xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision c7df35d2b28eae824cded70663a2becf359a5402)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallingConv.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfoMetadata.h"
78 #include "llvm/IR/DebugLoc.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GetElementPtrTypeIterator.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/Intrinsics.h"
88 #include "llvm/IR/IntrinsicsAArch64.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PatternMatch.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/MC/MCContext.h"
100 #include "llvm/MC/MCSymbol.h"
101 #include "llvm/Support/AtomicOrdering.h"
102 #include "llvm/Support/BranchProbability.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CodeGen.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Compiler.h"
107 #include "llvm/Support/Debug.h"
108 #include "llvm/Support/ErrorHandling.h"
109 #include "llvm/Support/MachineValueType.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Target/TargetIntrinsicInfo.h"
113 #include "llvm/Target/TargetMachine.h"
114 #include "llvm/Target/TargetOptions.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cstddef>
119 #include <cstdint>
120 #include <cstring>
121 #include <iterator>
122 #include <limits>
123 #include <numeric>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 using namespace llvm;
129 using namespace PatternMatch;
130 using namespace SwitchCG;
131 
132 #define DEBUG_TYPE "isel"
133 
134 /// LimitFloatPrecision - Generate low-precision inline sequences for
135 /// some float libcalls (6, 8 or 12 bits).
136 static unsigned LimitFloatPrecision;
137 
138 static cl::opt<bool>
139     InsertAssertAlign("insert-assert-align", cl::init(true),
140                       cl::desc("Insert the experimental `assertalign` node."),
141                       cl::ReallyHidden);
142 
143 static cl::opt<unsigned, true>
144     LimitFPPrecision("limit-float-precision",
145                      cl::desc("Generate low-precision inline sequences "
146                               "for some float libcalls"),
147                      cl::location(LimitFloatPrecision), cl::Hidden,
148                      cl::init(0));
149 
150 static cl::opt<unsigned> SwitchPeelThreshold(
151     "switch-peel-threshold", cl::Hidden, cl::init(66),
152     cl::desc("Set the case probability threshold for peeling the case from a "
153              "switch statement. A value greater than 100 will void this "
154              "optimization"));
155 
156 // Limit the width of DAG chains. This is important in general to prevent
157 // DAG-based analysis from blowing up. For example, alias analysis and
158 // load clustering may not complete in reasonable time. It is difficult to
159 // recognize and avoid this situation within each individual analysis, and
160 // future analyses are likely to have the same behavior. Limiting DAG width is
161 // the safe approach and will be especially important with global DAGs.
162 //
163 // MaxParallelChains default is arbitrarily high to avoid affecting
164 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
165 // sequence over this should have been converted to llvm.memcpy by the
166 // frontend. It is easy to induce this behavior with .ll code such as:
167 // %buffer = alloca [4096 x i8]
168 // %data = load [4096 x i8]* %argPtr
169 // store [4096 x i8] %data, [4096 x i8]* %buffer
170 static const unsigned MaxParallelChains = 64;
171 
172 // Return the calling convention if the Value passed requires ABI mangling as it
173 // is a parameter to a function or a return value from a function which is not
174 // an intrinsic.
175 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
176   if (auto *R = dyn_cast<ReturnInst>(V))
177     return R->getParent()->getParent()->getCallingConv();
178 
179   if (auto *CI = dyn_cast<CallInst>(V)) {
180     const bool IsInlineAsm = CI->isInlineAsm();
181     const bool IsIndirectFunctionCall =
182         !IsInlineAsm && !CI->getCalledFunction();
183 
184     // It is possible that the call instruction is an inline asm statement or an
185     // indirect function call in which case the return value of
186     // getCalledFunction() would be nullptr.
187     const bool IsInstrinsicCall =
188         !IsInlineAsm && !IsIndirectFunctionCall &&
189         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
190 
191     if (!IsInlineAsm && !IsInstrinsicCall)
192       return CI->getCallingConv();
193   }
194 
195   return None;
196 }
197 
198 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
199                                       const SDValue *Parts, unsigned NumParts,
200                                       MVT PartVT, EVT ValueVT, const Value *V,
201                                       Optional<CallingConv::ID> CC);
202 
203 /// getCopyFromParts - Create a value that contains the specified legal parts
204 /// combined into the value they represent.  If the parts combine to a type
205 /// larger than ValueVT then AssertOp can be used to specify whether the extra
206 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
207 /// (ISD::AssertSext).
208 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
209                                 const SDValue *Parts, unsigned NumParts,
210                                 MVT PartVT, EVT ValueVT, const Value *V,
211                                 Optional<CallingConv::ID> CC = None,
212                                 Optional<ISD::NodeType> AssertOp = None) {
213   // Let the target assemble the parts if it wants to
214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
215   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
216                                                    PartVT, ValueVT, CC))
217     return Val;
218 
219   if (ValueVT.isVector())
220     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
221                                   CC);
222 
223   assert(NumParts > 0 && "No parts to assemble!");
224   SDValue Val = Parts[0];
225 
226   if (NumParts > 1) {
227     // Assemble the value from multiple parts.
228     if (ValueVT.isInteger()) {
229       unsigned PartBits = PartVT.getSizeInBits();
230       unsigned ValueBits = ValueVT.getSizeInBits();
231 
232       // Assemble the power of 2 part.
233       unsigned RoundParts =
234           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
235       unsigned RoundBits = PartBits * RoundParts;
236       EVT RoundVT = RoundBits == ValueBits ?
237         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
238       SDValue Lo, Hi;
239 
240       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
241 
242       if (RoundParts > 2) {
243         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
244                               PartVT, HalfVT, V);
245         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
246                               RoundParts / 2, PartVT, HalfVT, V);
247       } else {
248         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
249         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
250       }
251 
252       if (DAG.getDataLayout().isBigEndian())
253         std::swap(Lo, Hi);
254 
255       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
256 
257       if (RoundParts < NumParts) {
258         // Assemble the trailing non-power-of-2 part.
259         unsigned OddParts = NumParts - RoundParts;
260         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
261         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
262                               OddVT, V, CC);
263 
264         // Combine the round and odd parts.
265         Lo = Val;
266         if (DAG.getDataLayout().isBigEndian())
267           std::swap(Lo, Hi);
268         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
269         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
270         Hi =
271             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
272                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
273                                         TLI.getPointerTy(DAG.getDataLayout())));
274         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
275         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
276       }
277     } else if (PartVT.isFloatingPoint()) {
278       // FP split into multiple FP parts (for ppcf128)
279       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
280              "Unexpected split");
281       SDValue Lo, Hi;
282       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
283       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
284       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
285         std::swap(Lo, Hi);
286       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
287     } else {
288       // FP split into integer parts (soft fp)
289       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
290              !PartVT.isVector() && "Unexpected split");
291       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
292       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
293     }
294   }
295 
296   // There is now one part, held in Val.  Correct it to match ValueVT.
297   // PartEVT is the type of the register class that holds the value.
298   // ValueVT is the type of the inline asm operation.
299   EVT PartEVT = Val.getValueType();
300 
301   if (PartEVT == ValueVT)
302     return Val;
303 
304   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
305       ValueVT.bitsLT(PartEVT)) {
306     // For an FP value in an integer part, we need to truncate to the right
307     // width first.
308     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
309     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
310   }
311 
312   // Handle types that have the same size.
313   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
314     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
315 
316   // Handle types with different sizes.
317   if (PartEVT.isInteger() && ValueVT.isInteger()) {
318     if (ValueVT.bitsLT(PartEVT)) {
319       // For a truncate, see if we have any information to
320       // indicate whether the truncated bits will always be
321       // zero or sign-extension.
322       if (AssertOp.hasValue())
323         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
324                           DAG.getValueType(ValueVT));
325       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
326     }
327     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
328   }
329 
330   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
331     // FP_ROUND's are always exact here.
332     if (ValueVT.bitsLT(Val.getValueType()))
333       return DAG.getNode(
334           ISD::FP_ROUND, DL, ValueVT, Val,
335           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
336 
337     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
338   }
339 
340   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
341   // then truncating.
342   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
343       ValueVT.bitsLT(PartEVT)) {
344     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
345     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
346   }
347 
348   report_fatal_error("Unknown mismatch in getCopyFromParts!");
349 }
350 
351 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
352                                               const Twine &ErrMsg) {
353   const Instruction *I = dyn_cast_or_null<Instruction>(V);
354   if (!V)
355     return Ctx.emitError(ErrMsg);
356 
357   const char *AsmError = ", possible invalid constraint for vector type";
358   if (const CallInst *CI = dyn_cast<CallInst>(I))
359     if (CI->isInlineAsm())
360       return Ctx.emitError(I, ErrMsg + AsmError);
361 
362   return Ctx.emitError(I, ErrMsg);
363 }
364 
365 /// getCopyFromPartsVector - Create a value that contains the specified legal
366 /// parts combined into the value they represent.  If the parts combine to a
367 /// type larger than ValueVT then AssertOp can be used to specify whether the
368 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
369 /// ValueVT (ISD::AssertSext).
370 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
371                                       const SDValue *Parts, unsigned NumParts,
372                                       MVT PartVT, EVT ValueVT, const Value *V,
373                                       Optional<CallingConv::ID> CallConv) {
374   assert(ValueVT.isVector() && "Not a vector value");
375   assert(NumParts > 0 && "No parts to assemble!");
376   const bool IsABIRegCopy = CallConv.hasValue();
377 
378   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
379   SDValue Val = Parts[0];
380 
381   // Handle a multi-element vector.
382   if (NumParts > 1) {
383     EVT IntermediateVT;
384     MVT RegisterVT;
385     unsigned NumIntermediates;
386     unsigned NumRegs;
387 
388     if (IsABIRegCopy) {
389       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
390           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
391           NumIntermediates, RegisterVT);
392     } else {
393       NumRegs =
394           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
395                                      NumIntermediates, RegisterVT);
396     }
397 
398     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
399     NumParts = NumRegs; // Silence a compiler warning.
400     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
401     assert(RegisterVT.getSizeInBits() ==
402            Parts[0].getSimpleValueType().getSizeInBits() &&
403            "Part type sizes don't match!");
404 
405     // Assemble the parts into intermediate operands.
406     SmallVector<SDValue, 8> Ops(NumIntermediates);
407     if (NumIntermediates == NumParts) {
408       // If the register was not expanded, truncate or copy the value,
409       // as appropriate.
410       for (unsigned i = 0; i != NumParts; ++i)
411         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
412                                   PartVT, IntermediateVT, V);
413     } else if (NumParts > 0) {
414       // If the intermediate type was expanded, build the intermediate
415       // operands from the parts.
416       assert(NumParts % NumIntermediates == 0 &&
417              "Must expand into a divisible number of parts!");
418       unsigned Factor = NumParts / NumIntermediates;
419       for (unsigned i = 0; i != NumIntermediates; ++i)
420         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
421                                   PartVT, IntermediateVT, V);
422     }
423 
424     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
425     // intermediate operands.
426     EVT BuiltVectorTy =
427         IntermediateVT.isVector()
428             ? EVT::getVectorVT(
429                   *DAG.getContext(), IntermediateVT.getScalarType(),
430                   IntermediateVT.getVectorElementCount() * NumParts)
431             : EVT::getVectorVT(*DAG.getContext(),
432                                IntermediateVT.getScalarType(),
433                                NumIntermediates);
434     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
435                                                 : ISD::BUILD_VECTOR,
436                       DL, BuiltVectorTy, Ops);
437   }
438 
439   // There is now one part, held in Val.  Correct it to match ValueVT.
440   EVT PartEVT = Val.getValueType();
441 
442   if (PartEVT == ValueVT)
443     return Val;
444 
445   if (PartEVT.isVector()) {
446     // If the element type of the source/dest vectors are the same, but the
447     // parts vector has more elements than the value vector, then we have a
448     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
449     // elements we want.
450     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
451       assert((PartEVT.getVectorElementCount().Min >
452               ValueVT.getVectorElementCount().Min) &&
453              (PartEVT.getVectorElementCount().Scalable ==
454               ValueVT.getVectorElementCount().Scalable) &&
455              "Cannot narrow, it would be a lossy transformation");
456       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
457                          DAG.getVectorIdxConstant(0, DL));
458     }
459 
460     // Vector/Vector bitcast.
461     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
462       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
463 
464     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
465       "Cannot handle this kind of promotion");
466     // Promoted vector extract
467     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
468 
469   }
470 
471   // Trivial bitcast if the types are the same size and the destination
472   // vector type is legal.
473   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
474       TLI.isTypeLegal(ValueVT))
475     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
476 
477   if (ValueVT.getVectorNumElements() != 1) {
478      // Certain ABIs require that vectors are passed as integers. For vectors
479      // are the same size, this is an obvious bitcast.
480      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
481        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
482      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
483        // Bitcast Val back the original type and extract the corresponding
484        // vector we want.
485        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
486        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
487                                            ValueVT.getVectorElementType(), Elts);
488        Val = DAG.getBitcast(WiderVecType, Val);
489        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
490                           DAG.getVectorIdxConstant(0, DL));
491      }
492 
493      diagnosePossiblyInvalidConstraint(
494          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
495      return DAG.getUNDEF(ValueVT);
496   }
497 
498   // Handle cases such as i8 -> <1 x i1>
499   EVT ValueSVT = ValueVT.getVectorElementType();
500   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
501     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
502       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
503     else
504       Val = ValueVT.isFloatingPoint()
505                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
506                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
507   }
508 
509   return DAG.getBuildVector(ValueVT, DL, Val);
510 }
511 
512 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
513                                  SDValue Val, SDValue *Parts, unsigned NumParts,
514                                  MVT PartVT, const Value *V,
515                                  Optional<CallingConv::ID> CallConv);
516 
517 /// getCopyToParts - Create a series of nodes that contain the specified value
518 /// split into legal parts.  If the parts contain more bits than Val, then, for
519 /// integers, ExtendKind can be used to specify how to generate the extra bits.
520 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
521                            SDValue *Parts, unsigned NumParts, MVT PartVT,
522                            const Value *V,
523                            Optional<CallingConv::ID> CallConv = None,
524                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
525   // Let the target split the parts if it wants to
526   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
527   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
528                                       CallConv))
529     return;
530   EVT ValueVT = Val.getValueType();
531 
532   // Handle the vector case separately.
533   if (ValueVT.isVector())
534     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
535                                 CallConv);
536 
537   unsigned PartBits = PartVT.getSizeInBits();
538   unsigned OrigNumParts = NumParts;
539   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
540          "Copying to an illegal type!");
541 
542   if (NumParts == 0)
543     return;
544 
545   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
546   EVT PartEVT = PartVT;
547   if (PartEVT == ValueVT) {
548     assert(NumParts == 1 && "No-op copy with multiple parts!");
549     Parts[0] = Val;
550     return;
551   }
552 
553   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
554     // If the parts cover more bits than the value has, promote the value.
555     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
556       assert(NumParts == 1 && "Do not know what to promote to!");
557       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
558     } else {
559       if (ValueVT.isFloatingPoint()) {
560         // FP values need to be bitcast, then extended if they are being put
561         // into a larger container.
562         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
563         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
564       }
565       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
566              ValueVT.isInteger() &&
567              "Unknown mismatch!");
568       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
569       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
570       if (PartVT == MVT::x86mmx)
571         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
572     }
573   } else if (PartBits == ValueVT.getSizeInBits()) {
574     // Different types of the same size.
575     assert(NumParts == 1 && PartEVT != ValueVT);
576     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
577   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
578     // If the parts cover less bits than value has, truncate the value.
579     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
580            ValueVT.isInteger() &&
581            "Unknown mismatch!");
582     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
583     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
584     if (PartVT == MVT::x86mmx)
585       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
586   }
587 
588   // The value may have changed - recompute ValueVT.
589   ValueVT = Val.getValueType();
590   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
591          "Failed to tile the value with PartVT!");
592 
593   if (NumParts == 1) {
594     if (PartEVT != ValueVT) {
595       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
596                                         "scalar-to-vector conversion failed");
597       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
598     }
599 
600     Parts[0] = Val;
601     return;
602   }
603 
604   // Expand the value into multiple parts.
605   if (NumParts & (NumParts - 1)) {
606     // The number of parts is not a power of 2.  Split off and copy the tail.
607     assert(PartVT.isInteger() && ValueVT.isInteger() &&
608            "Do not know what to expand to!");
609     unsigned RoundParts = 1 << Log2_32(NumParts);
610     unsigned RoundBits = RoundParts * PartBits;
611     unsigned OddParts = NumParts - RoundParts;
612     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
613       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
614 
615     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
616                    CallConv);
617 
618     if (DAG.getDataLayout().isBigEndian())
619       // The odd parts were reversed by getCopyToParts - unreverse them.
620       std::reverse(Parts + RoundParts, Parts + NumParts);
621 
622     NumParts = RoundParts;
623     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
624     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
625   }
626 
627   // The number of parts is a power of 2.  Repeatedly bisect the value using
628   // EXTRACT_ELEMENT.
629   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
630                          EVT::getIntegerVT(*DAG.getContext(),
631                                            ValueVT.getSizeInBits()),
632                          Val);
633 
634   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
635     for (unsigned i = 0; i < NumParts; i += StepSize) {
636       unsigned ThisBits = StepSize * PartBits / 2;
637       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
638       SDValue &Part0 = Parts[i];
639       SDValue &Part1 = Parts[i+StepSize/2];
640 
641       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
642                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
643       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
644                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
645 
646       if (ThisBits == PartBits && ThisVT != PartVT) {
647         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
648         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
649       }
650     }
651   }
652 
653   if (DAG.getDataLayout().isBigEndian())
654     std::reverse(Parts, Parts + OrigNumParts);
655 }
656 
657 static SDValue widenVectorToPartType(SelectionDAG &DAG,
658                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
659   if (!PartVT.isVector())
660     return SDValue();
661 
662   EVT ValueVT = Val.getValueType();
663   unsigned PartNumElts = PartVT.getVectorNumElements();
664   unsigned ValueNumElts = ValueVT.getVectorNumElements();
665   if (PartNumElts > ValueNumElts &&
666       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
667     EVT ElementVT = PartVT.getVectorElementType();
668     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
669     // undef elements.
670     SmallVector<SDValue, 16> Ops;
671     DAG.ExtractVectorElements(Val, Ops);
672     SDValue EltUndef = DAG.getUNDEF(ElementVT);
673     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
674       Ops.push_back(EltUndef);
675 
676     // FIXME: Use CONCAT for 2x -> 4x.
677     return DAG.getBuildVector(PartVT, DL, Ops);
678   }
679 
680   return SDValue();
681 }
682 
683 /// getCopyToPartsVector - Create a series of nodes that contain the specified
684 /// value split into legal parts.
685 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
686                                  SDValue Val, SDValue *Parts, unsigned NumParts,
687                                  MVT PartVT, const Value *V,
688                                  Optional<CallingConv::ID> CallConv) {
689   EVT ValueVT = Val.getValueType();
690   assert(ValueVT.isVector() && "Not a vector");
691   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
692   const bool IsABIRegCopy = CallConv.hasValue();
693 
694   if (NumParts == 1) {
695     EVT PartEVT = PartVT;
696     if (PartEVT == ValueVT) {
697       // Nothing to do.
698     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
699       // Bitconvert vector->vector case.
700       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
701     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
702       Val = Widened;
703     } else if (PartVT.isVector() &&
704                PartEVT.getVectorElementType().bitsGE(
705                  ValueVT.getVectorElementType()) &&
706                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
707 
708       // Promoted vector extract
709       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
710     } else {
711       if (ValueVT.getVectorNumElements() == 1) {
712         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
713                           DAG.getVectorIdxConstant(0, DL));
714       } else {
715         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
716                "lossy conversion of vector to scalar type");
717         EVT IntermediateType =
718             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
719         Val = DAG.getBitcast(IntermediateType, Val);
720         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
721       }
722     }
723 
724     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
725     Parts[0] = Val;
726     return;
727   }
728 
729   // Handle a multi-element vector.
730   EVT IntermediateVT;
731   MVT RegisterVT;
732   unsigned NumIntermediates;
733   unsigned NumRegs;
734   if (IsABIRegCopy) {
735     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
736         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
737         NumIntermediates, RegisterVT);
738   } else {
739     NumRegs =
740         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
741                                    NumIntermediates, RegisterVT);
742   }
743 
744   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
745   NumParts = NumRegs; // Silence a compiler warning.
746   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
747 
748   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
749          "Mixing scalable and fixed vectors when copying in parts");
750 
751   ElementCount DestEltCnt;
752 
753   if (IntermediateVT.isVector())
754     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
755   else
756     DestEltCnt = ElementCount(NumIntermediates, false);
757 
758   EVT BuiltVectorTy = EVT::getVectorVT(
759       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt);
760   if (ValueVT != BuiltVectorTy) {
761     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
762       Val = Widened;
763 
764     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
765   }
766 
767   // Split the vector into intermediate operands.
768   SmallVector<SDValue, 8> Ops(NumIntermediates);
769   for (unsigned i = 0; i != NumIntermediates; ++i) {
770     if (IntermediateVT.isVector()) {
771       // This does something sensible for scalable vectors - see the
772       // definition of EXTRACT_SUBVECTOR for further details.
773       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
774       Ops[i] =
775           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
776                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
777     } else {
778       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
779                            DAG.getVectorIdxConstant(i, DL));
780     }
781   }
782 
783   // Split the intermediate operands into legal parts.
784   if (NumParts == NumIntermediates) {
785     // If the register was not expanded, promote or copy the value,
786     // as appropriate.
787     for (unsigned i = 0; i != NumParts; ++i)
788       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
789   } else if (NumParts > 0) {
790     // If the intermediate type was expanded, split each the value into
791     // legal parts.
792     assert(NumIntermediates != 0 && "division by zero");
793     assert(NumParts % NumIntermediates == 0 &&
794            "Must expand into a divisible number of parts!");
795     unsigned Factor = NumParts / NumIntermediates;
796     for (unsigned i = 0; i != NumIntermediates; ++i)
797       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
798                      CallConv);
799   }
800 }
801 
802 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
803                            EVT valuevt, Optional<CallingConv::ID> CC)
804     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
805       RegCount(1, regs.size()), CallConv(CC) {}
806 
807 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
808                            const DataLayout &DL, unsigned Reg, Type *Ty,
809                            Optional<CallingConv::ID> CC) {
810   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
811 
812   CallConv = CC;
813 
814   for (EVT ValueVT : ValueVTs) {
815     unsigned NumRegs =
816         isABIMangled()
817             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
818             : TLI.getNumRegisters(Context, ValueVT);
819     MVT RegisterVT =
820         isABIMangled()
821             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
822             : TLI.getRegisterType(Context, ValueVT);
823     for (unsigned i = 0; i != NumRegs; ++i)
824       Regs.push_back(Reg + i);
825     RegVTs.push_back(RegisterVT);
826     RegCount.push_back(NumRegs);
827     Reg += NumRegs;
828   }
829 }
830 
831 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
832                                       FunctionLoweringInfo &FuncInfo,
833                                       const SDLoc &dl, SDValue &Chain,
834                                       SDValue *Flag, const Value *V) const {
835   // A Value with type {} or [0 x %t] needs no registers.
836   if (ValueVTs.empty())
837     return SDValue();
838 
839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
840 
841   // Assemble the legal parts into the final values.
842   SmallVector<SDValue, 4> Values(ValueVTs.size());
843   SmallVector<SDValue, 8> Parts;
844   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
845     // Copy the legal parts from the registers.
846     EVT ValueVT = ValueVTs[Value];
847     unsigned NumRegs = RegCount[Value];
848     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
849                                           *DAG.getContext(),
850                                           CallConv.getValue(), RegVTs[Value])
851                                     : RegVTs[Value];
852 
853     Parts.resize(NumRegs);
854     for (unsigned i = 0; i != NumRegs; ++i) {
855       SDValue P;
856       if (!Flag) {
857         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
858       } else {
859         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
860         *Flag = P.getValue(2);
861       }
862 
863       Chain = P.getValue(1);
864       Parts[i] = P;
865 
866       // If the source register was virtual and if we know something about it,
867       // add an assert node.
868       if (!Register::isVirtualRegister(Regs[Part + i]) ||
869           !RegisterVT.isInteger())
870         continue;
871 
872       const FunctionLoweringInfo::LiveOutInfo *LOI =
873         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
874       if (!LOI)
875         continue;
876 
877       unsigned RegSize = RegisterVT.getScalarSizeInBits();
878       unsigned NumSignBits = LOI->NumSignBits;
879       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
880 
881       if (NumZeroBits == RegSize) {
882         // The current value is a zero.
883         // Explicitly express that as it would be easier for
884         // optimizations to kick in.
885         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
886         continue;
887       }
888 
889       // FIXME: We capture more information than the dag can represent.  For
890       // now, just use the tightest assertzext/assertsext possible.
891       bool isSExt;
892       EVT FromVT(MVT::Other);
893       if (NumZeroBits) {
894         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
895         isSExt = false;
896       } else if (NumSignBits > 1) {
897         FromVT =
898             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
899         isSExt = true;
900       } else {
901         continue;
902       }
903       // Add an assertion node.
904       assert(FromVT != MVT::Other);
905       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
906                              RegisterVT, P, DAG.getValueType(FromVT));
907     }
908 
909     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
910                                      RegisterVT, ValueVT, V, CallConv);
911     Part += NumRegs;
912     Parts.clear();
913   }
914 
915   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
916 }
917 
918 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
919                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
920                                  const Value *V,
921                                  ISD::NodeType PreferredExtendType) const {
922   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
923   ISD::NodeType ExtendKind = PreferredExtendType;
924 
925   // Get the list of the values's legal parts.
926   unsigned NumRegs = Regs.size();
927   SmallVector<SDValue, 8> Parts(NumRegs);
928   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
929     unsigned NumParts = RegCount[Value];
930 
931     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
932                                           *DAG.getContext(),
933                                           CallConv.getValue(), RegVTs[Value])
934                                     : RegVTs[Value];
935 
936     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
937       ExtendKind = ISD::ZERO_EXTEND;
938 
939     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
940                    NumParts, RegisterVT, V, CallConv, ExtendKind);
941     Part += NumParts;
942   }
943 
944   // Copy the parts into the registers.
945   SmallVector<SDValue, 8> Chains(NumRegs);
946   for (unsigned i = 0; i != NumRegs; ++i) {
947     SDValue Part;
948     if (!Flag) {
949       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
950     } else {
951       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
952       *Flag = Part.getValue(1);
953     }
954 
955     Chains[i] = Part.getValue(0);
956   }
957 
958   if (NumRegs == 1 || Flag)
959     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
960     // flagged to it. That is the CopyToReg nodes and the user are considered
961     // a single scheduling unit. If we create a TokenFactor and return it as
962     // chain, then the TokenFactor is both a predecessor (operand) of the
963     // user as well as a successor (the TF operands are flagged to the user).
964     // c1, f1 = CopyToReg
965     // c2, f2 = CopyToReg
966     // c3     = TokenFactor c1, c2
967     // ...
968     //        = op c3, ..., f2
969     Chain = Chains[NumRegs-1];
970   else
971     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
972 }
973 
974 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
975                                         unsigned MatchingIdx, const SDLoc &dl,
976                                         SelectionDAG &DAG,
977                                         std::vector<SDValue> &Ops) const {
978   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
979 
980   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
981   if (HasMatching)
982     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
983   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
984     // Put the register class of the virtual registers in the flag word.  That
985     // way, later passes can recompute register class constraints for inline
986     // assembly as well as normal instructions.
987     // Don't do this for tied operands that can use the regclass information
988     // from the def.
989     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
990     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
991     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
992   }
993 
994   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
995   Ops.push_back(Res);
996 
997   if (Code == InlineAsm::Kind_Clobber) {
998     // Clobbers should always have a 1:1 mapping with registers, and may
999     // reference registers that have illegal (e.g. vector) types. Hence, we
1000     // shouldn't try to apply any sort of splitting logic to them.
1001     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1002            "No 1:1 mapping from clobbers to regs?");
1003     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
1004     (void)SP;
1005     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1006       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1007       assert(
1008           (Regs[I] != SP ||
1009            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1010           "If we clobbered the stack pointer, MFI should know about it.");
1011     }
1012     return;
1013   }
1014 
1015   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1016     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
1017     MVT RegisterVT = RegVTs[Value];
1018     for (unsigned i = 0; i != NumRegs; ++i) {
1019       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1020       unsigned TheReg = Regs[Reg++];
1021       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1022     }
1023   }
1024 }
1025 
1026 SmallVector<std::pair<unsigned, unsigned>, 4>
1027 RegsForValue::getRegsAndSizes() const {
1028   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1029   unsigned I = 0;
1030   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1031     unsigned RegCount = std::get<0>(CountAndVT);
1032     MVT RegisterVT = std::get<1>(CountAndVT);
1033     unsigned RegisterSize = RegisterVT.getSizeInBits();
1034     for (unsigned E = I + RegCount; I != E; ++I)
1035       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1036   }
1037   return OutVec;
1038 }
1039 
1040 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1041                                const TargetLibraryInfo *li) {
1042   AA = aa;
1043   GFI = gfi;
1044   LibInfo = li;
1045   DL = &DAG.getDataLayout();
1046   Context = DAG.getContext();
1047   LPadToCallSiteMap.clear();
1048   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1049 }
1050 
1051 void SelectionDAGBuilder::clear() {
1052   NodeMap.clear();
1053   UnusedArgNodeMap.clear();
1054   PendingLoads.clear();
1055   PendingExports.clear();
1056   PendingConstrainedFP.clear();
1057   PendingConstrainedFPStrict.clear();
1058   CurInst = nullptr;
1059   HasTailCall = false;
1060   SDNodeOrder = LowestSDNodeOrder;
1061   StatepointLowering.clear();
1062 }
1063 
1064 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1065   DanglingDebugInfoMap.clear();
1066 }
1067 
1068 // Update DAG root to include dependencies on Pending chains.
1069 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1070   SDValue Root = DAG.getRoot();
1071 
1072   if (Pending.empty())
1073     return Root;
1074 
1075   // Add current root to PendingChains, unless we already indirectly
1076   // depend on it.
1077   if (Root.getOpcode() != ISD::EntryToken) {
1078     unsigned i = 0, e = Pending.size();
1079     for (; i != e; ++i) {
1080       assert(Pending[i].getNode()->getNumOperands() > 1);
1081       if (Pending[i].getNode()->getOperand(0) == Root)
1082         break;  // Don't add the root if we already indirectly depend on it.
1083     }
1084 
1085     if (i == e)
1086       Pending.push_back(Root);
1087   }
1088 
1089   if (Pending.size() == 1)
1090     Root = Pending[0];
1091   else
1092     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1093 
1094   DAG.setRoot(Root);
1095   Pending.clear();
1096   return Root;
1097 }
1098 
1099 SDValue SelectionDAGBuilder::getMemoryRoot() {
1100   return updateRoot(PendingLoads);
1101 }
1102 
1103 SDValue SelectionDAGBuilder::getRoot() {
1104   // Chain up all pending constrained intrinsics together with all
1105   // pending loads, by simply appending them to PendingLoads and
1106   // then calling getMemoryRoot().
1107   PendingLoads.reserve(PendingLoads.size() +
1108                        PendingConstrainedFP.size() +
1109                        PendingConstrainedFPStrict.size());
1110   PendingLoads.append(PendingConstrainedFP.begin(),
1111                       PendingConstrainedFP.end());
1112   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1113                       PendingConstrainedFPStrict.end());
1114   PendingConstrainedFP.clear();
1115   PendingConstrainedFPStrict.clear();
1116   return getMemoryRoot();
1117 }
1118 
1119 SDValue SelectionDAGBuilder::getControlRoot() {
1120   // We need to emit pending fpexcept.strict constrained intrinsics,
1121   // so append them to the PendingExports list.
1122   PendingExports.append(PendingConstrainedFPStrict.begin(),
1123                         PendingConstrainedFPStrict.end());
1124   PendingConstrainedFPStrict.clear();
1125   return updateRoot(PendingExports);
1126 }
1127 
1128 void SelectionDAGBuilder::visit(const Instruction &I) {
1129   // Set up outgoing PHI node register values before emitting the terminator.
1130   if (I.isTerminator()) {
1131     HandlePHINodesInSuccessorBlocks(I.getParent());
1132   }
1133 
1134   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1135   if (!isa<DbgInfoIntrinsic>(I))
1136     ++SDNodeOrder;
1137 
1138   CurInst = &I;
1139 
1140   visit(I.getOpcode(), I);
1141 
1142   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1143     // ConstrainedFPIntrinsics handle their own FMF.
1144     if (!isa<ConstrainedFPIntrinsic>(&I)) {
1145       // Propagate the fast-math-flags of this IR instruction to the DAG node that
1146       // maps to this instruction.
1147       // TODO: We could handle all flags (nsw, etc) here.
1148       // TODO: If an IR instruction maps to >1 node, only the final node will have
1149       //       flags set.
1150       if (SDNode *Node = getNodeForIRValue(&I)) {
1151         SDNodeFlags IncomingFlags;
1152         IncomingFlags.copyFMF(*FPMO);
1153         if (!Node->getFlags().isDefined())
1154           Node->setFlags(IncomingFlags);
1155         else
1156           Node->intersectFlagsWith(IncomingFlags);
1157       }
1158     }
1159   }
1160 
1161   if (!I.isTerminator() && !HasTailCall &&
1162       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1163     CopyToExportRegsIfNeeded(&I);
1164 
1165   CurInst = nullptr;
1166 }
1167 
1168 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1169   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1170 }
1171 
1172 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1173   // Note: this doesn't use InstVisitor, because it has to work with
1174   // ConstantExpr's in addition to instructions.
