it wants. 9962 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9963 Flags.setOrigAlign(OriginalAlignment); 9964 9965 if (Args[i].Ty->isPointerTy()) { 9966 Flags.setPointer(); 9967 Flags.setPointerAddrSpace( 9968 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9969 } 9970 if (Args[i].IsZExt) 9971 Flags.setZExt(); 9972 if (Args[i].IsSExt) 9973 Flags.setSExt(); 9974 if (Args[i].IsInReg) { 9975 // If we are using vectorcall calling convention, a structure that is 9976 // passed InReg - is surely an HVA 9977 if (CLI.CallConv == CallingConv::X86_VectorCall && 9978 isa<StructType>(FinalType)) { 9979 // The first value of a structure is marked 9980 if (0 == Value) 9981 Flags.setHvaStart(); 9982 Flags.setHva(); 9983 } 9984 // Set InReg Flag 9985 Flags.setInReg(); 9986 } 9987 if (Args[i].IsSRet) 9988 Flags.setSRet(); 9989 if (Args[i].IsSwiftSelf) 9990 Flags.setSwiftSelf(); 9991 if (Args[i].IsSwiftAsync) 9992 Flags.setSwiftAsync(); 9993 if (Args[i].IsSwiftError) 9994 Flags.setSwiftError(); 9995 if (Args[i].IsCFGuardTarget) 9996 Flags.setCFGuardTarget(); 9997 if (Args[i].IsByVal) 9998 Flags.setByVal(); 9999 if (Args[i].IsByRef) 10000 Flags.setByRef(); 10001 if (Args[i].IsPreallocated) { 10002 Flags.setPreallocated(); 10003 // Set the byval flag for CCAssignFn callbacks that don't know about 10004 // preallocated. This way we can know how many bytes we should've 10005 // allocated and how many bytes a callee cleanup function will pop. If 10006 // we port preallocated to more targets, we'll have to add custom 10007 // preallocated handling in the various CC lowering callbacks. 10008 Flags.setByVal(); 10009 } 10010 if (Args[i].IsInAlloca) { 10011 Flags.setInAlloca(); 10012 // Set the byval flag for CCAssignFn callbacks that don't know about 10013 // inalloca. This way we can know how many bytes we should've allocated 10014 // and how many bytes a callee cleanup function will pop. If we port 10015 // inalloca to more targets, we'll have to add custom inalloca handling 10016 // in the various CC lowering callbacks. 10017 Flags.setByVal(); 10018 } 10019 Align MemAlign; 10020 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10021 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10022 Flags.setByValSize(FrameSize); 10023 10024 // info is not there but there are cases it cannot get right. 10025 if (auto MA = Args[i].Alignment) 10026 MemAlign = *MA; 10027 else 10028 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10029 } else if (auto MA = Args[i].Alignment) { 10030 MemAlign = *MA; 10031 } else { 10032 MemAlign = OriginalAlignment; 10033 } 10034 Flags.setMemAlign(MemAlign); 10035 if (Args[i].IsNest) 10036 Flags.setNest(); 10037 if (NeedsRegBlock) 10038 Flags.setInConsecutiveRegs(); 10039 10040 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10041 CLI.CallConv, VT); 10042 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10043 CLI.CallConv, VT); 10044 SmallVector<SDValue, 4> Parts(NumParts); 10045 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10046 10047 if (Args[i].IsSExt) 10048 ExtendKind = ISD::SIGN_EXTEND; 10049 else if (Args[i].IsZExt) 10050 ExtendKind = ISD::ZERO_EXTEND; 10051 10052 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10053 // for now. 10054 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10055 CanLowerReturn) { 10056 assert((CLI.RetTy == Args[i].Ty || 10057 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10058 CLI.RetTy->getPointerAddressSpace() == 10059 Args[i].Ty->getPointerAddressSpace())) && 10060 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10061 // Before passing 'returned' to the target lowering code, ensure that 10062 // either the register MVT and the actual EVT are the same size or that 10063 // the return value and argument are extended in the same way; in these 10064 // cases it's safe to pass the argument register value unchanged as the 10065 // return register value (although it's at the target's option whether 10066 // to do so) 10067 // TODO: allow code generation to take advantage of partially preserved 10068 // registers rather than clobbering the entire register when the 10069 // parameter extension method is not compatible with the return 10070 // extension method 10071 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10072 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10073 CLI.RetZExt == Args[i].IsZExt)) 10074 Flags.setReturned(); 10075 } 10076 10077 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10078 CLI.CallConv, ExtendKind); 10079 10080 for (unsigned j = 0; j != NumParts; ++j) { 10081 // if it isn't first piece, alignment must be 1 10082 // For scalable vectors the scalable part is currently handled 10083 // by individual targets, so we just use the known minimum size here. 10084 ISD::OutputArg MyFlags( 10085 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10086 i < CLI.NumFixedArgs, i, 10087 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 10088 if (NumParts > 1 && j == 0) 10089 MyFlags.Flags.setSplit(); 10090 else if (j != 0) { 10091 MyFlags.Flags.setOrigAlign(Align(1)); 10092 if (j == NumParts - 1) 10093 MyFlags.Flags.setSplitEnd(); 10094 } 10095 10096 CLI.Outs.push_back(MyFlags); 10097 CLI.OutVals.push_back(Parts[j]); 10098 } 10099 10100 if (NeedsRegBlock && Value == NumValues - 1) 10101 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10102 } 10103 } 10104 10105 SmallVector<SDValue, 4> InVals; 10106 CLI.Chain = LowerCall(CLI, InVals); 10107 10108 // Update CLI.InVals to use outside of this function. 10109 CLI.InVals = InVals; 10110 10111 // Verify that the target's LowerCall behaved as expected. 10112 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10113 "LowerCall didn't return a valid chain!"); 10114 assert((!CLI.IsTailCall || InVals.empty()) && 10115 "LowerCall emitted a return value for a tail call!"); 10116 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10117 "LowerCall didn't emit the correct number of values!"); 10118 10119 // For a tail call, the return value is merely live-out and there aren't 10120 // any nodes in the DAG representing it. Return a special value to 10121 // indicate that a tail call has been emitted and no more Instructions 10122 // should be processed in the current block. 10123 if (CLI.IsTailCall) { 10124 CLI.DAG.setRoot(CLI.Chain); 10125 return std::make_pair(SDValue(), SDValue()); 10126 } 10127 10128 #ifndef NDEBUG 10129 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10130 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10131 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10132 "LowerCall emitted a value with the wrong type!"); 10133 } 10134 #endif 10135 10136 SmallVector<SDValue, 4> ReturnValues; 10137 if (!CanLowerReturn) { 10138 // The instruction result is the result of loading from the 10139 // hidden sret parameter. 10140 SmallVector<EVT, 1> PVTs; 10141 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 10142 10143 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10144 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10145 EVT PtrVT = PVTs[0]; 10146 10147 unsigned NumValues = RetTys.size(); 10148 ReturnValues.resize(NumValues); 10149 SmallVector<SDValue, 4> Chains(NumValues); 10150 10151 // An aggregate return value cannot wrap around the address space, so 10152 // offsets to its parts don't wrap either. 