1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 // Limit the width of DAG chains. This is important in general to prevent 73 // prevent DAG-based analysis from blowing up. For example, alias analysis and 74 // load clustering may not complete in reasonable time. It is difficult to 75 // recognize and avoid this situation within each individual analysis, and 76 // future analyses are likely to have the same behavior. Limiting DAG width is 77 // the safe approach, and will be especially important with global DAGs. 78 // 79 // MaxParallelChains default is arbitrarily high to avoid affecting 80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 81 // sequence over this should have been converted to llvm.memcpy by the 82 // frontend. It easy to induce this behavior with .ll code such as: 83 // %buffer = alloca [4096 x i8] 84 // %data = load [4096 x i8]* %argPtr 85 // store [4096 x i8] %data, [4096 x i8]* %buffer 86 static const unsigned MaxParallelChains = 64; 87 88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 89 const SDValue *Parts, unsigned NumParts, 90 EVT PartVT, EVT ValueVT); 91 92 /// getCopyFromParts - Create a value that contains the specified legal parts 93 /// combined into the value they represent. If the parts combine to a type 94 /// larger then ValueVT then AssertOp can be used to specify whether the extra 95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 96 /// (ISD::AssertSext). 97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 98 const SDValue *Parts, 99 unsigned NumParts, EVT PartVT, EVT ValueVT, 100 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 101 if (ValueVT.isVector()) 102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 103 104 assert(NumParts > 0 && "No parts to assemble!"); 105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 106 SDValue Val = Parts[0]; 107 108 if (NumParts > 1) { 109 // Assemble the value from multiple parts. 110 if (ValueVT.isInteger()) { 111 unsigned PartBits = PartVT.getSizeInBits(); 112 unsigned ValueBits = ValueVT.getSizeInBits(); 113 114 // Assemble the power of 2 part. 115 unsigned RoundParts = NumParts & (NumParts - 1) ? 116 1 << Log2_32(NumParts) : NumParts; 117 unsigned RoundBits = PartBits * RoundParts; 118 EVT RoundVT = RoundBits == ValueBits ? 119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 120 SDValue Lo, Hi; 121 122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 123 124 if (RoundParts > 2) { 125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 126 PartVT, HalfVT); 127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 128 RoundParts / 2, PartVT, HalfVT); 129 } else { 130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 132 } 133 134 if (TLI.isBigEndian()) 135 std::swap(Lo, Hi); 136 137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 138 139 if (RoundParts < NumParts) { 140 // Assemble the trailing non-power-of-2 part. 141 unsigned OddParts = NumParts - RoundParts; 142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 143 Hi = getCopyFromParts(DAG, DL, 144 Parts + RoundParts, OddParts, PartVT, OddVT); 145 146 // Combine the round and odd parts. 147 Lo = Val; 148 if (TLI.isBigEndian()) 149 std::swap(Lo, Hi); 150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 153 DAG.getConstant(Lo.getValueType().getSizeInBits(), 154 TLI.getPointerTy())); 155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 157 } 158 } else if (PartVT.isFloatingPoint()) { 159 // FP split into multiple FP parts (for ppcf128) 160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 161 "Unexpected split"); 162 SDValue Lo, Hi; 163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 165 if (TLI.isBigEndian()) 166 std::swap(Lo, Hi); 167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 168 } else { 169 // FP split into integer parts (soft fp) 170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 171 !PartVT.isVector() && "Unexpected split"); 172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 174 } 175 } 176 177 // There is now one part, held in Val. Correct it to match ValueVT. 178 PartVT = Val.getValueType(); 179 180 if (PartVT == ValueVT) 181 return Val; 182 183 if (PartVT.isInteger() && ValueVT.isInteger()) { 184 if (ValueVT.bitsLT(PartVT)) { 185 // For a truncate, see if we have any information to 186 // indicate whether the truncated bits will always be 187 // zero or sign-extension. 188 if (AssertOp != ISD::DELETED_NODE) 189 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 190 DAG.getValueType(ValueVT)); 191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 192 } 193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 194 } 195 196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 197 // FP_ROUND's are always exact here. 198 if (ValueVT.bitsLT(Val.getValueType())) 199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 200 DAG.getIntPtrConstant(1)); 201 202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 203 } 204 205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 207 208 llvm_unreachable("Unknown mismatch!"); 209 return SDValue(); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert(PartVT.isInteger() && ValueVT.isInteger() && 357 "Unknown mismatch!"); 358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 360 } 361 } else if (PartBits == ValueVT.getSizeInBits()) { 362 // Different types of the same size. 363 assert(NumParts == 1 && PartVT != ValueVT); 364 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 365 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 366 // If the parts cover less bits than value has, truncate the value. 367 assert(PartVT.isInteger() && ValueVT.isInteger() && 368 "Unknown mismatch!"); 369 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 370 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 371 } 372 373 // The value may have changed - recompute ValueVT. 374 ValueVT = Val.getValueType(); 375 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 376 "Failed to tile the value with PartVT!"); 377 378 if (NumParts == 1) { 379 assert(PartVT == ValueVT && "Type conversion failed!"); 380 Parts[0] = Val; 381 return; 382 } 383 384 // Expand the value into multiple parts. 385 if (NumParts & (NumParts - 1)) { 386 // The number of parts is not a power of 2. Split off and copy the tail. 387 assert(PartVT.isInteger() && ValueVT.isInteger() && 388 "Do not know what to expand to!"); 389 unsigned RoundParts = 1 << Log2_32(NumParts); 390 unsigned RoundBits = RoundParts * PartBits; 391 unsigned OddParts = NumParts - RoundParts; 392 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 393 DAG.getIntPtrConstant(RoundBits)); 394 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 395 396 if (TLI.isBigEndian()) 397 // The odd parts were reversed by getCopyToParts - unreverse them. 398 std::reverse(Parts + RoundParts, Parts + NumParts); 399 400 NumParts = RoundParts; 401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 402 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 403 } 404 405 // The number of parts is a power of 2. Repeatedly bisect the value using 406 // EXTRACT_ELEMENT. 407 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 408 EVT::getIntegerVT(*DAG.getContext(), 409 ValueVT.getSizeInBits()), 410 Val); 411 412 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 413 for (unsigned i = 0; i < NumParts; i += StepSize) { 414 unsigned ThisBits = StepSize * PartBits / 2; 415 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 416 SDValue &Part0 = Parts[i]; 417 SDValue &Part1 = Parts[i+StepSize/2]; 418 419 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 420 ThisVT, Part0, DAG.getIntPtrConstant(1)); 421 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 422 ThisVT, Part0, DAG.getIntPtrConstant(0)); 423 424 if (ThisBits == PartBits && ThisVT != PartVT) { 425 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 426 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 427 } 428 } 429 } 430 431 if (TLI.isBigEndian()) 432 std::reverse(Parts, Parts + OrigNumParts); 433 } 434 435 436 /// getCopyToPartsVector - Create a series of nodes that contain the specified 437 /// value split into legal parts. 438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 439 SDValue Val, SDValue *Parts, unsigned NumParts, 440 EVT PartVT) { 441 EVT ValueVT = Val.getValueType(); 442 assert(ValueVT.isVector() && "Not a vector"); 443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 444 445 if (NumParts == 1) { 446 if (PartVT == ValueVT) { 447 // Nothing to do. 448 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 449 // Bitconvert vector->vector case. 450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 451 } else if (PartVT.isVector() && 452 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 453 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 454 EVT ElementVT = PartVT.getVectorElementType(); 455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 456 // undef elements. 457 SmallVector<SDValue, 16> Ops; 458 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 459 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 460 ElementVT, Val, DAG.getIntPtrConstant(i))); 461 462 for (unsigned i = ValueVT.getVectorNumElements(), 463 e = PartVT.getVectorNumElements(); i != e; ++i) 464 Ops.push_back(DAG.getUNDEF(ElementVT)); 465 466 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 467 468 // FIXME: Use CONCAT for 2x -> 4x. 469 470 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 472 } else if (PartVT.isVector() && 473 PartVT.getVectorElementType().bitsGE( 474 ValueVT.getVectorElementType()) && 475 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 476 477 // Promoted vector extract 478 bool Smaller = PartVT.bitsLE(ValueVT); 479 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 480 DL, PartVT, Val); 481 } else{ 482 // Vector -> scalar conversion. 483 assert(ValueVT.getVectorNumElements() == 1 && 484 "Only trivial vector-to-scalar conversions should get here!"); 485 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 486 PartVT, Val, DAG.getIntPtrConstant(0)); 487 488 bool Smaller = ValueVT.bitsLE(PartVT); 489 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 490 DL, PartVT, Val); 491 } 492 493 Parts[0] = Val; 494 return; 495 } 496 497 // Handle a multi-element vector. 498 EVT IntermediateVT, RegisterVT; 499 unsigned NumIntermediates; 500 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 501 IntermediateVT, 502 NumIntermediates, RegisterVT); 503 unsigned NumElements = ValueVT.getVectorNumElements(); 504 505 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 506 NumParts = NumRegs; // Silence a compiler warning. 507 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 508 509 // Split the vector into intermediate operands. 510 SmallVector<SDValue, 8> Ops(NumIntermediates); 511 for (unsigned i = 0; i != NumIntermediates; ++i) { 512 if (IntermediateVT.isVector()) 513 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 514 IntermediateVT, Val, 515 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 516 else 517 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 518 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 519 } 520 521 // Split the intermediate operands into legal parts. 522 if (NumParts == NumIntermediates) { 523 // If the register was not expanded, promote or copy the value, 524 // as appropriate. 525 for (unsigned i = 0; i != NumParts; ++i) 526 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 527 } else if (NumParts > 0) { 528 // If the intermediate type was expanded, split each the value into 529 // legal parts. 530 assert(NumParts % NumIntermediates == 0 && 531 "Must expand into a divisible number of parts!"); 532 unsigned Factor = NumParts / NumIntermediates; 533 for (unsigned i = 0; i != NumIntermediates; ++i) 534 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 535 } 536 } 537 538 539 540 541 namespace { 542 /// RegsForValue - This struct represents the registers (physical or virtual) 543 /// that a particular set of values is assigned, and the type information 544 /// about the value. The most common situation is to represent one value at a 545 /// time, but struct or array values are handled element-wise as multiple 546 /// values. The splitting of aggregates is performed recursively, so that we 547 /// never have aggregate-typed registers. The values at this point do not 548 /// necessarily have legal types, so each value may require one or more 549 /// registers of some legal type. 550 /// 551 struct RegsForValue { 552 /// ValueVTs - The value types of the values, which may not be legal, and 553 /// may need be promoted or synthesized from one or more registers. 554 /// 555 SmallVector<EVT, 4> ValueVTs; 556 557 /// RegVTs - The value types of the registers. This is the same size as 558 /// ValueVTs and it records, for each value, what the type of the assigned 559 /// register or registers are. (Individual values are never synthesized 560 /// from more than one type of register.) 561 /// 562 /// With virtual registers, the contents of RegVTs is redundant with TLI's 563 /// getRegisterType member function, however when with physical registers 564 /// it is necessary to have a separate record of the types. 565 /// 566 SmallVector<EVT, 4> RegVTs; 567 568 /// Regs - This list holds the registers assigned to the values. 569 /// Each legal or promoted value requires one register, and each 570 /// expanded value requires multiple registers. 571 /// 572 SmallVector<unsigned, 4> Regs; 573 574 RegsForValue() {} 575 576 RegsForValue(const SmallVector<unsigned, 4> ®s, 577 EVT regvt, EVT valuevt) 578 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 579 580 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 581 unsigned Reg, Type *Ty) { 582 ComputeValueVTs(tli, Ty, ValueVTs); 583 584 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 585 EVT ValueVT = ValueVTs[Value]; 586 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 587 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 588 for (unsigned i = 0; i != NumRegs; ++i) 589 Regs.push_back(Reg + i); 590 RegVTs.push_back(RegisterVT); 591 Reg += NumRegs; 592 } 593 } 594 595 /// areValueTypesLegal - Return true if types of all the values are legal. 596 bool areValueTypesLegal(const TargetLowering &TLI) { 597 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 598 EVT RegisterVT = RegVTs[Value]; 599 if (!TLI.isTypeLegal(RegisterVT)) 600 return false; 601 } 602 return true; 603 } 604 605 /// append - Add the specified values to this one. 606 void append(const RegsForValue &RHS) { 607 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 608 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 609 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 610 } 611 612 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 613 /// this value and returns the result as a ValueVTs value. This uses 614 /// Chain/Flag as the input and updates them for the output Chain/Flag. 615 /// If the Flag pointer is NULL, no flag is used. 616 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 617 DebugLoc dl, 618 SDValue &Chain, SDValue *Flag) const; 619 620 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 621 /// specified value into the registers specified by this object. This uses 622 /// Chain/Flag as the input and updates them for the output Chain/Flag. 623 /// If the Flag pointer is NULL, no flag is used. 624 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 625 SDValue &Chain, SDValue *Flag) const; 626 627 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 628 /// operand list. This adds the code marker, matching input operand index 629 /// (if applicable), and includes the number of values added into it. 630 void AddInlineAsmOperands(unsigned Kind, 631 bool HasMatching, unsigned MatchingIdx, 632 SelectionDAG &DAG, 633 std::vector<SDValue> &Ops) const; 634 }; 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVT value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 642 FunctionLoweringInfo &FuncInfo, 643 DebugLoc dl, 644 SDValue &Chain, SDValue *Flag) const { 645 // A Value with type {} or [0 x %t] needs no registers. 646 if (ValueVTs.empty()) 647 return SDValue(); 648 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 651 // Assemble the legal parts into the final values. 652 SmallVector<SDValue, 4> Values(ValueVTs.size()); 653 SmallVector<SDValue, 8> Parts; 654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 655 // Copy the legal parts from the registers. 656 EVT ValueVT = ValueVTs[Value]; 657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 658 EVT RegisterVT = RegVTs[Value]; 659 660 Parts.resize(NumRegs); 661 for (unsigned i = 0; i != NumRegs; ++i) { 662 SDValue P; 663 if (Flag == 0) { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 665 } else { 666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 667 *Flag = P.getValue(2); 668 } 669 670 Chain = P.getValue(1); 671 Parts[i] = P; 672 673 // If the source register was virtual and if we know something about it, 674 // add an assert node. 675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 676 !RegisterVT.isInteger() || RegisterVT.isVector()) 677 continue; 678 679 const FunctionLoweringInfo::LiveOutInfo *LOI = 680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 681 if (!LOI) 682 continue; 683 684 unsigned RegSize = RegisterVT.getSizeInBits(); 685 unsigned NumSignBits = LOI->NumSignBits; 686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 687 688 // FIXME: We capture more information than the dag can represent. For 689 // now, just use the tightest assertzext/assertsext possible. 690 bool isSExt = true; 691 EVT FromVT(MVT::Other); 692 if (NumSignBits == RegSize) 693 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 694 else if (NumZeroBits >= RegSize-1) 695 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 696 else if (NumSignBits > RegSize-8) 697 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 698 else if (NumZeroBits >= RegSize-8) 699 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 700 else if (NumSignBits > RegSize-16) 701 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 702 else if (NumZeroBits >= RegSize-16) 703 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 704 else if (NumSignBits > RegSize-32) 705 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 706 else if (NumZeroBits >= RegSize-32) 707 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 708 else 709 continue; 710 711 // Add an assertion node. 712 assert(FromVT != MVT::Other); 713 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 714 RegisterVT, P, DAG.getValueType(FromVT)); 715 } 716 717 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 718 NumRegs, RegisterVT, ValueVT); 719 Part += NumRegs; 720 Parts.clear(); 721 } 722 723 return DAG.getNode(ISD::MERGE_VALUES, dl, 724 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 725 &Values[0], ValueVTs.size()); 726 } 727 728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 729 /// specified value into the registers specified by this object. This uses 730 /// Chain/Flag as the input and updates them for the output Chain/Flag. 731 /// If the Flag pointer is NULL, no flag is used. 732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 733 SDValue &Chain, SDValue *Flag) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 736 // Get the list of the values's legal parts. 737 unsigned NumRegs = Regs.size(); 738 SmallVector<SDValue, 8> Parts(NumRegs); 739 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 740 EVT ValueVT = ValueVTs[Value]; 741 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 742 EVT RegisterVT = RegVTs[Value]; 743 744 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 745 &Parts[Part], NumParts, RegisterVT); 746 Part += NumParts; 747 } 748 749 // Copy the parts into the registers. 750 SmallVector<SDValue, 8> Chains(NumRegs); 751 for (unsigned i = 0; i != NumRegs; ++i) { 752 SDValue Part; 753 if (Flag == 0) { 754 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 755 } else { 756 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 757 *Flag = Part.getValue(1); 758 } 759 760 Chains[i] = Part.getValue(0); 761 } 762 763 if (NumRegs == 1 || Flag) 764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 765 // flagged to it. That is the CopyToReg nodes and the user are considered 766 // a single scheduling unit. If we create a TokenFactor and return it as 767 // chain, then the TokenFactor is both a predecessor (operand) of the 768 // user as well as a successor (the TF operands are flagged to the user). 769 // c1, f1 = CopyToReg 770 // c2, f2 = CopyToReg 771 // c3 = TokenFactor c1, c2 772 // ... 773 // = op c3, ..., f2 774 Chain = Chains[NumRegs-1]; 775 else 776 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 777 } 778 779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 780 /// operand list. This adds the code marker and includes the number of 781 /// values added into it. 782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 783 unsigned MatchingIdx, 784 SelectionDAG &DAG, 785 std::vector<SDValue> &Ops) const { 786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 787 788 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 789 if (HasMatching) 790 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 791 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 792 Ops.push_back(Res); 793 794 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 795 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 796 EVT RegisterVT = RegVTs[Value]; 797 for (unsigned i = 0; i != NumRegs; ++i) { 798 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 799 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 800 } 801 } 802 } 803 804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 805 AA = &aa; 806 GFI = gfi; 807 TD = DAG.getTarget().getTargetData(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurDebugLoc = DebugLoc(); 822 HasTailCall = false; 823 } 824 825 /// clearDanglingDebugInfo - Clear the dangling debug information 826 /// map. This function is seperated from the clear so that debug 827 /// information that is dangling in a basic block can be properly 828 /// resolved in a different basic block. This allows the 829 /// SelectionDAG to resolve dangling debug information attached 830 /// to PHI nodes. 831 void SelectionDAGBuilder::clearDanglingDebugInfo() { 832 DanglingDebugInfoMap.clear(); 833 } 834 835 /// getRoot - Return the current virtual root of the Selection DAG, 836 /// flushing any PendingLoad items. This must be done before emitting 837 /// a store or any other node that may need to be ordered after any 838 /// prior load instructions. 839 /// 840 SDValue SelectionDAGBuilder::getRoot() { 841 if (PendingLoads.empty()) 842 return DAG.getRoot(); 843 844 if (PendingLoads.size() == 1) { 845 SDValue Root = PendingLoads[0]; 846 DAG.setRoot(Root); 847 PendingLoads.clear(); 848 return Root; 849 } 850 851 // Otherwise, we have to make a token factor node. 852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 853 &PendingLoads[0], PendingLoads.size()); 854 PendingLoads.clear(); 855 DAG.setRoot(Root); 856 return Root; 857 } 858 859 /// getControlRoot - Similar to getRoot, but instead of flushing all the 860 /// PendingLoad items, flush all the PendingExports items. It is necessary 861 /// to do this before emitting a terminator instruction. 862 /// 863 SDValue SelectionDAGBuilder::getControlRoot() { 864 SDValue Root = DAG.getRoot(); 865 866 if (PendingExports.empty()) 867 return Root; 868 869 // Turn all of the CopyToReg chains into one factored node. 870 if (Root.getOpcode() != ISD::EntryToken) { 871 unsigned i = 0, e = PendingExports.size(); 872 for (; i != e; ++i) { 873 assert(PendingExports[i].getNode()->getNumOperands() > 1); 874 if (PendingExports[i].getNode()->getOperand(0) == Root) 875 break; // Don't add the root if we already indirectly depend on it. 876 } 877 878 if (i == e) 879 PendingExports.push_back(Root); 880 } 881 882 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 883 &PendingExports[0], 884 PendingExports.size()); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 891 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 892 DAG.AssignOrdering(Node, SDNodeOrder); 893 894 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 895 AssignOrderingToNode(Node->getOperand(I).getNode()); 896 } 897 898 void SelectionDAGBuilder::visit(const Instruction &I) { 899 // Set up outgoing PHI node register values before emitting the terminator. 900 if (isa<TerminatorInst>(&I)) 901 HandlePHINodesInSuccessorBlocks(I.getParent()); 902 903 CurDebugLoc = I.getDebugLoc(); 904 905 visit(I.getOpcode(), I); 906 907 if (!isa<TerminatorInst>(&I) && !HasTailCall) 908 CopyToExportRegsIfNeeded(&I); 909 910 CurDebugLoc = DebugLoc(); 911 } 912 913 void SelectionDAGBuilder::visitPHI(const PHINode &) { 914 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 915 } 916 917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 918 // Note: this doesn't use InstVisitor, because it has to work with 919 // ConstantExpr's in addition to instructions. 920 switch (Opcode) { 921 default: llvm_unreachable("Unknown instruction type encountered!"); 922 // Build the switch statement using the Instruction.def file. 923 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 924 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 925 #include "llvm/Instruction.def" 926 } 927 928 // Assign the ordering to the freshly created DAG nodes. 929 if (NodeMap.count(&I)) { 930 ++SDNodeOrder; 931 AssignOrderingToNode(getValue(&I).getNode()); 932 } 933 } 934 935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 936 // generate the debug data structures now that we've seen its definition. 937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 938 SDValue Val) { 939 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 940 if (DDI.getDI()) { 941 const DbgValueInst *DI = DDI.getDI(); 942 DebugLoc dl = DDI.getdl(); 943 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 944 MDNode *Variable = DI->getVariable(); 945 uint64_t Offset = DI->getOffset(); 946 SDDbgValue *SDV; 947 if (Val.getNode()) { 948 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 949 SDV = DAG.getDbgValue(Variable, Val.getNode(), 950 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 951 DAG.AddDbgValue(SDV, Val.getNode(), false); 952 } 953 } else 954 DEBUG(dbgs() << "Dropping debug info for " << DI); 955 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 956 } 957 } 958 959 // getValue - Return an SDValue for the given Value. 960 SDValue SelectionDAGBuilder::getValue(const Value *V) { 961 // If we already have an SDValue for this value, use it. It's important 962 // to do this first, so that we don't create a CopyFromReg if we already 963 // have a regular SDValue. 964 SDValue &N = NodeMap[V]; 965 if (N.getNode()) return N; 966 967 // If there's a virtual register allocated and initialized for this 968 // value, use it. 969 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 970 if (It != FuncInfo.ValueMap.end()) { 971 unsigned InReg = It->second; 972 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 973 SDValue Chain = DAG.getEntryNode(); 974 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 975 resolveDanglingDebugInfo(V, N); 976 return N; 977 } 978 979 // Otherwise create a new SDValue and remember it. 980 SDValue Val = getValueImpl(V); 981 NodeMap[V] = Val; 982 resolveDanglingDebugInfo(V, Val); 983 return Val; 984 } 985 986 /// getNonRegisterValue - Return an SDValue for the given Value, but 987 /// don't look in FuncInfo.ValueMap for a virtual register. 988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. 990 SDValue &N = NodeMap[V]; 991 if (N.getNode()) return N; 992 993 // Otherwise create a new SDValue and remember it. 994 SDValue Val = getValueImpl(V); 995 NodeMap[V] = Val; 996 resolveDanglingDebugInfo(V, Val); 997 return Val; 998 } 999 1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1001 /// Create an SDValue for the given value. 1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1003 if (const Constant *C = dyn_cast<Constant>(V)) { 1004 EVT VT = TLI.getValueType(V->getType(), true); 1005 1006 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1007 return DAG.getConstant(*CI, VT); 1008 1009 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1010 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1011 1012 if (isa<ConstantPointerNull>(C)) 1013 return DAG.getConstant(0, TLI.getPointerTy()); 1014 1015 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1016 return DAG.getConstantFP(*CFP, VT); 1017 1018 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1019 return DAG.getUNDEF(VT); 1020 1021 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1022 visit(CE->getOpcode(), *CE); 1023 SDValue N1 = NodeMap[V]; 1024 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1025 return N1; 1026 } 1027 1028 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1029 SmallVector<SDValue, 4> Constants; 1030 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1031 OI != OE; ++OI) { 1032 SDNode *Val = getValue(*OI).getNode(); 1033 // If the operand is an empty aggregate, there are no values. 