1175   switch (Opcode) {
1176   default: llvm_unreachable("Unknown instruction type encountered!");
1177     // Build the switch statement using the Instruction.def file.
1178 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1179     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1180 #include "llvm/IR/Instruction.def"
1181   }
1182 }
1183 
1184 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1185                                                 const DIExpression *Expr) {
1186   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1187     const DbgValueInst *DI = DDI.getDI();
1188     DIVariable *DanglingVariable = DI->getVariable();
1189     DIExpression *DanglingExpr = DI->getExpression();
1190     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1191       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1192       return true;
1193     }
1194     return false;
1195   };
1196 
1197   for (auto &DDIMI : DanglingDebugInfoMap) {
1198     DanglingDebugInfoVector &DDIV = DDIMI.second;
1199 
1200     // If debug info is to be dropped, run it through final checks to see
1201     // whether it can be salvaged.
1202     for (auto &DDI : DDIV)
1203       if (isMatchingDbgValue(DDI))
1204         salvageUnresolvedDbgValue(DDI);
1205 
1206     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1207   }
1208 }
1209 
1210 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1211 // generate the debug data structures now that we've seen its definition.
1212 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1213                                                    SDValue Val) {
1214   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1215   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1216     return;
1217 
1218   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1219   for (auto &DDI : DDIV) {
1220     const DbgValueInst *DI = DDI.getDI();
1221     assert(DI && "Ill-formed DanglingDebugInfo");
1222     DebugLoc dl = DDI.getdl();
1223     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1224     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1225     DILocalVariable *Variable = DI->getVariable();
1226     DIExpression *Expr = DI->getExpression();
1227     assert(Variable->isValidLocationForIntrinsic(dl) &&
1228            "Expected inlined-at fields to agree");
1229     SDDbgValue *SDV;
1230     if (Val.getNode()) {
1231       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1232       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1233       // we couldn't resolve it directly when examining the DbgValue intrinsic
1234       // in the first place we should not be more successful here). Unless we
1235       // have some test case that prove this to be correct we should avoid
1236       // calling EmitFuncArgumentDbgValue here.
1237       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1238         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1239                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1240         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1241         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1242         // inserted after the definition of Val when emitting the instructions
1243         // after ISel. An alternative could be to teach
1244         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1245         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1246                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1247                    << ValSDNodeOrder << "\n");
1248         SDV = getDbgValue(Val, Variable, Expr, dl,
1249                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1250         DAG.AddDbgValue(SDV, Val.getNode(), false);
1251       } else
1252         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1253                           << "in EmitFuncArgumentDbgValue\n");
1254     } else {
1255       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1256       auto Undef =
1257           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1258       auto SDV =
1259           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1260       DAG.AddDbgValue(SDV, nullptr, false);
1261     }
1262   }
1263   DDIV.clear();
1264 }
1265 
1266 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1267   Value *V = DDI.getDI()->getValue();
1268   DILocalVariable *Var = DDI.getDI()->getVariable();
1269   DIExpression *Expr = DDI.getDI()->getExpression();
1270   DebugLoc DL = DDI.getdl();
1271   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1272   unsigned SDOrder = DDI.getSDNodeOrder();
1273 
1274   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1275   // that DW_OP_stack_value is desired.
1276   assert(isa<DbgValueInst>(DDI.getDI()));
1277   bool StackValue = true;
1278 
1279   // Can this Value can be encoded without any further work?
1280   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1281     return;
1282 
1283   // Attempt to salvage back through as many instructions as possible. Bail if
1284   // a non-instruction is seen, such as a constant expression or global
1285   // variable. FIXME: Further work could recover those too.
1286   while (isa<Instruction>(V)) {
1287     Instruction &VAsInst = *cast<Instruction>(V);
1288     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1289 
1290     // If we cannot salvage any further, and haven't yet found a suitable debug
1291     // expression, bail out.
1292     if (!NewExpr)
1293       break;
1294 
1295     // New value and expr now represent this debuginfo.
1296     V = VAsInst.getOperand(0);
1297     Expr = NewExpr;
1298 
1299     // Some kind of simplification occurred: check whether the operand of the
1300     // salvaged debug expression can be encoded in this DAG.
1301     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1302       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1303                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1304       return;
1305     }
1306   }
1307 
1308   // This was the final opportunity to salvage this debug information, and it
1309   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1310   // any earlier variable location.
1311   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1312   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1313   DAG.AddDbgValue(SDV, nullptr, false);
1314 
1315   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1316                     << "\n");
1317   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1318                     << "\n");
1319 }
1320 
1321 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1322                                            DIExpression *Expr, DebugLoc dl,
1323                                            DebugLoc InstDL, unsigned Order) {
1324   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1325   SDDbgValue *SDV;
1326   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1327       isa<ConstantPointerNull>(V)) {
1328     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1329     DAG.AddDbgValue(SDV, nullptr, false);
1330     return true;
1331   }
1332 
1333   // If the Value is a frame index, we can create a FrameIndex debug value
1334   // without relying on the DAG at all.
1335   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1336     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1337     if (SI != FuncInfo.StaticAllocaMap.end()) {
1338       auto SDV =
1339           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1340                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1341       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1342       // is still available even if the SDNode gets optimized out.
1343       DAG.AddDbgValue(SDV, nullptr, false);
1344       return true;
1345     }
1346   }
1347 
1348   // Do not use getValue() in here; we don't want to generate code at
1349   // this point if it hasn't been done yet.
1350   SDValue N = NodeMap[V];
1351   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1352     N = UnusedArgNodeMap[V];
1353   if (N.getNode()) {
1354     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1355       return true;
1356     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1357     DAG.AddDbgValue(SDV, N.getNode(), false);
1358     return true;
1359   }
1360 
1361   // Special rules apply for the first dbg.values of parameter variables in a
1362   // function. Identify them by the fact they reference Argument Values, that
1363   // they're parameters, and they are parameters of the current function. We
1364   // need to let them dangle until they get an SDNode.
1365   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1366                        !InstDL.getInlinedAt();
1367   if (!IsParamOfFunc) {
1368     // The value is not used in this block yet (or it would have an SDNode).
1369     // We still want the value to appear for the user if possible -- if it has
1370     // an associated VReg, we can refer to that instead.
1371     auto VMI = FuncInfo.ValueMap.find(V);
1372     if (VMI != FuncInfo.ValueMap.end()) {
1373       unsigned Reg = VMI->second;
1374       // If this is a PHI node, it may be split up into several MI PHI nodes
1375       // (in FunctionLoweringInfo::set).
1376       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1377                        V->getType(), None);
1378       if (RFV.occupiesMultipleRegs()) {
1379         unsigned Offset = 0;
1380         unsigned BitsToDescribe = 0;
1381         if (auto VarSize = Var->getSizeInBits())
1382           BitsToDescribe = *VarSize;
1383         if (auto Fragment = Expr->getFragmentInfo())
1384           BitsToDescribe = Fragment->SizeInBits;
1385         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1386           unsigned RegisterSize = RegAndSize.second;
1387           // Bail out if all bits are described already.
1388           if (Offset >= BitsToDescribe)
1389             break;
1390           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1391               ? BitsToDescribe - Offset
1392               : RegisterSize;
1393           auto FragmentExpr = DIExpression::createFragmentExpression(
1394               Expr, Offset, FragmentSize);
1395           if (!FragmentExpr)
1396               continue;
1397           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1398                                     false, dl, SDNodeOrder);
1399           DAG.AddDbgValue(SDV, nullptr, false);
1400           Offset += RegisterSize;
1401         }
1402       } else {
1403         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1404         DAG.AddDbgValue(SDV, nullptr, false);
1405       }
1406       return true;
1407     }
1408   }
1409 
1410   return false;
1411 }
1412 
1413 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1414   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1415   for (auto &Pair : DanglingDebugInfoMap)
1416     for (auto &DDI : Pair.second)
1417       salvageUnresolvedDbgValue(DDI);
1418   clearDanglingDebugInfo();
1419 }
1420 
1421 /// getCopyFromRegs - If there was virtual register allocated for the value V
1422 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1423 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1424   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1425   SDValue Result;
1426 
1427   if (It != FuncInfo.ValueMap.end()) {
1428     Register InReg = It->second;
1429 
1430     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1431                      DAG.getDataLayout(), InReg, Ty,
1432                      None); // This is not an ABI copy.
1433     SDValue Chain = DAG.getEntryNode();
1434     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1435                                  V);
1436     resolveDanglingDebugInfo(V, Result);
1437   }
1438 
1439   return Result;
1440 }
1441 
1442 /// getValue - Return an SDValue for the given Value.
1443 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1444   // If we already have an SDValue for this value, use it. It's important
1445   // to do this first, so that we don't create a CopyFromReg if we already
1446   // have a regular SDValue.
1447   SDValue &N = NodeMap[V];
1448   if (N.getNode()) return N;
1449 
1450   // If there's a virtual register allocated and initialized for this
1451   // value, use it.
1452   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1453     return copyFromReg;
1454 
1455   // Otherwise create a new SDValue and remember it.
1456   SDValue Val = getValueImpl(V);
1457   NodeMap[V] = Val;
1458   resolveDanglingDebugInfo(V, Val);
1459   return Val;
1460 }
1461 
1462 /// getNonRegisterValue - Return an SDValue for the given Value, but
1463 /// don't look in FuncInfo.ValueMap for a virtual register.
1464 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1465   // If we already have an SDValue for this value, use it.
1466   SDValue &N = NodeMap[V];
1467   if (N.getNode()) {
1468     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1469       // Remove the debug location from the node as the node is about to be used
1470       // in a location which may differ from the original debug location.  This
1471       // is relevant to Constant and ConstantFP nodes because they can appear
1472       // as constant expressions inside PHI nodes.
1473       N->setDebugLoc(DebugLoc());
1474     }
1475     return N;
1476   }
1477 
1478   // Otherwise create a new SDValue and remember it.
1479   SDValue Val = getValueImpl(V);
1480   NodeMap[V] = Val;
1481   resolveDanglingDebugInfo(V, Val);
1482   return Val;
1483 }
1484 
1485 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1486 /// Create an SDValue for the given value.
1487 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1488   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1489 
1490   if (const Constant *C = dyn_cast<Constant>(V)) {
1491     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1492 
1493     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1494       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1495 
1496     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1497       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1498 
1499     if (isa<ConstantPointerNull>(C)) {
1500       unsigned AS = V->getType()->getPointerAddressSpace();
1501       return DAG.getConstant(0, getCurSDLoc(),
1502                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1503     }
1504 
1505     if (match(C, m_VScale(DAG.getDataLayout())))
1506       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1507 
1508     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1509       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1510 
1511     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1512       return DAG.getUNDEF(VT);
1513 
1514     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1515       visit(CE->getOpcode(), *CE);
1516       SDValue N1 = NodeMap[V];
1517       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1518       return N1;
1519     }
1520 
1521     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1522       SmallVector<SDValue, 4> Constants;
1523       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1524            OI != OE; ++OI) {
1525         SDNode *Val = getValue(*OI).getNode();
1526         // If the operand is an empty aggregate, there are no values.
1527         if (!Val) continue;
1528         // Add each leaf value from the operand to the Constants list
1529         // to form a flattened list of all the values.
1530         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1531           Constants.push_back(SDValue(Val, i));
1532       }
1533 
1534       return DAG.getMergeValues(Constants, getCurSDLoc());
1535     }
1536 
1537     if (const ConstantDataSequential *CDS =
1538           dyn_cast<ConstantDataSequential>(C)) {
1539       SmallVector<SDValue, 4> Ops;
1540       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1541         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1542         // Add each leaf value from the operand to the Constants list
1543         // to form a flattened list of all the values.
1544         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1545           Ops.push_back(SDValue(Val, i));
1546       }
1547 
1548       if (isa<ArrayType>(CDS->getType()))
1549         return DAG.getMergeValues(Ops, getCurSDLoc());
1550       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1551     }
1552 
1553     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1554       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1555              "Unknown struct or array constant!");
1556 
1557       SmallVector<EVT, 4> ValueVTs;
1558       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1559       unsigned NumElts = ValueVTs.size();
1560       if (NumElts == 0)
1561         return SDValue(); // empty struct
1562       SmallVector<SDValue, 4> Constants(NumElts);
1563       for (unsigned i = 0; i != NumElts; ++i) {
1564         EVT EltVT = ValueVTs[i];
1565         if (isa<UndefValue>(C))
1566           Constants[i] = DAG.getUNDEF(EltVT);
1567         else if (EltVT.isFloatingPoint())
1568           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1569         else
1570           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1571       }
1572 
1573       return DAG.getMergeValues(Constants, getCurSDLoc());
1574     }
1575 
1576     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1577       return DAG.getBlockAddress(BA, VT);
1578 
1579     VectorType *VecTy = cast<VectorType>(V->getType());
1580 
1581     // Now that we know the number and type of the elements, get that number of
1582     // elements into the Ops array based on what kind of constant it is.
1583     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1584       SmallVector<SDValue, 16> Ops;
1585       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1586       for (unsigned i = 0; i != NumElements; ++i)
1587         Ops.push_back(getValue(CV->getOperand(i)));
1588 
1589       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1590     } else if (isa<ConstantAggregateZero>(C)) {
1591       EVT EltVT =
1592           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1593 
1594       SDValue Op;
1595       if (EltVT.isFloatingPoint())
1596         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1597       else
1598         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1599 
1600       if (isa<ScalableVectorType>(VecTy))
1601         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1602       else {
1603         SmallVector<SDValue, 16> Ops;
1604         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1605         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1606       }
1607     }
1608     llvm_unreachable("Unknown vector constant");
1609   }
1610 
1611   // If this is a static alloca, generate it as the frameindex instead of
1612   // computation.
1613   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1614     DenseMap<const AllocaInst*, int>::iterator SI =
1615       FuncInfo.StaticAllocaMap.find(AI);
1616     if (SI != FuncInfo.StaticAllocaMap.end())
1617       return DAG.getFrameIndex(SI->second,
1618                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1619   }
1620 
1621   // If this is an instruction which fast-isel has deferred, select it now.
1622   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1623     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1624 
1625     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1626                      Inst->getType(), getABIRegCopyCC(V));
1627     SDValue Chain = DAG.getEntryNode();
1628     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1629   }
1630 
1631   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1632     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1633   }
1634   llvm_unreachable("Can't get register for value!");
1635 }
1636 
1637 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1638   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1639   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1640   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1641   bool IsSEH = isAsynchronousEHPersonality(Pers);
1642   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1643   if (!IsSEH)
1644     CatchPadMBB->setIsEHScopeEntry();
1645   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1646   if (IsMSVCCXX || IsCoreCLR)
1647     CatchPadMBB->setIsEHFuncletEntry();
1648 }
1649 
1650 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1651   // Update machine-CFG edge.
1652   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1653   FuncInfo.MBB->addSuccessor(TargetMBB);
1654 
1655   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1656   bool IsSEH = isAsynchronousEHPersonality(Pers);
1657   if (IsSEH) {
1658     // If this is not a fall-through branch or optimizations are switched off,
1659     // emit the branch.
1660     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1661         TM.getOptLevel() == CodeGenOpt::None)
1662       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1663                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1664     return;
1665   }
1666 
1667   // Figure out the funclet membership for the catchret's successor.
1668   // This will be used by the FuncletLayout pass to determine how to order the
1669   // BB's.
1670   // A 'catchret' returns to the outer scope's color.
1671   Value *ParentPad = I.getCatchSwitchParentPad();
1672   const BasicBlock *SuccessorColor;
1673   if (isa<ConstantTokenNone>(ParentPad))
1674     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1675   else
1676     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1677   assert(SuccessorColor && "No parent funclet for catchret!");
1678   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1679   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1680 
1681   // Create the terminator node.
1682   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1683                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1684                             DAG.getBasicBlock(SuccessorColorMBB));
1685   DAG.setRoot(Ret);
1686 }
1687 
1688 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1689   // Don't emit any special code for the cleanuppad instruction. It just marks
1690   // the start of an EH scope/funclet.
1691   FuncInfo.MBB->setIsEHScopeEntry();
1692   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1693   if (Pers != EHPersonality::Wasm_CXX) {
1694     FuncInfo.MBB->setIsEHFuncletEntry();
1695     FuncInfo.MBB->setIsCleanupFuncletEntry();
1696   }
1697 }
1698 
1699 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1700 // the control flow always stops at the single catch pad, as it does for a
1701 // cleanup pad. In case the exception caught is not of the types the catch pad
1702 // catches, it will be rethrown by a rethrow.
1703 static void findWasmUnwindDestinations(
1704     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1705     BranchProbability Prob,
1706     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1707         &UnwindDests) {
1708   while (EHPadBB) {
1709     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1710     if (isa<CleanupPadInst>(Pad)) {
1711       // Stop on cleanup pads.
1712       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1713       UnwindDests.back().first->setIsEHScopeEntry();
1714       break;
1715     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1716       // Add the catchpad handlers to the possible destinations. We don't
1717       // continue to the unwind destination of the catchswitch for wasm.
1718       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1719         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1720         UnwindDests.back().first->setIsEHScopeEntry();
1721       }
1722       break;
1723     } else {
1724       continue;
1725     }
1726   }
1727 }
1728 
1729 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1730 /// many places it could ultimately go. In the IR, we have a single unwind
1731 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1732 /// This function skips over imaginary basic blocks that hold catchswitch
1733 /// instructions, and finds all the "real" machine
1734 /// basic block destinations. As those destinations may not be successors of
1735 /// EHPadBB, here we also calculate the edge probability to those destinations.
1736 /// The passed-in Prob is the edge probability to EHPadBB.
1737 static void findUnwindDestinations(
1738     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1739     BranchProbability Prob,
1740     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1741         &UnwindDests) {
1742   EHPersonality Personality =
1743     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1744   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1745   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1746   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1747   bool IsSEH = isAsynchronousEHPersonality(Personality);
1748 
1749   if (IsWasmCXX) {
1750     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1751     assert(UnwindDests.size() <= 1 &&
1752            "There should be at most one unwind destination for wasm");
1753     return;
1754   }
1755 
1756   while (EHPadBB) {
1757     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1758     BasicBlock *NewEHPadBB = nullptr;
1759     if (isa<LandingPadInst>(Pad)) {
1760       // Stop on landingpads. They are not funclets.
1761       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1762       break;
1763     } else if (isa<CleanupPadInst>(Pad)) {
1764       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1765       // personalities.
1766       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1767       UnwindDests.back().first->setIsEHScopeEntry();
1768       UnwindDests.back().first->setIsEHFuncletEntry();
1769       break;
1770     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1771       // Add the catchpad handlers to the possible destinations.
1772       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1773         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1774         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1775         if (IsMSVCCXX || IsCoreCLR)
1776           UnwindDests.back().first->setIsEHFuncletEntry();
1777         if (!IsSEH)
1778           UnwindDests.back().first->setIsEHScopeEntry();
1779       }
1780       NewEHPadBB = CatchSwitch->getUnwindDest();
1781     } else {
1782       continue;
1783     }
1784 
1785     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1786     if (BPI && NewEHPadBB)
1787       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1788     EHPadBB = NewEHPadBB;
1789   }
1790 }
1791 
1792 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1793   // Update successor info.
1794   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1795   auto UnwindDest = I.getUnwindDest();
1796   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1797   BranchProbability UnwindDestProb =
1798       (BPI && UnwindDest)
1799           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1800           : BranchProbability::getZero();
1801   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1802   for (auto &UnwindDest : UnwindDests) {
1803     UnwindDest.first->setIsEHPad();
1804     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1805   }
1806   FuncInfo.MBB->normalizeSuccProbs();
1807 
1808   // Create the terminator node.
1809   SDValue Ret =
1810       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1811   DAG.setRoot(Ret);
1812 }
1813 
1814 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1815   report_fatal_error("visitCatchSwitch not yet implemented!");
1816 }
1817 
1818 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1819   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1820   auto &DL = DAG.getDataLayout();
1821   SDValue Chain = getControlRoot();
1822   SmallVector<ISD::OutputArg, 8> Outs;
1823   SmallVector<SDValue, 8> OutVals;
1824 
1825   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1826   // lower
1827   //
1828   //   %val = call <ty> @llvm.experimental.deoptimize()
1829   //   ret <ty> %val
1830   //
1831   // differently.
1832   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1833     LowerDeoptimizingReturn();
1834     return;
1835   }
1836 
1837   if (!FuncInfo.CanLowerReturn) {
1838     unsigned DemoteReg = FuncInfo.DemoteRegister;
1839     const Function *F = I.getParent()->getParent();
1840 
1841     // Emit a store of the return value through the virtual register.
1842     // Leave Outs empty so that LowerReturn won't try to load return
1843     // registers the usual way.
1844     SmallVector<EVT, 1> PtrValueVTs;
1845     ComputeValueVTs(TLI, DL,
1846                     F->getReturnType()->getPointerTo(
1847                         DAG.getDataLayout().getAllocaAddrSpace()),
1848                     PtrValueVTs);
1849 
1850     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1851                                         DemoteReg, PtrValueVTs[0]);
1852     SDValue RetOp = getValue(I.getOperand(0));
1853 
1854     SmallVector<EVT, 4> ValueVTs, MemVTs;
1855     SmallVector<uint64_t, 4> Offsets;
1856     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1857                     &Offsets);
1858     unsigned NumValues = ValueVTs.size();
1859 
1860     SmallVector<SDValue, 4> Chains(NumValues);
1861     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1862     for (unsigned i = 0; i != NumValues; ++i) {
1863       // An aggregate return value cannot wrap around the address space, so
1864       // offsets to its parts don't wrap either.
1865       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1866 
1867       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1868       if (MemVTs[i] != ValueVTs[i])
1869         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1870       Chains[i] = DAG.getStore(
1871           Chain, getCurSDLoc(), Val,
1872           // FIXME: better loc info would be nice.
1873           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1874           commonAlignment(BaseAlign, Offsets[i]));
1875     }
1876 
1877     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1878                         MVT::Other, Chains);
1879   } else if (I.getNumOperands() != 0) {
1880     SmallVector<EVT, 4> ValueVTs;
1881     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1882     unsigned NumValues = ValueVTs.size();
1883     if (NumValues) {
1884       SDValue RetOp = getValue(I.getOperand(0));
1885 
1886       const Function *F = I.getParent()->getParent();
1887 
1888       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1889           I.getOperand(0)->getType(), F->getCallingConv(),
1890           /*IsVarArg*/ false);
1891 
1892       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1893       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1894                                           Attribute::SExt))
1895         ExtendKind = ISD::SIGN_EXTEND;
1896       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1897                                                Attribute::ZExt))
1898         ExtendKind = ISD::ZERO_EXTEND;
1899 
1900       LLVMContext &Context = F->getContext();
1901       bool RetInReg = F->getAttributes().hasAttribute(
1902           AttributeList::ReturnIndex, Attribute::InReg);
1903 
1904       for (unsigned j = 0; j != NumValues; ++j) {
1905         EVT VT = ValueVTs[j];
1906 
1907         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1908           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1909 
1910         CallingConv::ID CC = F->getCallingConv();
1911 
1912         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1913         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1914         SmallVector<SDValue, 4> Parts(NumParts);
1915         getCopyToParts(DAG, getCurSDLoc(),
1916                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1917                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1918 
1919         // 'inreg' on function refers to return value
1920         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1921         if (RetInReg)
1922           Flags.setInReg();
1923 
1924         if (I.getOperand(0)->getType()->isPointerTy()) {
1925           Flags.setPointer();
1926           Flags.setPointerAddrSpace(
1927               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1928         }
1929 
1930         if (NeedsRegBlock) {
1931           Flags.setInConsecutiveRegs();
1932           if (j == NumValues - 1)
1933             Flags.setInConsecutiveRegsLast();
1934         }
1935 
1936         // Propagate extension type if any
1937         if (ExtendKind == ISD::SIGN_EXTEND)
1938           Flags.setSExt();
1939         else if (ExtendKind == ISD::ZERO_EXTEND)
1940           Flags.setZExt();
1941 
1942         for (unsigned i = 0; i < NumParts; ++i) {
1943           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1944                                         VT, /*isfixed=*/true, 0, 0));
1945           OutVals.push_back(Parts[i]);
1946         }
1947       }
1948     }
1949   }
1950 
1951   // Push in swifterror virtual register as the last element of Outs. This makes
1952   // sure swifterror virtual register will be returned in the swifterror
1953   // physical register.
1954   const Function *F = I.getParent()->getParent();
1955   if (TLI.supportSwiftError() &&
1956       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1957     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1958     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1959     Flags.setSwiftError();
1960     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1961                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1962                                   true /*isfixed*/, 1 /*origidx*/,
1963                                   0 /*partOffs*/));
1964     // Create SDNode for the swifterror virtual register.
1965     OutVals.push_back(
1966         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1967                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1968                         EVT(TLI.getPointerTy(DL))));
1969   }
1970 
1971   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1972   CallingConv::ID CallConv =
1973     DAG.getMachineFunction().getFunction().getCallingConv();
1974   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1975       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1976 
1977   // Verify that the target's LowerReturn behaved as expected.
1978   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1979          "LowerReturn didn't return a valid chain!");
1980 
1981   // Update the DAG with the new chain value resulting from return lowering.
1982   DAG.setRoot(Chain);
1983 }
1984 
1985 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1986 /// created for it, emit nodes to copy the value into the virtual
1987 /// registers.
1988 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1989   // Skip empty types
1990   if (V->getType()->isEmptyTy())
1991     return;
1992 
1993   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1994   if (VMI != FuncInfo.ValueMap.end()) {
1995     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1996     CopyValueToVirtualRegister(V, VMI->second);
1997   }
1998 }
1999 
2000 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2001 /// the current basic block, add it to ValueMap now so that we'll get a
2002 /// CopyTo/FromReg.
2003 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2004   // No need to export constants.
2005   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2006 
2007   // Already exported?
2008   if (FuncInfo.isExportedInst(V)) return;
2009 
2010   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2011   CopyValueToVirtualRegister(V, Reg);
2012 }
2013 
2014 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2015                                                      const BasicBlock *FromBB) {
2016   // The operands of the setcc have to be in this block.  We don't know
2017   // how to export them from some other block.
2018   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2019     // Can export from current BB.
2020     if (VI->getParent() == FromBB)
2021       return true;
2022 
2023     // Is already exported, noop.
2024     return FuncInfo.isExportedInst(V);
2025   }
2026 
2027   // If this is an argument, we can export it if the BB is the entry block or
2028   // if it is already exported.
2029   if (isa<Argument>(V)) {
2030     if (FromBB == &FromBB->getParent()->getEntryBlock())
2031       return true;
2032 
2033     // Otherwise, can only export this if it is already exported.
2034     return FuncInfo.isExportedInst(V);
2035   }
2036 
2037   // Otherwise, constants can always be exported.
2038   return true;
2039 }
2040 
2041 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2042 BranchProbability
2043 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2044                                         const MachineBasicBlock *Dst) const {
2045   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2046   const BasicBlock *SrcBB = Src->getBasicBlock();
2047   const BasicBlock *DstBB = Dst->getBasicBlock();
2048   if (!BPI) {
2049     // If BPI is not available, set the default probability as 1 / N, where N is
2050     // the number of successors.
2051     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2052     return BranchProbability(1, SuccSize);
2053   }
2054   return BPI->getEdgeProbability(SrcBB, DstBB);
2055 }
2056 
2057 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2058                                                MachineBasicBlock *Dst,
2059                                                BranchProbability Prob) {
2060   if (!FuncInfo.BPI)
2061     Src->addSuccessorWithoutProb(Dst);
2062   else {
2063     if (Prob.isUnknown())
2064       Prob = getEdgeProbability(Src, Dst);
2065     Src->addSuccessor(Dst, Prob);
2066   }
2067 }
2068 
2069 static bool InBlock(const Value *V, const BasicBlock *BB) {
2070   if (const Instruction *I = dyn_cast<Instruction>(V))
2071     return I->getParent() == BB;
2072   return true;
2073 }
2074 
2075 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2076 /// This function emits a branch and is used at the leaves of an OR or an
2077 /// AND operator tree.
2078 void
2079 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2080                                                   MachineBasicBlock *TBB,
2081                                                   MachineBasicBlock *FBB,
2082                                                   MachineBasicBlock *CurBB,
2083                                                   MachineBasicBlock *SwitchBB,
2084                                                   BranchProbability TProb,
2085                                                   BranchProbability FProb,
2086                                                   bool InvertCond) {
2087   const BasicBlock *BB = CurBB->getBasicBlock();
2088 
2089   // If the leaf of the tree is a comparison, merge the condition into
2090   // the caseblock.
2091   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2092     // The operands of the cmp have to be in this block.  We don't know
2093     // how to export them from some other block.  If this is the first block
2094     // of the sequence, no exporting is needed.
2095     if (CurBB == SwitchBB ||
2096         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2097          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2098       ISD::CondCode Condition;
2099       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2100         ICmpInst::Predicate Pred =
2101             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2102         Condition = getICmpCondCode(Pred);
2103       } else {
2104         const FCmpInst *FC = cast<FCmpInst>(Cond);
2105         FCmpInst::Predicate Pred =
2106             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2107         Condition = getFCmpCondCode(Pred);
2108         if (TM.Options.NoNaNsFPMath)
2109           Condition = getFCmpCodeWithoutNaN(Condition);
2110       }
2111 
2112       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2113                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2114       SL->SwitchCases.push_back(CB);
2115       return;
2116     }
2117   }
2118 
2119   // Create a CaseBlock record representing this branch.
2120   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2121   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2122                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2123   SL->SwitchCases.push_back(CB);
2124 }
2125 
2126 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2127                                                MachineBasicBlock *TBB,
2128                                                MachineBasicBlock *FBB,
2129                                                MachineBasicBlock *CurBB,
2130                                                MachineBasicBlock *SwitchBB,
2131                                                Instruction::BinaryOps Opc,
2132                                                BranchProbability TProb,
2133                                                BranchProbability FProb,
2134                                                bool InvertCond) {
2135   // Skip over not part of the tree and remember to invert op and operands at
2136   // next level.
2137   Value *NotCond;
2138   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2139       InBlock(NotCond, CurBB->getBasicBlock())) {
2140     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2141                          !InvertCond);
2142     return;
2143   }
2144 
2145   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2146   // Compute the effective opcode for Cond, taking into account whether it needs
2147   // to be inverted, e.g.
2148   //   and (not (or A, B)), C
2149   // gets lowered as
2150   //   and (and (not A, not B), C)
2151   unsigned BOpc = 0;
2152   if (BOp) {
2153     BOpc = BOp->getOpcode();
2154     if (InvertCond) {
2155       if (BOpc == Instruction::And)
2156         BOpc = Instruction::Or;
2157       else if (BOpc == Instruction::Or)
2158         BOpc = Instruction::And;
2159     }
2160   }
2161 
2162   // If this node is not part of the or/and tree, emit it as a branch.
2163   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2164       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2165       BOp->getParent() != CurBB->getBasicBlock() ||
2166       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2167       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2168     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2169                                  TProb, FProb, InvertCond);
2170     return;
2171   }
2172 
2173   //  Create TmpBB after CurBB.
2174   MachineFunction::iterator BBI(CurBB);
2175   MachineFunction &MF = DAG.getMachineFunction();
2176   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2177   CurBB->getParent()->insert(++BBI, TmpBB);
2178 
2179   if (Opc == Instruction::Or) {
2180     // Codegen X | Y as:
2181     // BB1:
2182     //   jmp_if_X TBB
2183     //   jmp TmpBB
2184     // TmpBB:
2185     //   jmp_if_Y TBB
2186     //   jmp FBB
2187     //
2188 
2189     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2190     // The requirement is that
2191     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2192     //     = TrueProb for original BB.
2193     // Assuming the original probabilities are A and B, one choice is to set
2194     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2195     // A/(1+B) and 2B/(1+B). This choice assumes that
2196     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2197     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2198     // TmpBB, but the math is more complicated.
2199 
2200     auto NewTrueProb = TProb / 2;
2201     auto NewFalseProb = TProb / 2 + FProb;
2202     // Emit the LHS condition.
2203     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2204                          NewTrueProb, NewFalseProb, InvertCond);
2205 
2206     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2207     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2208     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2209     // Emit the RHS condition into TmpBB.
2210     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2211                          Probs[0], Probs[1], InvertCond);
2212   } else {
2213     assert(Opc == Instruction::And && "Unknown merge op!");
2214     // Codegen X & Y as:
2215     // BB1:
2216     //   jmp_if_X TmpBB
2217     //   jmp FBB
2218     // TmpBB:
2219     //   jmp_if_Y TBB
2220     //   jmp FBB
2221     //
2222     //  This requires creation of TmpBB after CurBB.
2223 
2224     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2225     // The requirement is that
2226     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2227     //     = FalseProb for original BB.
2228     // Assuming the original probabilities are A and B, one choice is to set
2229     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2230     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2231     // TrueProb for BB1 * FalseProb for TmpBB.
2232 
2233     auto NewTrueProb = TProb + FProb / 2;
2234     auto NewFalseProb = FProb / 2;
2235     // Emit the LHS condition.
2236     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2237                          NewTrueProb, NewFalseProb, InvertCond);
2238 
2239     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2240     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2241     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2242     // Emit the RHS condition into TmpBB.
2243     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2244                          Probs[0], Probs[1], InvertCond);
2245   }
2246 }
2247 
2248 /// If the set of cases should be emitted as a series of branches, return true.