10153 SDNodeFlags Flags; 10154 Flags.setNoUnsignedWrap(true); 10155 10156 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10157 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10158 for (unsigned i = 0; i < NumValues; ++i) { 10159 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10160 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10161 PtrVT), Flags); 10162 SDValue L = CLI.DAG.getLoad( 10163 RetTys[i], CLI.DL, CLI.Chain, Add, 10164 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10165 DemoteStackIdx, Offsets[i]), 10166 HiddenSRetAlign); 10167 ReturnValues[i] = L; 10168 Chains[i] = L.getValue(1); 10169 } 10170 10171 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10172 } else { 10173 // Collect the legal value parts into potentially illegal values 10174 // that correspond to the original function's return values. 10175 std::optional<ISD::NodeType> AssertOp; 10176 if (CLI.RetSExt) 10177 AssertOp = ISD::AssertSext; 10178 else if (CLI.RetZExt) 10179 AssertOp = ISD::AssertZext; 10180 unsigned CurReg = 0; 10181 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10182 EVT VT = RetTys[I]; 10183 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10184 CLI.CallConv, VT); 10185 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10186 CLI.CallConv, VT); 10187 10188 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10189 NumRegs, RegisterVT, VT, nullptr, 10190 CLI.CallConv, AssertOp)); 10191 CurReg += NumRegs; 10192 } 10193 10194 // For a function returning void, there is no return value. We can't create 10195 // such a node, so we just return a null return value in that case. In 10196 // that case, nothing will actually look at the value. 10197 if (ReturnValues.empty()) 10198 return std::make_pair(SDValue(), CLI.Chain); 10199 } 10200 10201 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10202 CLI.DAG.getVTList(RetTys), ReturnValues); 10203 return std::make_pair(Res, CLI.Chain); 10204 } 10205 10206 /// Places new result values for the node in Results (their number 10207 /// and types must exactly match those of the original return values of 10208 /// the node), or leaves Results empty, which indicates that the node is not 10209 /// to be custom lowered after all. 10210 void TargetLowering::LowerOperationWrapper(SDNode *N, 10211 SmallVectorImpl<SDValue> &Results, 10212 SelectionDAG &DAG) const { 10213 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10214 10215 if (!Res.getNode()) 10216 return; 10217 10218 // If the original node has one result, take the return value from 10219 // LowerOperation as is. It might not be result number 0. 10220 if (N->getNumValues() == 1) { 10221 Results.push_back(Res); 10222 return; 10223 } 10224 10225 // If the original node has multiple results, then the return node should 10226 // have the same number of results. 10227 assert((N->getNumValues() == Res->getNumValues()) && 10228 "Lowering returned the wrong number of results!"); 10229 10230 // Places new result values base on N result number. 10231 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10232 Results.push_back(Res.getValue(I)); 10233 } 10234 10235 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10236 llvm_unreachable("LowerOperation not implemented for this target!"); 10237 } 10238 10239 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10240 unsigned Reg, 10241 ISD::NodeType ExtendType) { 10242 SDValue Op = getNonRegisterValue(V); 10243 assert((Op.getOpcode() != ISD::CopyFromReg || 10244 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10245 "Copy from a reg to the same reg!"); 10246 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10247 10248 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10249 // If this is an InlineAsm we have to match the registers required, not the 10250 // notional registers required by the type. 10251 10252 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10253 std::nullopt); // This is not an ABI copy. 10254 SDValue Chain = DAG.getEntryNode(); 10255 10256 if (ExtendType == ISD::ANY_EXTEND) { 10257 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10258 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10259 ExtendType = PreferredExtendIt->second; 10260 } 10261 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10262 PendingExports.push_back(Chain); 10263 } 10264 10265 #include "llvm/CodeGen/SelectionDAGISel.h" 10266 10267 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10268 /// entry block, return true. This includes arguments used by switches, since 10269 /// the switch may expand into multiple basic blocks. 10270 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10271 // With FastISel active, we may be splitting blocks, so force creation 10272 // of virtual registers for all non-dead arguments. 10273 if (FastISel) 10274 return A->use_empty(); 10275 10276 const BasicBlock &Entry = A->getParent()->front(); 10277 for (const User *U : A->users()) 10278 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10279 return false; // Use not in entry block. 10280 10281 return true; 10282 } 10283 10284 using ArgCopyElisionMapTy = 10285 DenseMap<const Argument *, 10286 std::pair<const AllocaInst *, const StoreInst *>>; 10287 10288 /// Scan the entry block of the function in FuncInfo for arguments that look 10289 /// like copies into a local alloca. Record any copied arguments in 10290 /// ArgCopyElisionCandidates. 10291 static void 10292 findArgumentCopyElisionCandidates(const DataLayout &DL, 10293 FunctionLoweringInfo *FuncInfo, 10294 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10295 // Record the state of every static alloca used in the entry block. Argument 10296 // allocas are all used in the entry block, so we need approximately as many 10297 // entries as we have arguments. 10298 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10299 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10300 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10301 StaticAllocas.reserve(NumArgs * 2); 10302 10303 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10304 if (!V) 10305 return nullptr; 10306 V = V->stripPointerCasts(); 10307 const auto *AI = dyn_cast<AllocaInst>(V); 10308 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10309 return nullptr; 10310 auto Iter = StaticAllocas.insert({AI, Unknown}); 10311 return &Iter.first->second; 10312 }; 10313 10314 // Look for stores of arguments to static allocas. Look through bitcasts and 10315 // GEPs to handle type coercions, as long as the alloca is fully initialized 10316 // by the store. Any non-store use of an alloca escapes it and any subsequent 10317 // unanalyzed store might write it. 10318 // FIXME: Handle structs initialized with multiple stores. 10319 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10320 // Look for stores, and handle non-store uses conservatively. 10321 const auto *SI = dyn_cast<StoreInst>(&I); 10322 if (!SI) { 10323 // We will look through cast uses, so ignore them completely. 10324 if (I.isCast()) 10325 continue; 10326 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10327 // to allocas. 10328 if (I.isDebugOrPseudoInst()) 10329 continue; 10330 // This is an unknown instruction. Assume it escapes or writes to all 10331 // static alloca operands. 10332 for (const Use &U : I.operands()) { 10333 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10334 *Info = StaticAllocaInfo::Clobbered; 10335 } 10336 continue; 10337 } 10338 10339 // If the stored value is a static alloca, mark it as escaped. 10340 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10341 *Info = StaticAllocaInfo::Clobbered; 10342 10343 // Check if the destination is a static alloca. 