1034 if (!Val) continue; 1035 // Add each leaf value from the operand to the Constants list 1036 // to form a flattened list of all the values. 1037 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1038 Constants.push_back(SDValue(Val, i)); 1039 } 1040 1041 return DAG.getMergeValues(&Constants[0], Constants.size(), 1042 getCurDebugLoc()); 1043 } 1044 1045 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1046 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1047 "Unknown struct or array constant!"); 1048 1049 SmallVector<EVT, 4> ValueVTs; 1050 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1051 unsigned NumElts = ValueVTs.size(); 1052 if (NumElts == 0) 1053 return SDValue(); // empty struct 1054 SmallVector<SDValue, 4> Constants(NumElts); 1055 for (unsigned i = 0; i != NumElts; ++i) { 1056 EVT EltVT = ValueVTs[i]; 1057 if (isa<UndefValue>(C)) 1058 Constants[i] = DAG.getUNDEF(EltVT); 1059 else if (EltVT.isFloatingPoint()) 1060 Constants[i] = DAG.getConstantFP(0, EltVT); 1061 else 1062 Constants[i] = DAG.getConstant(0, EltVT); 1063 } 1064 1065 return DAG.getMergeValues(&Constants[0], NumElts, 1066 getCurDebugLoc()); 1067 } 1068 1069 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1070 return DAG.getBlockAddress(BA, VT); 1071 1072 VectorType *VecTy = cast<VectorType>(V->getType()); 1073 unsigned NumElements = VecTy->getNumElements(); 1074 1075 // Now that we know the number and type of the elements, get that number of 1076 // elements into the Ops array based on what kind of constant it is. 1077 SmallVector<SDValue, 16> Ops; 1078 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1079 for (unsigned i = 0; i != NumElements; ++i) 1080 Ops.push_back(getValue(CP->getOperand(i))); 1081 } else { 1082 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1083 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1084 1085 SDValue Op; 1086 if (EltVT.isFloatingPoint()) 1087 Op = DAG.getConstantFP(0, EltVT); 1088 else 1089 Op = DAG.getConstant(0, EltVT); 1090 Ops.assign(NumElements, Op); 1091 } 1092 1093 // Create a BUILD_VECTOR node. 1094 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1095 VT, &Ops[0], Ops.size()); 1096 } 1097 1098 // If this is a static alloca, generate it as the frameindex instead of 1099 // computation. 1100 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1101 DenseMap<const AllocaInst*, int>::iterator SI = 1102 FuncInfo.StaticAllocaMap.find(AI); 1103 if (SI != FuncInfo.StaticAllocaMap.end()) 1104 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1105 } 1106 1107 // If this is an instruction which fast-isel has deferred, select it now. 1108 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1109 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1110 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1111 SDValue Chain = DAG.getEntryNode(); 1112 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1113 } 1114 1115 llvm_unreachable("Can't get register for value!"); 1116 return SDValue(); 1117 } 1118 1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1120 SDValue Chain = getControlRoot(); 1121 SmallVector<ISD::OutputArg, 8> Outs; 1122 SmallVector<SDValue, 8> OutVals; 1123 1124 if (!FuncInfo.CanLowerReturn) { 1125 unsigned DemoteReg = FuncInfo.DemoteRegister; 1126 const Function *F = I.getParent()->getParent(); 1127 1128 // Emit a store of the return value through the virtual register. 1129 // Leave Outs empty so that LowerReturn won't try to load return 1130 // registers the usual way. 1131 SmallVector<EVT, 1> PtrValueVTs; 1132 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1133 PtrValueVTs); 1134 1135 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1136 SDValue RetOp = getValue(I.getOperand(0)); 1137 1138 SmallVector<EVT, 4> ValueVTs; 1139 SmallVector<uint64_t, 4> Offsets; 1140 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1141 unsigned NumValues = ValueVTs.size(); 1142 1143 SmallVector<SDValue, 4> Chains(NumValues); 1144 for (unsigned i = 0; i != NumValues; ++i) { 1145 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1146 RetPtr.getValueType(), RetPtr, 1147 DAG.getIntPtrConstant(Offsets[i])); 1148 Chains[i] = 1149 DAG.getStore(Chain, getCurDebugLoc(), 1150 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1151 // FIXME: better loc info would be nice. 1152 Add, MachinePointerInfo(), false, false, 0); 1153 } 1154 1155 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1156 MVT::Other, &Chains[0], NumValues); 1157 } else if (I.getNumOperands() != 0) { 1158 SmallVector<EVT, 4> ValueVTs; 1159 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1160 unsigned NumValues = ValueVTs.size(); 1161 if (NumValues) { 1162 SDValue RetOp = getValue(I.getOperand(0)); 1163 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1164 EVT VT = ValueVTs[j]; 1165 1166 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1167 1168 const Function *F = I.getParent()->getParent(); 1169 if (F->paramHasAttr(0, Attribute::SExt)) 1170 ExtendKind = ISD::SIGN_EXTEND; 1171 else if (F->paramHasAttr(0, Attribute::ZExt)) 1172 ExtendKind = ISD::ZERO_EXTEND; 1173 1174 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1175 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1176 1177 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1178 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1179 SmallVector<SDValue, 4> Parts(NumParts); 1180 getCopyToParts(DAG, getCurDebugLoc(), 1181 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1182 &Parts[0], NumParts, PartVT, ExtendKind); 1183 1184 // 'inreg' on function refers to return value 1185 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1186 if (F->paramHasAttr(0, Attribute::InReg)) 1187 Flags.setInReg(); 1188 1189 // Propagate extension type if any 1190 if (ExtendKind == ISD::SIGN_EXTEND) 1191 Flags.setSExt(); 1192 else if (ExtendKind == ISD::ZERO_EXTEND) 1193 Flags.setZExt(); 1194 1195 for (unsigned i = 0; i < NumParts; ++i) { 1196 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1197 /*isfixed=*/true)); 1198 OutVals.push_back(Parts[i]); 1199 } 1200 } 1201 } 1202 } 1203 1204 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1205 CallingConv::ID CallConv = 1206 DAG.getMachineFunction().getFunction()->getCallingConv(); 1207 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1208 Outs, OutVals, getCurDebugLoc(), DAG); 1209 1210 // Verify that the target's LowerReturn behaved as expected. 1211 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1212 "LowerReturn didn't return a valid chain!"); 1213 1214 // Update the DAG with the new chain value resulting from return lowering. 1215 DAG.setRoot(Chain); 1216 } 1217 1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1219 /// created for it, emit nodes to copy the value into the virtual 1220 /// registers. 1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1222 // Skip empty types 1223 if (V->getType()->isEmptyTy()) 1224 return; 1225 1226 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1227 if (VMI != FuncInfo.ValueMap.end()) { 1228 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1229 CopyValueToVirtualRegister(V, VMI->second); 1230 } 1231 } 1232 1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1234 /// the current basic block, add it to ValueMap now so that we'll get a 1235 /// CopyTo/FromReg. 1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1237 // No need to export constants. 1238 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1239 1240 // Already exported? 1241 if (FuncInfo.isExportedInst(V)) return; 1242 1243 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1244 CopyValueToVirtualRegister(V, Reg); 1245 } 1246 1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1248 const BasicBlock *FromBB) { 1249 // The operands of the setcc have to be in this block. We don't know 1250 // how to export them from some other block. 1251 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1252 // Can export from current BB. 1253 if (VI->getParent() == FromBB) 1254 return true; 1255 1256 // Is already exported, noop. 1257 return FuncInfo.isExportedInst(V); 1258 } 1259 1260 // If this is an argument, we can export it if the BB is the entry block or 1261 // if it is already exported. 1262 if (isa<Argument>(V)) { 1263 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1264 return true; 1265 1266 // Otherwise, can only export this if it is already exported. 1267 return FuncInfo.isExportedInst(V); 1268 } 1269 1270 // Otherwise, constants can always be exported. 1271 return true; 1272 } 1273 1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src, 1276 MachineBasicBlock *Dst) { 1277 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1278 if (!BPI) 1279 return 0; 1280 BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock()); 1281 BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock()); 1282 return BPI->getEdgeWeight(SrcBB, DstBB); 1283 } 1284 1285 void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src, 1286 MachineBasicBlock *Dst) { 1287 uint32_t weight = getEdgeWeight(Src, Dst); 1288 Src->addSuccessor(Dst, weight); 1289 } 1290 1291 1292 static bool InBlock(const Value *V, const BasicBlock *BB) { 1293 if (const Instruction *I = dyn_cast<Instruction>(V)) 1294 return I->getParent() == BB; 1295 return true; 1296 } 1297 1298 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1299 /// This function emits a branch and is used at the leaves of an OR or an 1300 /// AND operator tree. 1301 /// 1302 void 1303 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1304 MachineBasicBlock *TBB, 1305 MachineBasicBlock *FBB, 1306 MachineBasicBlock *CurBB, 1307 MachineBasicBlock *SwitchBB) { 1308 const BasicBlock *BB = CurBB->getBasicBlock(); 1309 1310 // If the leaf of the tree is a comparison, merge the condition into 1311 // the caseblock. 1312 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1313 // The operands of the cmp have to be in this block. We don't know 1314 // how to export them from some other block. If this is the first block 1315 // of the sequence, no exporting is needed. 1316 if (CurBB == SwitchBB || 1317 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1318 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1319 ISD::CondCode Condition; 1320 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1321 Condition = getICmpCondCode(IC->getPredicate()); 1322 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1323 Condition = getFCmpCondCode(FC->getPredicate()); 1324 } else { 1325 Condition = ISD::SETEQ; // silence warning. 1326 llvm_unreachable("Unknown compare instruction"); 1327 } 1328 1329 CaseBlock CB(Condition, BOp->getOperand(0), 1330 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1331 SwitchCases.push_back(CB); 1332 return; 1333 } 1334 } 1335 1336 // Create a CaseBlock record representing this branch. 1337 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1338 NULL, TBB, FBB, CurBB); 1339 SwitchCases.push_back(CB); 1340 } 1341 1342 /// FindMergedConditions - If Cond is an expression like 1343 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1344 MachineBasicBlock *TBB, 1345 MachineBasicBlock *FBB, 1346 MachineBasicBlock *CurBB, 1347 MachineBasicBlock *SwitchBB, 1348 unsigned Opc) { 1349 // If this node is not part of the or/and tree, emit it as a branch. 1350 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1351 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1352 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1353 BOp->getParent() != CurBB->getBasicBlock() || 1354 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1355 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1356 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1357 return; 1358 } 1359 1360 // Create TmpBB after CurBB. 1361 MachineFunction::iterator BBI = CurBB; 1362 MachineFunction &MF = DAG.getMachineFunction(); 1363 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1364 CurBB->getParent()->insert(++BBI, TmpBB); 1365 1366 if (Opc == Instruction::Or) { 1367 // Codegen X | Y as: 1368 // jmp_if_X TBB 1369 // jmp TmpBB 1370 // TmpBB: 1371 // jmp_if_Y TBB 1372 // jmp FBB 1373 // 1374 1375 // Emit the LHS condition. 1376 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1377 1378 // Emit the RHS condition into TmpBB. 1379 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1380 } else { 1381 assert(Opc == Instruction::And && "Unknown merge op!"); 1382 // Codegen X & Y as: 1383 // jmp_if_X TmpBB 1384 // jmp FBB 1385 // TmpBB: 1386 // jmp_if_Y TBB 1387 // jmp FBB 1388 // 1389 // This requires creation of TmpBB after CurBB. 1390 1391 // Emit the LHS condition. 1392 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1393 1394 // Emit the RHS condition into TmpBB. 1395 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1396 } 1397 } 1398 1399 /// If the set of cases should be emitted as a series of branches, return true. 1400 /// If we should emit this as a bunch of and/or'd together conditions, return 1401 /// false. 1402 bool 1403 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1404 if (Cases.size() != 2) return true; 1405 1406 // If this is two comparisons of the same values or'd or and'd together, they 1407 // will get folded into a single comparison, so don't emit two blocks. 1408 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1409 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1410 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1411 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1412 return false; 1413 } 1414 1415 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1416 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1417 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1418 Cases[0].CC == Cases[1].CC && 1419 isa<Constant>(Cases[0].CmpRHS) && 1420 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1421 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1422 return false; 1423 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1424 return false; 1425 } 1426 1427 return true; 1428 } 1429 1430 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1431 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1432 1433 // Update machine-CFG edges. 1434 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1435 1436 // Figure out which block is immediately after the current one. 1437 MachineBasicBlock *NextBlock = 0; 1438 MachineFunction::iterator BBI = BrMBB; 1439 if (++BBI != FuncInfo.MF->end()) 1440 NextBlock = BBI; 1441 1442 if (I.isUnconditional()) { 1443 // Update machine-CFG edges. 1444 BrMBB->addSuccessor(Succ0MBB); 1445 1446 // If this is not a fall-through branch, emit the branch. 1447 if (Succ0MBB != NextBlock) 1448 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1449 MVT::Other, getControlRoot(), 1450 DAG.getBasicBlock(Succ0MBB))); 1451 1452 return; 1453 } 1454 1455 // If this condition is one of the special cases we handle, do special stuff 1456 // now. 1457 const Value *CondVal = I.getCondition(); 1458 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1459 1460 // If this is a series of conditions that are or'd or and'd together, emit 1461 // this as a sequence of branches instead of setcc's with and/or operations. 1462 // As long as jumps are not expensive, this should improve performance. 1463 // For example, instead of something like: 1464 // cmp A, B 1465 // C = seteq 1466 // cmp D, E 1467 // F = setle 1468 // or C, F 1469 // jnz foo 1470 // Emit: 1471 // cmp A, B 1472 // je foo 1473 // cmp D, E 1474 // jle foo 1475 // 1476 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1477 if (!TLI.isJumpExpensive() && 1478 BOp->hasOneUse() && 1479 (BOp->getOpcode() == Instruction::And || 1480 BOp->getOpcode() == Instruction::Or)) { 1481 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1482 BOp->getOpcode()); 1483 // If the compares in later blocks need to use values not currently 1484 // exported from this block, export them now. This block should always 1485 // be the first entry. 1486 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1487 1488 // Allow some cases to be rejected. 1489 if (ShouldEmitAsBranches(SwitchCases)) { 1490 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1491 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1492 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1493 } 1494 1495 // Emit the branch for this block. 1496 visitSwitchCase(SwitchCases[0], BrMBB); 1497 SwitchCases.erase(SwitchCases.begin()); 1498 return; 1499 } 1500 1501 // Okay, we decided not to do this, remove any inserted MBB's and clear 1502 // SwitchCases. 1503 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1504 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1505 1506 SwitchCases.clear(); 1507 } 1508 } 1509 1510 // Create a CaseBlock record representing this branch. 1511 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1512 NULL, Succ0MBB, Succ1MBB, BrMBB); 1513 1514 // Use visitSwitchCase to actually insert the fast branch sequence for this 1515 // cond branch. 1516 visitSwitchCase(CB, BrMBB); 1517 } 1518 1519 /// visitSwitchCase - Emits the necessary code to represent a single node in 1520 /// the binary search tree resulting from lowering a switch instruction. 1521 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1522 MachineBasicBlock *SwitchBB) { 1523 SDValue Cond; 1524 SDValue CondLHS = getValue(CB.CmpLHS); 1525 DebugLoc dl = getCurDebugLoc(); 1526 1527 // Build the setcc now. 1528 if (CB.CmpMHS == NULL) { 1529 // Fold "(X == true)" to X and "(X == false)" to !X to 1530 // handle common cases produced by branch lowering. 1531 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1532 CB.CC == ISD::SETEQ) 1533 Cond = CondLHS; 1534 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1535 CB.CC == ISD::SETEQ) { 1536 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1537 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1538 } else 1539 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1540 } else { 1541 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1542 1543 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1544 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1545 1546 SDValue CmpOp = getValue(CB.CmpMHS); 1547 EVT VT = CmpOp.getValueType(); 1548 1549 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1550 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1551 ISD::SETLE); 1552 } else { 1553 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1554 VT, CmpOp, DAG.getConstant(Low, VT)); 1555 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1556 DAG.getConstant(High-Low, VT), ISD::SETULE); 1557 } 1558 } 1559 1560 // Update successor info 1561 addSuccessorWithWeight(SwitchBB, CB.TrueBB); 1562 addSuccessorWithWeight(SwitchBB, CB.FalseBB); 1563 1564 // Set NextBlock to be the MBB immediately after the current one, if any. 1565 // This is used to avoid emitting unnecessary branches to the next block. 1566 MachineBasicBlock *NextBlock = 0; 1567 MachineFunction::iterator BBI = SwitchBB; 1568 if (++BBI != FuncInfo.MF->end()) 1569 NextBlock = BBI; 1570 1571 // If the lhs block is the next block, invert the condition so that we can 1572 // fall through to the lhs instead of the rhs block. 1573 if (CB.TrueBB == NextBlock) { 1574 std::swap(CB.TrueBB, CB.FalseBB); 1575 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1576 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1577 } 1578 1579 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1580 MVT::Other, getControlRoot(), Cond, 1581 DAG.getBasicBlock(CB.TrueBB)); 1582 1583 // Insert the false branch. Do this even if it's a fall through branch, 1584 // this makes it easier to do DAG optimizations which require inverting 1585 // the branch condition. 1586 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1587 DAG.getBasicBlock(CB.FalseBB)); 1588 1589 DAG.setRoot(BrCond); 1590 } 1591 1592 /// visitJumpTable - Emit JumpTable node in the current MBB 1593 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1594 // Emit the code for the jump table 1595 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1596 EVT PTy = TLI.getPointerTy(); 1597 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1598 JT.Reg, PTy); 1599 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1600 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1601 MVT::Other, Index.getValue(1), 1602 Table, Index); 1603 DAG.setRoot(BrJumpTable); 1604 } 1605 1606 /// visitJumpTableHeader - This function emits necessary code to produce index 1607 /// in the JumpTable from switch case. 1608 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1609 JumpTableHeader &JTH, 1610 MachineBasicBlock *SwitchBB) { 1611 // Subtract the lowest switch case value from the value being switched on and 1612 // conditional branch to default mbb if the result is greater than the 1613 // difference between smallest and largest cases. 1614 SDValue SwitchOp = getValue(JTH.SValue); 1615 EVT VT = SwitchOp.getValueType(); 1616 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1617 DAG.getConstant(JTH.First, VT)); 1618 1619 // The SDNode we just created, which holds the value being switched on minus 1620 // the smallest case value, needs to be copied to a virtual register so it 1621 // can be used as an index into the jump table in a subsequent basic block. 1622 // This value may be smaller or larger than the target's pointer type, and 1623 // therefore require extension or truncating. 1624 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1625 1626 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1627 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1628 JumpTableReg, SwitchOp); 1629 JT.Reg = JumpTableReg; 1630 1631 // Emit the range check for the jump table, and branch to the default block 1632 // for the switch statement if the value being switched on exceeds the largest 1633 // case in the switch. 1634 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1635 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1636 DAG.getConstant(JTH.Last-JTH.First,VT), 1637 ISD::SETUGT); 1638 1639 // Set NextBlock to be the MBB immediately after the current one, if any. 1640 // This is used to avoid emitting unnecessary branches to the next block. 1641 MachineBasicBlock *NextBlock = 0; 1642 MachineFunction::iterator BBI = SwitchBB; 1643 1644 if (++BBI != FuncInfo.MF->end()) 1645 NextBlock = BBI; 1646 1647 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1648 MVT::Other, CopyTo, CMP, 1649 DAG.getBasicBlock(JT.Default)); 1650 1651 if (JT.MBB != NextBlock) 1652 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1653 DAG.getBasicBlock(JT.MBB)); 1654 1655 DAG.setRoot(BrCond); 1656 } 1657 1658 /// visitBitTestHeader - This function emits necessary code to produce value 1659 /// suitable for "bit tests" 1660 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1661 MachineBasicBlock *SwitchBB) { 1662 // Subtract the minimum value 1663 SDValue SwitchOp = getValue(B.SValue); 1664 EVT VT = SwitchOp.getValueType(); 1665 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1666 DAG.getConstant(B.First, VT)); 1667 1668 // Check range 1669 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1670 TLI.getSetCCResultType(Sub.getValueType()), 1671 Sub, DAG.getConstant(B.Range, VT), 1672 ISD::SETUGT); 1673 1674 // Determine the type of the test operands. 1675 bool UsePtrType = false; 1676 if (!TLI.isTypeLegal(VT)) 1677 UsePtrType = true; 1678 else { 1679 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1680 if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) { 1681 // Switch table case range are encoded into series of masks. 1682 // Just use pointer type, it's guaranteed to fit. 1683 UsePtrType = true; 1684 break; 1685 } 1686 } 1687 if (UsePtrType) { 1688 VT = TLI.getPointerTy(); 1689 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1690 } 1691 1692 B.RegVT = VT; 1693 B.Reg = FuncInfo.CreateReg(VT); 1694 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1695 B.Reg, Sub); 1696 1697 // Set NextBlock to be the MBB immediately after the current one, if any. 1698 // This is used to avoid emitting unnecessary branches to the next block. 1699 MachineBasicBlock *NextBlock = 0; 1700 MachineFunction::iterator BBI = SwitchBB; 1701 if (++BBI != FuncInfo.MF->end()) 1702 NextBlock = BBI; 1703 1704 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1705 1706 addSuccessorWithWeight(SwitchBB, B.Default); 1707 addSuccessorWithWeight(SwitchBB, MBB); 1708 1709 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1710 MVT::Other, CopyTo, RangeCmp, 1711 DAG.getBasicBlock(B.Default)); 1712 1713 if (MBB != NextBlock) 1714 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1715 DAG.getBasicBlock(MBB)); 1716 1717 DAG.setRoot(BrRange); 1718 } 1719 1720 /// visitBitTestCase - this function produces one "bit test" 1721 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1722 MachineBasicBlock* NextMBB, 1723 unsigned Reg, 1724 BitTestCase &B, 1725 MachineBasicBlock *SwitchBB) { 1726 EVT VT = BB.RegVT; 1727 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1728 Reg, VT); 1729 SDValue Cmp; 1730 unsigned PopCount = CountPopulation_64(B.Mask); 1731 if (PopCount == 1) { 1732 // Testing for a single bit; just compare the shift count with what it 1733 // would need to be to shift a 1 bit in that position. 1734 Cmp = DAG.getSetCC(getCurDebugLoc(), 1735 TLI.getSetCCResultType(VT), 1736 ShiftOp, 1737 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1738 ISD::SETEQ); 1739 } else if (PopCount == BB.Range) { 1740 // There is only one zero bit in the range, test for it directly. 1741 Cmp = DAG.getSetCC(getCurDebugLoc(), 1742 TLI.getSetCCResultType(VT), 1743 ShiftOp, 1744 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1745 ISD::SETNE); 1746 } else { 1747 // Make desired shift 1748 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1749 DAG.getConstant(1, VT), ShiftOp); 1750 1751 // Emit bit tests and jumps 1752 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1753 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1754 Cmp = DAG.getSetCC(getCurDebugLoc(), 1755 TLI.getSetCCResultType(VT), 1756 AndOp, DAG.getConstant(0, VT), 1757 ISD::SETNE); 1758 } 1759 1760 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1761 addSuccessorWithWeight(SwitchBB, NextMBB); 1762 1763 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1764 MVT::Other, getControlRoot(), 1765 Cmp, DAG.getBasicBlock(B.TargetBB)); 1766 1767 // Set NextBlock to be the MBB immediately after the current one, if any. 1768 // This is used to avoid emitting unnecessary branches to the next block. 1769 MachineBasicBlock *NextBlock = 0; 1770 MachineFunction::iterator BBI = SwitchBB; 1771 if (++BBI != FuncInfo.MF->end()) 1772 NextBlock = BBI; 1773 1774 if (NextMBB != NextBlock) 1775 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1776 DAG.getBasicBlock(NextMBB)); 1777 1778 DAG.setRoot(BrAnd); 1779 } 1780 1781 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1782 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1783 1784 // Retrieve successors. 1785 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1786 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1787 1788 const Value *Callee(I.getCalledValue()); 1789 if (isa<InlineAsm>(Callee)) 1790 visitInlineAsm(&I); 1791 else 1792 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1793 1794 // If the value of the invoke is used outside of its defining block, make it 1795 // available as a virtual register. 1796 CopyToExportRegsIfNeeded(&I); 1797 1798 // Update successor info 1799 InvokeMBB->addSuccessor(Return); 1800 InvokeMBB->addSuccessor(LandingPad); 1801 1802 // Drop into normal successor. 1803 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1804 MVT::Other, getControlRoot(), 1805 DAG.getBasicBlock(Return))); 1806 } 1807 1808 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1809 } 1810 1811 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1812 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1813 } 1814 1815 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &) { 1816 // FIXME: Handle this 1817 assert(FuncInfo.MBB->isLandingPad() && 1818 "Call to landingpad not in landing pad!"); 1819 } 1820 1821 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1822 /// small case ranges). 1823 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1824 CaseRecVector& WorkList, 1825 const Value* SV, 1826 MachineBasicBlock *Default, 1827 MachineBasicBlock *SwitchBB) { 1828 Case& BackCase = *(CR.Range.second-1); 1829 1830 // Size is the number of Cases represented by this range. 1831 size_t Size = CR.Range.second - CR.Range.first; 1832 if (Size > 3) 1833 return false; 1834 1835 // Get the MachineFunction which holds the current MBB. This is used when 1836 // inserting any additional MBBs necessary to represent the switch. 