2249 /// If we should emit this as a bunch of and/or'd together conditions, return
2250 /// false.
2251 bool
2252 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2253   if (Cases.size() != 2) return true;
2254 
2255   // If this is two comparisons of the same values or'd or and'd together, they
2256   // will get folded into a single comparison, so don't emit two blocks.
2257   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2258        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2259       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2260        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2261     return false;
2262   }
2263 
2264   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2265   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2266   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2267       Cases[0].CC == Cases[1].CC &&
2268       isa<Constant>(Cases[0].CmpRHS) &&
2269       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2270     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2271       return false;
2272     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2273       return false;
2274   }
2275 
2276   return true;
2277 }
2278 
2279 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2280   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2281 
2282   // Update machine-CFG edges.
2283   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2284 
2285   if (I.isUnconditional()) {
2286     // Update machine-CFG edges.
2287     BrMBB->addSuccessor(Succ0MBB);
2288 
2289     // If this is not a fall-through branch or optimizations are switched off,
2290     // emit the branch.
2291     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2292       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2293                               MVT::Other, getControlRoot(),
2294                               DAG.getBasicBlock(Succ0MBB)));
2295 
2296     return;
2297   }
2298 
2299   // If this condition is one of the special cases we handle, do special stuff
2300   // now.
2301   const Value *CondVal = I.getCondition();
2302   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2303 
2304   // If this is a series of conditions that are or'd or and'd together, emit
2305   // this as a sequence of branches instead of setcc's with and/or operations.
2306   // As long as jumps are not expensive, this should improve performance.
2307   // For example, instead of something like:
2308   //     cmp A, B
2309   //     C = seteq
2310   //     cmp D, E
2311   //     F = setle
2312   //     or C, F
2313   //     jnz foo
2314   // Emit:
2315   //     cmp A, B
2316   //     je foo
2317   //     cmp D, E
2318   //     jle foo
2319   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2320     Instruction::BinaryOps Opcode = BOp->getOpcode();
2321     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2322         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2323         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2324       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2325                            Opcode,
2326                            getEdgeProbability(BrMBB, Succ0MBB),
2327                            getEdgeProbability(BrMBB, Succ1MBB),
2328                            /*InvertCond=*/false);
2329       // If the compares in later blocks need to use values not currently
2330       // exported from this block, export them now.  This block should always
2331       // be the first entry.
2332       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2333 
2334       // Allow some cases to be rejected.
2335       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2336         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2337           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2338           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2339         }
2340 
2341         // Emit the branch for this block.
2342         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2343         SL->SwitchCases.erase(SL->SwitchCases.begin());
2344         return;
2345       }
2346 
2347       // Okay, we decided not to do this, remove any inserted MBB's and clear
2348       // SwitchCases.
2349       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2350         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2351 
2352       SL->SwitchCases.clear();
2353     }
2354   }
2355 
2356   // Create a CaseBlock record representing this branch.
2357   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2358                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2359 
2360   // Use visitSwitchCase to actually insert the fast branch sequence for this
2361   // cond branch.
2362   visitSwitchCase(CB, BrMBB);
2363 }
2364 
2365 /// visitSwitchCase - Emits the necessary code to represent a single node in
2366 /// the binary search tree resulting from lowering a switch instruction.
2367 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2368                                           MachineBasicBlock *SwitchBB) {
2369   SDValue Cond;
2370   SDValue CondLHS = getValue(CB.CmpLHS);
2371   SDLoc dl = CB.DL;
2372 
2373   if (CB.CC == ISD::SETTRUE) {
2374     // Branch or fall through to TrueBB.
2375     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2376     SwitchBB->normalizeSuccProbs();
2377     if (CB.TrueBB != NextBlock(SwitchBB)) {
2378       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2379                               DAG.getBasicBlock(CB.TrueBB)));
2380     }
2381     return;
2382   }
2383 
2384   auto &TLI = DAG.getTargetLoweringInfo();
2385   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2386 
2387   // Build the setcc now.
2388   if (!CB.CmpMHS) {
2389     // Fold "(X == true)" to X and "(X == false)" to !X to
2390     // handle common cases produced by branch lowering.
2391     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2392         CB.CC == ISD::SETEQ)
2393       Cond = CondLHS;
2394     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2395              CB.CC == ISD::SETEQ) {
2396       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2397       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2398     } else {
2399       SDValue CondRHS = getValue(CB.CmpRHS);
2400 
2401       // If a pointer's DAG type is larger than its memory type then the DAG
2402       // values are zero-extended. This breaks signed comparisons so truncate
2403       // back to the underlying type before doing the compare.
2404       if (CondLHS.getValueType() != MemVT) {
2405         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2406         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2407       }
2408       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2409     }
2410   } else {
2411     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2412 
2413     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2414     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2415 
2416     SDValue CmpOp = getValue(CB.CmpMHS);
2417     EVT VT = CmpOp.getValueType();
2418 
2419     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2420       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2421                           ISD::SETLE);
2422     } else {
2423       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2424                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2425       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2426                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2427     }
2428   }
2429 
2430   // Update successor info
2431   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2432   // TrueBB and FalseBB are always different unless the incoming IR is
2433   // degenerate. This only happens when running llc on weird IR.
2434   if (CB.TrueBB != CB.FalseBB)
2435     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2436   SwitchBB->normalizeSuccProbs();
2437 
2438   // If the lhs block is the next block, invert the condition so that we can
2439   // fall through to the lhs instead of the rhs block.
2440   if (CB.TrueBB == NextBlock(SwitchBB)) {
2441     std::swap(CB.TrueBB, CB.FalseBB);
2442     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2443     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2444   }
2445 
2446   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2447                                MVT::Other, getControlRoot(), Cond,
2448                                DAG.getBasicBlock(CB.TrueBB));
2449 
2450   // Insert the false branch. Do this even if it's a fall through branch,
2451   // this makes it easier to do DAG optimizations which require inverting
2452   // the branch condition.
2453   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2454                        DAG.getBasicBlock(CB.FalseBB));
2455 
2456   DAG.setRoot(BrCond);
2457 }
2458 
2459 /// visitJumpTable - Emit JumpTable node in the current MBB
2460 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2461   // Emit the code for the jump table
2462   assert(JT.Reg != -1U && "Should lower JT Header first!");
2463   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2464   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2465                                      JT.Reg, PTy);
2466   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2467   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2468                                     MVT::Other, Index.getValue(1),
2469                                     Table, Index);
2470   DAG.setRoot(BrJumpTable);
2471 }
2472 
2473 /// visitJumpTableHeader - This function emits necessary code to produce index
2474 /// in the JumpTable from switch case.
2475 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2476                                                JumpTableHeader &JTH,
2477                                                MachineBasicBlock *SwitchBB) {
2478   SDLoc dl = getCurSDLoc();
2479 
2480   // Subtract the lowest switch case value from the value being switched on.
2481   SDValue SwitchOp = getValue(JTH.SValue);
2482   EVT VT = SwitchOp.getValueType();
2483   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2484                             DAG.getConstant(JTH.First, dl, VT));
2485 
2486   // The SDNode we just created, which holds the value being switched on minus
2487   // the smallest case value, needs to be copied to a virtual register so it
2488   // can be used as an index into the jump table in a subsequent basic block.
2489   // This value may be smaller or larger than the target's pointer type, and
2490   // therefore require extension or truncating.
2491   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2492   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2493 
2494   unsigned JumpTableReg =
2495       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2496   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2497                                     JumpTableReg, SwitchOp);
2498   JT.Reg = JumpTableReg;
2499 
2500   if (!JTH.OmitRangeCheck) {
2501     // Emit the range check for the jump table, and branch to the default block
2502     // for the switch statement if the value being switched on exceeds the
2503     // largest case in the switch.
2504     SDValue CMP = DAG.getSetCC(
2505         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2506                                    Sub.getValueType()),
2507         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2508 
2509     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2510                                  MVT::Other, CopyTo, CMP,
2511                                  DAG.getBasicBlock(JT.Default));
2512 
2513     // Avoid emitting unnecessary branches to the next block.
2514     if (JT.MBB != NextBlock(SwitchBB))
2515       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2516                            DAG.getBasicBlock(JT.MBB));
2517 
2518     DAG.setRoot(BrCond);
2519   } else {
2520     // Avoid emitting unnecessary branches to the next block.
2521     if (JT.MBB != NextBlock(SwitchBB))
2522       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2523                               DAG.getBasicBlock(JT.MBB)));
2524     else
2525       DAG.setRoot(CopyTo);
2526   }
2527 }
2528 
2529 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2530 /// variable if there exists one.
2531 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2532                                  SDValue &Chain) {
2533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2534   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2535   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2536   MachineFunction &MF = DAG.getMachineFunction();
2537   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2538   MachineSDNode *Node =
2539       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2540   if (Global) {
2541     MachinePointerInfo MPInfo(Global);
2542     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2543                  MachineMemOperand::MODereferenceable;
2544     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2545         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2546     DAG.setNodeMemRefs(Node, {MemRef});
2547   }
2548   if (PtrTy != PtrMemTy)
2549     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2550   return SDValue(Node, 0);
2551 }
2552 
2553 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2554 /// tail spliced into a stack protector check success bb.
2555 ///
2556 /// For a high level explanation of how this fits into the stack protector
2557 /// generation see the comment on the declaration of class
2558 /// StackProtectorDescriptor.
2559 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2560                                                   MachineBasicBlock *ParentBB) {
2561 
2562   // First create the loads to the guard/stack slot for the comparison.
2563   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2564   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2565   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2566 
2567   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2568   int FI = MFI.getStackProtectorIndex();
2569 
2570   SDValue Guard;
2571   SDLoc dl = getCurSDLoc();
2572   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2573   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2574   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2575 
2576   // Generate code to load the content of the guard slot.
2577   SDValue GuardVal = DAG.getLoad(
2578       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2579       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2580       MachineMemOperand::MOVolatile);
2581 
2582   if (TLI.useStackGuardXorFP())
2583     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2584 
2585   // Retrieve guard check function, nullptr if instrumentation is inlined.
2586   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2587     // The target provides a guard check function to validate the guard value.
2588     // Generate a call to that function with the content of the guard slot as
2589     // argument.
2590     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2591     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2592 
2593     TargetLowering::ArgListTy Args;
2594     TargetLowering::ArgListEntry Entry;
2595     Entry.Node = GuardVal;
2596     Entry.Ty = FnTy->getParamType(0);
2597     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2598       Entry.IsInReg = true;
2599     Args.push_back(Entry);
2600 
2601     TargetLowering::CallLoweringInfo CLI(DAG);
2602     CLI.setDebugLoc(getCurSDLoc())
2603         .setChain(DAG.getEntryNode())
2604         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2605                    getValue(GuardCheckFn), std::move(Args));
2606 
2607     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2608     DAG.setRoot(Result.second);
2609     return;
2610   }
2611 
2612   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2613   // Otherwise, emit a volatile load to retrieve the stack guard value.
2614   SDValue Chain = DAG.getEntryNode();
2615   if (TLI.useLoadStackGuardNode()) {
2616     Guard = getLoadStackGuard(DAG, dl, Chain);
2617   } else {
2618     const Value *IRGuard = TLI.getSDagStackGuard(M);
2619     SDValue GuardPtr = getValue(IRGuard);
2620 
2621     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2622                         MachinePointerInfo(IRGuard, 0), Align,
2623                         MachineMemOperand::MOVolatile);
2624   }
2625 
2626   // Perform the comparison via a getsetcc.
2627   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2628                                                         *DAG.getContext(),
2629                                                         Guard.getValueType()),
2630                              Guard, GuardVal, ISD::SETNE);
2631 
2632   // If the guard/stackslot do not equal, branch to failure MBB.
2633   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2634                                MVT::Other, GuardVal.getOperand(0),
2635                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2636   // Otherwise branch to success MBB.
2637   SDValue Br = DAG.getNode(ISD::BR, dl,
2638                            MVT::Other, BrCond,
2639                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2640 
2641   DAG.setRoot(Br);
2642 }
2643 
2644 /// Codegen the failure basic block for a stack protector check.
2645 ///
2646 /// A failure stack protector machine basic block consists simply of a call to
2647 /// __stack_chk_fail().
2648 ///
2649 /// For a high level explanation of how this fits into the stack protector
2650 /// generation see the comment on the declaration of class
2651 /// StackProtectorDescriptor.
2652 void
2653 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2655   TargetLowering::MakeLibCallOptions CallOptions;
2656   CallOptions.setDiscardResult(true);
2657   SDValue Chain =
2658       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2659                       None, CallOptions, getCurSDLoc()).second;
2660   // On PS4, the "return address" must still be within the calling function,
2661   // even if it's at the very end, so emit an explicit TRAP here.
2662   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2663   if (TM.getTargetTriple().isPS4CPU())
2664     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2665 
2666   DAG.setRoot(Chain);
2667 }
2668 
2669 /// visitBitTestHeader - This function emits necessary code to produce value
2670 /// suitable for "bit tests"
2671 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2672                                              MachineBasicBlock *SwitchBB) {
2673   SDLoc dl = getCurSDLoc();
2674 
2675   // Subtract the minimum value.
2676   SDValue SwitchOp = getValue(B.SValue);
2677   EVT VT = SwitchOp.getValueType();
2678   SDValue RangeSub =
2679       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2680 
2681   // Determine the type of the test operands.
2682   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2683   bool UsePtrType = false;
2684   if (!TLI.isTypeLegal(VT)) {
2685     UsePtrType = true;
2686   } else {
2687     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2688       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2689         // Switch table case range are encoded into series of masks.
2690         // Just use pointer type, it's guaranteed to fit.
2691         UsePtrType = true;
2692         break;
2693       }
2694   }
2695   SDValue Sub = RangeSub;
2696   if (UsePtrType) {
2697     VT = TLI.getPointerTy(DAG.getDataLayout());
2698     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2699   }
2700 
2701   B.RegVT = VT.getSimpleVT();
2702   B.Reg = FuncInfo.CreateReg(B.RegVT);
2703   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2704 
2705   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2706 
2707   if (!B.OmitRangeCheck)
2708     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2709   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2710   SwitchBB->normalizeSuccProbs();
2711 
2712   SDValue Root = CopyTo;
2713   if (!B.OmitRangeCheck) {
2714     // Conditional branch to the default block.
2715     SDValue RangeCmp = DAG.getSetCC(dl,
2716         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2717                                RangeSub.getValueType()),
2718         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2719         ISD::SETUGT);
2720 
2721     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2722                        DAG.getBasicBlock(B.Default));
2723   }
2724 
2725   // Avoid emitting unnecessary branches to the next block.
2726   if (MBB != NextBlock(SwitchBB))
2727     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2728 
2729   DAG.setRoot(Root);
2730 }
2731 
2732 /// visitBitTestCase - this function produces one "bit test"
2733 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2734                                            MachineBasicBlock* NextMBB,
2735                                            BranchProbability BranchProbToNext,
2736                                            unsigned Reg,
2737                                            BitTestCase &B,
2738                                            MachineBasicBlock *SwitchBB) {
2739   SDLoc dl = getCurSDLoc();
2740   MVT VT = BB.RegVT;
2741   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2742   SDValue Cmp;
2743   unsigned PopCount = countPopulation(B.Mask);
2744   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2745   if (PopCount == 1) {
2746     // Testing for a single bit; just compare the shift count with what it
2747     // would need to be to shift a 1 bit in that position.
2748     Cmp = DAG.getSetCC(
2749         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2750         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2751         ISD::SETEQ);
2752   } else if (PopCount == BB.Range) {
2753     // There is only one zero bit in the range, test for it directly.
2754     Cmp = DAG.getSetCC(
2755         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2756         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2757         ISD::SETNE);
2758   } else {
2759     // Make desired shift
2760     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2761                                     DAG.getConstant(1, dl, VT), ShiftOp);
2762 
2763     // Emit bit tests and jumps
2764     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2765                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2766     Cmp = DAG.getSetCC(
2767         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2768         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2769   }
2770 
2771   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2772   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2773   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2774   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2775   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2776   // one as they are relative probabilities (and thus work more like weights),
2777   // and hence we need to normalize them to let the sum of them become one.
2778   SwitchBB->normalizeSuccProbs();
2779 
2780   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2781                               MVT::Other, getControlRoot(),
2782                               Cmp, DAG.getBasicBlock(B.TargetBB));
2783 
2784   // Avoid emitting unnecessary branches to the next block.
2785   if (NextMBB != NextBlock(SwitchBB))
2786     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2787                         DAG.getBasicBlock(NextMBB));
2788 
2789   DAG.setRoot(BrAnd);
2790 }
2791 
2792 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2793   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2794 
2795   // Retrieve successors. Look through artificial IR level blocks like
2796   // catchswitch for successors.
2797   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2798   const BasicBlock *EHPadBB = I.getSuccessor(1);
2799 
2800   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2801   // have to do anything here to lower funclet bundles.
2802   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2803                                         LLVMContext::OB_gc_transition,
2804                                         LLVMContext::OB_gc_live,
2805                                         LLVMContext::OB_funclet,
2806                                         LLVMContext::OB_cfguardtarget}) &&
2807          "Cannot lower invokes with arbitrary operand bundles yet!");
2808 
2809   const Value *Callee(I.getCalledOperand());
2810   const Function *Fn = dyn_cast<Function>(Callee);
2811   if (isa<InlineAsm>(Callee))
2812     visitInlineAsm(I);
2813   else if (Fn && Fn->isIntrinsic()) {
2814     switch (Fn->getIntrinsicID()) {
2815     default:
2816       llvm_unreachable("Cannot invoke this intrinsic");
2817     case Intrinsic::donothing:
2818       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2819       break;
2820     case Intrinsic::experimental_patchpoint_void:
2821     case Intrinsic::experimental_patchpoint_i64:
2822       visitPatchpoint(I, EHPadBB);
2823       break;
2824     case Intrinsic::experimental_gc_statepoint:
2825       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2826       break;
2827     case Intrinsic::wasm_rethrow_in_catch: {
2828       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2829       // special because it can be invoked, so we manually lower it to a DAG
2830       // node here.
2831       SmallVector<SDValue, 8> Ops;
2832       Ops.push_back(getRoot()); // inchain
2833       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2834       Ops.push_back(
2835           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2836                                 TLI.getPointerTy(DAG.getDataLayout())));
2837       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2838       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2839       break;
2840     }
2841     }
2842   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2843     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2844     // Eventually we will support lowering the @llvm.experimental.deoptimize
2845     // intrinsic, and right now there are no plans to support other intrinsics
2846     // with deopt state.
2847     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2848   } else {
2849     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2850   }
2851 
2852   // If the value of the invoke is used outside of its defining block, make it
2853   // available as a virtual register.
2854   // We already took care of the exported value for the statepoint instruction
2855   // during call to the LowerStatepoint.
2856   if (!isa<GCStatepointInst>(I)) {
2857     CopyToExportRegsIfNeeded(&I);
2858   }
2859 
2860   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2861   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2862   BranchProbability EHPadBBProb =
2863       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2864           : BranchProbability::getZero();
2865   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2866 
2867   // Update successor info.
2868   addSuccessorWithProb(InvokeMBB, Return);
2869   for (auto &UnwindDest : UnwindDests) {
2870     UnwindDest.first->setIsEHPad();
2871     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2872   }
2873   InvokeMBB->normalizeSuccProbs();
2874 
2875   // Drop into normal successor.
2876   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2877                           DAG.getBasicBlock(Return)));
2878 }
2879 
2880 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2881   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2882 
2883   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2884   // have to do anything here to lower funclet bundles.
2885   assert(!I.hasOperandBundlesOtherThan(
2886              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2887          "Cannot lower callbrs with arbitrary operand bundles yet!");
2888 
2889   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2890   visitInlineAsm(I);
2891   CopyToExportRegsIfNeeded(&I);
2892 
2893   // Retrieve successors.
2894   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2895 
2896   // Update successor info.
2897   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2898   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2899     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2900     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2901     Target->setIsInlineAsmBrIndirectTarget();
2902   }
2903   CallBrMBB->normalizeSuccProbs();
2904 
2905   // Drop into default successor.
2906   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2907                           MVT::Other, getControlRoot(),
2908                           DAG.getBasicBlock(Return)));
2909 }
2910 
2911 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2912   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2913 }
2914 
2915 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2916   assert(FuncInfo.MBB->isEHPad() &&
2917          "Call to landingpad not in landing pad!");
2918 
2919   // If there aren't registers to copy the values into (e.g., during SjLj
2920   // exceptions), then don't bother to create these DAG nodes.
2921   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2922   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2923   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2924       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2925     return;
2926 
2927   // If landingpad's return type is token type, we don't create DAG nodes
2928   // for its exception pointer and selector value. The extraction of exception
2929   // pointer or selector value from token type landingpads is not currently
2930   // supported.
2931   if (LP.getType()->isTokenTy())
2932     return;
2933 
2934   SmallVector<EVT, 2> ValueVTs;
2935   SDLoc dl = getCurSDLoc();
2936   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2937   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2938 
2939   // Get the two live-in registers as SDValues. The physregs have already been
2940   // copied into virtual registers.
2941   SDValue Ops[2];
2942   if (FuncInfo.ExceptionPointerVirtReg) {
2943     Ops[0] = DAG.getZExtOrTrunc(
2944         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2945                            FuncInfo.ExceptionPointerVirtReg,
2946                            TLI.getPointerTy(DAG.getDataLayout())),
2947         dl, ValueVTs[0]);
2948   } else {
2949     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2950   }
2951   Ops[1] = DAG.getZExtOrTrunc(
2952       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2953                          FuncInfo.ExceptionSelectorVirtReg,
2954                          TLI.getPointerTy(DAG.getDataLayout())),
2955       dl, ValueVTs[1]);
2956 
2957   // Merge into one.
2958   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2959                             DAG.getVTList(ValueVTs), Ops);
2960   setValue(&LP, Res);
2961 }
2962 
2963 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2964                                            MachineBasicBlock *Last) {
2965   // Update JTCases.
2966   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2967     if (SL->JTCases[i].first.HeaderBB == First)
2968       SL->JTCases[i].first.HeaderBB = Last;
2969 
2970   // Update BitTestCases.
2971   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2972     if (SL->BitTestCases[i].Parent == First)
2973       SL->BitTestCases[i].Parent = Last;
2974 }
2975 
2976 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2977   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2978 
2979   // Update machine-CFG edges with unique successors.
2980   SmallSet<BasicBlock*, 32> Done;
2981   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2982     BasicBlock *BB = I.getSuccessor(i);
2983     bool Inserted = Done.insert(BB).second;
2984     if (!Inserted)
2985         continue;
2986 
2987     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2988     addSuccessorWithProb(IndirectBrMBB, Succ);
2989   }
2990   IndirectBrMBB->normalizeSuccProbs();
2991 
2992   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2993                           MVT::Other, getControlRoot(),
2994                           getValue(I.getAddress())));
2995 }
2996 
2997 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2998   if (!DAG.getTarget().Options.TrapUnreachable)
2999     return;
3000 
3001   // We may be able to ignore unreachable behind a noreturn call.
3002   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3003     const BasicBlock &BB = *I.getParent();
3004     if (&I != &BB.front()) {
3005       BasicBlock::const_iterator PredI =
3006         std::prev(BasicBlock::const_iterator(&I));
3007       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3008         if (Call->doesNotReturn())
3009           return;
3010       }
3011     }
3012   }
3013 
3014   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3015 }
3016 
3017 void SelectionDAGBuilder::visitFSub(const User &I) {
3018   // -0.0 - X --> fneg
3019   Type *Ty = I.getType();
3020   if (isa<Constant>(I.getOperand(0)) &&
3021       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
3022     SDValue Op2 = getValue(I.getOperand(1));
3023     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
3024                              Op2.getValueType(), Op2));
3025     return;
3026   }
3027 
3028   visitBinary(I, ISD::FSUB);
3029 }
3030 
3031 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3032   SDNodeFlags Flags;
3033 
3034   SDValue Op = getValue(I.getOperand(0));
3035   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3036                                     Op, Flags);
3037   setValue(&I, UnNodeValue);
3038 }
3039 
3040 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3041   SDNodeFlags Flags;
3042   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3043     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3044     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3045   }
3046   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3047     Flags.setExact(ExactOp->isExact());
3048   }
3049 
3050   SDValue Op1 = getValue(I.getOperand(0));
3051   SDValue Op2 = getValue(I.getOperand(1));
3052   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3053                                      Op1, Op2, Flags);
3054   setValue(&I, BinNodeValue);
3055 }
3056 
3057 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3058   SDValue Op1 = getValue(I.getOperand(0));
3059   SDValue Op2 = getValue(I.getOperand(1));
3060 
3061   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3062       Op1.getValueType(), DAG.getDataLayout());
3063 
3064   // Coerce the shift amount to the right type if we can.
3065   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3066     unsigned ShiftSize = ShiftTy.getSizeInBits();
3067     unsigned Op2Size = Op2.getValueSizeInBits();
3068     SDLoc DL = getCurSDLoc();
3069 
3070     // If the operand is smaller than the shift count type, promote it.
3071     if (ShiftSize > Op2Size)
3072       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3073 
3074     // If the operand is larger than the shift count type but the shift
3075     // count type has enough bits to represent any shift value, truncate
3076     // it now. This is a common case and it exposes the truncate to
3077     // optimization early.
3078     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3079       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3080     // Otherwise we'll need to temporarily settle for some other convenient
3081     // type.  Type legalization will make adjustments once the shiftee is split.
3082     else
3083       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3084   }
3085 
3086   bool nuw = false;
3087   bool nsw = false;
3088   bool exact = false;
3089 
3090   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3091 
3092     if (const OverflowingBinaryOperator *OFBinOp =
3093             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3094       nuw = OFBinOp->hasNoUnsignedWrap();
3095       nsw = OFBinOp->hasNoSignedWrap();
3096     }
3097     if (const PossiblyExactOperator *ExactOp =
3098             dyn_cast<const PossiblyExactOperator>(&I))
3099       exact = ExactOp->isExact();
3100   }
3101   SDNodeFlags Flags;
3102   Flags.setExact(exact);
3103   Flags.setNoSignedWrap(nsw);
3104   Flags.setNoUnsignedWrap(nuw);
3105   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3106                             Flags);
3107   setValue(&I, Res);
3108 }
3109 
3110 void SelectionDAGBuilder::visitSDiv(const User &I) {
3111   SDValue Op1 = getValue(I.getOperand(0));
3112   SDValue Op2 = getValue(I.getOperand(1));
3113 
3114   SDNodeFlags Flags;
3115   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3116                  cast<PossiblyExactOperator>(&I)->isExact());
3117   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3118                            Op2, Flags));
3119 }
3120 
3121 void SelectionDAGBuilder::visitICmp(const User &I) {
3122   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3123   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3124     predicate = IC->getPredicate();
3125   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3126     predicate = ICmpInst::Predicate(IC->getPredicate());
3127   SDValue Op1 = getValue(I.getOperand(0));
3128   SDValue Op2 = getValue(I.getOperand(1));
3129   ISD::CondCode Opcode = getICmpCondCode(predicate);
3130 
3131   auto &TLI = DAG.getTargetLoweringInfo();
3132   EVT MemVT =
3133       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3134 
3135   // If a pointer's DAG type is larger than its memory type then the DAG values
3136   // are zero-extended. This breaks signed comparisons so truncate back to the
3137   // underlying type before doing the compare.
3138   if (Op1.getValueType() != MemVT) {
3139     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3140     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3141   }
3142 
3143   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3144                                                         I.getType());
3145   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3146 }
3147 
3148 void SelectionDAGBuilder::visitFCmp(const User &I) {
3149   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3150   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3151     predicate = FC->getPredicate();
3152   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3153     predicate = FCmpInst::Predicate(FC->getPredicate());
3154   SDValue Op1 = getValue(I.getOperand(0));
3155   SDValue Op2 = getValue(I.getOperand(1));
3156 
3157   ISD::CondCode Condition = getFCmpCondCode(predicate);
3158   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3159   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3160     Condition = getFCmpCodeWithoutNaN(Condition);
3161 
3162   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3163                                                         I.getType());
3164   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3165 }
3166 
3167 // Check if the condition of the select has one use or two users that are both
3168 // selects with the same condition.
3169 static bool hasOnlySelectUsers(const Value *Cond) {
3170   return llvm::all_of(Cond->users(), [](const Value *V) {
3171     return isa<SelectInst>(V);
3172   });
3173 }
3174 
3175 void SelectionDAGBuilder::visitSelect(const User &I) {
3176   SmallVector<EVT, 4> ValueVTs;
3177   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3178                   ValueVTs);
3179   unsigned NumValues = ValueVTs.size();
3180   if (NumValues == 0) return;
3181 
3182   SmallVector<SDValue, 4> Values(NumValues);
3183   SDValue Cond     = getValue(I.getOperand(0));
3184   SDValue LHSVal   = getValue(I.getOperand(1));
3185   SDValue RHSVal   = getValue(I.getOperand(2));
3186   SmallVector<SDValue, 1> BaseOps(1, Cond);
3187   ISD::NodeType OpCode =
3188       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3189 
3190   bool IsUnaryAbs = false;
3191 
3192   // Min/max matching is only viable if all output VTs are the same.
3193   if (is_splat(ValueVTs)) {
3194     EVT VT = ValueVTs[0];
3195     LLVMContext &Ctx = *DAG.getContext();
3196     auto &TLI = DAG.getTargetLoweringInfo();
3197 
3198     // We care about the legality of the operation after it has been type
3199     // legalized.
3200     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3201       VT = TLI.getTypeToTransformTo(Ctx, VT);
3202 
3203     // If the vselect is legal, assume we want to leave this as a vector setcc +
3204     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3205     // min/max is legal on the scalar type.
3206     bool UseScalarMinMax = VT.isVector() &&
3207       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3208 
3209     Value *LHS, *RHS;
3210     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3211     ISD::NodeType Opc = ISD::DELETED_NODE;
3212     switch (SPR.Flavor) {
3213     case SPF_UMAX:    Opc = ISD::UMAX; break;
3214     case SPF_UMIN:    Opc = ISD::UMIN; break;
3215     case SPF_SMAX:    Opc = ISD::SMAX; break;
3216     case SPF_SMIN:    Opc = ISD::SMIN; break;
3217     case SPF_FMINNUM:
3218       switch (SPR.NaNBehavior) {
3219       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3220       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3221       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3222       case SPNB_RETURNS_ANY: {
3223         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3224           Opc = ISD::FMINNUM;
3225         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3226           Opc = ISD::FMINIMUM;
3227         else if (UseScalarMinMax)
3228           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3229             ISD::FMINNUM : ISD::FMINIMUM;
3230         break;
3231       }
3232       }
3233       break;
3234     case SPF_FMAXNUM:
3235       switch (SPR.NaNBehavior) {
3236       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3237       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3238       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3239       case SPNB_RETURNS_ANY:
3240 
3241         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3242           Opc = ISD::FMAXNUM;
3243         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3244           Opc = ISD::FMAXIMUM;
3245         else if (UseScalarMinMax)
3246           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3247             ISD::FMAXNUM : ISD::FMAXIMUM;
3248         break;
3249       }
3250       break;
3251     case SPF_ABS:
3252       IsUnaryAbs = true;
3253       Opc = ISD::ABS;
3254       break;
3255     case SPF_NABS:
3256       // TODO: we need to produce sub(0, abs(X)).
3257     default: break;
3258     }
3259 
3260     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3261         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3262          (UseScalarMinMax &&
3263           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3264         // If the underlying comparison instruction is used by any other
3265         // instruction, the consumed instructions won't be destroyed, so it is
3266         // not profitable to convert to a min/max.
3267         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3268       OpCode = Opc;
3269       LHSVal = getValue(LHS);
3270       RHSVal = getValue(RHS);
3271       BaseOps.clear();
3272     }
3273 
3274     if (IsUnaryAbs) {
3275       OpCode = Opc;
3276       LHSVal = getValue(LHS);
3277       BaseOps.clear();
3278     }
3279   }
3280 
3281   if (IsUnaryAbs) {
3282     for (unsigned i = 0; i != NumValues; ++i) {
3283       Values[i] =
3284           DAG.getNode(OpCode, getCurSDLoc(),
3285                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3286                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3287     }
3288   } else {
3289     for (unsigned i = 0; i != NumValues; ++i) {
3290       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3291       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3292       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3293       Values[i] = DAG.getNode(
3294           OpCode, getCurSDLoc(),
3295           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3296     }
3297   }
3298 
3299   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3300                            DAG.getVTList(ValueVTs), Values));
3301 }
3302 
3303 void SelectionDAGBuilder::visitTrunc(const User &I) {
3304   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3305   SDValue N = getValue(I.getOperand(0));
3306   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3307                                                         I.getType());
3308   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3309 }
3310 
3311 void SelectionDAGBuilder::visitZExt(const User &I) {
3312   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3313   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3314   SDValue N = getValue(I.getOperand(0));
3315   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3316                                                         I.getType());
3317   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3318 }
3319 
3320 void SelectionDAGBuilder::visitSExt(const User &I) {
3321   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3322   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3323   SDValue N = getValue(I.getOperand(0));
3324   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3325                                                         I.getType());
3326   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3327 }
3328 
3329 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3330   // FPTrunc is never a no-op cast, no need to check
3331   SDValue N = getValue(I.getOperand(0));
3332   SDLoc dl = getCurSDLoc();
3333   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3334   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3335   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3336                            DAG.getTargetConstant(
3337                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3338 }
3339 
3340 void SelectionDAGBuilder::visitFPExt(const User &I) {
3341   // FPExt is never a no-op cast, no need to check
3342   SDValue N = getValue(I.getOperand(0));
3343   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3344                                                         I.getType());
3345   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3346 }
3347 
3348 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3349   // FPToUI is never a no-op cast, no need to check
3350   SDValue N = getValue(I.getOperand(0));
3351   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3352                                                         I.getType());
3353   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3354 }
3355 
3356 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3357   // FPToSI is never a no-op cast, no need to check
3358   SDValue N = getValue(I.getOperand(0));
3359   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3360                                                         I.getType());
3361   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3362 }
3363 
3364 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3365   // UIToFP is never a no-op cast, no need to check
3366   SDValue N = getValue(I.getOperand(0));
3367   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3368                                                         I.getType());
3369   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3370 }
3371 
3372 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3373   // SIToFP is never a no-op cast, no need to check
3374   SDValue N = getValue(I.getOperand(0));
3375   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3376                                                         I.getType());
3377   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3378 }
3379 
3380 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3381   // What to do depends on the size of the integer and the size of the pointer.