10344 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10345 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10346 if (!Info) 10347 continue; 10348 const AllocaInst *AI = cast<AllocaInst>(Dst); 10349 10350 // Skip allocas that have been initialized or clobbered. 10351 if (*Info != StaticAllocaInfo::Unknown) 10352 continue; 10353 10354 // Check if the stored value is an argument, and that this store fully 10355 // initializes the alloca. 10356 // If the argument type has padding bits we can't directly forward a pointer 10357 // as the upper bits may contain garbage. 10358 // Don't elide copies from the same argument twice. 10359 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10360 const auto *Arg = dyn_cast<Argument>(Val); 10361 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10362 Arg->getType()->isEmptyTy() || 10363 DL.getTypeStoreSize(Arg->getType()) != 10364 DL.getTypeAllocSize(AI->getAllocatedType()) || 10365 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10366 ArgCopyElisionCandidates.count(Arg)) { 10367 *Info = StaticAllocaInfo::Clobbered; 10368 continue; 10369 } 10370 10371 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10372 << '\n'); 10373 10374 // Mark this alloca and store for argument copy elision. 10375 *Info = StaticAllocaInfo::Elidable; 10376 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10377 10378 // Stop scanning if we've seen all arguments. This will happen early in -O0 10379 // builds, which is useful, because -O0 builds have large entry blocks and 10380 // many allocas. 10381 if (ArgCopyElisionCandidates.size() == NumArgs) 10382 break; 10383 } 10384 } 10385 10386 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10387 /// ArgVal is a load from a suitable fixed stack object. 10388 static void tryToElideArgumentCopy( 10389 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10390 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10391 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10392 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10393 SDValue ArgVal, bool &ArgHasUses) { 10394 // Check if this is a load from a fixed stack object. 10395 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10396 if (!LNode) 10397 return; 10398 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10399 if (!FINode) 10400 return; 10401 10402 // Check that the fixed stack object is the right size and alignment. 10403 // Look at the alignment that the user wrote on the alloca instead of looking 10404 // at the stack object. 10405 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10406 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10407 const AllocaInst *AI = ArgCopyIter->second.first; 10408 int FixedIndex = FINode->getIndex(); 10409 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10410 int OldIndex = AllocaIndex; 10411 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10412 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10413 LLVM_DEBUG( 10414 dbgs() << " argument copy elision failed due to bad fixed stack " 10415 "object size\n"); 10416 return; 10417 } 10418 Align RequiredAlignment = AI->getAlign(); 10419 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10420 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10421 "greater than stack argument alignment (" 10422 << DebugStr(RequiredAlignment) << " vs " 10423 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10424 return; 10425 } 10426 10427 // Perform the elision. Delete the old stack object and replace its only use 10428 // in the variable info map. Mark the stack object as mutable. 10429 LLVM_DEBUG({ 10430 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10431 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10432 << '\n'; 10433 }); 10434 MFI.RemoveStackObject(OldIndex); 10435 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10436 AllocaIndex = FixedIndex; 10437 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10438 Chains.push_back(ArgVal.getValue(1)); 10439 10440 // Avoid emitting code for the store implementing the copy. 10441 const StoreInst *SI = ArgCopyIter->second.second; 10442 ElidedArgCopyInstrs.insert(SI); 10443 10444 // Check for uses of the argument again so that we can avoid exporting ArgVal 10445 // if it is't used by anything other than the store. 10446 for (const Value *U : Arg.users()) { 10447 if (U != SI) { 10448 ArgHasUses = true; 10449 break; 10450 } 10451 } 10452 } 10453 10454 void SelectionDAGISel::LowerArguments(const Function &F) { 10455 SelectionDAG &DAG = SDB->DAG; 10456 SDLoc dl = SDB->getCurSDLoc(); 10457 const DataLayout &DL = DAG.getDataLayout(); 10458 SmallVector<ISD::InputArg, 16> Ins; 10459 10460 // In Naked functions we aren't going to save any registers. 10461 if (F.hasFnAttribute(Attribute::Naked)) 10462 return; 10463 10464 if (!FuncInfo->CanLowerReturn) { 10465 // Put in an sret pointer parameter before all the other parameters. 10466 SmallVector<EVT, 1> ValueVTs; 10467 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10468 F.getReturnType()->getPointerTo( 10469 DAG.getDataLayout().getAllocaAddrSpace()), 10470 ValueVTs); 10471 10472 // NOTE: Assuming that a pointer will never break down to more than one VT 10473 // or one register. 10474 ISD::ArgFlagsTy Flags; 10475 Flags.setSRet(); 10476 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10477 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10478 ISD::InputArg::NoArgIndex, 0); 10479 Ins.push_back(RetArg); 10480 } 10481 10482 // Look for stores of arguments to static allocas. Mark such arguments with a 10483 // flag to ask the target to give us the memory location of that argument if 10484 // available. 10485 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10486 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10487 ArgCopyElisionCandidates); 10488 10489 // Set up the incoming argument description vector. 10490 for (const Argument &Arg : F.args()) { 10491 unsigned ArgNo = Arg.getArgNo(); 10492 SmallVector<EVT, 4> ValueVTs; 10493 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10494 bool isArgValueUsed = !Arg.use_empty(); 10495 unsigned PartBase = 0; 10496 Type *FinalType = Arg.getType(); 10497 if (Arg.hasAttribute(Attribute::ByVal)) 10498 FinalType = Arg.getParamByValType(); 10499 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10500 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10501 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10502 Value != NumValues; ++Value) { 10503 EVT VT = ValueVTs[Value]; 10504 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10505 ISD::ArgFlagsTy Flags; 10506 10507 10508 if (Arg.getType()->isPointerTy()) { 10509 Flags.setPointer(); 10510 Flags.setPointerAddrSpace( 10511 cast<PointerType>(Arg.getType())->getAddressSpace()); 10512 } 10513 if (Arg.hasAttribute(Attribute::ZExt)) 10514 Flags.setZExt(); 10515 if (Arg.hasAttribute(Attribute::SExt)) 10516 Flags.setSExt(); 10517 if (Arg.hasAttribute(Attribute::InReg)) { 10518 // If we are using vectorcall calling convention, a structure that is 10519 // passed InReg - is surely an HVA 10520 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10521 isa<StructType>(Arg.getType())) { 10522 // The first value of a structure is marked 10523 if (0 == Value) 10524 Flags.setHvaStart(); 10525 Flags.setHva(); 10526 } 10527 // Set InReg Flag 10528 Flags.setInReg(); 10529 } 10530 if (Arg.hasAttribute(Attribute::StructRet)) 10531 Flags.setSRet(); 10532 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10533 Flags.setSwiftSelf(); 10534 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10535 Flags.setSwiftAsync(); 10536 if (Arg.hasAttribute(Attribute::SwiftError)) 10537 Flags.setSwiftError(); 10538 if (Arg.hasAttribute(Attribute::ByVal)) 10539 Flags.setByVal(); 10540 if (Arg.hasAttribute(Attribute::ByRef)) 10541 Flags.setByRef(); 10542 if (Arg.hasAttribute(Attribute::InAlloca)) { 10543 Flags.setInAlloca(); 10544 // Set the byval flag for CCAssignFn callbacks that don't know about 10545 // inalloca. This way we can know how many bytes we should've allocated 10546 // and how many bytes a callee cleanup function will pop. If we port 10547 // inalloca to more targets, we'll have to add custom inalloca handling 10548 // in the various CC lowering callbacks. 