xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision ca7e849720c2a02264865e79c42b0179049df144)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/Loads.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include <cstddef>
101 #include <iterator>
102 #include <limits>
103 #include <optional>
104 #include <tuple>
105 
106 using namespace llvm;
107 using namespace PatternMatch;
108 using namespace SwitchCG;
109 
110 #define DEBUG_TYPE "isel"
111 
112 /// LimitFloatPrecision - Generate low-precision inline sequences for
113 /// some float libcalls (6, 8 or 12 bits).
114 static unsigned LimitFloatPrecision;
115 
116 static cl::opt<bool>
117     InsertAssertAlign("insert-assert-align", cl::init(true),
118                       cl::desc("Insert the experimental `assertalign` node."),
119                       cl::ReallyHidden);
120 
121 static cl::opt<unsigned, true>
122     LimitFPPrecision("limit-float-precision",
123                      cl::desc("Generate low-precision inline sequences "
124                               "for some float libcalls"),
125                      cl::location(LimitFloatPrecision), cl::Hidden,
126                      cl::init(0));
127 
128 static cl::opt<unsigned> SwitchPeelThreshold(
129     "switch-peel-threshold", cl::Hidden, cl::init(66),
130     cl::desc("Set the case probability threshold for peeling the case from a "
131              "switch statement. A value greater than 100 will void this "
132              "optimization"));
133 
134 // Limit the width of DAG chains. This is important in general to prevent
135 // DAG-based analysis from blowing up. For example, alias analysis and
136 // load clustering may not complete in reasonable time. It is difficult to
137 // recognize and avoid this situation within each individual analysis, and
138 // future analyses are likely to have the same behavior. Limiting DAG width is
139 // the safe approach and will be especially important with global DAGs.
140 //
141 // MaxParallelChains default is arbitrarily high to avoid affecting
142 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
143 // sequence over this should have been converted to llvm.memcpy by the
144 // frontend. It is easy to induce this behavior with .ll code such as:
145 // %buffer = alloca [4096 x i8]
146 // %data = load [4096 x i8]* %argPtr
147 // store [4096 x i8] %data, [4096 x i8]* %buffer
148 static const unsigned MaxParallelChains = 64;
149 
150 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
151                                       const SDValue *Parts, unsigned NumParts,
152                                       MVT PartVT, EVT ValueVT, const Value *V,
153                                       std::optional<CallingConv::ID> CC);
154 
155 /// getCopyFromParts - Create a value that contains the specified legal parts
156 /// combined into the value they represent.  If the parts combine to a type
157 /// larger than ValueVT then AssertOp can be used to specify whether the extra
158 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
159 /// (ISD::AssertSext).
160 static SDValue
161 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
162                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
163                  std::optional<CallingConv::ID> CC = std::nullopt,
164                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
165   // Let the target assemble the parts if it wants to
166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
167   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
168                                                    PartVT, ValueVT, CC))
169     return Val;
170 
171   if (ValueVT.isVector())
172     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
173                                   CC);
174 
175   assert(NumParts > 0 && "No parts to assemble!");
176   SDValue Val = Parts[0];
177 
178   if (NumParts > 1) {
179     // Assemble the value from multiple parts.
180     if (ValueVT.isInteger()) {
181       unsigned PartBits = PartVT.getSizeInBits();
182       unsigned ValueBits = ValueVT.getSizeInBits();
183 
184       // Assemble the power of 2 part.
185       unsigned RoundParts = llvm::bit_floor(NumParts);
186       unsigned RoundBits = PartBits * RoundParts;
187       EVT RoundVT = RoundBits == ValueBits ?
188         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
189       SDValue Lo, Hi;
190 
191       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
192 
193       if (RoundParts > 2) {
194         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
195                               PartVT, HalfVT, V);
196         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
197                               RoundParts / 2, PartVT, HalfVT, V);
198       } else {
199         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
200         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
201       }
202 
203       if (DAG.getDataLayout().isBigEndian())
204         std::swap(Lo, Hi);
205 
206       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
207 
208       if (RoundParts < NumParts) {
209         // Assemble the trailing non-power-of-2 part.
210         unsigned OddParts = NumParts - RoundParts;
211         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
212         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
213                               OddVT, V, CC);
214 
215         // Combine the round and odd parts.
216         Lo = Val;
217         if (DAG.getDataLayout().isBigEndian())
218           std::swap(Lo, Hi);
219         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
220         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
221         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
222                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
223                                          TLI.getShiftAmountTy(
224                                              TotalVT, DAG.getDataLayout())));
225         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
226         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
227       }
228     } else if (PartVT.isFloatingPoint()) {
229       // FP split into multiple FP parts (for ppcf128)
230       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
231              "Unexpected split");
232       SDValue Lo, Hi;
233       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
234       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
235       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
236         std::swap(Lo, Hi);
237       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
238     } else {
239       // FP split into integer parts (soft fp)
240       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
241              !PartVT.isVector() && "Unexpected split");
242       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
243       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
244     }
245   }
246 
247   // There is now one part, held in Val.  Correct it to match ValueVT.
248   // PartEVT is the type of the register class that holds the value.
249   // ValueVT is the type of the inline asm operation.
250   EVT PartEVT = Val.getValueType();
251 
252   if (PartEVT == ValueVT)
253     return Val;
254 
255   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
256       ValueVT.bitsLT(PartEVT)) {
257     // For an FP value in an integer part, we need to truncate to the right
258     // width first.
259     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
260     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
261   }
262 
263   // Handle types that have the same size.
264   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
265     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
266 
267   // Handle types with different sizes.
268   if (PartEVT.isInteger() && ValueVT.isInteger()) {
269     if (ValueVT.bitsLT(PartEVT)) {
270       // For a truncate, see if we have any information to
271       // indicate whether the truncated bits will always be
272       // zero or sign-extension.
273       if (AssertOp)
274         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
275                           DAG.getValueType(ValueVT));
276       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
277     }
278     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
279   }
280 
281   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
282     // FP_ROUND's are always exact here.
283     if (ValueVT.bitsLT(Val.getValueType()))
284       return DAG.getNode(
285           ISD::FP_ROUND, DL, ValueVT, Val,
286           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
287 
288     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
289   }
290 
291   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
292   // then truncating.
293   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
294       ValueVT.bitsLT(PartEVT)) {
295     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
296     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
297   }
298 
299   report_fatal_error("Unknown mismatch in getCopyFromParts!");
300 }
301 
302 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
303                                               const Twine &ErrMsg) {
304   const Instruction *I = dyn_cast_or_null<Instruction>(V);
305   if (!V)
306     return Ctx.emitError(ErrMsg);
307 
308   const char *AsmError = ", possible invalid constraint for vector type";
309   if (const CallInst *CI = dyn_cast<CallInst>(I))
310     if (CI->isInlineAsm())
311       return Ctx.emitError(I, ErrMsg + AsmError);
312 
313   return Ctx.emitError(I, ErrMsg);
314 }
315 
316 /// getCopyFromPartsVector - Create a value that contains the specified legal
317 /// parts combined into the value they represent.  If the parts combine to a
318 /// type larger than ValueVT then AssertOp can be used to specify whether the
319 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
320 /// ValueVT (ISD::AssertSext).
321 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
322                                       const SDValue *Parts, unsigned NumParts,
323                                       MVT PartVT, EVT ValueVT, const Value *V,
324                                       std::optional<CallingConv::ID> CallConv) {
325   assert(ValueVT.isVector() && "Not a vector value");
326   assert(NumParts > 0 && "No parts to assemble!");
327   const bool IsABIRegCopy = CallConv.has_value();
328 
329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
330   SDValue Val = Parts[0];
331 
332   // Handle a multi-element vector.
333   if (NumParts > 1) {
334     EVT IntermediateVT;
335     MVT RegisterVT;
336     unsigned NumIntermediates;
337     unsigned NumRegs;
338 
339     if (IsABIRegCopy) {
340       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
341           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
342           NumIntermediates, RegisterVT);
343     } else {
344       NumRegs =
345           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
346                                      NumIntermediates, RegisterVT);
347     }
348 
349     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
350     NumParts = NumRegs; // Silence a compiler warning.
351     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
352     assert(RegisterVT.getSizeInBits() ==
353            Parts[0].getSimpleValueType().getSizeInBits() &&
354            "Part type sizes don't match!");
355 
356     // Assemble the parts into intermediate operands.
357     SmallVector<SDValue, 8> Ops(NumIntermediates);
358     if (NumIntermediates == NumParts) {
359       // If the register was not expanded, truncate or copy the value,
360       // as appropriate.
361       for (unsigned i = 0; i != NumParts; ++i)
362         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
363                                   PartVT, IntermediateVT, V, CallConv);
364     } else if (NumParts > 0) {
365       // If the intermediate type was expanded, build the intermediate
366       // operands from the parts.
367       assert(NumParts % NumIntermediates == 0 &&
368              "Must expand into a divisible number of parts!");
369       unsigned Factor = NumParts / NumIntermediates;
370       for (unsigned i = 0; i != NumIntermediates; ++i)
371         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
372                                   PartVT, IntermediateVT, V, CallConv);
373     }
374 
375     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
376     // intermediate operands.
377     EVT BuiltVectorTy =
378         IntermediateVT.isVector()
379             ? EVT::getVectorVT(
380                   *DAG.getContext(), IntermediateVT.getScalarType(),
381                   IntermediateVT.getVectorElementCount() * NumParts)
382             : EVT::getVectorVT(*DAG.getContext(),
383                                IntermediateVT.getScalarType(),
384                                NumIntermediates);
385     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
386                                                 : ISD::BUILD_VECTOR,
387                       DL, BuiltVectorTy, Ops);
388   }
389 
390   // There is now one part, held in Val.  Correct it to match ValueVT.
391   EVT PartEVT = Val.getValueType();
392 
393   if (PartEVT == ValueVT)
394     return Val;
395 
396   if (PartEVT.isVector()) {
397     // Vector/Vector bitcast.
398     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
399       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400 
401     // If the parts vector has more elements than the value vector, then we
402     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
403     // Extract the elements we want.
404     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
405       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
406               ValueVT.getVectorElementCount().getKnownMinValue()) &&
407              (PartEVT.getVectorElementCount().isScalable() ==
408               ValueVT.getVectorElementCount().isScalable()) &&
409              "Cannot narrow, it would be a lossy transformation");
410       PartEVT =
411           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
412                            ValueVT.getVectorElementCount());
413       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
414                         DAG.getVectorIdxConstant(0, DL));
415       if (PartEVT == ValueVT)
416         return Val;
417       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
418         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419     }
420 
421     // Promoted vector extract
422     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
423   }
424 
425   // Trivial bitcast if the types are the same size and the destination
426   // vector type is legal.
427   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
428       TLI.isTypeLegal(ValueVT))
429     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
430 
431   if (ValueVT.getVectorNumElements() != 1) {
432      // Certain ABIs require that vectors are passed as integers. For vectors
433      // are the same size, this is an obvious bitcast.
434      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
435        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436      } else if (ValueVT.bitsLT(PartEVT)) {
437        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
438        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
439        // Drop the extra bits.
440        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
441        return DAG.getBitcast(ValueVT, Val);
442      }
443 
444      diagnosePossiblyInvalidConstraint(
445          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
446      return DAG.getUNDEF(ValueVT);
447   }
448 
449   // Handle cases such as i8 -> <1 x i1>
450   EVT ValueSVT = ValueVT.getVectorElementType();
451   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
452     unsigned ValueSize = ValueSVT.getSizeInBits();
453     if (ValueSize == PartEVT.getSizeInBits()) {
454       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
455     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
456       // It's possible a scalar floating point type gets softened to integer and
457       // then promoted to a larger integer. If PartEVT is the larger integer
458       // we need to truncate it and then bitcast to the FP type.
459       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
460       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
462       Val = DAG.getBitcast(ValueSVT, Val);
463     } else {
464       Val = ValueVT.isFloatingPoint()
465                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467     }
468   }
469 
470   return DAG.getBuildVector(ValueVT, DL, Val);
471 }
472 
473 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
474                                  SDValue Val, SDValue *Parts, unsigned NumParts,
475                                  MVT PartVT, const Value *V,
476                                  std::optional<CallingConv::ID> CallConv);
477 
478 /// getCopyToParts - Create a series of nodes that contain the specified value
479 /// split into legal parts.  If the parts contain more bits than Val, then, for
480 /// integers, ExtendKind can be used to specify how to generate the extra bits.
481 static void
482 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
483                unsigned NumParts, MVT PartVT, const Value *V,
484                std::optional<CallingConv::ID> CallConv = std::nullopt,
485                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
486   // Let the target split the parts if it wants to
487   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
488   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
489                                       CallConv))
490     return;
491   EVT ValueVT = Val.getValueType();
492 
493   // Handle the vector case separately.
494   if (ValueVT.isVector())
495     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
496                                 CallConv);
497 
498   unsigned PartBits = PartVT.getSizeInBits();
499   unsigned OrigNumParts = NumParts;
500   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501          "Copying to an illegal type!");
502 
503   if (NumParts == 0)
504     return;
505 
506   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507   EVT PartEVT = PartVT;
508   if (PartEVT == ValueVT) {
509     assert(NumParts == 1 && "No-op copy with multiple parts!");
510     Parts[0] = Val;
511     return;
512   }
513 
514   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
515     // If the parts cover more bits than the value has, promote the value.
516     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
517       assert(NumParts == 1 && "Do not know what to promote to!");
518       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
519     } else {
520       if (ValueVT.isFloatingPoint()) {
521         // FP values need to be bitcast, then extended if they are being put
522         // into a larger container.
523         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
524         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
525       }
526       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
527              ValueVT.isInteger() &&
528              "Unknown mismatch!");
529       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
530       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
531       if (PartVT == MVT::x86mmx)
532         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533     }
534   } else if (PartBits == ValueVT.getSizeInBits()) {
535     // Different types of the same size.
536     assert(NumParts == 1 && PartEVT != ValueVT);
537     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
539     // If the parts cover less bits than value has, truncate the value.
540     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
541            ValueVT.isInteger() &&
542            "Unknown mismatch!");
543     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
544     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
545     if (PartVT == MVT::x86mmx)
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547   }
548 
549   // The value may have changed - recompute ValueVT.
550   ValueVT = Val.getValueType();
551   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
552          "Failed to tile the value with PartVT!");
553 
554   if (NumParts == 1) {
555     if (PartEVT != ValueVT) {
556       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
557                                         "scalar-to-vector conversion failed");
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559     }
560 
561     Parts[0] = Val;
562     return;
563   }
564 
565   // Expand the value into multiple parts.
566   if (NumParts & (NumParts - 1)) {
567     // The number of parts is not a power of 2.  Split off and copy the tail.
568     assert(PartVT.isInteger() && ValueVT.isInteger() &&
569            "Do not know what to expand to!");
570     unsigned RoundParts = llvm::bit_floor(NumParts);
571     unsigned RoundBits = RoundParts * PartBits;
572     unsigned OddParts = NumParts - RoundParts;
573     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
574       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
575 
576     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
577                    CallConv);
578 
579     if (DAG.getDataLayout().isBigEndian())
580       // The odd parts were reversed by getCopyToParts - unreverse them.
581       std::reverse(Parts + RoundParts, Parts + NumParts);
582 
583     NumParts = RoundParts;
584     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
585     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
586   }
587 
588   // The number of parts is a power of 2.  Repeatedly bisect the value using
589   // EXTRACT_ELEMENT.
590   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
591                          EVT::getIntegerVT(*DAG.getContext(),
592                                            ValueVT.getSizeInBits()),
593                          Val);
594 
595   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
596     for (unsigned i = 0; i < NumParts; i += StepSize) {
597       unsigned ThisBits = StepSize * PartBits / 2;
598       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
599       SDValue &Part0 = Parts[i];
600       SDValue &Part1 = Parts[i+StepSize/2];
601 
602       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
603                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
604       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
606 
607       if (ThisBits == PartBits && ThisVT != PartVT) {
608         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
609         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
610       }
611     }
612   }
613 
614   if (DAG.getDataLayout().isBigEndian())
615     std::reverse(Parts, Parts + OrigNumParts);
616 }
617 
618 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
619                                      const SDLoc &DL, EVT PartVT) {
620   if (!PartVT.isVector())
621     return SDValue();
622 
623   EVT ValueVT = Val.getValueType();
624   ElementCount PartNumElts = PartVT.getVectorElementCount();
625   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
626 
627   // We only support widening vectors with equivalent element types and
628   // fixed/scalable properties. If a target needs to widen a fixed-length type
629   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
630   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
631       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
632       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
633     return SDValue();
634 
635   // Widening a scalable vector to another scalable vector is done by inserting
636   // the vector into a larger undef one.
637   if (PartNumElts.isScalable())
638     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
639                        Val, DAG.getVectorIdxConstant(0, DL));
640 
641   EVT ElementVT = PartVT.getVectorElementType();
642   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
643   // undef elements.
644   SmallVector<SDValue, 16> Ops;
645   DAG.ExtractVectorElements(Val, Ops);
646   SDValue EltUndef = DAG.getUNDEF(ElementVT);
647   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
648 
649   // FIXME: Use CONCAT for 2x -> 4x.
650   return DAG.getBuildVector(PartVT, DL, Ops);
651 }
652 
653 /// getCopyToPartsVector - Create a series of nodes that contain the specified
654 /// value split into legal parts.
655 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
656                                  SDValue Val, SDValue *Parts, unsigned NumParts,
657                                  MVT PartVT, const Value *V,
658                                  std::optional<CallingConv::ID> CallConv) {
659   EVT ValueVT = Val.getValueType();
660   assert(ValueVT.isVector() && "Not a vector");
661   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
662   const bool IsABIRegCopy = CallConv.has_value();
663 
664   if (NumParts == 1) {
665     EVT PartEVT = PartVT;
666     if (PartEVT == ValueVT) {
667       // Nothing to do.
668     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
669       // Bitconvert vector->vector case.
670       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
671     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
672       Val = Widened;
673     } else if (PartVT.isVector() &&
674                PartEVT.getVectorElementType().bitsGE(
675                    ValueVT.getVectorElementType()) &&
676                PartEVT.getVectorElementCount() ==
677                    ValueVT.getVectorElementCount()) {
678 
679       // Promoted vector extract
680       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
681     } else if (PartEVT.isVector() &&
682                PartEVT.getVectorElementType() !=
683                    ValueVT.getVectorElementType() &&
684                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
685                    TargetLowering::TypeWidenVector) {
686       // Combination of widening and promotion.
687       EVT WidenVT =
688           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
689                            PartVT.getVectorElementCount());
690       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
691       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
692     } else {
693       // Don't extract an integer from a float vector. This can happen if the
694       // FP type gets softened to integer and then promoted. The promotion
695       // prevents it from being picked up by the earlier bitcast case.
696       if (ValueVT.getVectorElementCount().isScalar() &&
697           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
698         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
699                           DAG.getVectorIdxConstant(0, DL));
700       } else {
701         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
702         assert(PartVT.getFixedSizeInBits() > ValueSize &&
703                "lossy conversion of vector to scalar type");
704         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
705         Val = DAG.getBitcast(IntermediateType, Val);
706         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
707       }
708     }
709 
710     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
711     Parts[0] = Val;
712     return;
713   }
714 
715   // Handle a multi-element vector.
716   EVT IntermediateVT;
717   MVT RegisterVT;
718   unsigned NumIntermediates;
719   unsigned NumRegs;
720   if (IsABIRegCopy) {
721     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
722         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
723         RegisterVT);
724   } else {
725     NumRegs =
726         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
727                                    NumIntermediates, RegisterVT);
728   }
729 
730   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
731   NumParts = NumRegs; // Silence a compiler warning.
732   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
733 
734   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
735          "Mixing scalable and fixed vectors when copying in parts");
736 
737   std::optional<ElementCount> DestEltCnt;
738 
739   if (IntermediateVT.isVector())
740     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
741   else
742     DestEltCnt = ElementCount::getFixed(NumIntermediates);
743 
744   EVT BuiltVectorTy = EVT::getVectorVT(
745       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
746 
747   if (ValueVT == BuiltVectorTy) {
748     // Nothing to do.
749   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
750     // Bitconvert vector->vector case.
751     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
752   } else {
753     if (BuiltVectorTy.getVectorElementType().bitsGT(
754             ValueVT.getVectorElementType())) {
755       // Integer promotion.
756       ValueVT = EVT::getVectorVT(*DAG.getContext(),
757                                  BuiltVectorTy.getVectorElementType(),
758                                  ValueVT.getVectorElementCount());
759       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
760     }
761 
762     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
763       Val = Widened;
764     }
765   }
766 
767   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
768 
769   // Split the vector into intermediate operands.
770   SmallVector<SDValue, 8> Ops(NumIntermediates);
771   for (unsigned i = 0; i != NumIntermediates; ++i) {
772     if (IntermediateVT.isVector()) {
773       // This does something sensible for scalable vectors - see the
774       // definition of EXTRACT_SUBVECTOR for further details.
775       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
776       Ops[i] =
777           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
778                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
779     } else {
780       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
781                            DAG.getVectorIdxConstant(i, DL));
782     }
783   }
784 
785   // Split the intermediate operands into legal parts.
786   if (NumParts == NumIntermediates) {
787     // If the register was not expanded, promote or copy the value,
788     // as appropriate.
789     for (unsigned i = 0; i != NumParts; ++i)
790       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
791   } else if (NumParts > 0) {
792     // If the intermediate type was expanded, split each the value into
793     // legal parts.
794     assert(NumIntermediates != 0 && "division by zero");
795     assert(NumParts % NumIntermediates == 0 &&
796            "Must expand into a divisible number of parts!");
797     unsigned Factor = NumParts / NumIntermediates;
798     for (unsigned i = 0; i != NumIntermediates; ++i)
799       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
800                      CallConv);
801   }
802 }
803 
804 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
805                            EVT valuevt, std::optional<CallingConv::ID> CC)
806     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
807       RegCount(1, regs.size()), CallConv(CC) {}
808 
809 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
810                            const DataLayout &DL, unsigned Reg, Type *Ty,
811                            std::optional<CallingConv::ID> CC) {
812   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
813 
814   CallConv = CC;
815 
816   for (EVT ValueVT : ValueVTs) {
817     unsigned NumRegs =
818         isABIMangled()
819             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
820             : TLI.getNumRegisters(Context, ValueVT);
821     MVT RegisterVT =
822         isABIMangled()
823             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
824             : TLI.getRegisterType(Context, ValueVT);
825     for (unsigned i = 0; i != NumRegs; ++i)
826       Regs.push_back(Reg + i);
827     RegVTs.push_back(RegisterVT);
828     RegCount.push_back(NumRegs);
829     Reg += NumRegs;
830   }
831 }
832 
833 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
834                                       FunctionLoweringInfo &FuncInfo,
835                                       const SDLoc &dl, SDValue &Chain,
836                                       SDValue *Flag, const Value *V) const {
837   // A Value with type {} or [0 x %t] needs no registers.
838   if (ValueVTs.empty())
839     return SDValue();
840 
841   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
842 
843   // Assemble the legal parts into the final values.
844   SmallVector<SDValue, 4> Values(ValueVTs.size());
845   SmallVector<SDValue, 8> Parts;
846   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
847     // Copy the legal parts from the registers.
848     EVT ValueVT = ValueVTs[Value];
849     unsigned NumRegs = RegCount[Value];
850     MVT RegisterVT = isABIMangled()
851                          ? TLI.getRegisterTypeForCallingConv(
852                                *DAG.getContext(), *CallConv, RegVTs[Value])
853                          : RegVTs[Value];
854 
855     Parts.resize(NumRegs);
856     for (unsigned i = 0; i != NumRegs; ++i) {
857       SDValue P;
858       if (!Flag) {
859         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
860       } else {
861         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
862         *Flag = P.getValue(2);
863       }
864 
865       Chain = P.getValue(1);
866       Parts[i] = P;
867 
868       // If the source register was virtual and if we know something about it,
869       // add an assert node.
870       if (!Register::isVirtualRegister(Regs[Part + i]) ||
871           !RegisterVT.isInteger())
872         continue;
873 
874       const FunctionLoweringInfo::LiveOutInfo *LOI =
875         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
876       if (!LOI)
877         continue;
878 
879       unsigned RegSize = RegisterVT.getScalarSizeInBits();
880       unsigned NumSignBits = LOI->NumSignBits;
881       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
882 
883       if (NumZeroBits == RegSize) {
884         // The current value is a zero.
885         // Explicitly express that as it would be easier for
886         // optimizations to kick in.
887         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
888         continue;
889       }
890 
891       // FIXME: We capture more information than the dag can represent.  For
892       // now, just use the tightest assertzext/assertsext possible.
893       bool isSExt;
894       EVT FromVT(MVT::Other);
895       if (NumZeroBits) {
896         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
897         isSExt = false;
898       } else if (NumSignBits > 1) {
899         FromVT =
900             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
901         isSExt = true;
902       } else {
903         continue;
904       }
905       // Add an assertion node.
906       assert(FromVT != MVT::Other);
907       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
908                              RegisterVT, P, DAG.getValueType(FromVT));
909     }
910 
911     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
912                                      RegisterVT, ValueVT, V, CallConv);
913     Part += NumRegs;
914     Parts.clear();
915   }
916 
917   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
918 }
919 
920 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
921                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
922                                  const Value *V,
923                                  ISD::NodeType PreferredExtendType) const {
924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
925   ISD::NodeType ExtendKind = PreferredExtendType;
926 
927   // Get the list of the values's legal parts.
928   unsigned NumRegs = Regs.size();
929   SmallVector<SDValue, 8> Parts(NumRegs);
930   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
931     unsigned NumParts = RegCount[Value];
932 
933     MVT RegisterVT = isABIMangled()
934                          ? TLI.getRegisterTypeForCallingConv(
935                                *DAG.getContext(), *CallConv, RegVTs[Value])
936                          : RegVTs[Value];
937 
938     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
939       ExtendKind = ISD::ZERO_EXTEND;
940 
941     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
942                    NumParts, RegisterVT, V, CallConv, ExtendKind);
943     Part += NumParts;
944   }
945 
946   // Copy the parts into the registers.
947   SmallVector<SDValue, 8> Chains(NumRegs);
948   for (unsigned i = 0; i != NumRegs; ++i) {
949     SDValue Part;
950     if (!Flag) {
951       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
952     } else {
953       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
954       *Flag = Part.getValue(1);
955     }
956 
957     Chains[i] = Part.getValue(0);
958   }
959 
960   if (NumRegs == 1 || Flag)
961     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
962     // flagged to it. That is the CopyToReg nodes and the user are considered
963     // a single scheduling unit. If we create a TokenFactor and return it as
964     // chain, then the TokenFactor is both a predecessor (operand) of the
965     // user as well as a successor (the TF operands are flagged to the user).
966     // c1, f1 = CopyToReg
967     // c2, f2 = CopyToReg
968     // c3     = TokenFactor c1, c2
969     // ...
970     //        = op c3, ..., f2
971     Chain = Chains[NumRegs-1];
972   else
973     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
974 }
975 
976 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
977                                         unsigned MatchingIdx, const SDLoc &dl,
978                                         SelectionDAG &DAG,
979                                         std::vector<SDValue> &Ops) const {
980   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
981 
982   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
983   if (HasMatching)
984     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
985   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
986     // Put the register class of the virtual registers in the flag word.  That
987     // way, later passes can recompute register class constraints for inline
988     // assembly as well as normal instructions.
989     // Don't do this for tied operands that can use the regclass information
990     // from the def.
991     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
992     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
993     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
994   }
995 
996   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
997   Ops.push_back(Res);
998 
999   if (Code == InlineAsm::Kind_Clobber) {
1000     // Clobbers should always have a 1:1 mapping with registers, and may
1001     // reference registers that have illegal (e.g. vector) types. Hence, we
1002     // shouldn't try to apply any sort of splitting logic to them.
1003     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1004            "No 1:1 mapping from clobbers to regs?");
1005     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1006     (void)SP;
1007     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1008       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1009       assert(
1010           (Regs[I] != SP ||
1011            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1012           "If we clobbered the stack pointer, MFI should know about it.");
1013     }
1014     return;
1015   }
1016 
1017   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1018     MVT RegisterVT = RegVTs[Value];
1019     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1020                                            RegisterVT);
1021     for (unsigned i = 0; i != NumRegs; ++i) {
1022       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1023       unsigned TheReg = Regs[Reg++];
1024       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1025     }
1026   }
1027 }
1028 
1029 SmallVector<std::pair<unsigned, TypeSize>, 4>
1030 RegsForValue::getRegsAndSizes() const {
1031   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1032   unsigned I = 0;
1033   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1034     unsigned RegCount = std::get<0>(CountAndVT);
1035     MVT RegisterVT = std::get<1>(CountAndVT);
1036     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1037     for (unsigned E = I + RegCount; I != E; ++I)
1038       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1039   }
1040   return OutVec;
1041 }
1042 
1043 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1044                                AssumptionCache *ac,
1045                                const TargetLibraryInfo *li) {
1046   AA = aa;
1047   AC = ac;
1048   GFI = gfi;
1049   LibInfo = li;
1050   Context = DAG.getContext();
1051   LPadToCallSiteMap.clear();
1052   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1053 }
1054 
1055 void SelectionDAGBuilder::clear() {
1056   NodeMap.clear();
1057   UnusedArgNodeMap.clear();
1058   PendingLoads.clear();
1059   PendingExports.clear();
1060   PendingConstrainedFP.clear();
1061   PendingConstrainedFPStrict.clear();
1062   CurInst = nullptr;
1063   HasTailCall = false;
1064   SDNodeOrder = LowestSDNodeOrder;
1065   StatepointLowering.clear();
1066 }
1067 
1068 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1069   DanglingDebugInfoMap.clear();
1070 }
1071 
1072 // Update DAG root to include dependencies on Pending chains.
1073 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1074   SDValue Root = DAG.getRoot();
1075 
1076   if (Pending.empty())
1077     return Root;
1078 
1079   // Add current root to PendingChains, unless we already indirectly
1080   // depend on it.
1081   if (Root.getOpcode() != ISD::EntryToken) {
1082     unsigned i = 0, e = Pending.size();
1083     for (; i != e; ++i) {
1084       assert(Pending[i].getNode()->getNumOperands() > 1);
1085       if (Pending[i].getNode()->getOperand(0) == Root)
1086         break;  // Don't add the root if we already indirectly depend on it.
1087     }
1088 
1089     if (i == e)
1090       Pending.push_back(Root);
1091   }
1092 
1093   if (Pending.size() == 1)
1094     Root = Pending[0];
1095   else
1096     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1097 
1098   DAG.setRoot(Root);
1099   Pending.clear();
1100   return Root;
1101 }
1102 
1103 SDValue SelectionDAGBuilder::getMemoryRoot() {
1104   return updateRoot(PendingLoads);
1105 }
1106 
1107 SDValue SelectionDAGBuilder::getRoot() {
1108   // Chain up all pending constrained intrinsics together with all
1109   // pending loads, by simply appending them to PendingLoads and
1110   // then calling getMemoryRoot().
1111   PendingLoads.reserve(PendingLoads.size() +
1112                        PendingConstrainedFP.size() +
1113                        PendingConstrainedFPStrict.size());
1114   PendingLoads.append(PendingConstrainedFP.begin(),
1115                       PendingConstrainedFP.end());
1116   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1117                       PendingConstrainedFPStrict.end());
1118   PendingConstrainedFP.clear();
1119   PendingConstrainedFPStrict.clear();
1120   return getMemoryRoot();
1121 }
1122 
1123 SDValue SelectionDAGBuilder::getControlRoot() {
1124   // We need to emit pending fpexcept.strict constrained intrinsics,
1125   // so append them to the PendingExports list.
1126   PendingExports.append(PendingConstrainedFPStrict.begin(),
1127                         PendingConstrainedFPStrict.end());
1128   PendingConstrainedFPStrict.clear();
1129   return updateRoot(PendingExports);
1130 }
1131 
1132 void SelectionDAGBuilder::visit(const Instruction &I) {
1133   // Set up outgoing PHI node register values before emitting the terminator.
1134   if (I.isTerminator()) {
1135     HandlePHINodesInSuccessorBlocks(I.getParent());
1136   }
1137 
1138   // Add SDDbgValue nodes for any var locs here. Do so before updating
1139   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1140   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1141     // Add SDDbgValue nodes for any var locs here. Do so before updating
1142     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1143     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1144          It != End; ++It) {
1145       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1146       dropDanglingDebugInfo(Var, It->Expr);
1147       if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder,
1148                             /*IsVariadic=*/false))
1149         addDanglingDebugInfo(It, SDNodeOrder);
1150     }
1151   }
1152 
1153   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1154   if (!isa<DbgInfoIntrinsic>(I))
1155     ++SDNodeOrder;
1156 
1157   CurInst = &I;
1158 
1159   // Set inserted listener only if required.
1160   bool NodeInserted = false;
1161   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1162   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1163   if (PCSectionsMD) {
1164     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1165         DAG, [&](SDNode *) { NodeInserted = true; });
1166   }
1167 
1168   visit(I.getOpcode(), I);
1169 
1170   if (!I.isTerminator() && !HasTailCall &&
1171       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1172     CopyToExportRegsIfNeeded(&I);
1173 
1174   // Handle metadata.
1175   if (PCSectionsMD) {
1176     auto It = NodeMap.find(&I);
1177     if (It != NodeMap.end()) {
1178       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1179     } else if (NodeInserted) {
1180       // This should not happen; if it does, don't let it go unnoticed so we can
1181       // fix it. Relevant visit*() function is probably missing a setValue().
1182       errs() << "warning: loosing !pcsections metadata ["
1183              << I.getModule()->getName() << "]\n";
1184       LLVM_DEBUG(I.dump());
1185       assert(false);
1186     }
1187   }
1188 
1189   CurInst = nullptr;
1190 }
1191 
1192 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1193   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1194 }
1195 
1196 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1197   // Note: this doesn't use InstVisitor, because it has to work with
1198   // ConstantExpr's in addition to instructions.
1199   switch (Opcode) {
1200   default: llvm_unreachable("Unknown instruction type encountered!");
1201     // Build the switch statement using the Instruction.def file.
1202 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1203     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1204 #include "llvm/IR/Instruction.def"
1205   }
1206 }
1207 
1208 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1209                                                unsigned Order) {
1210   DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order);
1211 }
1212 
1213 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1214                                                unsigned Order) {
1215   // We treat variadic dbg_values differently at this stage.
1216   if (DI->hasArgList()) {
1217     // For variadic dbg_values we will now insert an undef.
1218     // FIXME: We can potentially recover these!
1219     SmallVector<SDDbgOperand, 2> Locs;
1220     for (const Value *V : DI->getValues()) {
1221       auto Undef = UndefValue::get(V->getType());
1222       Locs.push_back(SDDbgOperand::fromConst(Undef));
1223     }
1224     SDDbgValue *SDV = DAG.getDbgValueList(
1225         DI->getVariable(), DI->getExpression(), Locs, {},
1226         /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true);
1227     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1228   } else {
1229     // TODO: Dangling debug info will eventually either be resolved or produce
1230     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1231     // between the original dbg.value location and its resolved DBG_VALUE,
1232     // which we should ideally fill with an extra Undef DBG_VALUE.
1233     assert(DI->getNumVariableLocationOps() == 1 &&
1234            "DbgValueInst without an ArgList should have a single location "
1235            "operand.");
1236     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1237   }
1238 }
1239 
1240 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1241                                                 const DIExpression *Expr) {
1242   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1243     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1244     DIExpression *DanglingExpr = DDI.getExpression();
1245     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1246       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1247                         << "\n");
1248       return true;
1249     }
1250     return false;
1251   };
1252 
1253   for (auto &DDIMI : DanglingDebugInfoMap) {
1254     DanglingDebugInfoVector &DDIV = DDIMI.second;
1255 
1256     // If debug info is to be dropped, run it through final checks to see
1257     // whether it can be salvaged.
1258     for (auto &DDI : DDIV)
1259       if (isMatchingDbgValue(DDI))
1260         salvageUnresolvedDbgValue(DDI);
1261 
1262     erase_if(DDIV, isMatchingDbgValue);
1263   }
1264 }
1265 
1266 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1267 // generate the debug data structures now that we've seen its definition.
1268 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1269                                                    SDValue Val) {
1270   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1271   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1272     return;
1273 
1274   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1275   for (auto &DDI : DDIV) {
1276     DebugLoc DL = DDI.getDebugLoc();
1277     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1278     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1279     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1280     DIExpression *Expr = DDI.getExpression();
1281     assert(Variable->isValidLocationForIntrinsic(DL) &&
1282            "Expected inlined-at fields to agree");
1283     SDDbgValue *SDV;
1284     if (Val.getNode()) {
1285       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1286       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1287       // we couldn't resolve it directly when examining the DbgValue intrinsic
1288       // in the first place we should not be more successful here). Unless we
1289       // have some test case that prove this to be correct we should avoid
1290       // calling EmitFuncArgumentDbgValue here.
1291       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1292                                     FuncArgumentDbgValueKind::Value, Val)) {
1293         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1294                           << "\n");
1295         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1296         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1297         // inserted after the definition of Val when emitting the instructions
1298         // after ISel. An alternative could be to teach
1299         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1300         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1301                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1302                    << ValSDNodeOrder << "\n");
1303         SDV = getDbgValue(Val, Variable, Expr, DL,
1304                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1305         DAG.AddDbgValue(SDV, false);
1306       } else
1307         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1308                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1309     } else {
1310       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1311       auto Undef = UndefValue::get(V->getType());
1312       auto SDV =
1313           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1314       DAG.AddDbgValue(SDV, false);
1315     }
1316   }
1317   DDIV.clear();
1318 }
1319 
1320 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1321   // TODO: For the variadic implementation, instead of only checking the fail
1322   // state of `handleDebugValue`, we need know specifically which values were
1323   // invalid, so that we attempt to salvage only those values when processing
1324   // a DIArgList.
1325   Value *V = DDI.getVariableLocationOp(0);
1326   Value *OrigV = V;
1327   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1328   DIExpression *Expr = DDI.getExpression();
1329   DebugLoc DL = DDI.getDebugLoc();
1330   unsigned SDOrder = DDI.getSDNodeOrder();
1331 
1332   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1333   // that DW_OP_stack_value is desired.
1334   bool StackValue = true;
1335 
1336   // Can this Value can be encoded without any further work?
1337   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1338     return;
1339 
1340   // Attempt to salvage back through as many instructions as possible. Bail if
1341   // a non-instruction is seen, such as a constant expression or global
1342   // variable. FIXME: Further work could recover those too.
1343   while (isa<Instruction>(V)) {
1344     Instruction &VAsInst = *cast<Instruction>(V);
1345     // Temporary "0", awaiting real implementation.
1346     SmallVector<uint64_t, 16> Ops;
1347     SmallVector<Value *, 4> AdditionalValues;
1348     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1349                              AdditionalValues);
1350     // If we cannot salvage any further, and haven't yet found a suitable debug
1351     // expression, bail out.
1352     if (!V)
1353       break;
1354 
1355     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1356     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1357     // here for variadic dbg_values, remove that condition.
1358     if (!AdditionalValues.empty())
1359       break;
1360 
1361     // New value and expr now represent this debuginfo.
1362     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1363 
1364     // Some kind of simplification occurred: check whether the operand of the
1365     // salvaged debug expression can be encoded in this DAG.
1366     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1367       LLVM_DEBUG(
1368           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1369                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1370       return;
1371     }
1372   }
1373 
1374   // This was the final opportunity to salvage this debug information, and it
1375   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1376   // any earlier variable location.
1377   assert(OrigV && "V shouldn't be null");
1378   auto *Undef = UndefValue::get(OrigV->getType());
1379   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1380   DAG.AddDbgValue(SDV, false);
1381   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1382                     << "\n");
1383 }
1384 
1385 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1386                                            DILocalVariable *Var,
1387                                            DIExpression *Expr, DebugLoc DbgLoc,
1388                                            unsigned Order, bool IsVariadic) {
1389   if (Values.empty())
1390     return true;
1391   SmallVector<SDDbgOperand> LocationOps;
1392   SmallVector<SDNode *> Dependencies;
1393   for (const Value *V : Values) {
1394     // Constant value.
1395     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1396         isa<ConstantPointerNull>(V)) {
1397       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1398       continue;
1399     }
1400 
1401     // Look through IntToPtr constants.
1402     if (auto *CE = dyn_cast<ConstantExpr>(V))
1403       if (CE->getOpcode() == Instruction::IntToPtr) {
1404         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1405         continue;
1406       }
1407 
1408     // If the Value is a frame index, we can create a FrameIndex debug value
1409     // without relying on the DAG at all.
1410     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1411       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1412       if (SI != FuncInfo.StaticAllocaMap.end()) {
1413         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1414         continue;
1415       }
1416     }
1417 
1418     // Do not use getValue() in here; we don't want to generate code at
1419     // this point if it hasn't been done yet.
1420     SDValue N = NodeMap[V];
1421     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1422       N = UnusedArgNodeMap[V];
1423     if (N.getNode()) {
1424       // Only emit func arg dbg value for non-variadic dbg.values for now.
1425       if (!IsVariadic &&
1426           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1427                                    FuncArgumentDbgValueKind::Value, N))
1428         return true;
1429       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1430         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1431         // describe stack slot locations.
1432         //
1433         // Consider "int x = 0; int *px = &x;". There are two kinds of
1434         // interesting debug values here after optimization:
1435         //
1436         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1437         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1438         //
1439         // Both describe the direct values of their associated variables.
1440         Dependencies.push_back(N.getNode());
1441         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1442         continue;
1443       }
1444       LocationOps.emplace_back(
1445           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1446       continue;
1447     }
1448 
1449     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1450     // Special rules apply for the first dbg.values of parameter variables in a
1451     // function. Identify them by the fact they reference Argument Values, that
1452     // they're parameters, and they are parameters of the current function. We
1453     // need to let them dangle until they get an SDNode.
1454     bool IsParamOfFunc =
1455         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1456     if (IsParamOfFunc)
1457       return false;
1458 
1459     // The value is not used in this block yet (or it would have an SDNode).
1460     // We still want the value to appear for the user if possible -- if it has
1461     // an associated VReg, we can refer to that instead.
1462     auto VMI = FuncInfo.ValueMap.find(V);
1463     if (VMI != FuncInfo.ValueMap.end()) {
1464       unsigned Reg = VMI->second;
1465       // If this is a PHI node, it may be split up into several MI PHI nodes
1466       // (in FunctionLoweringInfo::set).
1467       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1468                        V->getType(), std::nullopt);
1469       if (RFV.occupiesMultipleRegs()) {
1470         // FIXME: We could potentially support variadic dbg_values here.
1471         if (IsVariadic)
1472           return false;
1473         unsigned Offset = 0;
1474         unsigned BitsToDescribe = 0;
1475         if (auto VarSize = Var->getSizeInBits())
1476           BitsToDescribe = *VarSize;
1477         if (auto Fragment = Expr->getFragmentInfo())
1478           BitsToDescribe = Fragment->SizeInBits;
1479         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1480           // Bail out if all bits are described already.
1481           if (Offset >= BitsToDescribe)
1482             break;
1483           // TODO: handle scalable vectors.
1484           unsigned RegisterSize = RegAndSize.second;
1485           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1486                                       ? BitsToDescribe - Offset
1487                                       : RegisterSize;
1488           auto FragmentExpr = DIExpression::createFragmentExpression(
1489               Expr, Offset, FragmentSize);
1490           if (!FragmentExpr)
1491             continue;
1492           SDDbgValue *SDV = DAG.getVRegDbgValue(
1493               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1494           DAG.AddDbgValue(SDV, false);
1495           Offset += RegisterSize;
1496         }
1497         return true;
1498       }
1499       // We can use simple vreg locations for variadic dbg_values as well.
1500       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1501       continue;
1502     }
1503     // We failed to create a SDDbgOperand for V.
1504     return false;
1505   }
1506 
1507   // We have created a SDDbgOperand for each Value in Values.
1508   // Should use Order instead of SDNodeOrder?
1509   assert(!LocationOps.empty());
1510   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1511                                         /*IsIndirect=*/false, DbgLoc,
1512                                         SDNodeOrder, IsVariadic);
1513   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1514   return true;
1515 }
1516 
1517 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1518   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1519   for (auto &Pair : DanglingDebugInfoMap)
1520     for (auto &DDI : Pair.second)
1521       salvageUnresolvedDbgValue(DDI);
1522   clearDanglingDebugInfo();
1523 }
1524 
1525 /// getCopyFromRegs - If there was virtual register allocated for the value V
1526 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1527 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1528   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1529   SDValue Result;
1530 
1531   if (It != FuncInfo.ValueMap.end()) {
1532     Register InReg = It->second;
1533 
1534     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1535                      DAG.getDataLayout(), InReg, Ty,
1536                      std::nullopt); // This is not an ABI copy.
1537     SDValue Chain = DAG.getEntryNode();
1538     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1539                                  V);
1540     resolveDanglingDebugInfo(V, Result);
1541   }
1542 
1543   return Result;
1544 }
1545 
1546 /// getValue - Return an SDValue for the given Value.