3382   // We can either truncate, zero extend, or no-op, accordingly.
3383   SDValue N = getValue(I.getOperand(0));
3384   auto &TLI = DAG.getTargetLoweringInfo();
3385   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3386                                                         I.getType());
3387   EVT PtrMemVT =
3388       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3389   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3390   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3391   setValue(&I, N);
3392 }
3393 
3394 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3395   // What to do depends on the size of the integer and the size of the pointer.
3396   // We can either truncate, zero extend, or no-op, accordingly.
3397   SDValue N = getValue(I.getOperand(0));
3398   auto &TLI = DAG.getTargetLoweringInfo();
3399   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3400   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3401   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3402   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3403   setValue(&I, N);
3404 }
3405 
3406 void SelectionDAGBuilder::visitBitCast(const User &I) {
3407   SDValue N = getValue(I.getOperand(0));
3408   SDLoc dl = getCurSDLoc();
3409   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3410                                                         I.getType());
3411 
3412   // BitCast assures us that source and destination are the same size so this is
3413   // either a BITCAST or a no-op.
3414   if (DestVT != N.getValueType())
3415     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3416                              DestVT, N)); // convert types.
3417   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3418   // might fold any kind of constant expression to an integer constant and that
3419   // is not what we are looking for. Only recognize a bitcast of a genuine
3420   // constant integer as an opaque constant.
3421   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3422     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3423                                  /*isOpaque*/true));
3424   else
3425     setValue(&I, N);            // noop cast.
3426 }
3427 
3428 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3429   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3430   const Value *SV = I.getOperand(0);
3431   SDValue N = getValue(SV);
3432   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3433 
3434   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3435   unsigned DestAS = I.getType()->getPointerAddressSpace();
3436 
3437   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3438     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3439 
3440   setValue(&I, N);
3441 }
3442 
3443 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3444   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3445   SDValue InVec = getValue(I.getOperand(0));
3446   SDValue InVal = getValue(I.getOperand(1));
3447   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3448                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3449   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3450                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3451                            InVec, InVal, InIdx));
3452 }
3453 
3454 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3455   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3456   SDValue InVec = getValue(I.getOperand(0));
3457   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3458                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3459   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3460                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3461                            InVec, InIdx));
3462 }
3463 
3464 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3465   SDValue Src1 = getValue(I.getOperand(0));
3466   SDValue Src2 = getValue(I.getOperand(1));
3467   ArrayRef<int> Mask;
3468   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3469     Mask = SVI->getShuffleMask();
3470   else
3471     Mask = cast<ConstantExpr>(I).getShuffleMask();
3472   SDLoc DL = getCurSDLoc();
3473   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3474   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3475   EVT SrcVT = Src1.getValueType();
3476 
3477   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3478       VT.isScalableVector()) {
3479     // Canonical splat form of first element of first input vector.
3480     SDValue FirstElt =
3481         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3482                     DAG.getVectorIdxConstant(0, DL));
3483     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3484     return;
3485   }
3486 
3487   // For now, we only handle splats for scalable vectors.
3488   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3489   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3490   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3491 
3492   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3493   unsigned MaskNumElts = Mask.size();
3494 
3495   if (SrcNumElts == MaskNumElts) {
3496     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3497     return;
3498   }
3499 
3500   // Normalize the shuffle vector since mask and vector length don't match.
3501   if (SrcNumElts < MaskNumElts) {
3502     // Mask is longer than the source vectors. We can use concatenate vector to
3503     // make the mask and vectors lengths match.
3504 
3505     if (MaskNumElts % SrcNumElts == 0) {
3506       // Mask length is a multiple of the source vector length.
3507       // Check if the shuffle is some kind of concatenation of the input
3508       // vectors.
3509       unsigned NumConcat = MaskNumElts / SrcNumElts;
3510       bool IsConcat = true;
3511       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3512       for (unsigned i = 0; i != MaskNumElts; ++i) {
3513         int Idx = Mask[i];
3514         if (Idx < 0)
3515           continue;
3516         // Ensure the indices in each SrcVT sized piece are sequential and that
3517         // the same source is used for the whole piece.
3518         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3519             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3520              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3521           IsConcat = false;
3522           break;
3523         }
3524         // Remember which source this index came from.
3525         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3526       }
3527 
3528       // The shuffle is concatenating multiple vectors together. Just emit
3529       // a CONCAT_VECTORS operation.
3530       if (IsConcat) {
3531         SmallVector<SDValue, 8> ConcatOps;
3532         for (auto Src : ConcatSrcs) {
3533           if (Src < 0)
3534             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3535           else if (Src == 0)
3536             ConcatOps.push_back(Src1);
3537           else
3538             ConcatOps.push_back(Src2);
3539         }
3540         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3541         return;
3542       }
3543     }
3544 
3545     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3546     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3547     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3548                                     PaddedMaskNumElts);
3549 
3550     // Pad both vectors with undefs to make them the same length as the mask.
3551     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3552 
3553     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3554     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3555     MOps1[0] = Src1;
3556     MOps2[0] = Src2;
3557 
3558     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3559     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3560 
3561     // Readjust mask for new input vector length.
3562     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3563     for (unsigned i = 0; i != MaskNumElts; ++i) {
3564       int Idx = Mask[i];
3565       if (Idx >= (int)SrcNumElts)
3566         Idx -= SrcNumElts - PaddedMaskNumElts;
3567       MappedOps[i] = Idx;
3568     }
3569 
3570     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3571 
3572     // If the concatenated vector was padded, extract a subvector with the
3573     // correct number of elements.
3574     if (MaskNumElts != PaddedMaskNumElts)
3575       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3576                            DAG.getVectorIdxConstant(0, DL));
3577 
3578     setValue(&I, Result);
3579     return;
3580   }
3581 
3582   if (SrcNumElts > MaskNumElts) {
3583     // Analyze the access pattern of the vector to see if we can extract
3584     // two subvectors and do the shuffle.
3585     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3586     bool CanExtract = true;
3587     for (int Idx : Mask) {
3588       unsigned Input = 0;
3589       if (Idx < 0)
3590         continue;
3591 
3592       if (Idx >= (int)SrcNumElts) {
3593         Input = 1;
3594         Idx -= SrcNumElts;
3595       }
3596 
3597       // If all the indices come from the same MaskNumElts sized portion of
3598       // the sources we can use extract. Also make sure the extract wouldn't
3599       // extract past the end of the source.
3600       int NewStartIdx = alignDown(Idx, MaskNumElts);
3601       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3602           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3603         CanExtract = false;
3604       // Make sure we always update StartIdx as we use it to track if all
3605       // elements are undef.
3606       StartIdx[Input] = NewStartIdx;
3607     }
3608 
3609     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3610       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3611       return;
3612     }
3613     if (CanExtract) {
3614       // Extract appropriate subvector and generate a vector shuffle
3615       for (unsigned Input = 0; Input < 2; ++Input) {
3616         SDValue &Src = Input == 0 ? Src1 : Src2;
3617         if (StartIdx[Input] < 0)
3618           Src = DAG.getUNDEF(VT);
3619         else {
3620           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3621                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3622         }
3623       }
3624 
3625       // Calculate new mask.
3626       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3627       for (int &Idx : MappedOps) {
3628         if (Idx >= (int)SrcNumElts)
3629           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3630         else if (Idx >= 0)
3631           Idx -= StartIdx[0];
3632       }
3633 
3634       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3635       return;
3636     }
3637   }
3638 
3639   // We can't use either concat vectors or extract subvectors so fall back to
3640   // replacing the shuffle with extract and build vector.
3641   // to insert and build vector.
3642   EVT EltVT = VT.getVectorElementType();
3643   SmallVector<SDValue,8> Ops;
3644   for (int Idx : Mask) {
3645     SDValue Res;
3646 
3647     if (Idx < 0) {
3648       Res = DAG.getUNDEF(EltVT);
3649     } else {
3650       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3651       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3652 
3653       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3654                         DAG.getVectorIdxConstant(Idx, DL));
3655     }
3656 
3657     Ops.push_back(Res);
3658   }
3659 
3660   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3661 }
3662 
3663 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3664   ArrayRef<unsigned> Indices;
3665   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3666     Indices = IV->getIndices();
3667   else
3668     Indices = cast<ConstantExpr>(&I)->getIndices();
3669 
3670   const Value *Op0 = I.getOperand(0);
3671   const Value *Op1 = I.getOperand(1);
3672   Type *AggTy = I.getType();
3673   Type *ValTy = Op1->getType();
3674   bool IntoUndef = isa<UndefValue>(Op0);
3675   bool FromUndef = isa<UndefValue>(Op1);
3676 
3677   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3678 
3679   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3680   SmallVector<EVT, 4> AggValueVTs;
3681   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3682   SmallVector<EVT, 4> ValValueVTs;
3683   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3684 
3685   unsigned NumAggValues = AggValueVTs.size();
3686   unsigned NumValValues = ValValueVTs.size();
3687   SmallVector<SDValue, 4> Values(NumAggValues);
3688 
3689   // Ignore an insertvalue that produces an empty object
3690   if (!NumAggValues) {
3691     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3692     return;
3693   }
3694 
3695   SDValue Agg = getValue(Op0);
3696   unsigned i = 0;
3697   // Copy the beginning value(s) from the original aggregate.
3698   for (; i != LinearIndex; ++i)
3699     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3700                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3701   // Copy values from the inserted value(s).
3702   if (NumValValues) {
3703     SDValue Val = getValue(Op1);
3704     for (; i != LinearIndex + NumValValues; ++i)
3705       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3706                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3707   }
3708   // Copy remaining value(s) from the original aggregate.
3709   for (; i != NumAggValues; ++i)
3710     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3711                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3712 
3713   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3714                            DAG.getVTList(AggValueVTs), Values));
3715 }
3716 
3717 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3718   ArrayRef<unsigned> Indices;
3719   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3720     Indices = EV->getIndices();
3721   else
3722     Indices = cast<ConstantExpr>(&I)->getIndices();
3723 
3724   const Value *Op0 = I.getOperand(0);
3725   Type *AggTy = Op0->getType();
3726   Type *ValTy = I.getType();
3727   bool OutOfUndef = isa<UndefValue>(Op0);
3728 
3729   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3730 
3731   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3732   SmallVector<EVT, 4> ValValueVTs;
3733   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3734 
3735   unsigned NumValValues = ValValueVTs.size();
3736 
3737   // Ignore a extractvalue that produces an empty object
3738   if (!NumValValues) {
3739     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3740     return;
3741   }
3742 
3743   SmallVector<SDValue, 4> Values(NumValValues);
3744 
3745   SDValue Agg = getValue(Op0);
3746   // Copy out the selected value(s).
3747   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3748     Values[i - LinearIndex] =
3749       OutOfUndef ?
3750         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3751         SDValue(Agg.getNode(), Agg.getResNo() + i);
3752 
3753   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3754                            DAG.getVTList(ValValueVTs), Values));
3755 }
3756 
3757 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3758   Value *Op0 = I.getOperand(0);
3759   // Note that the pointer operand may be a vector of pointers. Take the scalar
3760   // element which holds a pointer.
3761   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3762   SDValue N = getValue(Op0);
3763   SDLoc dl = getCurSDLoc();
3764   auto &TLI = DAG.getTargetLoweringInfo();
3765   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3766   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3767 
3768   // Normalize Vector GEP - all scalar operands should be converted to the
3769   // splat vector.
3770   bool IsVectorGEP = I.getType()->isVectorTy();
3771   ElementCount VectorElementCount =
3772       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3773                   : ElementCount(0, false);
3774 
3775   if (IsVectorGEP && !N.getValueType().isVector()) {
3776     LLVMContext &Context = *DAG.getContext();
3777     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3778     if (VectorElementCount.Scalable)
3779       N = DAG.getSplatVector(VT, dl, N);
3780     else
3781       N = DAG.getSplatBuildVector(VT, dl, N);
3782   }
3783 
3784   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3785        GTI != E; ++GTI) {
3786     const Value *Idx = GTI.getOperand();
3787     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3788       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3789       if (Field) {
3790         // N = N + Offset
3791         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3792 
3793         // In an inbounds GEP with an offset that is nonnegative even when
3794         // interpreted as signed, assume there is no unsigned overflow.
3795         SDNodeFlags Flags;
3796         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3797           Flags.setNoUnsignedWrap(true);
3798 
3799         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3800                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3801       }
3802     } else {
3803       // IdxSize is the width of the arithmetic according to IR semantics.
3804       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3805       // (and fix up the result later).
3806       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3807       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3808       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3809       // We intentionally mask away the high bits here; ElementSize may not
3810       // fit in IdxTy.
3811       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3812       bool ElementScalable = ElementSize.isScalable();
3813 
3814       // If this is a scalar constant or a splat vector of constants,
3815       // handle it quickly.
3816       const auto *C = dyn_cast<Constant>(Idx);
3817       if (C && isa<VectorType>(C->getType()))
3818         C = C->getSplatValue();
3819 
3820       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3821       if (CI && CI->isZero())
3822         continue;
3823       if (CI && !ElementScalable) {
3824         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3825         LLVMContext &Context = *DAG.getContext();
3826         SDValue OffsVal;
3827         if (IsVectorGEP)
3828           OffsVal = DAG.getConstant(
3829               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3830         else
3831           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3832 
3833         // In an inbounds GEP with an offset that is nonnegative even when
3834         // interpreted as signed, assume there is no unsigned overflow.
3835         SDNodeFlags Flags;
3836         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3837           Flags.setNoUnsignedWrap(true);
3838 
3839         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3840 
3841         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3842         continue;
3843       }
3844 
3845       // N = N + Idx * ElementMul;
3846       SDValue IdxN = getValue(Idx);
3847 
3848       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3849         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3850                                   VectorElementCount);
3851         if (VectorElementCount.Scalable)
3852           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3853         else
3854           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3855       }
3856 
3857       // If the index is smaller or larger than intptr_t, truncate or extend
3858       // it.
3859       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3860 
3861       if (ElementScalable) {
3862         EVT VScaleTy = N.getValueType().getScalarType();
3863         SDValue VScale = DAG.getNode(
3864             ISD::VSCALE, dl, VScaleTy,
3865             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3866         if (IsVectorGEP)
3867           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3868         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3869       } else {
3870         // If this is a multiply by a power of two, turn it into a shl
3871         // immediately.  This is a very common case.
3872         if (ElementMul != 1) {
3873           if (ElementMul.isPowerOf2()) {
3874             unsigned Amt = ElementMul.logBase2();
3875             IdxN = DAG.getNode(ISD::SHL, dl,
3876                                N.getValueType(), IdxN,
3877                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3878           } else {
3879             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3880                                             IdxN.getValueType());
3881             IdxN = DAG.getNode(ISD::MUL, dl,
3882                                N.getValueType(), IdxN, Scale);
3883           }
3884         }
3885       }
3886 
3887       N = DAG.getNode(ISD::ADD, dl,
3888                       N.getValueType(), N, IdxN);
3889     }
3890   }
3891 
3892   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3893     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3894 
3895   setValue(&I, N);
3896 }
3897 
3898 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3899   // If this is a fixed sized alloca in the entry block of the function,
3900   // allocate it statically on the stack.
3901   if (FuncInfo.StaticAllocaMap.count(&I))
3902     return;   // getValue will auto-populate this.
3903 
3904   SDLoc dl = getCurSDLoc();
3905   Type *Ty = I.getAllocatedType();
3906   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3907   auto &DL = DAG.getDataLayout();
3908   uint64_t TySize = DL.getTypeAllocSize(Ty);
3909   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3910 
3911   SDValue AllocSize = getValue(I.getArraySize());
3912 
3913   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3914   if (AllocSize.getValueType() != IntPtr)
3915     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3916 
3917   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3918                           AllocSize,
3919                           DAG.getConstant(TySize, dl, IntPtr));
3920 
3921   // Handle alignment.  If the requested alignment is less than or equal to
3922   // the stack alignment, ignore it.  If the size is greater than or equal to
3923   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3924   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3925   if (*Alignment <= StackAlign)
3926     Alignment = None;
3927 
3928   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3929   // Round the size of the allocation up to the stack alignment size
3930   // by add SA-1 to the size. This doesn't overflow because we're computing
3931   // an address inside an alloca.
3932   SDNodeFlags Flags;
3933   Flags.setNoUnsignedWrap(true);
3934   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3935                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3936 
3937   // Mask out the low bits for alignment purposes.
3938   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3939                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3940 
3941   SDValue Ops[] = {
3942       getRoot(), AllocSize,
3943       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3944   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3945   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3946   setValue(&I, DSA);
3947   DAG.setRoot(DSA.getValue(1));
3948 
3949   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3950 }
3951 
3952 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3953   if (I.isAtomic())
3954     return visitAtomicLoad(I);
3955 
3956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3957   const Value *SV = I.getOperand(0);
3958   if (TLI.supportSwiftError()) {
3959     // Swifterror values can come from either a function parameter with
3960     // swifterror attribute or an alloca with swifterror attribute.
3961     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3962       if (Arg->hasSwiftErrorAttr())
3963         return visitLoadFromSwiftError(I);
3964     }
3965 
3966     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3967       if (Alloca->isSwiftError())
3968         return visitLoadFromSwiftError(I);
3969     }
3970   }
3971 
3972   SDValue Ptr = getValue(SV);
3973 
3974   Type *Ty = I.getType();
3975   Align Alignment = I.getAlign();
3976 
3977   AAMDNodes AAInfo;
3978   I.getAAMetadata(AAInfo);
3979   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3980 
3981   SmallVector<EVT, 4> ValueVTs, MemVTs;
3982   SmallVector<uint64_t, 4> Offsets;
3983   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3984   unsigned NumValues = ValueVTs.size();
3985   if (NumValues == 0)
3986     return;
3987 
3988   bool isVolatile = I.isVolatile();
3989 
3990   SDValue Root;
3991   bool ConstantMemory = false;
3992   if (isVolatile)
3993     // Serialize volatile loads with other side effects.
3994     Root = getRoot();
3995   else if (NumValues > MaxParallelChains)
3996     Root = getMemoryRoot();
3997   else if (AA &&
3998            AA->pointsToConstantMemory(MemoryLocation(
3999                SV,
4000                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4001                AAInfo))) {
4002     // Do not serialize (non-volatile) loads of constant memory with anything.
4003     Root = DAG.getEntryNode();
4004     ConstantMemory = true;
4005   } else {
4006     // Do not serialize non-volatile loads against each other.
4007     Root = DAG.getRoot();
4008   }
4009 
4010   SDLoc dl = getCurSDLoc();
4011 
4012   if (isVolatile)
4013     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4014 
4015   // An aggregate load cannot wrap around the address space, so offsets to its
4016   // parts don't wrap either.
4017   SDNodeFlags Flags;
4018   Flags.setNoUnsignedWrap(true);
4019 
4020   SmallVector<SDValue, 4> Values(NumValues);
4021   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4022   EVT PtrVT = Ptr.getValueType();
4023 
4024   MachineMemOperand::Flags MMOFlags
4025     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4026 
4027   unsigned ChainI = 0;
4028   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4029     // Serializing loads here may result in excessive register pressure, and
4030     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4031     // could recover a bit by hoisting nodes upward in the chain by recognizing
4032     // they are side-effect free or do not alias. The optimizer should really
4033     // avoid this case by converting large object/array copies to llvm.memcpy
4034     // (MaxParallelChains should always remain as failsafe).
4035     if (ChainI == MaxParallelChains) {
4036       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4037       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4038                                   makeArrayRef(Chains.data(), ChainI));
4039       Root = Chain;
4040       ChainI = 0;
4041     }
4042     SDValue A = DAG.getNode(ISD::ADD, dl,
4043                             PtrVT, Ptr,
4044                             DAG.getConstant(Offsets[i], dl, PtrVT),
4045                             Flags);
4046 
4047     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4048                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4049                             MMOFlags, AAInfo, Ranges);
4050     Chains[ChainI] = L.getValue(1);
4051 
4052     if (MemVTs[i] != ValueVTs[i])
4053       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4054 
4055     Values[i] = L;
4056   }
4057 
4058   if (!ConstantMemory) {
4059     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4060                                 makeArrayRef(Chains.data(), ChainI));
4061     if (isVolatile)
4062       DAG.setRoot(Chain);
4063     else
4064       PendingLoads.push_back(Chain);
4065   }
4066 
4067   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4068                            DAG.getVTList(ValueVTs), Values));
4069 }
4070 
4071 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4072   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4073          "call visitStoreToSwiftError when backend supports swifterror");
4074 
4075   SmallVector<EVT, 4> ValueVTs;
4076   SmallVector<uint64_t, 4> Offsets;
4077   const Value *SrcV = I.getOperand(0);
4078   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4079                   SrcV->getType(), ValueVTs, &Offsets);
4080   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4081          "expect a single EVT for swifterror");
4082 
4083   SDValue Src = getValue(SrcV);
4084   // Create a virtual register, then update the virtual register.
4085   Register VReg =
4086       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4087   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4088   // Chain can be getRoot or getControlRoot.
4089   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4090                                       SDValue(Src.getNode(), Src.getResNo()));
4091   DAG.setRoot(CopyNode);
4092 }
4093 
4094 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4095   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4096          "call visitLoadFromSwiftError when backend supports swifterror");
4097 
4098   assert(!I.isVolatile() &&
4099          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4100          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4101          "Support volatile, non temporal, invariant for load_from_swift_error");
4102 
4103   const Value *SV = I.getOperand(0);
4104   Type *Ty = I.getType();
4105   AAMDNodes AAInfo;
4106   I.getAAMetadata(AAInfo);
4107   assert(
4108       (!AA ||
4109        !AA->pointsToConstantMemory(MemoryLocation(
4110            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4111            AAInfo))) &&
4112       "load_from_swift_error should not be constant memory");
4113 
4114   SmallVector<EVT, 4> ValueVTs;
4115   SmallVector<uint64_t, 4> Offsets;
4116   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4117                   ValueVTs, &Offsets);
4118   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4119          "expect a single EVT for swifterror");
4120 
4121   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4122   SDValue L = DAG.getCopyFromReg(
4123       getRoot(), getCurSDLoc(),
4124       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4125 
4126   setValue(&I, L);
4127 }
4128 
4129 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4130   if (I.isAtomic())
4131     return visitAtomicStore(I);
4132 
4133   const Value *SrcV = I.getOperand(0);
4134   const Value *PtrV = I.getOperand(1);
4135 
4136   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4137   if (TLI.supportSwiftError()) {
4138     // Swifterror values can come from either a function parameter with
4139     // swifterror attribute or an alloca with swifterror attribute.
4140     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4141       if (Arg->hasSwiftErrorAttr())
4142         return visitStoreToSwiftError(I);
4143     }
4144 
4145     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4146       if (Alloca->isSwiftError())
4147         return visitStoreToSwiftError(I);
4148     }
4149   }
4150 
4151   SmallVector<EVT, 4> ValueVTs, MemVTs;
4152   SmallVector<uint64_t, 4> Offsets;
4153   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4154                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4155   unsigned NumValues = ValueVTs.size();
4156   if (NumValues == 0)
4157     return;
4158 
4159   // Get the lowered operands. Note that we do this after
4160   // checking if NumResults is zero, because with zero results
4161   // the operands won't have values in the map.
4162   SDValue Src = getValue(SrcV);
4163   SDValue Ptr = getValue(PtrV);
4164 
4165   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4166   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4167   SDLoc dl = getCurSDLoc();
4168   Align Alignment = I.getAlign();
4169   AAMDNodes AAInfo;
4170   I.getAAMetadata(AAInfo);
4171 
4172   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4173 
4174   // An aggregate load cannot wrap around the address space, so offsets to its
4175   // parts don't wrap either.
4176   SDNodeFlags Flags;
4177   Flags.setNoUnsignedWrap(true);
4178 
4179   unsigned ChainI = 0;
4180   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4181     // See visitLoad comments.
4182     if (ChainI == MaxParallelChains) {
4183       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4184                                   makeArrayRef(Chains.data(), ChainI));
4185       Root = Chain;
4186       ChainI = 0;
4187     }
4188     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4189     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4190     if (MemVTs[i] != ValueVTs[i])
4191       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4192     SDValue St =
4193         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4194                      Alignment, MMOFlags, AAInfo);
4195     Chains[ChainI] = St;
4196   }
4197 
4198   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4199                                   makeArrayRef(Chains.data(), ChainI));
4200   DAG.setRoot(StoreNode);
4201 }
4202 
4203 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4204                                            bool IsCompressing) {
4205   SDLoc sdl = getCurSDLoc();
4206 
4207   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4208                                MaybeAlign &Alignment) {
4209     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4210     Src0 = I.getArgOperand(0);
4211     Ptr = I.getArgOperand(1);
4212     Alignment =
4213         MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
4214     Mask = I.getArgOperand(3);
4215   };
4216   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4217                                     MaybeAlign &Alignment) {
4218     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4219     Src0 = I.getArgOperand(0);
4220     Ptr = I.getArgOperand(1);
4221     Mask = I.getArgOperand(2);
4222     Alignment = None;
4223   };
4224 
4225   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4226   MaybeAlign Alignment;
4227   if (IsCompressing)
4228     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4229   else
4230     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4231 
4232   SDValue Ptr = getValue(PtrOperand);
4233   SDValue Src0 = getValue(Src0Operand);
4234   SDValue Mask = getValue(MaskOperand);
4235   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4236 
4237   EVT VT = Src0.getValueType();
4238   if (!Alignment)
4239     Alignment = DAG.getEVTAlign(VT);
4240 
4241   AAMDNodes AAInfo;
4242   I.getAAMetadata(AAInfo);
4243 
4244   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4245       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4246       // TODO: Make MachineMemOperands aware of scalable
4247       // vectors.
4248       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4249   SDValue StoreNode =
4250       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4251                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4252   DAG.setRoot(StoreNode);
4253   setValue(&I, StoreNode);
4254 }
4255 
4256 // Get a uniform base for the Gather/Scatter intrinsic.
4257 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4258 // We try to represent it as a base pointer + vector of indices.
4259 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4260 // The first operand of the GEP may be a single pointer or a vector of pointers
4261 // Example:
4262 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4263 //  or
4264 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4265 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4266 //
4267 // When the first GEP operand is a single pointer - it is the uniform base we
4268 // are looking for. If first operand of the GEP is a splat vector - we
4269 // extract the splat value and use it as a uniform base.
4270 // In all other cases the function returns 'false'.
4271 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4272                            ISD::MemIndexType &IndexType, SDValue &Scale,
4273                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4274   SelectionDAG& DAG = SDB->DAG;
4275   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4276   const DataLayout &DL = DAG.getDataLayout();
4277 
4278   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4279 
4280   // Handle splat constant pointer.
4281   if (auto *C = dyn_cast<Constant>(Ptr)) {
4282     C = C->getSplatValue();
4283     if (!C)
4284       return false;
4285 
4286     Base = SDB->getValue(C);
4287 
4288     unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements();
4289     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4290     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4291     IndexType = ISD::SIGNED_SCALED;
4292     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4293     return true;
4294   }
4295 
4296   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4297   if (!GEP || GEP->getParent() != CurBB)
4298     return false;
4299 
4300   if (GEP->getNumOperands() != 2)
4301     return false;
4302 
4303   const Value *BasePtr = GEP->getPointerOperand();
4304   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4305 
4306   // Make sure the base is scalar and the index is a vector.
4307   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4308     return false;
4309 
4310   Base = SDB->getValue(BasePtr);
4311   Index = SDB->getValue(IndexVal);
4312   IndexType = ISD::SIGNED_SCALED;
4313   Scale = DAG.getTargetConstant(
4314               DL.getTypeAllocSize(GEP->getResultElementType()),
4315               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4316   return true;
4317 }
4318 
4319 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4320   SDLoc sdl = getCurSDLoc();
4321 
4322   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4323   const Value *Ptr = I.getArgOperand(1);
4324   SDValue Src0 = getValue(I.getArgOperand(0));
4325   SDValue Mask = getValue(I.getArgOperand(3));
4326   EVT VT = Src0.getValueType();
4327   MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue());
4328   if (!Alignment)
4329     Alignment = DAG.getEVTAlign(VT);
4330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4331 
4332   AAMDNodes AAInfo;
4333   I.getAAMetadata(AAInfo);
4334 
4335   SDValue Base;
4336   SDValue Index;
4337   ISD::MemIndexType IndexType;
4338   SDValue Scale;
4339   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4340                                     I.getParent());
4341 
4342   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4343   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4344       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4345       // TODO: Make MachineMemOperands aware of scalable
4346       // vectors.
4347       MemoryLocation::UnknownSize, *Alignment, AAInfo);
4348   if (!UniformBase) {
4349     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4350     Index = getValue(Ptr);
4351     IndexType = ISD::SIGNED_SCALED;
4352     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4353   }
4354   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4355   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4356                                          Ops, MMO, IndexType);
4357   DAG.setRoot(Scatter);
4358   setValue(&I, Scatter);
4359 }
4360 
4361 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4362   SDLoc sdl = getCurSDLoc();
4363 
4364   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4365                               MaybeAlign &Alignment) {
4366     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4367     Ptr = I.getArgOperand(0);
4368     Alignment =
4369         MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
4370     Mask = I.getArgOperand(2);
4371     Src0 = I.getArgOperand(3);
4372   };
4373   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4374                                  MaybeAlign &Alignment) {
4375     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4376     Ptr = I.getArgOperand(0);
4377     Alignment = None;
4378     Mask = I.getArgOperand(1);
4379     Src0 = I.getArgOperand(2);
4380   };
4381 
4382   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4383   MaybeAlign Alignment;
4384   if (IsExpanding)
4385     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4386   else
4387     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4388 
4389   SDValue Ptr = getValue(PtrOperand);
4390   SDValue Src0 = getValue(Src0Operand);
4391   SDValue Mask = getValue(MaskOperand);
4392   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4393 
4394   EVT VT = Src0.getValueType();
4395   if (!Alignment)
4396     Alignment = DAG.getEVTAlign(VT);
4397 
4398   AAMDNodes AAInfo;
4399   I.getAAMetadata(AAInfo);
4400   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4401 
4402   // Do not serialize masked loads of constant memory with anything.
4403   MemoryLocation ML;
4404   if (VT.isScalableVector())
4405     ML = MemoryLocation(PtrOperand);
4406   else
4407     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4408                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4409                            AAInfo);
4410   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4411 
4412   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4413 
4414   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4415       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4416       // TODO: Make MachineMemOperands aware of scalable
4417       // vectors.
4418       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4419 
4420   SDValue Load =
4421       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4422                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4423   if (AddToChain)
4424     PendingLoads.push_back(Load.getValue(1));
4425   setValue(&I, Load);
4426 }
4427 
4428 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4429   SDLoc sdl = getCurSDLoc();
4430 
4431   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4432   const Value *Ptr = I.getArgOperand(0);
4433   SDValue Src0 = getValue(I.getArgOperand(3));
4434   SDValue Mask = getValue(I.getArgOperand(2));
4435 
4436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4437   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4438   MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
4439   if (!Alignment)
4440     Alignment = DAG.getEVTAlign(VT);
4441 
4442   AAMDNodes AAInfo;
4443   I.getAAMetadata(AAInfo);
4444   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4445 
4446   SDValue Root = DAG.getRoot();
4447   SDValue Base;
4448   SDValue Index;
4449   ISD::MemIndexType IndexType;
4450   SDValue Scale;
4451   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4452                                     I.getParent());
4453   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4454   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4455       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4456       // TODO: Make MachineMemOperands aware of scalable
4457       // vectors.