10549 Flags.setByVal(); 10550 } 10551 if (Arg.hasAttribute(Attribute::Preallocated)) { 10552 Flags.setPreallocated(); 10553 // Set the byval flag for CCAssignFn callbacks that don't know about 10554 // preallocated. This way we can know how many bytes we should've 10555 // allocated and how many bytes a callee cleanup function will pop. If 10556 // we port preallocated to more targets, we'll have to add custom 10557 // preallocated handling in the various CC lowering callbacks. 10558 Flags.setByVal(); 10559 } 10560 10561 // Certain targets (such as MIPS), may have a different ABI alignment 10562 // for a type depending on the context. Give the target a chance to 10563 // specify the alignment it wants. 10564 const Align OriginalAlignment( 10565 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10566 Flags.setOrigAlign(OriginalAlignment); 10567 10568 Align MemAlign; 10569 Type *ArgMemTy = nullptr; 10570 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10571 Flags.isByRef()) { 10572 if (!ArgMemTy) 10573 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10574 10575 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10576 10577 // For in-memory arguments, size and alignment should be passed from FE. 10578 // BE will guess if this info is not there but there are cases it cannot 10579 // get right. 10580 if (auto ParamAlign = Arg.getParamStackAlign()) 10581 MemAlign = *ParamAlign; 10582 else if ((ParamAlign = Arg.getParamAlign())) 10583 MemAlign = *ParamAlign; 10584 else 10585 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10586 if (Flags.isByRef()) 10587 Flags.setByRefSize(MemSize); 10588 else 10589 Flags.setByValSize(MemSize); 10590 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10591 MemAlign = *ParamAlign; 10592 } else { 10593 MemAlign = OriginalAlignment; 10594 } 10595 Flags.setMemAlign(MemAlign); 10596 10597 if (Arg.hasAttribute(Attribute::Nest)) 10598 Flags.setNest(); 10599 if (NeedsRegBlock) 10600 Flags.setInConsecutiveRegs(); 10601 if (ArgCopyElisionCandidates.count(&Arg)) 10602 Flags.setCopyElisionCandidate(); 10603 if (Arg.hasAttribute(Attribute::Returned)) 10604 Flags.setReturned(); 10605 10606 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10607 *CurDAG->getContext(), F.getCallingConv(), VT); 10608 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10609 *CurDAG->getContext(), F.getCallingConv(), VT); 10610 for (unsigned i = 0; i != NumRegs; ++i) { 10611 // For scalable vectors, use the minimum size; individual targets 10612 // are responsible for handling scalable vector arguments and 10613 // return values. 10614 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10615 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10616 if (NumRegs > 1 && i == 0) 10617 MyFlags.Flags.setSplit(); 10618 // if it isn't first piece, alignment must be 1 10619 else if (i > 0) { 10620 MyFlags.Flags.setOrigAlign(Align(1)); 10621 if (i == NumRegs - 1) 10622 MyFlags.Flags.setSplitEnd(); 10623 } 10624 Ins.push_back(MyFlags); 10625 } 10626 if (NeedsRegBlock && Value == NumValues - 1) 10627 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10628 PartBase += VT.getStoreSize().getKnownMinSize(); 10629 } 10630 } 10631 10632 // Call the target to set up the argument values. 10633 SmallVector<SDValue, 8> InVals; 10634 SDValue NewRoot = TLI->LowerFormalArguments( 10635 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10636 10637 // Verify that the target's LowerFormalArguments behaved as expected. 10638 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10639 "LowerFormalArguments didn't return a valid chain!"); 10640 assert(InVals.size() == Ins.size() && 10641 "LowerFormalArguments didn't emit the correct number of values!"); 10642 LLVM_DEBUG({ 10643 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10644 assert(InVals[i].getNode() && 10645 "LowerFormalArguments emitted a null value!"); 10646 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10647 "LowerFormalArguments emitted a value with the wrong type!"); 10648 } 10649 }); 10650 10651 // Update the DAG with the new chain value resulting from argument lowering. 10652 DAG.setRoot(NewRoot); 10653 10654 // Set up the argument values. 10655 unsigned i = 0; 10656 if (!FuncInfo->CanLowerReturn) { 10657 // Create a virtual register for the sret pointer, and put in a copy 10658 // from the sret argument into it. 10659 SmallVector<EVT, 1> ValueVTs; 10660 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10661 F.getReturnType()->getPointerTo( 10662 DAG.getDataLayout().getAllocaAddrSpace()), 10663 ValueVTs); 10664 MVT VT = ValueVTs[0].getSimpleVT(); 10665 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10666 std::optional<ISD::NodeType> AssertOp; 10667 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10668 nullptr, F.getCallingConv(), AssertOp); 10669 10670 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10671 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10672 Register SRetReg = 10673 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10674 FuncInfo->DemoteRegister = SRetReg; 10675 NewRoot = 10676 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10677 DAG.setRoot(NewRoot); 10678 10679 // i indexes lowered arguments. Bump it past the hidden sret argument. 10680 ++i; 10681 } 10682 10683 SmallVector<SDValue, 4> Chains; 10684 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10685 for (const Argument &Arg : F.args()) { 10686 SmallVector<SDValue, 4> ArgValues; 10687 SmallVector<EVT, 4> ValueVTs; 10688 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10689 unsigned NumValues = ValueVTs.size(); 10690 if (NumValues == 0) 10691 continue; 10692 10693 bool ArgHasUses = !Arg.use_empty(); 10694 10695 // Elide the copying store if the target loaded this argument from a 10696 // suitable fixed stack object. 10697 if (Ins[i].Flags.isCopyElisionCandidate()) { 10698 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10699 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10700 InVals[i], ArgHasUses); 10701 } 10702 10703 // If this argument is unused then remember its value. It is used to generate 10704 // debugging information. 10705 bool isSwiftErrorArg = 10706 TLI->supportSwiftError() && 10707 Arg.hasAttribute(Attribute::SwiftError); 10708 if (!ArgHasUses && !isSwiftErrorArg) { 10709 SDB->setUnusedArgValue(&Arg, InVals[i]); 10710 10711 // Also remember any frame index for use in FastISel. 10712 if (FrameIndexSDNode *FI = 10713 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10714 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10715 } 10716 10717 for (unsigned Val = 0; Val != NumValues; ++Val) { 10718 EVT VT = ValueVTs[Val]; 10719 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10720 F.getCallingConv(), VT); 10721 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10722 *CurDAG->getContext(), F.getCallingConv(), VT); 10723 10724 // Even an apparent 'unused' swifterror argument needs to be returned. So 10725 // we do generate a copy for it that can be used on return from the 10726 // function. 