1547 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1548   // If we already have an SDValue for this value, use it. It's important
1549   // to do this first, so that we don't create a CopyFromReg if we already
1550   // have a regular SDValue.
1551   SDValue &N = NodeMap[V];
1552   if (N.getNode()) return N;
1553 
1554   // If there's a virtual register allocated and initialized for this
1555   // value, use it.
1556   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1557     return copyFromReg;
1558 
1559   // Otherwise create a new SDValue and remember it.
1560   SDValue Val = getValueImpl(V);
1561   NodeMap[V] = Val;
1562   resolveDanglingDebugInfo(V, Val);
1563   return Val;
1564 }
1565 
1566 /// getNonRegisterValue - Return an SDValue for the given Value, but
1567 /// don't look in FuncInfo.ValueMap for a virtual register.
1568 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1569   // If we already have an SDValue for this value, use it.
1570   SDValue &N = NodeMap[V];
1571   if (N.getNode()) {
1572     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1573       // Remove the debug location from the node as the node is about to be used
1574       // in a location which may differ from the original debug location.  This
1575       // is relevant to Constant and ConstantFP nodes because they can appear
1576       // as constant expressions inside PHI nodes.
1577       N->setDebugLoc(DebugLoc());
1578     }
1579     return N;
1580   }
1581 
1582   // Otherwise create a new SDValue and remember it.
1583   SDValue Val = getValueImpl(V);
1584   NodeMap[V] = Val;
1585   resolveDanglingDebugInfo(V, Val);
1586   return Val;
1587 }
1588 
1589 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1590 /// Create an SDValue for the given value.
1591 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1592   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1593 
1594   if (const Constant *C = dyn_cast<Constant>(V)) {
1595     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1596 
1597     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1598       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1599 
1600     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1601       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1602 
1603     if (isa<ConstantPointerNull>(C)) {
1604       unsigned AS = V->getType()->getPointerAddressSpace();
1605       return DAG.getConstant(0, getCurSDLoc(),
1606                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1607     }
1608 
1609     if (match(C, m_VScale(DAG.getDataLayout())))
1610       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1611 
1612     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1613       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1614 
1615     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1616       return DAG.getUNDEF(VT);
1617 
1618     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1619       visit(CE->getOpcode(), *CE);
1620       SDValue N1 = NodeMap[V];
1621       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1622       return N1;
1623     }
1624 
1625     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1626       SmallVector<SDValue, 4> Constants;
1627       for (const Use &U : C->operands()) {
1628         SDNode *Val = getValue(U).getNode();
1629         // If the operand is an empty aggregate, there are no values.
1630         if (!Val) continue;
1631         // Add each leaf value from the operand to the Constants list
1632         // to form a flattened list of all the values.
1633         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1634           Constants.push_back(SDValue(Val, i));
1635       }
1636 
1637       return DAG.getMergeValues(Constants, getCurSDLoc());
1638     }
1639 
1640     if (const ConstantDataSequential *CDS =
1641           dyn_cast<ConstantDataSequential>(C)) {
1642       SmallVector<SDValue, 4> Ops;
1643       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1644         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1645         // Add each leaf value from the operand to the Constants list
1646         // to form a flattened list of all the values.
1647         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1648           Ops.push_back(SDValue(Val, i));
1649       }
1650 
1651       if (isa<ArrayType>(CDS->getType()))
1652         return DAG.getMergeValues(Ops, getCurSDLoc());
1653       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1654     }
1655 
1656     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1657       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1658              "Unknown struct or array constant!");
1659 
1660       SmallVector<EVT, 4> ValueVTs;
1661       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1662       unsigned NumElts = ValueVTs.size();
1663       if (NumElts == 0)
1664         return SDValue(); // empty struct
1665       SmallVector<SDValue, 4> Constants(NumElts);
1666       for (unsigned i = 0; i != NumElts; ++i) {
1667         EVT EltVT = ValueVTs[i];
1668         if (isa<UndefValue>(C))
1669           Constants[i] = DAG.getUNDEF(EltVT);
1670         else if (EltVT.isFloatingPoint())
1671           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1672         else
1673           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1674       }
1675 
1676       return DAG.getMergeValues(Constants, getCurSDLoc());
1677     }
1678 
1679     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1680       return DAG.getBlockAddress(BA, VT);
1681 
1682     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1683       return getValue(Equiv->getGlobalValue());
1684 
1685     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1686       return getValue(NC->getGlobalValue());
1687 
1688     VectorType *VecTy = cast<VectorType>(V->getType());
1689 
1690     // Now that we know the number and type of the elements, get that number of
1691     // elements into the Ops array based on what kind of constant it is.
1692     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1693       SmallVector<SDValue, 16> Ops;
1694       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1695       for (unsigned i = 0; i != NumElements; ++i)
1696         Ops.push_back(getValue(CV->getOperand(i)));
1697 
1698       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1699     }
1700 
1701     if (isa<ConstantAggregateZero>(C)) {
1702       EVT EltVT =
1703           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1704 
1705       SDValue Op;
1706       if (EltVT.isFloatingPoint())
1707         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1708       else
1709         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1710 
1711       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1712     }
1713 
1714     llvm_unreachable("Unknown vector constant");
1715   }
1716 
1717   // If this is a static alloca, generate it as the frameindex instead of
1718   // computation.
1719   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1720     DenseMap<const AllocaInst*, int>::iterator SI =
1721       FuncInfo.StaticAllocaMap.find(AI);
1722     if (SI != FuncInfo.StaticAllocaMap.end())
1723       return DAG.getFrameIndex(
1724           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1725   }
1726 
1727   // If this is an instruction which fast-isel has deferred, select it now.
1728   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1729     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1730 
1731     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1732                      Inst->getType(), std::nullopt);
1733     SDValue Chain = DAG.getEntryNode();
1734     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1735   }
1736 
1737   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1738     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1739 
1740   if (const auto *BB = dyn_cast<BasicBlock>(V))
1741     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1742 
1743   llvm_unreachable("Can't get register for value!");
1744 }
1745 
1746 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1747   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1748   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1749   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1750   bool IsSEH = isAsynchronousEHPersonality(Pers);
1751   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1752   if (!IsSEH)
1753     CatchPadMBB->setIsEHScopeEntry();
1754   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1755   if (IsMSVCCXX || IsCoreCLR)
1756     CatchPadMBB->setIsEHFuncletEntry();
1757 }
1758 
1759 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1760   // Update machine-CFG edge.
1761   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1762   FuncInfo.MBB->addSuccessor(TargetMBB);
1763   TargetMBB->setIsEHCatchretTarget(true);
1764   DAG.getMachineFunction().setHasEHCatchret(true);
1765 
1766   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1767   bool IsSEH = isAsynchronousEHPersonality(Pers);
1768   if (IsSEH) {
1769     // If this is not a fall-through branch or optimizations are switched off,
1770     // emit the branch.
1771     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1772         TM.getOptLevel() == CodeGenOpt::None)
1773       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1774                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1775     return;
1776   }
1777 
1778   // Figure out the funclet membership for the catchret's successor.
1779   // This will be used by the FuncletLayout pass to determine how to order the
1780   // BB's.
1781   // A 'catchret' returns to the outer scope's color.
1782   Value *ParentPad = I.getCatchSwitchParentPad();
1783   const BasicBlock *SuccessorColor;
1784   if (isa<ConstantTokenNone>(ParentPad))
1785     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1786   else
1787     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1788   assert(SuccessorColor && "No parent funclet for catchret!");
1789   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1790   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1791 
1792   // Create the terminator node.
1793   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1794                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1795                             DAG.getBasicBlock(SuccessorColorMBB));
1796   DAG.setRoot(Ret);
1797 }
1798 
1799 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1800   // Don't emit any special code for the cleanuppad instruction. It just marks
1801   // the start of an EH scope/funclet.
1802   FuncInfo.MBB->setIsEHScopeEntry();
1803   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1804   if (Pers != EHPersonality::Wasm_CXX) {
1805     FuncInfo.MBB->setIsEHFuncletEntry();
1806     FuncInfo.MBB->setIsCleanupFuncletEntry();
1807   }
1808 }
1809 
1810 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1811 // not match, it is OK to add only the first unwind destination catchpad to the
1812 // successors, because there will be at least one invoke instruction within the
1813 // catch scope that points to the next unwind destination, if one exists, so
1814 // CFGSort cannot mess up with BB sorting order.
1815 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1816 // call within them, and catchpads only consisting of 'catch (...)' have a
1817 // '__cxa_end_catch' call within them, both of which generate invokes in case
1818 // the next unwind destination exists, i.e., the next unwind destination is not
1819 // the caller.)
1820 //
1821 // Having at most one EH pad successor is also simpler and helps later
1822 // transformations.
1823 //
1824 // For example,
1825 // current:
1826 //   invoke void @foo to ... unwind label %catch.dispatch
1827 // catch.dispatch:
1828 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1829 // catch.start:
1830 //   ...
1831 //   ... in this BB or some other child BB dominated by this BB there will be an
1832 //   invoke that points to 'next' BB as an unwind destination
1833 //
1834 // next: ; We don't need to add this to 'current' BB's successor
1835 //   ...
1836 static void findWasmUnwindDestinations(
1837     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1838     BranchProbability Prob,
1839     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1840         &UnwindDests) {
1841   while (EHPadBB) {
1842     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1843     if (isa<CleanupPadInst>(Pad)) {
1844       // Stop on cleanup pads.
1845       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1846       UnwindDests.back().first->setIsEHScopeEntry();
1847       break;
1848     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1849       // Add the catchpad handlers to the possible destinations. We don't
1850       // continue to the unwind destination of the catchswitch for wasm.
1851       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1852         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1853         UnwindDests.back().first->setIsEHScopeEntry();
1854       }
1855       break;
1856     } else {
1857       continue;
1858     }
1859   }
1860 }
1861 
1862 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1863 /// many places it could ultimately go. In the IR, we have a single unwind
1864 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1865 /// This function skips over imaginary basic blocks that hold catchswitch
1866 /// instructions, and finds all the "real" machine
1867 /// basic block destinations. As those destinations may not be successors of
1868 /// EHPadBB, here we also calculate the edge probability to those destinations.
1869 /// The passed-in Prob is the edge probability to EHPadBB.
1870 static void findUnwindDestinations(
1871     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1872     BranchProbability Prob,
1873     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1874         &UnwindDests) {
1875   EHPersonality Personality =
1876     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1877   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1878   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1879   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1880   bool IsSEH = isAsynchronousEHPersonality(Personality);
1881 
1882   if (IsWasmCXX) {
1883     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1884     assert(UnwindDests.size() <= 1 &&
1885            "There should be at most one unwind destination for wasm");
1886     return;
1887   }
1888 
1889   while (EHPadBB) {
1890     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1891     BasicBlock *NewEHPadBB = nullptr;
1892     if (isa<LandingPadInst>(Pad)) {
1893       // Stop on landingpads. They are not funclets.
1894       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1895       break;
1896     } else if (isa<CleanupPadInst>(Pad)) {
1897       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1898       // personalities.
1899       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1900       UnwindDests.back().first->setIsEHScopeEntry();
1901       UnwindDests.back().first->setIsEHFuncletEntry();
1902       break;
1903     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1904       // Add the catchpad handlers to the possible destinations.
1905       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1906         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1907         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1908         if (IsMSVCCXX || IsCoreCLR)
1909           UnwindDests.back().first->setIsEHFuncletEntry();
1910         if (!IsSEH)
1911           UnwindDests.back().first->setIsEHScopeEntry();
1912       }
1913       NewEHPadBB = CatchSwitch->getUnwindDest();
1914     } else {
1915       continue;
1916     }
1917 
1918     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1919     if (BPI && NewEHPadBB)
1920       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1921     EHPadBB = NewEHPadBB;
1922   }
1923 }
1924 
1925 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1926   // Update successor info.
1927   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1928   auto UnwindDest = I.getUnwindDest();
1929   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1930   BranchProbability UnwindDestProb =
1931       (BPI && UnwindDest)
1932           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1933           : BranchProbability::getZero();
1934   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1935   for (auto &UnwindDest : UnwindDests) {
1936     UnwindDest.first->setIsEHPad();
1937     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1938   }
1939   FuncInfo.MBB->normalizeSuccProbs();
1940 
1941   // Create the terminator node.
1942   SDValue Ret =
1943       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1944   DAG.setRoot(Ret);
1945 }
1946 
1947 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1948   report_fatal_error("visitCatchSwitch not yet implemented!");
1949 }
1950 
1951 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1953   auto &DL = DAG.getDataLayout();
1954   SDValue Chain = getControlRoot();
1955   SmallVector<ISD::OutputArg, 8> Outs;
1956   SmallVector<SDValue, 8> OutVals;
1957 
1958   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1959   // lower
1960   //
1961   //   %val = call <ty> @llvm.experimental.deoptimize()
1962   //   ret <ty> %val
1963   //
1964   // differently.
1965   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1966     LowerDeoptimizingReturn();
1967     return;
1968   }
1969 
1970   if (!FuncInfo.CanLowerReturn) {
1971     unsigned DemoteReg = FuncInfo.DemoteRegister;
1972     const Function *F = I.getParent()->getParent();
1973 
1974     // Emit a store of the return value through the virtual register.
1975     // Leave Outs empty so that LowerReturn won't try to load return
1976     // registers the usual way.
1977     SmallVector<EVT, 1> PtrValueVTs;
1978     ComputeValueVTs(TLI, DL,
1979                     F->getReturnType()->getPointerTo(
1980                         DAG.getDataLayout().getAllocaAddrSpace()),
1981                     PtrValueVTs);
1982 
1983     SDValue RetPtr =
1984         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1985     SDValue RetOp = getValue(I.getOperand(0));
1986 
1987     SmallVector<EVT, 4> ValueVTs, MemVTs;
1988     SmallVector<uint64_t, 4> Offsets;
1989     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1990                     &Offsets);
1991     unsigned NumValues = ValueVTs.size();
1992 
1993     SmallVector<SDValue, 4> Chains(NumValues);
1994     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1995     for (unsigned i = 0; i != NumValues; ++i) {
1996       // An aggregate return value cannot wrap around the address space, so
1997       // offsets to its parts don't wrap either.
1998       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1999                                            TypeSize::Fixed(Offsets[i]));
2000 
2001       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2002       if (MemVTs[i] != ValueVTs[i])
2003         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2004       Chains[i] = DAG.getStore(
2005           Chain, getCurSDLoc(), Val,
2006           // FIXME: better loc info would be nice.
2007           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2008           commonAlignment(BaseAlign, Offsets[i]));
2009     }
2010 
2011     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2012                         MVT::Other, Chains);
2013   } else if (I.getNumOperands() != 0) {
2014     SmallVector<EVT, 4> ValueVTs;
2015     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2016     unsigned NumValues = ValueVTs.size();
2017     if (NumValues) {
2018       SDValue RetOp = getValue(I.getOperand(0));
2019 
2020       const Function *F = I.getParent()->getParent();
2021 
2022       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2023           I.getOperand(0)->getType(), F->getCallingConv(),
2024           /*IsVarArg*/ false, DL);
2025 
2026       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2027       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2028         ExtendKind = ISD::SIGN_EXTEND;
2029       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2030         ExtendKind = ISD::ZERO_EXTEND;
2031 
2032       LLVMContext &Context = F->getContext();
2033       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2034 
2035       for (unsigned j = 0; j != NumValues; ++j) {
2036         EVT VT = ValueVTs[j];
2037 
2038         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2039           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2040 
2041         CallingConv::ID CC = F->getCallingConv();
2042 
2043         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2044         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2045         SmallVector<SDValue, 4> Parts(NumParts);
2046         getCopyToParts(DAG, getCurSDLoc(),
2047                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2048                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2049 
2050         // 'inreg' on function refers to return value
2051         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2052         if (RetInReg)
2053           Flags.setInReg();
2054 
2055         if (I.getOperand(0)->getType()->isPointerTy()) {
2056           Flags.setPointer();
2057           Flags.setPointerAddrSpace(
2058               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2059         }
2060 
2061         if (NeedsRegBlock) {
2062           Flags.setInConsecutiveRegs();
2063           if (j == NumValues - 1)
2064             Flags.setInConsecutiveRegsLast();
2065         }
2066 
2067         // Propagate extension type if any
2068         if (ExtendKind == ISD::SIGN_EXTEND)
2069           Flags.setSExt();
2070         else if (ExtendKind == ISD::ZERO_EXTEND)
2071           Flags.setZExt();
2072 
2073         for (unsigned i = 0; i < NumParts; ++i) {
2074           Outs.push_back(ISD::OutputArg(Flags,
2075                                         Parts[i].getValueType().getSimpleVT(),
2076                                         VT, /*isfixed=*/true, 0, 0));
2077           OutVals.push_back(Parts[i]);
2078         }
2079       }
2080     }
2081   }
2082 
2083   // Push in swifterror virtual register as the last element of Outs. This makes
2084   // sure swifterror virtual register will be returned in the swifterror
2085   // physical register.
2086   const Function *F = I.getParent()->getParent();
2087   if (TLI.supportSwiftError() &&
2088       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2089     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2090     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2091     Flags.setSwiftError();
2092     Outs.push_back(ISD::OutputArg(
2093         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2094         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2095     // Create SDNode for the swifterror virtual register.
2096     OutVals.push_back(
2097         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2098                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2099                         EVT(TLI.getPointerTy(DL))));
2100   }
2101 
2102   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2103   CallingConv::ID CallConv =
2104     DAG.getMachineFunction().getFunction().getCallingConv();
2105   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2106       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2107 
2108   // Verify that the target's LowerReturn behaved as expected.
2109   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2110          "LowerReturn didn't return a valid chain!");
2111 
2112   // Update the DAG with the new chain value resulting from return lowering.
2113   DAG.setRoot(Chain);
2114 }
2115 
2116 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2117 /// created for it, emit nodes to copy the value into the virtual
2118 /// registers.
2119 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2120   // Skip empty types
2121   if (V->getType()->isEmptyTy())
2122     return;
2123 
2124   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2125   if (VMI != FuncInfo.ValueMap.end()) {
2126     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2127     CopyValueToVirtualRegister(V, VMI->second);
2128   }
2129 }
2130 
2131 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2132 /// the current basic block, add it to ValueMap now so that we'll get a
2133 /// CopyTo/FromReg.
2134 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2135   // No need to export constants.
2136   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2137 
2138   // Already exported?
2139   if (FuncInfo.isExportedInst(V)) return;
2140 
2141   Register Reg = FuncInfo.InitializeRegForValue(V);
2142   CopyValueToVirtualRegister(V, Reg);
2143 }
2144 
2145 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2146                                                      const BasicBlock *FromBB) {
2147   // The operands of the setcc have to be in this block.  We don't know
2148   // how to export them from some other block.
2149   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2150     // Can export from current BB.
2151     if (VI->getParent() == FromBB)
2152       return true;
2153 
2154     // Is already exported, noop.
2155     return FuncInfo.isExportedInst(V);
2156   }
2157 
2158   // If this is an argument, we can export it if the BB is the entry block or
2159   // if it is already exported.
2160   if (isa<Argument>(V)) {
2161     if (FromBB->isEntryBlock())
2162       return true;
2163 
2164     // Otherwise, can only export this if it is already exported.
2165     return FuncInfo.isExportedInst(V);
2166   }
2167 
2168   // Otherwise, constants can always be exported.
2169   return true;
2170 }
2171 
2172 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2173 BranchProbability
2174 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2175                                         const MachineBasicBlock *Dst) const {
2176   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2177   const BasicBlock *SrcBB = Src->getBasicBlock();
2178   const BasicBlock *DstBB = Dst->getBasicBlock();
2179   if (!BPI) {
2180     // If BPI is not available, set the default probability as 1 / N, where N is
2181     // the number of successors.
2182     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2183     return BranchProbability(1, SuccSize);
2184   }
2185   return BPI->getEdgeProbability(SrcBB, DstBB);
2186 }
2187 
2188 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2189                                                MachineBasicBlock *Dst,
2190                                                BranchProbability Prob) {
2191   if (!FuncInfo.BPI)
2192     Src->addSuccessorWithoutProb(Dst);
2193   else {
2194     if (Prob.isUnknown())
2195       Prob = getEdgeProbability(Src, Dst);
2196     Src->addSuccessor(Dst, Prob);
2197   }
2198 }
2199 
2200 static bool InBlock(const Value *V, const BasicBlock *BB) {
2201   if (const Instruction *I = dyn_cast<Instruction>(V))
2202     return I->getParent() == BB;
2203   return true;
2204 }
2205 
2206 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2207 /// This function emits a branch and is used at the leaves of an OR or an
2208 /// AND operator tree.
2209 void
2210 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2211                                                   MachineBasicBlock *TBB,
2212                                                   MachineBasicBlock *FBB,
2213                                                   MachineBasicBlock *CurBB,
2214                                                   MachineBasicBlock *SwitchBB,
2215                                                   BranchProbability TProb,
2216                                                   BranchProbability FProb,
2217                                                   bool InvertCond) {
2218   const BasicBlock *BB = CurBB->getBasicBlock();
2219 
2220   // If the leaf of the tree is a comparison, merge the condition into
2221   // the caseblock.
2222   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2223     // The operands of the cmp have to be in this block.  We don't know
2224     // how to export them from some other block.  If this is the first block
2225     // of the sequence, no exporting is needed.
2226     if (CurBB == SwitchBB ||
2227         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2228          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2229       ISD::CondCode Condition;
2230       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2231         ICmpInst::Predicate Pred =
2232             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2233         Condition = getICmpCondCode(Pred);
2234       } else {
2235         const FCmpInst *FC = cast<FCmpInst>(Cond);
2236         FCmpInst::Predicate Pred =
2237             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2238         Condition = getFCmpCondCode(Pred);
2239         if (TM.Options.NoNaNsFPMath)
2240           Condition = getFCmpCodeWithoutNaN(Condition);
2241       }
2242 
2243       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2244                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2245       SL->SwitchCases.push_back(CB);
2246       return;
2247     }
2248   }
2249 
2250   // Create a CaseBlock record representing this branch.
2251   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2252   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2253                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2254   SL->SwitchCases.push_back(CB);
2255 }
2256 
2257 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2258                                                MachineBasicBlock *TBB,
2259                                                MachineBasicBlock *FBB,
2260                                                MachineBasicBlock *CurBB,
2261                                                MachineBasicBlock *SwitchBB,
2262                                                Instruction::BinaryOps Opc,
2263                                                BranchProbability TProb,
2264                                                BranchProbability FProb,
2265                                                bool InvertCond) {
2266   // Skip over not part of the tree and remember to invert op and operands at
2267   // next level.
2268   Value *NotCond;
2269   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2270       InBlock(NotCond, CurBB->getBasicBlock())) {
2271     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2272                          !InvertCond);
2273     return;
2274   }
2275 
2276   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2277   const Value *BOpOp0, *BOpOp1;
2278   // Compute the effective opcode for Cond, taking into account whether it needs
2279   // to be inverted, e.g.
2280   //   and (not (or A, B)), C
2281   // gets lowered as
2282   //   and (and (not A, not B), C)
2283   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2284   if (BOp) {
2285     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2286                ? Instruction::And
2287                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2288                       ? Instruction::Or
2289                       : (Instruction::BinaryOps)0);
2290     if (InvertCond) {
2291       if (BOpc == Instruction::And)
2292         BOpc = Instruction::Or;
2293       else if (BOpc == Instruction::Or)
2294         BOpc = Instruction::And;
2295     }
2296   }
2297 
2298   // If this node is not part of the or/and tree, emit it as a branch.
2299   // Note that all nodes in the tree should have same opcode.
2300   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2301   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2302       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2303       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2304     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2305                                  TProb, FProb, InvertCond);
2306     return;
2307   }
2308 
2309   //  Create TmpBB after CurBB.
2310   MachineFunction::iterator BBI(CurBB);
2311   MachineFunction &MF = DAG.getMachineFunction();
2312   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2313   CurBB->getParent()->insert(++BBI, TmpBB);
2314 
2315   if (Opc == Instruction::Or) {
2316     // Codegen X | Y as:
2317     // BB1:
2318     //   jmp_if_X TBB
2319     //   jmp TmpBB
2320     // TmpBB:
2321     //   jmp_if_Y TBB
2322     //   jmp FBB
2323     //
2324 
2325     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2326     // The requirement is that
2327     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2328     //     = TrueProb for original BB.
2329     // Assuming the original probabilities are A and B, one choice is to set
2330     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2331     // A/(1+B) and 2B/(1+B). This choice assumes that
2332     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2333     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2334     // TmpBB, but the math is more complicated.
2335 
2336     auto NewTrueProb = TProb / 2;
2337     auto NewFalseProb = TProb / 2 + FProb;
2338     // Emit the LHS condition.
2339     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2340                          NewFalseProb, InvertCond);
2341 
2342     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2343     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2344     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2345     // Emit the RHS condition into TmpBB.
2346     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2347                          Probs[1], InvertCond);
2348   } else {
2349     assert(Opc == Instruction::And && "Unknown merge op!");
2350     // Codegen X & Y as:
2351     // BB1:
2352     //   jmp_if_X TmpBB
2353     //   jmp FBB
2354     // TmpBB:
2355     //   jmp_if_Y TBB
2356     //   jmp FBB
2357     //
2358     //  This requires creation of TmpBB after CurBB.
2359 
2360     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2361     // The requirement is that
2362     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2363     //     = FalseProb for original BB.
2364     // Assuming the original probabilities are A and B, one choice is to set
2365     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2366     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2367     // TrueProb for BB1 * FalseProb for TmpBB.
2368 
2369     auto NewTrueProb = TProb + FProb / 2;
2370     auto NewFalseProb = FProb / 2;
2371     // Emit the LHS condition.
2372     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2373                          NewFalseProb, InvertCond);
2374 
2375     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2376     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2377     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2378     // Emit the RHS condition into TmpBB.
2379     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2380                          Probs[1], InvertCond);
2381   }
2382 }
2383 
2384 /// If the set of cases should be emitted as a series of branches, return true.
2385 /// If we should emit this as a bunch of and/or'd together conditions, return
2386 /// false.
2387 bool
2388 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2389   if (Cases.size() != 2) return true;
2390 
2391   // If this is two comparisons of the same values or'd or and'd together, they
2392   // will get folded into a single comparison, so don't emit two blocks.
2393   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2394        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2395       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2396        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2397     return false;
2398   }
2399 
2400   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2401   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2402   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2403       Cases[0].CC == Cases[1].CC &&
2404       isa<Constant>(Cases[0].CmpRHS) &&
2405       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2406     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2407       return false;
2408     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2409       return false;
2410   }
2411 
2412   return true;
2413 }
2414 
2415 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2416   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2417 
2418   // Update machine-CFG edges.
2419   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2420 
2421   if (I.isUnconditional()) {
2422     // Update machine-CFG edges.
2423     BrMBB->addSuccessor(Succ0MBB);
2424 
2425     // If this is not a fall-through branch or optimizations are switched off,
2426     // emit the branch.
2427     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2428       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2429                               MVT::Other, getControlRoot(),
2430                               DAG.getBasicBlock(Succ0MBB)));
2431 
2432     return;
2433   }
2434 
2435   // If this condition is one of the special cases we handle, do special stuff
2436   // now.
2437   const Value *CondVal = I.getCondition();
2438   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2439 
2440   // If this is a series of conditions that are or'd or and'd together, emit
2441   // this as a sequence of branches instead of setcc's with and/or operations.
2442   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2443   // unpredictable branches, and vector extracts because those jumps are likely
2444   // expensive for any target), this should improve performance.
2445   // For example, instead of something like:
2446   //     cmp A, B
2447   //     C = seteq
2448   //     cmp D, E
2449   //     F = setle
2450   //     or C, F
2451   //     jnz foo
2452   // Emit:
2453   //     cmp A, B
2454   //     je foo
2455   //     cmp D, E
2456   //     jle foo
2457   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2458   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2459       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2460     Value *Vec;
2461     const Value *BOp0, *BOp1;
2462     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2463     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2464       Opcode = Instruction::And;
2465     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2466       Opcode = Instruction::Or;
2467 
2468     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2469                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2470       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2471                            getEdgeProbability(BrMBB, Succ0MBB),
2472                            getEdgeProbability(BrMBB, Succ1MBB),
2473                            /*InvertCond=*/false);
2474       // If the compares in later blocks need to use values not currently
2475       // exported from this block, export them now.  This block should always
2476       // be the first entry.
2477       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2478 
2479       // Allow some cases to be rejected.
2480       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2481         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2482           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2483           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2484         }
2485 
2486         // Emit the branch for this block.
2487         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2488         SL->SwitchCases.erase(SL->SwitchCases.begin());
2489         return;
2490       }
2491 
2492       // Okay, we decided not to do this, remove any inserted MBB's and clear
2493       // SwitchCases.
2494       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2495         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2496 
2497       SL->SwitchCases.clear();
2498     }
2499   }
2500 
2501   // Create a CaseBlock record representing this branch.
2502   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2503                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2504 
2505   // Use visitSwitchCase to actually insert the fast branch sequence for this
2506   // cond branch.
2507   visitSwitchCase(CB, BrMBB);
2508 }
2509 
2510 /// visitSwitchCase - Emits the necessary code to represent a single node in
2511 /// the binary search tree resulting from lowering a switch instruction.
2512 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2513                                           MachineBasicBlock *SwitchBB) {
2514   SDValue Cond;
2515   SDValue CondLHS = getValue(CB.CmpLHS);
2516   SDLoc dl = CB.DL;
2517 
2518   if (CB.CC == ISD::SETTRUE) {
2519     // Branch or fall through to TrueBB.
2520     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2521     SwitchBB->normalizeSuccProbs();
2522     if (CB.TrueBB != NextBlock(SwitchBB)) {
2523       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2524                               DAG.getBasicBlock(CB.TrueBB)));
2525     }
2526     return;
2527   }
2528 
2529   auto &TLI = DAG.getTargetLoweringInfo();
2530   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2531 
2532   // Build the setcc now.
2533   if (!CB.CmpMHS) {
2534     // Fold "(X == true)" to X and "(X == false)" to !X to
2535     // handle common cases produced by branch lowering.
2536     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2537         CB.CC == ISD::SETEQ)
2538       Cond = CondLHS;
2539     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2540              CB.CC == ISD::SETEQ) {
2541       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2542       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2543     } else {
2544       SDValue CondRHS = getValue(CB.CmpRHS);
2545 
2546       // If a pointer's DAG type is larger than its memory type then the DAG
2547       // values are zero-extended. This breaks signed comparisons so truncate
2548       // back to the underlying type before doing the compare.
2549       if (CondLHS.getValueType() != MemVT) {
2550         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2551         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2552       }
2553       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2554     }
2555   } else {
2556     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2557 
2558     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2559     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2560 
2561     SDValue CmpOp = getValue(CB.CmpMHS);
2562     EVT VT = CmpOp.getValueType();
2563 
2564     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2565       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2566                           ISD::SETLE);
2567     } else {
2568       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2569                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2570       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2571                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2572     }
2573   }
2574 
2575   // Update successor info
2576   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2577   // TrueBB and FalseBB are always different unless the incoming IR is
2578   // degenerate. This only happens when running llc on weird IR.
2579   if (CB.TrueBB != CB.FalseBB)
2580     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2581   SwitchBB->normalizeSuccProbs();
2582 
2583   // If the lhs block is the next block, invert the condition so that we can
2584   // fall through to the lhs instead of the rhs block.
2585   if (CB.TrueBB == NextBlock(SwitchBB)) {
2586     std::swap(CB.TrueBB, CB.FalseBB);
2587     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2588     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2589   }
2590 
2591   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2592                                MVT::Other, getControlRoot(), Cond,
2593                                DAG.getBasicBlock(CB.TrueBB));
2594 
2595   setValue(CurInst, BrCond);
2596 
2597   // Insert the false branch. Do this even if it's a fall through branch,
2598   // this makes it easier to do DAG optimizations which require inverting
2599   // the branch condition.
2600   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2601                        DAG.getBasicBlock(CB.FalseBB));
2602 
2603   DAG.setRoot(BrCond);
2604 }
2605 
2606 /// visitJumpTable - Emit JumpTable node in the current MBB
2607 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2608   // Emit the code for the jump table
2609   assert(JT.Reg != -1U && "Should lower JT Header first!");
2610   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2611   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2612                                      JT.Reg, PTy);
2613   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2614   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2615                                     MVT::Other, Index.getValue(1),
2616                                     Table, Index);
2617   DAG.setRoot(BrJumpTable);
2618 }
2619 
2620 /// visitJumpTableHeader - This function emits necessary code to produce index
2621 /// in the JumpTable from switch case.
2622 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2623                                                JumpTableHeader &JTH,
2624                                                MachineBasicBlock *SwitchBB) {
2625   SDLoc dl = getCurSDLoc();
2626 
2627   // Subtract the lowest switch case value from the value being switched on.
2628   SDValue SwitchOp = getValue(JTH.SValue);
2629   EVT VT = SwitchOp.getValueType();
2630   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2631                             DAG.getConstant(JTH.First, dl, VT));
2632 
2633   // The SDNode we just created, which holds the value being switched on minus
2634   // the smallest case value, needs to be copied to a virtual register so it
2635   // can be used as an index into the jump table in a subsequent basic block.
2636   // This value may be smaller or larger than the target's pointer type, and
2637   // therefore require extension or truncating.
2638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2639   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2640 
2641   unsigned JumpTableReg =
2642       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2643   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2644                                     JumpTableReg, SwitchOp);
2645   JT.Reg = JumpTableReg;
2646 
2647   if (!JTH.FallthroughUnreachable) {
2648     // Emit the range check for the jump table, and branch to the default block
2649     // for the switch statement if the value being switched on exceeds the
2650     // largest case in the switch.
2651     SDValue CMP = DAG.getSetCC(
2652         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2653                                    Sub.getValueType()),
2654         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2655 
2656     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2657                                  MVT::Other, CopyTo, CMP,
2658                                  DAG.getBasicBlock(JT.Default));
2659 
2660     // Avoid emitting unnecessary branches to the next block.
2661     if (JT.MBB != NextBlock(SwitchBB))
2662       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2663                            DAG.getBasicBlock(JT.MBB));
2664 
2665     DAG.setRoot(BrCond);
2666   } else {
2667     // Avoid emitting unnecessary branches to the next block.
2668     if (JT.MBB != NextBlock(SwitchBB))
2669       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2670                               DAG.getBasicBlock(JT.MBB)));
2671     else
2672       DAG.setRoot(CopyTo);
2673   }
2674 }
2675 
2676 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2677 /// variable if there exists one.
2678 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2679                                  SDValue &Chain) {
2680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2681   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2682   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2683   MachineFunction &MF = DAG.getMachineFunction();
2684   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2685   MachineSDNode *Node =
2686       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2687   if (Global) {
2688     MachinePointerInfo MPInfo(Global);
2689     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2690                  MachineMemOperand::MODereferenceable;
2691     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2692         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2693     DAG.setNodeMemRefs(Node, {MemRef});
2694   }
2695   if (PtrTy != PtrMemTy)
2696     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2697   return SDValue(Node, 0);
2698 }
2699 
2700 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2701 /// tail spliced into a stack protector check success bb.
2702 ///
2703 /// For a high level explanation of how this fits into the stack protector
2704 /// generation see the comment on the declaration of class
2705 /// StackProtectorDescriptor.
2706 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2707                                                   MachineBasicBlock *ParentBB) {
2708 
2709   // First create the loads to the guard/stack slot for the comparison.
2710   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2711   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2712   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2713 
2714   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2715   int FI = MFI.getStackProtectorIndex();
2716 
2717   SDValue Guard;
2718   SDLoc dl = getCurSDLoc();
2719   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2720   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2721   Align Align =
2722       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2723 
2724   // Generate code to load the content of the guard slot.
2725   SDValue GuardVal = DAG.getLoad(
2726       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2727       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2728       MachineMemOperand::MOVolatile);
2729 
2730   if (TLI.useStackGuardXorFP())
2731     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2732 
2733   // Retrieve guard check function, nullptr if instrumentation is inlined.
2734   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2735     // The target provides a guard check function to validate the guard value.
2736     // Generate a call to that function with the content of the guard slot as
2737     // argument.
2738     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2739     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2740 
2741     TargetLowering::ArgListTy Args;
2742     TargetLowering::ArgListEntry Entry;
2743     Entry.Node = GuardVal;
2744     Entry.Ty = FnTy->getParamType(0);
2745     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2746       Entry.IsInReg = true;
2747     Args.push_back(Entry);
2748 
2749     TargetLowering::CallLoweringInfo CLI(DAG);
2750     CLI.setDebugLoc(getCurSDLoc())
2751         .setChain(DAG.getEntryNode())
2752         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2753                    getValue(GuardCheckFn), std::move(Args));
2754 
2755     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2756     DAG.setRoot(Result.second);
2757     return;
2758   }
2759 
2760   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2761   // Otherwise, emit a volatile load to retrieve the stack guard value.
2762   SDValue Chain = DAG.getEntryNode();
2763   if (TLI.useLoadStackGuardNode()) {
2764     Guard = getLoadStackGuard(DAG, dl, Chain);
2765   } else {
2766     const Value *IRGuard = TLI.getSDagStackGuard(M);
2767     SDValue GuardPtr = getValue(IRGuard);
2768 
2769     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2770                         MachinePointerInfo(IRGuard, 0), Align,
2771                         MachineMemOperand::MOVolatile);
2772   }
2773 
2774   // Perform the comparison via a getsetcc.
2775   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2776                                                         *DAG.getContext(),
2777                                                         Guard.getValueType()),
2778                              Guard, GuardVal, ISD::SETNE);
2779 
2780   // If the guard/stackslot do not equal, branch to failure MBB.
2781   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2782                                MVT::Other, GuardVal.getOperand(0),
2783                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2784   // Otherwise branch to success MBB.
2785   SDValue Br = DAG.getNode(ISD::BR, dl,
2786                            MVT::Other, BrCond,
2787                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2788 
2789   DAG.setRoot(Br);
2790 }
2791 
2792 /// Codegen the failure basic block for a stack protector check.
2793 ///
2794 /// A failure stack protector machine basic block consists simply of a call to
2795 /// __stack_chk_fail().
2796 ///
2797 /// For a high level explanation of how this fits into the stack protector
2798 /// generation see the comment on the declaration of class
2799 /// StackProtectorDescriptor.
2800 void
2801 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2803   TargetLowering::MakeLibCallOptions CallOptions;
2804   CallOptions.setDiscardResult(true);
2805   SDValue Chain =
2806       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2807                       std::nullopt, CallOptions, getCurSDLoc())
2808           .second;
2809   // On PS4/PS5, the "return address" must still be within the calling
2810   // function, even if it's at the very end, so emit an explicit TRAP here.
2811   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2812   if (TM.getTargetTriple().isPS())
2813     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2814   // WebAssembly needs an unreachable instruction after a non-returning call,
2815   // because the function return type can be different from __stack_chk_fail's
2816   // return type (void).
2817   if (TM.getTargetTriple().isWasm())
2818     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2819 
2820   DAG.setRoot(Chain);
2821 }
2822 
2823 /// visitBitTestHeader - This function emits necessary code to produce value
2824 /// suitable for "bit tests"
2825 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2826                                              MachineBasicBlock *SwitchBB) {
2827   SDLoc dl = getCurSDLoc();
2828 
2829   // Subtract the minimum value.
2830   SDValue SwitchOp = getValue(B.SValue);
2831   EVT VT = SwitchOp.getValueType();
2832   SDValue RangeSub =
2833       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2834 
2835   // Determine the type of the test operands.
2836   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2837   bool UsePtrType = false;
2838   if (!TLI.isTypeLegal(VT)) {
2839     UsePtrType = true;
2840   } else {
2841     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2842       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2843         // Switch table case range are encoded into series of masks.
2844         // Just use pointer type, it's guaranteed to fit.
2845         UsePtrType = true;
2846         break;
2847       }
2848   }
2849   SDValue Sub = RangeSub;
2850   if (UsePtrType) {
2851     VT = TLI.getPointerTy(DAG.getDataLayout());
2852     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2853   }
2854 
2855   B.RegVT = VT.getSimpleVT();
2856   B.Reg = FuncInfo.CreateReg(B.RegVT);
2857   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2858 
2859   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2860 
2861   if (!B.FallthroughUnreachable)
2862     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2863   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2864   SwitchBB->normalizeSuccProbs();
2865 
2866   SDValue Root = CopyTo;
2867   if (!B.FallthroughUnreachable) {
2868     // Conditional branch to the default block.
2869     SDValue RangeCmp = DAG.getSetCC(dl,
2870         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2871                                RangeSub.getValueType()),
2872         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2873         ISD::SETUGT);
2874 
2875     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2876                        DAG.getBasicBlock(B.Default));
2877   }
2878 
2879   // Avoid emitting unnecessary branches to the next block.
2880   if (MBB != NextBlock(SwitchBB))
2881     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2882 
2883   DAG.setRoot(Root);
2884 }
2885 
2886 /// visitBitTestCase - this function produces one "bit test"
2887 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2888                                            MachineBasicBlock* NextMBB,
2889                                            BranchProbability BranchProbToNext,
2890                                            unsigned Reg,
2891                                            BitTestCase &B,
2892                                            MachineBasicBlock *SwitchBB) {
2893   SDLoc dl = getCurSDLoc();
2894   MVT VT = BB.RegVT;
2895   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2896   SDValue Cmp;
2897   unsigned PopCount = llvm::popcount(B.Mask);
2898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2899   if (PopCount == 1) {
2900     // Testing for a single bit; just compare the shift count with what it
2901     // would need to be to shift a 1 bit in that position.
2902     Cmp = DAG.getSetCC(
2903         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2904         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2905         ISD::SETEQ);
2906   } else if (PopCount == BB.Range) {
2907     // There is only one zero bit in the range, test for it directly.
2908     Cmp = DAG.getSetCC(
2909         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2910         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2911         ISD::SETNE);
2912   } else {
2913     // Make desired shift
2914     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2915                                     DAG.getConstant(1, dl, VT), ShiftOp);
2916 
2917     // Emit bit tests and jumps
2918     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2919                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2920     Cmp = DAG.getSetCC(
2921         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2922         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2923   }
2924 
2925   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2926   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2927   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2928   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2929   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2930   // one as they are relative probabilities (and thus work more like weights),
2931   // and hence we need to normalize them to let the sum of them become one.
2932   SwitchBB->normalizeSuccProbs();
2933 
2934   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2935                               MVT::Other, getControlRoot(),
2936                               Cmp, DAG.getBasicBlock(B.TargetBB));
2937 
2938   // Avoid emitting unnecessary branches to the next block.
2939   if (NextMBB != NextBlock(SwitchBB))
2940     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2941                         DAG.getBasicBlock(NextMBB));
2942 
2943   DAG.setRoot(BrAnd);
2944 }
2945 
2946 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2947   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2948 
2949   // Retrieve successors. Look through artificial IR level blocks like
2950   // catchswitch for successors.
2951   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2952   const BasicBlock *EHPadBB = I.getSuccessor(1);
2953 
2954   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2955   // have to do anything here to lower funclet bundles.
2956   assert(!I.hasOperandBundlesOtherThan(
2957              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2958               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2959               LLVMContext::OB_cfguardtarget,
2960               LLVMContext::OB_clang_arc_attachedcall}) &&
2961          "Cannot lower invokes with arbitrary operand bundles yet!");
2962 
2963   const Value *Callee(I.getCalledOperand());
2964   const Function *Fn = dyn_cast<Function>(Callee);
2965   if (isa<InlineAsm>(Callee))
2966     visitInlineAsm(I, EHPadBB);
2967   else if (Fn && Fn->isIntrinsic()) {
2968     switch (Fn->getIntrinsicID()) {
2969     default:
2970       llvm_unreachable("Cannot invoke this intrinsic");
2971     case Intrinsic::donothing:
2972       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2973     case Intrinsic::seh_try_begin:
2974     case Intrinsic::seh_scope_begin:
2975     case Intrinsic::seh_try_end:
2976     case Intrinsic::seh_scope_end:
2977       break;
2978     case Intrinsic::experimental_patchpoint_void:
2979     case Intrinsic::experimental_patchpoint_i64:
2980       visitPatchpoint(I, EHPadBB);
2981       break;
2982     case Intrinsic::experimental_gc_statepoint:
2983       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2984       break;
2985     case Intrinsic::wasm_rethrow: {
2986       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2987       // special because it can be invoked, so we manually lower it to a DAG
2988       // node here.
2989       SmallVector<SDValue, 8> Ops;
2990       Ops.push_back(getRoot()); // inchain
2991       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2992       Ops.push_back(
2993           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2994                                 TLI.getPointerTy(DAG.getDataLayout())));
2995       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2996       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2997       break;
2998     }
2999     }
3000   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3001     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3002     // Eventually we will support lowering the @llvm.experimental.deoptimize
3003     // intrinsic, and right now there are no plans to support other intrinsics
3004     // with deopt state.
3005     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3006   } else {
3007     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3008   }
3009 
3010   // If the value of the invoke is used outside of its defining block, make it
3011   // available as a virtual register.