4458       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4459 
4460   if (!UniformBase) {
4461     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4462     Index = getValue(Ptr);
4463     IndexType = ISD::SIGNED_SCALED;
4464     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4465   }
4466   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4467   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4468                                        Ops, MMO, IndexType);
4469 
4470   PendingLoads.push_back(Gather.getValue(1));
4471   setValue(&I, Gather);
4472 }
4473 
4474 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4475   SDLoc dl = getCurSDLoc();
4476   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4477   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4478   SyncScope::ID SSID = I.getSyncScopeID();
4479 
4480   SDValue InChain = getRoot();
4481 
4482   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4483   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4484 
4485   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4486   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4487 
4488   MachineFunction &MF = DAG.getMachineFunction();
4489   MachineMemOperand *MMO = MF.getMachineMemOperand(
4490       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4491       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4492       FailureOrdering);
4493 
4494   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4495                                    dl, MemVT, VTs, InChain,
4496                                    getValue(I.getPointerOperand()),
4497                                    getValue(I.getCompareOperand()),
4498                                    getValue(I.getNewValOperand()), MMO);
4499 
4500   SDValue OutChain = L.getValue(2);
4501 
4502   setValue(&I, L);
4503   DAG.setRoot(OutChain);
4504 }
4505 
4506 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4507   SDLoc dl = getCurSDLoc();
4508   ISD::NodeType NT;
4509   switch (I.getOperation()) {
4510   default: llvm_unreachable("Unknown atomicrmw operation");
4511   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4512   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4513   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4514   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4515   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4516   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4517   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4518   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4519   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4520   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4521   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4522   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4523   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4524   }
4525   AtomicOrdering Ordering = I.getOrdering();
4526   SyncScope::ID SSID = I.getSyncScopeID();
4527 
4528   SDValue InChain = getRoot();
4529 
4530   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4532   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4533 
4534   MachineFunction &MF = DAG.getMachineFunction();
4535   MachineMemOperand *MMO = MF.getMachineMemOperand(
4536       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4537       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4538 
4539   SDValue L =
4540     DAG.getAtomic(NT, dl, MemVT, InChain,
4541                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4542                   MMO);
4543 
4544   SDValue OutChain = L.getValue(1);
4545 
4546   setValue(&I, L);
4547   DAG.setRoot(OutChain);
4548 }
4549 
4550 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4551   SDLoc dl = getCurSDLoc();
4552   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4553   SDValue Ops[3];
4554   Ops[0] = getRoot();
4555   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4556                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4557   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4558                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4559   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4560 }
4561 
4562 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4563   SDLoc dl = getCurSDLoc();
4564   AtomicOrdering Order = I.getOrdering();
4565   SyncScope::ID SSID = I.getSyncScopeID();
4566 
4567   SDValue InChain = getRoot();
4568 
4569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4570   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4571   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4572 
4573   if (!TLI.supportsUnalignedAtomics() &&
4574       I.getAlignment() < MemVT.getSizeInBits() / 8)
4575     report_fatal_error("Cannot generate unaligned atomic load");
4576 
4577   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4578 
4579   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4580       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4581       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4582 
4583   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4584 
4585   SDValue Ptr = getValue(I.getPointerOperand());
4586 
4587   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4588     // TODO: Once this is better exercised by tests, it should be merged with
4589     // the normal path for loads to prevent future divergence.
4590     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4591     if (MemVT != VT)
4592       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4593 
4594     setValue(&I, L);
4595     SDValue OutChain = L.getValue(1);
4596     if (!I.isUnordered())
4597       DAG.setRoot(OutChain);
4598     else
4599       PendingLoads.push_back(OutChain);
4600     return;
4601   }
4602 
4603   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4604                             Ptr, MMO);
4605 
4606   SDValue OutChain = L.getValue(1);
4607   if (MemVT != VT)
4608     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4609 
4610   setValue(&I, L);
4611   DAG.setRoot(OutChain);
4612 }
4613 
4614 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4615   SDLoc dl = getCurSDLoc();
4616 
4617   AtomicOrdering Ordering = I.getOrdering();
4618   SyncScope::ID SSID = I.getSyncScopeID();
4619 
4620   SDValue InChain = getRoot();
4621 
4622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4623   EVT MemVT =
4624       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4625 
4626   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4627     report_fatal_error("Cannot generate unaligned atomic store");
4628 
4629   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4630 
4631   MachineFunction &MF = DAG.getMachineFunction();
4632   MachineMemOperand *MMO = MF.getMachineMemOperand(
4633       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4634       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4635 
4636   SDValue Val = getValue(I.getValueOperand());
4637   if (Val.getValueType() != MemVT)
4638     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4639   SDValue Ptr = getValue(I.getPointerOperand());
4640 
4641   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4642     // TODO: Once this is better exercised by tests, it should be merged with
4643     // the normal path for stores to prevent future divergence.
4644     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4645     DAG.setRoot(S);
4646     return;
4647   }
4648   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4649                                    Ptr, Val, MMO);
4650 
4651 
4652   DAG.setRoot(OutChain);
4653 }
4654 
4655 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4656 /// node.
4657 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4658                                                unsigned Intrinsic) {
4659   // Ignore the callsite's attributes. A specific call site may be marked with
4660   // readnone, but the lowering code will expect the chain based on the
4661   // definition.
4662   const Function *F = I.getCalledFunction();
4663   bool HasChain = !F->doesNotAccessMemory();
4664   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4665 
4666   // Build the operand list.
4667   SmallVector<SDValue, 8> Ops;
4668   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4669     if (OnlyLoad) {
4670       // We don't need to serialize loads against other loads.
4671       Ops.push_back(DAG.getRoot());
4672     } else {
4673       Ops.push_back(getRoot());
4674     }
4675   }
4676 
4677   // Info is set by getTgtMemInstrinsic
4678   TargetLowering::IntrinsicInfo Info;
4679   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4680   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4681                                                DAG.getMachineFunction(),
4682                                                Intrinsic);
4683 
4684   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4685   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4686       Info.opc == ISD::INTRINSIC_W_CHAIN)
4687     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4688                                         TLI.getPointerTy(DAG.getDataLayout())));
4689 
4690   // Add all operands of the call to the operand list.
4691   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4692     const Value *Arg = I.getArgOperand(i);
4693     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4694       Ops.push_back(getValue(Arg));
4695       continue;
4696     }
4697 
4698     // Use TargetConstant instead of a regular constant for immarg.
4699     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4700     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4701       assert(CI->getBitWidth() <= 64 &&
4702              "large intrinsic immediates not handled");
4703       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4704     } else {
4705       Ops.push_back(
4706           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4707     }
4708   }
4709 
4710   SmallVector<EVT, 4> ValueVTs;
4711   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4712 
4713   if (HasChain)
4714     ValueVTs.push_back(MVT::Other);
4715 
4716   SDVTList VTs = DAG.getVTList(ValueVTs);
4717 
4718   // Create the node.
4719   SDValue Result;
4720   if (IsTgtIntrinsic) {
4721     // This is target intrinsic that touches memory
4722     AAMDNodes AAInfo;
4723     I.getAAMetadata(AAInfo);
4724     Result =
4725         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4726                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4727                                 Info.align, Info.flags, Info.size, AAInfo);
4728   } else if (!HasChain) {
4729     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4730   } else if (!I.getType()->isVoidTy()) {
4731     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4732   } else {
4733     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4734   }
4735 
4736   if (HasChain) {
4737     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4738     if (OnlyLoad)
4739       PendingLoads.push_back(Chain);
4740     else
4741       DAG.setRoot(Chain);
4742   }
4743 
4744   if (!I.getType()->isVoidTy()) {
4745     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4746       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4747       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4748     } else
4749       Result = lowerRangeToAssertZExt(DAG, I, Result);
4750 
4751     MaybeAlign Alignment = I.getRetAlign();
4752     if (!Alignment)
4753       Alignment = F->getAttributes().getRetAlignment();
4754     // Insert `assertalign` node if there's an alignment.
4755     if (InsertAssertAlign && Alignment) {
4756       Result =
4757           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4758     }
4759 
4760     setValue(&I, Result);
4761   }
4762 }
4763 
4764 /// GetSignificand - Get the significand and build it into a floating-point
4765 /// number with exponent of 1:
4766 ///
4767 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4768 ///
4769 /// where Op is the hexadecimal representation of floating point value.
4770 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4771   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4772                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4773   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4774                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4775   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4776 }
4777 
4778 /// GetExponent - Get the exponent:
4779 ///
4780 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4781 ///
4782 /// where Op is the hexadecimal representation of floating point value.
4783 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4784                            const TargetLowering &TLI, const SDLoc &dl) {
4785   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4786                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4787   SDValue t1 = DAG.getNode(
4788       ISD::SRL, dl, MVT::i32, t0,
4789       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4790   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4791                            DAG.getConstant(127, dl, MVT::i32));
4792   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4793 }
4794 
4795 /// getF32Constant - Get 32-bit floating point constant.
4796 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4797                               const SDLoc &dl) {
4798   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4799                            MVT::f32);
4800 }
4801 
4802 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4803                                        SelectionDAG &DAG) {
4804   // TODO: What fast-math-flags should be set on the floating-point nodes?
4805 
4806   //   IntegerPartOfX = ((int32_t)(t0);
4807   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4808 
4809   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4810   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4811   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4812 
4813   //   IntegerPartOfX <<= 23;
4814   IntegerPartOfX = DAG.getNode(
4815       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4816       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4817                                   DAG.getDataLayout())));
4818 
4819   SDValue TwoToFractionalPartOfX;
4820   if (LimitFloatPrecision <= 6) {
4821     // For floating-point precision of 6:
4822     //
4823     //   TwoToFractionalPartOfX =
4824     //     0.997535578f +
4825     //       (0.735607626f + 0.252464424f * x) * x;
4826     //
4827     // error 0.0144103317, which is 6 bits
4828     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4829                              getF32Constant(DAG, 0x3e814304, dl));
4830     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4831                              getF32Constant(DAG, 0x3f3c50c8, dl));
4832     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4833     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4834                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4835   } else if (LimitFloatPrecision <= 12) {
4836     // For floating-point precision of 12:
4837     //
4838     //   TwoToFractionalPartOfX =
4839     //     0.999892986f +
4840     //       (0.696457318f +
4841     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4842     //
4843     // error 0.000107046256, which is 13 to 14 bits
4844     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4845                              getF32Constant(DAG, 0x3da235e3, dl));
4846     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4847                              getF32Constant(DAG, 0x3e65b8f3, dl));
4848     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4849     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4850                              getF32Constant(DAG, 0x3f324b07, dl));
4851     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4852     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4853                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4854   } else { // LimitFloatPrecision <= 18
4855     // For floating-point precision of 18:
4856     //
4857     //   TwoToFractionalPartOfX =
4858     //     0.999999982f +
4859     //       (0.693148872f +
4860     //         (0.240227044f +
4861     //           (0.554906021e-1f +
4862     //             (0.961591928e-2f +
4863     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4864     // error 2.47208000*10^(-7), which is better than 18 bits
4865     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4866                              getF32Constant(DAG, 0x3924b03e, dl));
4867     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4868                              getF32Constant(DAG, 0x3ab24b87, dl));
4869     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4870     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4871                              getF32Constant(DAG, 0x3c1d8c17, dl));
4872     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4873     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4874                              getF32Constant(DAG, 0x3d634a1d, dl));
4875     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4876     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4877                              getF32Constant(DAG, 0x3e75fe14, dl));
4878     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4879     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4880                               getF32Constant(DAG, 0x3f317234, dl));
4881     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4882     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4883                                          getF32Constant(DAG, 0x3f800000, dl));
4884   }
4885 
4886   // Add the exponent into the result in integer domain.
4887   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4888   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4889                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4890 }
4891 
4892 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4893 /// limited-precision mode.
4894 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4895                          const TargetLowering &TLI) {
4896   if (Op.getValueType() == MVT::f32 &&
4897       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4898 
4899     // Put the exponent in the right bit position for later addition to the
4900     // final result:
4901     //
4902     // t0 = Op * log2(e)
4903 
4904     // TODO: What fast-math-flags should be set here?
4905     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4906                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4907     return getLimitedPrecisionExp2(t0, dl, DAG);
4908   }
4909 
4910   // No special expansion.
4911   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4912 }
4913 
4914 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4915 /// limited-precision mode.
4916 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4917                          const TargetLowering &TLI) {
4918   // TODO: What fast-math-flags should be set on the floating-point nodes?
4919 
4920   if (Op.getValueType() == MVT::f32 &&
4921       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4922     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4923 
4924     // Scale the exponent by log(2).
4925     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4926     SDValue LogOfExponent =
4927         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4928                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4929 
4930     // Get the significand and build it into a floating-point number with
4931     // exponent of 1.
4932     SDValue X = GetSignificand(DAG, Op1, dl);
4933 
4934     SDValue LogOfMantissa;
4935     if (LimitFloatPrecision <= 6) {
4936       // For floating-point precision of 6:
4937       //
4938       //   LogofMantissa =
4939       //     -1.1609546f +
4940       //       (1.4034025f - 0.23903021f * x) * x;
4941       //
4942       // error 0.0034276066, which is better than 8 bits
4943       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4944                                getF32Constant(DAG, 0xbe74c456, dl));
4945       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4946                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4947       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4948       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4949                                   getF32Constant(DAG, 0x3f949a29, dl));
4950     } else if (LimitFloatPrecision <= 12) {
4951       // For floating-point precision of 12:
4952       //
4953       //   LogOfMantissa =
4954       //     -1.7417939f +
4955       //       (2.8212026f +
4956       //         (-1.4699568f +
4957       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4958       //
4959       // error 0.000061011436, which is 14 bits
4960       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4961                                getF32Constant(DAG, 0xbd67b6d6, dl));
4962       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4963                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4964       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4965       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4966                                getF32Constant(DAG, 0x3fbc278b, dl));
4967       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4968       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4969                                getF32Constant(DAG, 0x40348e95, dl));
4970       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4971       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4972                                   getF32Constant(DAG, 0x3fdef31a, dl));
4973     } else { // LimitFloatPrecision <= 18
4974       // For floating-point precision of 18:
4975       //
4976       //   LogOfMantissa =
4977       //     -2.1072184f +
4978       //       (4.2372794f +
4979       //         (-3.7029485f +
4980       //           (2.2781945f +
4981       //             (-0.87823314f +
4982       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4983       //
4984       // error 0.0000023660568, which is better than 18 bits
4985       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4986                                getF32Constant(DAG, 0xbc91e5ac, dl));
4987       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4988                                getF32Constant(DAG, 0x3e4350aa, dl));
4989       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4990       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4991                                getF32Constant(DAG, 0x3f60d3e3, dl));
4992       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4993       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4994                                getF32Constant(DAG, 0x4011cdf0, dl));
4995       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4996       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4997                                getF32Constant(DAG, 0x406cfd1c, dl));
4998       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4999       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5000                                getF32Constant(DAG, 0x408797cb, dl));
5001       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5002       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5003                                   getF32Constant(DAG, 0x4006dcab, dl));
5004     }
5005 
5006     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5007   }
5008 
5009   // No special expansion.
5010   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5011 }
5012 
5013 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5014 /// limited-precision mode.
5015 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5016                           const TargetLowering &TLI) {
5017   // TODO: What fast-math-flags should be set on the floating-point nodes?
5018 
5019   if (Op.getValueType() == MVT::f32 &&
5020       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5021     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5022 
5023     // Get the exponent.
5024     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5025 
5026     // Get the significand and build it into a floating-point number with
5027     // exponent of 1.
5028     SDValue X = GetSignificand(DAG, Op1, dl);
5029 
5030     // Different possible minimax approximations of significand in
5031     // floating-point for various degrees of accuracy over [1,2].
5032     SDValue Log2ofMantissa;
5033     if (LimitFloatPrecision <= 6) {
5034       // For floating-point precision of 6:
5035       //
5036       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5037       //
5038       // error 0.0049451742, which is more than 7 bits
5039       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5040                                getF32Constant(DAG, 0xbeb08fe0, dl));
5041       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5042                                getF32Constant(DAG, 0x40019463, dl));
5043       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5044       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5045                                    getF32Constant(DAG, 0x3fd6633d, dl));
5046     } else if (LimitFloatPrecision <= 12) {
5047       // For floating-point precision of 12:
5048       //
5049       //   Log2ofMantissa =
5050       //     -2.51285454f +
5051       //       (4.07009056f +
5052       //         (-2.12067489f +
5053       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5054       //
5055       // error 0.0000876136000, which is better than 13 bits
5056       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5057                                getF32Constant(DAG, 0xbda7262e, dl));
5058       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5059                                getF32Constant(DAG, 0x3f25280b, dl));
5060       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5061       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5062                                getF32Constant(DAG, 0x4007b923, dl));
5063       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5064       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5065                                getF32Constant(DAG, 0x40823e2f, dl));
5066       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5067       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5068                                    getF32Constant(DAG, 0x4020d29c, dl));
5069     } else { // LimitFloatPrecision <= 18
5070       // For floating-point precision of 18:
5071       //
5072       //   Log2ofMantissa =
5073       //     -3.0400495f +
5074       //       (6.1129976f +
5075       //         (-5.3420409f +
5076       //           (3.2865683f +
5077       //             (-1.2669343f +
5078       //               (0.27515199f -
5079       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5080       //
5081       // error 0.0000018516, which is better than 18 bits
5082       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5083                                getF32Constant(DAG, 0xbcd2769e, dl));
5084       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5085                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5086       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5087       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5088                                getF32Constant(DAG, 0x3fa22ae7, dl));
5089       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5090       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5091                                getF32Constant(DAG, 0x40525723, dl));
5092       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5093       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5094                                getF32Constant(DAG, 0x40aaf200, dl));
5095       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5096       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5097                                getF32Constant(DAG, 0x40c39dad, dl));
5098       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5099       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5100                                    getF32Constant(DAG, 0x4042902c, dl));
5101     }
5102 
5103     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5104   }
5105 
5106   // No special expansion.
5107   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5108 }
5109 
5110 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5111 /// limited-precision mode.
5112 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5113                            const TargetLowering &TLI) {
5114   // TODO: What fast-math-flags should be set on the floating-point nodes?
5115 
5116   if (Op.getValueType() == MVT::f32 &&
5117       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5118     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5119 
5120     // Scale the exponent by log10(2) [0.30102999f].
5121     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5122     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5123                                         getF32Constant(DAG, 0x3e9a209a, dl));
5124 
5125     // Get the significand and build it into a floating-point number with
5126     // exponent of 1.
5127     SDValue X = GetSignificand(DAG, Op1, dl);
5128 
5129     SDValue Log10ofMantissa;
5130     if (LimitFloatPrecision <= 6) {
5131       // For floating-point precision of 6:
5132       //
5133       //   Log10ofMantissa =
5134       //     -0.50419619f +
5135       //       (0.60948995f - 0.10380950f * x) * x;
5136       //
5137       // error 0.0014886165, which is 6 bits
5138       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5139                                getF32Constant(DAG, 0xbdd49a13, dl));
5140       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5141                                getF32Constant(DAG, 0x3f1c0789, dl));
5142       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5143       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5144                                     getF32Constant(DAG, 0x3f011300, dl));
5145     } else if (LimitFloatPrecision <= 12) {
5146       // For floating-point precision of 12:
5147       //
5148       //   Log10ofMantissa =
5149       //     -0.64831180f +
5150       //       (0.91751397f +
5151       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5152       //
5153       // error 0.00019228036, which is better than 12 bits
5154       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5155                                getF32Constant(DAG, 0x3d431f31, dl));
5156       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5157                                getF32Constant(DAG, 0x3ea21fb2, dl));
5158       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5159       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5160                                getF32Constant(DAG, 0x3f6ae232, dl));
5161       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5162       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5163                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5164     } else { // LimitFloatPrecision <= 18
5165       // For floating-point precision of 18:
5166       //
5167       //   Log10ofMantissa =
5168       //     -0.84299375f +
5169       //       (1.5327582f +
5170       //         (-1.0688956f +
5171       //           (0.49102474f +
5172       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5173       //
5174       // error 0.0000037995730, which is better than 18 bits
5175       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5176                                getF32Constant(DAG, 0x3c5d51ce, dl));
5177       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5178                                getF32Constant(DAG, 0x3e00685a, dl));
5179       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5180       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5181                                getF32Constant(DAG, 0x3efb6798, dl));
5182       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5183       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5184                                getF32Constant(DAG, 0x3f88d192, dl));
5185       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5186       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5187                                getF32Constant(DAG, 0x3fc4316c, dl));
5188       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5189       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5190                                     getF32Constant(DAG, 0x3f57ce70, dl));
5191     }
5192 
5193     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5194   }
5195 
5196   // No special expansion.
5197   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5198 }
5199 
5200 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5201 /// limited-precision mode.
5202 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5203                           const TargetLowering &TLI) {
5204   if (Op.getValueType() == MVT::f32 &&
5205       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5206     return getLimitedPrecisionExp2(Op, dl, DAG);
5207 
5208   // No special expansion.
5209   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5210 }
5211 
5212 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5213 /// limited-precision mode with x == 10.0f.
5214 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5215                          SelectionDAG &DAG, const TargetLowering &TLI) {
5216   bool IsExp10 = false;
5217   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5218       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5219     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5220       APFloat Ten(10.0f);
5221       IsExp10 = LHSC->isExactlyValue(Ten);
5222     }
5223   }
5224 
5225   // TODO: What fast-math-flags should be set on the FMUL node?
5226   if (IsExp10) {
5227     // Put the exponent in the right bit position for later addition to the
5228     // final result:
5229     //
5230     //   #define LOG2OF10 3.3219281f
5231     //   t0 = Op * LOG2OF10;
5232     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5233                              getF32Constant(DAG, 0x40549a78, dl));
5234     return getLimitedPrecisionExp2(t0, dl, DAG);
5235   }
5236 
5237   // No special expansion.
5238   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5239 }
5240 
5241 /// ExpandPowI - Expand a llvm.powi intrinsic.
5242 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5243                           SelectionDAG &DAG) {
5244   // If RHS is a constant, we can expand this out to a multiplication tree,
5245   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5246   // optimizing for size, we only want to do this if the expansion would produce
5247   // a small number of multiplies, otherwise we do the full expansion.
5248   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5249     // Get the exponent as a positive value.
5250     unsigned Val = RHSC->getSExtValue();
5251     if ((int)Val < 0) Val = -Val;
5252 
5253     // powi(x, 0) -> 1.0
5254     if (Val == 0)
5255       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5256 
5257     bool OptForSize = DAG.shouldOptForSize();
5258     if (!OptForSize ||
5259         // If optimizing for size, don't insert too many multiplies.
5260         // This inserts up to 5 multiplies.
5261         countPopulation(Val) + Log2_32(Val) < 7) {
5262       // We use the simple binary decomposition method to generate the multiply
5263       // sequence.  There are more optimal ways to do this (for example,
5264       // powi(x,15) generates one more multiply than it should), but this has
5265       // the benefit of being both really simple and much better than a libcall.
5266       SDValue Res;  // Logically starts equal to 1.0
5267       SDValue CurSquare = LHS;
5268       // TODO: Intrinsics should have fast-math-flags that propagate to these
5269       // nodes.
5270       while (Val) {
5271         if (Val & 1) {
5272           if (Res.getNode())
5273             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5274           else
5275             Res = CurSquare;  // 1.0*CurSquare.
5276         }
5277 
5278         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5279                                 CurSquare, CurSquare);
5280         Val >>= 1;
5281       }
5282 
5283       // If the original was negative, invert the result, producing 1/(x*x*x).
5284       if (RHSC->getSExtValue() < 0)
5285         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5286                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5287       return Res;
5288     }
5289   }
5290 
5291   // Otherwise, expand to a libcall.
5292   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5293 }
5294 
5295 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5296                             SDValue LHS, SDValue RHS, SDValue Scale,
5297                             SelectionDAG &DAG, const TargetLowering &TLI) {
5298   EVT VT = LHS.getValueType();
5299   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5300   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5301   LLVMContext &Ctx = *DAG.getContext();
5302 
5303   // If the type is legal but the operation isn't, this node might survive all
5304   // the way to operation legalization. If we end up there and we do not have
5305   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5306   // node.
5307 
5308   // Coax the legalizer into expanding the node during type legalization instead
5309   // by bumping the size by one bit. This will force it to Promote, enabling the
5310   // early expansion and avoiding the need to expand later.
5311 
5312   // We don't have to do this if Scale is 0; that can always be expanded, unless
5313   // it's a saturating signed operation. Those can experience true integer
5314   // division overflow, a case which we must avoid.
5315 
5316   // FIXME: We wouldn't have to do this (or any of the early
5317   // expansion/promotion) if it was possible to expand a libcall of an
5318   // illegal type during operation legalization. But it's not, so things
5319   // get a bit hacky.
5320   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5321   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5322       (TLI.isTypeLegal(VT) ||
5323        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5324     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5325         Opcode, VT, ScaleInt);
5326     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5327       EVT PromVT;
5328       if (VT.isScalarInteger())
5329         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5330       else if (VT.isVector()) {
5331         PromVT = VT.getVectorElementType();
5332         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5333         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5334       } else
5335         llvm_unreachable("Wrong VT for DIVFIX?");
5336       if (Signed) {
5337         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5338         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5339       } else {
5340         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5341         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5342       }
5343       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5344       // For saturating operations, we need to shift up the LHS to get the
5345       // proper saturation width, and then shift down again afterwards.
5346       if (Saturating)
5347         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5348                           DAG.getConstant(1, DL, ShiftTy));
5349       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5350       if (Saturating)
5351         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5352                           DAG.getConstant(1, DL, ShiftTy));
5353       return DAG.getZExtOrTrunc(Res, DL, VT);
5354     }
5355   }
5356 
5357   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5358 }
5359 
5360 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5361 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5362 static void
5363 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5364                      const SDValue &N) {
5365   switch (N.getOpcode()) {
5366   case ISD::CopyFromReg: {
5367     SDValue Op = N.getOperand(1);
5368     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5369                       Op.getValueType().getSizeInBits());
5370     return;
5371   }
5372   case ISD::BITCAST:
5373   case ISD::AssertZext:
5374   case ISD::AssertSext:
5375   case ISD::TRUNCATE:
5376     getUnderlyingArgRegs(Regs, N.getOperand(0));
5377     return;
5378   case ISD::BUILD_PAIR:
5379   case ISD::BUILD_VECTOR:
5380   case ISD::CONCAT_VECTORS:
5381     for (SDValue Op : N->op_values())
5382       getUnderlyingArgRegs(Regs, Op);
5383     return;
5384   default:
5385     return;
5386   }
5387 }
5388 
5389 /// If the DbgValueInst is a dbg_value of a function argument, create the
5390 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5391 /// instruction selection, they will be inserted to the entry BB.
5392 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5393     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5394     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5395   const Argument *Arg = dyn_cast<Argument>(V);
5396   if (!Arg)
5397     return false;
5398 
5399   if (!IsDbgDeclare) {
5400     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5401     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5402     // the entry block.
5403     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5404     if (!IsInEntryBlock)
5405       return false;
5406 
5407     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5408     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5409     // variable that also is a param.
5410     //
5411     // Although, if we are at the top of the entry block already, we can still
5412     // emit using ArgDbgValue. This might catch some situations when the
5413     // dbg.value refers to an argument that isn't used in the entry block, so
5414     // any CopyToReg node would be optimized out and the only way to express
5415     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5416     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5417     // we should only emit as ArgDbgValue if the Variable is an argument to the
5418     // current function, and the dbg.value intrinsic is found in the entry
5419     // block.
5420     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5421         !DL->getInlinedAt();
5422     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5423     if (!IsInPrologue && !VariableIsFunctionInputArg)
5424       return false;
5425 
5426     // Here we assume that a function argument on IR level only can be used to
5427     // describe one input parameter on source level. If we for example have
5428     // source code like this
5429     //
5430     //    struct A { long x, y; };
5431     //    void foo(struct A a, long b) {
5432     //      ...
5433     //      b = a.x;
5434     //      ...
5435     //    }
5436     //
5437     // and IR like this
5438     //
5439     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5440     //  entry:
5441     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5442     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5443     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5444     //    ...
5445     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5446     //    ...
5447     //
5448     // then the last dbg.value is describing a parameter "b" using a value that
5449     // is an argument. But since we already has used %a1 to describe a parameter
5450     // we should not handle that last dbg.value here (that would result in an
5451     // incorrect hoisting of the DBG_VALUE to the function entry).
5452     // Notice that we allow one dbg.value per IR level argument, to accommodate
5453     // for the situation with fragments above.
5454     if (VariableIsFunctionInputArg) {
5455       unsigned ArgNo = Arg->getArgNo();
5456       if (ArgNo >= FuncInfo.DescribedArgs.size())
5457         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5458       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5459         return false;
5460       FuncInfo.DescribedArgs.set(ArgNo);
5461     }
5462   }
5463 
5464   MachineFunction &MF = DAG.getMachineFunction();
5465   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5466 
5467   bool IsIndirect = false;
5468   Optional<MachineOperand> Op;
5469   // Some arguments' frame index is recorded during argument lowering.
5470   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5471   if (FI != std::numeric_limits<int>::max())
5472     Op = MachineOperand::CreateFI(FI);
5473 
5474   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5475   if (!Op && N.getNode()) {
5476     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5477     Register Reg;
5478     if (ArgRegsAndSizes.size() == 1)
5479       Reg = ArgRegsAndSizes.front().first;
5480 
5481     if (Reg && Reg.isVirtual()) {
5482       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5483       Register PR = RegInfo.getLiveInPhysReg(Reg);
5484       if (PR)
5485         Reg = PR;
5486     }
5487     if (Reg) {
5488       Op = MachineOperand::CreateReg(Reg, false);
5489       IsIndirect = IsDbgDeclare;
5490     }
5491   }
5492 
5493   if (!Op && N.getNode()) {
5494     // Check if frame index is available.
5495     SDValue LCandidate = peekThroughBitcasts(N);
5496     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5497       if (FrameIndexSDNode *FINode =
5498           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5499         Op = MachineOperand::CreateFI(FINode->getIndex());
5500   }
5501 
5502   if (!Op) {
5503     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5504     auto splitMultiRegDbgValue
5505       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5506       unsigned Offset = 0;
5507       for (auto RegAndSize : SplitRegs) {
5508         // If the expression is already a fragment, the current register
5509         // offset+size might extend beyond the fragment. In this case, only
5510         // the register bits that are inside the fragment are relevant.
5511         int RegFragmentSizeInBits = RegAndSize.second;
5512         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5513           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5514           // The register is entirely outside the expression fragment,
5515           // so is irrelevant for debug info.
5516           if (Offset >= ExprFragmentSizeInBits)
5517             break;
5518           // The register is partially outside the expression fragment, only
5519           // the low bits within the fragment are relevant for debug info.
5520           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5521             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5522           }
5523         }
5524 
5525         auto FragmentExpr = DIExpression::createFragmentExpression(
5526             Expr, Offset, RegFragmentSizeInBits);
5527         Offset += RegAndSize.second;
5528         // If a valid fragment expression cannot be created, the variable's
5529         // correct value cannot be determined and so it is set as Undef.
5530         if (!FragmentExpr) {
5531           SDDbgValue *SDV = DAG.getConstantDbgValue(
5532               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5533           DAG.AddDbgValue(SDV, nullptr, false);
5534           continue;
5535         }
5536         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5537         FuncInfo.ArgDbgValues.push_back(
5538           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5539                   RegAndSize.first, Variable, *FragmentExpr));
5540       }
5541     };
5542 
5543     // Check if ValueMap has reg number.
5544     DenseMap<const Value *, Register>::const_iterator
5545       VMI = FuncInfo.ValueMap.find(V);
5546     if (VMI != FuncInfo.ValueMap.end()) {
5547       const auto &TLI = DAG.getTargetLoweringInfo();
5548       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5549                        V->getType(), getABIRegCopyCC(V));
5550       if (RFV.occupiesMultipleRegs()) {
5551         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5552         return true;
5553       }
5554 
5555       Op = MachineOperand::CreateReg(VMI->second, false);
5556       IsIndirect = IsDbgDeclare;
5557     } else if (ArgRegsAndSizes.size() > 1) {
5558       // This was split due to the calling convention, and no virtual register
5559       // mapping exists for the value.
5560       splitMultiRegDbgValue(ArgRegsAndSizes);
5561       return true;
5562     }
5563   }
5564 
5565   if (!Op)
5566     return false;
5567 
5568   assert(Variable->isValidLocationForIntrinsic(DL) &&
5569          "Expected inlined-at fields to agree");
5570   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5571   FuncInfo.ArgDbgValues.push_back(
5572       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5573               *Op, Variable, Expr));
5574 
5575   return true;
5576 }
5577 
5578 /// Return the appropriate SDDbgValue based on N.
5579 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5580                                              DILocalVariable *Variable,
5581                                              DIExpression *Expr,
5582                                              const DebugLoc &dl,
5583                                              unsigned DbgSDNodeOrder) {
5584   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5585     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5586     // stack slot locations.
5587     //
5588     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5589     // debug values here after optimization:
5590     //
5591     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5592     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5593     //
5594     // Both describe the direct values of their associated variables.
5595     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5596                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5597   }
5598   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5599                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5600 }
5601 
5602 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5603   switch (Intrinsic) {
5604   case Intrinsic::smul_fix:
5605     return ISD::SMULFIX;
5606   case Intrinsic::umul_fix:
5607     return ISD::UMULFIX;
5608   case Intrinsic::smul_fix_sat:
5609     return ISD::SMULFIXSAT;
5610   case Intrinsic::umul_fix_sat:
5611     return ISD::UMULFIXSAT;
5612   case Intrinsic::sdiv_fix:
5613     return ISD::SDIVFIX;
5614   case Intrinsic::udiv_fix:
5615     return ISD::UDIVFIX;
5616   case Intrinsic::sdiv_fix_sat:
5617     return ISD::SDIVFIXSAT;
5618   case Intrinsic::udiv_fix_sat:
5619     return ISD::UDIVFIXSAT;
5620   default:
5621     llvm_unreachable("Unhandled fixed point intrinsic");
5622   }
5623 }
5624 
5625 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5626                                            const char *FunctionName) {
5627   assert(FunctionName && "FunctionName must not be nullptr");
5628   SDValue Callee = DAG.getExternalSymbol(
5629       FunctionName,
5630       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5631   LowerCallTo(I, Callee, I.isTailCall());
5632 }
5633 
5634 /// Given a @llvm.call.preallocated.setup, return the corresponding
5635 /// preallocated call.