1837 MachineFunction *CurMF = FuncInfo.MF; 1838 1839 // Figure out which block is immediately after the current one. 1840 MachineBasicBlock *NextBlock = 0; 1841 MachineFunction::iterator BBI = CR.CaseBB; 1842 1843 if (++BBI != FuncInfo.MF->end()) 1844 NextBlock = BBI; 1845 1846 // If any two of the cases has the same destination, and if one value 1847 // is the same as the other, but has one bit unset that the other has set, 1848 // use bit manipulation to do two compares at once. For example: 1849 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1850 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1851 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1852 if (Size == 2 && CR.CaseBB == SwitchBB) { 1853 Case &Small = *CR.Range.first; 1854 Case &Big = *(CR.Range.second-1); 1855 1856 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1857 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1858 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1859 1860 // Check that there is only one bit different. 1861 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1862 (SmallValue | BigValue) == BigValue) { 1863 // Isolate the common bit. 1864 APInt CommonBit = BigValue & ~SmallValue; 1865 assert((SmallValue | CommonBit) == BigValue && 1866 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1867 1868 SDValue CondLHS = getValue(SV); 1869 EVT VT = CondLHS.getValueType(); 1870 DebugLoc DL = getCurDebugLoc(); 1871 1872 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1873 DAG.getConstant(CommonBit, VT)); 1874 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1875 Or, DAG.getConstant(BigValue, VT), 1876 ISD::SETEQ); 1877 1878 // Update successor info. 1879 SwitchBB->addSuccessor(Small.BB); 1880 SwitchBB->addSuccessor(Default); 1881 1882 // Insert the true branch. 1883 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1884 getControlRoot(), Cond, 1885 DAG.getBasicBlock(Small.BB)); 1886 1887 // Insert the false branch. 1888 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1889 DAG.getBasicBlock(Default)); 1890 1891 DAG.setRoot(BrCond); 1892 return true; 1893 } 1894 } 1895 } 1896 1897 // Rearrange the case blocks so that the last one falls through if possible. 1898 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1899 // The last case block won't fall through into 'NextBlock' if we emit the 1900 // branches in this order. See if rearranging a case value would help. 1901 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1902 if (I->BB == NextBlock) { 1903 std::swap(*I, BackCase); 1904 break; 1905 } 1906 } 1907 } 1908 1909 // Create a CaseBlock record representing a conditional branch to 1910 // the Case's target mbb if the value being switched on SV is equal 1911 // to C. 1912 MachineBasicBlock *CurBlock = CR.CaseBB; 1913 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1914 MachineBasicBlock *FallThrough; 1915 if (I != E-1) { 1916 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1917 CurMF->insert(BBI, FallThrough); 1918 1919 // Put SV in a virtual register to make it available from the new blocks. 1920 ExportFromCurrentBlock(SV); 1921 } else { 1922 // If the last case doesn't match, go to the default block. 1923 FallThrough = Default; 1924 } 1925 1926 const Value *RHS, *LHS, *MHS; 1927 ISD::CondCode CC; 1928 if (I->High == I->Low) { 1929 // This is just small small case range :) containing exactly 1 case 1930 CC = ISD::SETEQ; 1931 LHS = SV; RHS = I->High; MHS = NULL; 1932 } else { 1933 CC = ISD::SETLE; 1934 LHS = I->Low; MHS = SV; RHS = I->High; 1935 } 1936 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1937 1938 // If emitting the first comparison, just call visitSwitchCase to emit the 1939 // code into the current block. Otherwise, push the CaseBlock onto the 1940 // vector to be later processed by SDISel, and insert the node's MBB 1941 // before the next MBB. 1942 if (CurBlock == SwitchBB) 1943 visitSwitchCase(CB, SwitchBB); 1944 else 1945 SwitchCases.push_back(CB); 1946 1947 CurBlock = FallThrough; 1948 } 1949 1950 return true; 1951 } 1952 1953 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1954 return !DisableJumpTables && 1955 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1956 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1957 } 1958 1959 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1960 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1961 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 1962 return (LastExt - FirstExt + 1ULL); 1963 } 1964 1965 /// handleJTSwitchCase - Emit jumptable for current switch case range 1966 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1967 CaseRecVector& WorkList, 1968 const Value* SV, 1969 MachineBasicBlock* Default, 1970 MachineBasicBlock *SwitchBB) { 1971 Case& FrontCase = *CR.Range.first; 1972 Case& BackCase = *(CR.Range.second-1); 1973 1974 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1975 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1976 1977 APInt TSize(First.getBitWidth(), 0); 1978 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1979 I!=E; ++I) 1980 TSize += I->size(); 1981 1982 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1983 return false; 1984 1985 APInt Range = ComputeRange(First, Last); 1986 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1987 if (Density < 0.4) 1988 return false; 1989 1990 DEBUG(dbgs() << "Lowering jump table\n" 1991 << "First entry: " << First << ". Last entry: " << Last << '\n' 1992 << "Range: " << Range 1993 << ". Size: " << TSize << ". Density: " << Density << "\n\n"); 1994 1995 // Get the MachineFunction which holds the current MBB. This is used when 1996 // inserting any additional MBBs necessary to represent the switch. 1997 MachineFunction *CurMF = FuncInfo.MF; 1998 1999 // Figure out which block is immediately after the current one. 2000 MachineFunction::iterator BBI = CR.CaseBB; 2001 ++BBI; 2002 2003 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2004 2005 // Create a new basic block to hold the code for loading the address 2006 // of the jump table, and jumping to it. Update successor information; 2007 // we will either branch to the default case for the switch, or the jump 2008 // table. 2009 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2010 CurMF->insert(BBI, JumpTableBB); 2011 2012 addSuccessorWithWeight(CR.CaseBB, Default); 2013 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2014 2015 // Build a vector of destination BBs, corresponding to each target 2016 // of the jump table. If the value of the jump table slot corresponds to 2017 // a case statement, push the case's BB onto the vector, otherwise, push 2018 // the default BB. 2019 std::vector<MachineBasicBlock*> DestBBs; 2020 APInt TEI = First; 2021 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2022 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2023 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2024 2025 if (Low.sle(TEI) && TEI.sle(High)) { 2026 DestBBs.push_back(I->BB); 2027 if (TEI==High) 2028 ++I; 2029 } else { 2030 DestBBs.push_back(Default); 2031 } 2032 } 2033 2034 // Update successor info. Add one edge to each unique successor. 2035 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2036 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2037 E = DestBBs.end(); I != E; ++I) { 2038 if (!SuccsHandled[(*I)->getNumber()]) { 2039 SuccsHandled[(*I)->getNumber()] = true; 2040 addSuccessorWithWeight(JumpTableBB, *I); 2041 } 2042 } 2043 2044 // Create a jump table index for this jump table. 2045 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2046 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2047 ->createJumpTableIndex(DestBBs); 2048 2049 // Set the jump table information so that we can codegen it as a second 2050 // MachineBasicBlock 2051 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2052 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2053 if (CR.CaseBB == SwitchBB) 2054 visitJumpTableHeader(JT, JTH, SwitchBB); 2055 2056 JTCases.push_back(JumpTableBlock(JTH, JT)); 2057 2058 return true; 2059 } 2060 2061 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2062 /// 2 subtrees. 2063 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2064 CaseRecVector& WorkList, 2065 const Value* SV, 2066 MachineBasicBlock *Default, 2067 MachineBasicBlock *SwitchBB) { 2068 // Get the MachineFunction which holds the current MBB. This is used when 2069 // inserting any additional MBBs necessary to represent the switch. 2070 MachineFunction *CurMF = FuncInfo.MF; 2071 2072 // Figure out which block is immediately after the current one. 2073 MachineFunction::iterator BBI = CR.CaseBB; 2074 ++BBI; 2075 2076 Case& FrontCase = *CR.Range.first; 2077 Case& BackCase = *(CR.Range.second-1); 2078 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2079 2080 // Size is the number of Cases represented by this range. 2081 unsigned Size = CR.Range.second - CR.Range.first; 2082 2083 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2084 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2085 double FMetric = 0; 2086 CaseItr Pivot = CR.Range.first + Size/2; 2087 2088 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2089 // (heuristically) allow us to emit JumpTable's later. 2090 APInt TSize(First.getBitWidth(), 0); 2091 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2092 I!=E; ++I) 2093 TSize += I->size(); 2094 2095 APInt LSize = FrontCase.size(); 2096 APInt RSize = TSize-LSize; 2097 DEBUG(dbgs() << "Selecting best pivot: \n" 2098 << "First: " << First << ", Last: " << Last <<'\n' 2099 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2100 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2101 J!=E; ++I, ++J) { 2102 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2103 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2104 APInt Range = ComputeRange(LEnd, RBegin); 2105 assert((Range - 2ULL).isNonNegative() && 2106 "Invalid case distance"); 2107 // Use volatile double here to avoid excess precision issues on some hosts, 2108 // e.g. that use 80-bit X87 registers. 2109 volatile double LDensity = 2110 (double)LSize.roundToDouble() / 2111 (LEnd - First + 1ULL).roundToDouble(); 2112 volatile double RDensity = 2113 (double)RSize.roundToDouble() / 2114 (Last - RBegin + 1ULL).roundToDouble(); 2115 double Metric = Range.logBase2()*(LDensity+RDensity); 2116 // Should always split in some non-trivial place 2117 DEBUG(dbgs() <<"=>Step\n" 2118 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2119 << "LDensity: " << LDensity 2120 << ", RDensity: " << RDensity << '\n' 2121 << "Metric: " << Metric << '\n'); 2122 if (FMetric < Metric) { 2123 Pivot = J; 2124 FMetric = Metric; 2125 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2126 } 2127 2128 LSize += J->size(); 2129 RSize -= J->size(); 2130 } 2131 if (areJTsAllowed(TLI)) { 2132 // If our case is dense we *really* should handle it earlier! 2133 assert((FMetric > 0) && "Should handle dense range earlier!"); 2134 } else { 2135 Pivot = CR.Range.first + Size/2; 2136 } 2137 2138 CaseRange LHSR(CR.Range.first, Pivot); 2139 CaseRange RHSR(Pivot, CR.Range.second); 2140 Constant *C = Pivot->Low; 2141 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2142 2143 // We know that we branch to the LHS if the Value being switched on is 2144 // less than the Pivot value, C. We use this to optimize our binary 2145 // tree a bit, by recognizing that if SV is greater than or equal to the 2146 // LHS's Case Value, and that Case Value is exactly one less than the 2147 // Pivot's Value, then we can branch directly to the LHS's Target, 2148 // rather than creating a leaf node for it. 2149 if ((LHSR.second - LHSR.first) == 1 && 2150 LHSR.first->High == CR.GE && 2151 cast<ConstantInt>(C)->getValue() == 2152 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2153 TrueBB = LHSR.first->BB; 2154 } else { 2155 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2156 CurMF->insert(BBI, TrueBB); 2157 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2158 2159 // Put SV in a virtual register to make it available from the new blocks. 2160 ExportFromCurrentBlock(SV); 2161 } 2162 2163 // Similar to the optimization above, if the Value being switched on is 2164 // known to be less than the Constant CR.LT, and the current Case Value 2165 // is CR.LT - 1, then we can branch directly to the target block for 2166 // the current Case Value, rather than emitting a RHS leaf node for it. 2167 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2168 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2169 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2170 FalseBB = RHSR.first->BB; 2171 } else { 2172 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2173 CurMF->insert(BBI, FalseBB); 2174 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2175 2176 // Put SV in a virtual register to make it available from the new blocks. 2177 ExportFromCurrentBlock(SV); 2178 } 2179 2180 // Create a CaseBlock record representing a conditional branch to 2181 // the LHS node if the value being switched on SV is less than C. 2182 // Otherwise, branch to LHS. 2183 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2184 2185 if (CR.CaseBB == SwitchBB) 2186 visitSwitchCase(CB, SwitchBB); 2187 else 2188 SwitchCases.push_back(CB); 2189 2190 return true; 2191 } 2192 2193 /// handleBitTestsSwitchCase - if current case range has few destination and 2194 /// range span less, than machine word bitwidth, encode case range into series 2195 /// of masks and emit bit tests with these masks. 2196 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2197 CaseRecVector& WorkList, 2198 const Value* SV, 2199 MachineBasicBlock* Default, 2200 MachineBasicBlock *SwitchBB){ 2201 EVT PTy = TLI.getPointerTy(); 2202 unsigned IntPtrBits = PTy.getSizeInBits(); 2203 2204 Case& FrontCase = *CR.Range.first; 2205 Case& BackCase = *(CR.Range.second-1); 2206 2207 // Get the MachineFunction which holds the current MBB. This is used when 2208 // inserting any additional MBBs necessary to represent the switch. 2209 MachineFunction *CurMF = FuncInfo.MF; 2210 2211 // If target does not have legal shift left, do not emit bit tests at all. 2212 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2213 return false; 2214 2215 size_t numCmps = 0; 2216 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2217 I!=E; ++I) { 2218 // Single case counts one, case range - two. 2219 numCmps += (I->Low == I->High ? 1 : 2); 2220 } 2221 2222 // Count unique destinations 2223 SmallSet<MachineBasicBlock*, 4> Dests; 2224 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2225 Dests.insert(I->BB); 2226 if (Dests.size() > 3) 2227 // Don't bother the code below, if there are too much unique destinations 2228 return false; 2229 } 2230 DEBUG(dbgs() << "Total number of unique destinations: " 2231 << Dests.size() << '\n' 2232 << "Total number of comparisons: " << numCmps << '\n'); 2233 2234 // Compute span of values. 2235 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2236 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2237 APInt cmpRange = maxValue - minValue; 2238 2239 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2240 << "Low bound: " << minValue << '\n' 2241 << "High bound: " << maxValue << '\n'); 2242 2243 if (cmpRange.uge(IntPtrBits) || 2244 (!(Dests.size() == 1 && numCmps >= 3) && 2245 !(Dests.size() == 2 && numCmps >= 5) && 2246 !(Dests.size() >= 3 && numCmps >= 6))) 2247 return false; 2248 2249 DEBUG(dbgs() << "Emitting bit tests\n"); 2250 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2251 2252 // Optimize the case where all the case values fit in a 2253 // word without having to subtract minValue. In this case, 2254 // we can optimize away the subtraction. 2255 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2256 cmpRange = maxValue; 2257 } else { 2258 lowBound = minValue; 2259 } 2260 2261 CaseBitsVector CasesBits; 2262 unsigned i, count = 0; 2263 2264 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2265 MachineBasicBlock* Dest = I->BB; 2266 for (i = 0; i < count; ++i) 2267 if (Dest == CasesBits[i].BB) 2268 break; 2269 2270 if (i == count) { 2271 assert((count < 3) && "Too much destinations to test!"); 2272 CasesBits.push_back(CaseBits(0, Dest, 0)); 2273 count++; 2274 } 2275 2276 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2277 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2278 2279 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2280 uint64_t hi = (highValue - lowBound).getZExtValue(); 2281 2282 for (uint64_t j = lo; j <= hi; j++) { 2283 CasesBits[i].Mask |= 1ULL << j; 2284 CasesBits[i].Bits++; 2285 } 2286 2287 } 2288 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2289 2290 BitTestInfo BTC; 2291 2292 // Figure out which block is immediately after the current one. 2293 MachineFunction::iterator BBI = CR.CaseBB; 2294 ++BBI; 2295 2296 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2297 2298 DEBUG(dbgs() << "Cases:\n"); 2299 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2300 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2301 << ", Bits: " << CasesBits[i].Bits 2302 << ", BB: " << CasesBits[i].BB << '\n'); 2303 2304 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2305 CurMF->insert(BBI, CaseBB); 2306 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2307 CaseBB, 2308 CasesBits[i].BB)); 2309 2310 // Put SV in a virtual register to make it available from the new blocks. 2311 ExportFromCurrentBlock(SV); 2312 } 2313 2314 BitTestBlock BTB(lowBound, cmpRange, SV, 2315 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2316 CR.CaseBB, Default, BTC); 2317 2318 if (CR.CaseBB == SwitchBB) 2319 visitBitTestHeader(BTB, SwitchBB); 2320 2321 BitTestCases.push_back(BTB); 2322 2323 return true; 2324 } 2325 2326 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2327 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2328 const SwitchInst& SI) { 2329 size_t numCmps = 0; 2330 2331 // Start with "simple" cases 2332 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2333 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2334 Cases.push_back(Case(SI.getSuccessorValue(i), 2335 SI.getSuccessorValue(i), 2336 SMBB)); 2337 } 2338 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2339 2340 // Merge case into clusters 2341 if (Cases.size() >= 2) 2342 // Must recompute end() each iteration because it may be 2343 // invalidated by erase if we hold on to it 2344 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2345 J != Cases.end(); ) { 2346 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2347 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2348 MachineBasicBlock* nextBB = J->BB; 2349 MachineBasicBlock* currentBB = I->BB; 2350 2351 // If the two neighboring cases go to the same destination, merge them 2352 // into a single case. 2353 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2354 I->High = J->High; 2355 J = Cases.erase(J); 2356 } else { 2357 I = J++; 2358 } 2359 } 2360 2361 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2362 if (I->Low != I->High) 2363 // A range counts double, since it requires two compares. 2364 ++numCmps; 2365 } 2366 2367 return numCmps; 2368 } 2369 2370 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2371 MachineBasicBlock *Last) { 2372 // Update JTCases. 2373 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2374 if (JTCases[i].first.HeaderBB == First) 2375 JTCases[i].first.HeaderBB = Last; 2376 2377 // Update BitTestCases. 2378 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2379 if (BitTestCases[i].Parent == First) 2380 BitTestCases[i].Parent = Last; 2381 } 2382 2383 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2384 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2385 2386 // Figure out which block is immediately after the current one. 2387 MachineBasicBlock *NextBlock = 0; 2388 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2389 2390 // If there is only the default destination, branch to it if it is not the 2391 // next basic block. Otherwise, just fall through. 2392 if (SI.getNumOperands() == 2) { 2393 // Update machine-CFG edges. 2394 2395 // If this is not a fall-through branch, emit the branch. 2396 SwitchMBB->addSuccessor(Default); 2397 if (Default != NextBlock) 2398 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2399 MVT::Other, getControlRoot(), 2400 DAG.getBasicBlock(Default))); 2401 2402 return; 2403 } 2404 2405 // If there are any non-default case statements, create a vector of Cases 2406 // representing each one, and sort the vector so that we can efficiently 2407 // create a binary search tree from them. 2408 CaseVector Cases; 2409 size_t numCmps = Clusterify(Cases, SI); 2410 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2411 << ". Total compares: " << numCmps << '\n'); 2412 numCmps = 0; 2413 2414 // Get the Value to be switched on and default basic blocks, which will be 2415 // inserted into CaseBlock records, representing basic blocks in the binary 2416 // search tree. 2417 const Value *SV = SI.getOperand(0); 2418 2419 // Push the initial CaseRec onto the worklist 2420 CaseRecVector WorkList; 2421 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2422 CaseRange(Cases.begin(),Cases.end()))); 2423 2424 while (!WorkList.empty()) { 2425 // Grab a record representing a case range to process off the worklist 2426 CaseRec CR = WorkList.back(); 2427 WorkList.pop_back(); 2428 2429 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2430 continue; 2431 2432 // If the range has few cases (two or less) emit a series of specific 2433 // tests. 2434 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2435 continue; 2436 2437 // If the switch has more than 5 blocks, and at least 40% dense, and the 2438 // target supports indirect branches, then emit a jump table rather than 2439 // lowering the switch to a binary tree of conditional branches. 2440 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2441 continue; 2442 2443 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2444 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2445 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2446 } 2447 } 2448 2449 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2450 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2451 2452 // Update machine-CFG edges with unique successors. 2453 SmallVector<BasicBlock*, 32> succs; 2454 succs.reserve(I.getNumSuccessors()); 2455 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2456 succs.push_back(I.getSuccessor(i)); 2457 array_pod_sort(succs.begin(), succs.end()); 2458 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2459 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2460 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2461 addSuccessorWithWeight(IndirectBrMBB, Succ); 2462 } 2463 2464 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2465 MVT::Other, getControlRoot(), 2466 getValue(I.getAddress()))); 2467 } 2468 2469 void SelectionDAGBuilder::visitFSub(const User &I) { 2470 // -0.0 - X --> fneg 2471 Type *Ty = I.getType(); 2472 if (isa<Constant>(I.getOperand(0)) && 2473 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2474 SDValue Op2 = getValue(I.getOperand(1)); 2475 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2476 Op2.getValueType(), Op2)); 2477 return; 2478 } 2479 2480 visitBinary(I, ISD::FSUB); 2481 } 2482 2483 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2484 SDValue Op1 = getValue(I.getOperand(0)); 2485 SDValue Op2 = getValue(I.getOperand(1)); 2486 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2487 Op1.getValueType(), Op1, Op2)); 2488 } 2489 2490 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2491 SDValue Op1 = getValue(I.getOperand(0)); 2492 SDValue Op2 = getValue(I.getOperand(1)); 2493 2494 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2495 2496 // Coerce the shift amount to the right type if we can. 2497 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2498 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2499 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2500 DebugLoc DL = getCurDebugLoc(); 2501 2502 // If the operand is smaller than the shift count type, promote it. 2503 if (ShiftSize > Op2Size) 2504 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2505 2506 // If the operand is larger than the shift count type but the shift 2507 // count type has enough bits to represent any shift value, truncate 2508 // it now. This is a common case and it exposes the truncate to 2509 // optimization early. 2510 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2511 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2512 // Otherwise we'll need to temporarily settle for some other convenient 2513 // type. Type legalization will make adjustments once the shiftee is split. 2514 else 2515 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2516 } 2517 2518 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2519 Op1.getValueType(), Op1, Op2)); 2520 } 2521 2522 void SelectionDAGBuilder::visitSDiv(const User &I) { 2523 SDValue Op1 = getValue(I.getOperand(0)); 2524 SDValue Op2 = getValue(I.getOperand(1)); 2525 2526 // Turn exact SDivs into multiplications. 2527 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2528 // exact bit. 2529 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2530 !isa<ConstantSDNode>(Op1) && 2531 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2532 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2533 else 2534 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2535 Op1, Op2)); 2536 } 2537 2538 void SelectionDAGBuilder::visitICmp(const User &I) { 2539 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2540 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2541 predicate = IC->getPredicate(); 2542 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2543 predicate = ICmpInst::Predicate(IC->getPredicate()); 2544 SDValue Op1 = getValue(I.getOperand(0)); 2545 SDValue Op2 = getValue(I.getOperand(1)); 2546 ISD::CondCode Opcode = getICmpCondCode(predicate); 2547 2548 EVT DestVT = TLI.getValueType(I.getType()); 2549 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2550 } 2551 2552 void SelectionDAGBuilder::visitFCmp(const User &I) { 2553 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2554 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2555 predicate = FC->getPredicate(); 2556 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2557 predicate = FCmpInst::Predicate(FC->getPredicate()); 2558 SDValue Op1 = getValue(I.getOperand(0)); 2559 SDValue Op2 = getValue(I.getOperand(1)); 2560 ISD::CondCode Condition = getFCmpCondCode(predicate); 2561 EVT DestVT = TLI.getValueType(I.getType()); 2562 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2563 } 2564 2565 void SelectionDAGBuilder::visitSelect(const User &I) { 2566 SmallVector<EVT, 4> ValueVTs; 2567 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2568 unsigned NumValues = ValueVTs.size(); 2569 if (NumValues == 0) return; 2570 2571 SmallVector<SDValue, 4> Values(NumValues); 2572 SDValue Cond = getValue(I.getOperand(0)); 2573 SDValue TrueVal = getValue(I.getOperand(1)); 2574 SDValue FalseVal = getValue(I.getOperand(2)); 2575 2576 for (unsigned i = 0; i != NumValues; ++i) 2577 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2578 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2579 Cond, 2580 SDValue(TrueVal.getNode(), 2581 TrueVal.getResNo() + i), 2582 SDValue(FalseVal.getNode(), 2583 FalseVal.getResNo() + i)); 2584 2585 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2586 DAG.getVTList(&ValueVTs[0], NumValues), 2587 &Values[0], NumValues)); 2588 } 2589 2590 void SelectionDAGBuilder::visitTrunc(const User &I) { 2591 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2592 SDValue N = getValue(I.getOperand(0)); 2593 EVT DestVT = TLI.getValueType(I.getType()); 2594 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2595 } 2596 2597 void SelectionDAGBuilder::visitZExt(const User &I) { 2598 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2599 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2600 SDValue N = getValue(I.getOperand(0)); 2601 EVT DestVT = TLI.getValueType(I.getType()); 2602 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2603 } 2604 2605 void SelectionDAGBuilder::visitSExt(const User &I) { 2606 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2607 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2608 SDValue N = getValue(I.getOperand(0)); 2609 EVT DestVT = TLI.getValueType(I.getType()); 2610 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2611 } 2612 2613 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2614 // FPTrunc is never a no-op cast, no need to check 2615 SDValue N = getValue(I.getOperand(0)); 2616 EVT DestVT = TLI.getValueType(I.getType()); 2617 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2618 DestVT, N, DAG.getIntPtrConstant(0))); 2619 } 2620 2621 void SelectionDAGBuilder::visitFPExt(const User &I){ 2622 // FPTrunc is never a no-op cast, no need to check 2623 SDValue N = getValue(I.getOperand(0)); 2624 EVT DestVT = TLI.getValueType(I.getType()); 2625 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2626 } 2627 2628 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2629 // FPToUI is never a no-op cast, no need to check 2630 SDValue N = getValue(I.getOperand(0)); 2631 EVT DestVT = TLI.getValueType(I.getType()); 2632 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2633 } 2634 2635 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2636 // FPToSI is never a no-op cast, no need to check 2637 SDValue N = getValue(I.getOperand(0)); 2638 EVT DestVT = TLI.getValueType(I.getType()); 2639 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2640 } 2641 2642 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2643 // UIToFP is never a no-op cast, no need to check 2644 SDValue N = getValue(I.getOperand(0)); 2645 EVT DestVT = TLI.getValueType(I.getType()); 2646 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2647 } 2648 2649 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2650 // SIToFP is never a no-op cast, no need to check 2651 SDValue N = getValue(I.getOperand(0)); 2652 EVT DestVT = TLI.getValueType(I.getType()); 2653 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2654 } 2655 2656 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2657 // What to do depends on the size of the integer and the size of the pointer. 