3012   // We already took care of the exported value for the statepoint instruction
3013   // during call to the LowerStatepoint.
3014   if (!isa<GCStatepointInst>(I)) {
3015     CopyToExportRegsIfNeeded(&I);
3016   }
3017 
3018   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3019   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3020   BranchProbability EHPadBBProb =
3021       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3022           : BranchProbability::getZero();
3023   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3024 
3025   // Update successor info.
3026   addSuccessorWithProb(InvokeMBB, Return);
3027   for (auto &UnwindDest : UnwindDests) {
3028     UnwindDest.first->setIsEHPad();
3029     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3030   }
3031   InvokeMBB->normalizeSuccProbs();
3032 
3033   // Drop into normal successor.
3034   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3035                           DAG.getBasicBlock(Return)));
3036 }
3037 
3038 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3039   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3040 
3041   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3042   // have to do anything here to lower funclet bundles.
3043   assert(!I.hasOperandBundlesOtherThan(
3044              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3045          "Cannot lower callbrs with arbitrary operand bundles yet!");
3046 
3047   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3048   visitInlineAsm(I);
3049   CopyToExportRegsIfNeeded(&I);
3050 
3051   // Retrieve successors.
3052   SmallPtrSet<BasicBlock *, 8> Dests;
3053   Dests.insert(I.getDefaultDest());
3054   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3055 
3056   // Update successor info.
3057   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3058   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3059     BasicBlock *Dest = I.getIndirectDest(i);
3060     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3061     Target->setIsInlineAsmBrIndirectTarget();
3062     Target->setMachineBlockAddressTaken();
3063     Target->setLabelMustBeEmitted();
3064     // Don't add duplicate machine successors.
3065     if (Dests.insert(Dest).second)
3066       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3067   }
3068   CallBrMBB->normalizeSuccProbs();
3069 
3070   // Drop into default successor.
3071   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3072                           MVT::Other, getControlRoot(),
3073                           DAG.getBasicBlock(Return)));
3074 }
3075 
3076 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3077   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3078 }
3079 
3080 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3081   assert(FuncInfo.MBB->isEHPad() &&
3082          "Call to landingpad not in landing pad!");
3083 
3084   // If there aren't registers to copy the values into (e.g., during SjLj
3085   // exceptions), then don't bother to create these DAG nodes.
3086   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3087   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3088   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3089       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3090     return;
3091 
3092   // If landingpad's return type is token type, we don't create DAG nodes
3093   // for its exception pointer and selector value. The extraction of exception
3094   // pointer or selector value from token type landingpads is not currently
3095   // supported.
3096   if (LP.getType()->isTokenTy())
3097     return;
3098 
3099   SmallVector<EVT, 2> ValueVTs;
3100   SDLoc dl = getCurSDLoc();
3101   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3102   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3103 
3104   // Get the two live-in registers as SDValues. The physregs have already been
3105   // copied into virtual registers.
3106   SDValue Ops[2];
3107   if (FuncInfo.ExceptionPointerVirtReg) {
3108     Ops[0] = DAG.getZExtOrTrunc(
3109         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3110                            FuncInfo.ExceptionPointerVirtReg,
3111                            TLI.getPointerTy(DAG.getDataLayout())),
3112         dl, ValueVTs[0]);
3113   } else {
3114     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3115   }
3116   Ops[1] = DAG.getZExtOrTrunc(
3117       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3118                          FuncInfo.ExceptionSelectorVirtReg,
3119                          TLI.getPointerTy(DAG.getDataLayout())),
3120       dl, ValueVTs[1]);
3121 
3122   // Merge into one.
3123   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3124                             DAG.getVTList(ValueVTs), Ops);
3125   setValue(&LP, Res);
3126 }
3127 
3128 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3129                                            MachineBasicBlock *Last) {
3130   // Update JTCases.
3131   for (JumpTableBlock &JTB : SL->JTCases)
3132     if (JTB.first.HeaderBB == First)
3133       JTB.first.HeaderBB = Last;
3134 
3135   // Update BitTestCases.
3136   for (BitTestBlock &BTB : SL->BitTestCases)
3137     if (BTB.Parent == First)
3138       BTB.Parent = Last;
3139 }
3140 
3141 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3142   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3143 
3144   // Update machine-CFG edges with unique successors.
3145   SmallSet<BasicBlock*, 32> Done;
3146   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3147     BasicBlock *BB = I.getSuccessor(i);
3148     bool Inserted = Done.insert(BB).second;
3149     if (!Inserted)
3150         continue;
3151 
3152     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3153     addSuccessorWithProb(IndirectBrMBB, Succ);
3154   }
3155   IndirectBrMBB->normalizeSuccProbs();
3156 
3157   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3158                           MVT::Other, getControlRoot(),
3159                           getValue(I.getAddress())));
3160 }
3161 
3162 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3163   if (!DAG.getTarget().Options.TrapUnreachable)
3164     return;
3165 
3166   // We may be able to ignore unreachable behind a noreturn call.
3167   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3168     const BasicBlock &BB = *I.getParent();
3169     if (&I != &BB.front()) {
3170       BasicBlock::const_iterator PredI =
3171         std::prev(BasicBlock::const_iterator(&I));
3172       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3173         if (Call->doesNotReturn())
3174           return;
3175       }
3176     }
3177   }
3178 
3179   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3180 }
3181 
3182 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3183   SDNodeFlags Flags;
3184   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3185     Flags.copyFMF(*FPOp);
3186 
3187   SDValue Op = getValue(I.getOperand(0));
3188   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3189                                     Op, Flags);
3190   setValue(&I, UnNodeValue);
3191 }
3192 
3193 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3194   SDNodeFlags Flags;
3195   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3196     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3197     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3198   }
3199   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3200     Flags.setExact(ExactOp->isExact());
3201   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3202     Flags.copyFMF(*FPOp);
3203 
3204   SDValue Op1 = getValue(I.getOperand(0));
3205   SDValue Op2 = getValue(I.getOperand(1));
3206   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3207                                      Op1, Op2, Flags);
3208   setValue(&I, BinNodeValue);
3209 }
3210 
3211 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3212   SDValue Op1 = getValue(I.getOperand(0));
3213   SDValue Op2 = getValue(I.getOperand(1));
3214 
3215   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3216       Op1.getValueType(), DAG.getDataLayout());
3217 
3218   // Coerce the shift amount to the right type if we can. This exposes the
3219   // truncate or zext to optimization early.
3220   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3221     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3222            "Unexpected shift type");
3223     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3224   }
3225 
3226   bool nuw = false;
3227   bool nsw = false;
3228   bool exact = false;
3229 
3230   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3231 
3232     if (const OverflowingBinaryOperator *OFBinOp =
3233             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3234       nuw = OFBinOp->hasNoUnsignedWrap();
3235       nsw = OFBinOp->hasNoSignedWrap();
3236     }
3237     if (const PossiblyExactOperator *ExactOp =
3238             dyn_cast<const PossiblyExactOperator>(&I))
3239       exact = ExactOp->isExact();
3240   }
3241   SDNodeFlags Flags;
3242   Flags.setExact(exact);
3243   Flags.setNoSignedWrap(nsw);
3244   Flags.setNoUnsignedWrap(nuw);
3245   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3246                             Flags);
3247   setValue(&I, Res);
3248 }
3249 
3250 void SelectionDAGBuilder::visitSDiv(const User &I) {
3251   SDValue Op1 = getValue(I.getOperand(0));
3252   SDValue Op2 = getValue(I.getOperand(1));
3253 
3254   SDNodeFlags Flags;
3255   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3256                  cast<PossiblyExactOperator>(&I)->isExact());
3257   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3258                            Op2, Flags));
3259 }
3260 
3261 void SelectionDAGBuilder::visitICmp(const User &I) {
3262   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3263   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3264     predicate = IC->getPredicate();
3265   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3266     predicate = ICmpInst::Predicate(IC->getPredicate());
3267   SDValue Op1 = getValue(I.getOperand(0));
3268   SDValue Op2 = getValue(I.getOperand(1));
3269   ISD::CondCode Opcode = getICmpCondCode(predicate);
3270 
3271   auto &TLI = DAG.getTargetLoweringInfo();
3272   EVT MemVT =
3273       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3274 
3275   // If a pointer's DAG type is larger than its memory type then the DAG values
3276   // are zero-extended. This breaks signed comparisons so truncate back to the
3277   // underlying type before doing the compare.
3278   if (Op1.getValueType() != MemVT) {
3279     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3280     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3281   }
3282 
3283   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3284                                                         I.getType());
3285   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3286 }
3287 
3288 void SelectionDAGBuilder::visitFCmp(const User &I) {
3289   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3290   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3291     predicate = FC->getPredicate();
3292   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3293     predicate = FCmpInst::Predicate(FC->getPredicate());
3294   SDValue Op1 = getValue(I.getOperand(0));
3295   SDValue Op2 = getValue(I.getOperand(1));
3296 
3297   ISD::CondCode Condition = getFCmpCondCode(predicate);
3298   auto *FPMO = cast<FPMathOperator>(&I);
3299   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3300     Condition = getFCmpCodeWithoutNaN(Condition);
3301 
3302   SDNodeFlags Flags;
3303   Flags.copyFMF(*FPMO);
3304   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3305 
3306   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3307                                                         I.getType());
3308   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3309 }
3310 
3311 // Check if the condition of the select has one use or two users that are both
3312 // selects with the same condition.
3313 static bool hasOnlySelectUsers(const Value *Cond) {
3314   return llvm::all_of(Cond->users(), [](const Value *V) {
3315     return isa<SelectInst>(V);
3316   });
3317 }
3318 
3319 void SelectionDAGBuilder::visitSelect(const User &I) {
3320   SmallVector<EVT, 4> ValueVTs;
3321   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3322                   ValueVTs);
3323   unsigned NumValues = ValueVTs.size();
3324   if (NumValues == 0) return;
3325 
3326   SmallVector<SDValue, 4> Values(NumValues);
3327   SDValue Cond     = getValue(I.getOperand(0));
3328   SDValue LHSVal   = getValue(I.getOperand(1));
3329   SDValue RHSVal   = getValue(I.getOperand(2));
3330   SmallVector<SDValue, 1> BaseOps(1, Cond);
3331   ISD::NodeType OpCode =
3332       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3333 
3334   bool IsUnaryAbs = false;
3335   bool Negate = false;
3336 
3337   SDNodeFlags Flags;
3338   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3339     Flags.copyFMF(*FPOp);
3340 
3341   // Min/max matching is only viable if all output VTs are the same.
3342   if (all_equal(ValueVTs)) {
3343     EVT VT = ValueVTs[0];
3344     LLVMContext &Ctx = *DAG.getContext();
3345     auto &TLI = DAG.getTargetLoweringInfo();
3346 
3347     // We care about the legality of the operation after it has been type
3348     // legalized.
3349     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3350       VT = TLI.getTypeToTransformTo(Ctx, VT);
3351 
3352     // If the vselect is legal, assume we want to leave this as a vector setcc +
3353     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3354     // min/max is legal on the scalar type.
3355     bool UseScalarMinMax = VT.isVector() &&
3356       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3357 
3358     Value *LHS, *RHS;
3359     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3360     ISD::NodeType Opc = ISD::DELETED_NODE;
3361     switch (SPR.Flavor) {
3362     case SPF_UMAX:    Opc = ISD::UMAX; break;
3363     case SPF_UMIN:    Opc = ISD::UMIN; break;
3364     case SPF_SMAX:    Opc = ISD::SMAX; break;
3365     case SPF_SMIN:    Opc = ISD::SMIN; break;
3366     case SPF_FMINNUM:
3367       switch (SPR.NaNBehavior) {
3368       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3369       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3370       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3371       case SPNB_RETURNS_ANY: {
3372         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3373           Opc = ISD::FMINNUM;
3374         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3375           Opc = ISD::FMINIMUM;
3376         else if (UseScalarMinMax)
3377           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3378             ISD::FMINNUM : ISD::FMINIMUM;
3379         break;
3380       }
3381       }
3382       break;
3383     case SPF_FMAXNUM:
3384       switch (SPR.NaNBehavior) {
3385       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3386       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3387       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3388       case SPNB_RETURNS_ANY:
3389 
3390         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3391           Opc = ISD::FMAXNUM;
3392         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3393           Opc = ISD::FMAXIMUM;
3394         else if (UseScalarMinMax)
3395           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3396             ISD::FMAXNUM : ISD::FMAXIMUM;
3397         break;
3398       }
3399       break;
3400     case SPF_NABS:
3401       Negate = true;
3402       [[fallthrough]];
3403     case SPF_ABS:
3404       IsUnaryAbs = true;
3405       Opc = ISD::ABS;
3406       break;
3407     default: break;
3408     }
3409 
3410     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3411         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3412          (UseScalarMinMax &&
3413           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3414         // If the underlying comparison instruction is used by any other
3415         // instruction, the consumed instructions won't be destroyed, so it is
3416         // not profitable to convert to a min/max.
3417         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3418       OpCode = Opc;
3419       LHSVal = getValue(LHS);
3420       RHSVal = getValue(RHS);
3421       BaseOps.clear();
3422     }
3423 
3424     if (IsUnaryAbs) {
3425       OpCode = Opc;
3426       LHSVal = getValue(LHS);
3427       BaseOps.clear();
3428     }
3429   }
3430 
3431   if (IsUnaryAbs) {
3432     for (unsigned i = 0; i != NumValues; ++i) {
3433       SDLoc dl = getCurSDLoc();
3434       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3435       Values[i] =
3436           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3437       if (Negate)
3438         Values[i] = DAG.getNegative(Values[i], dl, VT);
3439     }
3440   } else {
3441     for (unsigned i = 0; i != NumValues; ++i) {
3442       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3443       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3444       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3445       Values[i] = DAG.getNode(
3446           OpCode, getCurSDLoc(),
3447           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3448     }
3449   }
3450 
3451   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3452                            DAG.getVTList(ValueVTs), Values));
3453 }
3454 
3455 void SelectionDAGBuilder::visitTrunc(const User &I) {
3456   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3457   SDValue N = getValue(I.getOperand(0));
3458   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3459                                                         I.getType());
3460   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3461 }
3462 
3463 void SelectionDAGBuilder::visitZExt(const User &I) {
3464   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3465   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3466   SDValue N = getValue(I.getOperand(0));
3467   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3468                                                         I.getType());
3469   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3470 }
3471 
3472 void SelectionDAGBuilder::visitSExt(const User &I) {
3473   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3474   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3475   SDValue N = getValue(I.getOperand(0));
3476   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3477                                                         I.getType());
3478   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3479 }
3480 
3481 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3482   // FPTrunc is never a no-op cast, no need to check
3483   SDValue N = getValue(I.getOperand(0));
3484   SDLoc dl = getCurSDLoc();
3485   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3486   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3487   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3488                            DAG.getTargetConstant(
3489                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3490 }
3491 
3492 void SelectionDAGBuilder::visitFPExt(const User &I) {
3493   // FPExt is never a no-op cast, no need to check
3494   SDValue N = getValue(I.getOperand(0));
3495   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3496                                                         I.getType());
3497   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3498 }
3499 
3500 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3501   // FPToUI is never a no-op cast, no need to check
3502   SDValue N = getValue(I.getOperand(0));
3503   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3504                                                         I.getType());
3505   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3506 }
3507 
3508 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3509   // FPToSI is never a no-op cast, no need to check
3510   SDValue N = getValue(I.getOperand(0));
3511   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3512                                                         I.getType());
3513   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3514 }
3515 
3516 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3517   // UIToFP is never a no-op cast, no need to check
3518   SDValue N = getValue(I.getOperand(0));
3519   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3520                                                         I.getType());
3521   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3522 }
3523 
3524 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3525   // SIToFP is never a no-op cast, no need to check
3526   SDValue N = getValue(I.getOperand(0));
3527   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3528                                                         I.getType());
3529   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3530 }
3531 
3532 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3533   // What to do depends on the size of the integer and the size of the pointer.
3534   // We can either truncate, zero extend, or no-op, accordingly.
3535   SDValue N = getValue(I.getOperand(0));
3536   auto &TLI = DAG.getTargetLoweringInfo();
3537   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3538                                                         I.getType());
3539   EVT PtrMemVT =
3540       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3541   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3542   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3543   setValue(&I, N);
3544 }
3545 
3546 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3547   // What to do depends on the size of the integer and the size of the pointer.
3548   // We can either truncate, zero extend, or no-op, accordingly.
3549   SDValue N = getValue(I.getOperand(0));
3550   auto &TLI = DAG.getTargetLoweringInfo();
3551   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3552   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3553   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3554   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3555   setValue(&I, N);
3556 }
3557 
3558 void SelectionDAGBuilder::visitBitCast(const User &I) {
3559   SDValue N = getValue(I.getOperand(0));
3560   SDLoc dl = getCurSDLoc();
3561   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3562                                                         I.getType());
3563 
3564   // BitCast assures us that source and destination are the same size so this is
3565   // either a BITCAST or a no-op.
3566   if (DestVT != N.getValueType())
3567     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3568                              DestVT, N)); // convert types.
3569   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3570   // might fold any kind of constant expression to an integer constant and that
3571   // is not what we are looking for. Only recognize a bitcast of a genuine
3572   // constant integer as an opaque constant.
3573   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3574     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3575                                  /*isOpaque*/true));
3576   else
3577     setValue(&I, N);            // noop cast.
3578 }
3579 
3580 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3581   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3582   const Value *SV = I.getOperand(0);
3583   SDValue N = getValue(SV);
3584   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3585 
3586   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3587   unsigned DestAS = I.getType()->getPointerAddressSpace();
3588 
3589   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3590     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3591 
3592   setValue(&I, N);
3593 }
3594 
3595 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3596   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3597   SDValue InVec = getValue(I.getOperand(0));
3598   SDValue InVal = getValue(I.getOperand(1));
3599   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3600                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3601   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3602                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3603                            InVec, InVal, InIdx));
3604 }
3605 
3606 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3607   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3608   SDValue InVec = getValue(I.getOperand(0));
3609   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3610                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3611   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3612                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3613                            InVec, InIdx));
3614 }
3615 
3616 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3617   SDValue Src1 = getValue(I.getOperand(0));
3618   SDValue Src2 = getValue(I.getOperand(1));
3619   ArrayRef<int> Mask;
3620   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3621     Mask = SVI->getShuffleMask();
3622   else
3623     Mask = cast<ConstantExpr>(I).getShuffleMask();
3624   SDLoc DL = getCurSDLoc();
3625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3626   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3627   EVT SrcVT = Src1.getValueType();
3628 
3629   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3630       VT.isScalableVector()) {
3631     // Canonical splat form of first element of first input vector.
3632     SDValue FirstElt =
3633         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3634                     DAG.getVectorIdxConstant(0, DL));
3635     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3636     return;
3637   }
3638 
3639   // For now, we only handle splats for scalable vectors.
3640   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3641   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3642   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3643 
3644   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3645   unsigned MaskNumElts = Mask.size();
3646 
3647   if (SrcNumElts == MaskNumElts) {
3648     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3649     return;
3650   }
3651 
3652   // Normalize the shuffle vector since mask and vector length don't match.
3653   if (SrcNumElts < MaskNumElts) {
3654     // Mask is longer than the source vectors. We can use concatenate vector to
3655     // make the mask and vectors lengths match.
3656 
3657     if (MaskNumElts % SrcNumElts == 0) {
3658       // Mask length is a multiple of the source vector length.
3659       // Check if the shuffle is some kind of concatenation of the input
3660       // vectors.
3661       unsigned NumConcat = MaskNumElts / SrcNumElts;
3662       bool IsConcat = true;
3663       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3664       for (unsigned i = 0; i != MaskNumElts; ++i) {
3665         int Idx = Mask[i];
3666         if (Idx < 0)
3667           continue;
3668         // Ensure the indices in each SrcVT sized piece are sequential and that
3669         // the same source is used for the whole piece.
3670         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3671             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3672              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3673           IsConcat = false;
3674           break;
3675         }
3676         // Remember which source this index came from.
3677         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3678       }
3679 
3680       // The shuffle is concatenating multiple vectors together. Just emit
3681       // a CONCAT_VECTORS operation.
3682       if (IsConcat) {
3683         SmallVector<SDValue, 8> ConcatOps;
3684         for (auto Src : ConcatSrcs) {
3685           if (Src < 0)
3686             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3687           else if (Src == 0)
3688             ConcatOps.push_back(Src1);
3689           else
3690             ConcatOps.push_back(Src2);
3691         }
3692         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3693         return;
3694       }
3695     }
3696 
3697     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3698     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3699     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3700                                     PaddedMaskNumElts);
3701 
3702     // Pad both vectors with undefs to make them the same length as the mask.
3703     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3704 
3705     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3706     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3707     MOps1[0] = Src1;
3708     MOps2[0] = Src2;
3709 
3710     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3711     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3712 
3713     // Readjust mask for new input vector length.
3714     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3715     for (unsigned i = 0; i != MaskNumElts; ++i) {
3716       int Idx = Mask[i];
3717       if (Idx >= (int)SrcNumElts)
3718         Idx -= SrcNumElts - PaddedMaskNumElts;
3719       MappedOps[i] = Idx;
3720     }
3721 
3722     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3723 
3724     // If the concatenated vector was padded, extract a subvector with the
3725     // correct number of elements.
3726     if (MaskNumElts != PaddedMaskNumElts)
3727       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3728                            DAG.getVectorIdxConstant(0, DL));
3729 
3730     setValue(&I, Result);
3731     return;
3732   }
3733 
3734   if (SrcNumElts > MaskNumElts) {
3735     // Analyze the access pattern of the vector to see if we can extract
3736     // two subvectors and do the shuffle.
3737     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3738     bool CanExtract = true;
3739     for (int Idx : Mask) {
3740       unsigned Input = 0;
3741       if (Idx < 0)
3742         continue;
3743 
3744       if (Idx >= (int)SrcNumElts) {
3745         Input = 1;
3746         Idx -= SrcNumElts;
3747       }
3748 
3749       // If all the indices come from the same MaskNumElts sized portion of
3750       // the sources we can use extract. Also make sure the extract wouldn't
3751       // extract past the end of the source.
3752       int NewStartIdx = alignDown(Idx, MaskNumElts);
3753       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3754           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3755         CanExtract = false;
3756       // Make sure we always update StartIdx as we use it to track if all
3757       // elements are undef.
3758       StartIdx[Input] = NewStartIdx;
3759     }
3760 
3761     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3762       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3763       return;
3764     }
3765     if (CanExtract) {
3766       // Extract appropriate subvector and generate a vector shuffle
3767       for (unsigned Input = 0; Input < 2; ++Input) {
3768         SDValue &Src = Input == 0 ? Src1 : Src2;
3769         if (StartIdx[Input] < 0)
3770           Src = DAG.getUNDEF(VT);
3771         else {
3772           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3773                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3774         }
3775       }
3776 
3777       // Calculate new mask.
3778       SmallVector<int, 8> MappedOps(Mask);
3779       for (int &Idx : MappedOps) {
3780         if (Idx >= (int)SrcNumElts)
3781           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3782         else if (Idx >= 0)
3783           Idx -= StartIdx[0];
3784       }
3785 
3786       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3787       return;
3788     }
3789   }
3790 
3791   // We can't use either concat vectors or extract subvectors so fall back to
3792   // replacing the shuffle with extract and build vector.
3793   // to insert and build vector.
3794   EVT EltVT = VT.getVectorElementType();
3795   SmallVector<SDValue,8> Ops;
3796   for (int Idx : Mask) {
3797     SDValue Res;
3798 
3799     if (Idx < 0) {
3800       Res = DAG.getUNDEF(EltVT);
3801     } else {
3802       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3803       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3804 
3805       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3806                         DAG.getVectorIdxConstant(Idx, DL));
3807     }
3808 
3809     Ops.push_back(Res);
3810   }
3811 
3812   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3813 }
3814 
3815 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3816   ArrayRef<unsigned> Indices = I.getIndices();
3817   const Value *Op0 = I.getOperand(0);
3818   const Value *Op1 = I.getOperand(1);
3819   Type *AggTy = I.getType();
3820   Type *ValTy = Op1->getType();
3821   bool IntoUndef = isa<UndefValue>(Op0);
3822   bool FromUndef = isa<UndefValue>(Op1);
3823 
3824   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3825 
3826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3827   SmallVector<EVT, 4> AggValueVTs;
3828   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3829   SmallVector<EVT, 4> ValValueVTs;
3830   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3831 
3832   unsigned NumAggValues = AggValueVTs.size();
3833   unsigned NumValValues = ValValueVTs.size();
3834   SmallVector<SDValue, 4> Values(NumAggValues);
3835 
3836   // Ignore an insertvalue that produces an empty object
3837   if (!NumAggValues) {
3838     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3839     return;
3840   }
3841 
3842   SDValue Agg = getValue(Op0);
3843   unsigned i = 0;
3844   // Copy the beginning value(s) from the original aggregate.
3845   for (; i != LinearIndex; ++i)
3846     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3847                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3848   // Copy values from the inserted value(s).
3849   if (NumValValues) {
3850     SDValue Val = getValue(Op1);
3851     for (; i != LinearIndex + NumValValues; ++i)
3852       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3853                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3854   }
3855   // Copy remaining value(s) from the original aggregate.
3856   for (; i != NumAggValues; ++i)
3857     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3858                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3859 
3860   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3861                            DAG.getVTList(AggValueVTs), Values));
3862 }
3863 
3864 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3865   ArrayRef<unsigned> Indices = I.getIndices();
3866   const Value *Op0 = I.getOperand(0);
3867   Type *AggTy = Op0->getType();
3868   Type *ValTy = I.getType();
3869   bool OutOfUndef = isa<UndefValue>(Op0);
3870 
3871   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3872 
3873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3874   SmallVector<EVT, 4> ValValueVTs;
3875   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3876 
3877   unsigned NumValValues = ValValueVTs.size();
3878 
3879   // Ignore a extractvalue that produces an empty object
3880   if (!NumValValues) {
3881     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3882     return;
3883   }
3884 
3885   SmallVector<SDValue, 4> Values(NumValValues);
3886 
3887   SDValue Agg = getValue(Op0);
3888   // Copy out the selected value(s).
3889   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3890     Values[i - LinearIndex] =
3891       OutOfUndef ?
3892         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3893         SDValue(Agg.getNode(), Agg.getResNo() + i);
3894 
3895   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3896                            DAG.getVTList(ValValueVTs), Values));
3897 }
3898 
3899 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3900   Value *Op0 = I.getOperand(0);
3901   // Note that the pointer operand may be a vector of pointers. Take the scalar
3902   // element which holds a pointer.
3903   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3904   SDValue N = getValue(Op0);
3905   SDLoc dl = getCurSDLoc();
3906   auto &TLI = DAG.getTargetLoweringInfo();
3907 
3908   // Normalize Vector GEP - all scalar operands should be converted to the
3909   // splat vector.
3910   bool IsVectorGEP = I.getType()->isVectorTy();
3911   ElementCount VectorElementCount =
3912       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3913                   : ElementCount::getFixed(0);
3914 
3915   if (IsVectorGEP && !N.getValueType().isVector()) {
3916     LLVMContext &Context = *DAG.getContext();
3917     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3918     N = DAG.getSplat(VT, dl, N);
3919   }
3920 
3921   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3922        GTI != E; ++GTI) {
3923     const Value *Idx = GTI.getOperand();
3924     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3925       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3926       if (Field) {
3927         // N = N + Offset
3928         uint64_t Offset =
3929             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3930 
3931         // In an inbounds GEP with an offset that is nonnegative even when
3932         // interpreted as signed, assume there is no unsigned overflow.
3933         SDNodeFlags Flags;
3934         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3935           Flags.setNoUnsignedWrap(true);
3936 
3937         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3938                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3939       }
3940     } else {
3941       // IdxSize is the width of the arithmetic according to IR semantics.
3942       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3943       // (and fix up the result later).
3944       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3945       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3946       TypeSize ElementSize =
3947           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3948       // We intentionally mask away the high bits here; ElementSize may not
3949       // fit in IdxTy.
3950       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
3951       bool ElementScalable = ElementSize.isScalable();
3952 
3953       // If this is a scalar constant or a splat vector of constants,
3954       // handle it quickly.
3955       const auto *C = dyn_cast<Constant>(Idx);
3956       if (C && isa<VectorType>(C->getType()))
3957         C = C->getSplatValue();
3958 
3959       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3960       if (CI && CI->isZero())
3961         continue;
3962       if (CI && !ElementScalable) {
3963         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3964         LLVMContext &Context = *DAG.getContext();
3965         SDValue OffsVal;
3966         if (IsVectorGEP)
3967           OffsVal = DAG.getConstant(
3968               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3969         else
3970           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3971 
3972         // In an inbounds GEP with an offset that is nonnegative even when
3973         // interpreted as signed, assume there is no unsigned overflow.
3974         SDNodeFlags Flags;
3975         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3976           Flags.setNoUnsignedWrap(true);
3977 
3978         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3979 
3980         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3981         continue;
3982       }
3983 
3984       // N = N + Idx * ElementMul;
3985       SDValue IdxN = getValue(Idx);
3986 
3987       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3988         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3989                                   VectorElementCount);
3990         IdxN = DAG.getSplat(VT, dl, IdxN);
3991       }
3992 
3993       // If the index is smaller or larger than intptr_t, truncate or extend
3994       // it.
3995       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3996 
3997       if (ElementScalable) {
3998         EVT VScaleTy = N.getValueType().getScalarType();
3999         SDValue VScale = DAG.getNode(
4000             ISD::VSCALE, dl, VScaleTy,
4001             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4002         if (IsVectorGEP)
4003           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4004         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4005       } else {
4006         // If this is a multiply by a power of two, turn it into a shl
4007         // immediately.  This is a very common case.
4008         if (ElementMul != 1) {
4009           if (ElementMul.isPowerOf2()) {
4010             unsigned Amt = ElementMul.logBase2();
4011             IdxN = DAG.getNode(ISD::SHL, dl,
4012                                N.getValueType(), IdxN,
4013                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4014           } else {
4015             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4016                                             IdxN.getValueType());
4017             IdxN = DAG.getNode(ISD::MUL, dl,
4018                                N.getValueType(), IdxN, Scale);
4019           }
4020         }
4021       }
4022 
4023       N = DAG.getNode(ISD::ADD, dl,
4024                       N.getValueType(), N, IdxN);
4025     }
4026   }
4027 
4028   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4029   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4030   if (IsVectorGEP) {
4031     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4032     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4033   }
4034 
4035   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4036     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4037 
4038   setValue(&I, N);
4039 }
4040 
4041 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4042   // If this is a fixed sized alloca in the entry block of the function,
4043   // allocate it statically on the stack.
4044   if (FuncInfo.StaticAllocaMap.count(&I))
4045     return;   // getValue will auto-populate this.
4046 
4047   SDLoc dl = getCurSDLoc();
4048   Type *Ty = I.getAllocatedType();
4049   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4050   auto &DL = DAG.getDataLayout();
4051   TypeSize TySize = DL.getTypeAllocSize(Ty);
4052   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4053 
4054   SDValue AllocSize = getValue(I.getArraySize());
4055 
4056   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4057   if (AllocSize.getValueType() != IntPtr)
4058     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4059 
4060   if (TySize.isScalable())
4061     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4062                             DAG.getVScale(dl, IntPtr,
4063                                           APInt(IntPtr.getScalarSizeInBits(),
4064                                                 TySize.getKnownMinValue())));
4065   else
4066     AllocSize =
4067         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4068                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4069 
4070   // Handle alignment.  If the requested alignment is less than or equal to
4071   // the stack alignment, ignore it.  If the size is greater than or equal to
4072   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4073   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4074   if (*Alignment <= StackAlign)
4075     Alignment = std::nullopt;
4076 
4077   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4078   // Round the size of the allocation up to the stack alignment size
4079   // by add SA-1 to the size. This doesn't overflow because we're computing
4080   // an address inside an alloca.
4081   SDNodeFlags Flags;
4082   Flags.setNoUnsignedWrap(true);
4083   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4084                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4085 
4086   // Mask out the low bits for alignment purposes.
4087   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4088                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4089 
4090   SDValue Ops[] = {
4091       getRoot(), AllocSize,
4092       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4093   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4094   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4095   setValue(&I, DSA);
4096   DAG.setRoot(DSA.getValue(1));
4097 
4098   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4099 }
4100 
4101 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4102   if (I.isAtomic())
4103     return visitAtomicLoad(I);
4104 
4105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4106   const Value *SV = I.getOperand(0);
4107   if (TLI.supportSwiftError()) {
4108     // Swifterror values can come from either a function parameter with
4109     // swifterror attribute or an alloca with swifterror attribute.
4110     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4111       if (Arg->hasSwiftErrorAttr())
4112         return visitLoadFromSwiftError(I);
4113     }
4114 
4115     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4116       if (Alloca->isSwiftError())
4117         return visitLoadFromSwiftError(I);
4118     }
4119   }
4120 
4121   SDValue Ptr = getValue(SV);
4122 
4123   Type *Ty = I.getType();
4124   SmallVector<EVT, 4> ValueVTs, MemVTs;
4125   SmallVector<uint64_t, 4> Offsets;
4126   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4127   unsigned NumValues = ValueVTs.size();
4128   if (NumValues == 0)
4129     return;
4130 
4131   Align Alignment = I.getAlign();
4132   AAMDNodes AAInfo = I.getAAMetadata();
4133   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4134   bool isVolatile = I.isVolatile();
4135   MachineMemOperand::Flags MMOFlags =
4136       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4137 
4138   SDValue Root;
4139   bool ConstantMemory = false;
4140   if (isVolatile)
4141     // Serialize volatile loads with other side effects.
4142     Root = getRoot();
4143   else if (NumValues > MaxParallelChains)
4144     Root = getMemoryRoot();
4145   else if (AA &&
4146            AA->pointsToConstantMemory(MemoryLocation(
4147                SV,
4148                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4149                AAInfo))) {
4150     // Do not serialize (non-volatile) loads of constant memory with anything.
4151     Root = DAG.getEntryNode();
4152     ConstantMemory = true;
4153     MMOFlags |= MachineMemOperand::MOInvariant;
4154   } else {
4155     // Do not serialize non-volatile loads against each other.
4156     Root = DAG.getRoot();
4157   }
4158 
4159   SDLoc dl = getCurSDLoc();
4160 
4161   if (isVolatile)
4162     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4163 
4164   // An aggregate load cannot wrap around the address space, so offsets to its
4165   // parts don't wrap either.
4166   SDNodeFlags Flags;
4167   Flags.setNoUnsignedWrap(true);
4168 
4169   SmallVector<SDValue, 4> Values(NumValues);
4170   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4171   EVT PtrVT = Ptr.getValueType();
4172 
4173   unsigned ChainI = 0;
4174   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4175     // Serializing loads here may result in excessive register pressure, and
4176     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4177     // could recover a bit by hoisting nodes upward in the chain by recognizing
4178     // they are side-effect free or do not alias. The optimizer should really
4179     // avoid this case by converting large object/array copies to llvm.memcpy
4180     // (MaxParallelChains should always remain as failsafe).
4181     if (ChainI == MaxParallelChains) {
4182       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4183       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4184                                   ArrayRef(Chains.data(), ChainI));
4185       Root = Chain;
4186       ChainI = 0;
4187     }
4188     SDValue A = DAG.getNode(ISD::ADD, dl,
4189                             PtrVT, Ptr,
4190                             DAG.getConstant(Offsets[i], dl, PtrVT),
4191                             Flags);
4192 
4193     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4194                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4195                             MMOFlags, AAInfo, Ranges);
4196     Chains[ChainI] = L.getValue(1);
4197 
4198     if (MemVTs[i] != ValueVTs[i])
4199       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4200 
4201     Values[i] = L;
4202   }
4203 
4204   if (!ConstantMemory) {
4205     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4206                                 ArrayRef(Chains.data(), ChainI));
4207     if (isVolatile)
4208       DAG.setRoot(Chain);
4209     else
4210       PendingLoads.push_back(Chain);
4211   }
4212 
4213   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4214                            DAG.getVTList(ValueVTs), Values));
4215 }
4216 
4217 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4218   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4219          "call visitStoreToSwiftError when backend supports swifterror");
4220 
4221   SmallVector<EVT, 4> ValueVTs;
4222   SmallVector<uint64_t, 4> Offsets;
4223   const Value *SrcV = I.getOperand(0);
4224   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4225                   SrcV->getType(), ValueVTs, &Offsets);
4226   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4227          "expect a single EVT for swifterror");
4228 
4229   SDValue Src = getValue(SrcV);
4230   // Create a virtual register, then update the virtual register.
4231   Register VReg =
4232       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4233   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4234   // Chain can be getRoot or getControlRoot.
4235   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4236                                       SDValue(Src.getNode(), Src.getResNo()));
4237   DAG.setRoot(CopyNode);
4238 }
4239 
4240 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4241   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4242          "call visitLoadFromSwiftError when backend supports swifterror");
4243 
4244   assert(!I.isVolatile() &&
4245          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4246          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4247          "Support volatile, non temporal, invariant for load_from_swift_error");
4248 
4249   const Value *SV = I.getOperand(0);
4250   Type *Ty = I.getType();
4251   assert(
4252       (!AA ||
4253        !AA->pointsToConstantMemory(MemoryLocation(
4254            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4255            I.getAAMetadata()))) &&
4256       "load_from_swift_error should not be constant memory");
4257 
4258   SmallVector<EVT, 4> ValueVTs;
4259   SmallVector<uint64_t, 4> Offsets;
4260   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4261                   ValueVTs, &Offsets);
4262   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4263          "expect a single EVT for swifterror");
4264 
4265   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4266   SDValue L = DAG.getCopyFromReg(
4267       getRoot(), getCurSDLoc(),
4268       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4269 
4270   setValue(&I, L);
4271 }
4272 
4273 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4274   if (I.isAtomic())
4275     return visitAtomicStore(I);
4276 
4277   const Value *SrcV = I.getOperand(0);
4278   const Value *PtrV = I.getOperand(1);
4279 
4280   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4281   if (TLI.supportSwiftError()) {
4282     // Swifterror values can come from either a function parameter with
4283     // swifterror attribute or an alloca with swifterror attribute.
4284     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4285       if (Arg->hasSwiftErrorAttr())
4286         return visitStoreToSwiftError(I);
4287     }
4288 
4289     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4290       if (Alloca->isSwiftError())
4291         return visitStoreToSwiftError(I);
4292     }
4293   }
4294 
4295   SmallVector<EVT, 4> ValueVTs, MemVTs;
4296   SmallVector<uint64_t, 4> Offsets;
4297   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4298                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4299   unsigned NumValues = ValueVTs.size();
4300   if (NumValues == 0)
4301     return;
4302 
4303   // Get the lowered operands. Note that we do this after
4304   // checking if NumResults is zero, because with zero results
4305   // the operands won't have values in the map.
4306   SDValue Src = getValue(SrcV);
4307   SDValue Ptr = getValue(PtrV);
4308 
4309   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4310   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4311   SDLoc dl = getCurSDLoc();
4312   Align Alignment = I.getAlign();
4313   AAMDNodes AAInfo = I.getAAMetadata();
4314 
4315   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4316 
4317   // An aggregate load cannot wrap around the address space, so offsets to its
4318   // parts don't wrap either.
4319   SDNodeFlags Flags;
4320   Flags.setNoUnsignedWrap(true);
4321 
4322   unsigned ChainI = 0;
4323   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4324     // See visitLoad comments.
4325     if (ChainI == MaxParallelChains) {
4326       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4327                                   ArrayRef(Chains.data(), ChainI));
4328       Root = Chain;
4329       ChainI = 0;
4330     }
4331     SDValue Add =
4332         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4333     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4334     if (MemVTs[i] != ValueVTs[i])
4335       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4336     SDValue St =
4337         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4338                      Alignment, MMOFlags, AAInfo);
4339     Chains[ChainI] = St;
4340   }
4341 
4342   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4343                                   ArrayRef(Chains.data(), ChainI));
4344   setValue(&I, StoreNode);
4345   DAG.setRoot(StoreNode);
4346 }
4347 
4348 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4349                                            bool IsCompressing) {
4350   SDLoc sdl = getCurSDLoc();
4351 
4352   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4353                                MaybeAlign &Alignment) {
4354     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4355     Src0 = I.getArgOperand(0);
4356     Ptr = I.getArgOperand(1);
4357     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4358     Mask = I.getArgOperand(3);
4359   };
4360   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4361                                     MaybeAlign &Alignment) {
4362     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4363     Src0 = I.getArgOperand(0);
4364     Ptr = I.getArgOperand(1);
4365     Mask = I.getArgOperand(2);
4366     Alignment = std::nullopt;
4367   };
4368 
4369   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4370   MaybeAlign Alignment;
4371   if (IsCompressing)
4372     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4373   else
4374     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4375 
4376   SDValue Ptr = getValue(PtrOperand);
4377   SDValue Src0 = getValue(Src0Operand);
4378   SDValue Mask = getValue(MaskOperand);
4379   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4380 
4381   EVT VT = Src0.getValueType();
4382   if (!Alignment)
4383     Alignment = DAG.getEVTAlign(VT);
4384 
4385   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4386       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4387       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4388   SDValue StoreNode =
4389       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4390                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4391   DAG.setRoot(StoreNode);
4392   setValue(&I, StoreNode);
4393 }
4394 
4395 // Get a uniform base for the Gather/Scatter intrinsic.
4396 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4397 // We try to represent it as a base pointer + vector of indices.
4398 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4399 // The first operand of the GEP may be a single pointer or a vector of pointers
4400 // Example:
4401 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4402 //  or
4403 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4404 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4405 //
4406 // When the first GEP operand is a single pointer - it is the uniform base we
4407 // are looking for. If first operand of the GEP is a splat vector - we
4408 // extract the splat value and use it as a uniform base.
4409 // In all other cases the function returns 'false'.
4410 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4411                            ISD::MemIndexType &IndexType, SDValue &Scale,
4412                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4413                            uint64_t ElemSize) {
4414   SelectionDAG& DAG = SDB->DAG;
4415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4416   const DataLayout &DL = DAG.getDataLayout();
4417 
4418   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4419 
4420   // Handle splat constant pointer.
4421   if (auto *C = dyn_cast<Constant>(Ptr)) {
4422     C = C->getSplatValue();
4423     if (!C)
4424       return false;
4425 
4426     Base = SDB->getValue(C);
4427 
4428     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4429     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4430     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4431     IndexType = ISD::SIGNED_SCALED;
4432     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4433     return true;
4434   }
4435 
4436   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4437   if (!GEP || GEP->getParent() != CurBB)
4438     return false;
4439 
4440   if (GEP->getNumOperands() != 2)
4441     return false;
4442 
4443   const Value *BasePtr = GEP->getPointerOperand();
4444   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4445 
4446   // Make sure the base is scalar and the index is a vector.
4447   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4448     return false;
4449 
4450   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4451 
4452   // Target may not support the required addressing mode.
4453   if (ScaleVal != 1 &&
4454       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4455     return false;
4456 
4457   Base = SDB->getValue(BasePtr);
4458   Index = SDB->getValue(IndexVal);
4459   IndexType = ISD::SIGNED_SCALED;
4460 
4461   Scale =
4462       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4463   return true;
4464 }
4465 
4466 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4467   SDLoc sdl = getCurSDLoc();
4468 
4469   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4470   const Value *Ptr = I.getArgOperand(1);
4471   SDValue Src0 = getValue(I.getArgOperand(0));
4472   SDValue Mask = getValue(I.getArgOperand(3));
4473   EVT VT = Src0.getValueType();
4474   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4475                         ->getMaybeAlignValue()
4476                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4477   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4478 
4479   SDValue Base;
4480   SDValue Index;
4481   ISD::MemIndexType IndexType;
4482   SDValue Scale;
4483   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4484                                     I.getParent(), VT.getScalarStoreSize());
4485 
4486   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4487   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4488       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4489       // TODO: Make MachineMemOperands aware of scalable
4490       // vectors.
4491       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4492   if (!UniformBase) {
4493     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4494     Index = getValue(Ptr);
4495     IndexType = ISD::SIGNED_SCALED;
4496     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4497   }
4498 
4499   EVT IdxVT = Index.getValueType();
4500   EVT EltTy = IdxVT.getVectorElementType();
4501   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4502     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4503     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4504   }
4505 
4506   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4507   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4508                                          Ops, MMO, IndexType, false);
4509   DAG.setRoot(Scatter);
4510   setValue(&I, Scatter);
4511 }
4512 
4513 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4514   SDLoc sdl = getCurSDLoc();
4515 
4516   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4517                               MaybeAlign &Alignment) {
4518     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4519     Ptr = I.getArgOperand(0);
4520     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4521     Mask = I.getArgOperand(2);
4522     Src0 = I.getArgOperand(3);
4523   };
4524   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4525                                  MaybeAlign &Alignment) {
4526     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4527     Ptr = I.getArgOperand(0);
4528     Alignment = std::nullopt;
4529     Mask = I.getArgOperand(1);
4530     Src0 = I.getArgOperand(2);
4531   };
4532 
4533   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4534   MaybeAlign Alignment;
4535   if (IsExpanding)
4536     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4537   else
4538     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4539 
4540   SDValue Ptr = getValue(PtrOperand);
4541   SDValue Src0 = getValue(Src0Operand);
4542   SDValue Mask = getValue(MaskOperand);
4543   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4544 
4545   EVT VT = Src0.getValueType();
4546   if (!Alignment)
4547     Alignment = DAG.getEVTAlign(VT);
4548 
4549   AAMDNodes AAInfo = I.getAAMetadata();
4550   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4551 
4552   // Do not serialize masked loads of constant memory with anything.