10727 if (ArgHasUses || isSwiftErrorArg) { 10728 std::optional<ISD::NodeType> AssertOp; 10729 if (Arg.hasAttribute(Attribute::SExt)) 10730 AssertOp = ISD::AssertSext; 10731 else if (Arg.hasAttribute(Attribute::ZExt)) 10732 AssertOp = ISD::AssertZext; 10733 10734 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10735 PartVT, VT, nullptr, 10736 F.getCallingConv(), AssertOp)); 10737 } 10738 10739 i += NumParts; 10740 } 10741 10742 // We don't need to do anything else for unused arguments. 10743 if (ArgValues.empty()) 10744 continue; 10745 10746 // Note down frame index. 10747 if (FrameIndexSDNode *FI = 10748 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10749 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10750 10751 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10752 SDB->getCurSDLoc()); 10753 10754 SDB->setValue(&Arg, Res); 10755 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10756 // We want to associate the argument with the frame index, among 10757 // involved operands, that correspond to the lowest address. The 10758 // getCopyFromParts function, called earlier, is swapping the order of 10759 // the operands to BUILD_PAIR depending on endianness. The result of 10760 // that swapping is that the least significant bits of the argument will 10761 // be in the first operand of the BUILD_PAIR node, and the most 10762 // significant bits will be in the second operand. 10763 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10764 if (LoadSDNode *LNode = 10765 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10766 if (FrameIndexSDNode *FI = 10767 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10768 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10769 } 10770 10771 // Analyses past this point are naive and don't expect an assertion. 10772 if (Res.getOpcode() == ISD::AssertZext) 10773 Res = Res.getOperand(0); 10774 10775 // Update the SwiftErrorVRegDefMap. 10776 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10777 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10778 if (Register::isVirtualRegister(Reg)) 10779 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10780 Reg); 10781 } 10782 10783 // If this argument is live outside of the entry block, insert a copy from 10784 // wherever we got it to the vreg that other BB's will reference it as. 10785 if (Res.getOpcode() == ISD::CopyFromReg) { 10786 // If we can, though, try to skip creating an unnecessary vreg. 10787 // FIXME: This isn't very clean... it would be nice to make this more 10788 // general. 10789 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10790 if (Register::isVirtualRegister(Reg)) { 10791 FuncInfo->ValueMap[&Arg] = Reg; 10792 continue; 10793 } 10794 } 10795 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10796 FuncInfo->InitializeRegForValue(&Arg); 10797 SDB->CopyToExportRegsIfNeeded(&Arg); 10798 } 10799 } 10800 10801 if (!Chains.empty()) { 10802 Chains.push_back(NewRoot); 10803 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10804 } 10805 10806 DAG.setRoot(NewRoot); 10807 10808 assert(i == InVals.size() && "Argument register count mismatch!"); 10809 10810 // If any argument copy elisions occurred and we have debug info, update the 10811 // stale frame indices used in the dbg.declare variable info table. 10812 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10813 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10814 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10815 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10816 if (I != ArgCopyElisionFrameIndexMap.end()) 10817 VI.Slot = I->second; 10818 } 10819 } 10820 10821 // Finally, if the target has anything special to do, allow it to do so. 10822 emitFunctionEntryCode(); 10823 } 10824 10825 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10826 /// ensure constants are generated when needed. Remember the virtual registers 10827 /// that need to be added to the Machine PHI nodes as input. We cannot just 10828 /// directly add them, because expansion might result in multiple MBB's for one 10829 /// BB. As such, the start of the BB might correspond to a different MBB than 10830 /// the end. 10831 void 10832 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10834 10835 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10836 10837 // Check PHI nodes in successors that expect a value to be available from this 10838 // block. 10839 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 10840 if (!isa<PHINode>(SuccBB->begin())) continue; 10841 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10842 10843 // If this terminator has multiple identical successors (common for 10844 // switches), only handle each succ once. 10845 if (!SuccsHandled.insert(SuccMBB).second) 10846 continue; 10847 10848 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10849 10850 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10851 // nodes and Machine PHI nodes, but the incoming operands have not been 10852 // emitted yet. 10853 for (const PHINode &PN : SuccBB->phis()) { 10854 // Ignore dead phi's. 10855 if (PN.use_empty()) 10856 continue; 10857 10858 // Skip empty types 10859 if (PN.getType()->isEmptyTy()) 10860 continue; 10861 10862 unsigned Reg; 10863 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10864 10865 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 10866 unsigned &RegOut = ConstantsOut[C]; 10867 if (RegOut == 0) { 10868 RegOut = FuncInfo.CreateRegs(C); 10869 // We need to zero/sign extend ConstantInt phi operands to match 10870 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10871 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10872 if (auto *CI = dyn_cast<ConstantInt>(C)) 10873 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10874 : ISD::ZERO_EXTEND; 10875 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10876 } 10877 Reg = RegOut; 10878 } else { 10879 DenseMap<const Value *, Register>::iterator I = 10880 FuncInfo.ValueMap.find(PHIOp); 10881 if (I != FuncInfo.ValueMap.end()) 10882 Reg = I->second; 10883 else { 10884 assert(isa<AllocaInst>(PHIOp) && 10885 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10886 "Didn't codegen value into a register!??"); 10887 Reg = FuncInfo.CreateRegs(PHIOp); 10888 CopyValueToVirtualRegister(PHIOp, Reg); 10889 } 10890 } 10891 10892 // Remember that this register needs to added to the machine PHI node as 10893 // the input for this MBB. 10894 SmallVector<EVT, 4> ValueVTs; 10895 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10896 for (EVT VT : ValueVTs) { 10897 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10898 for (unsigned i = 0; i != NumRegisters; ++i) 10899 FuncInfo.PHINodesToUpdate.push_back( 10900 std::make_pair(&*MBBI++, Reg + i)); 10901 Reg += NumRegisters; 10902 } 10903 } 10904 } 10905 10906 ConstantsOut.clear(); 10907 } 10908 10909 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10910 MachineFunction::iterator I(MBB); 10911 if (++I == FuncInfo.MF->end()) 10912 return nullptr; 10913 return &*I; 10914 } 10915 10916 /// During lowering new call nodes can be created (such as memset, etc.). 10917 /// Those will become new roots of the current DAG, but complications arise 10918 /// when they are tail calls. In such cases, the call lowering will update 10919 /// the root, but the builder still needs to know that a tail call has been 10920 /// lowered in order to avoid generating an additional return. 