2658 // We can either truncate, zero extend, or no-op, accordingly. 2659 SDValue N = getValue(I.getOperand(0)); 2660 EVT DestVT = TLI.getValueType(I.getType()); 2661 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2662 } 2663 2664 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2665 // What to do depends on the size of the integer and the size of the pointer. 2666 // We can either truncate, zero extend, or no-op, accordingly. 2667 SDValue N = getValue(I.getOperand(0)); 2668 EVT DestVT = TLI.getValueType(I.getType()); 2669 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2670 } 2671 2672 void SelectionDAGBuilder::visitBitCast(const User &I) { 2673 SDValue N = getValue(I.getOperand(0)); 2674 EVT DestVT = TLI.getValueType(I.getType()); 2675 2676 // BitCast assures us that source and destination are the same size so this is 2677 // either a BITCAST or a no-op. 2678 if (DestVT != N.getValueType()) 2679 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2680 DestVT, N)); // convert types. 2681 else 2682 setValue(&I, N); // noop cast. 2683 } 2684 2685 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2686 SDValue InVec = getValue(I.getOperand(0)); 2687 SDValue InVal = getValue(I.getOperand(1)); 2688 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2689 TLI.getPointerTy(), 2690 getValue(I.getOperand(2))); 2691 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2692 TLI.getValueType(I.getType()), 2693 InVec, InVal, InIdx)); 2694 } 2695 2696 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2697 SDValue InVec = getValue(I.getOperand(0)); 2698 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2699 TLI.getPointerTy(), 2700 getValue(I.getOperand(1))); 2701 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2702 TLI.getValueType(I.getType()), InVec, InIdx)); 2703 } 2704 2705 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2706 // from SIndx and increasing to the element length (undefs are allowed). 2707 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2708 unsigned MaskNumElts = Mask.size(); 2709 for (unsigned i = 0; i != MaskNumElts; ++i) 2710 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2711 return false; 2712 return true; 2713 } 2714 2715 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2716 SmallVector<int, 8> Mask; 2717 SDValue Src1 = getValue(I.getOperand(0)); 2718 SDValue Src2 = getValue(I.getOperand(1)); 2719 2720 // Convert the ConstantVector mask operand into an array of ints, with -1 2721 // representing undef values. 2722 SmallVector<Constant*, 8> MaskElts; 2723 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2724 unsigned MaskNumElts = MaskElts.size(); 2725 for (unsigned i = 0; i != MaskNumElts; ++i) { 2726 if (isa<UndefValue>(MaskElts[i])) 2727 Mask.push_back(-1); 2728 else 2729 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2730 } 2731 2732 EVT VT = TLI.getValueType(I.getType()); 2733 EVT SrcVT = Src1.getValueType(); 2734 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2735 2736 if (SrcNumElts == MaskNumElts) { 2737 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2738 &Mask[0])); 2739 return; 2740 } 2741 2742 // Normalize the shuffle vector since mask and vector length don't match. 2743 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2744 // Mask is longer than the source vectors and is a multiple of the source 2745 // vectors. We can use concatenate vector to make the mask and vectors 2746 // lengths match. 2747 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2748 // The shuffle is concatenating two vectors together. 2749 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2750 VT, Src1, Src2)); 2751 return; 2752 } 2753 2754 // Pad both vectors with undefs to make them the same length as the mask. 2755 unsigned NumConcat = MaskNumElts / SrcNumElts; 2756 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2757 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2758 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2759 2760 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2761 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2762 MOps1[0] = Src1; 2763 MOps2[0] = Src2; 2764 2765 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2766 getCurDebugLoc(), VT, 2767 &MOps1[0], NumConcat); 2768 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2769 getCurDebugLoc(), VT, 2770 &MOps2[0], NumConcat); 2771 2772 // Readjust mask for new input vector length. 2773 SmallVector<int, 8> MappedOps; 2774 for (unsigned i = 0; i != MaskNumElts; ++i) { 2775 int Idx = Mask[i]; 2776 if (Idx < (int)SrcNumElts) 2777 MappedOps.push_back(Idx); 2778 else 2779 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2780 } 2781 2782 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2783 &MappedOps[0])); 2784 return; 2785 } 2786 2787 if (SrcNumElts > MaskNumElts) { 2788 // Analyze the access pattern of the vector to see if we can extract 2789 // two subvectors and do the shuffle. The analysis is done by calculating 2790 // the range of elements the mask access on both vectors. 2791 int MinRange[2] = { static_cast<int>(SrcNumElts+1), 2792 static_cast<int>(SrcNumElts+1)}; 2793 int MaxRange[2] = {-1, -1}; 2794 2795 for (unsigned i = 0; i != MaskNumElts; ++i) { 2796 int Idx = Mask[i]; 2797 int Input = 0; 2798 if (Idx < 0) 2799 continue; 2800 2801 if (Idx >= (int)SrcNumElts) { 2802 Input = 1; 2803 Idx -= SrcNumElts; 2804 } 2805 if (Idx > MaxRange[Input]) 2806 MaxRange[Input] = Idx; 2807 if (Idx < MinRange[Input]) 2808 MinRange[Input] = Idx; 2809 } 2810 2811 // Check if the access is smaller than the vector size and can we find 2812 // a reasonable extract index. 2813 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2814 // Extract. 2815 int StartIdx[2]; // StartIdx to extract from 2816 for (int Input=0; Input < 2; ++Input) { 2817 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2818 RangeUse[Input] = 0; // Unused 2819 StartIdx[Input] = 0; 2820 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2821 // Fits within range but we should see if we can find a good 2822 // start index that is a multiple of the mask length. 2823 if (MaxRange[Input] < (int)MaskNumElts) { 2824 RangeUse[Input] = 1; // Extract from beginning of the vector 2825 StartIdx[Input] = 0; 2826 } else { 2827 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2828 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2829 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2830 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2831 } 2832 } 2833 } 2834 2835 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2836 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2837 return; 2838 } 2839 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2840 // Extract appropriate subvector and generate a vector shuffle 2841 for (int Input=0; Input < 2; ++Input) { 2842 SDValue &Src = Input == 0 ? Src1 : Src2; 2843 if (RangeUse[Input] == 0) 2844 Src = DAG.getUNDEF(VT); 2845 else 2846 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2847 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2848 } 2849 2850 // Calculate new mask. 2851 SmallVector<int, 8> MappedOps; 2852 for (unsigned i = 0; i != MaskNumElts; ++i) { 2853 int Idx = Mask[i]; 2854 if (Idx < 0) 2855 MappedOps.push_back(Idx); 2856 else if (Idx < (int)SrcNumElts) 2857 MappedOps.push_back(Idx - StartIdx[0]); 2858 else 2859 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2860 } 2861 2862 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2863 &MappedOps[0])); 2864 return; 2865 } 2866 } 2867 2868 // We can't use either concat vectors or extract subvectors so fall back to 2869 // replacing the shuffle with extract and build vector. 2870 // to insert and build vector. 2871 EVT EltVT = VT.getVectorElementType(); 2872 EVT PtrVT = TLI.getPointerTy(); 2873 SmallVector<SDValue,8> Ops; 2874 for (unsigned i = 0; i != MaskNumElts; ++i) { 2875 if (Mask[i] < 0) { 2876 Ops.push_back(DAG.getUNDEF(EltVT)); 2877 } else { 2878 int Idx = Mask[i]; 2879 SDValue Res; 2880 2881 if (Idx < (int)SrcNumElts) 2882 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2883 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2884 else 2885 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2886 EltVT, Src2, 2887 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2888 2889 Ops.push_back(Res); 2890 } 2891 } 2892 2893 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2894 VT, &Ops[0], Ops.size())); 2895 } 2896 2897 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2898 const Value *Op0 = I.getOperand(0); 2899 const Value *Op1 = I.getOperand(1); 2900 Type *AggTy = I.getType(); 2901 Type *ValTy = Op1->getType(); 2902 bool IntoUndef = isa<UndefValue>(Op0); 2903 bool FromUndef = isa<UndefValue>(Op1); 2904 2905 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2906 2907 SmallVector<EVT, 4> AggValueVTs; 2908 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2909 SmallVector<EVT, 4> ValValueVTs; 2910 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2911 2912 unsigned NumAggValues = AggValueVTs.size(); 2913 unsigned NumValValues = ValValueVTs.size(); 2914 SmallVector<SDValue, 4> Values(NumAggValues); 2915 2916 SDValue Agg = getValue(Op0); 2917 unsigned i = 0; 2918 // Copy the beginning value(s) from the original aggregate. 2919 for (; i != LinearIndex; ++i) 2920 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2921 SDValue(Agg.getNode(), Agg.getResNo() + i); 2922 // Copy values from the inserted value(s). 2923 if (NumValValues) { 2924 SDValue Val = getValue(Op1); 2925 for (; i != LinearIndex + NumValValues; ++i) 2926 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2927 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2928 } 2929 // Copy remaining value(s) from the original aggregate. 2930 for (; i != NumAggValues; ++i) 2931 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2932 SDValue(Agg.getNode(), Agg.getResNo() + i); 2933 2934 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2935 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2936 &Values[0], NumAggValues)); 2937 } 2938 2939 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2940 const Value *Op0 = I.getOperand(0); 2941 Type *AggTy = Op0->getType(); 2942 Type *ValTy = I.getType(); 2943 bool OutOfUndef = isa<UndefValue>(Op0); 2944 2945 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2946 2947 SmallVector<EVT, 4> ValValueVTs; 2948 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2949 2950 unsigned NumValValues = ValValueVTs.size(); 2951 2952 // Ignore a extractvalue that produces an empty object 2953 if (!NumValValues) { 2954 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2955 return; 2956 } 2957 2958 SmallVector<SDValue, 4> Values(NumValValues); 2959 2960 SDValue Agg = getValue(Op0); 2961 // Copy out the selected value(s). 2962 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2963 Values[i - LinearIndex] = 2964 OutOfUndef ? 2965 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2966 SDValue(Agg.getNode(), Agg.getResNo() + i); 2967 2968 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2969 DAG.getVTList(&ValValueVTs[0], NumValValues), 2970 &Values[0], NumValValues)); 2971 } 2972 2973 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2974 SDValue N = getValue(I.getOperand(0)); 2975 Type *Ty = I.getOperand(0)->getType(); 2976 2977 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2978 OI != E; ++OI) { 2979 const Value *Idx = *OI; 2980 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2981 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2982 if (Field) { 2983 // N = N + Offset 2984 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2985 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2986 DAG.getIntPtrConstant(Offset)); 2987 } 2988 2989 Ty = StTy->getElementType(Field); 2990 } else { 2991 Ty = cast<SequentialType>(Ty)->getElementType(); 2992 2993 // If this is a constant subscript, handle it quickly. 2994 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2995 if (CI->isZero()) continue; 2996 uint64_t Offs = 2997 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2998 SDValue OffsVal; 2999 EVT PTy = TLI.getPointerTy(); 3000 unsigned PtrBits = PTy.getSizeInBits(); 3001 if (PtrBits < 64) 3002 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3003 TLI.getPointerTy(), 3004 DAG.getConstant(Offs, MVT::i64)); 3005 else 3006 OffsVal = DAG.getIntPtrConstant(Offs); 3007 3008 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3009 OffsVal); 3010 continue; 3011 } 3012 3013 // N = N + Idx * ElementSize; 3014 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3015 TD->getTypeAllocSize(Ty)); 3016 SDValue IdxN = getValue(Idx); 3017 3018 // If the index is smaller or larger than intptr_t, truncate or extend 3019 // it. 3020 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3021 3022 // If this is a multiply by a power of two, turn it into a shl 3023 // immediately. This is a very common case. 3024 if (ElementSize != 1) { 3025 if (ElementSize.isPowerOf2()) { 3026 unsigned Amt = ElementSize.logBase2(); 3027 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3028 N.getValueType(), IdxN, 3029 DAG.getConstant(Amt, TLI.getPointerTy())); 3030 } else { 3031 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3032 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3033 N.getValueType(), IdxN, Scale); 3034 } 3035 } 3036 3037 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3038 N.getValueType(), N, IdxN); 3039 } 3040 } 3041 3042 setValue(&I, N); 3043 } 3044 3045 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3046 // If this is a fixed sized alloca in the entry block of the function, 3047 // allocate it statically on the stack. 3048 if (FuncInfo.StaticAllocaMap.count(&I)) 3049 return; // getValue will auto-populate this. 3050 3051 Type *Ty = I.getAllocatedType(); 3052 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3053 unsigned Align = 3054 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3055 I.getAlignment()); 3056 3057 SDValue AllocSize = getValue(I.getArraySize()); 3058 3059 EVT IntPtr = TLI.getPointerTy(); 3060 if (AllocSize.getValueType() != IntPtr) 3061 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3062 3063 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3064 AllocSize, 3065 DAG.getConstant(TySize, IntPtr)); 3066 3067 // Handle alignment. If the requested alignment is less than or equal to 3068 // the stack alignment, ignore it. If the size is greater than or equal to 3069 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3070 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3071 if (Align <= StackAlign) 3072 Align = 0; 3073 3074 // Round the size of the allocation up to the stack alignment size 3075 // by add SA-1 to the size. 3076 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3077 AllocSize.getValueType(), AllocSize, 3078 DAG.getIntPtrConstant(StackAlign-1)); 3079 3080 // Mask out the low bits for alignment purposes. 3081 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3082 AllocSize.getValueType(), AllocSize, 3083 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3084 3085 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3086 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3087 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3088 VTs, Ops, 3); 3089 setValue(&I, DSA); 3090 DAG.setRoot(DSA.getValue(1)); 3091 3092 // Inform the Frame Information that we have just allocated a variable-sized 3093 // object. 3094 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3095 } 3096 3097 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3098 const Value *SV = I.getOperand(0); 3099 SDValue Ptr = getValue(SV); 3100 3101 Type *Ty = I.getType(); 3102 3103 bool isVolatile = I.isVolatile(); 3104 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3105 unsigned Alignment = I.getAlignment(); 3106 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3107 3108 SmallVector<EVT, 4> ValueVTs; 3109 SmallVector<uint64_t, 4> Offsets; 3110 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3111 unsigned NumValues = ValueVTs.size(); 3112 if (NumValues == 0) 3113 return; 3114 3115 SDValue Root; 3116 bool ConstantMemory = false; 3117 if (I.isVolatile() || NumValues > MaxParallelChains) 3118 // Serialize volatile loads with other side effects. 3119 Root = getRoot(); 3120 else if (AA->pointsToConstantMemory( 3121 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3122 // Do not serialize (non-volatile) loads of constant memory with anything. 3123 Root = DAG.getEntryNode(); 3124 ConstantMemory = true; 3125 } else { 3126 // Do not serialize non-volatile loads against each other. 3127 Root = DAG.getRoot(); 3128 } 3129 3130 SmallVector<SDValue, 4> Values(NumValues); 3131 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3132 NumValues)); 3133 EVT PtrVT = Ptr.getValueType(); 3134 unsigned ChainI = 0; 3135 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3136 // Serializing loads here may result in excessive register pressure, and 3137 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3138 // could recover a bit by hoisting nodes upward in the chain by recognizing 3139 // they are side-effect free or do not alias. The optimizer should really 3140 // avoid this case by converting large object/array copies to llvm.memcpy 3141 // (MaxParallelChains should always remain as failsafe). 3142 if (ChainI == MaxParallelChains) { 3143 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3144 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3145 MVT::Other, &Chains[0], ChainI); 3146 Root = Chain; 3147 ChainI = 0; 3148 } 3149 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3150 PtrVT, Ptr, 3151 DAG.getConstant(Offsets[i], PtrVT)); 3152 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3153 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3154 isNonTemporal, Alignment, TBAAInfo); 3155 3156 Values[i] = L; 3157 Chains[ChainI] = L.getValue(1); 3158 } 3159 3160 if (!ConstantMemory) { 3161 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3162 MVT::Other, &Chains[0], ChainI); 3163 if (isVolatile) 3164 DAG.setRoot(Chain); 3165 else 3166 PendingLoads.push_back(Chain); 3167 } 3168 3169 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3170 DAG.getVTList(&ValueVTs[0], NumValues), 3171 &Values[0], NumValues)); 3172 } 3173 3174 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3175 const Value *SrcV = I.getOperand(0); 3176 const Value *PtrV = I.getOperand(1); 3177 3178 SmallVector<EVT, 4> ValueVTs; 3179 SmallVector<uint64_t, 4> Offsets; 3180 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3181 unsigned NumValues = ValueVTs.size(); 3182 if (NumValues == 0) 3183 return; 3184 3185 // Get the lowered operands. Note that we do this after 3186 // checking if NumResults is zero, because with zero results 3187 // the operands won't have values in the map. 3188 SDValue Src = getValue(SrcV); 3189 SDValue Ptr = getValue(PtrV); 3190 3191 SDValue Root = getRoot(); 3192 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3193 NumValues)); 3194 EVT PtrVT = Ptr.getValueType(); 3195 bool isVolatile = I.isVolatile(); 3196 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3197 unsigned Alignment = I.getAlignment(); 3198 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3199 3200 unsigned ChainI = 0; 3201 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3202 // See visitLoad comments. 3203 if (ChainI == MaxParallelChains) { 3204 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3205 MVT::Other, &Chains[0], ChainI); 3206 Root = Chain; 3207 ChainI = 0; 3208 } 3209 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3210 DAG.getConstant(Offsets[i], PtrVT)); 3211 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3212 SDValue(Src.getNode(), Src.getResNo() + i), 3213 Add, MachinePointerInfo(PtrV, Offsets[i]), 3214 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3215 Chains[ChainI] = St; 3216 } 3217 3218 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3219 MVT::Other, &Chains[0], ChainI); 3220 ++SDNodeOrder; 3221 AssignOrderingToNode(StoreNode.getNode()); 3222 DAG.setRoot(StoreNode); 3223 } 3224 3225 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3226 } 3227 3228 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3229 } 3230 3231 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3232 DebugLoc dl = getCurDebugLoc(); 3233 SDValue Ops[3]; 3234 Ops[0] = getRoot(); 3235 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3236 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3237 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3238 } 3239 3240 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3241 /// node. 3242 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3243 unsigned Intrinsic) { 3244 bool HasChain = !I.doesNotAccessMemory(); 3245 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3246 3247 // Build the operand list. 3248 SmallVector<SDValue, 8> Ops; 3249 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3250 if (OnlyLoad) { 3251 // We don't need to serialize loads against other loads. 3252 Ops.push_back(DAG.getRoot()); 3253 } else { 3254 Ops.push_back(getRoot()); 3255 } 3256 } 3257 3258 // Info is set by getTgtMemInstrinsic 3259 TargetLowering::IntrinsicInfo Info; 3260 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3261 3262 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3263 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3264 Info.opc == ISD::INTRINSIC_W_CHAIN) 3265 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3266 3267 // Add all operands of the call to the operand list. 3268 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3269 SDValue Op = getValue(I.getArgOperand(i)); 3270 assert(TLI.isTypeLegal(Op.getValueType()) && 3271 "Intrinsic uses a non-legal type?"); 3272 Ops.push_back(Op); 3273 } 3274 3275 SmallVector<EVT, 4> ValueVTs; 3276 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3277 #ifndef NDEBUG 3278 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3279 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3280 "Intrinsic uses a non-legal type?"); 3281 } 3282 #endif // NDEBUG 3283 3284 if (HasChain) 3285 ValueVTs.push_back(MVT::Other); 3286 3287 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3288 3289 // Create the node. 3290 SDValue Result; 3291 if (IsTgtIntrinsic) { 3292 // This is target intrinsic that touches memory 3293 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3294 VTs, &Ops[0], Ops.size(), 3295 Info.memVT, 3296 MachinePointerInfo(Info.ptrVal, Info.offset), 3297 Info.align, Info.vol, 3298 Info.readMem, Info.writeMem); 3299 } else if (!HasChain) { 3300 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3301 VTs, &Ops[0], Ops.size()); 3302 } else if (!I.getType()->isVoidTy()) { 3303 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3304 VTs, &Ops[0], Ops.size()); 3305 } else { 3306 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3307 VTs, &Ops[0], Ops.size()); 3308 } 3309 3310 if (HasChain) { 3311 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3312 if (OnlyLoad) 3313 PendingLoads.push_back(Chain); 3314 else 3315 DAG.setRoot(Chain); 3316 } 3317 3318 if (!I.getType()->isVoidTy()) { 3319 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3320 EVT VT = TLI.getValueType(PTy); 3321 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3322 } 3323 3324 setValue(&I, Result); 3325 } 3326 } 3327 3328 /// GetSignificand - Get the significand and build it into a floating-point 3329 /// number with exponent of 1: 3330 /// 3331 /// Op = (Op & 0x007fffff) | 0x3f800000; 3332 /// 3333 /// where Op is the hexidecimal representation of floating point value. 3334 static SDValue 3335 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3336 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3337 DAG.getConstant(0x007fffff, MVT::i32)); 3338 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3339 DAG.getConstant(0x3f800000, MVT::i32)); 3340 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3341 } 3342 3343 /// GetExponent - Get the exponent: 3344 /// 3345 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3346 /// 3347 /// where Op is the hexidecimal representation of floating point value. 3348 static SDValue 3349 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3350 DebugLoc dl) { 3351 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3352 DAG.getConstant(0x7f800000, MVT::i32)); 3353 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3354 DAG.getConstant(23, TLI.getPointerTy())); 3355 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3356 DAG.getConstant(127, MVT::i32)); 3357 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3358 } 3359 3360 /// getF32Constant - Get 32-bit floating point constant. 3361 static SDValue 3362 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3363 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3364 } 3365 3366 /// Inlined utility function to implement binary input atomic intrinsics for 3367 /// visitIntrinsicCall: I is a call instruction 3368 /// Op is the associated NodeType for I 3369 const char * 3370 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3371 ISD::NodeType Op) { 3372 SDValue Root = getRoot(); 3373 SDValue L = 3374 DAG.getAtomic(Op, getCurDebugLoc(), 3375 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3376 Root, 3377 getValue(I.getArgOperand(0)), 3378 getValue(I.getArgOperand(1)), 3379 I.getArgOperand(0)); 3380 setValue(&I, L); 3381 DAG.setRoot(L.getValue(1)); 3382 return 0; 3383 } 3384 3385 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3386 const char * 3387 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3388 SDValue Op1 = getValue(I.getArgOperand(0)); 3389 SDValue Op2 = getValue(I.getArgOperand(1)); 3390 3391 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3392 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3393 return 0; 3394 } 3395 3396 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3397 /// limited-precision mode. 3398 void 3399 SelectionDAGBuilder::visitExp(const CallInst &I) { 3400 SDValue result; 3401 DebugLoc dl = getCurDebugLoc(); 3402 3403 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3404 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3405 SDValue Op = getValue(I.getArgOperand(0)); 3406 3407 // Put the exponent in the right bit position for later addition to the 3408 // final result: 3409 // 3410 // #define LOG2OFe 1.4426950f 3411 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3412 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3413 getF32Constant(DAG, 0x3fb8aa3b)); 3414 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3415 3416 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3417 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3418 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3419 3420 // IntegerPartOfX <<= 23; 3421 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3422 DAG.getConstant(23, TLI.getPointerTy())); 3423 3424 if (LimitFloatPrecision <= 6) { 3425 // For floating-point precision of 6: 3426 // 3427 // TwoToFractionalPartOfX = 3428 // 0.997535578f + 3429 // (0.735607626f + 0.252464424f * x) * x; 3430 // 3431 // error 0.0144103317, which is 6 bits 3432 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3433 getF32Constant(DAG, 0x3e814304)); 3434 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3435 getF32Constant(DAG, 0x3f3c50c8)); 3436 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3437 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3438 getF32Constant(DAG, 0x3f7f5e7e)); 3439 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3440 3441 // Add the exponent into the result in integer domain. 3442 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3443 TwoToFracPartOfX, IntegerPartOfX); 3444 3445 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3446 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3447 // For floating-point precision of 12: 3448 // 3449 // TwoToFractionalPartOfX = 3450 // 0.999892986f + 3451 // (0.696457318f + 3452 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3453 // 3454 // 0.000107046256 error, which is 13 to 14 bits 3455 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3456 getF32Constant(DAG, 0x3da235e3)); 3457 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3458 getF32Constant(DAG, 0x3e65b8f3)); 3459 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3460 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3461 getF32Constant(DAG, 0x3f324b07)); 3462 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3463 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3464 getF32Constant(DAG, 0x3f7ff8fd)); 3465 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3466 3467 // Add the exponent into the result in integer domain. 