4553   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4554   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4555 
4556   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4557 
4558   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4559       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4560       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4561 
4562   SDValue Load =
4563       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4564                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4565   if (AddToChain)
4566     PendingLoads.push_back(Load.getValue(1));
4567   setValue(&I, Load);
4568 }
4569 
4570 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4571   SDLoc sdl = getCurSDLoc();
4572 
4573   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4574   const Value *Ptr = I.getArgOperand(0);
4575   SDValue Src0 = getValue(I.getArgOperand(3));
4576   SDValue Mask = getValue(I.getArgOperand(2));
4577 
4578   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4579   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4580   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4581                         ->getMaybeAlignValue()
4582                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4583 
4584   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4585 
4586   SDValue Root = DAG.getRoot();
4587   SDValue Base;
4588   SDValue Index;
4589   ISD::MemIndexType IndexType;
4590   SDValue Scale;
4591   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4592                                     I.getParent(), VT.getScalarStoreSize());
4593   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4594   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4595       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4596       // TODO: Make MachineMemOperands aware of scalable
4597       // vectors.
4598       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4599 
4600   if (!UniformBase) {
4601     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4602     Index = getValue(Ptr);
4603     IndexType = ISD::SIGNED_SCALED;
4604     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4605   }
4606 
4607   EVT IdxVT = Index.getValueType();
4608   EVT EltTy = IdxVT.getVectorElementType();
4609   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4610     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4611     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4612   }
4613 
4614   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4615   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4616                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4617 
4618   PendingLoads.push_back(Gather.getValue(1));
4619   setValue(&I, Gather);
4620 }
4621 
4622 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4623   SDLoc dl = getCurSDLoc();
4624   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4625   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4626   SyncScope::ID SSID = I.getSyncScopeID();
4627 
4628   SDValue InChain = getRoot();
4629 
4630   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4631   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4632 
4633   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4634   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4635 
4636   MachineFunction &MF = DAG.getMachineFunction();
4637   MachineMemOperand *MMO = MF.getMachineMemOperand(
4638       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4639       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4640       FailureOrdering);
4641 
4642   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4643                                    dl, MemVT, VTs, InChain,
4644                                    getValue(I.getPointerOperand()),
4645                                    getValue(I.getCompareOperand()),
4646                                    getValue(I.getNewValOperand()), MMO);
4647 
4648   SDValue OutChain = L.getValue(2);
4649 
4650   setValue(&I, L);
4651   DAG.setRoot(OutChain);
4652 }
4653 
4654 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4655   SDLoc dl = getCurSDLoc();
4656   ISD::NodeType NT;
4657   switch (I.getOperation()) {
4658   default: llvm_unreachable("Unknown atomicrmw operation");
4659   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4660   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4661   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4662   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4663   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4664   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4665   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4666   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4667   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4668   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4669   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4670   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4671   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4672   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4673   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4674   }
4675   AtomicOrdering Ordering = I.getOrdering();
4676   SyncScope::ID SSID = I.getSyncScopeID();
4677 
4678   SDValue InChain = getRoot();
4679 
4680   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4682   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4683 
4684   MachineFunction &MF = DAG.getMachineFunction();
4685   MachineMemOperand *MMO = MF.getMachineMemOperand(
4686       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4687       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4688 
4689   SDValue L =
4690     DAG.getAtomic(NT, dl, MemVT, InChain,
4691                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4692                   MMO);
4693 
4694   SDValue OutChain = L.getValue(1);
4695 
4696   setValue(&I, L);
4697   DAG.setRoot(OutChain);
4698 }
4699 
4700 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4701   SDLoc dl = getCurSDLoc();
4702   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4703   SDValue Ops[3];
4704   Ops[0] = getRoot();
4705   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4706                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4707   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4708                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4709   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4710   setValue(&I, N);
4711   DAG.setRoot(N);
4712 }
4713 
4714 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4715   SDLoc dl = getCurSDLoc();
4716   AtomicOrdering Order = I.getOrdering();
4717   SyncScope::ID SSID = I.getSyncScopeID();
4718 
4719   SDValue InChain = getRoot();
4720 
4721   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4722   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4723   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4724 
4725   if (!TLI.supportsUnalignedAtomics() &&
4726       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4727     report_fatal_error("Cannot generate unaligned atomic load");
4728 
4729   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4730 
4731   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4732       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4733       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4734 
4735   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4736 
4737   SDValue Ptr = getValue(I.getPointerOperand());
4738 
4739   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4740     // TODO: Once this is better exercised by tests, it should be merged with
4741     // the normal path for loads to prevent future divergence.
4742     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4743     if (MemVT != VT)
4744       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4745 
4746     setValue(&I, L);
4747     SDValue OutChain = L.getValue(1);
4748     if (!I.isUnordered())
4749       DAG.setRoot(OutChain);
4750     else
4751       PendingLoads.push_back(OutChain);
4752     return;
4753   }
4754 
4755   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4756                             Ptr, MMO);
4757 
4758   SDValue OutChain = L.getValue(1);
4759   if (MemVT != VT)
4760     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4761 
4762   setValue(&I, L);
4763   DAG.setRoot(OutChain);
4764 }
4765 
4766 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4767   SDLoc dl = getCurSDLoc();
4768 
4769   AtomicOrdering Ordering = I.getOrdering();
4770   SyncScope::ID SSID = I.getSyncScopeID();
4771 
4772   SDValue InChain = getRoot();
4773 
4774   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4775   EVT MemVT =
4776       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4777 
4778   if (!TLI.supportsUnalignedAtomics() &&
4779       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4780     report_fatal_error("Cannot generate unaligned atomic store");
4781 
4782   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4783 
4784   MachineFunction &MF = DAG.getMachineFunction();
4785   MachineMemOperand *MMO = MF.getMachineMemOperand(
4786       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4787       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4788 
4789   SDValue Val = getValue(I.getValueOperand());
4790   if (Val.getValueType() != MemVT)
4791     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4792   SDValue Ptr = getValue(I.getPointerOperand());
4793 
4794   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4795     // TODO: Once this is better exercised by tests, it should be merged with
4796     // the normal path for stores to prevent future divergence.
4797     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4798     setValue(&I, S);
4799     DAG.setRoot(S);
4800     return;
4801   }
4802   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4803                                    Ptr, Val, MMO);
4804 
4805   setValue(&I, OutChain);
4806   DAG.setRoot(OutChain);
4807 }
4808 
4809 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4810 /// node.
4811 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4812                                                unsigned Intrinsic) {
4813   // Ignore the callsite's attributes. A specific call site may be marked with
4814   // readnone, but the lowering code will expect the chain based on the
4815   // definition.
4816   const Function *F = I.getCalledFunction();
4817   bool HasChain = !F->doesNotAccessMemory();
4818   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4819 
4820   // Build the operand list.
4821   SmallVector<SDValue, 8> Ops;
4822   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4823     if (OnlyLoad) {
4824       // We don't need to serialize loads against other loads.
4825       Ops.push_back(DAG.getRoot());
4826     } else {
4827       Ops.push_back(getRoot());
4828     }
4829   }
4830 
4831   // Info is set by getTgtMemIntrinsic
4832   TargetLowering::IntrinsicInfo Info;
4833   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4834   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4835                                                DAG.getMachineFunction(),
4836                                                Intrinsic);
4837 
4838   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4839   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4840       Info.opc == ISD::INTRINSIC_W_CHAIN)
4841     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4842                                         TLI.getPointerTy(DAG.getDataLayout())));
4843 
4844   // Add all operands of the call to the operand list.
4845   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4846     const Value *Arg = I.getArgOperand(i);
4847     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4848       Ops.push_back(getValue(Arg));
4849       continue;
4850     }
4851 
4852     // Use TargetConstant instead of a regular constant for immarg.
4853     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4854     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4855       assert(CI->getBitWidth() <= 64 &&
4856              "large intrinsic immediates not handled");
4857       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4858     } else {
4859       Ops.push_back(
4860           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4861     }
4862   }
4863 
4864   SmallVector<EVT, 4> ValueVTs;
4865   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4866 
4867   if (HasChain)
4868     ValueVTs.push_back(MVT::Other);
4869 
4870   SDVTList VTs = DAG.getVTList(ValueVTs);
4871 
4872   // Propagate fast-math-flags from IR to node(s).
4873   SDNodeFlags Flags;
4874   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4875     Flags.copyFMF(*FPMO);
4876   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4877 
4878   // Create the node.
4879   SDValue Result;
4880   // In some cases, custom collection of operands from CallInst I may be needed.
4881   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4882   if (IsTgtIntrinsic) {
4883     // This is target intrinsic that touches memory
4884     //
4885     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4886     //       didn't yield anything useful.
4887     MachinePointerInfo MPI;
4888     if (Info.ptrVal)
4889       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4890     else if (Info.fallbackAddressSpace)
4891       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4892     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4893                                      Info.memVT, MPI, Info.align, Info.flags,
4894                                      Info.size, I.getAAMetadata());
4895   } else if (!HasChain) {
4896     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4897   } else if (!I.getType()->isVoidTy()) {
4898     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4899   } else {
4900     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4901   }
4902 
4903   if (HasChain) {
4904     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4905     if (OnlyLoad)
4906       PendingLoads.push_back(Chain);
4907     else
4908       DAG.setRoot(Chain);
4909   }
4910 
4911   if (!I.getType()->isVoidTy()) {
4912     if (!isa<VectorType>(I.getType()))
4913       Result = lowerRangeToAssertZExt(DAG, I, Result);
4914 
4915     MaybeAlign Alignment = I.getRetAlign();
4916     if (!Alignment)
4917       Alignment = F->getAttributes().getRetAlignment();
4918     // Insert `assertalign` node if there's an alignment.
4919     if (InsertAssertAlign && Alignment) {
4920       Result =
4921           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4922     }
4923 
4924     setValue(&I, Result);
4925   }
4926 }
4927 
4928 /// GetSignificand - Get the significand and build it into a floating-point
4929 /// number with exponent of 1:
4930 ///
4931 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4932 ///
4933 /// where Op is the hexadecimal representation of floating point value.
4934 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4935   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4936                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4937   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4938                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4939   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4940 }
4941 
4942 /// GetExponent - Get the exponent:
4943 ///
4944 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4945 ///
4946 /// where Op is the hexadecimal representation of floating point value.
4947 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4948                            const TargetLowering &TLI, const SDLoc &dl) {
4949   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4950                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4951   SDValue t1 = DAG.getNode(
4952       ISD::SRL, dl, MVT::i32, t0,
4953       DAG.getConstant(23, dl,
4954                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4955   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4956                            DAG.getConstant(127, dl, MVT::i32));
4957   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4958 }
4959 
4960 /// getF32Constant - Get 32-bit floating point constant.
4961 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4962                               const SDLoc &dl) {
4963   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4964                            MVT::f32);
4965 }
4966 
4967 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4968                                        SelectionDAG &DAG) {
4969   // TODO: What fast-math-flags should be set on the floating-point nodes?
4970 
4971   //   IntegerPartOfX = ((int32_t)(t0);
4972   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4973 
4974   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4975   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4976   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4977 
4978   //   IntegerPartOfX <<= 23;
4979   IntegerPartOfX =
4980       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4981                   DAG.getConstant(23, dl,
4982                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4983                                       MVT::i32, DAG.getDataLayout())));
4984 
4985   SDValue TwoToFractionalPartOfX;
4986   if (LimitFloatPrecision <= 6) {
4987     // For floating-point precision of 6:
4988     //
4989     //   TwoToFractionalPartOfX =
4990     //     0.997535578f +
4991     //       (0.735607626f + 0.252464424f * x) * x;
4992     //
4993     // error 0.0144103317, which is 6 bits
4994     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4995                              getF32Constant(DAG, 0x3e814304, dl));
4996     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4997                              getF32Constant(DAG, 0x3f3c50c8, dl));
4998     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4999     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5000                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5001   } else if (LimitFloatPrecision <= 12) {
5002     // For floating-point precision of 12:
5003     //
5004     //   TwoToFractionalPartOfX =
5005     //     0.999892986f +
5006     //       (0.696457318f +
5007     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5008     //
5009     // error 0.000107046256, which is 13 to 14 bits
5010     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5011                              getF32Constant(DAG, 0x3da235e3, dl));
5012     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5013                              getF32Constant(DAG, 0x3e65b8f3, dl));
5014     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5015     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5016                              getF32Constant(DAG, 0x3f324b07, dl));
5017     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5018     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5019                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5020   } else { // LimitFloatPrecision <= 18
5021     // For floating-point precision of 18:
5022     //
5023     //   TwoToFractionalPartOfX =
5024     //     0.999999982f +
5025     //       (0.693148872f +
5026     //         (0.240227044f +
5027     //           (0.554906021e-1f +
5028     //             (0.961591928e-2f +
5029     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5030     // error 2.47208000*10^(-7), which is better than 18 bits
5031     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5032                              getF32Constant(DAG, 0x3924b03e, dl));
5033     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5034                              getF32Constant(DAG, 0x3ab24b87, dl));
5035     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5036     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5037                              getF32Constant(DAG, 0x3c1d8c17, dl));
5038     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5039     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5040                              getF32Constant(DAG, 0x3d634a1d, dl));
5041     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5042     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5043                              getF32Constant(DAG, 0x3e75fe14, dl));
5044     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5045     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5046                               getF32Constant(DAG, 0x3f317234, dl));
5047     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5048     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5049                                          getF32Constant(DAG, 0x3f800000, dl));
5050   }
5051 
5052   // Add the exponent into the result in integer domain.
5053   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5054   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5055                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5056 }
5057 
5058 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5059 /// limited-precision mode.
5060 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5061                          const TargetLowering &TLI, SDNodeFlags Flags) {
5062   if (Op.getValueType() == MVT::f32 &&
5063       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5064 
5065     // Put the exponent in the right bit position for later addition to the
5066     // final result:
5067     //
5068     // t0 = Op * log2(e)
5069 
5070     // TODO: What fast-math-flags should be set here?
5071     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5072                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5073     return getLimitedPrecisionExp2(t0, dl, DAG);
5074   }
5075 
5076   // No special expansion.
5077   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5078 }
5079 
5080 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5081 /// limited-precision mode.
5082 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5083                          const TargetLowering &TLI, SDNodeFlags Flags) {
5084   // TODO: What fast-math-flags should be set on the floating-point nodes?
5085 
5086   if (Op.getValueType() == MVT::f32 &&
5087       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5088     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5089 
5090     // Scale the exponent by log(2).
5091     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5092     SDValue LogOfExponent =
5093         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5094                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5095 
5096     // Get the significand and build it into a floating-point number with
5097     // exponent of 1.
5098     SDValue X = GetSignificand(DAG, Op1, dl);
5099 
5100     SDValue LogOfMantissa;
5101     if (LimitFloatPrecision <= 6) {
5102       // For floating-point precision of 6:
5103       //
5104       //   LogofMantissa =
5105       //     -1.1609546f +
5106       //       (1.4034025f - 0.23903021f * x) * x;
5107       //
5108       // error 0.0034276066, which is better than 8 bits
5109       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5110                                getF32Constant(DAG, 0xbe74c456, dl));
5111       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5112                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5113       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5114       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5115                                   getF32Constant(DAG, 0x3f949a29, dl));
5116     } else if (LimitFloatPrecision <= 12) {
5117       // For floating-point precision of 12:
5118       //
5119       //   LogOfMantissa =
5120       //     -1.7417939f +
5121       //       (2.8212026f +
5122       //         (-1.4699568f +
5123       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5124       //
5125       // error 0.000061011436, which is 14 bits
5126       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5127                                getF32Constant(DAG, 0xbd67b6d6, dl));
5128       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5129                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5130       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5131       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5132                                getF32Constant(DAG, 0x3fbc278b, dl));
5133       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5134       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5135                                getF32Constant(DAG, 0x40348e95, dl));
5136       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5137       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5138                                   getF32Constant(DAG, 0x3fdef31a, dl));
5139     } else { // LimitFloatPrecision <= 18
5140       // For floating-point precision of 18:
5141       //
5142       //   LogOfMantissa =
5143       //     -2.1072184f +
5144       //       (4.2372794f +
5145       //         (-3.7029485f +
5146       //           (2.2781945f +
5147       //             (-0.87823314f +
5148       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5149       //
5150       // error 0.0000023660568, which is better than 18 bits
5151       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5152                                getF32Constant(DAG, 0xbc91e5ac, dl));
5153       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5154                                getF32Constant(DAG, 0x3e4350aa, dl));
5155       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5156       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5157                                getF32Constant(DAG, 0x3f60d3e3, dl));
5158       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5159       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5160                                getF32Constant(DAG, 0x4011cdf0, dl));
5161       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5162       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5163                                getF32Constant(DAG, 0x406cfd1c, dl));
5164       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5165       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5166                                getF32Constant(DAG, 0x408797cb, dl));
5167       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5168       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5169                                   getF32Constant(DAG, 0x4006dcab, dl));
5170     }
5171 
5172     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5173   }
5174 
5175   // No special expansion.
5176   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5177 }
5178 
5179 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5180 /// limited-precision mode.
5181 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5182                           const TargetLowering &TLI, SDNodeFlags Flags) {
5183   // TODO: What fast-math-flags should be set on the floating-point nodes?
5184 
5185   if (Op.getValueType() == MVT::f32 &&
5186       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5187     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5188 
5189     // Get the exponent.
5190     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5191 
5192     // Get the significand and build it into a floating-point number with
5193     // exponent of 1.
5194     SDValue X = GetSignificand(DAG, Op1, dl);
5195 
5196     // Different possible minimax approximations of significand in
5197     // floating-point for various degrees of accuracy over [1,2].
5198     SDValue Log2ofMantissa;
5199     if (LimitFloatPrecision <= 6) {
5200       // For floating-point precision of 6:
5201       //
5202       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5203       //
5204       // error 0.0049451742, which is more than 7 bits
5205       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5206                                getF32Constant(DAG, 0xbeb08fe0, dl));
5207       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5208                                getF32Constant(DAG, 0x40019463, dl));
5209       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5210       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5211                                    getF32Constant(DAG, 0x3fd6633d, dl));
5212     } else if (LimitFloatPrecision <= 12) {
5213       // For floating-point precision of 12:
5214       //
5215       //   Log2ofMantissa =
5216       //     -2.51285454f +
5217       //       (4.07009056f +
5218       //         (-2.12067489f +
5219       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5220       //
5221       // error 0.0000876136000, which is better than 13 bits
5222       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5223                                getF32Constant(DAG, 0xbda7262e, dl));
5224       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5225                                getF32Constant(DAG, 0x3f25280b, dl));
5226       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5227       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5228                                getF32Constant(DAG, 0x4007b923, dl));
5229       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5230       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5231                                getF32Constant(DAG, 0x40823e2f, dl));
5232       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5233       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5234                                    getF32Constant(DAG, 0x4020d29c, dl));
5235     } else { // LimitFloatPrecision <= 18
5236       // For floating-point precision of 18:
5237       //
5238       //   Log2ofMantissa =
5239       //     -3.0400495f +
5240       //       (6.1129976f +
5241       //         (-5.3420409f +
5242       //           (3.2865683f +
5243       //             (-1.2669343f +
5244       //               (0.27515199f -
5245       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5246       //
5247       // error 0.0000018516, which is better than 18 bits
5248       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5249                                getF32Constant(DAG, 0xbcd2769e, dl));
5250       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5251                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5252       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5253       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5254                                getF32Constant(DAG, 0x3fa22ae7, dl));
5255       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5256       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5257                                getF32Constant(DAG, 0x40525723, dl));
5258       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5259       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5260                                getF32Constant(DAG, 0x40aaf200, dl));
5261       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5262       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5263                                getF32Constant(DAG, 0x40c39dad, dl));
5264       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5265       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5266                                    getF32Constant(DAG, 0x4042902c, dl));
5267     }
5268 
5269     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5270   }
5271 
5272   // No special expansion.
5273   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5274 }
5275 
5276 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5277 /// limited-precision mode.
5278 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5279                            const TargetLowering &TLI, SDNodeFlags Flags) {
5280   // TODO: What fast-math-flags should be set on the floating-point nodes?
5281 
5282   if (Op.getValueType() == MVT::f32 &&
5283       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5284     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5285 
5286     // Scale the exponent by log10(2) [0.30102999f].
5287     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5288     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5289                                         getF32Constant(DAG, 0x3e9a209a, dl));
5290 
5291     // Get the significand and build it into a floating-point number with
5292     // exponent of 1.
5293     SDValue X = GetSignificand(DAG, Op1, dl);
5294 
5295     SDValue Log10ofMantissa;
5296     if (LimitFloatPrecision <= 6) {
5297       // For floating-point precision of 6:
5298       //
5299       //   Log10ofMantissa =
5300       //     -0.50419619f +
5301       //       (0.60948995f - 0.10380950f * x) * x;
5302       //
5303       // error 0.0014886165, which is 6 bits
5304       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5305                                getF32Constant(DAG, 0xbdd49a13, dl));
5306       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5307                                getF32Constant(DAG, 0x3f1c0789, dl));
5308       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5309       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5310                                     getF32Constant(DAG, 0x3f011300, dl));
5311     } else if (LimitFloatPrecision <= 12) {
5312       // For floating-point precision of 12:
5313       //
5314       //   Log10ofMantissa =
5315       //     -0.64831180f +
5316       //       (0.91751397f +
5317       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5318       //
5319       // error 0.00019228036, which is better than 12 bits
5320       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5321                                getF32Constant(DAG, 0x3d431f31, dl));
5322       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5323                                getF32Constant(DAG, 0x3ea21fb2, dl));
5324       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5325       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5326                                getF32Constant(DAG, 0x3f6ae232, dl));
5327       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5328       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5329                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5330     } else { // LimitFloatPrecision <= 18
5331       // For floating-point precision of 18:
5332       //
5333       //   Log10ofMantissa =
5334       //     -0.84299375f +
5335       //       (1.5327582f +
5336       //         (-1.0688956f +
5337       //           (0.49102474f +
5338       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5339       //
5340       // error 0.0000037995730, which is better than 18 bits
5341       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5342                                getF32Constant(DAG, 0x3c5d51ce, dl));
5343       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5344                                getF32Constant(DAG, 0x3e00685a, dl));
5345       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5346       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5347                                getF32Constant(DAG, 0x3efb6798, dl));
5348       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5349       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5350                                getF32Constant(DAG, 0x3f88d192, dl));
5351       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5352       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5353                                getF32Constant(DAG, 0x3fc4316c, dl));
5354       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5355       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5356                                     getF32Constant(DAG, 0x3f57ce70, dl));
5357     }
5358 
5359     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5360   }
5361 
5362   // No special expansion.
5363   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5364 }
5365 
5366 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5367 /// limited-precision mode.
5368 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5369                           const TargetLowering &TLI, SDNodeFlags Flags) {
5370   if (Op.getValueType() == MVT::f32 &&
5371       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5372     return getLimitedPrecisionExp2(Op, dl, DAG);
5373 
5374   // No special expansion.
5375   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5376 }
5377 
5378 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5379 /// limited-precision mode with x == 10.0f.
5380 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5381                          SelectionDAG &DAG, const TargetLowering &TLI,
5382                          SDNodeFlags Flags) {
5383   bool IsExp10 = false;
5384   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5385       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5386     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5387       APFloat Ten(10.0f);
5388       IsExp10 = LHSC->isExactlyValue(Ten);
5389     }
5390   }
5391 
5392   // TODO: What fast-math-flags should be set on the FMUL node?
5393   if (IsExp10) {
5394     // Put the exponent in the right bit position for later addition to the
5395     // final result:
5396     //
5397     //   #define LOG2OF10 3.3219281f
5398     //   t0 = Op * LOG2OF10;
5399     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5400                              getF32Constant(DAG, 0x40549a78, dl));
5401     return getLimitedPrecisionExp2(t0, dl, DAG);
5402   }
5403 
5404   // No special expansion.
5405   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5406 }
5407 
5408 /// ExpandPowI - Expand a llvm.powi intrinsic.
5409 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5410                           SelectionDAG &DAG) {
5411   // If RHS is a constant, we can expand this out to a multiplication tree if
5412   // it's beneficial on the target, otherwise we end up lowering to a call to
5413   // __powidf2 (for example).
5414   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5415     unsigned Val = RHSC->getSExtValue();
5416 
5417     // powi(x, 0) -> 1.0
5418     if (Val == 0)
5419       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5420 
5421     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5422             Val, DAG.shouldOptForSize())) {
5423       // Get the exponent as a positive value.
5424       if ((int)Val < 0)
5425         Val = -Val;
5426       // We use the simple binary decomposition method to generate the multiply
5427       // sequence.  There are more optimal ways to do this (for example,
5428       // powi(x,15) generates one more multiply than it should), but this has
5429       // the benefit of being both really simple and much better than a libcall.
5430       SDValue Res; // Logically starts equal to 1.0
5431       SDValue CurSquare = LHS;
5432       // TODO: Intrinsics should have fast-math-flags that propagate to these
5433       // nodes.
5434       while (Val) {
5435         if (Val & 1) {
5436           if (Res.getNode())
5437             Res =
5438                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5439           else
5440             Res = CurSquare; // 1.0*CurSquare.
5441         }
5442 
5443         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5444                                 CurSquare, CurSquare);
5445         Val >>= 1;
5446       }
5447 
5448       // If the original was negative, invert the result, producing 1/(x*x*x).
5449       if (RHSC->getSExtValue() < 0)
5450         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5451                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5452       return Res;
5453     }
5454   }
5455 
5456   // Otherwise, expand to a libcall.
5457   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5458 }
5459 
5460 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5461                             SDValue LHS, SDValue RHS, SDValue Scale,
5462                             SelectionDAG &DAG, const TargetLowering &TLI) {
5463   EVT VT = LHS.getValueType();
5464   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5465   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5466   LLVMContext &Ctx = *DAG.getContext();
5467 
5468   // If the type is legal but the operation isn't, this node might survive all
5469   // the way to operation legalization. If we end up there and we do not have
5470   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5471   // node.
5472 
5473   // Coax the legalizer into expanding the node during type legalization instead
5474   // by bumping the size by one bit. This will force it to Promote, enabling the
5475   // early expansion and avoiding the need to expand later.
5476 
5477   // We don't have to do this if Scale is 0; that can always be expanded, unless
5478   // it's a saturating signed operation. Those can experience true integer
5479   // division overflow, a case which we must avoid.
5480 
5481   // FIXME: We wouldn't have to do this (or any of the early
5482   // expansion/promotion) if it was possible to expand a libcall of an
5483   // illegal type during operation legalization. But it's not, so things
5484   // get a bit hacky.
5485   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5486   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5487       (TLI.isTypeLegal(VT) ||
5488        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5489     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5490         Opcode, VT, ScaleInt);
5491     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5492       EVT PromVT;
5493       if (VT.isScalarInteger())
5494         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5495       else if (VT.isVector()) {
5496         PromVT = VT.getVectorElementType();
5497         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5498         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5499       } else
5500         llvm_unreachable("Wrong VT for DIVFIX?");
5501       if (Signed) {
5502         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5503         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5504       } else {
5505         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5506         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5507       }
5508       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5509       // For saturating operations, we need to shift up the LHS to get the
5510       // proper saturation width, and then shift down again afterwards.
5511       if (Saturating)
5512         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5513                           DAG.getConstant(1, DL, ShiftTy));
5514       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5515       if (Saturating)
5516         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5517                           DAG.getConstant(1, DL, ShiftTy));
5518       return DAG.getZExtOrTrunc(Res, DL, VT);
5519     }
5520   }
5521 
5522   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5523 }
5524 
5525 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5526 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5527 static void
5528 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5529                      const SDValue &N) {
5530   switch (N.getOpcode()) {
5531   case ISD::CopyFromReg: {
5532     SDValue Op = N.getOperand(1);
5533     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5534                       Op.getValueType().getSizeInBits());
5535     return;
5536   }
5537   case ISD::BITCAST:
5538   case ISD::AssertZext:
5539   case ISD::AssertSext:
5540   case ISD::TRUNCATE:
5541     getUnderlyingArgRegs(Regs, N.getOperand(0));
5542     return;
5543   case ISD::BUILD_PAIR:
5544   case ISD::BUILD_VECTOR:
5545   case ISD::CONCAT_VECTORS:
5546     for (SDValue Op : N->op_values())
5547       getUnderlyingArgRegs(Regs, Op);
5548     return;
5549   default:
5550     return;
5551   }
5552 }
5553 
5554 /// If the DbgValueInst is a dbg_value of a function argument, create the
5555 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5556 /// instruction selection, they will be inserted to the entry BB.
5557 /// We don't currently support this for variadic dbg_values, as they shouldn't
5558 /// appear for function arguments or in the prologue.
5559 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5560     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5561     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5562   const Argument *Arg = dyn_cast<Argument>(V);
5563   if (!Arg)
5564     return false;
5565 
5566   MachineFunction &MF = DAG.getMachineFunction();
5567   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5568 
5569   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5570   // we've been asked to pursue.
5571   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5572                               bool Indirect) {
5573     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5574       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5575       // pointing at the VReg, which will be patched up later.
5576       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5577       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5578           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5579           /* isKill */ false, /* isDead */ false,
5580           /* isUndef */ false, /* isEarlyClobber */ false,
5581           /* SubReg */ 0, /* isDebug */ true)});
5582 
5583       auto *NewDIExpr = FragExpr;
5584       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5585       // the DIExpression.
5586       if (Indirect)
5587         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5588       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5589       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5590       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5591     } else {
5592       // Create a completely standard DBG_VALUE.
5593       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5594       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5595     }
5596   };
5597 
5598   if (Kind == FuncArgumentDbgValueKind::Value) {
5599     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5600     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5601     // the entry block.
5602     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5603     if (!IsInEntryBlock)
5604       return false;
5605 
5606     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5607     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5608     // variable that also is a param.
5609     //
5610     // Although, if we are at the top of the entry block already, we can still
5611     // emit using ArgDbgValue. This might catch some situations when the
5612     // dbg.value refers to an argument that isn't used in the entry block, so
5613     // any CopyToReg node would be optimized out and the only way to express
5614     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5615     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5616     // we should only emit as ArgDbgValue if the Variable is an argument to the
5617     // current function, and the dbg.value intrinsic is found in the entry
5618     // block.
5619     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5620         !DL->getInlinedAt();
5621     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5622     if (!IsInPrologue && !VariableIsFunctionInputArg)
5623       return false;
5624 
5625     // Here we assume that a function argument on IR level only can be used to
5626     // describe one input parameter on source level. If we for example have
5627     // source code like this
5628     //
5629     //    struct A { long x, y; };
5630     //    void foo(struct A a, long b) {
5631     //      ...
5632     //      b = a.x;
5633     //      ...
5634     //    }
5635     //
5636     // and IR like this
5637     //
5638     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5639     //  entry:
5640     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5641     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5642     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5643     //    ...
5644     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5645     //    ...
5646     //
5647     // then the last dbg.value is describing a parameter "b" using a value that
5648     // is an argument. But since we already has used %a1 to describe a parameter
5649     // we should not handle that last dbg.value here (that would result in an
5650     // incorrect hoisting of the DBG_VALUE to the function entry).
5651     // Notice that we allow one dbg.value per IR level argument, to accommodate
5652     // for the situation with fragments above.
5653     if (VariableIsFunctionInputArg) {
5654       unsigned ArgNo = Arg->getArgNo();
5655       if (ArgNo >= FuncInfo.DescribedArgs.size())
5656         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5657       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5658         return false;
5659       FuncInfo.DescribedArgs.set(ArgNo);
5660     }
5661   }
5662 
5663   bool IsIndirect = false;
5664   std::optional<MachineOperand> Op;
5665   // Some arguments' frame index is recorded during argument lowering.
5666   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5667   if (FI != std::numeric_limits<int>::max())
5668     Op = MachineOperand::CreateFI(FI);
5669 
5670   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5671   if (!Op && N.getNode()) {
5672     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5673     Register Reg;
5674     if (ArgRegsAndSizes.size() == 1)
5675       Reg = ArgRegsAndSizes.front().first;
5676 
5677     if (Reg && Reg.isVirtual()) {
5678       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5679       Register PR = RegInfo.getLiveInPhysReg(Reg);
5680       if (PR)
5681         Reg = PR;
5682     }
5683     if (Reg) {
5684       Op = MachineOperand::CreateReg(Reg, false);
5685       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5686     }
5687   }
5688 
5689   if (!Op && N.getNode()) {
5690     // Check if frame index is available.
5691     SDValue LCandidate = peekThroughBitcasts(N);
5692     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5693       if (FrameIndexSDNode *FINode =
5694           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5695         Op = MachineOperand::CreateFI(FINode->getIndex());
5696   }
5697 
5698   if (!Op) {
5699     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5700     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5701                                          SplitRegs) {
5702       unsigned Offset = 0;
5703       for (const auto &RegAndSize : SplitRegs) {
5704         // If the expression is already a fragment, the current register
5705         // offset+size might extend beyond the fragment. In this case, only
5706         // the register bits that are inside the fragment are relevant.
5707         int RegFragmentSizeInBits = RegAndSize.second;
5708         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5709           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5710           // The register is entirely outside the expression fragment,
5711           // so is irrelevant for debug info.
5712           if (Offset >= ExprFragmentSizeInBits)
5713             break;
5714           // The register is partially outside the expression fragment, only
5715           // the low bits within the fragment are relevant for debug info.
5716           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5717             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5718           }
5719         }
5720 
5721         auto FragmentExpr = DIExpression::createFragmentExpression(
5722             Expr, Offset, RegFragmentSizeInBits);
5723         Offset += RegAndSize.second;
5724         // If a valid fragment expression cannot be created, the variable's
5725         // correct value cannot be determined and so it is set as Undef.
5726         if (!FragmentExpr) {
5727           SDDbgValue *SDV = DAG.getConstantDbgValue(
5728               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5729           DAG.AddDbgValue(SDV, false);
5730           continue;
5731         }
5732         MachineInstr *NewMI =
5733             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5734                              Kind != FuncArgumentDbgValueKind::Value);
5735         FuncInfo.ArgDbgValues.push_back(NewMI);
5736       }
5737     };
5738 
5739     // Check if ValueMap has reg number.
5740     DenseMap<const Value *, Register>::const_iterator
5741       VMI = FuncInfo.ValueMap.find(V);
5742     if (VMI != FuncInfo.ValueMap.end()) {
5743       const auto &TLI = DAG.getTargetLoweringInfo();
5744       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5745                        V->getType(), std::nullopt);
5746       if (RFV.occupiesMultipleRegs()) {
5747         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5748         return true;
5749       }
5750 
5751       Op = MachineOperand::CreateReg(VMI->second, false);
5752       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5753     } else if (ArgRegsAndSizes.size() > 1) {
5754       // This was split due to the calling convention, and no virtual register
5755       // mapping exists for the value.
5756       splitMultiRegDbgValue(ArgRegsAndSizes);
5757       return true;
5758     }
5759   }
5760 
5761   if (!Op)
5762     return false;
5763 
5764   assert(Variable->isValidLocationForIntrinsic(DL) &&
5765          "Expected inlined-at fields to agree");
5766   MachineInstr *NewMI = nullptr;
5767 
5768   if (Op->isReg())
5769     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5770   else
5771     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5772                     Variable, Expr);
5773 
5774   // Otherwise, use ArgDbgValues.
5775   FuncInfo.ArgDbgValues.push_back(NewMI);
5776   return true;
5777 }
5778 
5779 /// Return the appropriate SDDbgValue based on N.
5780 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5781                                              DILocalVariable *Variable,
5782                                              DIExpression *Expr,
5783                                              const DebugLoc &dl,
5784                                              unsigned DbgSDNodeOrder) {
5785   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5786     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5787     // stack slot locations.
5788     //
5789     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5790     // debug values here after optimization:
5791     //
5792     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5793     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5794     //
5795     // Both describe the direct values of their associated variables.
5796     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5797                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5798   }
5799   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5800                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5801 }
5802 
5803 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5804   switch (Intrinsic) {
5805   case Intrinsic::smul_fix:
5806     return ISD::SMULFIX;
5807   case Intrinsic::umul_fix:
5808     return ISD::UMULFIX;
5809   case Intrinsic::smul_fix_sat:
5810     return ISD::SMULFIXSAT;
5811   case Intrinsic::umul_fix_sat:
5812     return ISD::UMULFIXSAT;
5813   case Intrinsic::sdiv_fix:
5814     return ISD::SDIVFIX;
5815   case Intrinsic::udiv_fix:
5816     return ISD::UDIVFIX;
5817   case Intrinsic::sdiv_fix_sat:
5818     return ISD::SDIVFIXSAT;
5819   case Intrinsic::udiv_fix_sat:
5820     return ISD::UDIVFIXSAT;
5821   default:
5822     llvm_unreachable("Unhandled fixed point intrinsic");
5823   }
5824 }
5825 
5826 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5827                                            const char *FunctionName) {
5828   assert(FunctionName && "FunctionName must not be nullptr");
5829   SDValue Callee = DAG.getExternalSymbol(
5830       FunctionName,
5831       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5832   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5833 }
5834 
5835 /// Given a @llvm.call.preallocated.setup, return the corresponding
5836 /// preallocated call.
5837 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5838   assert(cast<CallBase>(PreallocatedSetup)
5839                  ->getCalledFunction()
5840                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5841          "expected call_preallocated_setup Value");
5842   for (const auto *U : PreallocatedSetup->users()) {
5843     auto *UseCall = cast<CallBase>(U);
5844     const Function *Fn = UseCall->getCalledFunction();
5845     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5846       return UseCall;
5847     }
5848   }
5849   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5850 }
5851 
5852 /// Lower the call to the specified intrinsic function.
5853 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5854                                              unsigned Intrinsic) {
5855   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5856   SDLoc sdl = getCurSDLoc();
5857   DebugLoc dl = getCurDebugLoc();
5858   SDValue Res;
5859 
5860   SDNodeFlags Flags;
5861   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5862     Flags.copyFMF(*FPOp);
5863 
5864   switch (Intrinsic) {
5865   default:
5866     // By default, turn this into a target intrinsic node.
5867     visitTargetIntrinsic(I, Intrinsic);
5868     return;
5869   case Intrinsic::vscale: {
5870     match(&I, m_VScale(DAG.getDataLayout()));
5871     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5872     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5873     return;
5874   }
5875   case Intrinsic::vastart:  visitVAStart(I); return;
5876   case Intrinsic::vaend:    visitVAEnd(I); return;
5877   case Intrinsic::vacopy:   visitVACopy(I); return;
5878   case Intrinsic::returnaddress:
5879     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5880                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5881                              getValue(I.getArgOperand(0))));
5882     return;
5883   case Intrinsic::addressofreturnaddress:
5884     setValue(&I,
5885              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5886                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5887     return;
5888   case Intrinsic::sponentry:
5889     setValue(&I,
5890              DAG.getNode(ISD::SPONENTRY, sdl,
5891                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5892     return;
5893   case Intrinsic::frameaddress:
5894     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5895                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5896                              getValue(I.getArgOperand(0))));
5897     return;
5898   case Intrinsic::read_volatile_register:
5899   case Intrinsic::read_register: {
5900     Value *Reg = I.getArgOperand(0);
5901     SDValue Chain = getRoot();
5902     SDValue RegName =
5903         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5904     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5905     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5906       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5907     setValue(&I, Res);
5908     DAG.setRoot(Res.getValue(1));
5909     return;
5910   }
5911   case Intrinsic::write_register: {
5912     Value *Reg = I.getArgOperand(0);
5913     Value *RegValue = I.getArgOperand(1);
5914     SDValue Chain = getRoot();
5915     SDValue RegName =
5916         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5917     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5918                             RegName, getValue(RegValue)));
5919     return;
5920   }
5921   case Intrinsic::memcpy: {
5922     const auto &MCI = cast<MemCpyInst>(I);
5923     SDValue Op1 = getValue(I.getArgOperand(0));
5924     SDValue Op2 = getValue(I.getArgOperand(1));
5925     SDValue Op3 = getValue(I.getArgOperand(2));
5926     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5927     Align DstAlign = MCI.getDestAlign().valueOrOne();
5928     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5929     Align Alignment = std::min(DstAlign, SrcAlign);
5930     bool isVol = MCI.isVolatile();
5931     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5932     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5933     // node.
5934     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5935     SDValue MC = DAG.getMemcpy(
5936         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5937         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5938         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5939     updateDAGForMaybeTailCall(MC);
5940     return;
5941   }
5942   case Intrinsic::memcpy_inline: {
5943     const auto &MCI = cast<MemCpyInlineInst>(I);
5944     SDValue Dst = getValue(I.getArgOperand(0));
5945     SDValue Src = getValue(I.getArgOperand(1));
5946     SDValue Size = getValue(I.getArgOperand(2));
5947     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5948     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5949     Align DstAlign = MCI.getDestAlign().valueOrOne();
5950     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5951     Align Alignment = std::min(DstAlign, SrcAlign);
5952     bool isVol = MCI.isVolatile();
5953     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5954     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5955     // node.
5956     SDValue MC = DAG.getMemcpy(
5957         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5958         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5959         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5960     updateDAGForMaybeTailCall(MC);
5961     return;
5962   }
5963   case Intrinsic::memset: {
5964     const auto &MSI = cast<MemSetInst>(I);
5965     SDValue Op1 = getValue(I.getArgOperand(0));
5966     SDValue Op2 = getValue(I.getArgOperand(1));
5967     SDValue Op3 = getValue(I.getArgOperand(2));
5968     // @llvm.memset defines 0 and 1 to both mean no alignment.
5969     Align Alignment = MSI.getDestAlign().valueOrOne();
5970     bool isVol = MSI.isVolatile();
5971     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5972     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5973     SDValue MS = DAG.getMemset(
5974         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5975         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5976     updateDAGForMaybeTailCall(MS);
5977     return;
5978   }
5979   case Intrinsic::memset_inline: {
5980     const auto &MSII = cast<MemSetInlineInst>(I);
5981     SDValue Dst = getValue(I.getArgOperand(0));
5982     SDValue Value = getValue(I.getArgOperand(1));
5983     SDValue Size = getValue(I.getArgOperand(2));
5984     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5985     // @llvm.memset defines 0 and 1 to both mean no alignment.
5986     Align DstAlign = MSII.getDestAlign().valueOrOne();
5987     bool isVol = MSII.isVolatile();
5988     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5989     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5990     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5991                                /* AlwaysInline */ true, isTC,
5992                                MachinePointerInfo(I.getArgOperand(0)),
5993                                I.getAAMetadata());
5994     updateDAGForMaybeTailCall(MC);
5995     return;
5996   }
5997   case Intrinsic::memmove: {
5998     const auto &MMI = cast<MemMoveInst>(I);
5999     SDValue Op1 = getValue(I.getArgOperand(0));
6000     SDValue Op2 = getValue(I.getArgOperand(1));
6001     SDValue Op3 = getValue(I.getArgOperand(2));
6002     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6003     Align DstAlign = MMI.getDestAlign().valueOrOne();
6004     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6005     Align Alignment = std::min(DstAlign, SrcAlign);
6006     bool isVol = MMI.isVolatile();
6007     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6008     // FIXME: Support passing different dest/src alignments to the memmove DAG
6009     // node.