10921 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10922 // If the node is null, we do have a tail call. 10923 if (MaybeTC.getNode() != nullptr) 10924 DAG.setRoot(MaybeTC); 10925 else 10926 HasTailCall = true; 10927 } 10928 10929 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10930 MachineBasicBlock *SwitchMBB, 10931 MachineBasicBlock *DefaultMBB) { 10932 MachineFunction *CurMF = FuncInfo.MF; 10933 MachineBasicBlock *NextMBB = nullptr; 10934 MachineFunction::iterator BBI(W.MBB); 10935 if (++BBI != FuncInfo.MF->end()) 10936 NextMBB = &*BBI; 10937 10938 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10939 10940 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10941 10942 if (Size == 2 && W.MBB == SwitchMBB) { 10943 // If any two of the cases has the same destination, and if one value 10944 // is the same as the other, but has one bit unset that the other has set, 10945 // use bit manipulation to do two compares at once. For example: 10946 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10947 // TODO: This could be extended to merge any 2 cases in switches with 3 10948 // cases. 10949 // TODO: Handle cases where W.CaseBB != SwitchBB. 10950 CaseCluster &Small = *W.FirstCluster; 10951 CaseCluster &Big = *W.LastCluster; 10952 10953 if (Small.Low == Small.High && Big.Low == Big.High && 10954 Small.MBB == Big.MBB) { 10955 const APInt &SmallValue = Small.Low->getValue(); 10956 const APInt &BigValue = Big.Low->getValue(); 10957 10958 // Check that there is only one bit different. 10959 APInt CommonBit = BigValue ^ SmallValue; 10960 if (CommonBit.isPowerOf2()) { 10961 SDValue CondLHS = getValue(Cond); 10962 EVT VT = CondLHS.getValueType(); 10963 SDLoc DL = getCurSDLoc(); 10964 10965 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10966 DAG.getConstant(CommonBit, DL, VT)); 10967 SDValue Cond = DAG.getSetCC( 10968 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10969 ISD::SETEQ); 10970 10971 // Update successor info. 10972 // Both Small and Big will jump to Small.BB, so we sum up the 10973 // probabilities. 10974 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10975 if (BPI) 10976 addSuccessorWithProb( 10977 SwitchMBB, DefaultMBB, 10978 // The default destination is the first successor in IR. 10979 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10980 else 10981 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10982 10983 // Insert the true branch. 10984 SDValue BrCond = 10985 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10986 DAG.getBasicBlock(Small.MBB)); 10987 // Insert the false branch. 10988 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10989 DAG.getBasicBlock(DefaultMBB)); 10990 10991 DAG.setRoot(BrCond); 10992 return; 10993 } 10994 } 10995 } 10996 10997 if (TM.getOptLevel() != CodeGenOpt::None) { 10998 // Here, we order cases by probability so the most likely case will be 10999 // checked first. However, two clusters can have the same probability in 11000 // which case their relative ordering is non-deterministic. So we use Low 11001 // as a tie-breaker as clusters are guaranteed to never overlap. 11002 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11003 [](const CaseCluster &a, const CaseCluster &b) { 11004 return a.Prob != b.Prob ? 11005 a.Prob > b.Prob : 11006 a.Low->getValue().slt(b.Low->getValue()); 11007 }); 11008 11009 // Rearrange the case blocks so that the last one falls through if possible 11010 // without changing the order of probabilities. 11011 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11012 --I; 11013 if (I->Prob > W.LastCluster->Prob) 11014 break; 11015 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11016 std::swap(*I, *W.LastCluster); 11017 break; 11018 } 11019 } 11020 } 11021 11022 // Compute total probability. 11023 BranchProbability DefaultProb = W.DefaultProb; 11024 BranchProbability UnhandledProbs = DefaultProb; 11025 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11026 UnhandledProbs += I->Prob; 11027 11028 MachineBasicBlock *CurMBB = W.MBB; 11029 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11030 bool FallthroughUnreachable = false; 11031 MachineBasicBlock *Fallthrough; 11032 if (I == W.LastCluster) { 11033 // For the last cluster, fall through to the default destination. 11034 Fallthrough = DefaultMBB; 11035 FallthroughUnreachable = isa<UnreachableInst>( 11036 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11037 } else { 11038 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11039 CurMF->insert(BBI, Fallthrough); 11040 // Put Cond in a virtual register to make it available from the new blocks. 11041 ExportFromCurrentBlock(Cond); 11042 } 11043 UnhandledProbs -= I->Prob; 11044 11045 switch (I->Kind) { 11046 case CC_JumpTable: { 11047 // FIXME: Optimize away range check based on pivot comparisons. 11048 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11049 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11050 11051 // The jump block hasn't been inserted yet; insert it here. 11052 MachineBasicBlock *JumpMBB = JT->MBB; 11053 CurMF->insert(BBI, JumpMBB); 11054 11055 auto JumpProb = I->Prob; 11056 auto FallthroughProb = UnhandledProbs; 11057 11058 // If the default statement is a target of the jump table, we evenly 11059 // distribute the default probability to successors of CurMBB. Also 11060 // update the probability on the edge from JumpMBB to Fallthrough. 11061 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11062 SE = JumpMBB->succ_end(); 11063 SI != SE; ++SI) { 11064 if (*SI == DefaultMBB) { 11065 JumpProb += DefaultProb / 2; 11066 FallthroughProb -= DefaultProb / 2; 11067 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11068 JumpMBB->normalizeSuccProbs(); 11069 break; 11070 } 11071 } 11072 11073 if (FallthroughUnreachable) 11074 JTH->FallthroughUnreachable = true; 11075 11076 if (!JTH->FallthroughUnreachable) 11077 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11078 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11079 CurMBB->normalizeSuccProbs(); 11080 11081 // The jump table header will be inserted in our current block, do the 11082 // range check, and fall through to our fallthrough block. 11083 JTH->HeaderBB = CurMBB; 11084 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11085 11086 // If we're in the right place, emit the jump table header right now. 11087 if (CurMBB == SwitchMBB) { 11088 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11089 JTH->Emitted = true; 11090 } 11091 break; 11092 } 11093 case CC_BitTests: { 11094 // FIXME: Optimize away range check based on pivot comparisons. 11095 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11096 11097 // The bit test blocks haven't been inserted yet; insert them here. 11098 for (BitTestCase &BTC : BTB->Cases) 11099 CurMF->insert(BBI, BTC.ThisBB); 11100 11101 // Fill in fields of the BitTestBlock. 11102 BTB->Parent = CurMBB; 11103 BTB->Default = Fallthrough; 11104 11105 BTB->DefaultProb = UnhandledProbs; 11106 // If the cases in bit test don't form a contiguous range, we evenly 11107 // distribute the probability on the edge to Fallthrough to two 11108 // successors of CurMBB. 11109 if (!BTB->ContiguousRange) { 11110 BTB->Prob += DefaultProb / 2; 11111 BTB->DefaultProb -= DefaultProb / 2; 11112 } 11113 11114 if (FallthroughUnreachable) 11115 BTB->FallthroughUnreachable = true; 11116 11117 // If we're in the right place, emit the bit test header right now. 11118 if (CurMBB == SwitchMBB) { 11119 visitBitTestHeader(*BTB, SwitchMBB); 11120 BTB->Emitted = true; 11121 } 11122 break; 11123 } 11124 case CC_Range: { 11125 const Value *RHS, *LHS, *MHS; 11126 ISD::CondCode CC; 11127 if (I->Low == I->High) { 11128 // Check Cond == I->Low. 11129 CC = ISD::SETEQ; 11130 LHS = Cond; 11131 RHS=I->Low; 11132 MHS = nullptr; 11133 } else { 11134 // Check I->Low <= Cond <= I->High. 11135 CC = ISD::SETLE; 11136 LHS = I->Low; 11137 MHS = Cond; 11138 RHS = I->High; 11139 } 11140 11141 // If Fallthrough is unreachable, fold away the comparison. 