3468 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3469 TwoToFracPartOfX, IntegerPartOfX); 3470 3471 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3472 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3473 // For floating-point precision of 18: 3474 // 3475 // TwoToFractionalPartOfX = 3476 // 0.999999982f + 3477 // (0.693148872f + 3478 // (0.240227044f + 3479 // (0.554906021e-1f + 3480 // (0.961591928e-2f + 3481 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3482 // 3483 // error 2.47208000*10^(-7), which is better than 18 bits 3484 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3485 getF32Constant(DAG, 0x3924b03e)); 3486 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3487 getF32Constant(DAG, 0x3ab24b87)); 3488 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3489 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3490 getF32Constant(DAG, 0x3c1d8c17)); 3491 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3492 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3493 getF32Constant(DAG, 0x3d634a1d)); 3494 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3495 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3496 getF32Constant(DAG, 0x3e75fe14)); 3497 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3498 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3499 getF32Constant(DAG, 0x3f317234)); 3500 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3501 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3502 getF32Constant(DAG, 0x3f800000)); 3503 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3504 MVT::i32, t13); 3505 3506 // Add the exponent into the result in integer domain. 3507 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3508 TwoToFracPartOfX, IntegerPartOfX); 3509 3510 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3511 } 3512 } else { 3513 // No special expansion. 3514 result = DAG.getNode(ISD::FEXP, dl, 3515 getValue(I.getArgOperand(0)).getValueType(), 3516 getValue(I.getArgOperand(0))); 3517 } 3518 3519 setValue(&I, result); 3520 } 3521 3522 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3523 /// limited-precision mode. 3524 void 3525 SelectionDAGBuilder::visitLog(const CallInst &I) { 3526 SDValue result; 3527 DebugLoc dl = getCurDebugLoc(); 3528 3529 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3530 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3531 SDValue Op = getValue(I.getArgOperand(0)); 3532 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3533 3534 // Scale the exponent by log(2) [0.69314718f]. 3535 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3536 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3537 getF32Constant(DAG, 0x3f317218)); 3538 3539 // Get the significand and build it into a floating-point number with 3540 // exponent of 1. 3541 SDValue X = GetSignificand(DAG, Op1, dl); 3542 3543 if (LimitFloatPrecision <= 6) { 3544 // For floating-point precision of 6: 3545 // 3546 // LogofMantissa = 3547 // -1.1609546f + 3548 // (1.4034025f - 0.23903021f * x) * x; 3549 // 3550 // error 0.0034276066, which is better than 8 bits 3551 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3552 getF32Constant(DAG, 0xbe74c456)); 3553 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3554 getF32Constant(DAG, 0x3fb3a2b1)); 3555 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3556 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3557 getF32Constant(DAG, 0x3f949a29)); 3558 3559 result = DAG.getNode(ISD::FADD, dl, 3560 MVT::f32, LogOfExponent, LogOfMantissa); 3561 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3562 // For floating-point precision of 12: 3563 // 3564 // LogOfMantissa = 3565 // -1.7417939f + 3566 // (2.8212026f + 3567 // (-1.4699568f + 3568 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3569 // 3570 // error 0.000061011436, which is 14 bits 3571 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3572 getF32Constant(DAG, 0xbd67b6d6)); 3573 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3574 getF32Constant(DAG, 0x3ee4f4b8)); 3575 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3576 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3577 getF32Constant(DAG, 0x3fbc278b)); 3578 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3579 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3580 getF32Constant(DAG, 0x40348e95)); 3581 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3582 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3583 getF32Constant(DAG, 0x3fdef31a)); 3584 3585 result = DAG.getNode(ISD::FADD, dl, 3586 MVT::f32, LogOfExponent, LogOfMantissa); 3587 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3588 // For floating-point precision of 18: 3589 // 3590 // LogOfMantissa = 3591 // -2.1072184f + 3592 // (4.2372794f + 3593 // (-3.7029485f + 3594 // (2.2781945f + 3595 // (-0.87823314f + 3596 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3597 // 3598 // error 0.0000023660568, which is better than 18 bits 3599 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3600 getF32Constant(DAG, 0xbc91e5ac)); 3601 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3602 getF32Constant(DAG, 0x3e4350aa)); 3603 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3604 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3605 getF32Constant(DAG, 0x3f60d3e3)); 3606 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3607 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3608 getF32Constant(DAG, 0x4011cdf0)); 3609 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3610 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3611 getF32Constant(DAG, 0x406cfd1c)); 3612 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3613 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3614 getF32Constant(DAG, 0x408797cb)); 3615 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3616 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3617 getF32Constant(DAG, 0x4006dcab)); 3618 3619 result = DAG.getNode(ISD::FADD, dl, 3620 MVT::f32, LogOfExponent, LogOfMantissa); 3621 } 3622 } else { 3623 // No special expansion. 3624 result = DAG.getNode(ISD::FLOG, dl, 3625 getValue(I.getArgOperand(0)).getValueType(), 3626 getValue(I.getArgOperand(0))); 3627 } 3628 3629 setValue(&I, result); 3630 } 3631 3632 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3633 /// limited-precision mode. 3634 void 3635 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3636 SDValue result; 3637 DebugLoc dl = getCurDebugLoc(); 3638 3639 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3640 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3641 SDValue Op = getValue(I.getArgOperand(0)); 3642 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3643 3644 // Get the exponent. 3645 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3646 3647 // Get the significand and build it into a floating-point number with 3648 // exponent of 1. 3649 SDValue X = GetSignificand(DAG, Op1, dl); 3650 3651 // Different possible minimax approximations of significand in 3652 // floating-point for various degrees of accuracy over [1,2]. 3653 if (LimitFloatPrecision <= 6) { 3654 // For floating-point precision of 6: 3655 // 3656 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3657 // 3658 // error 0.0049451742, which is more than 7 bits 3659 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3660 getF32Constant(DAG, 0xbeb08fe0)); 3661 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3662 getF32Constant(DAG, 0x40019463)); 3663 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3664 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3665 getF32Constant(DAG, 0x3fd6633d)); 3666 3667 result = DAG.getNode(ISD::FADD, dl, 3668 MVT::f32, LogOfExponent, Log2ofMantissa); 3669 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3670 // For floating-point precision of 12: 3671 // 3672 // Log2ofMantissa = 3673 // -2.51285454f + 3674 // (4.07009056f + 3675 // (-2.12067489f + 3676 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3677 // 3678 // error 0.0000876136000, which is better than 13 bits 3679 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3680 getF32Constant(DAG, 0xbda7262e)); 3681 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3682 getF32Constant(DAG, 0x3f25280b)); 3683 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3684 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3685 getF32Constant(DAG, 0x4007b923)); 3686 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3687 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3688 getF32Constant(DAG, 0x40823e2f)); 3689 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3690 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3691 getF32Constant(DAG, 0x4020d29c)); 3692 3693 result = DAG.getNode(ISD::FADD, dl, 3694 MVT::f32, LogOfExponent, Log2ofMantissa); 3695 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3696 // For floating-point precision of 18: 3697 // 3698 // Log2ofMantissa = 3699 // -3.0400495f + 3700 // (6.1129976f + 3701 // (-5.3420409f + 3702 // (3.2865683f + 3703 // (-1.2669343f + 3704 // (0.27515199f - 3705 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3706 // 3707 // error 0.0000018516, which is better than 18 bits 3708 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3709 getF32Constant(DAG, 0xbcd2769e)); 3710 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3711 getF32Constant(DAG, 0x3e8ce0b9)); 3712 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3713 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3714 getF32Constant(DAG, 0x3fa22ae7)); 3715 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3716 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3717 getF32Constant(DAG, 0x40525723)); 3718 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3719 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3720 getF32Constant(DAG, 0x40aaf200)); 3721 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3722 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3723 getF32Constant(DAG, 0x40c39dad)); 3724 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3725 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3726 getF32Constant(DAG, 0x4042902c)); 3727 3728 result = DAG.getNode(ISD::FADD, dl, 3729 MVT::f32, LogOfExponent, Log2ofMantissa); 3730 } 3731 } else { 3732 // No special expansion. 3733 result = DAG.getNode(ISD::FLOG2, dl, 3734 getValue(I.getArgOperand(0)).getValueType(), 3735 getValue(I.getArgOperand(0))); 3736 } 3737 3738 setValue(&I, result); 3739 } 3740 3741 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3742 /// limited-precision mode. 3743 void 3744 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3745 SDValue result; 3746 DebugLoc dl = getCurDebugLoc(); 3747 3748 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3749 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3750 SDValue Op = getValue(I.getArgOperand(0)); 3751 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3752 3753 // Scale the exponent by log10(2) [0.30102999f]. 3754 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3755 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3756 getF32Constant(DAG, 0x3e9a209a)); 3757 3758 // Get the significand and build it into a floating-point number with 3759 // exponent of 1. 3760 SDValue X = GetSignificand(DAG, Op1, dl); 3761 3762 if (LimitFloatPrecision <= 6) { 3763 // For floating-point precision of 6: 3764 // 3765 // Log10ofMantissa = 3766 // -0.50419619f + 3767 // (0.60948995f - 0.10380950f * x) * x; 3768 // 3769 // error 0.0014886165, which is 6 bits 3770 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3771 getF32Constant(DAG, 0xbdd49a13)); 3772 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3773 getF32Constant(DAG, 0x3f1c0789)); 3774 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3775 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3776 getF32Constant(DAG, 0x3f011300)); 3777 3778 result = DAG.getNode(ISD::FADD, dl, 3779 MVT::f32, LogOfExponent, Log10ofMantissa); 3780 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3781 // For floating-point precision of 12: 3782 // 3783 // Log10ofMantissa = 3784 // -0.64831180f + 3785 // (0.91751397f + 3786 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3787 // 3788 // error 0.00019228036, which is better than 12 bits 3789 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3790 getF32Constant(DAG, 0x3d431f31)); 3791 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3792 getF32Constant(DAG, 0x3ea21fb2)); 3793 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3794 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3795 getF32Constant(DAG, 0x3f6ae232)); 3796 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3797 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3798 getF32Constant(DAG, 0x3f25f7c3)); 3799 3800 result = DAG.getNode(ISD::FADD, dl, 3801 MVT::f32, LogOfExponent, Log10ofMantissa); 3802 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3803 // For floating-point precision of 18: 3804 // 3805 // Log10ofMantissa = 3806 // -0.84299375f + 3807 // (1.5327582f + 3808 // (-1.0688956f + 3809 // (0.49102474f + 3810 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3811 // 3812 // error 0.0000037995730, which is better than 18 bits 3813 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3814 getF32Constant(DAG, 0x3c5d51ce)); 3815 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3816 getF32Constant(DAG, 0x3e00685a)); 3817 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3818 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3819 getF32Constant(DAG, 0x3efb6798)); 3820 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3821 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3822 getF32Constant(DAG, 0x3f88d192)); 3823 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3824 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3825 getF32Constant(DAG, 0x3fc4316c)); 3826 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3827 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3828 getF32Constant(DAG, 0x3f57ce70)); 3829 3830 result = DAG.getNode(ISD::FADD, dl, 3831 MVT::f32, LogOfExponent, Log10ofMantissa); 3832 } 3833 } else { 3834 // No special expansion. 3835 result = DAG.getNode(ISD::FLOG10, dl, 3836 getValue(I.getArgOperand(0)).getValueType(), 3837 getValue(I.getArgOperand(0))); 3838 } 3839 3840 setValue(&I, result); 3841 } 3842 3843 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3844 /// limited-precision mode. 3845 void 3846 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3847 SDValue result; 3848 DebugLoc dl = getCurDebugLoc(); 3849 3850 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3851 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3852 SDValue Op = getValue(I.getArgOperand(0)); 3853 3854 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3855 3856 // FractionalPartOfX = x - (float)IntegerPartOfX; 3857 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3858 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3859 3860 // IntegerPartOfX <<= 23; 3861 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3862 DAG.getConstant(23, TLI.getPointerTy())); 3863 3864 if (LimitFloatPrecision <= 6) { 3865 // For floating-point precision of 6: 3866 // 3867 // TwoToFractionalPartOfX = 3868 // 0.997535578f + 3869 // (0.735607626f + 0.252464424f * x) * x; 3870 // 3871 // error 0.0144103317, which is 6 bits 3872 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3873 getF32Constant(DAG, 0x3e814304)); 3874 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3875 getF32Constant(DAG, 0x3f3c50c8)); 3876 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3877 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3878 getF32Constant(DAG, 0x3f7f5e7e)); 3879 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3880 SDValue TwoToFractionalPartOfX = 3881 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3882 3883 result = DAG.getNode(ISD::BITCAST, dl, 3884 MVT::f32, TwoToFractionalPartOfX); 3885 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3886 // For floating-point precision of 12: 3887 // 3888 // TwoToFractionalPartOfX = 3889 // 0.999892986f + 3890 // (0.696457318f + 3891 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3892 // 3893 // error 0.000107046256, which is 13 to 14 bits 3894 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3895 getF32Constant(DAG, 0x3da235e3)); 3896 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3897 getF32Constant(DAG, 0x3e65b8f3)); 3898 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3899 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3900 getF32Constant(DAG, 0x3f324b07)); 3901 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3902 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3903 getF32Constant(DAG, 0x3f7ff8fd)); 3904 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3905 SDValue TwoToFractionalPartOfX = 3906 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3907 3908 result = DAG.getNode(ISD::BITCAST, dl, 3909 MVT::f32, TwoToFractionalPartOfX); 3910 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3911 // For floating-point precision of 18: 3912 // 3913 // TwoToFractionalPartOfX = 3914 // 0.999999982f + 3915 // (0.693148872f + 3916 // (0.240227044f + 3917 // (0.554906021e-1f + 3918 // (0.961591928e-2f + 3919 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3920 // error 2.47208000*10^(-7), which is better than 18 bits 3921 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3922 getF32Constant(DAG, 0x3924b03e)); 3923 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3924 getF32Constant(DAG, 0x3ab24b87)); 3925 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3926 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3927 getF32Constant(DAG, 0x3c1d8c17)); 3928 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3929 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3930 getF32Constant(DAG, 0x3d634a1d)); 3931 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3932 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3933 getF32Constant(DAG, 0x3e75fe14)); 3934 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3935 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3936 getF32Constant(DAG, 0x3f317234)); 3937 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3938 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3939 getF32Constant(DAG, 0x3f800000)); 3940 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3941 SDValue TwoToFractionalPartOfX = 3942 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3943 3944 result = DAG.getNode(ISD::BITCAST, dl, 3945 MVT::f32, TwoToFractionalPartOfX); 3946 } 3947 } else { 3948 // No special expansion. 3949 result = DAG.getNode(ISD::FEXP2, dl, 3950 getValue(I.getArgOperand(0)).getValueType(), 3951 getValue(I.getArgOperand(0))); 3952 } 3953 3954 setValue(&I, result); 3955 } 3956 3957 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3958 /// limited-precision mode with x == 10.0f. 3959 void 3960 SelectionDAGBuilder::visitPow(const CallInst &I) { 3961 SDValue result; 3962 const Value *Val = I.getArgOperand(0); 3963 DebugLoc dl = getCurDebugLoc(); 3964 bool IsExp10 = false; 3965 3966 if (getValue(Val).getValueType() == MVT::f32 && 3967 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3968 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3969 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3970 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3971 APFloat Ten(10.0f); 3972 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3973 } 3974 } 3975 } 3976 3977 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3978 SDValue Op = getValue(I.getArgOperand(1)); 3979 3980 // Put the exponent in the right bit position for later addition to the 3981 // final result: 3982 // 3983 // #define LOG2OF10 3.3219281f 3984 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3985 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3986 getF32Constant(DAG, 0x40549a78)); 3987 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3988 3989 // FractionalPartOfX = x - (float)IntegerPartOfX; 3990 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3991 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3992 3993 // IntegerPartOfX <<= 23; 3994 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3995 DAG.getConstant(23, TLI.getPointerTy())); 3996 3997 if (LimitFloatPrecision <= 6) { 3998 // For floating-point precision of 6: 3999 // 4000 // twoToFractionalPartOfX = 4001 // 0.997535578f + 4002 // (0.735607626f + 0.252464424f * x) * x; 4003 // 4004 // error 0.0144103317, which is 6 bits 4005 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4006 getF32Constant(DAG, 0x3e814304)); 4007 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4008 getF32Constant(DAG, 0x3f3c50c8)); 4009 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4010 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4011 getF32Constant(DAG, 0x3f7f5e7e)); 4012 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4013 SDValue TwoToFractionalPartOfX = 4014 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4015 4016 result = DAG.getNode(ISD::BITCAST, dl, 4017 MVT::f32, TwoToFractionalPartOfX); 4018 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4019 // For floating-point precision of 12: 4020 // 4021 // TwoToFractionalPartOfX = 4022 // 0.999892986f + 4023 // (0.696457318f + 4024 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4025 // 4026 // error 0.000107046256, which is 13 to 14 bits 4027 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4028 getF32Constant(DAG, 0x3da235e3)); 4029 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4030 getF32Constant(DAG, 0x3e65b8f3)); 4031 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4032 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4033 getF32Constant(DAG, 0x3f324b07)); 4034 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4035 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4036 getF32Constant(DAG, 0x3f7ff8fd)); 4037 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4038 SDValue TwoToFractionalPartOfX = 4039 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4040 4041 result = DAG.getNode(ISD::BITCAST, dl, 4042 MVT::f32, TwoToFractionalPartOfX); 4043 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4044 // For floating-point precision of 18: 4045 // 4046 // TwoToFractionalPartOfX = 4047 // 0.999999982f + 4048 // (0.693148872f + 4049 // (0.240227044f + 4050 // (0.554906021e-1f + 4051 // (0.961591928e-2f + 4052 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4053 // error 2.47208000*10^(-7), which is better than 18 bits 4054 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4055 getF32Constant(DAG, 0x3924b03e)); 4056 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4057 getF32Constant(DAG, 0x3ab24b87)); 4058 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4059 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4060 getF32Constant(DAG, 0x3c1d8c17)); 4061 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4062 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4063 getF32Constant(DAG, 0x3d634a1d)); 4064 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4065 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4066 getF32Constant(DAG, 0x3e75fe14)); 4067 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4068 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4069 getF32Constant(DAG, 0x3f317234)); 4070 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4071 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4072 getF32Constant(DAG, 0x3f800000)); 4073 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4074 SDValue TwoToFractionalPartOfX = 4075 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4076 4077 result = DAG.getNode(ISD::BITCAST, dl, 4078 MVT::f32, TwoToFractionalPartOfX); 4079 } 4080 } else { 4081 // No special expansion. 4082 result = DAG.getNode(ISD::FPOW, dl, 4083 getValue(I.getArgOperand(0)).getValueType(), 4084 getValue(I.getArgOperand(0)), 4085 getValue(I.getArgOperand(1))); 4086 } 4087 4088 setValue(&I, result); 4089 } 4090 4091 4092 /// ExpandPowI - Expand a llvm.powi intrinsic. 4093 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4094 SelectionDAG &DAG) { 4095 // If RHS is a constant, we can expand this out to a multiplication tree, 4096 // otherwise we end up lowering to a call to __powidf2 (for example). When 4097 // optimizing for size, we only want to do this if the expansion would produce 4098 // a small number of multiplies, otherwise we do the full expansion. 4099 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4100 // Get the exponent as a positive value. 4101 unsigned Val = RHSC->getSExtValue(); 4102 if ((int)Val < 0) Val = -Val; 4103 4104 // powi(x, 0) -> 1.0 4105 if (Val == 0) 4106 return DAG.getConstantFP(1.0, LHS.getValueType()); 4107 4108 const Function *F = DAG.getMachineFunction().getFunction(); 4109 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4110 // If optimizing for size, don't insert too many multiplies. This 4111 // inserts up to 5 multiplies. 4112 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4113 // We use the simple binary decomposition method to generate the multiply 4114 // sequence. There are more optimal ways to do this (for example, 4115 // powi(x,15) generates one more multiply than it should), but this has 4116 // the benefit of being both really simple and much better than a libcall. 4117 SDValue Res; // Logically starts equal to 1.0 4118 SDValue CurSquare = LHS; 4119 while (Val) { 4120 if (Val & 1) { 4121 if (Res.getNode()) 4122 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4123 else 4124 Res = CurSquare; // 1.0*CurSquare. 4125 } 4126 4127 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4128 CurSquare, CurSquare); 4129 Val >>= 1; 4130 } 4131 4132 // If the original was negative, invert the result, producing 1/(x*x*x). 4133 if (RHSC->getSExtValue() < 0) 4134 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4135 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4136 return Res; 4137 } 4138 } 4139 4140 // Otherwise, expand to a libcall. 4141 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4142 } 4143 4144 // getTruncatedArgReg - Find underlying register used for an truncated 4145 // argument. 4146 static unsigned getTruncatedArgReg(const SDValue &N) { 4147 if (N.getOpcode() != ISD::TRUNCATE) 4148 return 0; 4149 4150 const SDValue &Ext = N.getOperand(0); 4151 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4152 const SDValue &CFR = Ext.getOperand(0); 4153 if (CFR.getOpcode() == ISD::CopyFromReg) 4154 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4155 else 4156 if (CFR.getOpcode() == ISD::TRUNCATE) 4157 return getTruncatedArgReg(CFR); 4158 } 4159 return 0; 4160 } 4161 4162 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4163 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4164 /// At the end of instruction selection, they will be inserted to the entry BB. 4165 bool 4166 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4167 int64_t Offset, 4168 const SDValue &N) { 4169 const Argument *Arg = dyn_cast<Argument>(V); 4170 if (!Arg) 4171 return false; 4172 4173 MachineFunction &MF = DAG.getMachineFunction(); 4174 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4175 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4176 4177 // Ignore inlined function arguments here. 4178 DIVariable DV(Variable); 4179 if (DV.isInlinedFnArgument(MF.getFunction())) 4180 return false; 4181 4182 unsigned Reg = 0; 4183 if (Arg->hasByValAttr()) { 4184 // Byval arguments' frame index is recorded during argument lowering. 4185 // Use this info directly. 4186 Reg = TRI->getFrameRegister(MF); 4187 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 4188 // If byval argument ofset is not recorded then ignore this. 4189 if (!Offset) 4190 Reg = 0; 4191 } 4192 4193 if (N.getNode()) { 4194 if (N.getOpcode() == ISD::CopyFromReg) 4195 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4196 else 4197 Reg = getTruncatedArgReg(N); 4198 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4199 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4200 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4201 if (PR) 4202 Reg = PR; 4203 } 4204 } 4205 4206 if (!Reg) { 4207 // Check if ValueMap has reg number. 4208 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4209 if (VMI != FuncInfo.ValueMap.end()) 4210 Reg = VMI->second; 4211 } 4212 4213 if (!Reg && N.getNode()) { 4214 // Check if frame index is available. 