6010     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6011     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6012                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6013                                 MachinePointerInfo(I.getArgOperand(1)),
6014                                 I.getAAMetadata(), AA);
6015     updateDAGForMaybeTailCall(MM);
6016     return;
6017   }
6018   case Intrinsic::memcpy_element_unordered_atomic: {
6019     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6020     SDValue Dst = getValue(MI.getRawDest());
6021     SDValue Src = getValue(MI.getRawSource());
6022     SDValue Length = getValue(MI.getLength());
6023 
6024     Type *LengthTy = MI.getLength()->getType();
6025     unsigned ElemSz = MI.getElementSizeInBytes();
6026     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6027     SDValue MC =
6028         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6029                             isTC, MachinePointerInfo(MI.getRawDest()),
6030                             MachinePointerInfo(MI.getRawSource()));
6031     updateDAGForMaybeTailCall(MC);
6032     return;
6033   }
6034   case Intrinsic::memmove_element_unordered_atomic: {
6035     auto &MI = cast<AtomicMemMoveInst>(I);
6036     SDValue Dst = getValue(MI.getRawDest());
6037     SDValue Src = getValue(MI.getRawSource());
6038     SDValue Length = getValue(MI.getLength());
6039 
6040     Type *LengthTy = MI.getLength()->getType();
6041     unsigned ElemSz = MI.getElementSizeInBytes();
6042     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6043     SDValue MC =
6044         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6045                              isTC, MachinePointerInfo(MI.getRawDest()),
6046                              MachinePointerInfo(MI.getRawSource()));
6047     updateDAGForMaybeTailCall(MC);
6048     return;
6049   }
6050   case Intrinsic::memset_element_unordered_atomic: {
6051     auto &MI = cast<AtomicMemSetInst>(I);
6052     SDValue Dst = getValue(MI.getRawDest());
6053     SDValue Val = getValue(MI.getValue());
6054     SDValue Length = getValue(MI.getLength());
6055 
6056     Type *LengthTy = MI.getLength()->getType();
6057     unsigned ElemSz = MI.getElementSizeInBytes();
6058     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6059     SDValue MC =
6060         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6061                             isTC, MachinePointerInfo(MI.getRawDest()));
6062     updateDAGForMaybeTailCall(MC);
6063     return;
6064   }
6065   case Intrinsic::call_preallocated_setup: {
6066     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6067     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6068     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6069                               getRoot(), SrcValue);
6070     setValue(&I, Res);
6071     DAG.setRoot(Res);
6072     return;
6073   }
6074   case Intrinsic::call_preallocated_arg: {
6075     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6076     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6077     SDValue Ops[3];
6078     Ops[0] = getRoot();
6079     Ops[1] = SrcValue;
6080     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6081                                    MVT::i32); // arg index
6082     SDValue Res = DAG.getNode(
6083         ISD::PREALLOCATED_ARG, sdl,
6084         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6085     setValue(&I, Res);
6086     DAG.setRoot(Res.getValue(1));
6087     return;
6088   }
6089   case Intrinsic::dbg_addr:
6090   case Intrinsic::dbg_declare: {
6091     // Debug intrinsics are handled seperately in assignment tracking mode.
6092     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6093       return;
6094     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6095     // they are non-variadic.
6096     const auto &DI = cast<DbgVariableIntrinsic>(I);
6097     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6098     DILocalVariable *Variable = DI.getVariable();
6099     DIExpression *Expression = DI.getExpression();
6100     dropDanglingDebugInfo(Variable, Expression);
6101     assert(Variable && "Missing variable");
6102     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6103                       << "\n");
6104     // Check if address has undef value.
6105     const Value *Address = DI.getVariableLocationOp(0);
6106     if (!Address || isa<UndefValue>(Address) ||
6107         (Address->use_empty() && !isa<Argument>(Address))) {
6108       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6109                         << " (bad/undef/unused-arg address)\n");
6110       return;
6111     }
6112 
6113     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6114 
6115     // Check if this variable can be described by a frame index, typically
6116     // either as a static alloca or a byval parameter.
6117     int FI = std::numeric_limits<int>::max();
6118     if (const auto *AI =
6119             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6120       if (AI->isStaticAlloca()) {
6121         auto I = FuncInfo.StaticAllocaMap.find(AI);
6122         if (I != FuncInfo.StaticAllocaMap.end())
6123           FI = I->second;
6124       }
6125     } else if (const auto *Arg = dyn_cast<Argument>(
6126                    Address->stripInBoundsConstantOffsets())) {
6127       FI = FuncInfo.getArgumentFrameIndex(Arg);
6128     }
6129 
6130     // llvm.dbg.addr is control dependent and always generates indirect
6131     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6132     // the MachineFunction variable table.
6133     if (FI != std::numeric_limits<int>::max()) {
6134       if (Intrinsic == Intrinsic::dbg_addr) {
6135         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6136             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6137             dl, SDNodeOrder);
6138         DAG.AddDbgValue(SDV, isParameter);
6139       } else {
6140         LLVM_DEBUG(dbgs() << "Skipping " << DI
6141                           << " (variable info stashed in MF side table)\n");
6142       }
6143       return;
6144     }
6145 
6146     SDValue &N = NodeMap[Address];
6147     if (!N.getNode() && isa<Argument>(Address))
6148       // Check unused arguments map.
6149       N = UnusedArgNodeMap[Address];
6150     SDDbgValue *SDV;
6151     if (N.getNode()) {
6152       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6153         Address = BCI->getOperand(0);
6154       // Parameters are handled specially.
6155       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6156       if (isParameter && FINode) {
6157         // Byval parameter. We have a frame index at this point.
6158         SDV =
6159             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6160                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6161       } else if (isa<Argument>(Address)) {
6162         // Address is an argument, so try to emit its dbg value using
6163         // virtual register info from the FuncInfo.ValueMap.
6164         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6165                                  FuncArgumentDbgValueKind::Declare, N);
6166         return;
6167       } else {
6168         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6169                               true, dl, SDNodeOrder);
6170       }
6171       DAG.AddDbgValue(SDV, isParameter);
6172     } else {
6173       // If Address is an argument then try to emit its dbg value using
6174       // virtual register info from the FuncInfo.ValueMap.
6175       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6176                                     FuncArgumentDbgValueKind::Declare, N)) {
6177         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6178                           << " (could not emit func-arg dbg_value)\n");
6179       }
6180     }
6181     return;
6182   }
6183   case Intrinsic::dbg_label: {
6184     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6185     DILabel *Label = DI.getLabel();
6186     assert(Label && "Missing label");
6187 
6188     SDDbgLabel *SDV;
6189     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6190     DAG.AddDbgLabel(SDV);
6191     return;
6192   }
6193   case Intrinsic::dbg_assign: {
6194     // Debug intrinsics are handled seperately in assignment tracking mode.
6195     assert(isAssignmentTrackingEnabled(*I.getFunction()->getParent()) &&
6196            "expected assignment tracking to be enabled");
6197     return;
6198   }
6199   case Intrinsic::dbg_value: {
6200     // Debug intrinsics are handled seperately in assignment tracking mode.
6201     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6202       return;
6203     const DbgValueInst &DI = cast<DbgValueInst>(I);
6204     assert(DI.getVariable() && "Missing variable");
6205 
6206     DILocalVariable *Variable = DI.getVariable();
6207     DIExpression *Expression = DI.getExpression();
6208     dropDanglingDebugInfo(Variable, Expression);
6209     SmallVector<Value *, 4> Values(DI.getValues());
6210     if (Values.empty())
6211       return;
6212 
6213     if (llvm::is_contained(Values, nullptr))
6214       return;
6215 
6216     bool IsVariadic = DI.hasArgList();
6217     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6218                           SDNodeOrder, IsVariadic))
6219       addDanglingDebugInfo(&DI, SDNodeOrder);
6220     return;
6221   }
6222 
6223   case Intrinsic::eh_typeid_for: {
6224     // Find the type id for the given typeinfo.
6225     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6226     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6227     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6228     setValue(&I, Res);
6229     return;
6230   }
6231 
6232   case Intrinsic::eh_return_i32:
6233   case Intrinsic::eh_return_i64:
6234     DAG.getMachineFunction().setCallsEHReturn(true);
6235     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6236                             MVT::Other,
6237                             getControlRoot(),
6238                             getValue(I.getArgOperand(0)),
6239                             getValue(I.getArgOperand(1))));
6240     return;
6241   case Intrinsic::eh_unwind_init:
6242     DAG.getMachineFunction().setCallsUnwindInit(true);
6243     return;
6244   case Intrinsic::eh_dwarf_cfa:
6245     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6246                              TLI.getPointerTy(DAG.getDataLayout()),
6247                              getValue(I.getArgOperand(0))));
6248     return;
6249   case Intrinsic::eh_sjlj_callsite: {
6250     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6251     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6252     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6253 
6254     MMI.setCurrentCallSite(CI->getZExtValue());
6255     return;
6256   }
6257   case Intrinsic::eh_sjlj_functioncontext: {
6258     // Get and store the index of the function context.
6259     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6260     AllocaInst *FnCtx =
6261       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6262     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6263     MFI.setFunctionContextIndex(FI);
6264     return;
6265   }
6266   case Intrinsic::eh_sjlj_setjmp: {
6267     SDValue Ops[2];
6268     Ops[0] = getRoot();
6269     Ops[1] = getValue(I.getArgOperand(0));
6270     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6271                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6272     setValue(&I, Op.getValue(0));
6273     DAG.setRoot(Op.getValue(1));
6274     return;
6275   }
6276   case Intrinsic::eh_sjlj_longjmp:
6277     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6278                             getRoot(), getValue(I.getArgOperand(0))));
6279     return;
6280   case Intrinsic::eh_sjlj_setup_dispatch:
6281     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6282                             getRoot()));
6283     return;
6284   case Intrinsic::masked_gather:
6285     visitMaskedGather(I);
6286     return;
6287   case Intrinsic::masked_load:
6288     visitMaskedLoad(I);
6289     return;
6290   case Intrinsic::masked_scatter:
6291     visitMaskedScatter(I);
6292     return;
6293   case Intrinsic::masked_store:
6294     visitMaskedStore(I);
6295     return;
6296   case Intrinsic::masked_expandload:
6297     visitMaskedLoad(I, true /* IsExpanding */);
6298     return;
6299   case Intrinsic::masked_compressstore:
6300     visitMaskedStore(I, true /* IsCompressing */);
6301     return;
6302   case Intrinsic::powi:
6303     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6304                             getValue(I.getArgOperand(1)), DAG));
6305     return;
6306   case Intrinsic::log:
6307     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6308     return;
6309   case Intrinsic::log2:
6310     setValue(&I,
6311              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6312     return;
6313   case Intrinsic::log10:
6314     setValue(&I,
6315              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6316     return;
6317   case Intrinsic::exp:
6318     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6319     return;
6320   case Intrinsic::exp2:
6321     setValue(&I,
6322              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6323     return;
6324   case Intrinsic::pow:
6325     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6326                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6327     return;
6328   case Intrinsic::sqrt:
6329   case Intrinsic::fabs:
6330   case Intrinsic::sin:
6331   case Intrinsic::cos:
6332   case Intrinsic::floor:
6333   case Intrinsic::ceil:
6334   case Intrinsic::trunc:
6335   case Intrinsic::rint:
6336   case Intrinsic::nearbyint:
6337   case Intrinsic::round:
6338   case Intrinsic::roundeven:
6339   case Intrinsic::canonicalize: {
6340     unsigned Opcode;
6341     switch (Intrinsic) {
6342     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6343     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6344     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6345     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6346     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6347     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6348     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6349     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6350     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6351     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6352     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6353     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6354     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6355     }
6356 
6357     setValue(&I, DAG.getNode(Opcode, sdl,
6358                              getValue(I.getArgOperand(0)).getValueType(),
6359                              getValue(I.getArgOperand(0)), Flags));
6360     return;
6361   }
6362   case Intrinsic::lround:
6363   case Intrinsic::llround:
6364   case Intrinsic::lrint:
6365   case Intrinsic::llrint: {
6366     unsigned Opcode;
6367     switch (Intrinsic) {
6368     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6369     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6370     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6371     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6372     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6373     }
6374 
6375     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6376     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6377                              getValue(I.getArgOperand(0))));
6378     return;
6379   }
6380   case Intrinsic::minnum:
6381     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6382                              getValue(I.getArgOperand(0)).getValueType(),
6383                              getValue(I.getArgOperand(0)),
6384                              getValue(I.getArgOperand(1)), Flags));
6385     return;
6386   case Intrinsic::maxnum:
6387     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6388                              getValue(I.getArgOperand(0)).getValueType(),
6389                              getValue(I.getArgOperand(0)),
6390                              getValue(I.getArgOperand(1)), Flags));
6391     return;
6392   case Intrinsic::minimum:
6393     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6394                              getValue(I.getArgOperand(0)).getValueType(),
6395                              getValue(I.getArgOperand(0)),
6396                              getValue(I.getArgOperand(1)), Flags));
6397     return;
6398   case Intrinsic::maximum:
6399     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6400                              getValue(I.getArgOperand(0)).getValueType(),
6401                              getValue(I.getArgOperand(0)),
6402                              getValue(I.getArgOperand(1)), Flags));
6403     return;
6404   case Intrinsic::copysign:
6405     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6406                              getValue(I.getArgOperand(0)).getValueType(),
6407                              getValue(I.getArgOperand(0)),
6408                              getValue(I.getArgOperand(1)), Flags));
6409     return;
6410   case Intrinsic::arithmetic_fence: {
6411     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6412                              getValue(I.getArgOperand(0)).getValueType(),
6413                              getValue(I.getArgOperand(0)), Flags));
6414     return;
6415   }
6416   case Intrinsic::fma:
6417     setValue(&I, DAG.getNode(
6418                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6419                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6420                      getValue(I.getArgOperand(2)), Flags));
6421     return;
6422 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6423   case Intrinsic::INTRINSIC:
6424 #include "llvm/IR/ConstrainedOps.def"
6425     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6426     return;
6427 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6428 #include "llvm/IR/VPIntrinsics.def"
6429     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6430     return;
6431   case Intrinsic::fptrunc_round: {
6432     // Get the last argument, the metadata and convert it to an integer in the
6433     // call
6434     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6435     std::optional<RoundingMode> RoundMode =
6436         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6437 
6438     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6439 
6440     // Propagate fast-math-flags from IR to node(s).
6441     SDNodeFlags Flags;
6442     Flags.copyFMF(*cast<FPMathOperator>(&I));
6443     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6444 
6445     SDValue Result;
6446     Result = DAG.getNode(
6447         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6448         DAG.getTargetConstant((int)*RoundMode, sdl,
6449                               TLI.getPointerTy(DAG.getDataLayout())));
6450     setValue(&I, Result);
6451 
6452     return;
6453   }
6454   case Intrinsic::fmuladd: {
6455     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6456     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6457         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6458       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6459                                getValue(I.getArgOperand(0)).getValueType(),
6460                                getValue(I.getArgOperand(0)),
6461                                getValue(I.getArgOperand(1)),
6462                                getValue(I.getArgOperand(2)), Flags));
6463     } else {
6464       // TODO: Intrinsic calls should have fast-math-flags.
6465       SDValue Mul = DAG.getNode(
6466           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6467           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6468       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6469                                 getValue(I.getArgOperand(0)).getValueType(),
6470                                 Mul, getValue(I.getArgOperand(2)), Flags);
6471       setValue(&I, Add);
6472     }
6473     return;
6474   }
6475   case Intrinsic::convert_to_fp16:
6476     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6477                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6478                                          getValue(I.getArgOperand(0)),
6479                                          DAG.getTargetConstant(0, sdl,
6480                                                                MVT::i32))));
6481     return;
6482   case Intrinsic::convert_from_fp16:
6483     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6484                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6485                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6486                                          getValue(I.getArgOperand(0)))));
6487     return;
6488   case Intrinsic::fptosi_sat: {
6489     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6490     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6491                              getValue(I.getArgOperand(0)),
6492                              DAG.getValueType(VT.getScalarType())));
6493     return;
6494   }
6495   case Intrinsic::fptoui_sat: {
6496     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6497     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6498                              getValue(I.getArgOperand(0)),
6499                              DAG.getValueType(VT.getScalarType())));
6500     return;
6501   }
6502   case Intrinsic::set_rounding:
6503     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6504                       {getRoot(), getValue(I.getArgOperand(0))});
6505     setValue(&I, Res);
6506     DAG.setRoot(Res.getValue(0));
6507     return;
6508   case Intrinsic::is_fpclass: {
6509     const DataLayout DLayout = DAG.getDataLayout();
6510     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6511     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6512     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6513     MachineFunction &MF = DAG.getMachineFunction();
6514     const Function &F = MF.getFunction();
6515     SDValue Op = getValue(I.getArgOperand(0));
6516     SDNodeFlags Flags;
6517     Flags.setNoFPExcept(
6518         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6519     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6520     // expansion can use illegal types. Making expansion early allows
6521     // legalizing these types prior to selection.
6522     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6523       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6524       setValue(&I, Result);
6525       return;
6526     }
6527 
6528     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6529     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6530     setValue(&I, V);
6531     return;
6532   }
6533   case Intrinsic::pcmarker: {
6534     SDValue Tmp = getValue(I.getArgOperand(0));
6535     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6536     return;
6537   }
6538   case Intrinsic::readcyclecounter: {
6539     SDValue Op = getRoot();
6540     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6541                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6542     setValue(&I, Res);
6543     DAG.setRoot(Res.getValue(1));
6544     return;
6545   }
6546   case Intrinsic::bitreverse:
6547     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6548                              getValue(I.getArgOperand(0)).getValueType(),
6549                              getValue(I.getArgOperand(0))));
6550     return;
6551   case Intrinsic::bswap:
6552     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6553                              getValue(I.getArgOperand(0)).getValueType(),
6554                              getValue(I.getArgOperand(0))));
6555     return;
6556   case Intrinsic::cttz: {
6557     SDValue Arg = getValue(I.getArgOperand(0));
6558     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6559     EVT Ty = Arg.getValueType();
6560     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6561                              sdl, Ty, Arg));
6562     return;
6563   }
6564   case Intrinsic::ctlz: {
6565     SDValue Arg = getValue(I.getArgOperand(0));
6566     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6567     EVT Ty = Arg.getValueType();
6568     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6569                              sdl, Ty, Arg));
6570     return;
6571   }
6572   case Intrinsic::ctpop: {
6573     SDValue Arg = getValue(I.getArgOperand(0));
6574     EVT Ty = Arg.getValueType();
6575     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6576     return;
6577   }
6578   case Intrinsic::fshl:
6579   case Intrinsic::fshr: {
6580     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6581     SDValue X = getValue(I.getArgOperand(0));
6582     SDValue Y = getValue(I.getArgOperand(1));
6583     SDValue Z = getValue(I.getArgOperand(2));
6584     EVT VT = X.getValueType();
6585 
6586     if (X == Y) {
6587       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6588       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6589     } else {
6590       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6591       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6592     }
6593     return;
6594   }
6595   case Intrinsic::sadd_sat: {
6596     SDValue Op1 = getValue(I.getArgOperand(0));
6597     SDValue Op2 = getValue(I.getArgOperand(1));
6598     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6599     return;
6600   }
6601   case Intrinsic::uadd_sat: {
6602     SDValue Op1 = getValue(I.getArgOperand(0));
6603     SDValue Op2 = getValue(I.getArgOperand(1));
6604     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6605     return;
6606   }
6607   case Intrinsic::ssub_sat: {
6608     SDValue Op1 = getValue(I.getArgOperand(0));
6609     SDValue Op2 = getValue(I.getArgOperand(1));
6610     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6611     return;
6612   }
6613   case Intrinsic::usub_sat: {
6614     SDValue Op1 = getValue(I.getArgOperand(0));
6615     SDValue Op2 = getValue(I.getArgOperand(1));
6616     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6617     return;
6618   }
6619   case Intrinsic::sshl_sat: {
6620     SDValue Op1 = getValue(I.getArgOperand(0));
6621     SDValue Op2 = getValue(I.getArgOperand(1));
6622     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6623     return;
6624   }
6625   case Intrinsic::ushl_sat: {
6626     SDValue Op1 = getValue(I.getArgOperand(0));
6627     SDValue Op2 = getValue(I.getArgOperand(1));
6628     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6629     return;
6630   }
6631   case Intrinsic::smul_fix:
6632   case Intrinsic::umul_fix:
6633   case Intrinsic::smul_fix_sat:
6634   case Intrinsic::umul_fix_sat: {
6635     SDValue Op1 = getValue(I.getArgOperand(0));
6636     SDValue Op2 = getValue(I.getArgOperand(1));
6637     SDValue Op3 = getValue(I.getArgOperand(2));
6638     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6639                              Op1.getValueType(), Op1, Op2, Op3));
6640     return;
6641   }
6642   case Intrinsic::sdiv_fix:
6643   case Intrinsic::udiv_fix:
6644   case Intrinsic::sdiv_fix_sat:
6645   case Intrinsic::udiv_fix_sat: {
6646     SDValue Op1 = getValue(I.getArgOperand(0));
6647     SDValue Op2 = getValue(I.getArgOperand(1));
6648     SDValue Op3 = getValue(I.getArgOperand(2));
6649     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6650                               Op1, Op2, Op3, DAG, TLI));
6651     return;
6652   }
6653   case Intrinsic::smax: {
6654     SDValue Op1 = getValue(I.getArgOperand(0));
6655     SDValue Op2 = getValue(I.getArgOperand(1));
6656     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6657     return;
6658   }
6659   case Intrinsic::smin: {
6660     SDValue Op1 = getValue(I.getArgOperand(0));
6661     SDValue Op2 = getValue(I.getArgOperand(1));
6662     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6663     return;
6664   }
6665   case Intrinsic::umax: {
6666     SDValue Op1 = getValue(I.getArgOperand(0));
6667     SDValue Op2 = getValue(I.getArgOperand(1));
6668     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6669     return;
6670   }
6671   case Intrinsic::umin: {
6672     SDValue Op1 = getValue(I.getArgOperand(0));
6673     SDValue Op2 = getValue(I.getArgOperand(1));
6674     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6675     return;
6676   }
6677   case Intrinsic::abs: {
6678     // TODO: Preserve "int min is poison" arg in SDAG?
6679     SDValue Op1 = getValue(I.getArgOperand(0));
6680     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6681     return;
6682   }
6683   case Intrinsic::stacksave: {
6684     SDValue Op = getRoot();
6685     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6686     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6687     setValue(&I, Res);
6688     DAG.setRoot(Res.getValue(1));
6689     return;
6690   }
6691   case Intrinsic::stackrestore:
6692     Res = getValue(I.getArgOperand(0));
6693     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6694     return;
6695   case Intrinsic::get_dynamic_area_offset: {
6696     SDValue Op = getRoot();
6697     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6698     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6699     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6700     // target.
6701     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6702       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6703                          " intrinsic!");
6704     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6705                       Op);
6706     DAG.setRoot(Op);
6707     setValue(&I, Res);
6708     return;
6709   }
6710   case Intrinsic::stackguard: {
6711     MachineFunction &MF = DAG.getMachineFunction();
6712     const Module &M = *MF.getFunction().getParent();
6713     SDValue Chain = getRoot();
6714     if (TLI.useLoadStackGuardNode()) {
6715       Res = getLoadStackGuard(DAG, sdl, Chain);
6716     } else {
6717       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6718       const Value *Global = TLI.getSDagStackGuard(M);
6719       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6720       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6721                         MachinePointerInfo(Global, 0), Align,
6722                         MachineMemOperand::MOVolatile);
6723     }
6724     if (TLI.useStackGuardXorFP())
6725       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6726     DAG.setRoot(Chain);
6727     setValue(&I, Res);
6728     return;
6729   }
6730   case Intrinsic::stackprotector: {
6731     // Emit code into the DAG to store the stack guard onto the stack.
6732     MachineFunction &MF = DAG.getMachineFunction();
6733     MachineFrameInfo &MFI = MF.getFrameInfo();
6734     SDValue Src, Chain = getRoot();
6735 
6736     if (TLI.useLoadStackGuardNode())
6737       Src = getLoadStackGuard(DAG, sdl, Chain);
6738     else
6739       Src = getValue(I.getArgOperand(0));   // The guard's value.
6740 
6741     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6742 
6743     int FI = FuncInfo.StaticAllocaMap[Slot];
6744     MFI.setStackProtectorIndex(FI);
6745     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6746 
6747     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6748 
6749     // Store the stack protector onto the stack.
6750     Res = DAG.getStore(
6751         Chain, sdl, Src, FIN,
6752         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6753         MaybeAlign(), MachineMemOperand::MOVolatile);
6754     setValue(&I, Res);
6755     DAG.setRoot(Res);
6756     return;
6757   }
6758   case Intrinsic::objectsize:
6759     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6760 
6761   case Intrinsic::is_constant:
6762     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6763 
6764   case Intrinsic::annotation:
6765   case Intrinsic::ptr_annotation:
6766   case Intrinsic::launder_invariant_group:
6767   case Intrinsic::strip_invariant_group:
6768     // Drop the intrinsic, but forward the value
6769     setValue(&I, getValue(I.getOperand(0)));
6770     return;
6771 
6772   case Intrinsic::assume:
6773   case Intrinsic::experimental_noalias_scope_decl:
6774   case Intrinsic::var_annotation:
6775   case Intrinsic::sideeffect:
6776     // Discard annotate attributes, noalias scope declarations, assumptions, and
6777     // artificial side-effects.
6778     return;
6779 
6780   case Intrinsic::codeview_annotation: {
6781     // Emit a label associated with this metadata.
6782     MachineFunction &MF = DAG.getMachineFunction();
6783     MCSymbol *Label =
6784         MF.getMMI().getContext().createTempSymbol("annotation", true);
6785     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6786     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6787     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6788     DAG.setRoot(Res);
6789     return;
6790   }
6791 
6792   case Intrinsic::init_trampoline: {
6793     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6794 
6795     SDValue Ops[6];
6796     Ops[0] = getRoot();
6797     Ops[1] = getValue(I.getArgOperand(0));
6798     Ops[2] = getValue(I.getArgOperand(1));
6799     Ops[3] = getValue(I.getArgOperand(2));
6800     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6801     Ops[5] = DAG.getSrcValue(F);
6802 
6803     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6804 
6805     DAG.setRoot(Res);
6806     return;
6807   }
6808   case Intrinsic::adjust_trampoline:
6809     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6810                              TLI.getPointerTy(DAG.getDataLayout()),
6811                              getValue(I.getArgOperand(0))));
6812     return;
6813   case Intrinsic::gcroot: {
6814     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6815            "only valid in functions with gc specified, enforced by Verifier");
6816     assert(GFI && "implied by previous");
6817     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6818     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6819 
6820     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6821     GFI->addStackRoot(FI->getIndex(), TypeMap);
6822     return;
6823   }
6824   case Intrinsic::gcread:
6825   case Intrinsic::gcwrite:
6826     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6827   case Intrinsic::get_rounding:
6828     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6829     setValue(&I, Res);
6830     DAG.setRoot(Res.getValue(1));
6831     return;
6832 
6833   case Intrinsic::expect:
6834     // Just replace __builtin_expect(exp, c) with EXP.
6835     setValue(&I, getValue(I.getArgOperand(0)));
6836     return;
6837 
6838   case Intrinsic::ubsantrap:
6839   case Intrinsic::debugtrap:
6840   case Intrinsic::trap: {
6841     StringRef TrapFuncName =
6842         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6843     if (TrapFuncName.empty()) {
6844       switch (Intrinsic) {
6845       case Intrinsic::trap:
6846         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6847         break;
6848       case Intrinsic::debugtrap:
6849         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6850         break;
6851       case Intrinsic::ubsantrap:
6852         DAG.setRoot(DAG.getNode(
6853             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6854             DAG.getTargetConstant(
6855                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6856                 MVT::i32)));
6857         break;
6858       default: llvm_unreachable("unknown trap intrinsic");
6859       }
6860       return;
6861     }
6862     TargetLowering::ArgListTy Args;
6863     if (Intrinsic == Intrinsic::ubsantrap) {
6864       Args.push_back(TargetLoweringBase::ArgListEntry());
6865       Args[0].Val = I.getArgOperand(0);
6866       Args[0].Node = getValue(Args[0].Val);
6867       Args[0].Ty = Args[0].Val->getType();
6868     }
6869 
6870     TargetLowering::CallLoweringInfo CLI(DAG);
6871     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6872         CallingConv::C, I.getType(),
6873         DAG.getExternalSymbol(TrapFuncName.data(),
6874                               TLI.getPointerTy(DAG.getDataLayout())),
6875         std::move(Args));
6876 
6877     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6878     DAG.setRoot(Result.second);
6879     return;
6880   }
6881 
6882   case Intrinsic::uadd_with_overflow:
6883   case Intrinsic::sadd_with_overflow:
6884   case Intrinsic::usub_with_overflow:
6885   case Intrinsic::ssub_with_overflow:
6886   case Intrinsic::umul_with_overflow:
6887   case Intrinsic::smul_with_overflow: {
6888     ISD::NodeType Op;
6889     switch (Intrinsic) {
6890     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6891     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6892     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6893     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6894     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6895     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6896     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6897     }
6898     SDValue Op1 = getValue(I.getArgOperand(0));
6899     SDValue Op2 = getValue(I.getArgOperand(1));
6900 
6901     EVT ResultVT = Op1.getValueType();
6902     EVT OverflowVT = MVT::i1;
6903     if (ResultVT.isVector())
6904       OverflowVT = EVT::getVectorVT(
6905           *Context, OverflowVT, ResultVT.getVectorElementCount());
6906 
6907     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6908     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6909     return;
6910   }
6911   case Intrinsic::prefetch: {
6912     SDValue Ops[5];
6913     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6914     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6915     Ops[0] = DAG.getRoot();
6916     Ops[1] = getValue(I.getArgOperand(0));
6917     Ops[2] = getValue(I.getArgOperand(1));
6918     Ops[3] = getValue(I.getArgOperand(2));
6919     Ops[4] = getValue(I.getArgOperand(3));
6920     SDValue Result = DAG.getMemIntrinsicNode(
6921         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6922         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6923         /* align */ std::nullopt, Flags);
6924 
6925     // Chain the prefetch in parallell with any pending loads, to stay out of
6926     // the way of later optimizations.
6927     PendingLoads.push_back(Result);
6928     Result = getRoot();
6929     DAG.setRoot(Result);
6930     return;
6931   }
6932   case Intrinsic::lifetime_start:
6933   case Intrinsic::lifetime_end: {
6934     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6935     // Stack coloring is not enabled in O0, discard region information.
6936     if (TM.getOptLevel() == CodeGenOpt::None)
6937       return;
6938 
6939     const int64_t ObjectSize =
6940         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6941     Value *const ObjectPtr = I.getArgOperand(1);
6942     SmallVector<const Value *, 4> Allocas;
6943     getUnderlyingObjects(ObjectPtr, Allocas);
6944 
6945     for (const Value *Alloca : Allocas) {
6946       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6947 
6948       // Could not find an Alloca.
6949       if (!LifetimeObject)
6950         continue;
6951 
6952       // First check that the Alloca is static, otherwise it won't have a
6953       // valid frame index.
6954       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6955       if (SI == FuncInfo.StaticAllocaMap.end())
6956         return;
6957 
6958       const int FrameIndex = SI->second;
6959       int64_t Offset;
6960       if (GetPointerBaseWithConstantOffset(
6961               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6962         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6963       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6964                                 Offset);
6965       DAG.setRoot(Res);
6966     }
6967     return;
6968   }
6969   case Intrinsic::pseudoprobe: {
6970     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6971     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6972     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6973     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6974     DAG.setRoot(Res);
6975     return;
6976   }
6977   case Intrinsic::invariant_start:
6978     // Discard region information.
6979     setValue(&I,
6980              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6981     return;
6982   case Intrinsic::invariant_end:
6983     // Discard region information.
6984     return;
6985   case Intrinsic::clear_cache:
6986     /// FunctionName may be null.
6987     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6988       lowerCallToExternalSymbol(I, FunctionName);
6989     return;
6990   case Intrinsic::donothing:
6991   case Intrinsic::seh_try_begin:
6992   case Intrinsic::seh_scope_begin:
6993   case Intrinsic::seh_try_end:
6994   case Intrinsic::seh_scope_end:
6995     // ignore
6996     return;
6997   case Intrinsic::experimental_stackmap:
6998     visitStackmap(I);
6999     return;
7000   case Intrinsic::experimental_patchpoint_void:
7001   case Intrinsic::experimental_patchpoint_i64:
7002     visitPatchpoint(I);
7003     return;
7004   case Intrinsic::experimental_gc_statepoint:
7005     LowerStatepoint(cast<GCStatepointInst>(I));
7006     return;
7007   case Intrinsic::experimental_gc_result:
7008     visitGCResult(cast<GCResultInst>(I));
7009     return;
7010   case Intrinsic::experimental_gc_relocate:
7011     visitGCRelocate(cast<GCRelocateInst>(I));
7012     return;
7013   case Intrinsic::instrprof_cover:
7014     llvm_unreachable("instrprof failed to lower a cover");
7015   case Intrinsic::instrprof_increment:
7016     llvm_unreachable("instrprof failed to lower an increment");
7017   case Intrinsic::instrprof_value_profile:
7018     llvm_unreachable("instrprof failed to lower a value profiling call");
7019   case Intrinsic::localescape: {
7020     MachineFunction &MF = DAG.getMachineFunction();
7021     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7022 
7023     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7024     // is the same on all targets.
7025     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7026       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7027       if (isa<ConstantPointerNull>(Arg))
7028         continue; // Skip null pointers. They represent a hole in index space.
7029       AllocaInst *Slot = cast<AllocaInst>(Arg);
7030       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7031              "can only escape static allocas");
7032       int FI = FuncInfo.StaticAllocaMap[Slot];
7033       MCSymbol *FrameAllocSym =
7034           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7035               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7036       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7037               TII->get(TargetOpcode::LOCAL_ESCAPE))
7038           .addSym(FrameAllocSym)
7039           .addFrameIndex(FI);
7040     }
7041 
7042     return;
7043   }
7044 
7045   case Intrinsic::localrecover: {
7046     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7047     MachineFunction &MF = DAG.getMachineFunction();
7048 
7049     // Get the symbol that defines the frame offset.
7050     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7051     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7052     unsigned IdxVal =
7053         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7054     MCSymbol *FrameAllocSym =
7055         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7056             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7057 
7058     Value *FP = I.getArgOperand(1);
7059     SDValue FPVal = getValue(FP);
7060     EVT PtrVT = FPVal.getValueType();
7061 
7062     // Create a MCSymbol for the label to avoid any target lowering
7063     // that would make this PC relative.
7064     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7065     SDValue OffsetVal =
7066         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7067 
7068     // Add the offset to the FP.
7069     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7070     setValue(&I, Add);
7071 
7072     return;
7073   }
7074 
7075   case Intrinsic::eh_exceptionpointer:
7076   case Intrinsic::eh_exceptioncode: {
7077     // Get the exception pointer vreg, copy from it, and resize it to fit.
7078     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7079     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7080     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7081     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7082     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7083     if (Intrinsic == Intrinsic::eh_exceptioncode)
7084       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7085     setValue(&I, N);
7086     return;
7087   }
7088   case Intrinsic::xray_customevent: {
7089     // Here we want to make sure that the intrinsic behaves as if it has a
7090     // specific calling convention, and only for x86_64.
7091     // FIXME: Support other platforms later.
7092     const auto &Triple = DAG.getTarget().getTargetTriple();
7093     if (Triple.getArch() != Triple::x86_64)
7094       return;
7095 
7096     SmallVector<SDValue, 8> Ops;
7097 
7098     // We want to say that we always want the arguments in registers.
7099     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7100     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7101     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7102     SDValue Chain = getRoot();
7103     Ops.push_back(LogEntryVal);
7104     Ops.push_back(StrSizeVal);
7105     Ops.push_back(Chain);
7106 
7107     // We need to enforce the calling convention for the callsite, so that
7108     // argument ordering is enforced correctly, and that register allocation can
7109     // see that some registers may be assumed clobbered and have to preserve
7110     // them across calls to the intrinsic.
7111     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7112                                            sdl, NodeTys, Ops);
7113     SDValue patchableNode = SDValue(MN, 0);
7114     DAG.setRoot(patchableNode);
7115     setValue(&I, patchableNode);
7116     return;
7117   }
7118   case Intrinsic::xray_typedevent: {
7119     // Here we want to make sure that the intrinsic behaves as if it has a
7120     // specific calling convention, and only for x86_64.
7121     // FIXME: Support other platforms later.
7122     const auto &Triple = DAG.getTarget().getTargetTriple();
7123     if (Triple.getArch() != Triple::x86_64)
7124       return;
7125 
7126     SmallVector<SDValue, 8> Ops;
7127 
7128     // We want to say that we always want the arguments in registers.
7129     // It's unclear to me how manipulating the selection DAG here forces callers
7130     // to provide arguments in registers instead of on the stack.
7131     SDValue LogTypeId = getValue(I.getArgOperand(0));
7132     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7133     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7134     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7135     SDValue Chain = getRoot();
7136     Ops.push_back(LogTypeId);
7137     Ops.push_back(LogEntryVal);
7138     Ops.push_back(StrSizeVal);
7139     Ops.push_back(Chain);
7140 
7141     // We need to enforce the calling convention for the callsite, so that
7142     // argument ordering is enforced correctly, and that register allocation can
7143     // see that some registers may be assumed clobbered and have to preserve
7144     // them across calls to the intrinsic.
7145     MachineSDNode *MN = DAG.getMachineNode(
7146         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7147     SDValue patchableNode = SDValue(MN, 0);
7148     DAG.setRoot(patchableNode);
7149     setValue(&I, patchableNode);
7150     return;
7151   }
7152   case Intrinsic::experimental_deoptimize:
7153     LowerDeoptimizeCall(&I);
7154     return;
7155   case Intrinsic::experimental_stepvector:
7156     visitStepVector(I);
7157     return;
7158   case Intrinsic::vector_reduce_fadd:
7159   case Intrinsic::vector_reduce_fmul:
7160   case Intrinsic::vector_reduce_add:
7161   case Intrinsic::vector_reduce_mul:
7162   case Intrinsic::vector_reduce_and:
7163   case Intrinsic::vector_reduce_or:
7164   case Intrinsic::vector_reduce_xor:
7165   case Intrinsic::vector_reduce_smax:
7166   case Intrinsic::vector_reduce_smin:
7167   case Intrinsic::vector_reduce_umax:
7168   case Intrinsic::vector_reduce_umin:
7169   case Intrinsic::vector_reduce_fmax:
7170   case Intrinsic::vector_reduce_fmin:
7171     visitVectorReduce(I, Intrinsic);
7172     return;
7173 
7174   case Intrinsic::icall_branch_funnel: {
7175     SmallVector<SDValue, 16> Ops;
7176     Ops.push_back(getValue(I.getArgOperand(0)));
7177 
7178     int64_t Offset;
7179     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7180         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7181     if (!Base)
7182       report_fatal_error(
7183           "llvm.icall.branch.funnel operand must be a GlobalValue");
7184     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7185 
7186     struct BranchFunnelTarget {
7187       int64_t Offset;
7188       SDValue Target;
7189     };
7190     SmallVector<BranchFunnelTarget, 8> Targets;
7191 
7192     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7193       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7194           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7195       if (ElemBase != Base)
7196         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7197                            "to the same GlobalValue");
7198 
7199       SDValue Val = getValue(I.getArgOperand(Op + 1));
7200       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7201       if (!GA)
7202         report_fatal_error(
7203             "llvm.icall.branch.funnel operand must be a GlobalValue");
7204       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7205                                      GA->getGlobal(), sdl, Val.getValueType(),
7206                                      GA->getOffset())});
7207     }
7208     llvm::sort(Targets,
7209                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7210                  return T1.Offset < T2.Offset;
7211                });
7212 
7213     for (auto &T : Targets) {
7214       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7215       Ops.push_back(T.Target);
7216     }
7217 
7218     Ops.push_back(DAG.getRoot()); // Chain
7219     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7220                                  MVT::Other, Ops),
7221               0);
7222     DAG.setRoot(N);
7223     setValue(&I, N);
7224     HasTailCall = true;
7225     return;
7226   }
7227 
7228   case Intrinsic::wasm_landingpad_index:
7229     // Information this intrinsic contained has been transferred to
7230     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7231     // delete it now.
7232     return;
7233 
7234   case Intrinsic::aarch64_settag:
7235   case Intrinsic::aarch64_settag_zero: {
7236     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7237     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7238     SDValue Val = TSI.EmitTargetCodeForSetTag(
7239         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7240         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7241         ZeroMemory);
7242     DAG.setRoot(Val);
7243     setValue(&I, Val);
7244     return;
7245   }
7246   case Intrinsic::ptrmask: {
7247     SDValue Ptr = getValue(I.getOperand(0));
7248     SDValue Const = getValue(I.getOperand(1));
7249 
7250     EVT PtrVT = Ptr.getValueType();
7251     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7252                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7253     return;
7254   }
7255   case Intrinsic::threadlocal_address: {
7256     setValue(&I, getValue(I.getOperand(0)));
7257     return;
7258   }
7259   case Intrinsic::get_active_lane_mask: {
7260     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7261     SDValue Index = getValue(I.getOperand(0));
7262     EVT ElementVT = Index.getValueType();
7263 
7264     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7265       visitTargetIntrinsic(I, Intrinsic);
7266       return;
7267     }
7268 
7269     SDValue TripCount = getValue(I.getOperand(1));
7270     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7271 
7272     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7273     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7274     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7275     SDValue VectorInduction = DAG.getNode(
7276         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7277     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7278                                  VectorTripCount, ISD::CondCode::SETULT);
7279     setValue(&I, SetCC);
7280     return;
7281   }
7282   case Intrinsic::vector_insert: {
7283     SDValue Vec = getValue(I.getOperand(0));
7284     SDValue SubVec = getValue(I.getOperand(1));
7285     SDValue Index = getValue(I.getOperand(2));
7286 
7287     // The intrinsic's index type is i64, but the SDNode requires an index type
7288     // suitable for the target. Convert the index as required.
7289     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7290     if (Index.getValueType() != VectorIdxTy)
7291       Index = DAG.getVectorIdxConstant(
7292           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7293 
7294     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7295     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7296                              Index));
7297     return;
7298   }
7299   case Intrinsic::vector_extract: {
7300     SDValue Vec = getValue(I.getOperand(0));
7301     SDValue Index = getValue(I.getOperand(1));
7302     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7303 
7304     // The intrinsic's index type is i64, but the SDNode requires an index type
7305     // suitable for the target. Convert the index as required.
7306     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7307     if (Index.getValueType() != VectorIdxTy)
7308       Index = DAG.getVectorIdxConstant(
7309           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7310 
7311     setValue(&I,
7312              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7313     return;
7314   }
7315   case Intrinsic::experimental_vector_reverse:
7316     visitVectorReverse(I);
7317     return;
7318   case Intrinsic::experimental_vector_splice:
7319     visitVectorSplice(I);
7320     return;
7321   }
7322 }
7323 
7324 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7325     const ConstrainedFPIntrinsic &FPI) {
7326   SDLoc sdl = getCurSDLoc();
7327 
7328   // We do not need to serialize constrained FP intrinsics against
7329   // each other or against (nonvolatile) loads, so they can be
7330   // chained like loads.
7331   SDValue Chain = DAG.getRoot();
7332   SmallVector<SDValue, 4> Opers;
7333   Opers.push_back(Chain);
7334   if (FPI.isUnaryOp()) {
7335     Opers.push_back(getValue(FPI.getArgOperand(0)));
7336   } else if (FPI.isTernaryOp()) {
7337     Opers.push_back(getValue(FPI.getArgOperand(0)));
7338     Opers.push_back(getValue(FPI.getArgOperand(1)));
7339     Opers.push_back(getValue(FPI.getArgOperand(2)));
7340   } else {
7341     Opers.push_back(getValue(FPI.getArgOperand(0)));
7342     Opers.push_back(getValue(FPI.getArgOperand(1)));
7343   }
7344 
7345   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7346     assert(Result.getNode()->getNumValues() == 2);
7347 
7348     // Push node to the appropriate list so that future instructions can be
7349     // chained up correctly.
7350     SDValue OutChain = Result.getValue(1);
7351     switch (EB) {
7352     case fp::ExceptionBehavior::ebIgnore:
7353       // The only reason why ebIgnore nodes still need to be chained is that
7354       // they might depend on the current rounding mode, and therefore must
7355       // not be moved across instruction that may change that mode.
7356       [[fallthrough]];
7357     case fp::ExceptionBehavior::ebMayTrap:
7358       // These must not be moved across calls or instructions that may change
7359       // floating-point exception masks.
7360       PendingConstrainedFP.push_back(OutChain);
7361       break;
7362     case fp::ExceptionBehavior::ebStrict:
7363       // These must not be moved across calls or instructions that may change
7364       // floating-point exception masks or read floating-point exception flags.
7365       // In addition, they cannot be optimized out even if unused.
7366       PendingConstrainedFPStrict.push_back(OutChain);
7367       break;
7368     }
7369   };
7370 
7371   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7372   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7373   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7374   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7375 
7376   SDNodeFlags Flags;
7377   if (EB == fp::ExceptionBehavior::ebIgnore)
7378     Flags.setNoFPExcept(true);
7379 
7380   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7381     Flags.copyFMF(*FPOp);
7382 
7383   unsigned Opcode;
7384   switch (FPI.getIntrinsicID()) {
7385   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7386 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7387   case Intrinsic::INTRINSIC:                                                   \
7388     Opcode = ISD::STRICT_##DAGN;                                               \
7389     break;
7390 #include "llvm/IR/ConstrainedOps.def"
7391   case Intrinsic::experimental_constrained_fmuladd: {
7392     Opcode = ISD::STRICT_FMA;
7393     // Break fmuladd into fmul and fadd.
7394     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7395         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7396       Opers.pop_back();
7397       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7398       pushOutChain(Mul, EB);
7399       Opcode = ISD::STRICT_FADD;
7400       Opers.clear();
7401       Opers.push_back(Mul.getValue(1));
7402       Opers.push_back(Mul.getValue(0));
7403       Opers.push_back(getValue(FPI.getArgOperand(2)));
7404     }
7405     break;
7406   }
7407   }
7408 
7409   // A few strict DAG nodes carry additional operands that are not
7410   // set up by the default code above.