5636 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5637   assert(cast<CallBase>(PreallocatedSetup)
5638                  ->getCalledFunction()
5639                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5640          "expected call_preallocated_setup Value");
5641   for (auto *U : PreallocatedSetup->users()) {
5642     auto *UseCall = cast<CallBase>(U);
5643     const Function *Fn = UseCall->getCalledFunction();
5644     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5645       return UseCall;
5646     }
5647   }
5648   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5649 }
5650 
5651 /// Lower the call to the specified intrinsic function.
5652 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5653                                              unsigned Intrinsic) {
5654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5655   SDLoc sdl = getCurSDLoc();
5656   DebugLoc dl = getCurDebugLoc();
5657   SDValue Res;
5658 
5659   switch (Intrinsic) {
5660   default:
5661     // By default, turn this into a target intrinsic node.
5662     visitTargetIntrinsic(I, Intrinsic);
5663     return;
5664   case Intrinsic::vscale: {
5665     match(&I, m_VScale(DAG.getDataLayout()));
5666     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5667     setValue(&I,
5668              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5669     return;
5670   }
5671   case Intrinsic::vastart:  visitVAStart(I); return;
5672   case Intrinsic::vaend:    visitVAEnd(I); return;
5673   case Intrinsic::vacopy:   visitVACopy(I); return;
5674   case Intrinsic::returnaddress:
5675     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5676                              TLI.getPointerTy(DAG.getDataLayout()),
5677                              getValue(I.getArgOperand(0))));
5678     return;
5679   case Intrinsic::addressofreturnaddress:
5680     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5681                              TLI.getPointerTy(DAG.getDataLayout())));
5682     return;
5683   case Intrinsic::sponentry:
5684     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5685                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5686     return;
5687   case Intrinsic::frameaddress:
5688     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5689                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5690                              getValue(I.getArgOperand(0))));
5691     return;
5692   case Intrinsic::read_register: {
5693     Value *Reg = I.getArgOperand(0);
5694     SDValue Chain = getRoot();
5695     SDValue RegName =
5696         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5697     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5698     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5699       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5700     setValue(&I, Res);
5701     DAG.setRoot(Res.getValue(1));
5702     return;
5703   }
5704   case Intrinsic::write_register: {
5705     Value *Reg = I.getArgOperand(0);
5706     Value *RegValue = I.getArgOperand(1);
5707     SDValue Chain = getRoot();
5708     SDValue RegName =
5709         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5710     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5711                             RegName, getValue(RegValue)));
5712     return;
5713   }
5714   case Intrinsic::memcpy: {
5715     const auto &MCI = cast<MemCpyInst>(I);
5716     SDValue Op1 = getValue(I.getArgOperand(0));
5717     SDValue Op2 = getValue(I.getArgOperand(1));
5718     SDValue Op3 = getValue(I.getArgOperand(2));
5719     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5720     Align DstAlign = MCI.getDestAlign().valueOrOne();
5721     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5722     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5723     bool isVol = MCI.isVolatile();
5724     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5725     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5726     // node.
5727     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5728     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5729                                /* AlwaysInline */ false, isTC,
5730                                MachinePointerInfo(I.getArgOperand(0)),
5731                                MachinePointerInfo(I.getArgOperand(1)));
5732     updateDAGForMaybeTailCall(MC);
5733     return;
5734   }
5735   case Intrinsic::memcpy_inline: {
5736     const auto &MCI = cast<MemCpyInlineInst>(I);
5737     SDValue Dst = getValue(I.getArgOperand(0));
5738     SDValue Src = getValue(I.getArgOperand(1));
5739     SDValue Size = getValue(I.getArgOperand(2));
5740     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5741     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5742     Align DstAlign = MCI.getDestAlign().valueOrOne();
5743     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5744     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5745     bool isVol = MCI.isVolatile();
5746     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5747     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5748     // node.
5749     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5750                                /* AlwaysInline */ true, isTC,
5751                                MachinePointerInfo(I.getArgOperand(0)),
5752                                MachinePointerInfo(I.getArgOperand(1)));
5753     updateDAGForMaybeTailCall(MC);
5754     return;
5755   }
5756   case Intrinsic::memset: {
5757     const auto &MSI = cast<MemSetInst>(I);
5758     SDValue Op1 = getValue(I.getArgOperand(0));
5759     SDValue Op2 = getValue(I.getArgOperand(1));
5760     SDValue Op3 = getValue(I.getArgOperand(2));
5761     // @llvm.memset defines 0 and 1 to both mean no alignment.
5762     Align Alignment = MSI.getDestAlign().valueOrOne();
5763     bool isVol = MSI.isVolatile();
5764     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5765     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5766     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5767                                MachinePointerInfo(I.getArgOperand(0)));
5768     updateDAGForMaybeTailCall(MS);
5769     return;
5770   }
5771   case Intrinsic::memmove: {
5772     const auto &MMI = cast<MemMoveInst>(I);
5773     SDValue Op1 = getValue(I.getArgOperand(0));
5774     SDValue Op2 = getValue(I.getArgOperand(1));
5775     SDValue Op3 = getValue(I.getArgOperand(2));
5776     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5777     Align DstAlign = MMI.getDestAlign().valueOrOne();
5778     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5779     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5780     bool isVol = MMI.isVolatile();
5781     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5782     // FIXME: Support passing different dest/src alignments to the memmove DAG
5783     // node.
5784     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5785     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5786                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5787                                 MachinePointerInfo(I.getArgOperand(1)));
5788     updateDAGForMaybeTailCall(MM);
5789     return;
5790   }
5791   case Intrinsic::memcpy_element_unordered_atomic: {
5792     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5793     SDValue Dst = getValue(MI.getRawDest());
5794     SDValue Src = getValue(MI.getRawSource());
5795     SDValue Length = getValue(MI.getLength());
5796 
5797     unsigned DstAlign = MI.getDestAlignment();
5798     unsigned SrcAlign = MI.getSourceAlignment();
5799     Type *LengthTy = MI.getLength()->getType();
5800     unsigned ElemSz = MI.getElementSizeInBytes();
5801     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5802     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5803                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5804                                      MachinePointerInfo(MI.getRawDest()),
5805                                      MachinePointerInfo(MI.getRawSource()));
5806     updateDAGForMaybeTailCall(MC);
5807     return;
5808   }
5809   case Intrinsic::memmove_element_unordered_atomic: {
5810     auto &MI = cast<AtomicMemMoveInst>(I);
5811     SDValue Dst = getValue(MI.getRawDest());
5812     SDValue Src = getValue(MI.getRawSource());
5813     SDValue Length = getValue(MI.getLength());
5814 
5815     unsigned DstAlign = MI.getDestAlignment();
5816     unsigned SrcAlign = MI.getSourceAlignment();
5817     Type *LengthTy = MI.getLength()->getType();
5818     unsigned ElemSz = MI.getElementSizeInBytes();
5819     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5820     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5821                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5822                                       MachinePointerInfo(MI.getRawDest()),
5823                                       MachinePointerInfo(MI.getRawSource()));
5824     updateDAGForMaybeTailCall(MC);
5825     return;
5826   }
5827   case Intrinsic::memset_element_unordered_atomic: {
5828     auto &MI = cast<AtomicMemSetInst>(I);
5829     SDValue Dst = getValue(MI.getRawDest());
5830     SDValue Val = getValue(MI.getValue());
5831     SDValue Length = getValue(MI.getLength());
5832 
5833     unsigned DstAlign = MI.getDestAlignment();
5834     Type *LengthTy = MI.getLength()->getType();
5835     unsigned ElemSz = MI.getElementSizeInBytes();
5836     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5837     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5838                                      LengthTy, ElemSz, isTC,
5839                                      MachinePointerInfo(MI.getRawDest()));
5840     updateDAGForMaybeTailCall(MC);
5841     return;
5842   }
5843   case Intrinsic::call_preallocated_setup: {
5844     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5845     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5846     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5847                               getRoot(), SrcValue);
5848     setValue(&I, Res);
5849     DAG.setRoot(Res);
5850     return;
5851   }
5852   case Intrinsic::call_preallocated_arg: {
5853     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5854     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5855     SDValue Ops[3];
5856     Ops[0] = getRoot();
5857     Ops[1] = SrcValue;
5858     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5859                                    MVT::i32); // arg index
5860     SDValue Res = DAG.getNode(
5861         ISD::PREALLOCATED_ARG, sdl,
5862         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5863     setValue(&I, Res);
5864     DAG.setRoot(Res.getValue(1));
5865     return;
5866   }
5867   case Intrinsic::dbg_addr:
5868   case Intrinsic::dbg_declare: {
5869     const auto &DI = cast<DbgVariableIntrinsic>(I);
5870     DILocalVariable *Variable = DI.getVariable();
5871     DIExpression *Expression = DI.getExpression();
5872     dropDanglingDebugInfo(Variable, Expression);
5873     assert(Variable && "Missing variable");
5874     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5875                       << "\n");
5876     // Check if address has undef value.
5877     const Value *Address = DI.getVariableLocation();
5878     if (!Address || isa<UndefValue>(Address) ||
5879         (Address->use_empty() && !isa<Argument>(Address))) {
5880       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5881                         << " (bad/undef/unused-arg address)\n");
5882       return;
5883     }
5884 
5885     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5886 
5887     // Check if this variable can be described by a frame index, typically
5888     // either as a static alloca or a byval parameter.
5889     int FI = std::numeric_limits<int>::max();
5890     if (const auto *AI =
5891             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5892       if (AI->isStaticAlloca()) {
5893         auto I = FuncInfo.StaticAllocaMap.find(AI);
5894         if (I != FuncInfo.StaticAllocaMap.end())
5895           FI = I->second;
5896       }
5897     } else if (const auto *Arg = dyn_cast<Argument>(
5898                    Address->stripInBoundsConstantOffsets())) {
5899       FI = FuncInfo.getArgumentFrameIndex(Arg);
5900     }
5901 
5902     // llvm.dbg.addr is control dependent and always generates indirect
5903     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5904     // the MachineFunction variable table.
5905     if (FI != std::numeric_limits<int>::max()) {
5906       if (Intrinsic == Intrinsic::dbg_addr) {
5907         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5908             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5909         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5910       } else {
5911         LLVM_DEBUG(dbgs() << "Skipping " << DI
5912                           << " (variable info stashed in MF side table)\n");
5913       }
5914       return;
5915     }
5916 
5917     SDValue &N = NodeMap[Address];
5918     if (!N.getNode() && isa<Argument>(Address))
5919       // Check unused arguments map.
5920       N = UnusedArgNodeMap[Address];
5921     SDDbgValue *SDV;
5922     if (N.getNode()) {
5923       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5924         Address = BCI->getOperand(0);
5925       // Parameters are handled specially.
5926       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5927       if (isParameter && FINode) {
5928         // Byval parameter. We have a frame index at this point.
5929         SDV =
5930             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5931                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5932       } else if (isa<Argument>(Address)) {
5933         // Address is an argument, so try to emit its dbg value using
5934         // virtual register info from the FuncInfo.ValueMap.
5935         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5936         return;
5937       } else {
5938         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5939                               true, dl, SDNodeOrder);
5940       }
5941       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5942     } else {
5943       // If Address is an argument then try to emit its dbg value using
5944       // virtual register info from the FuncInfo.ValueMap.
5945       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5946                                     N)) {
5947         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5948                           << " (could not emit func-arg dbg_value)\n");
5949       }
5950     }
5951     return;
5952   }
5953   case Intrinsic::dbg_label: {
5954     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5955     DILabel *Label = DI.getLabel();
5956     assert(Label && "Missing label");
5957 
5958     SDDbgLabel *SDV;
5959     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5960     DAG.AddDbgLabel(SDV);
5961     return;
5962   }
5963   case Intrinsic::dbg_value: {
5964     const DbgValueInst &DI = cast<DbgValueInst>(I);
5965     assert(DI.getVariable() && "Missing variable");
5966 
5967     DILocalVariable *Variable = DI.getVariable();
5968     DIExpression *Expression = DI.getExpression();
5969     dropDanglingDebugInfo(Variable, Expression);
5970     const Value *V = DI.getValue();
5971     if (!V)
5972       return;
5973 
5974     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5975         SDNodeOrder))
5976       return;
5977 
5978     // TODO: Dangling debug info will eventually either be resolved or produce
5979     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5980     // between the original dbg.value location and its resolved DBG_VALUE, which
5981     // we should ideally fill with an extra Undef DBG_VALUE.
5982 
5983     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5984     return;
5985   }
5986 
5987   case Intrinsic::eh_typeid_for: {
5988     // Find the type id for the given typeinfo.
5989     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5990     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5991     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5992     setValue(&I, Res);
5993     return;
5994   }
5995 
5996   case Intrinsic::eh_return_i32:
5997   case Intrinsic::eh_return_i64:
5998     DAG.getMachineFunction().setCallsEHReturn(true);
5999     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6000                             MVT::Other,
6001                             getControlRoot(),
6002                             getValue(I.getArgOperand(0)),
6003                             getValue(I.getArgOperand(1))));
6004     return;
6005   case Intrinsic::eh_unwind_init:
6006     DAG.getMachineFunction().setCallsUnwindInit(true);
6007     return;
6008   case Intrinsic::eh_dwarf_cfa:
6009     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6010                              TLI.getPointerTy(DAG.getDataLayout()),
6011                              getValue(I.getArgOperand(0))));
6012     return;
6013   case Intrinsic::eh_sjlj_callsite: {
6014     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6015     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6016     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6017     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6018 
6019     MMI.setCurrentCallSite(CI->getZExtValue());
6020     return;
6021   }
6022   case Intrinsic::eh_sjlj_functioncontext: {
6023     // Get and store the index of the function context.
6024     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6025     AllocaInst *FnCtx =
6026       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6027     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6028     MFI.setFunctionContextIndex(FI);
6029     return;
6030   }
6031   case Intrinsic::eh_sjlj_setjmp: {
6032     SDValue Ops[2];
6033     Ops[0] = getRoot();
6034     Ops[1] = getValue(I.getArgOperand(0));
6035     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6036                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6037     setValue(&I, Op.getValue(0));
6038     DAG.setRoot(Op.getValue(1));
6039     return;
6040   }
6041   case Intrinsic::eh_sjlj_longjmp:
6042     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6043                             getRoot(), getValue(I.getArgOperand(0))));
6044     return;
6045   case Intrinsic::eh_sjlj_setup_dispatch:
6046     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6047                             getRoot()));
6048     return;
6049   case Intrinsic::masked_gather:
6050     visitMaskedGather(I);
6051     return;
6052   case Intrinsic::masked_load:
6053     visitMaskedLoad(I);
6054     return;
6055   case Intrinsic::masked_scatter:
6056     visitMaskedScatter(I);
6057     return;
6058   case Intrinsic::masked_store:
6059     visitMaskedStore(I);
6060     return;
6061   case Intrinsic::masked_expandload:
6062     visitMaskedLoad(I, true /* IsExpanding */);
6063     return;
6064   case Intrinsic::masked_compressstore:
6065     visitMaskedStore(I, true /* IsCompressing */);
6066     return;
6067   case Intrinsic::powi:
6068     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6069                             getValue(I.getArgOperand(1)), DAG));
6070     return;
6071   case Intrinsic::log:
6072     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6073     return;
6074   case Intrinsic::log2:
6075     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6076     return;
6077   case Intrinsic::log10:
6078     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6079     return;
6080   case Intrinsic::exp:
6081     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6082     return;
6083   case Intrinsic::exp2:
6084     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6085     return;
6086   case Intrinsic::pow:
6087     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6088                            getValue(I.getArgOperand(1)), DAG, TLI));
6089     return;
6090   case Intrinsic::sqrt:
6091   case Intrinsic::fabs:
6092   case Intrinsic::sin:
6093   case Intrinsic::cos:
6094   case Intrinsic::floor:
6095   case Intrinsic::ceil:
6096   case Intrinsic::trunc:
6097   case Intrinsic::rint:
6098   case Intrinsic::nearbyint:
6099   case Intrinsic::round:
6100   case Intrinsic::roundeven:
6101   case Intrinsic::canonicalize: {
6102     unsigned Opcode;
6103     switch (Intrinsic) {
6104     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6105     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6106     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6107     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6108     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6109     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6110     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6111     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6112     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6113     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6114     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6115     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6116     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6117     }
6118 
6119     setValue(&I, DAG.getNode(Opcode, sdl,
6120                              getValue(I.getArgOperand(0)).getValueType(),
6121                              getValue(I.getArgOperand(0))));
6122     return;
6123   }
6124   case Intrinsic::lround:
6125   case Intrinsic::llround:
6126   case Intrinsic::lrint:
6127   case Intrinsic::llrint: {
6128     unsigned Opcode;
6129     switch (Intrinsic) {
6130     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6131     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6132     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6133     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6134     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6135     }
6136 
6137     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6138     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6139                              getValue(I.getArgOperand(0))));
6140     return;
6141   }
6142   case Intrinsic::minnum:
6143     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6144                              getValue(I.getArgOperand(0)).getValueType(),
6145                              getValue(I.getArgOperand(0)),
6146                              getValue(I.getArgOperand(1))));
6147     return;
6148   case Intrinsic::maxnum:
6149     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6150                              getValue(I.getArgOperand(0)).getValueType(),
6151                              getValue(I.getArgOperand(0)),
6152                              getValue(I.getArgOperand(1))));
6153     return;
6154   case Intrinsic::minimum:
6155     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6156                              getValue(I.getArgOperand(0)).getValueType(),
6157                              getValue(I.getArgOperand(0)),
6158                              getValue(I.getArgOperand(1))));
6159     return;
6160   case Intrinsic::maximum:
6161     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6162                              getValue(I.getArgOperand(0)).getValueType(),
6163                              getValue(I.getArgOperand(0)),
6164                              getValue(I.getArgOperand(1))));
6165     return;
6166   case Intrinsic::copysign:
6167     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6168                              getValue(I.getArgOperand(0)).getValueType(),
6169                              getValue(I.getArgOperand(0)),
6170                              getValue(I.getArgOperand(1))));
6171     return;
6172   case Intrinsic::fma:
6173     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6174                              getValue(I.getArgOperand(0)).getValueType(),
6175                              getValue(I.getArgOperand(0)),
6176                              getValue(I.getArgOperand(1)),
6177                              getValue(I.getArgOperand(2))));
6178     return;
6179 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6180   case Intrinsic::INTRINSIC:
6181 #include "llvm/IR/ConstrainedOps.def"
6182     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6183     return;
6184   case Intrinsic::fmuladd: {
6185     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6186     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6187         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6188       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6189                                getValue(I.getArgOperand(0)).getValueType(),
6190                                getValue(I.getArgOperand(0)),
6191                                getValue(I.getArgOperand(1)),
6192                                getValue(I.getArgOperand(2))));
6193     } else {
6194       // TODO: Intrinsic calls should have fast-math-flags.
6195       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6196                                 getValue(I.getArgOperand(0)).getValueType(),
6197                                 getValue(I.getArgOperand(0)),
6198                                 getValue(I.getArgOperand(1)));
6199       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6200                                 getValue(I.getArgOperand(0)).getValueType(),
6201                                 Mul,
6202                                 getValue(I.getArgOperand(2)));
6203       setValue(&I, Add);
6204     }
6205     return;
6206   }
6207   case Intrinsic::convert_to_fp16:
6208     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6209                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6210                                          getValue(I.getArgOperand(0)),
6211                                          DAG.getTargetConstant(0, sdl,
6212                                                                MVT::i32))));
6213     return;
6214   case Intrinsic::convert_from_fp16:
6215     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6216                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6217                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6218                                          getValue(I.getArgOperand(0)))));
6219     return;
6220   case Intrinsic::pcmarker: {
6221     SDValue Tmp = getValue(I.getArgOperand(0));
6222     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6223     return;
6224   }
6225   case Intrinsic::readcyclecounter: {
6226     SDValue Op = getRoot();
6227     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6228                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6229     setValue(&I, Res);
6230     DAG.setRoot(Res.getValue(1));
6231     return;
6232   }
6233   case Intrinsic::bitreverse:
6234     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6235                              getValue(I.getArgOperand(0)).getValueType(),
6236                              getValue(I.getArgOperand(0))));
6237     return;
6238   case Intrinsic::bswap:
6239     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6240                              getValue(I.getArgOperand(0)).getValueType(),
6241                              getValue(I.getArgOperand(0))));
6242     return;
6243   case Intrinsic::cttz: {
6244     SDValue Arg = getValue(I.getArgOperand(0));
6245     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6246     EVT Ty = Arg.getValueType();
6247     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6248                              sdl, Ty, Arg));
6249     return;
6250   }
6251   case Intrinsic::ctlz: {
6252     SDValue Arg = getValue(I.getArgOperand(0));
6253     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6254     EVT Ty = Arg.getValueType();
6255     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6256                              sdl, Ty, Arg));
6257     return;
6258   }
6259   case Intrinsic::ctpop: {
6260     SDValue Arg = getValue(I.getArgOperand(0));
6261     EVT Ty = Arg.getValueType();
6262     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6263     return;
6264   }
6265   case Intrinsic::fshl:
6266   case Intrinsic::fshr: {
6267     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6268     SDValue X = getValue(I.getArgOperand(0));
6269     SDValue Y = getValue(I.getArgOperand(1));
6270     SDValue Z = getValue(I.getArgOperand(2));
6271     EVT VT = X.getValueType();
6272     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6273     SDValue Zero = DAG.getConstant(0, sdl, VT);
6274     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6275 
6276     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6277     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6278       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6279       return;
6280     }
6281 
6282     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6283     // avoid the select that is necessary in the general case to filter out
6284     // the 0-shift possibility that leads to UB.
6285     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6286       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6287       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6288         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6289         return;
6290       }
6291 
6292       // Some targets only rotate one way. Try the opposite direction.
6293       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6294       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6295         // Negate the shift amount because it is safe to ignore the high bits.
6296         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6297         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6298         return;
6299       }
6300 
6301       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6302       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6303       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6304       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6305       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6306       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6307       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6308       return;
6309     }
6310 
6311     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6312     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6313     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6314     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6315     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6316     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6317 
6318     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6319     // and that is undefined. We must compare and select to avoid UB.
6320     EVT CCVT = MVT::i1;
6321     if (VT.isVector())
6322       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6323 
6324     // For fshl, 0-shift returns the 1st arg (X).
6325     // For fshr, 0-shift returns the 2nd arg (Y).
6326     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6327     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6328     return;
6329   }
6330   case Intrinsic::sadd_sat: {
6331     SDValue Op1 = getValue(I.getArgOperand(0));
6332     SDValue Op2 = getValue(I.getArgOperand(1));
6333     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6334     return;
6335   }
6336   case Intrinsic::uadd_sat: {
6337     SDValue Op1 = getValue(I.getArgOperand(0));
6338     SDValue Op2 = getValue(I.getArgOperand(1));
6339     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6340     return;
6341   }
6342   case Intrinsic::ssub_sat: {
6343     SDValue Op1 = getValue(I.getArgOperand(0));
6344     SDValue Op2 = getValue(I.getArgOperand(1));
6345     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6346     return;
6347   }
6348   case Intrinsic::usub_sat: {
6349     SDValue Op1 = getValue(I.getArgOperand(0));
6350     SDValue Op2 = getValue(I.getArgOperand(1));
6351     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6352     return;
6353   }
6354   case Intrinsic::smul_fix:
6355   case Intrinsic::umul_fix:
6356   case Intrinsic::smul_fix_sat:
6357   case Intrinsic::umul_fix_sat: {
6358     SDValue Op1 = getValue(I.getArgOperand(0));
6359     SDValue Op2 = getValue(I.getArgOperand(1));
6360     SDValue Op3 = getValue(I.getArgOperand(2));
6361     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6362                              Op1.getValueType(), Op1, Op2, Op3));
6363     return;
6364   }
6365   case Intrinsic::sdiv_fix:
6366   case Intrinsic::udiv_fix:
6367   case Intrinsic::sdiv_fix_sat:
6368   case Intrinsic::udiv_fix_sat: {
6369     SDValue Op1 = getValue(I.getArgOperand(0));
6370     SDValue Op2 = getValue(I.getArgOperand(1));
6371     SDValue Op3 = getValue(I.getArgOperand(2));
6372     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6373                               Op1, Op2, Op3, DAG, TLI));
6374     return;
6375   }
6376   case Intrinsic::stacksave: {
6377     SDValue Op = getRoot();
6378     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6379     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6380     setValue(&I, Res);
6381     DAG.setRoot(Res.getValue(1));
6382     return;
6383   }
6384   case Intrinsic::stackrestore:
6385     Res = getValue(I.getArgOperand(0));
6386     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6387     return;
6388   case Intrinsic::get_dynamic_area_offset: {
6389     SDValue Op = getRoot();
6390     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6391     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6392     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6393     // target.
6394     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6395       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6396                          " intrinsic!");
6397     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6398                       Op);
6399     DAG.setRoot(Op);
6400     setValue(&I, Res);
6401     return;
6402   }
6403   case Intrinsic::stackguard: {
6404     MachineFunction &MF = DAG.getMachineFunction();
6405     const Module &M = *MF.getFunction().getParent();
6406     SDValue Chain = getRoot();
6407     if (TLI.useLoadStackGuardNode()) {
6408       Res = getLoadStackGuard(DAG, sdl, Chain);
6409     } else {
6410       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6411       const Value *Global = TLI.getSDagStackGuard(M);
6412       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6413       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6414                         MachinePointerInfo(Global, 0), Align,
6415                         MachineMemOperand::MOVolatile);
6416     }
6417     if (TLI.useStackGuardXorFP())
6418       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6419     DAG.setRoot(Chain);
6420     setValue(&I, Res);
6421     return;
6422   }
6423   case Intrinsic::stackprotector: {
6424     // Emit code into the DAG to store the stack guard onto the stack.
6425     MachineFunction &MF = DAG.getMachineFunction();
6426     MachineFrameInfo &MFI = MF.getFrameInfo();
6427     SDValue Src, Chain = getRoot();
6428 
6429     if (TLI.useLoadStackGuardNode())
6430       Src = getLoadStackGuard(DAG, sdl, Chain);
6431     else
6432       Src = getValue(I.getArgOperand(0));   // The guard's value.
6433 
6434     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6435 
6436     int FI = FuncInfo.StaticAllocaMap[Slot];
6437     MFI.setStackProtectorIndex(FI);
6438     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6439 
6440     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6441 
6442     // Store the stack protector onto the stack.
6443     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6444                                                  DAG.getMachineFunction(), FI),
6445                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6446     setValue(&I, Res);
6447     DAG.setRoot(Res);
6448     return;
6449   }
6450   case Intrinsic::objectsize:
6451     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6452 
6453   case Intrinsic::is_constant:
6454     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6455 
6456   case Intrinsic::annotation:
6457   case Intrinsic::ptr_annotation:
6458   case Intrinsic::launder_invariant_group:
6459   case Intrinsic::strip_invariant_group:
6460     // Drop the intrinsic, but forward the value
6461     setValue(&I, getValue(I.getOperand(0)));
6462     return;
6463   case Intrinsic::assume:
6464   case Intrinsic::var_annotation:
6465   case Intrinsic::sideeffect:
6466     // Discard annotate attributes, assumptions, and artificial side-effects.
6467     return;
6468 
6469   case Intrinsic::codeview_annotation: {
6470     // Emit a label associated with this metadata.
6471     MachineFunction &MF = DAG.getMachineFunction();
6472     MCSymbol *Label =
6473         MF.getMMI().getContext().createTempSymbol("annotation", true);
6474     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6475     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6476     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6477     DAG.setRoot(Res);
6478     return;
6479   }
6480 
6481   case Intrinsic::init_trampoline: {
6482     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6483 
6484     SDValue Ops[6];
6485     Ops[0] = getRoot();
6486     Ops[1] = getValue(I.getArgOperand(0));
6487     Ops[2] = getValue(I.getArgOperand(1));
6488     Ops[3] = getValue(I.getArgOperand(2));
6489     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6490     Ops[5] = DAG.getSrcValue(F);
6491 
6492     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6493 
6494     DAG.setRoot(Res);
6495     return;
6496   }
6497   case Intrinsic::adjust_trampoline:
6498     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6499                              TLI.getPointerTy(DAG.getDataLayout()),
6500                              getValue(I.getArgOperand(0))));
6501     return;
6502   case Intrinsic::gcroot: {
6503     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6504            "only valid in functions with gc specified, enforced by Verifier");
6505     assert(GFI && "implied by previous");
6506     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6507     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6508 
6509     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6510     GFI->addStackRoot(FI->getIndex(), TypeMap);
6511     return;
6512   }
6513   case Intrinsic::gcread:
6514   case Intrinsic::gcwrite:
6515     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6516   case Intrinsic::flt_rounds:
6517     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6518     setValue(&I, Res);
6519     DAG.setRoot(Res.getValue(1));
6520     return;
6521 
6522   case Intrinsic::expect:
6523     // Just replace __builtin_expect(exp, c) with EXP.
6524     setValue(&I, getValue(I.getArgOperand(0)));
6525     return;
6526 
6527   case Intrinsic::debugtrap:
6528   case Intrinsic::trap: {
6529     StringRef TrapFuncName =
6530         I.getAttributes()
6531             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6532             .getValueAsString();
6533     if (TrapFuncName.empty()) {
6534       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6535         ISD::TRAP : ISD::DEBUGTRAP;
6536       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6537       return;
6538     }
6539     TargetLowering::ArgListTy Args;
6540 
6541     TargetLowering::CallLoweringInfo CLI(DAG);
6542     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6543         CallingConv::C, I.getType(),
6544         DAG.getExternalSymbol(TrapFuncName.data(),
6545                               TLI.getPointerTy(DAG.getDataLayout())),
6546         std::move(Args));
6547 
6548     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6549     DAG.setRoot(Result.second);
6550     return;
6551   }
6552 
6553   case Intrinsic::uadd_with_overflow:
6554   case Intrinsic::sadd_with_overflow:
6555   case Intrinsic::usub_with_overflow:
6556   case Intrinsic::ssub_with_overflow:
6557   case Intrinsic::umul_with_overflow:
6558   case Intrinsic::smul_with_overflow: {
6559     ISD::NodeType Op;
6560     switch (Intrinsic) {
6561     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6562     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6563     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6564     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6565     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6566     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6567     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6568     }
6569     SDValue Op1 = getValue(I.getArgOperand(0));
6570     SDValue Op2 = getValue(I.getArgOperand(1));
6571 
6572     EVT ResultVT = Op1.getValueType();
6573     EVT OverflowVT = MVT::i1;
6574     if (ResultVT.isVector())
6575       OverflowVT = EVT::getVectorVT(
6576           *Context, OverflowVT, ResultVT.getVectorNumElements());
6577 
6578     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6579     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6580     return;
6581   }
6582   case Intrinsic::prefetch: {
6583     SDValue Ops[5];
6584     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6585     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6586     Ops[0] = DAG.getRoot();
6587     Ops[1] = getValue(I.getArgOperand(0));
6588     Ops[2] = getValue(I.getArgOperand(1));
6589     Ops[3] = getValue(I.getArgOperand(2));
6590     Ops[4] = getValue(I.getArgOperand(3));
6591     SDValue Result = DAG.getMemIntrinsicNode(
6592         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6593         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6594         /* align */ None, Flags);
6595 
6596     // Chain the prefetch in parallell with any pending loads, to stay out of
6597     // the way of later optimizations.
6598     PendingLoads.push_back(Result);
6599     Result = getRoot();
6600     DAG.setRoot(Result);
6601     return;
6602   }
6603   case Intrinsic::lifetime_start:
6604   case Intrinsic::lifetime_end: {
6605     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6606     // Stack coloring is not enabled in O0, discard region information.
6607     if (TM.getOptLevel() == CodeGenOpt::None)
6608       return;
6609 
6610     const int64_t ObjectSize =
6611         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6612     Value *const ObjectPtr = I.getArgOperand(1);
6613     SmallVector<const Value *, 4> Allocas;
6614     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6615 
6616     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6617            E = Allocas.end(); Object != E; ++Object) {
6618       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6619 
6620       // Could not find an Alloca.
6621       if (!LifetimeObject)
6622         continue;
6623 
6624       // First check that the Alloca is static, otherwise it won't have a
6625       // valid frame index.
6626       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6627       if (SI == FuncInfo.StaticAllocaMap.end())
6628         return;
6629 
6630       const int FrameIndex = SI->second;
6631       int64_t Offset;
6632       if (GetPointerBaseWithConstantOffset(
6633               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6634         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6635       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6636                                 Offset);
6637       DAG.setRoot(Res);
6638     }
6639     return;
6640   }
6641   case Intrinsic::invariant_start:
6642     // Discard region information.
6643     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6644     return;
6645   case Intrinsic::invariant_end:
6646     // Discard region information.
6647     return;
6648   case Intrinsic::clear_cache:
6649     /// FunctionName may be null.
6650     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6651       lowerCallToExternalSymbol(I, FunctionName);
6652     return;
6653   case Intrinsic::donothing:
6654     // ignore
6655     return;
6656   case Intrinsic::experimental_stackmap:
6657     visitStackmap(I);
6658     return;
6659   case Intrinsic::experimental_patchpoint_void:
6660   case Intrinsic::experimental_patchpoint_i64:
6661     visitPatchpoint(I);
6662     return;
6663   case Intrinsic::experimental_gc_statepoint:
6664     LowerStatepoint(cast<GCStatepointInst>(I));
6665     return;
6666   case Intrinsic::experimental_gc_result:
6667     visitGCResult(cast<GCResultInst>(I));
6668     return;
6669   case Intrinsic::experimental_gc_relocate:
6670     visitGCRelocate(cast<GCRelocateInst>(I));
6671     return;
6672   case Intrinsic::instrprof_increment:
6673     llvm_unreachable("instrprof failed to lower an increment");
6674   case Intrinsic::instrprof_value_profile:
6675     llvm_unreachable("instrprof failed to lower a value profiling call");
6676   case Intrinsic::localescape: {
6677     MachineFunction &MF = DAG.getMachineFunction();
6678     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6679 
6680     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6681     // is the same on all targets.