4215 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4216 if (FrameIndexSDNode *FINode = 4217 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4218 Reg = TRI->getFrameRegister(MF); 4219 Offset = FINode->getIndex(); 4220 } 4221 } 4222 4223 if (!Reg) 4224 return false; 4225 4226 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4227 TII->get(TargetOpcode::DBG_VALUE)) 4228 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4229 FuncInfo.ArgDbgValues.push_back(&*MIB); 4230 return true; 4231 } 4232 4233 // VisualStudio defines setjmp as _setjmp 4234 #if defined(_MSC_VER) && defined(setjmp) && \ 4235 !defined(setjmp_undefined_for_msvc) 4236 # pragma push_macro("setjmp") 4237 # undef setjmp 4238 # define setjmp_undefined_for_msvc 4239 #endif 4240 4241 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4242 /// we want to emit this as a call to a named external function, return the name 4243 /// otherwise lower it and return null. 4244 const char * 4245 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4246 DebugLoc dl = getCurDebugLoc(); 4247 SDValue Res; 4248 4249 switch (Intrinsic) { 4250 default: 4251 // By default, turn this into a target intrinsic node. 4252 visitTargetIntrinsic(I, Intrinsic); 4253 return 0; 4254 case Intrinsic::vastart: visitVAStart(I); return 0; 4255 case Intrinsic::vaend: visitVAEnd(I); return 0; 4256 case Intrinsic::vacopy: visitVACopy(I); return 0; 4257 case Intrinsic::returnaddress: 4258 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4259 getValue(I.getArgOperand(0)))); 4260 return 0; 4261 case Intrinsic::frameaddress: 4262 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4263 getValue(I.getArgOperand(0)))); 4264 return 0; 4265 case Intrinsic::setjmp: 4266 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4267 case Intrinsic::longjmp: 4268 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4269 case Intrinsic::memcpy: { 4270 // Assert for address < 256 since we support only user defined address 4271 // spaces. 4272 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4273 < 256 && 4274 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4275 < 256 && 4276 "Unknown address space"); 4277 SDValue Op1 = getValue(I.getArgOperand(0)); 4278 SDValue Op2 = getValue(I.getArgOperand(1)); 4279 SDValue Op3 = getValue(I.getArgOperand(2)); 4280 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4281 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4282 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4283 MachinePointerInfo(I.getArgOperand(0)), 4284 MachinePointerInfo(I.getArgOperand(1)))); 4285 return 0; 4286 } 4287 case Intrinsic::memset: { 4288 // Assert for address < 256 since we support only user defined address 4289 // spaces. 4290 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4291 < 256 && 4292 "Unknown address space"); 4293 SDValue Op1 = getValue(I.getArgOperand(0)); 4294 SDValue Op2 = getValue(I.getArgOperand(1)); 4295 SDValue Op3 = getValue(I.getArgOperand(2)); 4296 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4297 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4298 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4299 MachinePointerInfo(I.getArgOperand(0)))); 4300 return 0; 4301 } 4302 case Intrinsic::memmove: { 4303 // Assert for address < 256 since we support only user defined address 4304 // spaces. 4305 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4306 < 256 && 4307 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4308 < 256 && 4309 "Unknown address space"); 4310 SDValue Op1 = getValue(I.getArgOperand(0)); 4311 SDValue Op2 = getValue(I.getArgOperand(1)); 4312 SDValue Op3 = getValue(I.getArgOperand(2)); 4313 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4314 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4315 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4316 MachinePointerInfo(I.getArgOperand(0)), 4317 MachinePointerInfo(I.getArgOperand(1)))); 4318 return 0; 4319 } 4320 case Intrinsic::dbg_declare: { 4321 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4322 MDNode *Variable = DI.getVariable(); 4323 const Value *Address = DI.getAddress(); 4324 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4325 return 0; 4326 4327 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4328 // but do not always have a corresponding SDNode built. The SDNodeOrder 4329 // absolute, but not relative, values are different depending on whether 4330 // debug info exists. 4331 ++SDNodeOrder; 4332 4333 // Check if address has undef value. 4334 if (isa<UndefValue>(Address) || 4335 (Address->use_empty() && !isa<Argument>(Address))) { 4336 DEBUG(dbgs() << "Dropping debug info for " << DI); 4337 return 0; 4338 } 4339 4340 SDValue &N = NodeMap[Address]; 4341 if (!N.getNode() && isa<Argument>(Address)) 4342 // Check unused arguments map. 4343 N = UnusedArgNodeMap[Address]; 4344 SDDbgValue *SDV; 4345 if (N.getNode()) { 4346 // Parameters are handled specially. 4347 bool isParameter = 4348 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4349 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4350 Address = BCI->getOperand(0); 4351 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4352 4353 if (isParameter && !AI) { 4354 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4355 if (FINode) 4356 // Byval parameter. We have a frame index at this point. 4357 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4358 0, dl, SDNodeOrder); 4359 else { 4360 // Address is an argument, so try to emit its dbg value using 4361 // virtual register info from the FuncInfo.ValueMap. 4362 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4363 return 0; 4364 } 4365 } else if (AI) 4366 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4367 0, dl, SDNodeOrder); 4368 else { 4369 // Can't do anything with other non-AI cases yet. 4370 DEBUG(dbgs() << "Dropping debug info for " << DI); 4371 return 0; 4372 } 4373 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4374 } else { 4375 // If Address is an argument then try to emit its dbg value using 4376 // virtual register info from the FuncInfo.ValueMap. 4377 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4378 // If variable is pinned by a alloca in dominating bb then 4379 // use StaticAllocaMap. 4380 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4381 if (AI->getParent() != DI.getParent()) { 4382 DenseMap<const AllocaInst*, int>::iterator SI = 4383 FuncInfo.StaticAllocaMap.find(AI); 4384 if (SI != FuncInfo.StaticAllocaMap.end()) { 4385 SDV = DAG.getDbgValue(Variable, SI->second, 4386 0, dl, SDNodeOrder); 4387 DAG.AddDbgValue(SDV, 0, false); 4388 return 0; 4389 } 4390 } 4391 } 4392 DEBUG(dbgs() << "Dropping debug info for " << DI); 4393 } 4394 } 4395 return 0; 4396 } 4397 case Intrinsic::dbg_value: { 4398 const DbgValueInst &DI = cast<DbgValueInst>(I); 4399 if (!DIVariable(DI.getVariable()).Verify()) 4400 return 0; 4401 4402 MDNode *Variable = DI.getVariable(); 4403 uint64_t Offset = DI.getOffset(); 4404 const Value *V = DI.getValue(); 4405 if (!V) 4406 return 0; 4407 4408 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4409 // but do not always have a corresponding SDNode built. The SDNodeOrder 4410 // absolute, but not relative, values are different depending on whether 4411 // debug info exists. 4412 ++SDNodeOrder; 4413 SDDbgValue *SDV; 4414 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4415 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4416 DAG.AddDbgValue(SDV, 0, false); 4417 } else { 4418 // Do not use getValue() in here; we don't want to generate code at 4419 // this point if it hasn't been done yet. 4420 SDValue N = NodeMap[V]; 4421 if (!N.getNode() && isa<Argument>(V)) 4422 // Check unused arguments map. 4423 N = UnusedArgNodeMap[V]; 4424 if (N.getNode()) { 4425 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4426 SDV = DAG.getDbgValue(Variable, N.getNode(), 4427 N.getResNo(), Offset, dl, SDNodeOrder); 4428 DAG.AddDbgValue(SDV, N.getNode(), false); 4429 } 4430 } else if (!V->use_empty() ) { 4431 // Do not call getValue(V) yet, as we don't want to generate code. 4432 // Remember it for later. 4433 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4434 DanglingDebugInfoMap[V] = DDI; 4435 } else { 4436 // We may expand this to cover more cases. One case where we have no 4437 // data available is an unreferenced parameter. 4438 DEBUG(dbgs() << "Dropping debug info for " << DI); 4439 } 4440 } 4441 4442 // Build a debug info table entry. 4443 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4444 V = BCI->getOperand(0); 4445 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4446 // Don't handle byval struct arguments or VLAs, for example. 4447 if (!AI) 4448 return 0; 4449 DenseMap<const AllocaInst*, int>::iterator SI = 4450 FuncInfo.StaticAllocaMap.find(AI); 4451 if (SI == FuncInfo.StaticAllocaMap.end()) 4452 return 0; // VLAs. 4453 int FI = SI->second; 4454 4455 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4456 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4457 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4458 return 0; 4459 } 4460 case Intrinsic::eh_exception: { 4461 // Insert the EXCEPTIONADDR instruction. 4462 assert(FuncInfo.MBB->isLandingPad() && 4463 "Call to eh.exception not in landing pad!"); 4464 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4465 SDValue Ops[1]; 4466 Ops[0] = DAG.getRoot(); 4467 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4468 setValue(&I, Op); 4469 DAG.setRoot(Op.getValue(1)); 4470 return 0; 4471 } 4472 4473 case Intrinsic::eh_selector: { 4474 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4475 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4476 if (CallMBB->isLandingPad()) 4477 AddCatchInfo(I, &MMI, CallMBB); 4478 else { 4479 #ifndef NDEBUG 4480 FuncInfo.CatchInfoLost.insert(&I); 4481 #endif 4482 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4483 unsigned Reg = TLI.getExceptionSelectorRegister(); 4484 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4485 } 4486 4487 // Insert the EHSELECTION instruction. 4488 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4489 SDValue Ops[2]; 4490 Ops[0] = getValue(I.getArgOperand(0)); 4491 Ops[1] = getRoot(); 4492 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4493 DAG.setRoot(Op.getValue(1)); 4494 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4495 return 0; 4496 } 4497 4498 case Intrinsic::eh_typeid_for: { 4499 // Find the type id for the given typeinfo. 4500 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4501 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4502 Res = DAG.getConstant(TypeID, MVT::i32); 4503 setValue(&I, Res); 4504 return 0; 4505 } 4506 4507 case Intrinsic::eh_return_i32: 4508 case Intrinsic::eh_return_i64: 4509 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4510 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4511 MVT::Other, 4512 getControlRoot(), 4513 getValue(I.getArgOperand(0)), 4514 getValue(I.getArgOperand(1)))); 4515 return 0; 4516 case Intrinsic::eh_unwind_init: 4517 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4518 return 0; 4519 case Intrinsic::eh_dwarf_cfa: { 4520 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4521 TLI.getPointerTy()); 4522 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4523 TLI.getPointerTy(), 4524 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4525 TLI.getPointerTy()), 4526 CfaArg); 4527 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4528 TLI.getPointerTy(), 4529 DAG.getConstant(0, TLI.getPointerTy())); 4530 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4531 FA, Offset)); 4532 return 0; 4533 } 4534 case Intrinsic::eh_sjlj_callsite: { 4535 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4536 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4537 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4538 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4539 4540 MMI.setCurrentCallSite(CI->getZExtValue()); 4541 return 0; 4542 } 4543 case Intrinsic::eh_sjlj_setjmp: { 4544 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4545 getValue(I.getArgOperand(0)))); 4546 return 0; 4547 } 4548 case Intrinsic::eh_sjlj_longjmp: { 4549 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4550 getRoot(), getValue(I.getArgOperand(0)))); 4551 return 0; 4552 } 4553 case Intrinsic::eh_sjlj_dispatch_setup: { 4554 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4555 getRoot(), getValue(I.getArgOperand(0)))); 4556 return 0; 4557 } 4558 4559 case Intrinsic::x86_mmx_pslli_w: 4560 case Intrinsic::x86_mmx_pslli_d: 4561 case Intrinsic::x86_mmx_pslli_q: 4562 case Intrinsic::x86_mmx_psrli_w: 4563 case Intrinsic::x86_mmx_psrli_d: 4564 case Intrinsic::x86_mmx_psrli_q: 4565 case Intrinsic::x86_mmx_psrai_w: 4566 case Intrinsic::x86_mmx_psrai_d: { 4567 SDValue ShAmt = getValue(I.getArgOperand(1)); 4568 if (isa<ConstantSDNode>(ShAmt)) { 4569 visitTargetIntrinsic(I, Intrinsic); 4570 return 0; 4571 } 4572 unsigned NewIntrinsic = 0; 4573 EVT ShAmtVT = MVT::v2i32; 4574 switch (Intrinsic) { 4575 case Intrinsic::x86_mmx_pslli_w: 4576 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4577 break; 4578 case Intrinsic::x86_mmx_pslli_d: 4579 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4580 break; 4581 case Intrinsic::x86_mmx_pslli_q: 4582 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4583 break; 4584 case Intrinsic::x86_mmx_psrli_w: 4585 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4586 break; 4587 case Intrinsic::x86_mmx_psrli_d: 4588 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4589 break; 4590 case Intrinsic::x86_mmx_psrli_q: 4591 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4592 break; 4593 case Intrinsic::x86_mmx_psrai_w: 4594 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4595 break; 4596 case Intrinsic::x86_mmx_psrai_d: 4597 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4598 break; 4599 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4600 } 4601 4602 // The vector shift intrinsics with scalars uses 32b shift amounts but 4603 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4604 // to be zero. 4605 // We must do this early because v2i32 is not a legal type. 4606 DebugLoc dl = getCurDebugLoc(); 4607 SDValue ShOps[2]; 4608 ShOps[0] = ShAmt; 4609 ShOps[1] = DAG.getConstant(0, MVT::i32); 4610 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4611 EVT DestVT = TLI.getValueType(I.getType()); 4612 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4613 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4614 DAG.getConstant(NewIntrinsic, MVT::i32), 4615 getValue(I.getArgOperand(0)), ShAmt); 4616 setValue(&I, Res); 4617 return 0; 4618 } 4619 case Intrinsic::convertff: 4620 case Intrinsic::convertfsi: 4621 case Intrinsic::convertfui: 4622 case Intrinsic::convertsif: 4623 case Intrinsic::convertuif: 4624 case Intrinsic::convertss: 4625 case Intrinsic::convertsu: 4626 case Intrinsic::convertus: 4627 case Intrinsic::convertuu: { 4628 ISD::CvtCode Code = ISD::CVT_INVALID; 4629 switch (Intrinsic) { 4630 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4631 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4632 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4633 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4634 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4635 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4636 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4637 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4638 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4639 } 4640 EVT DestVT = TLI.getValueType(I.getType()); 4641 const Value *Op1 = I.getArgOperand(0); 4642 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4643 DAG.getValueType(DestVT), 4644 DAG.getValueType(getValue(Op1).getValueType()), 4645 getValue(I.getArgOperand(1)), 4646 getValue(I.getArgOperand(2)), 4647 Code); 4648 setValue(&I, Res); 4649 return 0; 4650 } 4651 case Intrinsic::sqrt: 4652 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4653 getValue(I.getArgOperand(0)).getValueType(), 4654 getValue(I.getArgOperand(0)))); 4655 return 0; 4656 case Intrinsic::powi: 4657 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4658 getValue(I.getArgOperand(1)), DAG)); 4659 return 0; 4660 case Intrinsic::sin: 4661 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4662 getValue(I.getArgOperand(0)).getValueType(), 4663 getValue(I.getArgOperand(0)))); 4664 return 0; 4665 case Intrinsic::cos: 4666 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4667 getValue(I.getArgOperand(0)).getValueType(), 4668 getValue(I.getArgOperand(0)))); 4669 return 0; 4670 case Intrinsic::log: 4671 visitLog(I); 4672 return 0; 4673 case Intrinsic::log2: 4674 visitLog2(I); 4675 return 0; 4676 case Intrinsic::log10: 4677 visitLog10(I); 4678 return 0; 4679 case Intrinsic::exp: 4680 visitExp(I); 4681 return 0; 4682 case Intrinsic::exp2: 4683 visitExp2(I); 4684 return 0; 4685 case Intrinsic::pow: 4686 visitPow(I); 4687 return 0; 4688 case Intrinsic::fma: 4689 setValue(&I, DAG.getNode(ISD::FMA, dl, 4690 getValue(I.getArgOperand(0)).getValueType(), 4691 getValue(I.getArgOperand(0)), 4692 getValue(I.getArgOperand(1)), 4693 getValue(I.getArgOperand(2)))); 4694 return 0; 4695 case Intrinsic::convert_to_fp16: 4696 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4697 MVT::i16, getValue(I.getArgOperand(0)))); 4698 return 0; 4699 case Intrinsic::convert_from_fp16: 4700 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4701 MVT::f32, getValue(I.getArgOperand(0)))); 4702 return 0; 4703 case Intrinsic::pcmarker: { 4704 SDValue Tmp = getValue(I.getArgOperand(0)); 4705 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4706 return 0; 4707 } 4708 case Intrinsic::readcyclecounter: { 4709 SDValue Op = getRoot(); 4710 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4711 DAG.getVTList(MVT::i64, MVT::Other), 4712 &Op, 1); 4713 setValue(&I, Res); 4714 DAG.setRoot(Res.getValue(1)); 4715 return 0; 4716 } 4717 case Intrinsic::bswap: 4718 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4719 getValue(I.getArgOperand(0)).getValueType(), 4720 getValue(I.getArgOperand(0)))); 4721 return 0; 4722 case Intrinsic::cttz: { 4723 SDValue Arg = getValue(I.getArgOperand(0)); 4724 EVT Ty = Arg.getValueType(); 4725 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4726 return 0; 4727 } 4728 case Intrinsic::ctlz: { 4729 SDValue Arg = getValue(I.getArgOperand(0)); 4730 EVT Ty = Arg.getValueType(); 4731 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4732 return 0; 4733 } 4734 case Intrinsic::ctpop: { 4735 SDValue Arg = getValue(I.getArgOperand(0)); 4736 EVT Ty = Arg.getValueType(); 4737 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4738 return 0; 4739 } 4740 case Intrinsic::stacksave: { 4741 SDValue Op = getRoot(); 4742 Res = DAG.getNode(ISD::STACKSAVE, dl, 4743 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4744 setValue(&I, Res); 4745 DAG.setRoot(Res.getValue(1)); 4746 return 0; 4747 } 4748 case Intrinsic::stackrestore: { 4749 Res = getValue(I.getArgOperand(0)); 4750 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4751 return 0; 4752 } 4753 case Intrinsic::stackprotector: { 4754 // Emit code into the DAG to store the stack guard onto the stack. 4755 MachineFunction &MF = DAG.getMachineFunction(); 4756 MachineFrameInfo *MFI = MF.getFrameInfo(); 4757 EVT PtrTy = TLI.getPointerTy(); 4758 4759 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4760 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4761 4762 int FI = FuncInfo.StaticAllocaMap[Slot]; 4763 MFI->setStackProtectorIndex(FI); 4764 4765 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4766 4767 // Store the stack protector onto the stack. 4768 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4769 MachinePointerInfo::getFixedStack(FI), 4770 true, false, 0); 4771 setValue(&I, Res); 4772 DAG.setRoot(Res); 4773 return 0; 4774 } 4775 case Intrinsic::objectsize: { 4776 // If we don't know by now, we're never going to know. 4777 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4778 4779 assert(CI && "Non-constant type in __builtin_object_size?"); 4780 4781 SDValue Arg = getValue(I.getCalledValue()); 4782 EVT Ty = Arg.getValueType(); 4783 4784 if (CI->isZero()) 4785 Res = DAG.getConstant(-1ULL, Ty); 4786 else 4787 Res = DAG.getConstant(0, Ty); 4788 4789 setValue(&I, Res); 4790 return 0; 4791 } 4792 case Intrinsic::var_annotation: 4793 // Discard annotate attributes 4794 return 0; 4795 4796 case Intrinsic::init_trampoline: { 4797 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4798 4799 SDValue Ops[6]; 4800 Ops[0] = getRoot(); 4801 Ops[1] = getValue(I.getArgOperand(0)); 4802 Ops[2] = getValue(I.getArgOperand(1)); 4803 Ops[3] = getValue(I.getArgOperand(2)); 4804 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4805 Ops[5] = DAG.getSrcValue(F); 4806 4807 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4808 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4809 Ops, 6); 4810 4811 setValue(&I, Res); 4812 DAG.setRoot(Res.getValue(1)); 4813 return 0; 4814 } 4815 case Intrinsic::gcroot: 4816 if (GFI) { 4817 const Value *Alloca = I.getArgOperand(0); 4818 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4819 4820 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4821 GFI->addStackRoot(FI->getIndex(), TypeMap); 4822 } 4823 return 0; 4824 case Intrinsic::gcread: 4825 case Intrinsic::gcwrite: 4826 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4827 return 0; 4828 case Intrinsic::flt_rounds: 4829 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4830 return 0; 4831 4832 case Intrinsic::expect: { 4833 // Just replace __builtin_expect(exp, c) with EXP. 4834 setValue(&I, getValue(I.getArgOperand(0))); 4835 return 0; 4836 } 4837 4838 case Intrinsic::trap: { 4839 StringRef TrapFuncName = getTrapFunctionName(); 4840 if (TrapFuncName.empty()) { 4841 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4842 return 0; 4843 } 4844 TargetLowering::ArgListTy Args; 4845 std::pair<SDValue, SDValue> Result = 4846 TLI.LowerCallTo(getRoot(), I.getType(), 4847 false, false, false, false, 0, CallingConv::C, 4848 /*isTailCall=*/false, /*isReturnValueUsed=*/true, 4849 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4850 Args, DAG, getCurDebugLoc()); 4851 DAG.setRoot(Result.second); 4852 return 0; 4853 } 4854 case Intrinsic::uadd_with_overflow: 4855 return implVisitAluOverflow(I, ISD::UADDO); 4856 case Intrinsic::sadd_with_overflow: 4857 return implVisitAluOverflow(I, ISD::SADDO); 4858 case Intrinsic::usub_with_overflow: 4859 return implVisitAluOverflow(I, ISD::USUBO); 4860 case Intrinsic::ssub_with_overflow: 4861 return implVisitAluOverflow(I, ISD::SSUBO); 4862 case Intrinsic::umul_with_overflow: 4863 return implVisitAluOverflow(I, ISD::UMULO); 4864 case Intrinsic::smul_with_overflow: 4865 return implVisitAluOverflow(I, ISD::SMULO); 4866 4867 case Intrinsic::prefetch: { 4868 SDValue Ops[5]; 4869 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4870 Ops[0] = getRoot(); 4871 Ops[1] = getValue(I.getArgOperand(0)); 4872 Ops[2] = getValue(I.getArgOperand(1)); 4873 Ops[3] = getValue(I.getArgOperand(2)); 4874 Ops[4] = getValue(I.getArgOperand(3)); 4875 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 4876 DAG.getVTList(MVT::Other), 4877 &Ops[0], 5, 4878 EVT::getIntegerVT(*Context, 8), 4879 MachinePointerInfo(I.getArgOperand(0)), 4880 0, /* align */ 4881 false, /* volatile */ 4882 rw==0, /* read */ 4883 rw==1)); /* write */ 4884 return 0; 4885 } 4886 case Intrinsic::memory_barrier: { 4887 SDValue Ops[6]; 4888 Ops[0] = getRoot(); 4889 for (int x = 1; x < 6; ++x) 4890 Ops[x] = getValue(I.getArgOperand(x - 1)); 4891 4892 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4893 return 0; 4894 } 4895 case Intrinsic::atomic_cmp_swap: { 4896 SDValue Root = getRoot(); 4897 SDValue L = 4898 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4899 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4900 Root, 4901 getValue(I.getArgOperand(0)), 4902 getValue(I.getArgOperand(1)), 4903 getValue(I.getArgOperand(2)), 4904 MachinePointerInfo(I.getArgOperand(0))); 4905 setValue(&I, L); 4906 DAG.setRoot(L.getValue(1)); 4907 return 0; 4908 } 4909 case Intrinsic::atomic_load_add: 4910 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4911 case Intrinsic::atomic_load_sub: 4912 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4913 case Intrinsic::atomic_load_or: 4914 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4915 case Intrinsic::atomic_load_xor: 4916 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4917 case Intrinsic::atomic_load_and: 4918 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4919 case Intrinsic::atomic_load_nand: 4920 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4921 case Intrinsic::atomic_load_max: 4922 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4923 case Intrinsic::atomic_load_min: 4924 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4925 case Intrinsic::atomic_load_umin: 4926 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4927 case Intrinsic::atomic_load_umax: 4928 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4929 case Intrinsic::atomic_swap: 4930 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4931 4932 case Intrinsic::invariant_start: 4933 case Intrinsic::lifetime_start: 4934 // Discard region information. 4935 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4936 return 0; 4937 case Intrinsic::invariant_end: 4938 case Intrinsic::lifetime_end: 4939 // Discard region information. 4940 return 0; 4941 } 4942 } 4943 4944 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4945 bool isTailCall, 4946 MachineBasicBlock *LandingPad) { 4947 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4948 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4949 Type *RetTy = FTy->getReturnType(); 4950 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4951 MCSymbol *BeginLabel = 0; 4952 4953 TargetLowering::ArgListTy Args; 4954 TargetLowering::ArgListEntry Entry; 4955 Args.reserve(CS.arg_size()); 4956 4957 // Check whether the function can return without sret-demotion. 4958 SmallVector<ISD::OutputArg, 4> Outs; 4959 SmallVector<uint64_t, 4> Offsets; 4960 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4961 Outs, TLI, &Offsets); 4962 4963 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4964 DAG.getMachineFunction(), 4965 FTy->isVarArg(), Outs, 4966 FTy->getContext()); 4967 4968 SDValue DemoteStackSlot; 4969 int DemoteStackIdx = -100; 4970 4971 if (!CanLowerReturn) { 4972 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4973 FTy->getReturnType()); 4974 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4975 FTy->getReturnType()); 4976 MachineFunction &MF = DAG.getMachineFunction(); 4977 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4978 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4979 4980 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 4981 Entry.Node = DemoteStackSlot; 4982 Entry.Ty = StackSlotPtrType; 4983 Entry.isSExt = false; 4984 Entry.isZExt = false; 4985 Entry.isInReg = false; 4986 Entry.isSRet = true; 4987 Entry.isNest = false; 4988 Entry.isByVal = false; 4989 Entry.Alignment = Align; 4990 Args.push_back(Entry); 4991 RetTy = Type::getVoidTy(FTy->getContext()); 4992 } 4993 4994 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4995 i != e; ++i) { 4996 const Value *V = *i; 4997 4998 // Skip empty types 4999 if (V->getType()->isEmptyTy()) 5000 continue; 5001 5002 SDValue ArgNode = getValue(V); 5003 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5004 5005 unsigned attrInd = i - CS.arg_begin() + 1; 5006 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5007 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5008 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5009 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5010 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5011 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5012 Entry.Alignment = CS.getParamAlignment(attrInd); 5013 Args.push_back(Entry); 5014 } 5015 5016 if (LandingPad) { 5017 // Insert a label before the invoke call to mark the try range. This can be 5018 // used to detect deletion of the invoke via the MachineModuleInfo. 5019 BeginLabel = MMI.getContext().CreateTempSymbol(); 5020 5021 // For SjLj, keep track of which landing pads go with which invokes 5022 // so as to maintain the ordering of pads in the LSDA. 5023 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5024 if (CallSiteIndex) { 5025 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5026 // Now that the call site is handled, stop tracking it. 5027 MMI.setCurrentCallSite(0); 5028 } 5029 5030 // Both PendingLoads and PendingExports must be flushed here; 5031 // this call might not return. 5032 (void)getRoot(); 5033 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5034 } 5035 5036 // Check if target-independent constraints permit a tail call here. 5037 // Target-dependent constraints are checked within TLI.LowerCallTo. 