11142 if (FallthroughUnreachable) 11143 CC = ISD::SETTRUE; 11144 11145 // The false probability is the sum of all unhandled cases. 11146 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11147 getCurSDLoc(), I->Prob, UnhandledProbs); 11148 11149 if (CurMBB == SwitchMBB) 11150 visitSwitchCase(CB, SwitchMBB); 11151 else 11152 SL->SwitchCases.push_back(CB); 11153 11154 break; 11155 } 11156 } 11157 CurMBB = Fallthrough; 11158 } 11159 } 11160 11161 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11162 CaseClusterIt First, 11163 CaseClusterIt Last) { 11164 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11165 if (X.Prob != CC.Prob) 11166 return X.Prob > CC.Prob; 11167 11168 // Ties are broken by comparing the case value. 11169 return X.Low->getValue().slt(CC.Low->getValue()); 11170 }); 11171 } 11172 11173 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11174 const SwitchWorkListItem &W, 11175 Value *Cond, 11176 MachineBasicBlock *SwitchMBB) { 11177 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11178 "Clusters not sorted?"); 11179 11180 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11181 11182 // Balance the tree based on branch probabilities to create a near-optimal (in 11183 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11184 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11185 CaseClusterIt LastLeft = W.FirstCluster; 11186 CaseClusterIt FirstRight = W.LastCluster; 11187 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11188 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11189 11190 // Move LastLeft and FirstRight towards each other from opposite directions to 11191 // find a partitioning of the clusters which balances the probability on both 11192 // sides. If LeftProb and RightProb are equal, alternate which side is 11193 // taken to ensure 0-probability nodes are distributed evenly. 11194 unsigned I = 0; 11195 while (LastLeft + 1 < FirstRight) { 11196 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11197 LeftProb += (++LastLeft)->Prob; 11198 else 11199 RightProb += (--FirstRight)->Prob; 11200 I++; 11201 } 11202 11203 while (true) { 11204 // Our binary search tree differs from a typical BST in that ours can have up 11205 // to three values in each leaf. The pivot selection above doesn't take that 11206 // into account, which means the tree might require more nodes and be less 11207 // efficient. We compensate for this here. 11208 11209 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11210 unsigned NumRight = W.LastCluster - FirstRight + 1; 11211 11212 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11213 // If one side has less than 3 clusters, and the other has more than 3, 11214 // consider taking a cluster from the other side. 11215 11216 if (NumLeft < NumRight) { 11217 // Consider moving the first cluster on the right to the left side. 11218 CaseCluster &CC = *FirstRight; 11219 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11220 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11221 if (LeftSideRank <= RightSideRank) { 11222 // Moving the cluster to the left does not demote it. 11223 ++LastLeft; 11224 ++FirstRight; 11225 continue; 11226 } 11227 } else { 11228 assert(NumRight < NumLeft); 11229 // Consider moving the last element on the left to the right side. 11230 CaseCluster &CC = *LastLeft; 11231 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11232 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11233 if (RightSideRank <= LeftSideRank) { 11234 // Moving the cluster to the right does not demot it. 11235 --LastLeft; 11236 --FirstRight; 11237 continue; 11238 } 11239 } 11240 } 11241 break; 11242 } 11243 11244 assert(LastLeft + 1 == FirstRight); 11245 assert(LastLeft >= W.FirstCluster); 11246 assert(FirstRight <= W.LastCluster); 11247 11248 // Use the first element on the right as pivot since we will make less-than 11249 // comparisons against it. 11250 CaseClusterIt PivotCluster = FirstRight; 11251 assert(PivotCluster > W.FirstCluster); 11252 assert(PivotCluster <= W.LastCluster); 11253 11254 CaseClusterIt FirstLeft = W.FirstCluster; 11255 CaseClusterIt LastRight = W.LastCluster; 11256 11257 const ConstantInt *Pivot = PivotCluster->Low; 11258 11259 // New blocks will be inserted immediately after the current one. 11260 MachineFunction::iterator BBI(W.MBB); 11261 ++BBI; 11262 11263 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11264 // we can branch to its destination directly if it's squeezed exactly in 11265 // between the known lower bound and Pivot - 1. 11266 MachineBasicBlock *LeftMBB; 11267 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11268 FirstLeft->Low == W.GE && 11269 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11270 LeftMBB = FirstLeft->MBB; 11271 } else { 11272 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11273 FuncInfo.MF->insert(BBI, LeftMBB); 11274 WorkList.push_back( 11275 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11276 // Put Cond in a virtual register to make it available from the new blocks. 11277 ExportFromCurrentBlock(Cond); 11278 } 11279 11280 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11281 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11282 // directly if RHS.High equals the current upper bound. 11283 MachineBasicBlock *RightMBB; 11284 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11285 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11286 RightMBB = FirstRight->MBB; 11287 } else { 11288 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11289 FuncInfo.MF->insert(BBI, RightMBB); 11290 WorkList.push_back( 11291 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11292 // Put Cond in a virtual register to make it available from the new blocks. 11293 ExportFromCurrentBlock(Cond); 11294 } 11295 11296 // Create the CaseBlock record that will be used to lower the branch. 11297 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11298 getCurSDLoc(), LeftProb, RightProb); 11299 11300 if (W.MBB == SwitchMBB) 11301 visitSwitchCase(CB, SwitchMBB); 11302 else 11303 SL->SwitchCases.push_back(CB); 11304 } 11305 11306 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11307 // from the swith statement. 11308 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11309 BranchProbability PeeledCaseProb) { 11310 if (PeeledCaseProb == BranchProbability::getOne()) 11311 return BranchProbability::getZero(); 11312 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11313 11314 uint32_t Numerator = CaseProb.getNumerator(); 11315 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11316 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11317 } 11318 11319 // Try to peel the top probability case if it exceeds the threshold. 11320 // Return current MachineBasicBlock for the switch statement if the peeling 11321 // does not occur. 