7411   switch (Opcode) {
7412   default: break;
7413   case ISD::STRICT_FP_ROUND:
7414     Opers.push_back(
7415         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7416     break;
7417   case ISD::STRICT_FSETCC:
7418   case ISD::STRICT_FSETCCS: {
7419     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7420     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7421     if (TM.Options.NoNaNsFPMath)
7422       Condition = getFCmpCodeWithoutNaN(Condition);
7423     Opers.push_back(DAG.getCondCode(Condition));
7424     break;
7425   }
7426   }
7427 
7428   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7429   pushOutChain(Result, EB);
7430 
7431   SDValue FPResult = Result.getValue(0);
7432   setValue(&FPI, FPResult);
7433 }
7434 
7435 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7436   std::optional<unsigned> ResOPC;
7437   switch (VPIntrin.getIntrinsicID()) {
7438   case Intrinsic::vp_ctlz: {
7439     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7440     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7441     break;
7442   }
7443   case Intrinsic::vp_cttz: {
7444     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7445     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7446     break;
7447   }
7448 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7449   case Intrinsic::VPID:                                                        \
7450     ResOPC = ISD::VPSD;                                                        \
7451     break;
7452 #include "llvm/IR/VPIntrinsics.def"
7453   }
7454 
7455   if (!ResOPC)
7456     llvm_unreachable(
7457         "Inconsistency: no SDNode available for this VPIntrinsic!");
7458 
7459   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7460       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7461     if (VPIntrin.getFastMathFlags().allowReassoc())
7462       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7463                                                 : ISD::VP_REDUCE_FMUL;
7464   }
7465 
7466   return *ResOPC;
7467 }
7468 
7469 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
7470                                       SmallVector<SDValue, 7> &OpValues) {
7471   SDLoc DL = getCurSDLoc();
7472   Value *PtrOperand = VPIntrin.getArgOperand(0);
7473   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7474   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7475   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7476   SDValue LD;
7477   bool AddToChain = true;
7478   // Do not serialize variable-length loads of constant memory with
7479   // anything.
7480   if (!Alignment)
7481     Alignment = DAG.getEVTAlign(VT);
7482   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7483   AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7484   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7485   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7486       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7487       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7488   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7489                      MMO, false /*IsExpanding */);
7490   if (AddToChain)
7491     PendingLoads.push_back(LD.getValue(1));
7492   setValue(&VPIntrin, LD);
7493 }
7494 
7495 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
7496                                         SmallVector<SDValue, 7> &OpValues) {
7497   SDLoc DL = getCurSDLoc();
7498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7499   Value *PtrOperand = VPIntrin.getArgOperand(0);
7500   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7501   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7502   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7503   SDValue LD;
7504   if (!Alignment)
7505     Alignment = DAG.getEVTAlign(VT.getScalarType());
7506   unsigned AS =
7507     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7508   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7509      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7510      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7511   SDValue Base, Index, Scale;
7512   ISD::MemIndexType IndexType;
7513   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7514                                     this, VPIntrin.getParent(),
7515                                     VT.getScalarStoreSize());
7516   if (!UniformBase) {
7517     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7518     Index = getValue(PtrOperand);
7519     IndexType = ISD::SIGNED_SCALED;
7520     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7521   }
7522   EVT IdxVT = Index.getValueType();
7523   EVT EltTy = IdxVT.getVectorElementType();
7524   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7525     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7526     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7527   }
7528   LD = DAG.getGatherVP(
7529       DAG.getVTList(VT, MVT::Other), VT, DL,
7530       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7531       IndexType);
7532   PendingLoads.push_back(LD.getValue(1));
7533   setValue(&VPIntrin, LD);
7534 }
7535 
7536 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
7537                                        SmallVector<SDValue, 7> &OpValues) {
7538   SDLoc DL = getCurSDLoc();
7539   Value *PtrOperand = VPIntrin.getArgOperand(1);
7540   EVT VT = OpValues[0].getValueType();
7541   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7542   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7543   SDValue ST;
7544   if (!Alignment)
7545     Alignment = DAG.getEVTAlign(VT);
7546   SDValue Ptr = OpValues[1];
7547   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7548   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7549       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7550       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7551   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7552                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7553                       /* IsTruncating */ false, /*IsCompressing*/ false);
7554   DAG.setRoot(ST);
7555   setValue(&VPIntrin, ST);
7556 }
7557 
7558 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
7559                                               SmallVector<SDValue, 7> &OpValues) {
7560   SDLoc DL = getCurSDLoc();
7561   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7562   Value *PtrOperand = VPIntrin.getArgOperand(1);
7563   EVT VT = OpValues[0].getValueType();
7564   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7565   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7566   SDValue ST;
7567   if (!Alignment)
7568     Alignment = DAG.getEVTAlign(VT.getScalarType());
7569   unsigned AS =
7570       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7571   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7572       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7573       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7574   SDValue Base, Index, Scale;
7575   ISD::MemIndexType IndexType;
7576   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7577                                     this, VPIntrin.getParent(),
7578                                     VT.getScalarStoreSize());
7579   if (!UniformBase) {
7580     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7581     Index = getValue(PtrOperand);
7582     IndexType = ISD::SIGNED_SCALED;
7583     Scale =
7584       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7585   }
7586   EVT IdxVT = Index.getValueType();
7587   EVT EltTy = IdxVT.getVectorElementType();
7588   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7589     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7590     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7591   }
7592   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7593                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7594                          OpValues[2], OpValues[3]},
7595                         MMO, IndexType);
7596   DAG.setRoot(ST);
7597   setValue(&VPIntrin, ST);
7598 }
7599 
7600 void SelectionDAGBuilder::visitVPStridedLoad(
7601     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7602   SDLoc DL = getCurSDLoc();
7603   Value *PtrOperand = VPIntrin.getArgOperand(0);
7604   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7605   if (!Alignment)
7606     Alignment = DAG.getEVTAlign(VT.getScalarType());
7607   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7608   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7609   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7610   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7611   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7612   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7613       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7614       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7615 
7616   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7617                                     OpValues[2], OpValues[3], MMO,
7618                                     false /*IsExpanding*/);
7619 
7620   if (AddToChain)
7621     PendingLoads.push_back(LD.getValue(1));
7622   setValue(&VPIntrin, LD);
7623 }
7624 
7625 void SelectionDAGBuilder::visitVPStridedStore(
7626     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7627   SDLoc DL = getCurSDLoc();
7628   Value *PtrOperand = VPIntrin.getArgOperand(1);
7629   EVT VT = OpValues[0].getValueType();
7630   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7631   if (!Alignment)
7632     Alignment = DAG.getEVTAlign(VT.getScalarType());
7633   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7634   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7635       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7636       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7637 
7638   SDValue ST = DAG.getStridedStoreVP(
7639       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7640       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7641       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7642       /*IsCompressing*/ false);
7643 
7644   DAG.setRoot(ST);
7645   setValue(&VPIntrin, ST);
7646 }
7647 
7648 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7650   SDLoc DL = getCurSDLoc();
7651 
7652   ISD::CondCode Condition;
7653   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7654   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7655   if (IsFP) {
7656     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7657     // flags, but calls that don't return floating-point types can't be
7658     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7659     Condition = getFCmpCondCode(CondCode);
7660     if (TM.Options.NoNaNsFPMath)
7661       Condition = getFCmpCodeWithoutNaN(Condition);
7662   } else {
7663     Condition = getICmpCondCode(CondCode);
7664   }
7665 
7666   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7667   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7668   // #2 is the condition code
7669   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7670   SDValue EVL = getValue(VPIntrin.getOperand(4));
7671   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7672   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7673          "Unexpected target EVL type");
7674   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7675 
7676   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7677                                                         VPIntrin.getType());
7678   setValue(&VPIntrin,
7679            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7680 }
7681 
7682 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7683     const VPIntrinsic &VPIntrin) {
7684   SDLoc DL = getCurSDLoc();
7685   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7686 
7687   auto IID = VPIntrin.getIntrinsicID();
7688 
7689   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7690     return visitVPCmp(*CmpI);
7691 
7692   SmallVector<EVT, 4> ValueVTs;
7693   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7694   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7695   SDVTList VTs = DAG.getVTList(ValueVTs);
7696 
7697   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7698 
7699   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7700   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7701          "Unexpected target EVL type");
7702 
7703   // Request operands.
7704   SmallVector<SDValue, 7> OpValues;
7705   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7706     auto Op = getValue(VPIntrin.getArgOperand(I));
7707     if (I == EVLParamPos)
7708       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7709     OpValues.push_back(Op);
7710   }
7711 
7712   switch (Opcode) {
7713   default: {
7714     SDNodeFlags SDFlags;
7715     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7716       SDFlags.copyFMF(*FPMO);
7717     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7718     setValue(&VPIntrin, Result);
7719     break;
7720   }
7721   case ISD::VP_LOAD:
7722     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7723     break;
7724   case ISD::VP_GATHER:
7725     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7726     break;
7727   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7728     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7729     break;
7730   case ISD::VP_STORE:
7731     visitVPStore(VPIntrin, OpValues);
7732     break;
7733   case ISD::VP_SCATTER:
7734     visitVPScatter(VPIntrin, OpValues);
7735     break;
7736   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7737     visitVPStridedStore(VPIntrin, OpValues);
7738     break;
7739   case ISD::VP_FMULADD: {
7740     assert(OpValues.size() == 5 && "Unexpected number of operands");
7741     SDNodeFlags SDFlags;
7742     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7743       SDFlags.copyFMF(*FPMO);
7744     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7745         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7746       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7747     } else {
7748       SDValue Mul = DAG.getNode(
7749           ISD::VP_FMUL, DL, VTs,
7750           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7751       SDValue Add =
7752           DAG.getNode(ISD::VP_FADD, DL, VTs,
7753                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7754       setValue(&VPIntrin, Add);
7755     }
7756     break;
7757   }
7758   case ISD::VP_INTTOPTR: {
7759     SDValue N = OpValues[0];
7760     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7761     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7762     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7763                                OpValues[2]);
7764     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7765                              OpValues[2]);
7766     setValue(&VPIntrin, N);
7767     break;
7768   }
7769   case ISD::VP_PTRTOINT: {
7770     SDValue N = OpValues[0];
7771     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7772                                                           VPIntrin.getType());
7773     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7774                                        VPIntrin.getOperand(0)->getType());
7775     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7776                                OpValues[2]);
7777     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7778                              OpValues[2]);
7779     setValue(&VPIntrin, N);
7780     break;
7781   }
7782   case ISD::VP_ABS:
7783   case ISD::VP_CTLZ:
7784   case ISD::VP_CTLZ_ZERO_UNDEF:
7785   case ISD::VP_CTTZ:
7786   case ISD::VP_CTTZ_ZERO_UNDEF: {
7787     // Pop is_zero_poison operand for cp.ctlz/cttz or
7788     // is_int_min_poison operand for vp.abs.
7789     OpValues.pop_back();
7790     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7791     setValue(&VPIntrin, Result);
7792     break;
7793   }
7794   }
7795 }
7796 
7797 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7798                                           const BasicBlock *EHPadBB,
7799                                           MCSymbol *&BeginLabel) {
7800   MachineFunction &MF = DAG.getMachineFunction();
7801   MachineModuleInfo &MMI = MF.getMMI();
7802 
7803   // Insert a label before the invoke call to mark the try range.  This can be
7804   // used to detect deletion of the invoke via the MachineModuleInfo.
7805   BeginLabel = MMI.getContext().createTempSymbol();
7806 
7807   // For SjLj, keep track of which landing pads go with which invokes
7808   // so as to maintain the ordering of pads in the LSDA.
7809   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7810   if (CallSiteIndex) {
7811     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7812     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7813 
7814     // Now that the call site is handled, stop tracking it.
7815     MMI.setCurrentCallSite(0);
7816   }
7817 
7818   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7819 }
7820 
7821 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7822                                         const BasicBlock *EHPadBB,
7823                                         MCSymbol *BeginLabel) {
7824   assert(BeginLabel && "BeginLabel should've been set");
7825 
7826   MachineFunction &MF = DAG.getMachineFunction();
7827   MachineModuleInfo &MMI = MF.getMMI();
7828 
7829   // Insert a label at the end of the invoke call to mark the try range.  This
7830   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7831   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7832   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7833 
7834   // Inform MachineModuleInfo of range.
7835   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7836   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7837   // actually use outlined funclets and their LSDA info style.
7838   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7839     assert(II && "II should've been set");
7840     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7841     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7842   } else if (!isScopedEHPersonality(Pers)) {
7843     assert(EHPadBB);
7844     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7845   }
7846 
7847   return Chain;
7848 }
7849 
7850 std::pair<SDValue, SDValue>
7851 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7852                                     const BasicBlock *EHPadBB) {
7853   MCSymbol *BeginLabel = nullptr;
7854 
7855   if (EHPadBB) {
7856     // Both PendingLoads and PendingExports must be flushed here;
7857     // this call might not return.
7858     (void)getRoot();
7859     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7860     CLI.setChain(getRoot());
7861   }
7862 
7863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7864   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7865 
7866   assert((CLI.IsTailCall || Result.second.getNode()) &&
7867          "Non-null chain expected with non-tail call!");
7868   assert((Result.second.getNode() || !Result.first.getNode()) &&
7869          "Null value expected with tail call!");
7870 
7871   if (!Result.second.getNode()) {
7872     // As a special case, a null chain means that a tail call has been emitted
7873     // and the DAG root is already updated.
7874     HasTailCall = true;
7875 
7876     // Since there's no actual continuation from this block, nothing can be
7877     // relying on us setting vregs for them.
7878     PendingExports.clear();
7879   } else {
7880     DAG.setRoot(Result.second);
7881   }
7882 
7883   if (EHPadBB) {
7884     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7885                            BeginLabel));
7886   }
7887 
7888   return Result;
7889 }
7890 
7891 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7892                                       bool isTailCall,
7893                                       bool isMustTailCall,
7894                                       const BasicBlock *EHPadBB) {
7895   auto &DL = DAG.getDataLayout();
7896   FunctionType *FTy = CB.getFunctionType();
7897   Type *RetTy = CB.getType();
7898 
7899   TargetLowering::ArgListTy Args;
7900   Args.reserve(CB.arg_size());
7901 
7902   const Value *SwiftErrorVal = nullptr;
7903   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7904 
7905   if (isTailCall) {
7906     // Avoid emitting tail calls in functions with the disable-tail-calls
7907     // attribute.
7908     auto *Caller = CB.getParent()->getParent();
7909     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7910         "true" && !isMustTailCall)
7911       isTailCall = false;
7912 
7913     // We can't tail call inside a function with a swifterror argument. Lowering
7914     // does not support this yet. It would have to move into the swifterror
7915     // register before the call.
7916     if (TLI.supportSwiftError() &&
7917         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7918       isTailCall = false;
7919   }
7920 
7921   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7922     TargetLowering::ArgListEntry Entry;
7923     const Value *V = *I;
7924 
7925     // Skip empty types
7926     if (V->getType()->isEmptyTy())
7927       continue;
7928 
7929     SDValue ArgNode = getValue(V);
7930     Entry.Node = ArgNode; Entry.Ty = V->getType();
7931 
7932     Entry.setAttributes(&CB, I - CB.arg_begin());
7933 
7934     // Use swifterror virtual register as input to the call.
7935     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7936       SwiftErrorVal = V;
7937       // We find the virtual register for the actual swifterror argument.
7938       // Instead of using the Value, we use the virtual register instead.
7939       Entry.Node =
7940           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7941                           EVT(TLI.getPointerTy(DL)));
7942     }
7943 
7944     Args.push_back(Entry);
7945 
7946     // If we have an explicit sret argument that is an Instruction, (i.e., it
7947     // might point to function-local memory), we can't meaningfully tail-call.
7948     if (Entry.IsSRet && isa<Instruction>(V))
7949       isTailCall = false;
7950   }
7951 
7952   // If call site has a cfguardtarget operand bundle, create and add an
7953   // additional ArgListEntry.
7954   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7955     TargetLowering::ArgListEntry Entry;
7956     Value *V = Bundle->Inputs[0];
7957     SDValue ArgNode = getValue(V);
7958     Entry.Node = ArgNode;
7959     Entry.Ty = V->getType();
7960     Entry.IsCFGuardTarget = true;
7961     Args.push_back(Entry);
7962   }
7963 
7964   // Check if target-independent constraints permit a tail call here.
7965   // Target-dependent constraints are checked within TLI->LowerCallTo.
7966   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7967     isTailCall = false;
7968 
7969   // Disable tail calls if there is an swifterror argument. Targets have not
7970   // been updated to support tail calls.
7971   if (TLI.supportSwiftError() && SwiftErrorVal)
7972     isTailCall = false;
7973 
7974   ConstantInt *CFIType = nullptr;
7975   if (CB.isIndirectCall()) {
7976     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7977       if (!TLI.supportKCFIBundles())
7978         report_fatal_error(
7979             "Target doesn't support calls with kcfi operand bundles.");
7980       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
7981       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
7982     }
7983   }
7984 
7985   TargetLowering::CallLoweringInfo CLI(DAG);
7986   CLI.setDebugLoc(getCurSDLoc())
7987       .setChain(getRoot())
7988       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7989       .setTailCall(isTailCall)
7990       .setConvergent(CB.isConvergent())
7991       .setIsPreallocated(
7992           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
7993       .setCFIType(CFIType);
7994   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7995 
7996   if (Result.first.getNode()) {
7997     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7998     setValue(&CB, Result.first);
7999   }
8000 
8001   // The last element of CLI.InVals has the SDValue for swifterror return.
8002   // Here we copy it to a virtual register and update SwiftErrorMap for
8003   // book-keeping.
8004   if (SwiftErrorVal && TLI.supportSwiftError()) {
8005     // Get the last element of InVals.
8006     SDValue Src = CLI.InVals.back();
8007     Register VReg =
8008         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8009     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8010     DAG.setRoot(CopyNode);
8011   }
8012 }
8013 
8014 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8015                              SelectionDAGBuilder &Builder) {
8016   // Check to see if this load can be trivially constant folded, e.g. if the
8017   // input is from a string literal.
8018   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8019     // Cast pointer to the type we really want to load.
8020     Type *LoadTy =
8021         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8022     if (LoadVT.isVector())
8023       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8024 
8025     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8026                                          PointerType::getUnqual(LoadTy));
8027 
8028     if (const Constant *LoadCst =
8029             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8030                                          LoadTy, Builder.DAG.getDataLayout()))
8031       return Builder.getValue(LoadCst);
8032   }
8033 
8034   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8035   // still constant memory, the input chain can be the entry node.
8036   SDValue Root;
8037   bool ConstantMemory = false;
8038 
8039   // Do not serialize (non-volatile) loads of constant memory with anything.
8040   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8041     Root = Builder.DAG.getEntryNode();
8042     ConstantMemory = true;
8043   } else {
8044     // Do not serialize non-volatile loads against each other.
8045     Root = Builder.DAG.getRoot();
8046   }
8047 
8048   SDValue Ptr = Builder.getValue(PtrVal);
8049   SDValue LoadVal =
8050       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8051                           MachinePointerInfo(PtrVal), Align(1));
8052 
8053   if (!ConstantMemory)
8054     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8055   return LoadVal;
8056 }
8057 
8058 /// Record the value for an instruction that produces an integer result,
8059 /// converting the type where necessary.
8060 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8061                                                   SDValue Value,
8062                                                   bool IsSigned) {
8063   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8064                                                     I.getType(), true);
8065   if (IsSigned)
8066     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
8067   else
8068     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
8069   setValue(&I, Value);
8070 }
8071 
8072 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8073 /// true and lower it. Otherwise return false, and it will be lowered like a
8074 /// normal call.
8075 /// The caller already checked that \p I calls the appropriate LibFunc with a
8076 /// correct prototype.
8077 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8078   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8079   const Value *Size = I.getArgOperand(2);
8080   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8081   if (CSize && CSize->getZExtValue() == 0) {
8082     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8083                                                           I.getType(), true);
8084     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8085     return true;
8086   }
8087 
8088   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8089   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8090       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8091       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8092   if (Res.first.getNode()) {
8093     processIntegerCallValue(I, Res.first, true);
8094     PendingLoads.push_back(Res.second);
8095     return true;
8096   }
8097 
8098   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8099   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8100   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8101     return false;
8102 
8103   // If the target has a fast compare for the given size, it will return a
8104   // preferred load type for that size. Require that the load VT is legal and
8105   // that the target supports unaligned loads of that type. Otherwise, return
8106   // INVALID.
8107   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8108     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8109     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8110     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8111       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8112       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8113       // TODO: Check alignment of src and dest ptrs.
8114       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8115       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8116       if (!TLI.isTypeLegal(LVT) ||
8117           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8118           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8119         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8120     }
8121 
8122     return LVT;
8123   };
8124 
8125   // This turns into unaligned loads. We only do this if the target natively
8126   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8127   // we'll only produce a small number of byte loads.
8128   MVT LoadVT;
8129   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8130   switch (NumBitsToCompare) {
8131   default:
8132     return false;
8133   case 16:
8134     LoadVT = MVT::i16;
8135     break;
8136   case 32:
8137     LoadVT = MVT::i32;
8138     break;
8139   case 64:
8140   case 128:
8141   case 256:
8142     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8143     break;
8144   }
8145 
8146   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8147     return false;
8148 
8149   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8150   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8151 
8152   // Bitcast to a wide integer type if the loads are vectors.
8153   if (LoadVT.isVector()) {
8154     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8155     LoadL = DAG.getBitcast(CmpVT, LoadL);
8156     LoadR = DAG.getBitcast(CmpVT, LoadR);
8157   }
8158 
8159   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8160   processIntegerCallValue(I, Cmp, false);
8161   return true;
8162 }
8163 
8164 /// See if we can lower a memchr call into an optimized form. If so, return
8165 /// true and lower it. Otherwise return false, and it will be lowered like a
8166 /// normal call.
8167 /// The caller already checked that \p I calls the appropriate LibFunc with a
8168 /// correct prototype.
8169 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8170   const Value *Src = I.getArgOperand(0);
8171   const Value *Char = I.getArgOperand(1);
8172   const Value *Length = I.getArgOperand(2);
8173 
8174   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8175   std::pair<SDValue, SDValue> Res =
8176     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8177                                 getValue(Src), getValue(Char), getValue(Length),
8178                                 MachinePointerInfo(Src));
8179   if (Res.first.getNode()) {
8180     setValue(&I, Res.first);
8181     PendingLoads.push_back(Res.second);
8182     return true;
8183   }
8184 
8185   return false;
8186 }
8187 
8188 /// See if we can lower a mempcpy call into an optimized form. If so, return
8189 /// true and lower it. Otherwise return false, and it will be lowered like a
8190 /// normal call.
8191 /// The caller already checked that \p I calls the appropriate LibFunc with a
8192 /// correct prototype.
8193 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8194   SDValue Dst = getValue(I.getArgOperand(0));
8195   SDValue Src = getValue(I.getArgOperand(1));
8196   SDValue Size = getValue(I.getArgOperand(2));
8197 
8198   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8199   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8200   // DAG::getMemcpy needs Alignment to be defined.
8201   Align Alignment = std::min(DstAlign, SrcAlign);
8202 
8203   bool isVol = false;
8204   SDLoc sdl = getCurSDLoc();
8205 
8206   // In the mempcpy context we need to pass in a false value for isTailCall
8207   // because the return pointer needs to be adjusted by the size of
8208   // the copied memory.
8209   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8210   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8211                              /*isTailCall=*/false,
8212                              MachinePointerInfo(I.getArgOperand(0)),
8213                              MachinePointerInfo(I.getArgOperand(1)),
8214                              I.getAAMetadata());
8215   assert(MC.getNode() != nullptr &&
8216          "** memcpy should not be lowered as TailCall in mempcpy context **");
8217   DAG.setRoot(MC);
8218 
8219   // Check if Size needs to be truncated or extended.
8220   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8221 
8222   // Adjust return pointer to point just past the last dst byte.
8223   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8224                                     Dst, Size);
8225   setValue(&I, DstPlusSize);
8226   return true;
8227 }
8228 
8229 /// See if we can lower a strcpy call into an optimized form.  If so, return
8230 /// true and lower it, otherwise return false and it will be lowered like a
8231 /// normal call.
8232 /// The caller already checked that \p I calls the appropriate LibFunc with a
8233 /// correct prototype.
8234 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8235   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8236 
8237   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8238   std::pair<SDValue, SDValue> Res =
8239     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8240                                 getValue(Arg0), getValue(Arg1),
8241                                 MachinePointerInfo(Arg0),
8242                                 MachinePointerInfo(Arg1), isStpcpy);
8243   if (Res.first.getNode()) {
8244     setValue(&I, Res.first);
8245     DAG.setRoot(Res.second);
8246     return true;
8247   }
8248 
8249   return false;
8250 }
8251 
8252 /// See if we can lower a strcmp call into an optimized form.  If so, return
8253 /// true and lower it, otherwise return false and it will be lowered like a
8254 /// normal call.
8255 /// The caller already checked that \p I calls the appropriate LibFunc with a
8256 /// correct prototype.
8257 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8258   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8259 
8260   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8261   std::pair<SDValue, SDValue> Res =
8262     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8263                                 getValue(Arg0), getValue(Arg1),
8264                                 MachinePointerInfo(Arg0),
8265                                 MachinePointerInfo(Arg1));
8266   if (Res.first.getNode()) {
8267     processIntegerCallValue(I, Res.first, true);
8268     PendingLoads.push_back(Res.second);
8269     return true;
8270   }
8271 
8272   return false;
8273 }
8274 
8275 /// See if we can lower a strlen call into an optimized form.  If so, return
8276 /// true and lower it, otherwise return false and it will be lowered like a
8277 /// normal call.
8278 /// The caller already checked that \p I calls the appropriate LibFunc with a
8279 /// correct prototype.
8280 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8281   const Value *Arg0 = I.getArgOperand(0);
8282 
8283   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8284   std::pair<SDValue, SDValue> Res =
8285     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8286                                 getValue(Arg0), MachinePointerInfo(Arg0));
8287   if (Res.first.getNode()) {
8288     processIntegerCallValue(I, Res.first, false);
8289     PendingLoads.push_back(Res.second);
8290     return true;
8291   }
8292 
8293   return false;
8294 }
8295 
8296 /// See if we can lower a strnlen call into an optimized form.  If so, return
8297 /// true and lower it, otherwise return false and it will be lowered like a
8298 /// normal call.
8299 /// The caller already checked that \p I calls the appropriate LibFunc with a
8300 /// correct prototype.
8301 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8302   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8303 
8304   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8305   std::pair<SDValue, SDValue> Res =
8306     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8307                                  getValue(Arg0), getValue(Arg1),
8308                                  MachinePointerInfo(Arg0));
8309   if (Res.first.getNode()) {
8310     processIntegerCallValue(I, Res.first, false);
8311     PendingLoads.push_back(Res.second);
8312     return true;
8313   }
8314 
8315   return false;
8316 }
8317 
8318 /// See if we can lower a unary floating-point operation into an SDNode with
8319 /// the specified Opcode.  If so, return true and lower it, otherwise return
8320 /// false and it will be lowered like a normal call.
8321 /// The caller already checked that \p I calls the appropriate LibFunc with a
8322 /// correct prototype.
8323 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8324                                               unsigned Opcode) {
8325   // We already checked this call's prototype; verify it doesn't modify errno.
8326   if (!I.onlyReadsMemory())
8327     return false;
8328 
8329   SDNodeFlags Flags;
8330   Flags.copyFMF(cast<FPMathOperator>(I));
8331 
8332   SDValue Tmp = getValue(I.getArgOperand(0));
8333   setValue(&I,
8334            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8335   return true;
8336 }
8337 
8338 /// See if we can lower a binary floating-point operation into an SDNode with
8339 /// the specified Opcode. If so, return true and lower it. Otherwise return
8340 /// false, and it will be lowered like a normal call.
8341 /// The caller already checked that \p I calls the appropriate LibFunc with a
8342 /// correct prototype.
8343 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8344                                                unsigned Opcode) {
8345   // We already checked this call's prototype; verify it doesn't modify errno.
8346   if (!I.onlyReadsMemory())
8347     return false;
8348 
8349   SDNodeFlags Flags;
8350   Flags.copyFMF(cast<FPMathOperator>(I));
8351 
8352   SDValue Tmp0 = getValue(I.getArgOperand(0));
8353   SDValue Tmp1 = getValue(I.getArgOperand(1));
8354   EVT VT = Tmp0.getValueType();
8355   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8356   return true;
8357 }
8358 
8359 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8360   // Handle inline assembly differently.
8361   if (I.isInlineAsm()) {
8362     visitInlineAsm(I);
8363     return;
8364   }
8365 
8366   if (Function *F = I.getCalledFunction()) {
8367     diagnoseDontCall(I);
8368 
8369     if (F->isDeclaration()) {
8370       // Is this an LLVM intrinsic or a target-specific intrinsic?
8371       unsigned IID = F->getIntrinsicID();
8372       if (!IID)
8373         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8374           IID = II->getIntrinsicID(F);
8375 
8376       if (IID) {
8377         visitIntrinsicCall(I, IID);
8378         return;
8379       }
8380     }
8381 
8382     // Check for well-known libc/libm calls.  If the function is internal, it
8383     // can't be a library call.  Don't do the check if marked as nobuiltin for
8384     // some reason or the call site requires strict floating point semantics.
8385     LibFunc Func;
8386     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8387         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8388         LibInfo->hasOptimizedCodeGen(Func)) {
8389       switch (Func) {
8390       default: break;
8391       case LibFunc_bcmp:
8392         if (visitMemCmpBCmpCall(I))
8393           return;
8394         break;
8395       case LibFunc_copysign:
8396       case LibFunc_copysignf:
8397       case LibFunc_copysignl:
8398         // We already checked this call's prototype; verify it doesn't modify
8399         // errno.
8400         if (I.onlyReadsMemory()) {
8401           SDValue LHS = getValue(I.getArgOperand(0));
8402           SDValue RHS = getValue(I.getArgOperand(1));
8403           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8404                                    LHS.getValueType(), LHS, RHS));
8405           return;
8406         }
8407         break;
8408       case LibFunc_fabs:
8409       case LibFunc_fabsf:
8410       case LibFunc_fabsl:
8411         if (visitUnaryFloatCall(I, ISD::FABS))
8412           return;
8413         break;
8414       case LibFunc_fmin:
8415       case LibFunc_fminf:
8416       case LibFunc_fminl:
8417         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8418           return;
8419         break;
8420       case LibFunc_fmax:
8421       case LibFunc_fmaxf:
8422       case LibFunc_fmaxl:
8423         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8424           return;
8425         break;
8426       case LibFunc_sin:
8427       case LibFunc_sinf:
8428       case LibFunc_sinl:
8429         if (visitUnaryFloatCall(I, ISD::FSIN))
8430           return;
8431         break;
8432       case LibFunc_cos:
8433       case LibFunc_cosf:
8434       case LibFunc_cosl:
8435         if (visitUnaryFloatCall(I, ISD::FCOS))
8436           return;
8437         break;
8438       case LibFunc_sqrt:
8439       case LibFunc_sqrtf:
8440       case LibFunc_sqrtl:
8441       case LibFunc_sqrt_finite:
8442       case LibFunc_sqrtf_finite:
8443       case LibFunc_sqrtl_finite:
8444         if (visitUnaryFloatCall(I, ISD::FSQRT))
8445           return;
8446         break;
8447       case LibFunc_floor:
8448       case LibFunc_floorf:
8449       case LibFunc_floorl:
8450         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8451           return;
8452         break;
8453       case LibFunc_nearbyint:
8454       case LibFunc_nearbyintf:
8455       case LibFunc_nearbyintl:
8456         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8457           return;
8458         break;
8459       case LibFunc_ceil:
8460       case LibFunc_ceilf:
8461       case LibFunc_ceill:
8462         if (visitUnaryFloatCall(I, ISD::FCEIL))
8463           return;
8464         break;
8465       case LibFunc_rint:
8466       case LibFunc_rintf:
8467       case LibFunc_rintl:
8468         if (visitUnaryFloatCall(I, ISD::FRINT))
8469           return;
8470         break;
8471       case LibFunc_round:
8472       case LibFunc_roundf:
8473       case LibFunc_roundl:
8474         if (visitUnaryFloatCall(I, ISD::FROUND))
8475           return;
8476         break;
8477       case LibFunc_trunc:
8478       case LibFunc_truncf:
8479       case LibFunc_truncl:
8480         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8481           return;
8482         break;
8483       case LibFunc_log2:
8484       case LibFunc_log2f:
8485       case LibFunc_log2l:
8486         if (visitUnaryFloatCall(I, ISD::FLOG2))
8487           return;
8488         break;
8489       case LibFunc_exp2:
8490       case LibFunc_exp2f:
8491       case LibFunc_exp2l:
8492         if (visitUnaryFloatCall(I, ISD::FEXP2))
8493           return;
8494         break;
8495       case LibFunc_memcmp:
8496         if (visitMemCmpBCmpCall(I))
8497           return;
8498         break;
8499       case LibFunc_mempcpy:
8500         if (visitMemPCpyCall(I))
8501           return;
8502         break;
8503       case LibFunc_memchr:
8504         if (visitMemChrCall(I))
8505           return;
8506         break;
8507       case LibFunc_strcpy:
8508         if (visitStrCpyCall(I, false))
8509           return;
8510         break;
8511       case LibFunc_stpcpy:
8512         if (visitStrCpyCall(I, true))
8513           return;
8514         break;
8515       case LibFunc_strcmp:
8516         if (visitStrCmpCall(I))
8517           return;
8518         break;
8519       case LibFunc_strlen:
8520         if (visitStrLenCall(I))
8521           return;
8522         break;
8523       case LibFunc_strnlen:
8524         if (visitStrNLenCall(I))
8525           return;
8526         break;
8527       }
8528     }
8529   }
8530 
8531   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8532   // have to do anything here to lower funclet bundles.
8533   // CFGuardTarget bundles are lowered in LowerCallTo.
8534   assert(!I.hasOperandBundlesOtherThan(
8535              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8536               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8537               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8538          "Cannot lower calls with arbitrary operand bundles!");
8539 
8540   SDValue Callee = getValue(I.getCalledOperand());
8541 
8542   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8543     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8544   else
8545     // Check if we can potentially perform a tail call. More detailed checking
8546     // is be done within LowerCallTo, after more information about the call is
8547     // known.
8548     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8549 }
8550 
8551 namespace {
8552 
8553 /// AsmOperandInfo - This contains information for each constraint that we are
8554 /// lowering.
8555 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8556 public:
8557   /// CallOperand - If this is the result output operand or a clobber
8558   /// this is null, otherwise it is the incoming operand to the CallInst.
8559   /// This gets modified as the asm is processed.
8560   SDValue CallOperand;
8561 
8562   /// AssignedRegs - If this is a register or register class operand, this
8563   /// contains the set of register corresponding to the operand.
8564   RegsForValue AssignedRegs;
8565 
8566   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8567     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8568   }
8569 
8570   /// Whether or not this operand accesses memory
8571   bool hasMemory(const TargetLowering &TLI) const {
8572     // Indirect operand accesses access memory.
8573     if (isIndirect)
8574       return true;
8575 
8576     for (const auto &Code : Codes)
8577       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8578         return true;
8579 
8580     return false;
8581   }
8582 };
8583 
8584 
8585 } // end anonymous namespace
8586 
8587 /// Make sure that the output operand \p OpInfo and its corresponding input
8588 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8589 /// out).
8590 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8591                                SDISelAsmOperandInfo &MatchingOpInfo,
8592                                SelectionDAG &DAG) {
8593   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8594     return;
8595 
8596   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8597   const auto &TLI = DAG.getTargetLoweringInfo();
8598 
8599   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8600       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8601                                        OpInfo.ConstraintVT);
8602   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8603       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8604                                        MatchingOpInfo.ConstraintVT);
8605   if ((OpInfo.ConstraintVT.isInteger() !=
8606        MatchingOpInfo.ConstraintVT.isInteger()) ||
8607       (MatchRC.second != InputRC.second)) {
8608     // FIXME: error out in a more elegant fashion
8609     report_fatal_error("Unsupported asm: input constraint"
8610                        " with a matching output constraint of"
8611                        " incompatible type!");
8612   }
8613   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8614 }
8615 
8616 /// Get a direct memory input to behave well as an indirect operand.
8617 /// This may introduce stores, hence the need for a \p Chain.
8618 /// \return The (possibly updated) chain.
8619 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8620                                         SDISelAsmOperandInfo &OpInfo,
8621                                         SelectionDAG &DAG) {
8622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8623 
8624   // If we don't have an indirect input, put it in the constpool if we can,
8625   // otherwise spill it to a stack slot.
8626   // TODO: This isn't quite right. We need to handle these according to
8627   // the addressing mode that the constraint wants. Also, this may take
8628   // an additional register for the computation and we don't want that
8629   // either.
8630 
8631   // If the operand is a float, integer, or vector constant, spill to a
8632   // constant pool entry to get its address.
8633   const Value *OpVal = OpInfo.CallOperandVal;
8634   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8635       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8636     OpInfo.CallOperand = DAG.getConstantPool(
8637         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8638     return Chain;
8639   }
8640 
8641   // Otherwise, create a stack slot and emit a store to it before the asm.
8642   Type *Ty = OpVal->getType();
8643   auto &DL = DAG.getDataLayout();
8644   uint64_t TySize = DL.getTypeAllocSize(Ty);
8645   MachineFunction &MF = DAG.getMachineFunction();
8646   int SSFI = MF.getFrameInfo().CreateStackObject(
8647       TySize, DL.getPrefTypeAlign(Ty), false);
8648   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8649   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8650                             MachinePointerInfo::getFixedStack(MF, SSFI),
8651                             TLI.getMemValueType(DL, Ty));
8652   OpInfo.CallOperand = StackSlot;
8653 
8654   return Chain;
8655 }
8656 
8657 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8658 /// specified operand.  We prefer to assign virtual registers, to allow the
8659 /// register allocator to handle the assignment process.  However, if the asm
8660 /// uses features that we can't model on machineinstrs, we have SDISel do the
8661 /// allocation.  This produces generally horrible, but correct, code.
8662 ///
8663 ///   OpInfo describes the operand
8664 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8665 static std::optional<unsigned>
8666 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8667                      SDISelAsmOperandInfo &OpInfo,
8668                      SDISelAsmOperandInfo &RefOpInfo) {
8669   LLVMContext &Context = *DAG.getContext();
8670   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8671 
8672   MachineFunction &MF = DAG.getMachineFunction();
8673   SmallVector<unsigned, 4> Regs;
8674   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8675 
8676   // No work to do for memory/address operands.
8677   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8678       OpInfo.ConstraintType == TargetLowering::C_Address)
8679     return std::nullopt;
8680 
8681   // If this is a constraint for a single physreg, or a constraint for a
8682   // register class, find it.
8683   unsigned AssignedReg;
8684   const TargetRegisterClass *RC;
8685   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8686       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8687   // RC is unset only on failure. Return immediately.
8688   if (!RC)
8689     return std::nullopt;
8690 
8691   // Get the actual register value type.  This is important, because the user
8692   // may have asked for (e.g.) the AX register in i32 type.  We need to
8693   // remember that AX is actually i16 to get the right extension.
8694   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8695 
8696   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8697     // If this is an FP operand in an integer register (or visa versa), or more
8698     // generally if the operand value disagrees with the register class we plan
8699     // to stick it in, fix the operand type.
8700     //
8701     // If this is an input value, the bitcast to the new type is done now.
8702     // Bitcast for output value is done at the end of visitInlineAsm().
8703     if ((OpInfo.Type == InlineAsm::isOutput ||
8704          OpInfo.Type == InlineAsm::isInput) &&
8705         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8706       // Try to convert to the first EVT that the reg class contains.  If the
8707       // types are identical size, use a bitcast to convert (e.g. two differing
8708       // vector types).  Note: output bitcast is done at the end of
8709       // visitInlineAsm().
8710       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8711         // Exclude indirect inputs while they are unsupported because the code
8712         // to perform the load is missing and thus OpInfo.CallOperand still
8713         // refers to the input address rather than the pointed-to value.
8714         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8715           OpInfo.CallOperand =
8716               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8717         OpInfo.ConstraintVT = RegVT;
8718         // If the operand is an FP value and we want it in integer registers,
8719         // use the corresponding integer type. This turns an f64 value into
8720         // i64, which can be passed with two i32 values on a 32-bit machine.
8721       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8722         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8723         if (OpInfo.Type == InlineAsm::isInput)
8724           OpInfo.CallOperand =
8725               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8726         OpInfo.ConstraintVT = VT;
8727       }
8728     }
8729   }
8730 
8731   // No need to allocate a matching input constraint since the constraint it's
8732   // matching to has already been allocated.
8733   if (OpInfo.isMatchingInputConstraint())
8734     return std::nullopt;
8735 
8736   EVT ValueVT = OpInfo.ConstraintVT;
8737   if (OpInfo.ConstraintVT == MVT::Other)
8738     ValueVT = RegVT;
8739 
8740   // Initialize NumRegs.
8741   unsigned NumRegs = 1;
8742   if (OpInfo.ConstraintVT != MVT::Other)
8743     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8744 
8745   // If this is a constraint for a specific physical register, like {r17},
8746   // assign it now.
8747 
8748   // If this associated to a specific register, initialize iterator to correct
8749   // place. If virtual, make sure we have enough registers
8750 
8751   // Initialize iterator if necessary
8752   TargetRegisterClass::iterator I = RC->begin();
8753   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8754 
8755   // Do not check for single registers.
8756   if (AssignedReg) {
8757     I = std::find(I, RC->end(), AssignedReg);
8758     if (I == RC->end()) {
8759       // RC does not contain the selected register, which indicates a
8760       // mismatch between the register and the required type/bitwidth.
8761       return {AssignedReg};
8762     }
8763   }
8764 
8765   for (; NumRegs; --NumRegs, ++I) {
8766     assert(I != RC->end() && "Ran out of registers to allocate!");
8767     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8768     Regs.push_back(R);
8769   }
8770 
8771   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8772   return std::nullopt;
8773 }
8774 
8775 static unsigned
8776 findMatchingInlineAsmOperand(unsigned OperandNo,
8777                              const std::vector<SDValue> &AsmNodeOperands) {
8778   // Scan until we find the definition we already emitted of this operand.
8779   unsigned CurOp = InlineAsm::Op_FirstOperand;
8780   for (; OperandNo; --OperandNo) {
8781     // Advance to the next operand.
8782     unsigned OpFlag =
8783         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8784     assert((InlineAsm::isRegDefKind(OpFlag) ||
8785             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8786             InlineAsm::isMemKind(OpFlag)) &&
8787            "Skipped past definitions?");
8788     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8789   }
8790   return CurOp;
8791 }
8792 
8793 namespace {
8794 
8795 class ExtraFlags {
8796   unsigned Flags = 0;
8797 
8798 public:
8799   explicit ExtraFlags(const CallBase &Call) {
8800     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8801     if (IA->hasSideEffects())
8802       Flags |= InlineAsm::Extra_HasSideEffects;
8803     if (IA->isAlignStack())
8804       Flags |= InlineAsm::Extra_IsAlignStack;
8805     if (Call.isConvergent())
8806       Flags |= InlineAsm::Extra_IsConvergent;
8807     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8808   }
8809 
8810   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8811     // Ideally, we would only check against memory constraints.  However, the
8812     // meaning of an Other constraint can be target-specific and we can't easily
8813     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8814     // for Other constraints as well.
8815     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8816         OpInfo.ConstraintType == TargetLowering::C_Other) {
8817       if (OpInfo.Type == InlineAsm::isInput)
8818         Flags |= InlineAsm::Extra_MayLoad;
8819       else if (OpInfo.Type == InlineAsm::isOutput)
8820         Flags |= InlineAsm::Extra_MayStore;
8821       else if (OpInfo.Type == InlineAsm::isClobber)
8822         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8823     }
8824   }
8825 
8826   unsigned get() const { return Flags; }
8827 };
8828 
8829 } // end anonymous namespace
8830 
8831 static bool isFunction(SDValue Op) {
8832   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
8833     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8834       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
8835 
8836       // In normal "call dllimport func" instruction (non-inlineasm) it force
8837       // indirect access by specifing call opcode. And usually specially print
8838       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
8839       // not do in this way now. (In fact, this is similar with "Data Access"
8840       // action). So here we ignore dllimport function.
8841       if (Fn && !Fn->hasDLLImportStorageClass())
8842         return true;
8843     }
8844   }
8845   return false;
8846 }
8847 
8848 /// visitInlineAsm - Handle a call to an InlineAsm object.
8849 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8850                                          const BasicBlock *EHPadBB) {
8851   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8852 
8853   /// ConstraintOperands - Information about all of the constraints.
8854   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8855 
8856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8857   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8858       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8859 
8860   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8861   // AsmDialect, MayLoad, MayStore).