5038 if (isTailCall && 5039 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5040 isTailCall = false; 5041 5042 // If there's a possibility that fast-isel has already selected some amount 5043 // of the current basic block, don't emit a tail call. 5044 if (isTailCall && EnableFastISel) 5045 isTailCall = false; 5046 5047 std::pair<SDValue,SDValue> Result = 5048 TLI.LowerCallTo(getRoot(), RetTy, 5049 CS.paramHasAttr(0, Attribute::SExt), 5050 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5051 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5052 CS.getCallingConv(), 5053 isTailCall, 5054 !CS.getInstruction()->use_empty(), 5055 Callee, Args, DAG, getCurDebugLoc()); 5056 assert((isTailCall || Result.second.getNode()) && 5057 "Non-null chain expected with non-tail call!"); 5058 assert((Result.second.getNode() || !Result.first.getNode()) && 5059 "Null value expected with tail call!"); 5060 if (Result.first.getNode()) { 5061 setValue(CS.getInstruction(), Result.first); 5062 } else if (!CanLowerReturn && Result.second.getNode()) { 5063 // The instruction result is the result of loading from the 5064 // hidden sret parameter. 5065 SmallVector<EVT, 1> PVTs; 5066 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5067 5068 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5069 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5070 EVT PtrVT = PVTs[0]; 5071 unsigned NumValues = Outs.size(); 5072 SmallVector<SDValue, 4> Values(NumValues); 5073 SmallVector<SDValue, 4> Chains(NumValues); 5074 5075 for (unsigned i = 0; i < NumValues; ++i) { 5076 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5077 DemoteStackSlot, 5078 DAG.getConstant(Offsets[i], PtrVT)); 5079 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5080 Add, 5081 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5082 false, false, 1); 5083 Values[i] = L; 5084 Chains[i] = L.getValue(1); 5085 } 5086 5087 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5088 MVT::Other, &Chains[0], NumValues); 5089 PendingLoads.push_back(Chain); 5090 5091 // Collect the legal value parts into potentially illegal values 5092 // that correspond to the original function's return values. 5093 SmallVector<EVT, 4> RetTys; 5094 RetTy = FTy->getReturnType(); 5095 ComputeValueVTs(TLI, RetTy, RetTys); 5096 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5097 SmallVector<SDValue, 4> ReturnValues; 5098 unsigned CurReg = 0; 5099 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5100 EVT VT = RetTys[I]; 5101 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5102 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5103 5104 SDValue ReturnValue = 5105 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5106 RegisterVT, VT, AssertOp); 5107 ReturnValues.push_back(ReturnValue); 5108 CurReg += NumRegs; 5109 } 5110 5111 setValue(CS.getInstruction(), 5112 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5113 DAG.getVTList(&RetTys[0], RetTys.size()), 5114 &ReturnValues[0], ReturnValues.size())); 5115 } 5116 5117 // Assign order to nodes here. If the call does not produce a result, it won't 5118 // be mapped to a SDNode and visit() will not assign it an order number. 5119 if (!Result.second.getNode()) { 5120 // As a special case, a null chain means that a tail call has been emitted and 5121 // the DAG root is already updated. 5122 HasTailCall = true; 5123 ++SDNodeOrder; 5124 AssignOrderingToNode(DAG.getRoot().getNode()); 5125 } else { 5126 DAG.setRoot(Result.second); 5127 ++SDNodeOrder; 5128 AssignOrderingToNode(Result.second.getNode()); 5129 } 5130 5131 if (LandingPad) { 5132 // Insert a label at the end of the invoke call to mark the try range. This 5133 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5134 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5135 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5136 5137 // Inform MachineModuleInfo of range. 5138 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5139 } 5140 } 5141 5142 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5143 /// value is equal or not-equal to zero. 5144 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5145 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5146 UI != E; ++UI) { 5147 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5148 if (IC->isEquality()) 5149 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5150 if (C->isNullValue()) 5151 continue; 5152 // Unknown instruction. 5153 return false; 5154 } 5155 return true; 5156 } 5157 5158 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5159 Type *LoadTy, 5160 SelectionDAGBuilder &Builder) { 5161 5162 // Check to see if this load can be trivially constant folded, e.g. if the 5163 // input is from a string literal. 5164 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5165 // Cast pointer to the type we really want to load. 5166 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5167 PointerType::getUnqual(LoadTy)); 5168 5169 if (const Constant *LoadCst = 5170 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5171 Builder.TD)) 5172 return Builder.getValue(LoadCst); 5173 } 5174 5175 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5176 // still constant memory, the input chain can be the entry node. 5177 SDValue Root; 5178 bool ConstantMemory = false; 5179 5180 // Do not serialize (non-volatile) loads of constant memory with anything. 5181 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5182 Root = Builder.DAG.getEntryNode(); 5183 ConstantMemory = true; 5184 } else { 5185 // Do not serialize non-volatile loads against each other. 5186 Root = Builder.DAG.getRoot(); 5187 } 5188 5189 SDValue Ptr = Builder.getValue(PtrVal); 5190 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5191 Ptr, MachinePointerInfo(PtrVal), 5192 false /*volatile*/, 5193 false /*nontemporal*/, 1 /* align=1 */); 5194 5195 if (!ConstantMemory) 5196 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5197 return LoadVal; 5198 } 5199 5200 5201 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5202 /// If so, return true and lower it, otherwise return false and it will be 5203 /// lowered like a normal call. 5204 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5205 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5206 if (I.getNumArgOperands() != 3) 5207 return false; 5208 5209 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5210 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5211 !I.getArgOperand(2)->getType()->isIntegerTy() || 5212 !I.getType()->isIntegerTy()) 5213 return false; 5214 5215 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5216 5217 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5218 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5219 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5220 bool ActuallyDoIt = true; 5221 MVT LoadVT; 5222 Type *LoadTy; 5223 switch (Size->getZExtValue()) { 5224 default: 5225 LoadVT = MVT::Other; 5226 LoadTy = 0; 5227 ActuallyDoIt = false; 5228 break; 5229 case 2: 5230 LoadVT = MVT::i16; 5231 LoadTy = Type::getInt16Ty(Size->getContext()); 5232 break; 5233 case 4: 5234 LoadVT = MVT::i32; 5235 LoadTy = Type::getInt32Ty(Size->getContext()); 5236 break; 5237 case 8: 5238 LoadVT = MVT::i64; 5239 LoadTy = Type::getInt64Ty(Size->getContext()); 5240 break; 5241 /* 5242 case 16: 5243 LoadVT = MVT::v4i32; 5244 LoadTy = Type::getInt32Ty(Size->getContext()); 5245 LoadTy = VectorType::get(LoadTy, 4); 5246 break; 5247 */ 5248 } 5249 5250 // This turns into unaligned loads. We only do this if the target natively 5251 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5252 // we'll only produce a small number of byte loads. 5253 5254 // Require that we can find a legal MVT, and only do this if the target 5255 // supports unaligned loads of that type. Expanding into byte loads would 5256 // bloat the code. 5257 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5258 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5259 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5260 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5261 ActuallyDoIt = false; 5262 } 5263 5264 if (ActuallyDoIt) { 5265 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5266 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5267 5268 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5269 ISD::SETNE); 5270 EVT CallVT = TLI.getValueType(I.getType(), true); 5271 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5272 return true; 5273 } 5274 } 5275 5276 5277 return false; 5278 } 5279 5280 5281 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5282 // Handle inline assembly differently. 5283 if (isa<InlineAsm>(I.getCalledValue())) { 5284 visitInlineAsm(&I); 5285 return; 5286 } 5287 5288 // See if any floating point values are being passed to this function. This is 5289 // used to emit an undefined reference to fltused on Windows. 5290 FunctionType *FT = 5291 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5292 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5293 if (FT->isVarArg() && 5294 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5295 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5296 Type* T = I.getArgOperand(i)->getType(); 5297 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 5298 i != e; ++i) { 5299 if (!i->isFloatingPointTy()) continue; 5300 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5301 break; 5302 } 5303 } 5304 } 5305 5306 const char *RenameFn = 0; 5307 if (Function *F = I.getCalledFunction()) { 5308 if (F->isDeclaration()) { 5309 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5310 if (unsigned IID = II->getIntrinsicID(F)) { 5311 RenameFn = visitIntrinsicCall(I, IID); 5312 if (!RenameFn) 5313 return; 5314 } 5315 } 5316 if (unsigned IID = F->getIntrinsicID()) { 5317 RenameFn = visitIntrinsicCall(I, IID); 5318 if (!RenameFn) 5319 return; 5320 } 5321 } 5322 5323 // Check for well-known libc/libm calls. If the function is internal, it 5324 // can't be a library call. 5325 if (!F->hasLocalLinkage() && F->hasName()) { 5326 StringRef Name = F->getName(); 5327 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5328 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5329 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5330 I.getType() == I.getArgOperand(0)->getType() && 5331 I.getType() == I.getArgOperand(1)->getType()) { 5332 SDValue LHS = getValue(I.getArgOperand(0)); 5333 SDValue RHS = getValue(I.getArgOperand(1)); 5334 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5335 LHS.getValueType(), LHS, RHS)); 5336 return; 5337 } 5338 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5339 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5340 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5341 I.getType() == I.getArgOperand(0)->getType()) { 5342 SDValue Tmp = getValue(I.getArgOperand(0)); 5343 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5344 Tmp.getValueType(), Tmp)); 5345 return; 5346 } 5347 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5348 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5349 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5350 I.getType() == I.getArgOperand(0)->getType() && 5351 I.onlyReadsMemory()) { 5352 SDValue Tmp = getValue(I.getArgOperand(0)); 5353 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5354 Tmp.getValueType(), Tmp)); 5355 return; 5356 } 5357 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5358 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5359 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5360 I.getType() == I.getArgOperand(0)->getType() && 5361 I.onlyReadsMemory()) { 5362 SDValue Tmp = getValue(I.getArgOperand(0)); 5363 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5364 Tmp.getValueType(), Tmp)); 5365 return; 5366 } 5367 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5368 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5369 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5370 I.getType() == I.getArgOperand(0)->getType() && 5371 I.onlyReadsMemory()) { 5372 SDValue Tmp = getValue(I.getArgOperand(0)); 5373 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5374 Tmp.getValueType(), Tmp)); 5375 return; 5376 } 5377 } else if (Name == "memcmp") { 5378 if (visitMemCmpCall(I)) 5379 return; 5380 } 5381 } 5382 } 5383 5384 SDValue Callee; 5385 if (!RenameFn) 5386 Callee = getValue(I.getCalledValue()); 5387 else 5388 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5389 5390 // Check if we can potentially perform a tail call. More detailed checking is 5391 // be done within LowerCallTo, after more information about the call is known. 5392 LowerCallTo(&I, Callee, I.isTailCall()); 5393 } 5394 5395 namespace { 5396 5397 /// AsmOperandInfo - This contains information for each constraint that we are 5398 /// lowering. 5399 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5400 public: 5401 /// CallOperand - If this is the result output operand or a clobber 5402 /// this is null, otherwise it is the incoming operand to the CallInst. 5403 /// This gets modified as the asm is processed. 5404 SDValue CallOperand; 5405 5406 /// AssignedRegs - If this is a register or register class operand, this 5407 /// contains the set of register corresponding to the operand. 5408 RegsForValue AssignedRegs; 5409 5410 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5411 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5412 } 5413 5414 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5415 /// busy in OutputRegs/InputRegs. 5416 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5417 std::set<unsigned> &OutputRegs, 5418 std::set<unsigned> &InputRegs, 5419 const TargetRegisterInfo &TRI) const { 5420 if (isOutReg) { 5421 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5422 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5423 } 5424 if (isInReg) { 5425 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5426 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5427 } 5428 } 5429 5430 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5431 /// corresponds to. If there is no Value* for this operand, it returns 5432 /// MVT::Other. 5433 EVT getCallOperandValEVT(LLVMContext &Context, 5434 const TargetLowering &TLI, 5435 const TargetData *TD) const { 5436 if (CallOperandVal == 0) return MVT::Other; 5437 5438 if (isa<BasicBlock>(CallOperandVal)) 5439 return TLI.getPointerTy(); 5440 5441 llvm::Type *OpTy = CallOperandVal->getType(); 5442 5443 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5444 // If this is an indirect operand, the operand is a pointer to the 5445 // accessed type. 5446 if (isIndirect) { 5447 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5448 if (!PtrTy) 5449 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5450 OpTy = PtrTy->getElementType(); 5451 } 5452 5453 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5454 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5455 if (STy->getNumElements() == 1) 5456 OpTy = STy->getElementType(0); 5457 5458 // If OpTy is not a single value, it may be a struct/union that we 5459 // can tile with integers. 5460 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5461 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5462 switch (BitSize) { 5463 default: break; 5464 case 1: 5465 case 8: 5466 case 16: 5467 case 32: 5468 case 64: 5469 case 128: 5470 OpTy = IntegerType::get(Context, BitSize); 5471 break; 5472 } 5473 } 5474 5475 return TLI.getValueType(OpTy, true); 5476 } 5477 5478 private: 5479 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5480 /// specified set. 5481 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5482 const TargetRegisterInfo &TRI) { 5483 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5484 Regs.insert(Reg); 5485 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5486 for (; *Aliases; ++Aliases) 5487 Regs.insert(*Aliases); 5488 } 5489 }; 5490 5491 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5492 5493 } // end anonymous namespace 5494 5495 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5496 /// specified operand. We prefer to assign virtual registers, to allow the 5497 /// register allocator to handle the assignment process. However, if the asm 5498 /// uses features that we can't model on machineinstrs, we have SDISel do the 5499 /// allocation. This produces generally horrible, but correct, code. 5500 /// 5501 /// OpInfo describes the operand. 5502 /// Input and OutputRegs are the set of already allocated physical registers. 5503 /// 5504 static void GetRegistersForValue(SelectionDAG &DAG, 5505 const TargetLowering &TLI, 5506 DebugLoc DL, 5507 SDISelAsmOperandInfo &OpInfo, 5508 std::set<unsigned> &OutputRegs, 5509 std::set<unsigned> &InputRegs) { 5510 LLVMContext &Context = *DAG.getContext(); 5511 5512 // Compute whether this value requires an input register, an output register, 5513 // or both. 5514 bool isOutReg = false; 5515 bool isInReg = false; 5516 switch (OpInfo.Type) { 5517 case InlineAsm::isOutput: 5518 isOutReg = true; 5519 5520 // If there is an input constraint that matches this, we need to reserve 5521 // the input register so no other inputs allocate to it. 5522 isInReg = OpInfo.hasMatchingInput(); 5523 break; 5524 case InlineAsm::isInput: 5525 isInReg = true; 5526 isOutReg = false; 5527 break; 5528 case InlineAsm::isClobber: 5529 isOutReg = true; 5530 isInReg = true; 5531 break; 5532 } 5533 5534 5535 MachineFunction &MF = DAG.getMachineFunction(); 5536 SmallVector<unsigned, 4> Regs; 5537 5538 // If this is a constraint for a single physreg, or a constraint for a 5539 // register class, find it. 5540 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5541 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5542 OpInfo.ConstraintVT); 5543 5544 unsigned NumRegs = 1; 5545 if (OpInfo.ConstraintVT != MVT::Other) { 5546 // If this is a FP input in an integer register (or visa versa) insert a bit 5547 // cast of the input value. More generally, handle any case where the input 5548 // value disagrees with the register class we plan to stick this in. 5549 if (OpInfo.Type == InlineAsm::isInput && 5550 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5551 // Try to convert to the first EVT that the reg class contains. If the 5552 // types are identical size, use a bitcast to convert (e.g. two differing 5553 // vector types). 5554 EVT RegVT = *PhysReg.second->vt_begin(); 5555 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5556 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5557 RegVT, OpInfo.CallOperand); 5558 OpInfo.ConstraintVT = RegVT; 5559 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5560 // If the input is a FP value and we want it in FP registers, do a 5561 // bitcast to the corresponding integer type. This turns an f64 value 5562 // into i64, which can be passed with two i32 values on a 32-bit 5563 // machine. 5564 RegVT = EVT::getIntegerVT(Context, 5565 OpInfo.ConstraintVT.getSizeInBits()); 5566 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5567 RegVT, OpInfo.CallOperand); 5568 OpInfo.ConstraintVT = RegVT; 5569 } 5570 } 5571 5572 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5573 } 5574 5575 EVT RegVT; 5576 EVT ValueVT = OpInfo.ConstraintVT; 5577 5578 // If this is a constraint for a specific physical register, like {r17}, 5579 // assign it now. 5580 if (unsigned AssignedReg = PhysReg.first) { 5581 const TargetRegisterClass *RC = PhysReg.second; 5582 if (OpInfo.ConstraintVT == MVT::Other) 5583 ValueVT = *RC->vt_begin(); 5584 5585 // Get the actual register value type. This is important, because the user 5586 // may have asked for (e.g.) the AX register in i32 type. We need to 5587 // remember that AX is actually i16 to get the right extension. 5588 RegVT = *RC->vt_begin(); 5589 5590 // This is a explicit reference to a physical register. 5591 Regs.push_back(AssignedReg); 5592 5593 // If this is an expanded reference, add the rest of the regs to Regs. 5594 if (NumRegs != 1) { 5595 TargetRegisterClass::iterator I = RC->begin(); 5596 for (; *I != AssignedReg; ++I) 5597 assert(I != RC->end() && "Didn't find reg!"); 5598 5599 // Already added the first reg. 5600 --NumRegs; ++I; 5601 for (; NumRegs; --NumRegs, ++I) { 5602 assert(I != RC->end() && "Ran out of registers to allocate!"); 5603 Regs.push_back(*I); 5604 } 5605 } 5606 5607 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5608 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5609 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5610 return; 5611 } 5612 5613 // Otherwise, if this was a reference to an LLVM register class, create vregs 5614 // for this reference. 5615 if (const TargetRegisterClass *RC = PhysReg.second) { 5616 RegVT = *RC->vt_begin(); 5617 if (OpInfo.ConstraintVT == MVT::Other) 5618 ValueVT = RegVT; 5619 5620 // Create the appropriate number of virtual registers. 5621 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5622 for (; NumRegs; --NumRegs) 5623 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5624 5625 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5626 return; 5627 } 5628 5629 // Otherwise, we couldn't allocate enough registers for this. 5630 } 5631 5632 /// visitInlineAsm - Handle a call to an InlineAsm object. 5633 /// 5634 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5635 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5636 5637 /// ConstraintOperands - Information about all of the constraints. 5638 SDISelAsmOperandInfoVector ConstraintOperands; 5639 5640 std::set<unsigned> OutputRegs, InputRegs; 5641 5642 TargetLowering::AsmOperandInfoVector 5643 TargetConstraints = TLI.ParseConstraints(CS); 5644 5645 bool hasMemory = false; 5646 5647 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5648 unsigned ResNo = 0; // ResNo - The result number of the next output. 5649 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5650 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5651 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5652 5653 EVT OpVT = MVT::Other; 5654 5655 // Compute the value type for each operand. 5656 switch (OpInfo.Type) { 5657 case InlineAsm::isOutput: 5658 // Indirect outputs just consume an argument. 5659 if (OpInfo.isIndirect) { 5660 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5661 break; 5662 } 5663 5664 // The return value of the call is this value. As such, there is no 5665 // corresponding argument. 5666 assert(!CS.getType()->isVoidTy() && 5667 "Bad inline asm!"); 5668 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5669 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5670 } else { 5671 assert(ResNo == 0 && "Asm only has one result!"); 5672 OpVT = TLI.getValueType(CS.getType()); 5673 } 5674 ++ResNo; 5675 break; 5676 case InlineAsm::isInput: 5677 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5678 break; 5679 case InlineAsm::isClobber: 5680 // Nothing to do. 5681 break; 5682 } 5683 5684 // If this is an input or an indirect output, process the call argument. 5685 // BasicBlocks are labels, currently appearing only in asm's. 5686 if (OpInfo.CallOperandVal) { 5687 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5688 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5689 } else { 5690 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5691 } 5692 5693 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5694 } 5695 5696 OpInfo.ConstraintVT = OpVT; 5697 5698 // Indirect operand accesses access memory. 5699 if (OpInfo.isIndirect) 5700 hasMemory = true; 5701 else { 5702 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5703 TargetLowering::ConstraintType 5704 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5705 if (CType == TargetLowering::C_Memory) { 5706 hasMemory = true; 5707 break; 5708 } 5709 } 5710 } 5711 } 5712 5713 SDValue Chain, Flag; 5714 5715 // We won't need to flush pending loads if this asm doesn't touch 5716 // memory and is nonvolatile. 5717 if (hasMemory || IA->hasSideEffects()) 5718 Chain = getRoot(); 5719 else 5720 Chain = DAG.getRoot(); 5721 5722 // Second pass over the constraints: compute which constraint option to use 5723 // and assign registers to constraints that want a specific physreg. 5724 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5725 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5726 5727 // If this is an output operand with a matching input operand, look up the 5728 // matching input. If their types mismatch, e.g. one is an integer, the 5729 // other is floating point, or their sizes are different, flag it as an 5730 // error. 5731 if (OpInfo.hasMatchingInput()) { 5732 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5733 5734 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5735 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5736 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT); 5737 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5738 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT); 5739 if ((OpInfo.ConstraintVT.isInteger() != 5740 Input.ConstraintVT.isInteger()) || 5741 (MatchRC.second != InputRC.second)) { 5742 report_fatal_error("Unsupported asm: input constraint" 5743 " with a matching output constraint of" 5744 " incompatible type!"); 5745 } 5746 Input.ConstraintVT = OpInfo.ConstraintVT; 5747 } 5748 } 5749 5750 // Compute the constraint code and ConstraintType to use. 5751 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5752 5753 // If this is a memory input, and if the operand is not indirect, do what we 5754 // need to to provide an address for the memory input. 5755 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5756 !OpInfo.isIndirect) { 5757 assert((OpInfo.isMultipleAlternative || 5758 (OpInfo.Type == InlineAsm::isInput)) && 5759 "Can only indirectify direct input operands!"); 5760 5761 // Memory operands really want the address of the value. If we don't have 5762 // an indirect input, put it in the constpool if we can, otherwise spill 5763 // it to a stack slot. 5764 // TODO: This isn't quite right. We need to handle these according to 5765 // the addressing mode that the constraint wants. Also, this may take 5766 // an additional register for the computation and we don't want that 5767 // either. 5768 5769 // If the operand is a float, integer, or vector constant, spill to a 5770 // constant pool entry to get its address. 5771 const Value *OpVal = OpInfo.CallOperandVal; 5772 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5773 isa<ConstantVector>(OpVal)) { 5774 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5775 TLI.getPointerTy()); 5776 } else { 5777 // Otherwise, create a stack slot and emit a store to it before the 5778 // asm. 5779 Type *Ty = OpVal->getType(); 5780 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5781 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5782 MachineFunction &MF = DAG.getMachineFunction(); 5783 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5784 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5785 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5786 OpInfo.CallOperand, StackSlot, 5787 MachinePointerInfo::getFixedStack(SSFI), 5788 false, false, 0); 5789 OpInfo.CallOperand = StackSlot; 5790 } 5791 5792 // There is no longer a Value* corresponding to this operand. 5793 OpInfo.CallOperandVal = 0; 5794 5795 // It is now an indirect operand. 5796 OpInfo.isIndirect = true; 5797 } 5798 5799 // If this constraint is for a specific register, allocate it before 5800 // anything else. 5801 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5802 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5803 InputRegs); 5804 } 5805 5806 // Second pass - Loop over all of the operands, assigning virtual or physregs 5807 // to register class operands. 5808 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5809 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5810 5811 // C_Register operands have already been allocated, Other/Memory don't need 5812 // to be. 5813 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5814 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5815 InputRegs); 5816 } 5817 5818 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5819 std::vector<SDValue> AsmNodeOperands; 5820 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5821 AsmNodeOperands.push_back( 5822 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5823 TLI.getPointerTy())); 5824 5825 // If we have a !srcloc metadata node associated with it, we want to attach 5826 // this to the ultimately generated inline asm machineinstr. To do this, we 5827 // pass in the third operand as this (potentially null) inline asm MDNode. 5828 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5829 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5830 5831 // Remember the HasSideEffect and AlignStack bits as operand 3. 5832 unsigned ExtraInfo = 0; 5833 if (IA->hasSideEffects()) 5834 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 5835 if (IA->isAlignStack()) 5836 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 5837 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 5838 TLI.getPointerTy())); 5839 5840 // Loop over all of the inputs, copying the operand values into the 5841 // appropriate registers and processing the output regs. 5842 RegsForValue RetValRegs; 5843 5844 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5845 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5846 5847 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5848 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5849 5850 switch (OpInfo.Type) { 5851 case InlineAsm::isOutput: { 5852 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5853 OpInfo.ConstraintType != TargetLowering::C_Register) { 5854 // Memory output, or 'other' output (e.g. 