6682     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6683       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6684       if (isa<ConstantPointerNull>(Arg))
6685         continue; // Skip null pointers. They represent a hole in index space.
6686       AllocaInst *Slot = cast<AllocaInst>(Arg);
6687       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6688              "can only escape static allocas");
6689       int FI = FuncInfo.StaticAllocaMap[Slot];
6690       MCSymbol *FrameAllocSym =
6691           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6692               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6693       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6694               TII->get(TargetOpcode::LOCAL_ESCAPE))
6695           .addSym(FrameAllocSym)
6696           .addFrameIndex(FI);
6697     }
6698 
6699     return;
6700   }
6701 
6702   case Intrinsic::localrecover: {
6703     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6704     MachineFunction &MF = DAG.getMachineFunction();
6705 
6706     // Get the symbol that defines the frame offset.
6707     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6708     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6709     unsigned IdxVal =
6710         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6711     MCSymbol *FrameAllocSym =
6712         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6713             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6714 
6715     Value *FP = I.getArgOperand(1);
6716     SDValue FPVal = getValue(FP);
6717     EVT PtrVT = FPVal.getValueType();
6718 
6719     // Create a MCSymbol for the label to avoid any target lowering
6720     // that would make this PC relative.
6721     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6722     SDValue OffsetVal =
6723         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6724 
6725     // Add the offset to the FP.
6726     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6727     setValue(&I, Add);
6728 
6729     return;
6730   }
6731 
6732   case Intrinsic::eh_exceptionpointer:
6733   case Intrinsic::eh_exceptioncode: {
6734     // Get the exception pointer vreg, copy from it, and resize it to fit.
6735     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6736     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6737     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6738     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6739     SDValue N =
6740         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6741     if (Intrinsic == Intrinsic::eh_exceptioncode)
6742       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6743     setValue(&I, N);
6744     return;
6745   }
6746   case Intrinsic::xray_customevent: {
6747     // Here we want to make sure that the intrinsic behaves as if it has a
6748     // specific calling convention, and only for x86_64.
6749     // FIXME: Support other platforms later.
6750     const auto &Triple = DAG.getTarget().getTargetTriple();
6751     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6752       return;
6753 
6754     SDLoc DL = getCurSDLoc();
6755     SmallVector<SDValue, 8> Ops;
6756 
6757     // We want to say that we always want the arguments in registers.
6758     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6759     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6760     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6761     SDValue Chain = getRoot();
6762     Ops.push_back(LogEntryVal);
6763     Ops.push_back(StrSizeVal);
6764     Ops.push_back(Chain);
6765 
6766     // We need to enforce the calling convention for the callsite, so that
6767     // argument ordering is enforced correctly, and that register allocation can
6768     // see that some registers may be assumed clobbered and have to preserve
6769     // them across calls to the intrinsic.
6770     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6771                                            DL, NodeTys, Ops);
6772     SDValue patchableNode = SDValue(MN, 0);
6773     DAG.setRoot(patchableNode);
6774     setValue(&I, patchableNode);
6775     return;
6776   }
6777   case Intrinsic::xray_typedevent: {
6778     // Here we want to make sure that the intrinsic behaves as if it has a
6779     // specific calling convention, and only for x86_64.
6780     // FIXME: Support other platforms later.
6781     const auto &Triple = DAG.getTarget().getTargetTriple();
6782     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6783       return;
6784 
6785     SDLoc DL = getCurSDLoc();
6786     SmallVector<SDValue, 8> Ops;
6787 
6788     // We want to say that we always want the arguments in registers.
6789     // It's unclear to me how manipulating the selection DAG here forces callers
6790     // to provide arguments in registers instead of on the stack.
6791     SDValue LogTypeId = getValue(I.getArgOperand(0));
6792     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6793     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6794     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6795     SDValue Chain = getRoot();
6796     Ops.push_back(LogTypeId);
6797     Ops.push_back(LogEntryVal);
6798     Ops.push_back(StrSizeVal);
6799     Ops.push_back(Chain);
6800 
6801     // We need to enforce the calling convention for the callsite, so that
6802     // argument ordering is enforced correctly, and that register allocation can
6803     // see that some registers may be assumed clobbered and have to preserve
6804     // them across calls to the intrinsic.
6805     MachineSDNode *MN = DAG.getMachineNode(
6806         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6807     SDValue patchableNode = SDValue(MN, 0);
6808     DAG.setRoot(patchableNode);
6809     setValue(&I, patchableNode);
6810     return;
6811   }
6812   case Intrinsic::experimental_deoptimize:
6813     LowerDeoptimizeCall(&I);
6814     return;
6815 
6816   case Intrinsic::experimental_vector_reduce_v2_fadd:
6817   case Intrinsic::experimental_vector_reduce_v2_fmul:
6818   case Intrinsic::experimental_vector_reduce_add:
6819   case Intrinsic::experimental_vector_reduce_mul:
6820   case Intrinsic::experimental_vector_reduce_and:
6821   case Intrinsic::experimental_vector_reduce_or:
6822   case Intrinsic::experimental_vector_reduce_xor:
6823   case Intrinsic::experimental_vector_reduce_smax:
6824   case Intrinsic::experimental_vector_reduce_smin:
6825   case Intrinsic::experimental_vector_reduce_umax:
6826   case Intrinsic::experimental_vector_reduce_umin:
6827   case Intrinsic::experimental_vector_reduce_fmax:
6828   case Intrinsic::experimental_vector_reduce_fmin:
6829     visitVectorReduce(I, Intrinsic);
6830     return;
6831 
6832   case Intrinsic::icall_branch_funnel: {
6833     SmallVector<SDValue, 16> Ops;
6834     Ops.push_back(getValue(I.getArgOperand(0)));
6835 
6836     int64_t Offset;
6837     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6838         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6839     if (!Base)
6840       report_fatal_error(
6841           "llvm.icall.branch.funnel operand must be a GlobalValue");
6842     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6843 
6844     struct BranchFunnelTarget {
6845       int64_t Offset;
6846       SDValue Target;
6847     };
6848     SmallVector<BranchFunnelTarget, 8> Targets;
6849 
6850     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6851       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6852           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6853       if (ElemBase != Base)
6854         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6855                            "to the same GlobalValue");
6856 
6857       SDValue Val = getValue(I.getArgOperand(Op + 1));
6858       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6859       if (!GA)
6860         report_fatal_error(
6861             "llvm.icall.branch.funnel operand must be a GlobalValue");
6862       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6863                                      GA->getGlobal(), getCurSDLoc(),
6864                                      Val.getValueType(), GA->getOffset())});
6865     }
6866     llvm::sort(Targets,
6867                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6868                  return T1.Offset < T2.Offset;
6869                });
6870 
6871     for (auto &T : Targets) {
6872       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6873       Ops.push_back(T.Target);
6874     }
6875 
6876     Ops.push_back(DAG.getRoot()); // Chain
6877     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6878                                  getCurSDLoc(), MVT::Other, Ops),
6879               0);
6880     DAG.setRoot(N);
6881     setValue(&I, N);
6882     HasTailCall = true;
6883     return;
6884   }
6885 
6886   case Intrinsic::wasm_landingpad_index:
6887     // Information this intrinsic contained has been transferred to
6888     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6889     // delete it now.
6890     return;
6891 
6892   case Intrinsic::aarch64_settag:
6893   case Intrinsic::aarch64_settag_zero: {
6894     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6895     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6896     SDValue Val = TSI.EmitTargetCodeForSetTag(
6897         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6898         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6899         ZeroMemory);
6900     DAG.setRoot(Val);
6901     setValue(&I, Val);
6902     return;
6903   }
6904   case Intrinsic::ptrmask: {
6905     SDValue Ptr = getValue(I.getOperand(0));
6906     SDValue Const = getValue(I.getOperand(1));
6907 
6908     EVT PtrVT = Ptr.getValueType();
6909     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6910                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6911     return;
6912   }
6913   case Intrinsic::get_active_lane_mask: {
6914     auto DL = getCurSDLoc();
6915     SDValue Index = getValue(I.getOperand(0));
6916     SDValue BTC = getValue(I.getOperand(1));
6917     Type *ElementTy = I.getOperand(0)->getType();
6918     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6919     unsigned VecWidth = VT.getVectorNumElements();
6920 
6921     SmallVector<SDValue, 16> OpsBTC;
6922     SmallVector<SDValue, 16> OpsIndex;
6923     SmallVector<SDValue, 16> OpsStepConstants;
6924     for (unsigned i = 0; i < VecWidth; i++) {
6925       OpsBTC.push_back(BTC);
6926       OpsIndex.push_back(Index);
6927       OpsStepConstants.push_back(DAG.getConstant(i, DL, MVT::getVT(ElementTy)));
6928     }
6929 
6930     EVT CCVT = MVT::i1;
6931     CCVT = EVT::getVectorVT(I.getContext(), CCVT, VecWidth);
6932 
6933     auto VecTy = MVT::getVT(FixedVectorType::get(ElementTy, VecWidth));
6934     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6935     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6936     SDValue VectorInduction = DAG.getNode(
6937        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6938     SDValue VectorBTC = DAG.getBuildVector(VecTy, DL, OpsBTC);
6939     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6940                                  VectorBTC, ISD::CondCode::SETULE);
6941     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
6942                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
6943                              SetCC));
6944     return;
6945   }
6946   }
6947 }
6948 
6949 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6950     const ConstrainedFPIntrinsic &FPI) {
6951   SDLoc sdl = getCurSDLoc();
6952 
6953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6954   SmallVector<EVT, 4> ValueVTs;
6955   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6956   ValueVTs.push_back(MVT::Other); // Out chain
6957 
6958   // We do not need to serialize constrained FP intrinsics against
6959   // each other or against (nonvolatile) loads, so they can be
6960   // chained like loads.
6961   SDValue Chain = DAG.getRoot();
6962   SmallVector<SDValue, 4> Opers;
6963   Opers.push_back(Chain);
6964   if (FPI.isUnaryOp()) {
6965     Opers.push_back(getValue(FPI.getArgOperand(0)));
6966   } else if (FPI.isTernaryOp()) {
6967     Opers.push_back(getValue(FPI.getArgOperand(0)));
6968     Opers.push_back(getValue(FPI.getArgOperand(1)));
6969     Opers.push_back(getValue(FPI.getArgOperand(2)));
6970   } else {
6971     Opers.push_back(getValue(FPI.getArgOperand(0)));
6972     Opers.push_back(getValue(FPI.getArgOperand(1)));
6973   }
6974 
6975   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6976     assert(Result.getNode()->getNumValues() == 2);
6977 
6978     // Push node to the appropriate list so that future instructions can be
6979     // chained up correctly.
6980     SDValue OutChain = Result.getValue(1);
6981     switch (EB) {
6982     case fp::ExceptionBehavior::ebIgnore:
6983       // The only reason why ebIgnore nodes still need to be chained is that
6984       // they might depend on the current rounding mode, and therefore must
6985       // not be moved across instruction that may change that mode.
6986       LLVM_FALLTHROUGH;
6987     case fp::ExceptionBehavior::ebMayTrap:
6988       // These must not be moved across calls or instructions that may change
6989       // floating-point exception masks.
6990       PendingConstrainedFP.push_back(OutChain);
6991       break;
6992     case fp::ExceptionBehavior::ebStrict:
6993       // These must not be moved across calls or instructions that may change
6994       // floating-point exception masks or read floating-point exception flags.
6995       // In addition, they cannot be optimized out even if unused.
6996       PendingConstrainedFPStrict.push_back(OutChain);
6997       break;
6998     }
6999   };
7000 
7001   SDVTList VTs = DAG.getVTList(ValueVTs);
7002   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7003 
7004   SDNodeFlags Flags;
7005   if (EB == fp::ExceptionBehavior::ebIgnore)
7006     Flags.setNoFPExcept(true);
7007 
7008   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7009     Flags.copyFMF(*FPOp);
7010 
7011   unsigned Opcode;
7012   switch (FPI.getIntrinsicID()) {
7013   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7014 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7015   case Intrinsic::INTRINSIC:                                                   \
7016     Opcode = ISD::STRICT_##DAGN;                                               \
7017     break;
7018 #include "llvm/IR/ConstrainedOps.def"
7019   case Intrinsic::experimental_constrained_fmuladd: {
7020     Opcode = ISD::STRICT_FMA;
7021     // Break fmuladd into fmul and fadd.
7022     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7023         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7024                                         ValueVTs[0])) {
7025       Opers.pop_back();
7026       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7027       pushOutChain(Mul, EB);
7028       Opcode = ISD::STRICT_FADD;
7029       Opers.clear();
7030       Opers.push_back(Mul.getValue(1));
7031       Opers.push_back(Mul.getValue(0));
7032       Opers.push_back(getValue(FPI.getArgOperand(2)));
7033     }
7034     break;
7035   }
7036   }
7037 
7038   // A few strict DAG nodes carry additional operands that are not
7039   // set up by the default code above.
7040   switch (Opcode) {
7041   default: break;
7042   case ISD::STRICT_FP_ROUND:
7043     Opers.push_back(
7044         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7045     break;
7046   case ISD::STRICT_FSETCC:
7047   case ISD::STRICT_FSETCCS: {
7048     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7049     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7050     break;
7051   }
7052   }
7053 
7054   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7055   pushOutChain(Result, EB);
7056 
7057   SDValue FPResult = Result.getValue(0);
7058   setValue(&FPI, FPResult);
7059 }
7060 
7061 std::pair<SDValue, SDValue>
7062 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7063                                     const BasicBlock *EHPadBB) {
7064   MachineFunction &MF = DAG.getMachineFunction();
7065   MachineModuleInfo &MMI = MF.getMMI();
7066   MCSymbol *BeginLabel = nullptr;
7067 
7068   if (EHPadBB) {
7069     // Insert a label before the invoke call to mark the try range.  This can be
7070     // used to detect deletion of the invoke via the MachineModuleInfo.
7071     BeginLabel = MMI.getContext().createTempSymbol();
7072 
7073     // For SjLj, keep track of which landing pads go with which invokes
7074     // so as to maintain the ordering of pads in the LSDA.
7075     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7076     if (CallSiteIndex) {
7077       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7078       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7079 
7080       // Now that the call site is handled, stop tracking it.
7081       MMI.setCurrentCallSite(0);
7082     }
7083 
7084     // Both PendingLoads and PendingExports must be flushed here;
7085     // this call might not return.
7086     (void)getRoot();
7087     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7088 
7089     CLI.setChain(getRoot());
7090   }
7091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7092   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7093 
7094   assert((CLI.IsTailCall || Result.second.getNode()) &&
7095          "Non-null chain expected with non-tail call!");
7096   assert((Result.second.getNode() || !Result.first.getNode()) &&
7097          "Null value expected with tail call!");
7098 
7099   if (!Result.second.getNode()) {
7100     // As a special case, a null chain means that a tail call has been emitted
7101     // and the DAG root is already updated.
7102     HasTailCall = true;
7103 
7104     // Since there's no actual continuation from this block, nothing can be
7105     // relying on us setting vregs for them.
7106     PendingExports.clear();
7107   } else {
7108     DAG.setRoot(Result.second);
7109   }
7110 
7111   if (EHPadBB) {
7112     // Insert a label at the end of the invoke call to mark the try range.  This
7113     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7114     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7115     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7116 
7117     // Inform MachineModuleInfo of range.
7118     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7119     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7120     // actually use outlined funclets and their LSDA info style.
7121     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7122       assert(CLI.CB);
7123       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7124       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7125     } else if (!isScopedEHPersonality(Pers)) {
7126       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7127     }
7128   }
7129 
7130   return Result;
7131 }
7132 
7133 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7134                                       bool isTailCall,
7135                                       const BasicBlock *EHPadBB) {
7136   auto &DL = DAG.getDataLayout();
7137   FunctionType *FTy = CB.getFunctionType();
7138   Type *RetTy = CB.getType();
7139 
7140   TargetLowering::ArgListTy Args;
7141   Args.reserve(CB.arg_size());
7142 
7143   const Value *SwiftErrorVal = nullptr;
7144   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7145 
7146   if (isTailCall) {
7147     // Avoid emitting tail calls in functions with the disable-tail-calls
7148     // attribute.
7149     auto *Caller = CB.getParent()->getParent();
7150     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7151         "true")
7152       isTailCall = false;
7153 
7154     // We can't tail call inside a function with a swifterror argument. Lowering
7155     // does not support this yet. It would have to move into the swifterror
7156     // register before the call.
7157     if (TLI.supportSwiftError() &&
7158         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7159       isTailCall = false;
7160   }
7161 
7162   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7163     TargetLowering::ArgListEntry Entry;
7164     const Value *V = *I;
7165 
7166     // Skip empty types
7167     if (V->getType()->isEmptyTy())
7168       continue;
7169 
7170     SDValue ArgNode = getValue(V);
7171     Entry.Node = ArgNode; Entry.Ty = V->getType();
7172 
7173     Entry.setAttributes(&CB, I - CB.arg_begin());
7174 
7175     // Use swifterror virtual register as input to the call.
7176     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7177       SwiftErrorVal = V;
7178       // We find the virtual register for the actual swifterror argument.
7179       // Instead of using the Value, we use the virtual register instead.
7180       Entry.Node =
7181           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7182                           EVT(TLI.getPointerTy(DL)));
7183     }
7184 
7185     Args.push_back(Entry);
7186 
7187     // If we have an explicit sret argument that is an Instruction, (i.e., it
7188     // might point to function-local memory), we can't meaningfully tail-call.
7189     if (Entry.IsSRet && isa<Instruction>(V))
7190       isTailCall = false;
7191   }
7192 
7193   // If call site has a cfguardtarget operand bundle, create and add an
7194   // additional ArgListEntry.
7195   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7196     TargetLowering::ArgListEntry Entry;
7197     Value *V = Bundle->Inputs[0];
7198     SDValue ArgNode = getValue(V);
7199     Entry.Node = ArgNode;
7200     Entry.Ty = V->getType();
7201     Entry.IsCFGuardTarget = true;
7202     Args.push_back(Entry);
7203   }
7204 
7205   // Check if target-independent constraints permit a tail call here.
7206   // Target-dependent constraints are checked within TLI->LowerCallTo.
7207   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7208     isTailCall = false;
7209 
7210   // Disable tail calls if there is an swifterror argument. Targets have not
7211   // been updated to support tail calls.
7212   if (TLI.supportSwiftError() && SwiftErrorVal)
7213     isTailCall = false;
7214 
7215   TargetLowering::CallLoweringInfo CLI(DAG);
7216   CLI.setDebugLoc(getCurSDLoc())
7217       .setChain(getRoot())
7218       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7219       .setTailCall(isTailCall)
7220       .setConvergent(CB.isConvergent())
7221       .setIsPreallocated(
7222           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7223   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7224 
7225   if (Result.first.getNode()) {
7226     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7227     setValue(&CB, Result.first);
7228   }
7229 
7230   // The last element of CLI.InVals has the SDValue for swifterror return.
7231   // Here we copy it to a virtual register and update SwiftErrorMap for
7232   // book-keeping.
7233   if (SwiftErrorVal && TLI.supportSwiftError()) {
7234     // Get the last element of InVals.
7235     SDValue Src = CLI.InVals.back();
7236     Register VReg =
7237         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7238     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7239     DAG.setRoot(CopyNode);
7240   }
7241 }
7242 
7243 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7244                              SelectionDAGBuilder &Builder) {
7245   // Check to see if this load can be trivially constant folded, e.g. if the
7246   // input is from a string literal.
7247   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7248     // Cast pointer to the type we really want to load.
7249     Type *LoadTy =
7250         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7251     if (LoadVT.isVector())
7252       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7253 
7254     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7255                                          PointerType::getUnqual(LoadTy));
7256 
7257     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7258             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7259       return Builder.getValue(LoadCst);
7260   }
7261 
7262   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7263   // still constant memory, the input chain can be the entry node.
7264   SDValue Root;
7265   bool ConstantMemory = false;
7266 
7267   // Do not serialize (non-volatile) loads of constant memory with anything.
7268   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7269     Root = Builder.DAG.getEntryNode();
7270     ConstantMemory = true;
7271   } else {
7272     // Do not serialize non-volatile loads against each other.
7273     Root = Builder.DAG.getRoot();
7274   }
7275 
7276   SDValue Ptr = Builder.getValue(PtrVal);
7277   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7278                                         Ptr, MachinePointerInfo(PtrVal),
7279                                         /* Alignment = */ 1);
7280 
7281   if (!ConstantMemory)
7282     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7283   return LoadVal;
7284 }
7285 
7286 /// Record the value for an instruction that produces an integer result,
7287 /// converting the type where necessary.
7288 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7289                                                   SDValue Value,
7290                                                   bool IsSigned) {
7291   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7292                                                     I.getType(), true);
7293   if (IsSigned)
7294     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7295   else
7296     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7297   setValue(&I, Value);
7298 }
7299 
7300 /// See if we can lower a memcmp call into an optimized form. If so, return
7301 /// true and lower it. Otherwise return false, and it will be lowered like a
7302 /// normal call.
7303 /// The caller already checked that \p I calls the appropriate LibFunc with a
7304 /// correct prototype.
7305 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7306   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7307   const Value *Size = I.getArgOperand(2);
7308   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7309   if (CSize && CSize->getZExtValue() == 0) {
7310     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7311                                                           I.getType(), true);
7312     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7313     return true;
7314   }
7315 
7316   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7317   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7318       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7319       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7320   if (Res.first.getNode()) {
7321     processIntegerCallValue(I, Res.first, true);
7322     PendingLoads.push_back(Res.second);
7323     return true;
7324   }
7325 
7326   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7327   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7328   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7329     return false;
7330 
7331   // If the target has a fast compare for the given size, it will return a
7332   // preferred load type for that size. Require that the load VT is legal and
7333   // that the target supports unaligned loads of that type. Otherwise, return
7334   // INVALID.
7335   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7336     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7337     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7338     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7339       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7340       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7341       // TODO: Check alignment of src and dest ptrs.
7342       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7343       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7344       if (!TLI.isTypeLegal(LVT) ||
7345           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7346           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7347         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7348     }
7349 
7350     return LVT;
7351   };
7352 
7353   // This turns into unaligned loads. We only do this if the target natively
7354   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7355   // we'll only produce a small number of byte loads.
7356   MVT LoadVT;
7357   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7358   switch (NumBitsToCompare) {
7359   default:
7360     return false;
7361   case 16:
7362     LoadVT = MVT::i16;
7363     break;
7364   case 32:
7365     LoadVT = MVT::i32;
7366     break;
7367   case 64:
7368   case 128:
7369   case 256:
7370     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7371     break;
7372   }
7373 
7374   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7375     return false;
7376 
7377   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7378   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7379 
7380   // Bitcast to a wide integer type if the loads are vectors.
7381   if (LoadVT.isVector()) {
7382     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7383     LoadL = DAG.getBitcast(CmpVT, LoadL);
7384     LoadR = DAG.getBitcast(CmpVT, LoadR);
7385   }
7386 
7387   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7388   processIntegerCallValue(I, Cmp, false);
7389   return true;
7390 }
7391 
7392 /// See if we can lower a memchr call into an optimized form. If so, return
7393 /// true and lower it. Otherwise return false, and it will be lowered like a
7394 /// normal call.
7395 /// The caller already checked that \p I calls the appropriate LibFunc with a
7396 /// correct prototype.
7397 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7398   const Value *Src = I.getArgOperand(0);
7399   const Value *Char = I.getArgOperand(1);
7400   const Value *Length = I.getArgOperand(2);
7401 
7402   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7403   std::pair<SDValue, SDValue> Res =
7404     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7405                                 getValue(Src), getValue(Char), getValue(Length),
7406                                 MachinePointerInfo(Src));
7407   if (Res.first.getNode()) {
7408     setValue(&I, Res.first);
7409     PendingLoads.push_back(Res.second);
7410     return true;
7411   }
7412 
7413   return false;
7414 }
7415 
7416 /// See if we can lower a mempcpy call into an optimized form. If so, return
7417 /// true and lower it. Otherwise return false, and it will be lowered like a
7418 /// normal call.
7419 /// The caller already checked that \p I calls the appropriate LibFunc with a
7420 /// correct prototype.
7421 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7422   SDValue Dst = getValue(I.getArgOperand(0));
7423   SDValue Src = getValue(I.getArgOperand(1));
7424   SDValue Size = getValue(I.getArgOperand(2));
7425 
7426   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7427   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7428   // DAG::getMemcpy needs Alignment to be defined.
7429   Align Alignment = std::min(DstAlign, SrcAlign);
7430 
7431   bool isVol = false;
7432   SDLoc sdl = getCurSDLoc();
7433 
7434   // In the mempcpy context we need to pass in a false value for isTailCall
7435   // because the return pointer needs to be adjusted by the size of
7436   // the copied memory.
7437   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7438   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7439                              /*isTailCall=*/false,
7440                              MachinePointerInfo(I.getArgOperand(0)),
7441                              MachinePointerInfo(I.getArgOperand(1)));
7442   assert(MC.getNode() != nullptr &&
7443          "** memcpy should not be lowered as TailCall in mempcpy context **");
7444   DAG.setRoot(MC);
7445 
7446   // Check if Size needs to be truncated or extended.
7447   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7448 
7449   // Adjust return pointer to point just past the last dst byte.
7450   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7451                                     Dst, Size);
7452   setValue(&I, DstPlusSize);
7453   return true;
7454 }
7455 
7456 /// See if we can lower a strcpy call into an optimized form.  If so, return
7457 /// true and lower it, otherwise return false and it will be lowered like a
7458 /// normal call.
7459 /// The caller already checked that \p I calls the appropriate LibFunc with a
7460 /// correct prototype.
7461 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7462   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7463 
7464   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7465   std::pair<SDValue, SDValue> Res =
7466     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7467                                 getValue(Arg0), getValue(Arg1),
7468                                 MachinePointerInfo(Arg0),
7469                                 MachinePointerInfo(Arg1), isStpcpy);
7470   if (Res.first.getNode()) {
7471     setValue(&I, Res.first);
7472     DAG.setRoot(Res.second);
7473     return true;
7474   }
7475 
7476   return false;
7477 }
7478 
7479 /// See if we can lower a strcmp call into an optimized form.  If so, return
7480 /// true and lower it, otherwise return false and it will be lowered like a
7481 /// normal call.
7482 /// The caller already checked that \p I calls the appropriate LibFunc with a
7483 /// correct prototype.
7484 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7485   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7486 
7487   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7488   std::pair<SDValue, SDValue> Res =
7489     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7490                                 getValue(Arg0), getValue(Arg1),
7491                                 MachinePointerInfo(Arg0),
7492                                 MachinePointerInfo(Arg1));
7493   if (Res.first.getNode()) {
7494     processIntegerCallValue(I, Res.first, true);
7495     PendingLoads.push_back(Res.second);
7496     return true;
7497   }
7498 
7499   return false;
7500 }
7501 
7502 /// See if we can lower a strlen call into an optimized form.  If so, return
7503 /// true and lower it, otherwise return false and it will be lowered like a
7504 /// normal call.
7505 /// The caller already checked that \p I calls the appropriate LibFunc with a
7506 /// correct prototype.
7507 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7508   const Value *Arg0 = I.getArgOperand(0);
7509 
7510   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7511   std::pair<SDValue, SDValue> Res =
7512     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7513                                 getValue(Arg0), MachinePointerInfo(Arg0));
7514   if (Res.first.getNode()) {
7515     processIntegerCallValue(I, Res.first, false);
7516     PendingLoads.push_back(Res.second);
7517     return true;
7518   }
7519 
7520   return false;
7521 }
7522 
7523 /// See if we can lower a strnlen call into an optimized form.  If so, return
7524 /// true and lower it, otherwise return false and it will be lowered like a
7525 /// normal call.
7526 /// The caller already checked that \p I calls the appropriate LibFunc with a
7527 /// correct prototype.
7528 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7529   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7530 
7531   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7532   std::pair<SDValue, SDValue> Res =
7533     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7534                                  getValue(Arg0), getValue(Arg1),
7535                                  MachinePointerInfo(Arg0));
7536   if (Res.first.getNode()) {
7537     processIntegerCallValue(I, Res.first, false);
7538     PendingLoads.push_back(Res.second);
7539     return true;
7540   }
7541 
7542   return false;
7543 }
7544 
7545 /// See if we can lower a unary floating-point operation into an SDNode with
7546 /// the specified Opcode.  If so, return true and lower it, otherwise return
7547 /// false and it will be lowered like a normal call.
7548 /// The caller already checked that \p I calls the appropriate LibFunc with a
7549 /// correct prototype.
7550 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7551                                               unsigned Opcode) {
7552   // We already checked this call's prototype; verify it doesn't modify errno.
7553   if (!I.onlyReadsMemory())
7554     return false;
7555 
7556   SDValue Tmp = getValue(I.getArgOperand(0));
7557   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7558   return true;
7559 }
7560 
7561 /// See if we can lower a binary floating-point operation into an SDNode with
7562 /// the specified Opcode. If so, return true and lower it. Otherwise return
7563 /// false, and it will be lowered like a normal call.
7564 /// The caller already checked that \p I calls the appropriate LibFunc with a
7565 /// correct prototype.
7566 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7567                                                unsigned Opcode) {
7568   // We already checked this call's prototype; verify it doesn't modify errno.
7569   if (!I.onlyReadsMemory())
7570     return false;
7571 
7572   SDValue Tmp0 = getValue(I.getArgOperand(0));
7573   SDValue Tmp1 = getValue(I.getArgOperand(1));
7574   EVT VT = Tmp0.getValueType();
7575   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7576   return true;
7577 }
7578 
7579 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7580   // Handle inline assembly differently.
7581   if (I.isInlineAsm()) {
7582     visitInlineAsm(I);
7583     return;
7584   }
7585 
7586   if (Function *F = I.getCalledFunction()) {
7587     if (F->isDeclaration()) {
7588       // Is this an LLVM intrinsic or a target-specific intrinsic?
7589       unsigned IID = F->getIntrinsicID();
7590       if (!IID)
7591         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7592           IID = II->getIntrinsicID(F);
7593 
7594       if (IID) {
7595         visitIntrinsicCall(I, IID);
7596         return;
7597       }
7598     }
7599 
7600     // Check for well-known libc/libm calls.  If the function is internal, it
7601     // can't be a library call.  Don't do the check if marked as nobuiltin for
7602     // some reason or the call site requires strict floating point semantics.
7603     LibFunc Func;
7604     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7605         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7606         LibInfo->hasOptimizedCodeGen(Func)) {
7607       switch (Func) {
7608       default: break;
7609       case LibFunc_copysign:
7610       case LibFunc_copysignf:
7611       case LibFunc_copysignl:
7612         // We already checked this call's prototype; verify it doesn't modify
7613         // errno.
7614         if (I.onlyReadsMemory()) {
7615           SDValue LHS = getValue(I.getArgOperand(0));
7616           SDValue RHS = getValue(I.getArgOperand(1));
7617           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7618                                    LHS.getValueType(), LHS, RHS));
7619           return;
7620         }
7621         break;
7622       case LibFunc_fabs:
7623       case LibFunc_fabsf:
7624       case LibFunc_fabsl:
7625         if (visitUnaryFloatCall(I, ISD::FABS))
7626           return;
7627         break;
7628       case LibFunc_fmin:
7629       case LibFunc_fminf:
7630       case LibFunc_fminl:
7631         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7632           return;
7633         break;
7634       case LibFunc_fmax:
7635       case LibFunc_fmaxf:
7636       case LibFunc_fmaxl:
7637         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7638           return;
7639         break;
7640       case LibFunc_sin:
7641       case LibFunc_sinf:
7642       case LibFunc_sinl:
7643         if (visitUnaryFloatCall(I, ISD::FSIN))
7644           return;
7645         break;
7646       case LibFunc_cos:
7647       case LibFunc_cosf:
7648       case LibFunc_cosl:
7649         if (visitUnaryFloatCall(I, ISD::FCOS))
7650           return;
7651         break;
7652       case LibFunc_sqrt:
7653       case LibFunc_sqrtf:
7654       case LibFunc_sqrtl:
7655       case LibFunc_sqrt_finite:
7656       case LibFunc_sqrtf_finite:
7657       case LibFunc_sqrtl_finite:
7658         if (visitUnaryFloatCall(I, ISD::FSQRT))
7659           return;
7660         break;
7661       case LibFunc_floor:
7662       case LibFunc_floorf:
7663       case LibFunc_floorl:
7664         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7665           return;
7666         break;
7667       case LibFunc_nearbyint:
7668       case LibFunc_nearbyintf:
7669       case LibFunc_nearbyintl:
7670         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7671           return;
7672         break;
7673       case LibFunc_ceil:
7674       case LibFunc_ceilf:
7675       case LibFunc_ceill:
7676         if (visitUnaryFloatCall(I, ISD::FCEIL))
7677           return;
7678         break;
7679       case LibFunc_rint:
7680       case LibFunc_rintf:
7681       case LibFunc_rintl:
7682         if (visitUnaryFloatCall(I, ISD::FRINT))
7683           return;
7684         break;
7685       case LibFunc_round:
7686       case LibFunc_roundf:
7687       case LibFunc_roundl:
7688         if (visitUnaryFloatCall(I, ISD::FROUND))
7689           return;
7690         break;
7691       case LibFunc_trunc:
7692       case LibFunc_truncf:
7693       case LibFunc_truncl:
7694         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7695           return;
7696         break;
7697       case LibFunc_log2:
7698       case LibFunc_log2f:
7699       case LibFunc_log2l:
7700         if (visitUnaryFloatCall(I, ISD::FLOG2))
7701           return;
7702         break;
7703       case LibFunc_exp2:
7704       case LibFunc_exp2f:
7705       case LibFunc_exp2l:
7706         if (visitUnaryFloatCall(I, ISD::FEXP2))
7707           return;
7708         break;
7709       case LibFunc_memcmp:
7710         if (visitMemCmpCall(I))
7711           return;
7712         break;
7713       case LibFunc_mempcpy:
7714         if (visitMemPCpyCall(I))
7715           return;
7716         break;
7717       case LibFunc_memchr:
7718         if (visitMemChrCall(I))
7719           return;
7720         break;
7721       case LibFunc_strcpy:
7722         if (visitStrCpyCall(I, false))
7723           return;
7724         break;
7725       case LibFunc_stpcpy:
7726         if (visitStrCpyCall(I, true))
7727           return;
7728         break;
7729       case LibFunc_strcmp:
7730         if (visitStrCmpCall(I))
7731           return;
7732         break;
7733       case LibFunc_strlen:
7734         if (visitStrLenCall(I))
7735           return;
7736         break;
7737       case LibFunc_strnlen:
7738         if (visitStrNLenCall(I))
7739           return;
7740         break;
7741       }
7742     }
7743   }
7744 
7745   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7746   // have to do anything here to lower funclet bundles.