8862   bool HasSideEffect = IA->hasSideEffects();
8863   ExtraFlags ExtraInfo(Call);
8864 
8865   for (auto &T : TargetConstraints) {
8866     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8867     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8868 
8869     if (OpInfo.CallOperandVal)
8870       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8871 
8872     if (!HasSideEffect)
8873       HasSideEffect = OpInfo.hasMemory(TLI);
8874 
8875     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8876     // FIXME: Could we compute this on OpInfo rather than T?
8877 
8878     // Compute the constraint code and ConstraintType to use.
8879     TLI.ComputeConstraintToUse(T, SDValue());
8880 
8881     if (T.ConstraintType == TargetLowering::C_Immediate &&
8882         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8883       // We've delayed emitting a diagnostic like the "n" constraint because
8884       // inlining could cause an integer showing up.
8885       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8886                                           "' expects an integer constant "
8887                                           "expression");
8888 
8889     ExtraInfo.update(T);
8890   }
8891 
8892   // We won't need to flush pending loads if this asm doesn't touch
8893   // memory and is nonvolatile.
8894   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8895 
8896   bool EmitEHLabels = isa<InvokeInst>(Call);
8897   if (EmitEHLabels) {
8898     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8899   }
8900   bool IsCallBr = isa<CallBrInst>(Call);
8901 
8902   if (IsCallBr || EmitEHLabels) {
8903     // If this is a callbr or invoke we need to flush pending exports since
8904     // inlineasm_br and invoke are terminators.
8905     // We need to do this before nodes are glued to the inlineasm_br node.
8906     Chain = getControlRoot();
8907   }
8908 
8909   MCSymbol *BeginLabel = nullptr;
8910   if (EmitEHLabels) {
8911     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8912   }
8913 
8914   int OpNo = -1;
8915   SmallVector<StringRef> AsmStrs;
8916   IA->collectAsmStrs(AsmStrs);
8917 
8918   // Second pass over the constraints: compute which constraint option to use.
8919   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8920     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
8921       OpNo++;
8922 
8923     // If this is an output operand with a matching input operand, look up the
8924     // matching input. If their types mismatch, e.g. one is an integer, the
8925     // other is floating point, or their sizes are different, flag it as an
8926     // error.
8927     if (OpInfo.hasMatchingInput()) {
8928       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8929       patchMatchingInput(OpInfo, Input, DAG);
8930     }
8931 
8932     // Compute the constraint code and ConstraintType to use.
8933     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8934 
8935     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8936          OpInfo.Type == InlineAsm::isClobber) ||
8937         OpInfo.ConstraintType == TargetLowering::C_Address)
8938       continue;
8939 
8940     // In Linux PIC model, there are 4 cases about value/label addressing:
8941     //
8942     // 1: Function call or Label jmp inside the module.
8943     // 2: Data access (such as global variable, static variable) inside module.
8944     // 3: Function call or Label jmp outside the module.
8945     // 4: Data access (such as global variable) outside the module.
8946     //
8947     // Due to current llvm inline asm architecture designed to not "recognize"
8948     // the asm code, there are quite troubles for us to treat mem addressing
8949     // differently for same value/adress used in different instuctions.
8950     // For example, in pic model, call a func may in plt way or direclty
8951     // pc-related, but lea/mov a function adress may use got.
8952     //
8953     // Here we try to "recognize" function call for the case 1 and case 3 in
8954     // inline asm. And try to adjust the constraint for them.
8955     //
8956     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
8957     // label, so here we don't handle jmp function label now, but we need to
8958     // enhance it (especilly in PIC model) if we meet meaningful requirements.
8959     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
8960         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
8961         TM.getCodeModel() != CodeModel::Large) {
8962       OpInfo.isIndirect = false;
8963       OpInfo.ConstraintType = TargetLowering::C_Address;
8964     }
8965 
8966     // If this is a memory input, and if the operand is not indirect, do what we
8967     // need to provide an address for the memory input.
8968     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8969         !OpInfo.isIndirect) {
8970       assert((OpInfo.isMultipleAlternative ||
8971               (OpInfo.Type == InlineAsm::isInput)) &&
8972              "Can only indirectify direct input operands!");
8973 
8974       // Memory operands really want the address of the value.
8975       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8976 
8977       // There is no longer a Value* corresponding to this operand.
8978       OpInfo.CallOperandVal = nullptr;
8979 
8980       // It is now an indirect operand.
8981       OpInfo.isIndirect = true;
8982     }
8983 
8984   }
8985 
8986   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8987   std::vector<SDValue> AsmNodeOperands;
8988   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8989   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8990       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8991 
8992   // If we have a !srcloc metadata node associated with it, we want to attach
8993   // this to the ultimately generated inline asm machineinstr.  To do this, we
8994   // pass in the third operand as this (potentially null) inline asm MDNode.
8995   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8996   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8997 
8998   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8999   // bits as operand 3.
9000   AsmNodeOperands.push_back(DAG.getTargetConstant(
9001       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9002 
9003   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9004   // this, assign virtual and physical registers for inputs and otput.
9005   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9006     // Assign Registers.
9007     SDISelAsmOperandInfo &RefOpInfo =
9008         OpInfo.isMatchingInputConstraint()
9009             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9010             : OpInfo;
9011     const auto RegError =
9012         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9013     if (RegError) {
9014       const MachineFunction &MF = DAG.getMachineFunction();
9015       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9016       const char *RegName = TRI.getName(*RegError);
9017       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9018                                    "' allocated for constraint '" +
9019                                    Twine(OpInfo.ConstraintCode) +
9020                                    "' does not match required type");
9021       return;
9022     }
9023 
9024     auto DetectWriteToReservedRegister = [&]() {
9025       const MachineFunction &MF = DAG.getMachineFunction();
9026       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9027       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9028         if (Register::isPhysicalRegister(Reg) &&
9029             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9030           const char *RegName = TRI.getName(Reg);
9031           emitInlineAsmError(Call, "write to reserved register '" +
9032                                        Twine(RegName) + "'");
9033           return true;
9034         }
9035       }
9036       return false;
9037     };
9038     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9039             (OpInfo.Type == InlineAsm::isInput &&
9040              !OpInfo.isMatchingInputConstraint())) &&
9041            "Only address as input operand is allowed.");
9042 
9043     switch (OpInfo.Type) {
9044     case InlineAsm::isOutput:
9045       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9046         unsigned ConstraintID =
9047             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9048         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9049                "Failed to convert memory constraint code to constraint id.");
9050 
9051         // Add information to the INLINEASM node to know about this output.
9052         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9053         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9054         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9055                                                         MVT::i32));
9056         AsmNodeOperands.push_back(OpInfo.CallOperand);
9057       } else {
9058         // Otherwise, this outputs to a register (directly for C_Register /
9059         // C_RegisterClass, and a target-defined fashion for
9060         // C_Immediate/C_Other). Find a register that we can use.
9061         if (OpInfo.AssignedRegs.Regs.empty()) {
9062           emitInlineAsmError(
9063               Call, "couldn't allocate output register for constraint '" +
9064                         Twine(OpInfo.ConstraintCode) + "'");
9065           return;
9066         }
9067 
9068         if (DetectWriteToReservedRegister())
9069           return;
9070 
9071         // Add information to the INLINEASM node to know that this register is
9072         // set.
9073         OpInfo.AssignedRegs.AddInlineAsmOperands(
9074             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9075                                   : InlineAsm::Kind_RegDef,
9076             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9077       }
9078       break;
9079 
9080     case InlineAsm::isInput:
9081     case InlineAsm::isLabel: {
9082       SDValue InOperandVal = OpInfo.CallOperand;
9083 
9084       if (OpInfo.isMatchingInputConstraint()) {
9085         // If this is required to match an output register we have already set,
9086         // just use its register.
9087         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9088                                                   AsmNodeOperands);
9089         unsigned OpFlag =
9090           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9091         if (InlineAsm::isRegDefKind(OpFlag) ||
9092             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9093           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9094           if (OpInfo.isIndirect) {
9095             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9096             emitInlineAsmError(Call, "inline asm not supported yet: "
9097                                      "don't know how to handle tied "
9098                                      "indirect register inputs");
9099             return;
9100           }
9101 
9102           SmallVector<unsigned, 4> Regs;
9103           MachineFunction &MF = DAG.getMachineFunction();
9104           MachineRegisterInfo &MRI = MF.getRegInfo();
9105           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9106           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9107           Register TiedReg = R->getReg();
9108           MVT RegVT = R->getSimpleValueType(0);
9109           const TargetRegisterClass *RC =
9110               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9111               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9112                                       : TRI.getMinimalPhysRegClass(TiedReg);
9113           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9114           for (unsigned i = 0; i != NumRegs; ++i)
9115             Regs.push_back(MRI.createVirtualRegister(RC));
9116 
9117           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9118 
9119           SDLoc dl = getCurSDLoc();
9120           // Use the produced MatchedRegs object to
9121           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
9122           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9123                                            true, OpInfo.getMatchedOperand(), dl,
9124                                            DAG, AsmNodeOperands);
9125           break;
9126         }
9127 
9128         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9129         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9130                "Unexpected number of operands");
9131         // Add information to the INLINEASM node to know about this input.
9132         // See InlineAsm.h isUseOperandTiedToDef.
9133         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9134         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9135                                                     OpInfo.getMatchedOperand());
9136         AsmNodeOperands.push_back(DAG.getTargetConstant(
9137             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9138         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9139         break;
9140       }
9141 
9142       // Treat indirect 'X' constraint as memory.
9143       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9144           OpInfo.isIndirect)
9145         OpInfo.ConstraintType = TargetLowering::C_Memory;
9146 
9147       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9148           OpInfo.ConstraintType == TargetLowering::C_Other) {
9149         std::vector<SDValue> Ops;
9150         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9151                                           Ops, DAG);
9152         if (Ops.empty()) {
9153           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9154             if (isa<ConstantSDNode>(InOperandVal)) {
9155               emitInlineAsmError(Call, "value out of range for constraint '" +
9156                                            Twine(OpInfo.ConstraintCode) + "'");
9157               return;
9158             }
9159 
9160           emitInlineAsmError(Call,
9161                              "invalid operand for inline asm constraint '" +
9162                                  Twine(OpInfo.ConstraintCode) + "'");
9163           return;
9164         }
9165 
9166         // Add information to the INLINEASM node to know about this input.
9167         unsigned ResOpType =
9168           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9169         AsmNodeOperands.push_back(DAG.getTargetConstant(
9170             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9171         llvm::append_range(AsmNodeOperands, Ops);
9172         break;
9173       }
9174 
9175       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9176         assert((OpInfo.isIndirect ||
9177                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9178                "Operand must be indirect to be a mem!");
9179         assert(InOperandVal.getValueType() ==
9180                    TLI.getPointerTy(DAG.getDataLayout()) &&
9181                "Memory operands expect pointer values");
9182 
9183         unsigned ConstraintID =
9184             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9185         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9186                "Failed to convert memory constraint code to constraint id.");
9187 
9188         // Add information to the INLINEASM node to know about this input.
9189         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9190         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9191         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9192                                                         getCurSDLoc(),
9193                                                         MVT::i32));
9194         AsmNodeOperands.push_back(InOperandVal);
9195         break;
9196       }
9197 
9198       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9199         assert(InOperandVal.getValueType() ==
9200                    TLI.getPointerTy(DAG.getDataLayout()) &&
9201                "Address operands expect pointer values");
9202 
9203         unsigned ConstraintID =
9204             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9205         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9206                "Failed to convert memory constraint code to constraint id.");
9207 
9208         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9209 
9210         SDValue AsmOp = InOperandVal;
9211         if (isFunction(InOperandVal)) {
9212           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9213           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9214           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9215                                              InOperandVal.getValueType(),
9216                                              GA->getOffset());
9217         }
9218 
9219         // Add information to the INLINEASM node to know about this input.
9220         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9221 
9222         AsmNodeOperands.push_back(
9223             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9224 
9225         AsmNodeOperands.push_back(AsmOp);
9226         break;
9227       }
9228 
9229       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9230               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9231              "Unknown constraint type!");
9232 
9233       // TODO: Support this.
9234       if (OpInfo.isIndirect) {
9235         emitInlineAsmError(
9236             Call, "Don't know how to handle indirect register inputs yet "
9237                   "for constraint '" +
9238                       Twine(OpInfo.ConstraintCode) + "'");
9239         return;
9240       }
9241 
9242       // Copy the input into the appropriate registers.
9243       if (OpInfo.AssignedRegs.Regs.empty()) {
9244         emitInlineAsmError(Call,
9245                            "couldn't allocate input reg for constraint '" +
9246                                Twine(OpInfo.ConstraintCode) + "'");
9247         return;
9248       }
9249 
9250       if (DetectWriteToReservedRegister())
9251         return;
9252 
9253       SDLoc dl = getCurSDLoc();
9254 
9255       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9256                                         &Call);
9257 
9258       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9259                                                dl, DAG, AsmNodeOperands);
9260       break;
9261     }
9262     case InlineAsm::isClobber:
9263       // Add the clobbered value to the operand list, so that the register
9264       // allocator is aware that the physreg got clobbered.
9265       if (!OpInfo.AssignedRegs.Regs.empty())
9266         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9267                                                  false, 0, getCurSDLoc(), DAG,
9268                                                  AsmNodeOperands);
9269       break;
9270     }
9271   }
9272 
9273   // Finish up input operands.  Set the input chain and add the flag last.
9274   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9275   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9276 
9277   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9278   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9279                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9280   Flag = Chain.getValue(1);
9281 
9282   // Do additional work to generate outputs.
9283 
9284   SmallVector<EVT, 1> ResultVTs;
9285   SmallVector<SDValue, 1> ResultValues;
9286   SmallVector<SDValue, 8> OutChains;
9287 
9288   llvm::Type *CallResultType = Call.getType();
9289   ArrayRef<Type *> ResultTypes;
9290   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9291     ResultTypes = StructResult->elements();
9292   else if (!CallResultType->isVoidTy())
9293     ResultTypes = ArrayRef(CallResultType);
9294 
9295   auto CurResultType = ResultTypes.begin();
9296   auto handleRegAssign = [&](SDValue V) {
9297     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9298     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9299     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9300     ++CurResultType;
9301     // If the type of the inline asm call site return value is different but has
9302     // same size as the type of the asm output bitcast it.  One example of this
9303     // is for vectors with different width / number of elements.  This can
9304     // happen for register classes that can contain multiple different value
9305     // types.  The preg or vreg allocated may not have the same VT as was
9306     // expected.
9307     //
9308     // This can also happen for a return value that disagrees with the register
9309     // class it is put in, eg. a double in a general-purpose register on a
9310     // 32-bit machine.
9311     if (ResultVT != V.getValueType() &&
9312         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9313       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9314     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9315              V.getValueType().isInteger()) {
9316       // If a result value was tied to an input value, the computed result
9317       // may have a wider width than the expected result.  Extract the
9318       // relevant portion.
9319       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9320     }
9321     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9322     ResultVTs.push_back(ResultVT);
9323     ResultValues.push_back(V);
9324   };
9325 
9326   // Deal with output operands.
9327   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9328     if (OpInfo.Type == InlineAsm::isOutput) {
9329       SDValue Val;
9330       // Skip trivial output operands.
9331       if (OpInfo.AssignedRegs.Regs.empty())
9332         continue;
9333 
9334       switch (OpInfo.ConstraintType) {
9335       case TargetLowering::C_Register:
9336       case TargetLowering::C_RegisterClass:
9337         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9338                                                   Chain, &Flag, &Call);
9339         break;
9340       case TargetLowering::C_Immediate:
9341       case TargetLowering::C_Other:
9342         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9343                                               OpInfo, DAG);
9344         break;
9345       case TargetLowering::C_Memory:
9346         break; // Already handled.
9347       case TargetLowering::C_Address:
9348         break; // Silence warning.
9349       case TargetLowering::C_Unknown:
9350         assert(false && "Unexpected unknown constraint");
9351       }
9352 
9353       // Indirect output manifest as stores. Record output chains.
9354       if (OpInfo.isIndirect) {
9355         const Value *Ptr = OpInfo.CallOperandVal;
9356         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9357         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9358                                      MachinePointerInfo(Ptr));
9359         OutChains.push_back(Store);
9360       } else {
9361         // generate CopyFromRegs to associated registers.
9362         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9363         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9364           for (const SDValue &V : Val->op_values())
9365             handleRegAssign(V);
9366         } else
9367           handleRegAssign(Val);
9368       }
9369     }
9370   }
9371 
9372   // Set results.
9373   if (!ResultValues.empty()) {
9374     assert(CurResultType == ResultTypes.end() &&
9375            "Mismatch in number of ResultTypes");
9376     assert(ResultValues.size() == ResultTypes.size() &&
9377            "Mismatch in number of output operands in asm result");
9378 
9379     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9380                             DAG.getVTList(ResultVTs), ResultValues);
9381     setValue(&Call, V);
9382   }
9383 
9384   // Collect store chains.
9385   if (!OutChains.empty())
9386     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9387 
9388   if (EmitEHLabels) {
9389     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9390   }
9391 
9392   // Only Update Root if inline assembly has a memory effect.
9393   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9394       EmitEHLabels)
9395     DAG.setRoot(Chain);
9396 }
9397 
9398 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9399                                              const Twine &Message) {
9400   LLVMContext &Ctx = *DAG.getContext();
9401   Ctx.emitError(&Call, Message);
9402 
9403   // Make sure we leave the DAG in a valid state
9404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9405   SmallVector<EVT, 1> ValueVTs;
9406   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9407 
9408   if (ValueVTs.empty())
9409     return;
9410 
9411   SmallVector<SDValue, 1> Ops;
9412   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9413     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9414 
9415   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9416 }
9417 
9418 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9419   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9420                           MVT::Other, getRoot(),
9421                           getValue(I.getArgOperand(0)),
9422                           DAG.getSrcValue(I.getArgOperand(0))));
9423 }
9424 
9425 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9426   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9427   const DataLayout &DL = DAG.getDataLayout();
9428   SDValue V = DAG.getVAArg(
9429       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9430       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9431       DL.getABITypeAlign(I.getType()).value());
9432   DAG.setRoot(V.getValue(1));
9433 
9434   if (I.getType()->isPointerTy())
9435     V = DAG.getPtrExtOrTrunc(
9436         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9437   setValue(&I, V);
9438 }
9439 
9440 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9441   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9442                           MVT::Other, getRoot(),
9443                           getValue(I.getArgOperand(0)),
9444                           DAG.getSrcValue(I.getArgOperand(0))));
9445 }
9446 
9447 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9448   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9449                           MVT::Other, getRoot(),
9450                           getValue(I.getArgOperand(0)),
9451                           getValue(I.getArgOperand(1)),
9452                           DAG.getSrcValue(I.getArgOperand(0)),
9453                           DAG.getSrcValue(I.getArgOperand(1))));
9454 }
9455 
9456 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9457                                                     const Instruction &I,
9458                                                     SDValue Op) {
9459   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9460   if (!Range)
9461     return Op;
9462 
9463   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9464   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9465     return Op;
9466 
9467   APInt Lo = CR.getUnsignedMin();
9468   if (!Lo.isMinValue())
9469     return Op;
9470 
9471   APInt Hi = CR.getUnsignedMax();
9472   unsigned Bits = std::max(Hi.getActiveBits(),
9473                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9474 
9475   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9476 
9477   SDLoc SL = getCurSDLoc();
9478 
9479   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9480                              DAG.getValueType(SmallVT));
9481   unsigned NumVals = Op.getNode()->getNumValues();
9482   if (NumVals == 1)
9483     return ZExt;
9484 
9485   SmallVector<SDValue, 4> Ops;
9486 
9487   Ops.push_back(ZExt);
9488   for (unsigned I = 1; I != NumVals; ++I)
9489     Ops.push_back(Op.getValue(I));
9490 
9491   return DAG.getMergeValues(Ops, SL);
9492 }
9493 
9494 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9495 /// the call being lowered.
9496 ///
9497 /// This is a helper for lowering intrinsics that follow a target calling
9498 /// convention or require stack pointer adjustment. Only a subset of the
9499 /// intrinsic's operands need to participate in the calling convention.
9500 void SelectionDAGBuilder::populateCallLoweringInfo(
9501     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9502     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9503     bool IsPatchPoint) {
9504   TargetLowering::ArgListTy Args;
9505   Args.reserve(NumArgs);
9506 
9507   // Populate the argument list.
9508   // Attributes for args start at offset 1, after the return attribute.
9509   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9510        ArgI != ArgE; ++ArgI) {
9511     const Value *V = Call->getOperand(ArgI);
9512 
9513     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9514 
9515     TargetLowering::ArgListEntry Entry;
9516     Entry.Node = getValue(V);
9517     Entry.Ty = V->getType();
9518     Entry.setAttributes(Call, ArgI);
9519     Args.push_back(Entry);
9520   }
9521 
9522   CLI.setDebugLoc(getCurSDLoc())
9523       .setChain(getRoot())
9524       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9525       .setDiscardResult(Call->use_empty())
9526       .setIsPatchPoint(IsPatchPoint)
9527       .setIsPreallocated(
9528           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9529 }
9530 
9531 /// Add a stack map intrinsic call's live variable operands to a stackmap
9532 /// or patchpoint target node's operand list.
9533 ///
9534 /// Constants are converted to TargetConstants purely as an optimization to
9535 /// avoid constant materialization and register allocation.
9536 ///
9537 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9538 /// generate addess computation nodes, and so FinalizeISel can convert the
9539 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9540 /// address materialization and register allocation, but may also be required
9541 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9542 /// alloca in the entry block, then the runtime may assume that the alloca's
9543 /// StackMap location can be read immediately after compilation and that the
9544 /// location is valid at any point during execution (this is similar to the
9545 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9546 /// only available in a register, then the runtime would need to trap when
9547 /// execution reaches the StackMap in order to read the alloca's location.
9548 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9549                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9550                                 SelectionDAGBuilder &Builder) {
9551   SelectionDAG &DAG = Builder.DAG;
9552   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9553     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9554 
9555     // Things on the stack are pointer-typed, meaning that they are already
9556     // legal and can be emitted directly to target nodes.
9557     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9558       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9559     } else {
9560       // Otherwise emit a target independent node to be legalised.
9561       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9562     }
9563   }
9564 }
9565 
9566 /// Lower llvm.experimental.stackmap.
9567 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9568   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9569   //                                  [live variables...])
9570 
9571   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9572 
9573   SDValue Chain, InFlag, Callee;
9574   SmallVector<SDValue, 32> Ops;
9575 
9576   SDLoc DL = getCurSDLoc();
9577   Callee = getValue(CI.getCalledOperand());
9578 
9579   // The stackmap intrinsic only records the live variables (the arguments
9580   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9581   // intrinsic, this won't be lowered to a function call. This means we don't
9582   // have to worry about calling conventions and target specific lowering code.
9583   // Instead we perform the call lowering right here.
9584   //
9585   // chain, flag = CALLSEQ_START(chain, 0, 0)
9586   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9587   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9588   //
9589   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9590   InFlag = Chain.getValue(1);
9591 
9592   // Add the STACKMAP operands, starting with DAG house-keeping.
9593   Ops.push_back(Chain);
9594   Ops.push_back(InFlag);
9595 
9596   // Add the <id>, <numShadowBytes> operands.
9597   //
9598   // These do not require legalisation, and can be emitted directly to target
9599   // constant nodes.
9600   SDValue ID = getValue(CI.getArgOperand(0));
9601   assert(ID.getValueType() == MVT::i64);
9602   SDValue IDConst = DAG.getTargetConstant(
9603       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9604   Ops.push_back(IDConst);
9605 
9606   SDValue Shad = getValue(CI.getArgOperand(1));
9607   assert(Shad.getValueType() == MVT::i32);
9608   SDValue ShadConst = DAG.getTargetConstant(
9609       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9610   Ops.push_back(ShadConst);
9611 
9612   // Add the live variables.
9613   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9614 
9615   // Create the STACKMAP node.
9616   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9617   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9618   InFlag = Chain.getValue(1);
9619 
9620   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
9621 
9622   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9623 
9624   // Set the root to the target-lowered call chain.
9625   DAG.setRoot(Chain);
9626 
9627   // Inform the Frame Information that we have a stackmap in this function.
9628   FuncInfo.MF->getFrameInfo().setHasStackMap();
9629 }
9630 
9631 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9632 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9633                                           const BasicBlock *EHPadBB) {
9634   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9635   //                                                 i32 <numBytes>,
9636   //                                                 i8* <target>,
9637   //                                                 i32 <numArgs>,
9638   //                                                 [Args...],
9639   //                                                 [live variables...])
9640 
9641   CallingConv::ID CC = CB.getCallingConv();
9642   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9643   bool HasDef = !CB.getType()->isVoidTy();
9644   SDLoc dl = getCurSDLoc();
9645   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9646 
9647   // Handle immediate and symbolic callees.
9648   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9649     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9650                                    /*isTarget=*/true);
9651   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9652     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9653                                          SDLoc(SymbolicCallee),
9654                                          SymbolicCallee->getValueType(0));
9655 
9656   // Get the real number of arguments participating in the call <numArgs>
9657   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9658   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9659 
9660   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9661   // Intrinsics include all meta-operands up to but not including CC.
9662   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9663   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9664          "Not enough arguments provided to the patchpoint intrinsic");
9665 
9666   // For AnyRegCC the arguments are lowered later on manually.
9667   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9668   Type *ReturnTy =
9669       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9670 
9671   TargetLowering::CallLoweringInfo CLI(DAG);
9672   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9673                            ReturnTy, true);
9674   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9675 
9676   SDNode *CallEnd = Result.second.getNode();
9677   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9678     CallEnd = CallEnd->getOperand(0).getNode();
9679 
9680   /// Get a call instruction from the call sequence chain.
9681   /// Tail calls are not allowed.
9682   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9683          "Expected a callseq node.");
9684   SDNode *Call = CallEnd->getOperand(0).getNode();
9685   bool HasGlue = Call->getGluedNode();
9686 
9687   // Replace the target specific call node with the patchable intrinsic.
9688   SmallVector<SDValue, 8> Ops;
9689 
9690   // Push the chain.
9691   Ops.push_back(*(Call->op_begin()));
9692 
9693   // Optionally, push the glue (if any).
9694   if (HasGlue)
9695     Ops.push_back(*(Call->op_end() - 1));
9696 
9697   // Push the register mask info.
9698   if (HasGlue)
9699     Ops.push_back(*(Call->op_end() - 2));
9700   else
9701     Ops.push_back(*(Call->op_end() - 1));
9702 
9703   // Add the <id> and <numBytes> constants.
9704   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9705   Ops.push_back(DAG.getTargetConstant(
9706                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9707   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9708   Ops.push_back(DAG.getTargetConstant(
9709                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9710                   MVT::i32));
9711 
9712   // Add the callee.
9713   Ops.push_back(Callee);
9714 
9715   // Adjust <numArgs> to account for any arguments that have been passed on the
9716   // stack instead.
9717   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9718   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9719   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9720   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9721 
9722   // Add the calling convention
9723   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9724 
9725   // Add the arguments we omitted previously. The register allocator should
9726   // place these in any free register.
9727   if (IsAnyRegCC)
9728     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9729       Ops.push_back(getValue(CB.getArgOperand(i)));
9730 
9731   // Push the arguments from the call instruction.
9732   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9733   Ops.append(Call->op_begin() + 2, e);
9734 
9735   // Push live variables for the stack map.
9736   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9737 
9738   SDVTList NodeTys;
9739   if (IsAnyRegCC && HasDef) {
9740     // Create the return types based on the intrinsic definition
9741     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9742     SmallVector<EVT, 3> ValueVTs;
9743     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9744     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9745 
9746     // There is always a chain and a glue type at the end
9747     ValueVTs.push_back(MVT::Other);
9748     ValueVTs.push_back(MVT::Glue);
9749     NodeTys = DAG.getVTList(ValueVTs);
9750   } else
9751     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9752 
9753   // Replace the target specific call node with a PATCHPOINT node.
9754   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9755 
9756   // Update the NodeMap.
9757   if (HasDef) {
9758     if (IsAnyRegCC)
9759       setValue(&CB, SDValue(PPV.getNode(), 0));
9760     else
9761       setValue(&CB, Result.first);
9762   }
9763 
9764   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9765   // call sequence. Furthermore the location of the chain and glue can change
9766   // when the AnyReg calling convention is used and the intrinsic returns a
9767   // value.
9768   if (IsAnyRegCC && HasDef) {
9769     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9770     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9771     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9772   } else
9773     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9774   DAG.DeleteNode(Call);
9775 
9776   // Inform the Frame Information that we have a patchpoint in this function.
9777   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9778 }
9779 
9780 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9781                                             unsigned Intrinsic) {
9782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9783   SDValue Op1 = getValue(I.getArgOperand(0));
9784   SDValue Op2;
9785   if (I.arg_size() > 1)
9786     Op2 = getValue(I.getArgOperand(1));
9787   SDLoc dl = getCurSDLoc();
9788   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9789   SDValue Res;
9790   SDNodeFlags SDFlags;
9791   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9792     SDFlags.copyFMF(*FPMO);
9793 
9794   switch (Intrinsic) {
9795   case Intrinsic::vector_reduce_fadd:
9796     if (SDFlags.hasAllowReassociation())
9797       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9798                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9799                         SDFlags);
9800     else
9801       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9802     break;
9803   case Intrinsic::vector_reduce_fmul:
9804     if (SDFlags.hasAllowReassociation())
9805       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9806                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9807                         SDFlags);
9808     else
9809       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9810     break;
9811   case Intrinsic::vector_reduce_add:
9812     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9813     break;
9814   case Intrinsic::vector_reduce_mul:
9815     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9816     break;
9817   case Intrinsic::vector_reduce_and:
9818     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9819     break;
9820   case Intrinsic::vector_reduce_or:
9821     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9822     break;
9823   case Intrinsic::vector_reduce_xor:
9824     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9825     break;
9826   case Intrinsic::vector_reduce_smax:
9827     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9828     break;
9829   case Intrinsic::vector_reduce_smin:
9830     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9831     break;
9832   case Intrinsic::vector_reduce_umax:
9833     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9834     break;
9835   case Intrinsic::vector_reduce_umin:
9836     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9837     break;
9838   case Intrinsic::vector_reduce_fmax:
9839     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9840     break;
9841   case Intrinsic::vector_reduce_fmin:
9842     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9843     break;
9844   default:
9845     llvm_unreachable("Unhandled vector reduce intrinsic");
9846   }
9847   setValue(&I, Res);
9848 }
9849 
9850 /// Returns an AttributeList representing the attributes applied to the return
9851 /// value of the given call.
9852 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9853   SmallVector<Attribute::AttrKind, 2> Attrs;
9854   if (CLI.RetSExt)
9855     Attrs.push_back(Attribute::SExt);
9856   if (CLI.RetZExt)
9857     Attrs.push_back(Attribute::ZExt);
9858   if (CLI.IsInReg)
9859     Attrs.push_back(Attribute::InReg);
9860 
9861   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9862                             Attrs);
9863 }
9864 
9865 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9866 /// implementation, which just calls LowerCall.
9867 /// FIXME: When all targets are
9868 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9869 std::pair<SDValue, SDValue>
9870 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9871   // Handle the incoming return values from the call.
9872   CLI.Ins.clear();
9873   Type *OrigRetTy = CLI.RetTy;
9874   SmallVector<EVT, 4> RetTys;
9875   SmallVector<uint64_t, 4> Offsets;
9876   auto &DL = CLI.DAG.getDataLayout();
9877   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9878 
9879   if (CLI.IsPostTypeLegalization) {
9880     // If we are lowering a libcall after legalization, split the return type.
9881     SmallVector<EVT, 4> OldRetTys;
9882     SmallVector<uint64_t, 4> OldOffsets;
9883     RetTys.swap(OldRetTys);
9884     Offsets.swap(OldOffsets);
9885 
9886     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9887       EVT RetVT = OldRetTys[i];
9888       uint64_t Offset = OldOffsets[i];
9889       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9890       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9891       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9892       RetTys.append(NumRegs, RegisterVT);
9893       for (unsigned j = 0; j != NumRegs; ++j)
9894         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9895     }
9896   }
9897 
9898   SmallVector<ISD::OutputArg, 4> Outs;
9899   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9900 
9901   bool CanLowerReturn =
9902       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9903                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9904 
9905   SDValue DemoteStackSlot;
9906   int DemoteStackIdx = -100;
9907   if (!CanLowerReturn) {
9908     // FIXME: equivalent assert?
9909     // assert(!CS.hasInAllocaArgument() &&
9910     //        "sret demotion is incompatible with inalloca");
9911     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9912     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9913     MachineFunction &MF = CLI.DAG.getMachineFunction();
9914     DemoteStackIdx =
9915         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9916     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9917                                               DL.getAllocaAddrSpace());
9918 
9919     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9920     ArgListEntry Entry;
9921     Entry.Node = DemoteStackSlot;
9922     Entry.Ty = StackSlotPtrType;
9923     Entry.IsSExt = false;
9924     Entry.IsZExt = false;
9925     Entry.IsInReg = false;
9926     Entry.IsSRet = true;
9927     Entry.IsNest = false;
9928     Entry.IsByVal = false;
9929     Entry.IsByRef = false;
9930     Entry.IsReturned = false;
9931     Entry.IsSwiftSelf = false;
9932     Entry.IsSwiftAsync = false;
9933     Entry.IsSwiftError = false;
9934     Entry.IsCFGuardTarget = false;
9935     Entry.Alignment = Alignment;
9936     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9937     CLI.NumFixedArgs += 1;
9938     CLI.getArgs()[0].IndirectType = CLI.RetTy;
9939     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9940 
9941     // sret demotion isn't compatible with tail-calls, since the sret argument
9942     // points into the callers stack frame.
9943     CLI.IsTailCall = false;
9944   } else {
9945     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9946         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9947     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9948       ISD::ArgFlagsTy Flags;
9949       if (NeedsRegBlock) {
9950         Flags.setInConsecutiveRegs();
9951         if (I == RetTys.size() - 1)
9952           Flags.setInConsecutiveRegsLast();
9953       }
9954       EVT VT = RetTys[I];
9955       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9956                                                      CLI.CallConv, VT);
9957       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9958                                                        CLI.CallConv, VT);
9959       for (unsigned i = 0; i != NumRegs; ++i) {
9960         ISD::InputArg MyFlags;
9961         MyFlags.Flags = Flags;
9962         MyFlags.VT = RegisterVT;
9963         MyFlags.ArgVT = VT;
9964         MyFlags.Used = CLI.IsReturnValueUsed;
9965         if (CLI.RetTy->isPointerTy()) {
9966           MyFlags.Flags.setPointer();
9967           MyFlags.Flags.setPointerAddrSpace(
9968               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9969         }
9970         if (CLI.RetSExt)
9971           MyFlags.Flags.setSExt();
9972         if (CLI.RetZExt)
9973           MyFlags.Flags.setZExt();
9974         if (CLI.IsInReg)
9975           MyFlags.Flags.setInReg();
9976         CLI.Ins.push_back(MyFlags);
9977       }
9978     }
9979   }
9980 
9981   // We push in swifterror return as the last element of CLI.Ins.
9982   ArgListTy &Args = CLI.getArgs();
9983   if (supportSwiftError()) {
9984     for (const ArgListEntry &Arg : Args) {
9985       if (Arg.IsSwiftError) {
9986         ISD::InputArg MyFlags;
9987         MyFlags.VT = getPointerTy(DL);
9988         MyFlags.ArgVT = EVT(getPointerTy(DL));
9989         MyFlags.Flags.setSwiftError();
9990         CLI.Ins.push_back(MyFlags);
9991       }
9992     }
9993   }
9994 
9995   // Handle all of the outgoing arguments.
9996   CLI.Outs.clear();
9997   CLI.OutVals.clear();
9998   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9999     SmallVector<EVT, 4> ValueVTs;
10000     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10001     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10002     Type *FinalType = Args[i].Ty;
10003     if (Args[i].IsByVal)
10004       FinalType = Args[i].IndirectType;
10005     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10006         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10007     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10008          ++Value) {
10009       EVT VT = ValueVTs[Value];
10010       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10011       SDValue Op = SDValue(Args[i].Node.getNode(),
10012                            Args[i].Node.getResNo() + Value);
10013       ISD::ArgFlagsTy Flags;
10014 
10015       // Certain targets (such as MIPS), may have a different ABI alignment
10016       // for a type depending on the context. Give the target a chance to
10017       // specify the alignment it wants.
10018       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10019       Flags.setOrigAlign(OriginalAlignment);
10020 
10021       if (Args[i].Ty->isPointerTy()) {
10022         Flags.setPointer();
10023         Flags.setPointerAddrSpace(
10024             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10025       }
10026       if (Args[i].IsZExt)
10027         Flags.setZExt();
10028       if (Args[i].IsSExt)
10029         Flags.setSExt();
10030       if (Args[i].IsInReg) {
10031         // If we are using vectorcall calling convention, a structure that is
10032         // passed InReg - is surely an HVA
10033         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10034             isa<StructType>(FinalType)) {
10035           // The first value of a structure is marked
10036           if (0 == Value)
10037             Flags.setHvaStart();
10038           Flags.setHva();
10039         }
10040         // Set InReg Flag
10041         Flags.setInReg();
10042       }
10043       if (Args[i].IsSRet)
10044         Flags.setSRet();
10045       if (Args[i].IsSwiftSelf)
10046         Flags.setSwiftSelf();
10047       if (Args[i].IsSwiftAsync)
10048         Flags.setSwiftAsync();
10049       if (Args[i].IsSwiftError)
10050         Flags.setSwiftError();
10051       if (Args[i].IsCFGuardTarget)
10052         Flags.setCFGuardTarget();
10053       if (Args[i].IsByVal)
10054         Flags.setByVal();
10055       if (Args[i].IsByRef)
10056         Flags.setByRef();
10057       if (Args[i].IsPreallocated) {
10058         Flags.setPreallocated();
10059         // Set the byval flag for CCAssignFn callbacks that don't know about
10060         // preallocated.  This way we can know how many bytes we should've
10061         // allocated and how many bytes a callee cleanup function will pop.  If
10062         // we port preallocated to more targets, we'll have to add custom
10063         // preallocated handling in the various CC lowering callbacks.
10064         Flags.setByVal();
10065       }
10066       if (Args[i].IsInAlloca) {
10067         Flags.setInAlloca();
10068         // Set the byval flag for CCAssignFn callbacks that don't know about
10069         // inalloca.  This way we can know how many bytes we should've allocated
10070         // and how many bytes a callee cleanup function will pop.  If we port
10071         // inalloca to more targets, we'll have to add custom inalloca handling
10072         // in the various CC lowering callbacks.
10073         Flags.setByVal();
10074       }
10075       Align MemAlign;
10076       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10077         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10078         Flags.setByValSize(FrameSize);
10079 
10080         // info is not there but there are cases it cannot get right.
10081         if (auto MA = Args[i].Alignment)
10082           MemAlign = *MA;
10083         else
10084           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10085       } else if (auto MA = Args[i].Alignment) {
10086         MemAlign = *MA;
10087       } else {
10088         MemAlign = OriginalAlignment;
10089       }
10090       Flags.setMemAlign(MemAlign);
10091       if (Args[i].IsNest)
10092         Flags.setNest();
10093       if (NeedsRegBlock)
10094         Flags.setInConsecutiveRegs();
10095 
10096       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10097                                                  CLI.CallConv, VT);
10098       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10099                                                         CLI.CallConv, VT);
10100       SmallVector<SDValue, 4> Parts(NumParts);
10101       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10102 
10103       if (Args[i].IsSExt)
10104         ExtendKind = ISD::SIGN_EXTEND;
10105       else if (Args[i].IsZExt)
10106         ExtendKind = ISD::ZERO_EXTEND;
10107 
10108       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10109       // for now.
10110       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10111           CanLowerReturn) {
10112         assert((CLI.RetTy == Args[i].Ty ||
10113                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10114                  CLI.RetTy->getPointerAddressSpace() ==
10115                      Args[i].Ty->getPointerAddressSpace())) &&
10116                RetTys.size() == NumValues && "unexpected use of 'returned'");
10117         // Before passing 'returned' to the target lowering code, ensure that
10118         // either the register MVT and the actual EVT are the same size or that
10119         // the return value and argument are extended in the same way; in these
10120         // cases it's safe to pass the argument register value unchanged as the
10121         // return register value (although it's at the target's option whether
10122         // to do so)
10123         // TODO: allow code generation to take advantage of partially preserved
10124         // registers rather than clobbering the entire register when the
10125         // parameter extension method is not compatible with the return
10126         // extension method
10127         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10128             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10129              CLI.RetZExt == Args[i].IsZExt))
10130           Flags.setReturned();
10131       }
10132 
10133       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10134                      CLI.CallConv, ExtendKind);
10135 
10136       for (unsigned j = 0; j != NumParts; ++j) {
10137         // if it isn't first piece, alignment must be 1
10138         // For scalable vectors the scalable part is currently handled
10139         // by individual targets, so we just use the known minimum size here.
10140         ISD::OutputArg MyFlags(
10141             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10142             i < CLI.NumFixedArgs, i,
10143             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10144         if (NumParts > 1 && j == 0)
10145           MyFlags.Flags.setSplit();
10146         else if (j != 0) {
10147           MyFlags.Flags.setOrigAlign(Align(1));
10148           if (j == NumParts - 1)
10149             MyFlags.Flags.setSplitEnd();
10150         }
10151 
10152         CLI.Outs.push_back(MyFlags);
10153         CLI.OutVals.push_back(Parts[j]);
10154       }
10155 
10156       if (NeedsRegBlock && Value == NumValues - 1)
10157         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10158     }
10159   }
10160 
10161   SmallVector<SDValue, 4> InVals;
10162   CLI.Chain = LowerCall(CLI, InVals);
10163 
10164   // Update CLI.InVals to use outside of this function.
10165   CLI.InVals = InVals;
10166 
10167   // Verify that the target's LowerCall behaved as expected.
10168   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10169          "LowerCall didn't return a valid chain!");
10170   assert((!CLI.IsTailCall || InVals.empty()) &&
10171          "LowerCall emitted a return value for a tail call!");
10172   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10173          "LowerCall didn't emit the correct number of values!");
10174 
10175   // For a tail call, the return value is merely live-out and there aren't
10176   // any nodes in the DAG representing it. Return a special value to
10177   // indicate that a tail call has been emitted and no more Instructions
10178   // should be processed in the current block.
10179   if (CLI.IsTailCall) {
10180     CLI.DAG.setRoot(CLI.Chain);
10181     return std::make_pair(SDValue(), SDValue());
10182   }
10183 
10184 #ifndef NDEBUG
10185   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10186     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10187     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10188            "LowerCall emitted a value with the wrong type!");
10189   }
10190 #endif
10191 
10192   SmallVector<SDValue, 4> ReturnValues;
10193   if (!CanLowerReturn) {
10194     // The instruction result is the result of loading from the
10195     // hidden sret parameter.
10196     SmallVector<EVT, 1> PVTs;
10197     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10198 
10199     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10200     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10201     EVT PtrVT = PVTs[0];
10202 
10203     unsigned NumValues = RetTys.size();
10204     ReturnValues.resize(NumValues);
10205     SmallVector<SDValue, 4> Chains(NumValues);
10206 
10207     // An aggregate return value cannot wrap around the address space, so
10208     // offsets to its parts don't wrap either.
10209     SDNodeFlags Flags;
10210     Flags.setNoUnsignedWrap(true);
10211 
10212     MachineFunction &MF = CLI.DAG.getMachineFunction();
10213     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10214     for (unsigned i = 0; i < NumValues; ++i) {
10215       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10216                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10217                                                         PtrVT), Flags);
10218       SDValue L = CLI.DAG.getLoad(
10219           RetTys[i], CLI.DL, CLI.Chain, Add,
10220           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10221                                             DemoteStackIdx, Offsets[i]),
10222           HiddenSRetAlign);
10223       ReturnValues[i] = L;
10224       Chains[i] = L.getValue(1);
10225     }
10226 
10227     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10228   } else {
10229     // Collect the legal value parts into potentially illegal values
10230     // that correspond to the original function's return values.
10231     std::optional<ISD::NodeType> AssertOp;
10232     if (CLI.RetSExt)
10233       AssertOp = ISD::AssertSext;
10234     else if (CLI.RetZExt)
10235       AssertOp = ISD::AssertZext;
10236     unsigned CurReg = 0;
10237     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10238       EVT VT = RetTys[I];
10239       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10240                                                      CLI.CallConv, VT);
10241       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10242                                                        CLI.CallConv, VT);
10243 
10244       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10245                                               NumRegs, RegisterVT, VT, nullptr,
10246                                               CLI.CallConv, AssertOp));
10247       CurReg += NumRegs;
10248     }
10249 
10250     // For a function returning void, there is no return value. We can't create
10251     // such a node, so we just return a null return value in that case. In
10252     // that case, nothing will actually look at the value.