'X' constraint). 5855 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5856 5857 // Add information to the INLINEASM node to know about this output. 5858 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5859 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5860 TLI.getPointerTy())); 5861 AsmNodeOperands.push_back(OpInfo.CallOperand); 5862 break; 5863 } 5864 5865 // Otherwise, this is a register or register class output. 5866 5867 // Copy the output from the appropriate register. Find a register that 5868 // we can use. 5869 if (OpInfo.AssignedRegs.Regs.empty()) 5870 report_fatal_error("Couldn't allocate output reg for constraint '" + 5871 Twine(OpInfo.ConstraintCode) + "'!"); 5872 5873 // If this is an indirect operand, store through the pointer after the 5874 // asm. 5875 if (OpInfo.isIndirect) { 5876 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5877 OpInfo.CallOperandVal)); 5878 } else { 5879 // This is the result value of the call. 5880 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5881 // Concatenate this output onto the outputs list. 5882 RetValRegs.append(OpInfo.AssignedRegs); 5883 } 5884 5885 // Add information to the INLINEASM node to know that this register is 5886 // set. 5887 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5888 InlineAsm::Kind_RegDefEarlyClobber : 5889 InlineAsm::Kind_RegDef, 5890 false, 5891 0, 5892 DAG, 5893 AsmNodeOperands); 5894 break; 5895 } 5896 case InlineAsm::isInput: { 5897 SDValue InOperandVal = OpInfo.CallOperand; 5898 5899 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5900 // If this is required to match an output register we have already set, 5901 // just use its register. 5902 unsigned OperandNo = OpInfo.getMatchedOperand(); 5903 5904 // Scan until we find the definition we already emitted of this operand. 5905 // When we find it, create a RegsForValue operand. 5906 unsigned CurOp = InlineAsm::Op_FirstOperand; 5907 for (; OperandNo; --OperandNo) { 5908 // Advance to the next operand. 5909 unsigned OpFlag = 5910 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5911 assert((InlineAsm::isRegDefKind(OpFlag) || 5912 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5913 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5914 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5915 } 5916 5917 unsigned OpFlag = 5918 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5919 if (InlineAsm::isRegDefKind(OpFlag) || 5920 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5921 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5922 if (OpInfo.isIndirect) { 5923 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5924 LLVMContext &Ctx = *DAG.getContext(); 5925 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5926 " don't know how to handle tied " 5927 "indirect register inputs"); 5928 } 5929 5930 RegsForValue MatchedRegs; 5931 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5932 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5933 MatchedRegs.RegVTs.push_back(RegVT); 5934 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5935 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5936 i != e; ++i) 5937 MatchedRegs.Regs.push_back 5938 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5939 5940 // Use the produced MatchedRegs object to 5941 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5942 Chain, &Flag); 5943 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5944 true, OpInfo.getMatchedOperand(), 5945 DAG, AsmNodeOperands); 5946 break; 5947 } 5948 5949 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5950 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5951 "Unexpected number of operands"); 5952 // Add information to the INLINEASM node to know about this input. 5953 // See InlineAsm.h isUseOperandTiedToDef. 5954 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5955 OpInfo.getMatchedOperand()); 5956 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5957 TLI.getPointerTy())); 5958 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5959 break; 5960 } 5961 5962 // Treat indirect 'X' constraint as memory. 5963 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5964 OpInfo.isIndirect) 5965 OpInfo.ConstraintType = TargetLowering::C_Memory; 5966 5967 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5968 std::vector<SDValue> Ops; 5969 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 5970 Ops, DAG); 5971 if (Ops.empty()) 5972 report_fatal_error("Invalid operand for inline asm constraint '" + 5973 Twine(OpInfo.ConstraintCode) + "'!"); 5974 5975 // Add information to the INLINEASM node to know about this input. 5976 unsigned ResOpType = 5977 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5978 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5979 TLI.getPointerTy())); 5980 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5981 break; 5982 } 5983 5984 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5985 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5986 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5987 "Memory operands expect pointer values"); 5988 5989 // Add information to the INLINEASM node to know about this input. 5990 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5991 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5992 TLI.getPointerTy())); 5993 AsmNodeOperands.push_back(InOperandVal); 5994 break; 5995 } 5996 5997 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5998 OpInfo.ConstraintType == TargetLowering::C_Register) && 5999 "Unknown constraint type!"); 6000 assert(!OpInfo.isIndirect && 6001 "Don't know how to handle indirect register inputs yet!"); 6002 6003 // Copy the input into the appropriate registers. 6004 if (OpInfo.AssignedRegs.Regs.empty()) 6005 report_fatal_error("Couldn't allocate input reg for constraint '" + 6006 Twine(OpInfo.ConstraintCode) + "'!"); 6007 6008 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6009 Chain, &Flag); 6010 6011 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6012 DAG, AsmNodeOperands); 6013 break; 6014 } 6015 case InlineAsm::isClobber: { 6016 // Add the clobbered value to the operand list, so that the register 6017 // allocator is aware that the physreg got clobbered. 6018 if (!OpInfo.AssignedRegs.Regs.empty()) 6019 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6020 false, 0, DAG, 6021 AsmNodeOperands); 6022 break; 6023 } 6024 } 6025 } 6026 6027 // Finish up input operands. Set the input chain and add the flag last. 6028 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6029 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6030 6031 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6032 DAG.getVTList(MVT::Other, MVT::Glue), 6033 &AsmNodeOperands[0], AsmNodeOperands.size()); 6034 Flag = Chain.getValue(1); 6035 6036 // If this asm returns a register value, copy the result from that register 6037 // and set it as the value of the call. 6038 if (!RetValRegs.Regs.empty()) { 6039 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6040 Chain, &Flag); 6041 6042 // FIXME: Why don't we do this for inline asms with MRVs? 6043 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6044 EVT ResultType = TLI.getValueType(CS.getType()); 6045 6046 // If any of the results of the inline asm is a vector, it may have the 6047 // wrong width/num elts. This can happen for register classes that can 6048 // contain multiple different value types. The preg or vreg allocated may 6049 // not have the same VT as was expected. Convert it to the right type 6050 // with bit_convert. 6051 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6052 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6053 ResultType, Val); 6054 6055 } else if (ResultType != Val.getValueType() && 6056 ResultType.isInteger() && Val.getValueType().isInteger()) { 6057 // If a result value was tied to an input value, the computed result may 6058 // have a wider width than the expected result. Extract the relevant 6059 // portion. 6060 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6061 } 6062 6063 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6064 } 6065 6066 setValue(CS.getInstruction(), Val); 6067 // Don't need to use this as a chain in this case. 6068 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6069 return; 6070 } 6071 6072 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6073 6074 // Process indirect outputs, first output all of the flagged copies out of 6075 // physregs. 6076 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6077 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6078 const Value *Ptr = IndirectStoresToEmit[i].second; 6079 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6080 Chain, &Flag); 6081 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6082 } 6083 6084 // Emit the non-flagged stores from the physregs. 6085 SmallVector<SDValue, 8> OutChains; 6086 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6087 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6088 StoresToEmit[i].first, 6089 getValue(StoresToEmit[i].second), 6090 MachinePointerInfo(StoresToEmit[i].second), 6091 false, false, 0); 6092 OutChains.push_back(Val); 6093 } 6094 6095 if (!OutChains.empty()) 6096 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6097 &OutChains[0], OutChains.size()); 6098 6099 DAG.setRoot(Chain); 6100 } 6101 6102 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6103 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6104 MVT::Other, getRoot(), 6105 getValue(I.getArgOperand(0)), 6106 DAG.getSrcValue(I.getArgOperand(0)))); 6107 } 6108 6109 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6110 const TargetData &TD = *TLI.getTargetData(); 6111 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6112 getRoot(), getValue(I.getOperand(0)), 6113 DAG.getSrcValue(I.getOperand(0)), 6114 TD.getABITypeAlignment(I.getType())); 6115 setValue(&I, V); 6116 DAG.setRoot(V.getValue(1)); 6117 } 6118 6119 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6120 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6121 MVT::Other, getRoot(), 6122 getValue(I.getArgOperand(0)), 6123 DAG.getSrcValue(I.getArgOperand(0)))); 6124 } 6125 6126 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6127 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6128 MVT::Other, getRoot(), 6129 getValue(I.getArgOperand(0)), 6130 getValue(I.getArgOperand(1)), 6131 DAG.getSrcValue(I.getArgOperand(0)), 6132 DAG.getSrcValue(I.getArgOperand(1)))); 6133 } 6134 6135 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6136 /// implementation, which just calls LowerCall. 6137 /// FIXME: When all targets are 6138 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6139 std::pair<SDValue, SDValue> 6140 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, 6141 bool RetSExt, bool RetZExt, bool isVarArg, 6142 bool isInreg, unsigned NumFixedArgs, 6143 CallingConv::ID CallConv, bool isTailCall, 6144 bool isReturnValueUsed, 6145 SDValue Callee, 6146 ArgListTy &Args, SelectionDAG &DAG, 6147 DebugLoc dl) const { 6148 // Handle all of the outgoing arguments. 6149 SmallVector<ISD::OutputArg, 32> Outs; 6150 SmallVector<SDValue, 32> OutVals; 6151 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6152 SmallVector<EVT, 4> ValueVTs; 6153 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6154 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6155 Value != NumValues; ++Value) { 6156 EVT VT = ValueVTs[Value]; 6157 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6158 SDValue Op = SDValue(Args[i].Node.getNode(), 6159 Args[i].Node.getResNo() + Value); 6160 ISD::ArgFlagsTy Flags; 6161 unsigned OriginalAlignment = 6162 getTargetData()->getABITypeAlignment(ArgTy); 6163 6164 if (Args[i].isZExt) 6165 Flags.setZExt(); 6166 if (Args[i].isSExt) 6167 Flags.setSExt(); 6168 if (Args[i].isInReg) 6169 Flags.setInReg(); 6170 if (Args[i].isSRet) 6171 Flags.setSRet(); 6172 if (Args[i].isByVal) { 6173 Flags.setByVal(); 6174 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6175 Type *ElementTy = Ty->getElementType(); 6176 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6177 // For ByVal, alignment should come from FE. BE will guess if this 6178 // info is not there but there are cases it cannot get right. 6179 unsigned FrameAlign; 6180 if (Args[i].Alignment) 6181 FrameAlign = Args[i].Alignment; 6182 else 6183 FrameAlign = getByValTypeAlignment(ElementTy); 6184 Flags.setByValAlign(FrameAlign); 6185 } 6186 if (Args[i].isNest) 6187 Flags.setNest(); 6188 Flags.setOrigAlign(OriginalAlignment); 6189 6190 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6191 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6192 SmallVector<SDValue, 4> Parts(NumParts); 6193 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6194 6195 if (Args[i].isSExt) 6196 ExtendKind = ISD::SIGN_EXTEND; 6197 else if (Args[i].isZExt) 6198 ExtendKind = ISD::ZERO_EXTEND; 6199 6200 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6201 PartVT, ExtendKind); 6202 6203 for (unsigned j = 0; j != NumParts; ++j) { 6204 // if it isn't first piece, alignment must be 1 6205 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6206 i < NumFixedArgs); 6207 if (NumParts > 1 && j == 0) 6208 MyFlags.Flags.setSplit(); 6209 else if (j != 0) 6210 MyFlags.Flags.setOrigAlign(1); 6211 6212 Outs.push_back(MyFlags); 6213 OutVals.push_back(Parts[j]); 6214 } 6215 } 6216 } 6217 6218 // Handle the incoming return values from the call. 6219 SmallVector<ISD::InputArg, 32> Ins; 6220 SmallVector<EVT, 4> RetTys; 6221 ComputeValueVTs(*this, RetTy, RetTys); 6222 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6223 EVT VT = RetTys[I]; 6224 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6225 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6226 for (unsigned i = 0; i != NumRegs; ++i) { 6227 ISD::InputArg MyFlags; 6228 MyFlags.VT = RegisterVT.getSimpleVT(); 6229 MyFlags.Used = isReturnValueUsed; 6230 if (RetSExt) 6231 MyFlags.Flags.setSExt(); 6232 if (RetZExt) 6233 MyFlags.Flags.setZExt(); 6234 if (isInreg) 6235 MyFlags.Flags.setInReg(); 6236 Ins.push_back(MyFlags); 6237 } 6238 } 6239 6240 SmallVector<SDValue, 4> InVals; 6241 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6242 Outs, OutVals, Ins, dl, DAG, InVals); 6243 6244 // Verify that the target's LowerCall behaved as expected. 6245 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6246 "LowerCall didn't return a valid chain!"); 6247 assert((!isTailCall || InVals.empty()) && 6248 "LowerCall emitted a return value for a tail call!"); 6249 assert((isTailCall || InVals.size() == Ins.size()) && 6250 "LowerCall didn't emit the correct number of values!"); 6251 6252 // For a tail call, the return value is merely live-out and there aren't 6253 // any nodes in the DAG representing it. Return a special value to 6254 // indicate that a tail call has been emitted and no more Instructions 6255 // should be processed in the current block. 6256 if (isTailCall) { 6257 DAG.setRoot(Chain); 6258 return std::make_pair(SDValue(), SDValue()); 6259 } 6260 6261 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6262 assert(InVals[i].getNode() && 6263 "LowerCall emitted a null value!"); 6264 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6265 "LowerCall emitted a value with the wrong type!"); 6266 }); 6267 6268 // Collect the legal value parts into potentially illegal values 6269 // that correspond to the original function's return values. 6270 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6271 if (RetSExt) 6272 AssertOp = ISD::AssertSext; 6273 else if (RetZExt) 6274 AssertOp = ISD::AssertZext; 6275 SmallVector<SDValue, 4> ReturnValues; 6276 unsigned CurReg = 0; 6277 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6278 EVT VT = RetTys[I]; 6279 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6280 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6281 6282 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6283 NumRegs, RegisterVT, VT, 6284 AssertOp)); 6285 CurReg += NumRegs; 6286 } 6287 6288 // For a function returning void, there is no return value. We can't create 6289 // such a node, so we just return a null return value in that case. In 6290 // that case, nothing will actually look at the value. 6291 if (ReturnValues.empty()) 6292 return std::make_pair(SDValue(), Chain); 6293 6294 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6295 DAG.getVTList(&RetTys[0], RetTys.size()), 6296 &ReturnValues[0], ReturnValues.size()); 6297 return std::make_pair(Res, Chain); 6298 } 6299 6300 void TargetLowering::LowerOperationWrapper(SDNode *N, 6301 SmallVectorImpl<SDValue> &Results, 6302 SelectionDAG &DAG) const { 6303 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6304 if (Res.getNode()) 6305 Results.push_back(Res); 6306 } 6307 6308 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6309 llvm_unreachable("LowerOperation not implemented for this target!"); 6310 return SDValue(); 6311 } 6312 6313 void 6314 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6315 SDValue Op = getNonRegisterValue(V); 6316 assert((Op.getOpcode() != ISD::CopyFromReg || 6317 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6318 "Copy from a reg to the same reg!"); 6319 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6320 6321 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6322 SDValue Chain = DAG.getEntryNode(); 6323 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6324 PendingExports.push_back(Chain); 6325 } 6326 6327 #include "llvm/CodeGen/SelectionDAGISel.h" 6328 6329 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6330 /// entry block, return true. This includes arguments used by switches, since 6331 /// the switch may expand into multiple basic blocks. 6332 static bool isOnlyUsedInEntryBlock(const Argument *A) { 6333 // With FastISel active, we may be splitting blocks, so force creation 6334 // of virtual registers for all non-dead arguments. 6335 if (EnableFastISel) 6336 return A->use_empty(); 6337 6338 const BasicBlock *Entry = A->getParent()->begin(); 6339 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6340 UI != E; ++UI) { 6341 const User *U = *UI; 6342 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6343 return false; // Use not in entry block. 6344 } 6345 return true; 6346 } 6347 6348 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6349 // If this is the entry block, emit arguments. 6350 const Function &F = *LLVMBB->getParent(); 6351 SelectionDAG &DAG = SDB->DAG; 6352 DebugLoc dl = SDB->getCurDebugLoc(); 6353 const TargetData *TD = TLI.getTargetData(); 6354 SmallVector<ISD::InputArg, 16> Ins; 6355 6356 // Check whether the function can return without sret-demotion. 6357 SmallVector<ISD::OutputArg, 4> Outs; 6358 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6359 Outs, TLI); 6360 6361 if (!FuncInfo->CanLowerReturn) { 6362 // Put in an sret pointer parameter before all the other parameters. 6363 SmallVector<EVT, 1> ValueVTs; 6364 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6365 6366 // NOTE: Assuming that a pointer will never break down to more than one VT 6367 // or one register. 6368 ISD::ArgFlagsTy Flags; 6369 Flags.setSRet(); 6370 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6371 ISD::InputArg RetArg(Flags, RegisterVT, true); 6372 Ins.push_back(RetArg); 6373 } 6374 6375 // Set up the incoming argument description vector. 6376 unsigned Idx = 1; 6377 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6378 I != E; ++I, ++Idx) { 6379 SmallVector<EVT, 4> ValueVTs; 6380 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6381 bool isArgValueUsed = !I->use_empty(); 6382 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6383 Value != NumValues; ++Value) { 6384 EVT VT = ValueVTs[Value]; 6385 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6386 ISD::ArgFlagsTy Flags; 6387 unsigned OriginalAlignment = 6388 TD->getABITypeAlignment(ArgTy); 6389 6390 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6391 Flags.setZExt(); 6392 if (F.paramHasAttr(Idx, Attribute::SExt)) 6393 Flags.setSExt(); 6394 if (F.paramHasAttr(Idx, Attribute::InReg)) 6395 Flags.setInReg(); 6396 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6397 Flags.setSRet(); 6398 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6399 Flags.setByVal(); 6400 PointerType *Ty = cast<PointerType>(I->getType()); 6401 Type *ElementTy = Ty->getElementType(); 6402 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6403 // For ByVal, alignment should be passed from FE. BE will guess if 6404 // this info is not there but there are cases it cannot get right. 6405 unsigned FrameAlign; 6406 if (F.getParamAlignment(Idx)) 6407 FrameAlign = F.getParamAlignment(Idx); 6408 else 6409 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6410 Flags.setByValAlign(FrameAlign); 6411 } 6412 if (F.paramHasAttr(Idx, Attribute::Nest)) 6413 Flags.setNest(); 6414 Flags.setOrigAlign(OriginalAlignment); 6415 6416 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6417 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6418 for (unsigned i = 0; i != NumRegs; ++i) { 6419 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6420 if (NumRegs > 1 && i == 0) 6421 MyFlags.Flags.setSplit(); 6422 // if it isn't first piece, alignment must be 1 6423 else if (i > 0) 6424 MyFlags.Flags.setOrigAlign(1); 6425 Ins.push_back(MyFlags); 6426 } 6427 } 6428 } 6429 6430 // Call the target to set up the argument values. 6431 SmallVector<SDValue, 8> InVals; 6432 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6433 F.isVarArg(), Ins, 6434 dl, DAG, InVals); 6435 6436 // Verify that the target's LowerFormalArguments behaved as expected. 6437 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6438 "LowerFormalArguments didn't return a valid chain!"); 6439 assert(InVals.size() == Ins.size() && 6440 "LowerFormalArguments didn't emit the correct number of values!"); 6441 DEBUG({ 6442 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6443 assert(InVals[i].getNode() && 6444 "LowerFormalArguments emitted a null value!"); 6445 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6446 "LowerFormalArguments emitted a value with the wrong type!"); 6447 } 6448 }); 6449 6450 // Update the DAG with the new chain value resulting from argument lowering. 6451 DAG.setRoot(NewRoot); 6452 6453 // Set up the argument values. 6454 unsigned i = 0; 6455 Idx = 1; 6456 if (!FuncInfo->CanLowerReturn) { 6457 // Create a virtual register for the sret pointer, and put in a copy 6458 // from the sret argument into it. 6459 SmallVector<EVT, 1> ValueVTs; 6460 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6461 EVT VT = ValueVTs[0]; 6462 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6463 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6464 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6465 RegVT, VT, AssertOp); 6466 6467 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6468 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6469 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6470 FuncInfo->DemoteRegister = SRetReg; 6471 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6472 SRetReg, ArgValue); 6473 DAG.setRoot(NewRoot); 6474 6475 // i indexes lowered arguments. Bump it past the hidden sret argument. 6476 // Idx indexes LLVM arguments. Don't touch it. 6477 ++i; 6478 } 6479 6480 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6481 ++I, ++Idx) { 6482 SmallVector<SDValue, 4> ArgValues; 6483 SmallVector<EVT, 4> ValueVTs; 6484 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6485 unsigned NumValues = ValueVTs.size(); 6486 6487 // If this argument is unused then remember its value. It is used to generate 6488 // debugging information. 6489 if (I->use_empty() && NumValues) 6490 SDB->setUnusedArgValue(I, InVals[i]); 6491 6492 for (unsigned Val = 0; Val != NumValues; ++Val) { 6493 EVT VT = ValueVTs[Val]; 6494 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6495 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6496 6497 if (!I->use_empty()) { 6498 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6499 if (F.paramHasAttr(Idx, Attribute::SExt)) 6500 AssertOp = ISD::AssertSext; 6501 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6502 AssertOp = ISD::AssertZext; 6503 6504 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6505 NumParts, PartVT, VT, 6506 AssertOp)); 6507 } 6508 6509 i += NumParts; 6510 } 6511 6512 // We don't need to do anything else for unused arguments. 6513 if (ArgValues.empty()) 6514 continue; 6515 6516 // Note down frame index for byval arguments. 6517 if (I->hasByValAttr()) 6518 if (FrameIndexSDNode *FI = 6519 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6520 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6521 6522 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6523 SDB->getCurDebugLoc()); 6524 SDB->setValue(I, Res); 6525 6526 // If this argument is live outside of the entry block, insert a copy from 6527 // wherever we got it to the vreg that other BB's will reference it as. 6528 if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6529 // If we can, though, try to skip creating an unnecessary vreg. 6530 // FIXME: This isn't very clean... it would be nice to make this more 6531 // general. It's also subtly incompatible with the hacks FastISel 6532 // uses with vregs. 6533 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6534 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6535 FuncInfo->ValueMap[I] = Reg; 6536 continue; 6537 } 6538 } 6539 if (!isOnlyUsedInEntryBlock(I)) { 6540 FuncInfo->InitializeRegForValue(I); 6541 SDB->CopyToExportRegsIfNeeded(I); 6542 } 6543 } 6544 6545 assert(i == InVals.size() && "Argument register count mismatch!"); 6546 6547 // Finally, if the target has anything special to do, allow it to do so. 6548 // FIXME: this should insert code into the DAG! 6549 EmitFunctionEntryCode(); 6550 } 6551 6552 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6553 /// ensure constants are generated when needed. Remember the virtual registers 6554 /// that need to be added to the Machine PHI nodes as input. We cannot just 6555 /// directly add them, because expansion might result in multiple MBB's for one 6556 /// BB. As such, the start of the BB might correspond to a different MBB than 6557 /// the end. 6558 /// 6559 void 6560 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6561 const TerminatorInst *TI = LLVMBB->getTerminator(); 6562 6563 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6564 6565 // Check successor nodes' PHI nodes that expect a constant to be available 6566 // from this block. 6567 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6568 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6569 if (!isa<PHINode>(SuccBB->begin())) continue; 6570 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6571 6572 // If this terminator has multiple identical successors (common for 6573 // switches), only handle each succ once. 6574 if (!SuccsHandled.insert(SuccMBB)) continue; 6575 6576 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6577 6578 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6579 // nodes and Machine PHI nodes, but the incoming operands have not been 6580 // emitted yet. 6581 for (BasicBlock::const_iterator I = SuccBB->begin(); 6582 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6583 // Ignore dead phi's. 6584 if (PN->use_empty()) continue; 6585 6586 // Skip empty types 6587 if (PN->getType()->isEmptyTy()) 6588 continue; 6589 6590 unsigned Reg; 6591 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6592 6593 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6594 unsigned &RegOut = ConstantsOut[C]; 6595 if (RegOut == 0) { 6596 RegOut = FuncInfo.CreateRegs(C->getType()); 6597 CopyValueToVirtualRegister(C, RegOut); 6598 } 6599 Reg = RegOut; 6600 } else { 6601 DenseMap<const Value *, unsigned>::iterator I = 6602 FuncInfo.ValueMap.find(PHIOp); 6603 if (I != FuncInfo.ValueMap.end()) 6604 Reg = I->second; 6605 else { 6606 assert(isa<AllocaInst>(PHIOp) && 6607 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6608 "Didn't codegen value into a register!??"); 6609 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6610 CopyValueToVirtualRegister(PHIOp, Reg); 6611 } 6612 } 6613 6614 // Remember that this register needs to added to the machine PHI node as 6615 // the input for this MBB. 6616 SmallVector<EVT, 4> ValueVTs; 6617 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6618 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6619 EVT VT = ValueVTs[vti]; 6620 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6621 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6622 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6623 Reg += NumRegisters; 6624 } 6625 } 6626 } 6627 ConstantsOut.clear(); 6628 } 6629