11322 // If the peeling is performed, return the newly created MachineBasicBlock 11323 // for the peeled switch statement. Also update Clusters to remove the peeled 11324 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11325 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11326 const SwitchInst &SI, CaseClusterVector &Clusters, 11327 BranchProbability &PeeledCaseProb) { 11328 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11329 // Don't perform if there is only one cluster or optimizing for size. 11330 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11331 TM.getOptLevel() == CodeGenOpt::None || 11332 SwitchMBB->getParent()->getFunction().hasMinSize()) 11333 return SwitchMBB; 11334 11335 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11336 unsigned PeeledCaseIndex = 0; 11337 bool SwitchPeeled = false; 11338 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11339 CaseCluster &CC = Clusters[Index]; 11340 if (CC.Prob < TopCaseProb) 11341 continue; 11342 TopCaseProb = CC.Prob; 11343 PeeledCaseIndex = Index; 11344 SwitchPeeled = true; 11345 } 11346 if (!SwitchPeeled) 11347 return SwitchMBB; 11348 11349 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11350 << TopCaseProb << "\n"); 11351 11352 // Record the MBB for the peeled switch statement. 11353 MachineFunction::iterator BBI(SwitchMBB); 11354 ++BBI; 11355 MachineBasicBlock *PeeledSwitchMBB = 11356 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11357 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11358 11359 ExportFromCurrentBlock(SI.getCondition()); 11360 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11361 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11362 nullptr, nullptr, TopCaseProb.getCompl()}; 11363 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11364 11365 Clusters.erase(PeeledCaseIt); 11366 for (CaseCluster &CC : Clusters) { 11367 LLVM_DEBUG( 11368 dbgs() << "Scale the probablity for one cluster, before scaling: " 11369 << CC.Prob << "\n"); 11370 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11371 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11372 } 11373 PeeledCaseProb = TopCaseProb; 11374 return PeeledSwitchMBB; 11375 } 11376 11377 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11378 // Extract cases from the switch. 11379 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11380 CaseClusterVector Clusters; 11381 Clusters.reserve(SI.getNumCases()); 11382 for (auto I : SI.cases()) { 11383 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11384 const ConstantInt *CaseVal = I.getCaseValue(); 11385 BranchProbability Prob = 11386 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11387 : BranchProbability(1, SI.getNumCases() + 1); 11388 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11389 } 11390 11391 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11392 11393 // Cluster adjacent cases with the same destination. We do this at all 11394 // optimization levels because it's cheap to do and will make codegen faster 11395 // if there are many clusters. 11396 sortAndRangeify(Clusters); 11397 11398 // The branch probablity of the peeled case. 11399 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11400 MachineBasicBlock *PeeledSwitchMBB = 11401 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11402 11403 // If there is only the default destination, jump there directly. 11404 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11405 if (Clusters.empty()) { 11406 assert(PeeledSwitchMBB == SwitchMBB); 11407 SwitchMBB->addSuccessor(DefaultMBB); 11408 if (DefaultMBB != NextBlock(SwitchMBB)) { 11409 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11410 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11411 } 11412 return; 11413 } 11414 11415 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11416 SL->findBitTestClusters(Clusters, &SI); 11417 11418 LLVM_DEBUG({ 11419 dbgs() << "Case clusters: "; 11420 for (const CaseCluster &C : Clusters) { 11421 if (C.Kind == CC_JumpTable) 11422 dbgs() << "JT:"; 11423 if (C.Kind == CC_BitTests) 11424 dbgs() << "BT:"; 11425 11426 C.Low->getValue().print(dbgs(), true); 11427 if (C.Low != C.High) { 11428 dbgs() << '-'; 11429 C.High->getValue().print(dbgs(), true); 11430 } 11431 dbgs() << ' '; 11432 } 11433 dbgs() << '\n'; 11434 }); 11435 11436 assert(!Clusters.empty()); 11437 SwitchWorkList WorkList; 11438 CaseClusterIt First = Clusters.begin(); 11439 CaseClusterIt Last = Clusters.end() - 1; 11440 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11441 // Scale the branchprobability for DefaultMBB if the peel occurs and 11442 // DefaultMBB is not replaced. 11443 if (PeeledCaseProb != BranchProbability::getZero() && 11444 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11445 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11446 WorkList.push_back( 11447 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11448 11449 while (!WorkList.empty()) { 11450 SwitchWorkListItem W = WorkList.pop_back_val(); 11451 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11452 11453 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11454 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11455 // For optimized builds, lower large range as a balanced binary tree. 11456 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11457 continue; 11458 } 11459 11460 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11461 } 11462 } 11463 11464 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11465 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11466 auto DL = getCurSDLoc(); 11467 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11468 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11469 } 11470 11471 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11473 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11474 11475 SDLoc DL = getCurSDLoc(); 11476 SDValue V = getValue(I.getOperand(0)); 11477 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11478 11479 if (VT.isScalableVector()) { 11480 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11481 return; 11482 } 11483 11484 // Use VECTOR_SHUFFLE for the fixed-length vector 11485 // to maintain existing behavior. 11486 SmallVector<int, 8> Mask; 11487 unsigned NumElts = VT.getVectorMinNumElements(); 11488 for (unsigned i = 0; i != NumElts; ++i) 11489 Mask.push_back(NumElts - 1 - i); 11490 11491 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11492 } 11493 11494 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11495 SmallVector<EVT, 4> ValueVTs; 11496 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11497 ValueVTs); 11498 unsigned NumValues = ValueVTs.size(); 11499 if (NumValues == 0) return; 11500 11501 SmallVector<SDValue, 4> Values(NumValues); 11502 SDValue Op = getValue(I.getOperand(0)); 11503 11504 for (unsigned i = 0; i != NumValues; ++i) 11505 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11506 SDValue(Op.getNode(), Op.getResNo() + i)); 11507 11508 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11509 DAG.getVTList(ValueVTs), Values)); 11510 } 11511 11512 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11514 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11515 11516 SDLoc DL = getCurSDLoc(); 11517 SDValue V1 = getValue(I.getOperand(0)); 11518 SDValue V2 = getValue(I.getOperand(1)); 11519 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11520 11521 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11522 if (VT.isScalableVector()) { 11523 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11524 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11525 DAG.getConstant(Imm, DL, IdxVT))); 11526 return; 11527 } 11528 11529 unsigned NumElts = VT.getVectorNumElements(); 11530 11531 uint64_t Idx = (NumElts + Imm) % NumElts; 11532 11533 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11534 SmallVector<int, 8> Mask; 11535 for (unsigned i = 0; i < NumElts; ++i) 11536 Mask.push_back(Idx + i); 11537 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11538 } 11539