10253     if (ReturnValues.empty())
10254       return std::make_pair(SDValue(), CLI.Chain);
10255   }
10256 
10257   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10258                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10259   return std::make_pair(Res, CLI.Chain);
10260 }
10261 
10262 /// Places new result values for the node in Results (their number
10263 /// and types must exactly match those of the original return values of
10264 /// the node), or leaves Results empty, which indicates that the node is not
10265 /// to be custom lowered after all.
10266 void TargetLowering::LowerOperationWrapper(SDNode *N,
10267                                            SmallVectorImpl<SDValue> &Results,
10268                                            SelectionDAG &DAG) const {
10269   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10270 
10271   if (!Res.getNode())
10272     return;
10273 
10274   // If the original node has one result, take the return value from
10275   // LowerOperation as is. It might not be result number 0.
10276   if (N->getNumValues() == 1) {
10277     Results.push_back(Res);
10278     return;
10279   }
10280 
10281   // If the original node has multiple results, then the return node should
10282   // have the same number of results.
10283   assert((N->getNumValues() == Res->getNumValues()) &&
10284       "Lowering returned the wrong number of results!");
10285 
10286   // Places new result values base on N result number.
10287   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10288     Results.push_back(Res.getValue(I));
10289 }
10290 
10291 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10292   llvm_unreachable("LowerOperation not implemented for this target!");
10293 }
10294 
10295 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10296                                                      unsigned Reg,
10297                                                      ISD::NodeType ExtendType) {
10298   SDValue Op = getNonRegisterValue(V);
10299   assert((Op.getOpcode() != ISD::CopyFromReg ||
10300           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10301          "Copy from a reg to the same reg!");
10302   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10303 
10304   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10305   // If this is an InlineAsm we have to match the registers required, not the
10306   // notional registers required by the type.
10307 
10308   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10309                    std::nullopt); // This is not an ABI copy.
10310   SDValue Chain = DAG.getEntryNode();
10311 
10312   if (ExtendType == ISD::ANY_EXTEND) {
10313     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10314     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10315       ExtendType = PreferredExtendIt->second;
10316   }
10317   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10318   PendingExports.push_back(Chain);
10319 }
10320 
10321 #include "llvm/CodeGen/SelectionDAGISel.h"
10322 
10323 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10324 /// entry block, return true.  This includes arguments used by switches, since
10325 /// the switch may expand into multiple basic blocks.
10326 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10327   // With FastISel active, we may be splitting blocks, so force creation
10328   // of virtual registers for all non-dead arguments.
10329   if (FastISel)
10330     return A->use_empty();
10331 
10332   const BasicBlock &Entry = A->getParent()->front();
10333   for (const User *U : A->users())
10334     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10335       return false;  // Use not in entry block.
10336 
10337   return true;
10338 }
10339 
10340 using ArgCopyElisionMapTy =
10341     DenseMap<const Argument *,
10342              std::pair<const AllocaInst *, const StoreInst *>>;
10343 
10344 /// Scan the entry block of the function in FuncInfo for arguments that look
10345 /// like copies into a local alloca. Record any copied arguments in
10346 /// ArgCopyElisionCandidates.
10347 static void
10348 findArgumentCopyElisionCandidates(const DataLayout &DL,
10349                                   FunctionLoweringInfo *FuncInfo,
10350                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10351   // Record the state of every static alloca used in the entry block. Argument
10352   // allocas are all used in the entry block, so we need approximately as many
10353   // entries as we have arguments.
10354   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10355   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10356   unsigned NumArgs = FuncInfo->Fn->arg_size();
10357   StaticAllocas.reserve(NumArgs * 2);
10358 
10359   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10360     if (!V)
10361       return nullptr;
10362     V = V->stripPointerCasts();
10363     const auto *AI = dyn_cast<AllocaInst>(V);
10364     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10365       return nullptr;
10366     auto Iter = StaticAllocas.insert({AI, Unknown});
10367     return &Iter.first->second;
10368   };
10369 
10370   // Look for stores of arguments to static allocas. Look through bitcasts and
10371   // GEPs to handle type coercions, as long as the alloca is fully initialized
10372   // by the store. Any non-store use of an alloca escapes it and any subsequent
10373   // unanalyzed store might write it.
10374   // FIXME: Handle structs initialized with multiple stores.
10375   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10376     // Look for stores, and handle non-store uses conservatively.
10377     const auto *SI = dyn_cast<StoreInst>(&I);
10378     if (!SI) {
10379       // We will look through cast uses, so ignore them completely.
10380       if (I.isCast())
10381         continue;
10382       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10383       // to allocas.
10384       if (I.isDebugOrPseudoInst())
10385         continue;
10386       // This is an unknown instruction. Assume it escapes or writes to all
10387       // static alloca operands.
10388       for (const Use &U : I.operands()) {
10389         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10390           *Info = StaticAllocaInfo::Clobbered;
10391       }
10392       continue;
10393     }
10394 
10395     // If the stored value is a static alloca, mark it as escaped.
10396     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10397       *Info = StaticAllocaInfo::Clobbered;
10398 
10399     // Check if the destination is a static alloca.
10400     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10401     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10402     if (!Info)
10403       continue;
10404     const AllocaInst *AI = cast<AllocaInst>(Dst);
10405 
10406     // Skip allocas that have been initialized or clobbered.
10407     if (*Info != StaticAllocaInfo::Unknown)
10408       continue;
10409 
10410     // Check if the stored value is an argument, and that this store fully
10411     // initializes the alloca.
10412     // If the argument type has padding bits we can't directly forward a pointer
10413     // as the upper bits may contain garbage.
10414     // Don't elide copies from the same argument twice.
10415     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10416     const auto *Arg = dyn_cast<Argument>(Val);
10417     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10418         Arg->getType()->isEmptyTy() ||
10419         DL.getTypeStoreSize(Arg->getType()) !=
10420             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10421         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10422         ArgCopyElisionCandidates.count(Arg)) {
10423       *Info = StaticAllocaInfo::Clobbered;
10424       continue;
10425     }
10426 
10427     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10428                       << '\n');
10429 
10430     // Mark this alloca and store for argument copy elision.
10431     *Info = StaticAllocaInfo::Elidable;
10432     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10433 
10434     // Stop scanning if we've seen all arguments. This will happen early in -O0
10435     // builds, which is useful, because -O0 builds have large entry blocks and
10436     // many allocas.
10437     if (ArgCopyElisionCandidates.size() == NumArgs)
10438       break;
10439   }
10440 }
10441 
10442 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10443 /// ArgVal is a load from a suitable fixed stack object.
10444 static void tryToElideArgumentCopy(
10445     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10446     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10447     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10448     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10449     SDValue ArgVal, bool &ArgHasUses) {
10450   // Check if this is a load from a fixed stack object.
10451   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10452   if (!LNode)
10453     return;
10454   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10455   if (!FINode)
10456     return;
10457 
10458   // Check that the fixed stack object is the right size and alignment.
10459   // Look at the alignment that the user wrote on the alloca instead of looking
10460   // at the stack object.
10461   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10462   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10463   const AllocaInst *AI = ArgCopyIter->second.first;
10464   int FixedIndex = FINode->getIndex();
10465   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10466   int OldIndex = AllocaIndex;
10467   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10468   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10469     LLVM_DEBUG(
10470         dbgs() << "  argument copy elision failed due to bad fixed stack "
10471                   "object size\n");
10472     return;
10473   }
10474   Align RequiredAlignment = AI->getAlign();
10475   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10476     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10477                          "greater than stack argument alignment ("
10478                       << DebugStr(RequiredAlignment) << " vs "
10479                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10480     return;
10481   }
10482 
10483   // Perform the elision. Delete the old stack object and replace its only use
10484   // in the variable info map. Mark the stack object as mutable.
10485   LLVM_DEBUG({
10486     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10487            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10488            << '\n';
10489   });
10490   MFI.RemoveStackObject(OldIndex);
10491   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10492   AllocaIndex = FixedIndex;
10493   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10494   Chains.push_back(ArgVal.getValue(1));
10495 
10496   // Avoid emitting code for the store implementing the copy.
10497   const StoreInst *SI = ArgCopyIter->second.second;
10498   ElidedArgCopyInstrs.insert(SI);
10499 
10500   // Check for uses of the argument again so that we can avoid exporting ArgVal
10501   // if it is't used by anything other than the store.
10502   for (const Value *U : Arg.users()) {
10503     if (U != SI) {
10504       ArgHasUses = true;
10505       break;
10506     }
10507   }
10508 }
10509 
10510 void SelectionDAGISel::LowerArguments(const Function &F) {
10511   SelectionDAG &DAG = SDB->DAG;
10512   SDLoc dl = SDB->getCurSDLoc();
10513   const DataLayout &DL = DAG.getDataLayout();
10514   SmallVector<ISD::InputArg, 16> Ins;
10515 
10516   // In Naked functions we aren't going to save any registers.
10517   if (F.hasFnAttribute(Attribute::Naked))
10518     return;
10519 
10520   if (!FuncInfo->CanLowerReturn) {
10521     // Put in an sret pointer parameter before all the other parameters.
10522     SmallVector<EVT, 1> ValueVTs;
10523     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10524                     F.getReturnType()->getPointerTo(
10525                         DAG.getDataLayout().getAllocaAddrSpace()),
10526                     ValueVTs);
10527 
10528     // NOTE: Assuming that a pointer will never break down to more than one VT
10529     // or one register.
10530     ISD::ArgFlagsTy Flags;
10531     Flags.setSRet();
10532     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10533     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10534                          ISD::InputArg::NoArgIndex, 0);
10535     Ins.push_back(RetArg);
10536   }
10537 
10538   // Look for stores of arguments to static allocas. Mark such arguments with a
10539   // flag to ask the target to give us the memory location of that argument if
10540   // available.
10541   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10542   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10543                                     ArgCopyElisionCandidates);
10544 
10545   // Set up the incoming argument description vector.
10546   for (const Argument &Arg : F.args()) {
10547     unsigned ArgNo = Arg.getArgNo();
10548     SmallVector<EVT, 4> ValueVTs;
10549     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10550     bool isArgValueUsed = !Arg.use_empty();
10551     unsigned PartBase = 0;
10552     Type *FinalType = Arg.getType();
10553     if (Arg.hasAttribute(Attribute::ByVal))
10554       FinalType = Arg.getParamByValType();
10555     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10556         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10557     for (unsigned Value = 0, NumValues = ValueVTs.size();
10558          Value != NumValues; ++Value) {
10559       EVT VT = ValueVTs[Value];
10560       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10561       ISD::ArgFlagsTy Flags;
10562 
10563 
10564       if (Arg.getType()->isPointerTy()) {
10565         Flags.setPointer();
10566         Flags.setPointerAddrSpace(
10567             cast<PointerType>(Arg.getType())->getAddressSpace());
10568       }
10569       if (Arg.hasAttribute(Attribute::ZExt))
10570         Flags.setZExt();
10571       if (Arg.hasAttribute(Attribute::SExt))
10572         Flags.setSExt();
10573       if (Arg.hasAttribute(Attribute::InReg)) {
10574         // If we are using vectorcall calling convention, a structure that is
10575         // passed InReg - is surely an HVA
10576         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10577             isa<StructType>(Arg.getType())) {
10578           // The first value of a structure is marked
10579           if (0 == Value)
10580             Flags.setHvaStart();
10581           Flags.setHva();
10582         }
10583         // Set InReg Flag
10584         Flags.setInReg();
10585       }
10586       if (Arg.hasAttribute(Attribute::StructRet))
10587         Flags.setSRet();
10588       if (Arg.hasAttribute(Attribute::SwiftSelf))
10589         Flags.setSwiftSelf();
10590       if (Arg.hasAttribute(Attribute::SwiftAsync))
10591         Flags.setSwiftAsync();
10592       if (Arg.hasAttribute(Attribute::SwiftError))
10593         Flags.setSwiftError();
10594       if (Arg.hasAttribute(Attribute::ByVal))
10595         Flags.setByVal();
10596       if (Arg.hasAttribute(Attribute::ByRef))
10597         Flags.setByRef();
10598       if (Arg.hasAttribute(Attribute::InAlloca)) {
10599         Flags.setInAlloca();
10600         // Set the byval flag for CCAssignFn callbacks that don't know about
10601         // inalloca.  This way we can know how many bytes we should've allocated
10602         // and how many bytes a callee cleanup function will pop.  If we port
10603         // inalloca to more targets, we'll have to add custom inalloca handling
10604         // in the various CC lowering callbacks.
10605         Flags.setByVal();
10606       }
10607       if (Arg.hasAttribute(Attribute::Preallocated)) {
10608         Flags.setPreallocated();
10609         // Set the byval flag for CCAssignFn callbacks that don't know about
10610         // preallocated.  This way we can know how many bytes we should've
10611         // allocated and how many bytes a callee cleanup function will pop.  If
10612         // we port preallocated to more targets, we'll have to add custom
10613         // preallocated handling in the various CC lowering callbacks.
10614         Flags.setByVal();
10615       }
10616 
10617       // Certain targets (such as MIPS), may have a different ABI alignment
10618       // for a type depending on the context. Give the target a chance to
10619       // specify the alignment it wants.
10620       const Align OriginalAlignment(
10621           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10622       Flags.setOrigAlign(OriginalAlignment);
10623 
10624       Align MemAlign;
10625       Type *ArgMemTy = nullptr;
10626       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10627           Flags.isByRef()) {
10628         if (!ArgMemTy)
10629           ArgMemTy = Arg.getPointeeInMemoryValueType();
10630 
10631         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10632 
10633         // For in-memory arguments, size and alignment should be passed from FE.
10634         // BE will guess if this info is not there but there are cases it cannot
10635         // get right.
10636         if (auto ParamAlign = Arg.getParamStackAlign())
10637           MemAlign = *ParamAlign;
10638         else if ((ParamAlign = Arg.getParamAlign()))
10639           MemAlign = *ParamAlign;
10640         else
10641           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10642         if (Flags.isByRef())
10643           Flags.setByRefSize(MemSize);
10644         else
10645           Flags.setByValSize(MemSize);
10646       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10647         MemAlign = *ParamAlign;
10648       } else {
10649         MemAlign = OriginalAlignment;
10650       }
10651       Flags.setMemAlign(MemAlign);
10652 
10653       if (Arg.hasAttribute(Attribute::Nest))
10654         Flags.setNest();
10655       if (NeedsRegBlock)
10656         Flags.setInConsecutiveRegs();
10657       if (ArgCopyElisionCandidates.count(&Arg))
10658         Flags.setCopyElisionCandidate();
10659       if (Arg.hasAttribute(Attribute::Returned))
10660         Flags.setReturned();
10661 
10662       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10663           *CurDAG->getContext(), F.getCallingConv(), VT);
10664       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10665           *CurDAG->getContext(), F.getCallingConv(), VT);
10666       for (unsigned i = 0; i != NumRegs; ++i) {
10667         // For scalable vectors, use the minimum size; individual targets
10668         // are responsible for handling scalable vector arguments and
10669         // return values.
10670         ISD::InputArg MyFlags(
10671             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10672             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10673         if (NumRegs > 1 && i == 0)
10674           MyFlags.Flags.setSplit();
10675         // if it isn't first piece, alignment must be 1
10676         else if (i > 0) {
10677           MyFlags.Flags.setOrigAlign(Align(1));
10678           if (i == NumRegs - 1)
10679             MyFlags.Flags.setSplitEnd();
10680         }
10681         Ins.push_back(MyFlags);
10682       }
10683       if (NeedsRegBlock && Value == NumValues - 1)
10684         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10685       PartBase += VT.getStoreSize().getKnownMinValue();
10686     }
10687   }
10688 
10689   // Call the target to set up the argument values.
10690   SmallVector<SDValue, 8> InVals;
10691   SDValue NewRoot = TLI->LowerFormalArguments(
10692       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10693 
10694   // Verify that the target's LowerFormalArguments behaved as expected.
10695   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10696          "LowerFormalArguments didn't return a valid chain!");
10697   assert(InVals.size() == Ins.size() &&
10698          "LowerFormalArguments didn't emit the correct number of values!");
10699   LLVM_DEBUG({
10700     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10701       assert(InVals[i].getNode() &&
10702              "LowerFormalArguments emitted a null value!");
10703       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10704              "LowerFormalArguments emitted a value with the wrong type!");
10705     }
10706   });
10707 
10708   // Update the DAG with the new chain value resulting from argument lowering.
10709   DAG.setRoot(NewRoot);
10710 
10711   // Set up the argument values.
10712   unsigned i = 0;
10713   if (!FuncInfo->CanLowerReturn) {
10714     // Create a virtual register for the sret pointer, and put in a copy
10715     // from the sret argument into it.
10716     SmallVector<EVT, 1> ValueVTs;
10717     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10718                     F.getReturnType()->getPointerTo(
10719                         DAG.getDataLayout().getAllocaAddrSpace()),
10720                     ValueVTs);
10721     MVT VT = ValueVTs[0].getSimpleVT();
10722     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10723     std::optional<ISD::NodeType> AssertOp;
10724     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10725                                         nullptr, F.getCallingConv(), AssertOp);
10726 
10727     MachineFunction& MF = SDB->DAG.getMachineFunction();
10728     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10729     Register SRetReg =
10730         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10731     FuncInfo->DemoteRegister = SRetReg;
10732     NewRoot =
10733         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10734     DAG.setRoot(NewRoot);
10735 
10736     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10737     ++i;
10738   }
10739 
10740   SmallVector<SDValue, 4> Chains;
10741   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10742   for (const Argument &Arg : F.args()) {
10743     SmallVector<SDValue, 4> ArgValues;
10744     SmallVector<EVT, 4> ValueVTs;
10745     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10746     unsigned NumValues = ValueVTs.size();
10747     if (NumValues == 0)
10748       continue;
10749 
10750     bool ArgHasUses = !Arg.use_empty();
10751 
10752     // Elide the copying store if the target loaded this argument from a
10753     // suitable fixed stack object.
10754     if (Ins[i].Flags.isCopyElisionCandidate()) {
10755       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10756                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10757                              InVals[i], ArgHasUses);
10758     }
10759 
10760     // If this argument is unused then remember its value. It is used to generate
10761     // debugging information.
10762     bool isSwiftErrorArg =
10763         TLI->supportSwiftError() &&
10764         Arg.hasAttribute(Attribute::SwiftError);
10765     if (!ArgHasUses && !isSwiftErrorArg) {
10766       SDB->setUnusedArgValue(&Arg, InVals[i]);
10767 
10768       // Also remember any frame index for use in FastISel.
10769       if (FrameIndexSDNode *FI =
10770           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10771         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10772     }
10773 
10774     for (unsigned Val = 0; Val != NumValues; ++Val) {
10775       EVT VT = ValueVTs[Val];
10776       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10777                                                       F.getCallingConv(), VT);
10778       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10779           *CurDAG->getContext(), F.getCallingConv(), VT);
10780 
10781       // Even an apparent 'unused' swifterror argument needs to be returned. So
10782       // we do generate a copy for it that can be used on return from the
10783       // function.
10784       if (ArgHasUses || isSwiftErrorArg) {
10785         std::optional<ISD::NodeType> AssertOp;
10786         if (Arg.hasAttribute(Attribute::SExt))
10787           AssertOp = ISD::AssertSext;
10788         else if (Arg.hasAttribute(Attribute::ZExt))
10789           AssertOp = ISD::AssertZext;
10790 
10791         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10792                                              PartVT, VT, nullptr,
10793                                              F.getCallingConv(), AssertOp));
10794       }
10795 
10796       i += NumParts;
10797     }
10798 
10799     // We don't need to do anything else for unused arguments.
10800     if (ArgValues.empty())
10801       continue;
10802 
10803     // Note down frame index.
10804     if (FrameIndexSDNode *FI =
10805         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10806       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10807 
10808     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10809                                      SDB->getCurSDLoc());
10810 
10811     SDB->setValue(&Arg, Res);
10812     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10813       // We want to associate the argument with the frame index, among
10814       // involved operands, that correspond to the lowest address. The
10815       // getCopyFromParts function, called earlier, is swapping the order of
10816       // the operands to BUILD_PAIR depending on endianness. The result of
10817       // that swapping is that the least significant bits of the argument will
10818       // be in the first operand of the BUILD_PAIR node, and the most
10819       // significant bits will be in the second operand.
10820       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10821       if (LoadSDNode *LNode =
10822           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10823         if (FrameIndexSDNode *FI =
10824             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10825           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10826     }
10827 
10828     // Analyses past this point are naive and don't expect an assertion.
10829     if (Res.getOpcode() == ISD::AssertZext)
10830       Res = Res.getOperand(0);
10831 
10832     // Update the SwiftErrorVRegDefMap.
10833     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10834       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10835       if (Register::isVirtualRegister(Reg))
10836         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10837                                    Reg);
10838     }
10839 
10840     // If this argument is live outside of the entry block, insert a copy from
10841     // wherever we got it to the vreg that other BB's will reference it as.
10842     if (Res.getOpcode() == ISD::CopyFromReg) {
10843       // If we can, though, try to skip creating an unnecessary vreg.
10844       // FIXME: This isn't very clean... it would be nice to make this more
10845       // general.
10846       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10847       if (Register::isVirtualRegister(Reg)) {
10848         FuncInfo->ValueMap[&Arg] = Reg;
10849         continue;
10850       }
10851     }
10852     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10853       FuncInfo->InitializeRegForValue(&Arg);
10854       SDB->CopyToExportRegsIfNeeded(&Arg);
10855     }
10856   }
10857 
10858   if (!Chains.empty()) {
10859     Chains.push_back(NewRoot);
10860     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10861   }
10862 
10863   DAG.setRoot(NewRoot);
10864 
10865   assert(i == InVals.size() && "Argument register count mismatch!");
10866 
10867   // If any argument copy elisions occurred and we have debug info, update the
10868   // stale frame indices used in the dbg.declare variable info table.
10869   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10870   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10871     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10872       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10873       if (I != ArgCopyElisionFrameIndexMap.end())
10874         VI.Slot = I->second;
10875     }
10876   }
10877 
10878   // Finally, if the target has anything special to do, allow it to do so.
10879   emitFunctionEntryCode();
10880 }
10881 
10882 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10883 /// ensure constants are generated when needed.  Remember the virtual registers
10884 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10885 /// directly add them, because expansion might result in multiple MBB's for one
10886 /// BB.  As such, the start of the BB might correspond to a different MBB than
10887 /// the end.
10888 void
10889 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10890   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10891 
10892   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10893 
10894   // Check PHI nodes in successors that expect a value to be available from this
10895   // block.
10896   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
10897     if (!isa<PHINode>(SuccBB->begin())) continue;
10898     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10899 
10900     // If this terminator has multiple identical successors (common for
10901     // switches), only handle each succ once.
10902     if (!SuccsHandled.insert(SuccMBB).second)
10903       continue;
10904 
10905     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10906 
10907     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10908     // nodes and Machine PHI nodes, but the incoming operands have not been
10909     // emitted yet.
10910     for (const PHINode &PN : SuccBB->phis()) {
10911       // Ignore dead phi's.
10912       if (PN.use_empty())
10913         continue;
10914 
10915       // Skip empty types
10916       if (PN.getType()->isEmptyTy())
10917         continue;
10918 
10919       unsigned Reg;
10920       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10921 
10922       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
10923         unsigned &RegOut = ConstantsOut[C];
10924         if (RegOut == 0) {
10925           RegOut = FuncInfo.CreateRegs(C);
10926           // We need to zero/sign extend ConstantInt phi operands to match
10927           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10928           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10929           if (auto *CI = dyn_cast<ConstantInt>(C))
10930             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10931                                                     : ISD::ZERO_EXTEND;
10932           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10933         }
10934         Reg = RegOut;
10935       } else {
10936         DenseMap<const Value *, Register>::iterator I =
10937           FuncInfo.ValueMap.find(PHIOp);
10938         if (I != FuncInfo.ValueMap.end())
10939           Reg = I->second;
10940         else {
10941           assert(isa<AllocaInst>(PHIOp) &&
10942                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10943                  "Didn't codegen value into a register!??");
10944           Reg = FuncInfo.CreateRegs(PHIOp);
10945           CopyValueToVirtualRegister(PHIOp, Reg);
10946         }
10947       }
10948 
10949       // Remember that this register needs to added to the machine PHI node as
10950       // the input for this MBB.
10951       SmallVector<EVT, 4> ValueVTs;
10952       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10953       for (EVT VT : ValueVTs) {
10954         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10955         for (unsigned i = 0; i != NumRegisters; ++i)
10956           FuncInfo.PHINodesToUpdate.push_back(
10957               std::make_pair(&*MBBI++, Reg + i));
10958         Reg += NumRegisters;
10959       }
10960     }
10961   }
10962 
10963   ConstantsOut.clear();
10964 }
10965 
10966 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10967   MachineFunction::iterator I(MBB);
10968   if (++I == FuncInfo.MF->end())
10969     return nullptr;
10970   return &*I;
10971 }
10972 
10973 /// During lowering new call nodes can be created (such as memset, etc.).
10974 /// Those will become new roots of the current DAG, but complications arise
10975 /// when they are tail calls. In such cases, the call lowering will update
10976 /// the root, but the builder still needs to know that a tail call has been
10977 /// lowered in order to avoid generating an additional return.
10978 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10979   // If the node is null, we do have a tail call.
10980   if (MaybeTC.getNode() != nullptr)
10981     DAG.setRoot(MaybeTC);
10982   else
10983     HasTailCall = true;
10984 }
10985 
10986 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10987                                         MachineBasicBlock *SwitchMBB,
10988                                         MachineBasicBlock *DefaultMBB) {
10989   MachineFunction *CurMF = FuncInfo.MF;
10990   MachineBasicBlock *NextMBB = nullptr;
10991   MachineFunction::iterator BBI(W.MBB);
10992   if (++BBI != FuncInfo.MF->end())
10993     NextMBB = &*BBI;
10994 
10995   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10996 
10997   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10998 
10999   if (Size == 2 && W.MBB == SwitchMBB) {
11000     // If any two of the cases has the same destination, and if one value
11001     // is the same as the other, but has one bit unset that the other has set,
11002     // use bit manipulation to do two compares at once.  For example:
11003     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11004     // TODO: This could be extended to merge any 2 cases in switches with 3
11005     // cases.
11006     // TODO: Handle cases where W.CaseBB != SwitchBB.
11007     CaseCluster &Small = *W.FirstCluster;
11008     CaseCluster &Big = *W.LastCluster;
11009 
11010     if (Small.Low == Small.High && Big.Low == Big.High &&
11011         Small.MBB == Big.MBB) {
11012       const APInt &SmallValue = Small.Low->getValue();
11013       const APInt &BigValue = Big.Low->getValue();
11014 
11015       // Check that there is only one bit different.
11016       APInt CommonBit = BigValue ^ SmallValue;
11017       if (CommonBit.isPowerOf2()) {
11018         SDValue CondLHS = getValue(Cond);
11019         EVT VT = CondLHS.getValueType();
11020         SDLoc DL = getCurSDLoc();
11021 
11022         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11023                                  DAG.getConstant(CommonBit, DL, VT));
11024         SDValue Cond = DAG.getSetCC(
11025             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11026             ISD::SETEQ);
11027 
11028         // Update successor info.
11029         // Both Small and Big will jump to Small.BB, so we sum up the
11030         // probabilities.
11031         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11032         if (BPI)
11033           addSuccessorWithProb(
11034               SwitchMBB, DefaultMBB,
11035               // The default destination is the first successor in IR.
11036               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11037         else
11038           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11039 
11040         // Insert the true branch.
11041         SDValue BrCond =
11042             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11043                         DAG.getBasicBlock(Small.MBB));
11044         // Insert the false branch.
11045         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11046                              DAG.getBasicBlock(DefaultMBB));
11047 
11048         DAG.setRoot(BrCond);
11049         return;
11050       }
11051     }
11052   }
11053 
11054   if (TM.getOptLevel() != CodeGenOpt::None) {
11055     // Here, we order cases by probability so the most likely case will be
11056     // checked first. However, two clusters can have the same probability in
11057     // which case their relative ordering is non-deterministic. So we use Low
11058     // as a tie-breaker as clusters are guaranteed to never overlap.
11059     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11060                [](const CaseCluster &a, const CaseCluster &b) {
11061       return a.Prob != b.Prob ?
11062              a.Prob > b.Prob :
11063              a.Low->getValue().slt(b.Low->getValue());
11064     });
11065 
11066     // Rearrange the case blocks so that the last one falls through if possible
11067     // without changing the order of probabilities.
11068     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11069       --I;
11070       if (I->Prob > W.LastCluster->Prob)
11071         break;
11072       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11073         std::swap(*I, *W.LastCluster);
11074         break;
11075       }
11076     }
11077   }
11078 
11079   // Compute total probability.
11080   BranchProbability DefaultProb = W.DefaultProb;
11081   BranchProbability UnhandledProbs = DefaultProb;
11082   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11083     UnhandledProbs += I->Prob;
11084 
11085   MachineBasicBlock *CurMBB = W.MBB;
11086   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11087     bool FallthroughUnreachable = false;
11088     MachineBasicBlock *Fallthrough;
11089     if (I == W.LastCluster) {
11090       // For the last cluster, fall through to the default destination.
11091       Fallthrough = DefaultMBB;
11092       FallthroughUnreachable = isa<UnreachableInst>(
11093           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11094     } else {
11095       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11096       CurMF->insert(BBI, Fallthrough);
11097       // Put Cond in a virtual register to make it available from the new blocks.
11098       ExportFromCurrentBlock(Cond);
11099     }
11100     UnhandledProbs -= I->Prob;
11101 
11102     switch (I->Kind) {
11103       case CC_JumpTable: {
11104         // FIXME: Optimize away range check based on pivot comparisons.
11105         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11106         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11107 
11108         // The jump block hasn't been inserted yet; insert it here.
11109         MachineBasicBlock *JumpMBB = JT->MBB;
11110         CurMF->insert(BBI, JumpMBB);
11111 
11112         auto JumpProb = I->Prob;
11113         auto FallthroughProb = UnhandledProbs;
11114 
11115         // If the default statement is a target of the jump table, we evenly
11116         // distribute the default probability to successors of CurMBB. Also
11117         // update the probability on the edge from JumpMBB to Fallthrough.
11118         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11119                                               SE = JumpMBB->succ_end();
11120              SI != SE; ++SI) {
11121           if (*SI == DefaultMBB) {
11122             JumpProb += DefaultProb / 2;
11123             FallthroughProb -= DefaultProb / 2;
11124             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11125             JumpMBB->normalizeSuccProbs();
11126             break;
11127           }
11128         }
11129 
11130         if (FallthroughUnreachable)
11131           JTH->FallthroughUnreachable = true;
11132 
11133         if (!JTH->FallthroughUnreachable)
11134           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11135         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11136         CurMBB->normalizeSuccProbs();
11137 
11138         // The jump table header will be inserted in our current block, do the
11139         // range check, and fall through to our fallthrough block.
11140         JTH->HeaderBB = CurMBB;
11141         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11142 
11143         // If we're in the right place, emit the jump table header right now.
11144         if (CurMBB == SwitchMBB) {
11145           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11146           JTH->Emitted = true;
11147         }
11148         break;
11149       }
11150       case CC_BitTests: {
11151         // FIXME: Optimize away range check based on pivot comparisons.
11152         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11153 
11154         // The bit test blocks haven't been inserted yet; insert them here.
11155         for (BitTestCase &BTC : BTB->Cases)
11156           CurMF->insert(BBI, BTC.ThisBB);
11157 
11158         // Fill in fields of the BitTestBlock.
11159         BTB->Parent = CurMBB;
11160         BTB->Default = Fallthrough;
11161 
11162         BTB->DefaultProb = UnhandledProbs;
11163         // If the cases in bit test don't form a contiguous range, we evenly
11164         // distribute the probability on the edge to Fallthrough to two
11165         // successors of CurMBB.
11166         if (!BTB->ContiguousRange) {
11167           BTB->Prob += DefaultProb / 2;
11168           BTB->DefaultProb -= DefaultProb / 2;
11169         }
11170 
11171         if (FallthroughUnreachable)
11172           BTB->FallthroughUnreachable = true;
11173 
11174         // If we're in the right place, emit the bit test header right now.
11175         if (CurMBB == SwitchMBB) {
11176           visitBitTestHeader(*BTB, SwitchMBB);
11177           BTB->Emitted = true;
11178         }
11179         break;
11180       }
11181       case CC_Range: {
11182         const Value *RHS, *LHS, *MHS;
11183         ISD::CondCode CC;
11184         if (I->Low == I->High) {
11185           // Check Cond == I->Low.
11186           CC = ISD::SETEQ;
11187           LHS = Cond;
11188           RHS=I->Low;
11189           MHS = nullptr;
11190         } else {
11191           // Check I->Low <= Cond <= I->High.
11192           CC = ISD::SETLE;
11193           LHS = I->Low;
11194           MHS = Cond;
11195           RHS = I->High;
11196         }
11197 
11198         // If Fallthrough is unreachable, fold away the comparison.
11199         if (FallthroughUnreachable)
11200           CC = ISD::SETTRUE;
11201 
11202         // The false probability is the sum of all unhandled cases.
11203         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11204                      getCurSDLoc(), I->Prob, UnhandledProbs);
11205 
11206         if (CurMBB == SwitchMBB)
11207           visitSwitchCase(CB, SwitchMBB);
11208         else
11209           SL->SwitchCases.push_back(CB);
11210 
11211         break;
11212       }
11213     }
11214     CurMBB = Fallthrough;
11215   }
11216 }
11217 
11218 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11219                                               CaseClusterIt First,
11220                                               CaseClusterIt Last) {
11221   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11222     if (X.Prob != CC.Prob)
11223       return X.Prob > CC.Prob;
11224 
11225     // Ties are broken by comparing the case value.
11226     return X.Low->getValue().slt(CC.Low->getValue());
11227   });
11228 }
11229 
11230 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11231                                         const SwitchWorkListItem &W,
11232                                         Value *Cond,
11233                                         MachineBasicBlock *SwitchMBB) {
11234   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11235          "Clusters not sorted?");
11236 
11237   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11238 
11239   // Balance the tree based on branch probabilities to create a near-optimal (in
11240   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11241   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11242   CaseClusterIt LastLeft = W.FirstCluster;
11243   CaseClusterIt FirstRight = W.LastCluster;
11244   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11245   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11246 
11247   // Move LastLeft and FirstRight towards each other from opposite directions to
11248   // find a partitioning of the clusters which balances the probability on both
11249   // sides. If LeftProb and RightProb are equal, alternate which side is
11250   // taken to ensure 0-probability nodes are distributed evenly.
11251   unsigned I = 0;
11252   while (LastLeft + 1 < FirstRight) {
11253     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11254       LeftProb += (++LastLeft)->Prob;
11255     else
11256       RightProb += (--FirstRight)->Prob;
11257     I++;
11258   }
11259 
11260   while (true) {
11261     // Our binary search tree differs from a typical BST in that ours can have up
11262     // to three values in each leaf. The pivot selection above doesn't take that
11263     // into account, which means the tree might require more nodes and be less
11264     // efficient. We compensate for this here.
11265 
11266     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11267     unsigned NumRight = W.LastCluster - FirstRight + 1;
11268 
11269     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11270       // If one side has less than 3 clusters, and the other has more than 3,
11271       // consider taking a cluster from the other side.
11272 
11273       if (NumLeft < NumRight) {
11274         // Consider moving the first cluster on the right to the left side.
11275         CaseCluster &CC = *FirstRight;
11276         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11277         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11278         if (LeftSideRank <= RightSideRank) {
11279           // Moving the cluster to the left does not demote it.
11280           ++LastLeft;
11281           ++FirstRight;
11282           continue;
11283         }
11284       } else {
11285         assert(NumRight < NumLeft);
11286         // Consider moving the last element on the left to the right side.
11287         CaseCluster &CC = *LastLeft;
11288         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11289         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11290         if (RightSideRank <= LeftSideRank) {
11291           // Moving the cluster to the right does not demot it.
11292           --LastLeft;
11293           --FirstRight;
11294           continue;
11295         }
11296       }
11297     }
11298     break;
11299   }
11300 
11301   assert(LastLeft + 1 == FirstRight);
11302   assert(LastLeft >= W.FirstCluster);
11303   assert(FirstRight <= W.LastCluster);
11304 
11305   // Use the first element on the right as pivot since we will make less-than
11306   // comparisons against it.
11307   CaseClusterIt PivotCluster = FirstRight;
11308   assert(PivotCluster > W.FirstCluster);
11309   assert(PivotCluster <= W.LastCluster);
11310 
11311   CaseClusterIt FirstLeft = W.FirstCluster;
11312   CaseClusterIt LastRight = W.LastCluster;
11313 
11314   const ConstantInt *Pivot = PivotCluster->Low;
11315 
11316   // New blocks will be inserted immediately after the current one.
11317   MachineFunction::iterator BBI(W.MBB);
11318   ++BBI;
11319 
11320   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11321   // we can branch to its destination directly if it's squeezed exactly in
11322   // between the known lower bound and Pivot - 1.
11323   MachineBasicBlock *LeftMBB;
11324   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11325       FirstLeft->Low == W.GE &&
11326       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11327     LeftMBB = FirstLeft->MBB;
11328   } else {
11329     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11330     FuncInfo.MF->insert(BBI, LeftMBB);
11331     WorkList.push_back(
11332         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11333     // Put Cond in a virtual register to make it available from the new blocks.
11334     ExportFromCurrentBlock(Cond);
11335   }
11336 
11337   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11338   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11339   // directly if RHS.High equals the current upper bound.
11340   MachineBasicBlock *RightMBB;
11341   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11342       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11343     RightMBB = FirstRight->MBB;
11344   } else {
11345     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11346     FuncInfo.MF->insert(BBI, RightMBB);
11347     WorkList.push_back(
11348         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11349     // Put Cond in a virtual register to make it available from the new blocks.
11350     ExportFromCurrentBlock(Cond);
11351   }
11352 
11353   // Create the CaseBlock record that will be used to lower the branch.
11354   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11355                getCurSDLoc(), LeftProb, RightProb);
11356 
11357   if (W.MBB == SwitchMBB)
11358     visitSwitchCase(CB, SwitchMBB);
11359   else
11360     SL->SwitchCases.push_back(CB);
11361 }
11362 
11363 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11364 // from the swith statement.
11365 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11366                                             BranchProbability PeeledCaseProb) {
11367   if (PeeledCaseProb == BranchProbability::getOne())
11368     return BranchProbability::getZero();
11369   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11370 
11371   uint32_t Numerator = CaseProb.getNumerator();
11372   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11373   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11374 }
11375 
11376 // Try to peel the top probability case if it exceeds the threshold.
11377 // Return current MachineBasicBlock for the switch statement if the peeling
11378 // does not occur.
11379 // If the peeling is performed, return the newly created MachineBasicBlock
11380 // for the peeled switch statement. Also update Clusters to remove the peeled
11381 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11382 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11383     const SwitchInst &SI, CaseClusterVector &Clusters,
11384     BranchProbability &PeeledCaseProb) {
11385   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11386   // Don't perform if there is only one cluster or optimizing for size.
11387   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11388       TM.getOptLevel() == CodeGenOpt::None ||
11389       SwitchMBB->getParent()->getFunction().hasMinSize())
11390     return SwitchMBB;
11391 
11392   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11393   unsigned PeeledCaseIndex = 0;
11394   bool SwitchPeeled = false;
11395   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11396     CaseCluster &CC = Clusters[Index];
11397     if (CC.Prob < TopCaseProb)
11398       continue;
11399     TopCaseProb = CC.Prob;
11400     PeeledCaseIndex = Index;
11401     SwitchPeeled = true;
11402   }
11403   if (!SwitchPeeled)
11404     return SwitchMBB;
11405 
11406   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11407                     << TopCaseProb << "\n");
11408 
11409   // Record the MBB for the peeled switch statement.
11410   MachineFunction::iterator BBI(SwitchMBB);
11411   ++BBI;
11412   MachineBasicBlock *PeeledSwitchMBB =
11413       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11414   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11415 
11416   ExportFromCurrentBlock(SI.getCondition());
11417   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11418   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11419                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11420   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11421 
11422   Clusters.erase(PeeledCaseIt);
11423   for (CaseCluster &CC : Clusters) {
11424     LLVM_DEBUG(
11425         dbgs() << "Scale the probablity for one cluster, before scaling: "
11426                << CC.Prob << "\n");
11427     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11428     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11429   }
11430   PeeledCaseProb = TopCaseProb;
11431   return PeeledSwitchMBB;
11432 }
11433 
11434 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11435   // Extract cases from the switch.
11436   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11437   CaseClusterVector Clusters;
11438   Clusters.reserve(SI.getNumCases());
11439   for (auto I : SI.cases()) {
11440     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11441     const ConstantInt *CaseVal = I.getCaseValue();
11442     BranchProbability Prob =
11443         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11444             : BranchProbability(1, SI.getNumCases() + 1);
11445     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11446   }
11447 
11448   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11449 
11450   // Cluster adjacent cases with the same destination. We do this at all
11451   // optimization levels because it's cheap to do and will make codegen faster
11452   // if there are many clusters.
11453   sortAndRangeify(Clusters);
11454 
11455   // The branch probablity of the peeled case.
11456   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11457   MachineBasicBlock *PeeledSwitchMBB =
11458       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11459 
11460   // If there is only the default destination, jump there directly.
11461   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11462   if (Clusters.empty()) {
11463     assert(PeeledSwitchMBB == SwitchMBB);
11464     SwitchMBB->addSuccessor(DefaultMBB);
11465     if (DefaultMBB != NextBlock(SwitchMBB)) {
11466       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11467                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11468     }
11469     return;
11470   }
11471 
11472   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11473   SL->findBitTestClusters(Clusters, &SI);
11474 
11475   LLVM_DEBUG({
11476     dbgs() << "Case clusters: ";
11477     for (const CaseCluster &C : Clusters) {
11478       if (C.Kind == CC_JumpTable)
11479         dbgs() << "JT:";
11480       if (C.Kind == CC_BitTests)
11481         dbgs() << "BT:";
11482 
11483       C.Low->getValue().print(dbgs(), true);
11484       if (C.Low != C.High) {
11485         dbgs() << '-';
11486         C.High->getValue().print(dbgs(), true);
11487       }
11488       dbgs() << ' ';
11489     }
11490     dbgs() << '\n';
11491   });
11492 
11493   assert(!Clusters.empty());
11494   SwitchWorkList WorkList;
11495   CaseClusterIt First = Clusters.begin();
11496   CaseClusterIt Last = Clusters.end() - 1;
11497   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11498   // Scale the branchprobability for DefaultMBB if the peel occurs and
11499   // DefaultMBB is not replaced.
11500   if (PeeledCaseProb != BranchProbability::getZero() &&
11501       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11502     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11503   WorkList.push_back(
11504       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11505 
11506   while (!WorkList.empty()) {
11507     SwitchWorkListItem W = WorkList.pop_back_val();
11508     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11509 
11510     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11511         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11512       // For optimized builds, lower large range as a balanced binary tree.
11513       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11514       continue;
11515     }
11516 
11517     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11518   }
11519 }
11520 
11521 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11522   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11523   auto DL = getCurSDLoc();
11524   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11525   setValue(&I, DAG.getStepVector(DL, ResultVT));
11526 }
11527 
11528 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11529   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11530   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11531 
11532   SDLoc DL = getCurSDLoc();
11533   SDValue V = getValue(I.getOperand(0));
11534   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11535 
11536   if (VT.isScalableVector()) {
11537     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11538     return;
11539   }
11540 
11541   // Use VECTOR_SHUFFLE for the fixed-length vector
11542   // to maintain existing behavior.
11543   SmallVector<int, 8> Mask;
11544   unsigned NumElts = VT.getVectorMinNumElements();
11545   for (unsigned i = 0; i != NumElts; ++i)
11546     Mask.push_back(NumElts - 1 - i);
11547 
11548   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11549 }
11550 
11551 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11552   SmallVector<EVT, 4> ValueVTs;
11553   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11554                   ValueVTs);
11555   unsigned NumValues = ValueVTs.size();
11556   if (NumValues == 0) return;
11557 
11558   SmallVector<SDValue, 4> Values(NumValues);
11559   SDValue Op = getValue(I.getOperand(0));
11560 
11561   for (unsigned i = 0; i != NumValues; ++i)
11562     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11563                             SDValue(Op.getNode(), Op.getResNo() + i));
11564 
11565   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11566                            DAG.getVTList(ValueVTs), Values));
11567 }
11568 
11569 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11570   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11571   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11572 
11573   SDLoc DL = getCurSDLoc();
11574   SDValue V1 = getValue(I.getOperand(0));
11575   SDValue V2 = getValue(I.getOperand(1));
11576   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11577 
11578   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11579   if (VT.isScalableVector()) {
11580     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11581     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11582                              DAG.getConstant(Imm, DL, IdxVT)));
11583     return;
11584   }
11585 
11586   unsigned NumElts = VT.getVectorNumElements();
11587 
11588   uint64_t Idx = (NumElts + Imm) % NumElts;
11589 
11590   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11591   SmallVector<int, 8> Mask;
11592   for (unsigned i = 0; i < NumElts; ++i)
11593     Mask.push_back(Idx + i);
11594   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11595 }
11596