7747   // CFGuardTarget bundles are lowered in LowerCallTo.
7748   assert(!I.hasOperandBundlesOtherThan(
7749              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7750               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7751          "Cannot lower calls with arbitrary operand bundles!");
7752 
7753   SDValue Callee = getValue(I.getCalledOperand());
7754 
7755   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7756     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7757   else
7758     // Check if we can potentially perform a tail call. More detailed checking
7759     // is be done within LowerCallTo, after more information about the call is
7760     // known.
7761     LowerCallTo(I, Callee, I.isTailCall());
7762 }
7763 
7764 namespace {
7765 
7766 /// AsmOperandInfo - This contains information for each constraint that we are
7767 /// lowering.
7768 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7769 public:
7770   /// CallOperand - If this is the result output operand or a clobber
7771   /// this is null, otherwise it is the incoming operand to the CallInst.
7772   /// This gets modified as the asm is processed.
7773   SDValue CallOperand;
7774 
7775   /// AssignedRegs - If this is a register or register class operand, this
7776   /// contains the set of register corresponding to the operand.
7777   RegsForValue AssignedRegs;
7778 
7779   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7780     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7781   }
7782 
7783   /// Whether or not this operand accesses memory
7784   bool hasMemory(const TargetLowering &TLI) const {
7785     // Indirect operand accesses access memory.
7786     if (isIndirect)
7787       return true;
7788 
7789     for (const auto &Code : Codes)
7790       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7791         return true;
7792 
7793     return false;
7794   }
7795 
7796   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7797   /// corresponds to.  If there is no Value* for this operand, it returns
7798   /// MVT::Other.
7799   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7800                            const DataLayout &DL) const {
7801     if (!CallOperandVal) return MVT::Other;
7802 
7803     if (isa<BasicBlock>(CallOperandVal))
7804       return TLI.getProgramPointerTy(DL);
7805 
7806     llvm::Type *OpTy = CallOperandVal->getType();
7807 
7808     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7809     // If this is an indirect operand, the operand is a pointer to the
7810     // accessed type.
7811     if (isIndirect) {
7812       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7813       if (!PtrTy)
7814         report_fatal_error("Indirect operand for inline asm not a pointer!");
7815       OpTy = PtrTy->getElementType();
7816     }
7817 
7818     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7819     if (StructType *STy = dyn_cast<StructType>(OpTy))
7820       if (STy->getNumElements() == 1)
7821         OpTy = STy->getElementType(0);
7822 
7823     // If OpTy is not a single value, it may be a struct/union that we
7824     // can tile with integers.
7825     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7826       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7827       switch (BitSize) {
7828       default: break;
7829       case 1:
7830       case 8:
7831       case 16:
7832       case 32:
7833       case 64:
7834       case 128:
7835         OpTy = IntegerType::get(Context, BitSize);
7836         break;
7837       }
7838     }
7839 
7840     return TLI.getValueType(DL, OpTy, true);
7841   }
7842 };
7843 
7844 
7845 } // end anonymous namespace
7846 
7847 /// Make sure that the output operand \p OpInfo and its corresponding input
7848 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7849 /// out).
7850 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7851                                SDISelAsmOperandInfo &MatchingOpInfo,
7852                                SelectionDAG &DAG) {
7853   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7854     return;
7855 
7856   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7857   const auto &TLI = DAG.getTargetLoweringInfo();
7858 
7859   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7860       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7861                                        OpInfo.ConstraintVT);
7862   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7863       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7864                                        MatchingOpInfo.ConstraintVT);
7865   if ((OpInfo.ConstraintVT.isInteger() !=
7866        MatchingOpInfo.ConstraintVT.isInteger()) ||
7867       (MatchRC.second != InputRC.second)) {
7868     // FIXME: error out in a more elegant fashion
7869     report_fatal_error("Unsupported asm: input constraint"
7870                        " with a matching output constraint of"
7871                        " incompatible type!");
7872   }
7873   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7874 }
7875 
7876 /// Get a direct memory input to behave well as an indirect operand.
7877 /// This may introduce stores, hence the need for a \p Chain.
7878 /// \return The (possibly updated) chain.
7879 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7880                                         SDISelAsmOperandInfo &OpInfo,
7881                                         SelectionDAG &DAG) {
7882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7883 
7884   // If we don't have an indirect input, put it in the constpool if we can,
7885   // otherwise spill it to a stack slot.
7886   // TODO: This isn't quite right. We need to handle these according to
7887   // the addressing mode that the constraint wants. Also, this may take
7888   // an additional register for the computation and we don't want that
7889   // either.
7890 
7891   // If the operand is a float, integer, or vector constant, spill to a
7892   // constant pool entry to get its address.
7893   const Value *OpVal = OpInfo.CallOperandVal;
7894   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7895       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7896     OpInfo.CallOperand = DAG.getConstantPool(
7897         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7898     return Chain;
7899   }
7900 
7901   // Otherwise, create a stack slot and emit a store to it before the asm.
7902   Type *Ty = OpVal->getType();
7903   auto &DL = DAG.getDataLayout();
7904   uint64_t TySize = DL.getTypeAllocSize(Ty);
7905   MachineFunction &MF = DAG.getMachineFunction();
7906   int SSFI = MF.getFrameInfo().CreateStackObject(
7907       TySize, DL.getPrefTypeAlign(Ty), false);
7908   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7909   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7910                             MachinePointerInfo::getFixedStack(MF, SSFI),
7911                             TLI.getMemValueType(DL, Ty));
7912   OpInfo.CallOperand = StackSlot;
7913 
7914   return Chain;
7915 }
7916 
7917 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7918 /// specified operand.  We prefer to assign virtual registers, to allow the
7919 /// register allocator to handle the assignment process.  However, if the asm
7920 /// uses features that we can't model on machineinstrs, we have SDISel do the
7921 /// allocation.  This produces generally horrible, but correct, code.
7922 ///
7923 ///   OpInfo describes the operand
7924 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7925 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7926                                  SDISelAsmOperandInfo &OpInfo,
7927                                  SDISelAsmOperandInfo &RefOpInfo) {
7928   LLVMContext &Context = *DAG.getContext();
7929   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7930 
7931   MachineFunction &MF = DAG.getMachineFunction();
7932   SmallVector<unsigned, 4> Regs;
7933   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7934 
7935   // No work to do for memory operations.
7936   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7937     return;
7938 
7939   // If this is a constraint for a single physreg, or a constraint for a
7940   // register class, find it.
7941   unsigned AssignedReg;
7942   const TargetRegisterClass *RC;
7943   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7944       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7945   // RC is unset only on failure. Return immediately.
7946   if (!RC)
7947     return;
7948 
7949   // Get the actual register value type.  This is important, because the user
7950   // may have asked for (e.g.) the AX register in i32 type.  We need to
7951   // remember that AX is actually i16 to get the right extension.
7952   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7953 
7954   if (OpInfo.ConstraintVT != MVT::Other) {
7955     // If this is an FP operand in an integer register (or visa versa), or more
7956     // generally if the operand value disagrees with the register class we plan
7957     // to stick it in, fix the operand type.
7958     //
7959     // If this is an input value, the bitcast to the new type is done now.
7960     // Bitcast for output value is done at the end of visitInlineAsm().
7961     if ((OpInfo.Type == InlineAsm::isOutput ||
7962          OpInfo.Type == InlineAsm::isInput) &&
7963         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7964       // Try to convert to the first EVT that the reg class contains.  If the
7965       // types are identical size, use a bitcast to convert (e.g. two differing
7966       // vector types).  Note: output bitcast is done at the end of
7967       // visitInlineAsm().
7968       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7969         // Exclude indirect inputs while they are unsupported because the code
7970         // to perform the load is missing and thus OpInfo.CallOperand still
7971         // refers to the input address rather than the pointed-to value.
7972         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7973           OpInfo.CallOperand =
7974               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7975         OpInfo.ConstraintVT = RegVT;
7976         // If the operand is an FP value and we want it in integer registers,
7977         // use the corresponding integer type. This turns an f64 value into
7978         // i64, which can be passed with two i32 values on a 32-bit machine.
7979       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7980         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7981         if (OpInfo.Type == InlineAsm::isInput)
7982           OpInfo.CallOperand =
7983               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7984         OpInfo.ConstraintVT = VT;
7985       }
7986     }
7987   }
7988 
7989   // No need to allocate a matching input constraint since the constraint it's
7990   // matching to has already been allocated.
7991   if (OpInfo.isMatchingInputConstraint())
7992     return;
7993 
7994   EVT ValueVT = OpInfo.ConstraintVT;
7995   if (OpInfo.ConstraintVT == MVT::Other)
7996     ValueVT = RegVT;
7997 
7998   // Initialize NumRegs.
7999   unsigned NumRegs = 1;
8000   if (OpInfo.ConstraintVT != MVT::Other)
8001     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8002 
8003   // If this is a constraint for a specific physical register, like {r17},
8004   // assign it now.
8005 
8006   // If this associated to a specific register, initialize iterator to correct
8007   // place. If virtual, make sure we have enough registers
8008 
8009   // Initialize iterator if necessary
8010   TargetRegisterClass::iterator I = RC->begin();
8011   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8012 
8013   // Do not check for single registers.
8014   if (AssignedReg) {
8015       for (; *I != AssignedReg; ++I)
8016         assert(I != RC->end() && "AssignedReg should be member of RC");
8017   }
8018 
8019   for (; NumRegs; --NumRegs, ++I) {
8020     assert(I != RC->end() && "Ran out of registers to allocate!");
8021     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8022     Regs.push_back(R);
8023   }
8024 
8025   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8026 }
8027 
8028 static unsigned
8029 findMatchingInlineAsmOperand(unsigned OperandNo,
8030                              const std::vector<SDValue> &AsmNodeOperands) {
8031   // Scan until we find the definition we already emitted of this operand.
8032   unsigned CurOp = InlineAsm::Op_FirstOperand;
8033   for (; OperandNo; --OperandNo) {
8034     // Advance to the next operand.
8035     unsigned OpFlag =
8036         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8037     assert((InlineAsm::isRegDefKind(OpFlag) ||
8038             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8039             InlineAsm::isMemKind(OpFlag)) &&
8040            "Skipped past definitions?");
8041     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8042   }
8043   return CurOp;
8044 }
8045 
8046 namespace {
8047 
8048 class ExtraFlags {
8049   unsigned Flags = 0;
8050 
8051 public:
8052   explicit ExtraFlags(const CallBase &Call) {
8053     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8054     if (IA->hasSideEffects())
8055       Flags |= InlineAsm::Extra_HasSideEffects;
8056     if (IA->isAlignStack())
8057       Flags |= InlineAsm::Extra_IsAlignStack;
8058     if (Call.isConvergent())
8059       Flags |= InlineAsm::Extra_IsConvergent;
8060     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8061   }
8062 
8063   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8064     // Ideally, we would only check against memory constraints.  However, the
8065     // meaning of an Other constraint can be target-specific and we can't easily
8066     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8067     // for Other constraints as well.
8068     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8069         OpInfo.ConstraintType == TargetLowering::C_Other) {
8070       if (OpInfo.Type == InlineAsm::isInput)
8071         Flags |= InlineAsm::Extra_MayLoad;
8072       else if (OpInfo.Type == InlineAsm::isOutput)
8073         Flags |= InlineAsm::Extra_MayStore;
8074       else if (OpInfo.Type == InlineAsm::isClobber)
8075         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8076     }
8077   }
8078 
8079   unsigned get() const { return Flags; }
8080 };
8081 
8082 } // end anonymous namespace
8083 
8084 /// visitInlineAsm - Handle a call to an InlineAsm object.
8085 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8086   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8087 
8088   /// ConstraintOperands - Information about all of the constraints.
8089   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8090 
8091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8092   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8093       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8094 
8095   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8096   // AsmDialect, MayLoad, MayStore).
8097   bool HasSideEffect = IA->hasSideEffects();
8098   ExtraFlags ExtraInfo(Call);
8099 
8100   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8101   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8102   unsigned NumMatchingOps = 0;
8103   for (auto &T : TargetConstraints) {
8104     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8105     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8106 
8107     // Compute the value type for each operand.
8108     if (OpInfo.Type == InlineAsm::isInput ||
8109         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8110       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8111 
8112       // Process the call argument. BasicBlocks are labels, currently appearing
8113       // only in asm's.
8114       if (isa<CallBrInst>(Call) &&
8115           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8116                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8117                         NumMatchingOps) &&
8118           (NumMatchingOps == 0 ||
8119            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8120                         NumMatchingOps))) {
8121         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8122         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8123         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8124       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8125         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8126       } else {
8127         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8128       }
8129 
8130       OpInfo.ConstraintVT =
8131           OpInfo
8132               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8133               .getSimpleVT();
8134     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8135       // The return value of the call is this value.  As such, there is no
8136       // corresponding argument.
8137       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8138       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8139         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8140             DAG.getDataLayout(), STy->getElementType(ResNo));
8141       } else {
8142         assert(ResNo == 0 && "Asm only has one result!");
8143         OpInfo.ConstraintVT =
8144             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8145       }
8146       ++ResNo;
8147     } else {
8148       OpInfo.ConstraintVT = MVT::Other;
8149     }
8150 
8151     if (OpInfo.hasMatchingInput())
8152       ++NumMatchingOps;
8153 
8154     if (!HasSideEffect)
8155       HasSideEffect = OpInfo.hasMemory(TLI);
8156 
8157     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8158     // FIXME: Could we compute this on OpInfo rather than T?
8159 
8160     // Compute the constraint code and ConstraintType to use.
8161     TLI.ComputeConstraintToUse(T, SDValue());
8162 
8163     if (T.ConstraintType == TargetLowering::C_Immediate &&
8164         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8165       // We've delayed emitting a diagnostic like the "n" constraint because
8166       // inlining could cause an integer showing up.
8167       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8168                                           "' expects an integer constant "
8169                                           "expression");
8170 
8171     ExtraInfo.update(T);
8172   }
8173 
8174 
8175   // We won't need to flush pending loads if this asm doesn't touch
8176   // memory and is nonvolatile.
8177   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8178 
8179   bool IsCallBr = isa<CallBrInst>(Call);
8180   if (IsCallBr) {
8181     // If this is a callbr we need to flush pending exports since inlineasm_br
8182     // is a terminator. We need to do this before nodes are glued to
8183     // the inlineasm_br node.
8184     Chain = getControlRoot();
8185   }
8186 
8187   // Second pass over the constraints: compute which constraint option to use.
8188   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8189     // If this is an output operand with a matching input operand, look up the
8190     // matching input. If their types mismatch, e.g. one is an integer, the
8191     // other is floating point, or their sizes are different, flag it as an
8192     // error.
8193     if (OpInfo.hasMatchingInput()) {
8194       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8195       patchMatchingInput(OpInfo, Input, DAG);
8196     }
8197 
8198     // Compute the constraint code and ConstraintType to use.
8199     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8200 
8201     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8202         OpInfo.Type == InlineAsm::isClobber)
8203       continue;
8204 
8205     // If this is a memory input, and if the operand is not indirect, do what we
8206     // need to provide an address for the memory input.
8207     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8208         !OpInfo.isIndirect) {
8209       assert((OpInfo.isMultipleAlternative ||
8210               (OpInfo.Type == InlineAsm::isInput)) &&
8211              "Can only indirectify direct input operands!");
8212 
8213       // Memory operands really want the address of the value.
8214       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8215 
8216       // There is no longer a Value* corresponding to this operand.
8217       OpInfo.CallOperandVal = nullptr;
8218 
8219       // It is now an indirect operand.
8220       OpInfo.isIndirect = true;
8221     }
8222 
8223   }
8224 
8225   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8226   std::vector<SDValue> AsmNodeOperands;
8227   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8228   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8229       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8230 
8231   // If we have a !srcloc metadata node associated with it, we want to attach
8232   // this to the ultimately generated inline asm machineinstr.  To do this, we
8233   // pass in the third operand as this (potentially null) inline asm MDNode.
8234   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8235   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8236 
8237   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8238   // bits as operand 3.
8239   AsmNodeOperands.push_back(DAG.getTargetConstant(
8240       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8241 
8242   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8243   // this, assign virtual and physical registers for inputs and otput.
8244   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8245     // Assign Registers.
8246     SDISelAsmOperandInfo &RefOpInfo =
8247         OpInfo.isMatchingInputConstraint()
8248             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8249             : OpInfo;
8250     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8251 
8252     auto DetectWriteToReservedRegister = [&]() {
8253       const MachineFunction &MF = DAG.getMachineFunction();
8254       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8255       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8256         if (Register::isPhysicalRegister(Reg) &&
8257             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8258           const char *RegName = TRI.getName(Reg);
8259           emitInlineAsmError(Call, "write to reserved register '" +
8260                                        Twine(RegName) + "'");
8261           return true;
8262         }
8263       }
8264       return false;
8265     };
8266 
8267     switch (OpInfo.Type) {
8268     case InlineAsm::isOutput:
8269       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8270         unsigned ConstraintID =
8271             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8272         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8273                "Failed to convert memory constraint code to constraint id.");
8274 
8275         // Add information to the INLINEASM node to know about this output.
8276         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8277         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8278         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8279                                                         MVT::i32));
8280         AsmNodeOperands.push_back(OpInfo.CallOperand);
8281       } else {
8282         // Otherwise, this outputs to a register (directly for C_Register /
8283         // C_RegisterClass, and a target-defined fashion for
8284         // C_Immediate/C_Other). Find a register that we can use.
8285         if (OpInfo.AssignedRegs.Regs.empty()) {
8286           emitInlineAsmError(
8287               Call, "couldn't allocate output register for constraint '" +
8288                         Twine(OpInfo.ConstraintCode) + "'");
8289           return;
8290         }
8291 
8292         if (DetectWriteToReservedRegister())
8293           return;
8294 
8295         // Add information to the INLINEASM node to know that this register is
8296         // set.
8297         OpInfo.AssignedRegs.AddInlineAsmOperands(
8298             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8299                                   : InlineAsm::Kind_RegDef,
8300             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8301       }
8302       break;
8303 
8304     case InlineAsm::isInput: {
8305       SDValue InOperandVal = OpInfo.CallOperand;
8306 
8307       if (OpInfo.isMatchingInputConstraint()) {
8308         // If this is required to match an output register we have already set,
8309         // just use its register.
8310         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8311                                                   AsmNodeOperands);
8312         unsigned OpFlag =
8313           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8314         if (InlineAsm::isRegDefKind(OpFlag) ||
8315             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8316           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8317           if (OpInfo.isIndirect) {
8318             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8319             emitInlineAsmError(Call, "inline asm not supported yet: "
8320                                      "don't know how to handle tied "
8321                                      "indirect register inputs");
8322             return;
8323           }
8324 
8325           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8326           SmallVector<unsigned, 4> Regs;
8327 
8328           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8329             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8330             MachineRegisterInfo &RegInfo =
8331                 DAG.getMachineFunction().getRegInfo();
8332             for (unsigned i = 0; i != NumRegs; ++i)
8333               Regs.push_back(RegInfo.createVirtualRegister(RC));
8334           } else {
8335             emitInlineAsmError(Call,
8336                                "inline asm error: This value type register "
8337                                "class is not natively supported!");
8338             return;
8339           }
8340 
8341           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8342 
8343           SDLoc dl = getCurSDLoc();
8344           // Use the produced MatchedRegs object to
8345           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8346           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8347                                            true, OpInfo.getMatchedOperand(), dl,
8348                                            DAG, AsmNodeOperands);
8349           break;
8350         }
8351 
8352         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8353         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8354                "Unexpected number of operands");
8355         // Add information to the INLINEASM node to know about this input.
8356         // See InlineAsm.h isUseOperandTiedToDef.
8357         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8358         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8359                                                     OpInfo.getMatchedOperand());
8360         AsmNodeOperands.push_back(DAG.getTargetConstant(
8361             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8362         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8363         break;
8364       }
8365 
8366       // Treat indirect 'X' constraint as memory.
8367       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8368           OpInfo.isIndirect)
8369         OpInfo.ConstraintType = TargetLowering::C_Memory;
8370 
8371       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8372           OpInfo.ConstraintType == TargetLowering::C_Other) {
8373         std::vector<SDValue> Ops;
8374         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8375                                           Ops, DAG);
8376         if (Ops.empty()) {
8377           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8378             if (isa<ConstantSDNode>(InOperandVal)) {
8379               emitInlineAsmError(Call, "value out of range for constraint '" +
8380                                            Twine(OpInfo.ConstraintCode) + "'");
8381               return;
8382             }
8383 
8384           emitInlineAsmError(Call,
8385                              "invalid operand for inline asm constraint '" +
8386                                  Twine(OpInfo.ConstraintCode) + "'");
8387           return;
8388         }
8389 
8390         // Add information to the INLINEASM node to know about this input.
8391         unsigned ResOpType =
8392           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8393         AsmNodeOperands.push_back(DAG.getTargetConstant(
8394             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8395         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8396         break;
8397       }
8398 
8399       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8400         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8401         assert(InOperandVal.getValueType() ==
8402                    TLI.getPointerTy(DAG.getDataLayout()) &&
8403                "Memory operands expect pointer values");
8404 
8405         unsigned ConstraintID =
8406             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8407         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8408                "Failed to convert memory constraint code to constraint id.");
8409 
8410         // Add information to the INLINEASM node to know about this input.
8411         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8412         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8413         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8414                                                         getCurSDLoc(),
8415                                                         MVT::i32));
8416         AsmNodeOperands.push_back(InOperandVal);
8417         break;
8418       }
8419 
8420       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8421               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8422              "Unknown constraint type!");
8423 
8424       // TODO: Support this.
8425       if (OpInfo.isIndirect) {
8426         emitInlineAsmError(
8427             Call, "Don't know how to handle indirect register inputs yet "
8428                   "for constraint '" +
8429                       Twine(OpInfo.ConstraintCode) + "'");
8430         return;
8431       }
8432 
8433       // Copy the input into the appropriate registers.
8434       if (OpInfo.AssignedRegs.Regs.empty()) {
8435         emitInlineAsmError(Call,
8436                            "couldn't allocate input reg for constraint '" +
8437                                Twine(OpInfo.ConstraintCode) + "'");
8438         return;
8439       }
8440 
8441       if (DetectWriteToReservedRegister())
8442         return;
8443 
8444       SDLoc dl = getCurSDLoc();
8445 
8446       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8447                                         &Call);
8448 
8449       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8450                                                dl, DAG, AsmNodeOperands);
8451       break;
8452     }
8453     case InlineAsm::isClobber:
8454       // Add the clobbered value to the operand list, so that the register
8455       // allocator is aware that the physreg got clobbered.
8456       if (!OpInfo.AssignedRegs.Regs.empty())
8457         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8458                                                  false, 0, getCurSDLoc(), DAG,
8459                                                  AsmNodeOperands);
8460       break;
8461     }
8462   }
8463 
8464   // Finish up input operands.  Set the input chain and add the flag last.
8465   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8466   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8467 
8468   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8469   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8470                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8471   Flag = Chain.getValue(1);
8472 
8473   // Do additional work to generate outputs.
8474 
8475   SmallVector<EVT, 1> ResultVTs;
8476   SmallVector<SDValue, 1> ResultValues;
8477   SmallVector<SDValue, 8> OutChains;
8478 
8479   llvm::Type *CallResultType = Call.getType();
8480   ArrayRef<Type *> ResultTypes;
8481   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8482     ResultTypes = StructResult->elements();
8483   else if (!CallResultType->isVoidTy())
8484     ResultTypes = makeArrayRef(CallResultType);
8485 
8486   auto CurResultType = ResultTypes.begin();
8487   auto handleRegAssign = [&](SDValue V) {
8488     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8489     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8490     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8491     ++CurResultType;
8492     // If the type of the inline asm call site return value is different but has
8493     // same size as the type of the asm output bitcast it.  One example of this
8494     // is for vectors with different width / number of elements.  This can
8495     // happen for register classes that can contain multiple different value
8496     // types.  The preg or vreg allocated may not have the same VT as was
8497     // expected.
8498     //
8499     // This can also happen for a return value that disagrees with the register
8500     // class it is put in, eg. a double in a general-purpose register on a
8501     // 32-bit machine.
8502     if (ResultVT != V.getValueType() &&
8503         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8504       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8505     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8506              V.getValueType().isInteger()) {
8507       // If a result value was tied to an input value, the computed result
8508       // may have a wider width than the expected result.  Extract the
8509       // relevant portion.
8510       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8511     }
8512     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8513     ResultVTs.push_back(ResultVT);
8514     ResultValues.push_back(V);
8515   };
8516 
8517   // Deal with output operands.
8518   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8519     if (OpInfo.Type == InlineAsm::isOutput) {
8520       SDValue Val;
8521       // Skip trivial output operands.
8522       if (OpInfo.AssignedRegs.Regs.empty())
8523         continue;
8524 
8525       switch (OpInfo.ConstraintType) {
8526       case TargetLowering::C_Register:
8527       case TargetLowering::C_RegisterClass:
8528         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8529                                                   Chain, &Flag, &Call);
8530         break;
8531       case TargetLowering::C_Immediate:
8532       case TargetLowering::C_Other:
8533         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8534                                               OpInfo, DAG);
8535         break;
8536       case TargetLowering::C_Memory:
8537         break; // Already handled.
8538       case TargetLowering::C_Unknown:
8539         assert(false && "Unexpected unknown constraint");
8540       }
8541 
8542       // Indirect output manifest as stores. Record output chains.
8543       if (OpInfo.isIndirect) {
8544         const Value *Ptr = OpInfo.CallOperandVal;
8545         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8546         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8547                                      MachinePointerInfo(Ptr));
8548         OutChains.push_back(Store);
8549       } else {
8550         // generate CopyFromRegs to associated registers.
8551         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8552         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8553           for (const SDValue &V : Val->op_values())
8554             handleRegAssign(V);
8555         } else
8556           handleRegAssign(Val);
8557       }
8558     }
8559   }
8560 
8561   // Set results.
8562   if (!ResultValues.empty()) {
8563     assert(CurResultType == ResultTypes.end() &&
8564            "Mismatch in number of ResultTypes");
8565     assert(ResultValues.size() == ResultTypes.size() &&
8566            "Mismatch in number of output operands in asm result");
8567 
8568     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8569                             DAG.getVTList(ResultVTs), ResultValues);
8570     setValue(&Call, V);
8571   }
8572 
8573   // Collect store chains.
8574   if (!OutChains.empty())
8575     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8576 
8577   // Only Update Root if inline assembly has a memory effect.
8578   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8579     DAG.setRoot(Chain);
8580 }
8581 
8582 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8583                                              const Twine &Message) {
8584   LLVMContext &Ctx = *DAG.getContext();
8585   Ctx.emitError(&Call, Message);
8586 
8587   // Make sure we leave the DAG in a valid state
8588   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8589   SmallVector<EVT, 1> ValueVTs;
8590   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8591 
8592   if (ValueVTs.empty())
8593     return;
8594 
8595   SmallVector<SDValue, 1> Ops;
8596   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8597     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8598 
8599   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8600 }
8601 
8602 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8603   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8604                           MVT::Other, getRoot(),
8605                           getValue(I.getArgOperand(0)),
8606                           DAG.getSrcValue(I.getArgOperand(0))));
8607 }
8608 
8609 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8610   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8611   const DataLayout &DL = DAG.getDataLayout();
8612   SDValue V = DAG.getVAArg(
8613       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8614       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8615       DL.getABITypeAlign(I.getType()).value());
8616   DAG.setRoot(V.getValue(1));
8617 
8618   if (I.getType()->isPointerTy())
8619     V = DAG.getPtrExtOrTrunc(
8620         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8621   setValue(&I, V);
8622 }
8623 
8624 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8625   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8626                           MVT::Other, getRoot(),
8627                           getValue(I.getArgOperand(0)),
8628                           DAG.getSrcValue(I.getArgOperand(0))));
8629 }
8630 
8631 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8632   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8633                           MVT::Other, getRoot(),
8634                           getValue(I.getArgOperand(0)),
8635                           getValue(I.getArgOperand(1)),
8636                           DAG.getSrcValue(I.getArgOperand(0)),
8637                           DAG.getSrcValue(I.getArgOperand(1))));
8638 }
8639 
8640 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8641                                                     const Instruction &I,
8642                                                     SDValue Op) {
8643   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8644   if (!Range)
8645     return Op;
8646 
8647   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8648   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8649     return Op;
8650 
8651   APInt Lo = CR.getUnsignedMin();
8652   if (!Lo.isMinValue())
8653     return Op;
8654 
8655   APInt Hi = CR.getUnsignedMax();
8656   unsigned Bits = std::max(Hi.getActiveBits(),
8657                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8658 
8659   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8660 
8661   SDLoc SL = getCurSDLoc();
8662 
8663   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8664                              DAG.getValueType(SmallVT));
8665   unsigned NumVals = Op.getNode()->getNumValues();
8666   if (NumVals == 1)
8667     return ZExt;
8668 
8669   SmallVector<SDValue, 4> Ops;
8670 
8671   Ops.push_back(ZExt);
8672   for (unsigned I = 1; I != NumVals; ++I)
8673     Ops.push_back(Op.getValue(I));
8674 
8675   return DAG.getMergeValues(Ops, SL);
8676 }
8677 
8678 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8679 /// the call being lowered.
8680 ///
8681 /// This is a helper for lowering intrinsics that follow a target calling
8682 /// convention or require stack pointer adjustment. Only a subset of the
8683 /// intrinsic's operands need to participate in the calling convention.
8684 void SelectionDAGBuilder::populateCallLoweringInfo(
8685     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8686     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8687     bool IsPatchPoint) {
8688   TargetLowering::ArgListTy Args;
8689   Args.reserve(NumArgs);
8690 
8691   // Populate the argument list.
8692   // Attributes for args start at offset 1, after the return attribute.
8693   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8694        ArgI != ArgE; ++ArgI) {
8695     const Value *V = Call->getOperand(ArgI);
8696 
8697     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8698 
8699     TargetLowering::ArgListEntry Entry;
8700     Entry.Node = getValue(V);
8701     Entry.Ty = V->getType();
8702     Entry.setAttributes(Call, ArgI);
8703     Args.push_back(Entry);
8704   }
8705 
8706   CLI.setDebugLoc(getCurSDLoc())
8707       .setChain(getRoot())
8708       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8709       .setDiscardResult(Call->use_empty())
8710       .setIsPatchPoint(IsPatchPoint)
8711       .setIsPreallocated(
8712           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8713 }
8714 
8715 /// Add a stack map intrinsic call's live variable operands to a stackmap
8716 /// or patchpoint target node's operand list.
8717 ///
8718 /// Constants are converted to TargetConstants purely as an optimization to
8719 /// avoid constant materialization and register allocation.
8720 ///
8721 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8722 /// generate addess computation nodes, and so FinalizeISel can convert the
8723 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8724 /// address materialization and register allocation, but may also be required
8725 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8726 /// alloca in the entry block, then the runtime may assume that the alloca's
8727 /// StackMap location can be read immediately after compilation and that the
8728 /// location is valid at any point during execution (this is similar to the
8729 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8730 /// only available in a register, then the runtime would need to trap when
8731 /// execution reaches the StackMap in order to read the alloca's location.
8732 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8733                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8734                                 SelectionDAGBuilder &Builder) {
8735   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8736     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8737     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8738       Ops.push_back(
8739         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8740       Ops.push_back(
8741         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8742     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8743       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8744       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8745           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8746     } else
8747       Ops.push_back(OpVal);
8748   }
8749 }
8750 
8751 /// Lower llvm.experimental.stackmap directly to its target opcode.
8752 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8753   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8754   //                                  [live variables...])
8755 
8756   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8757 
8758   SDValue Chain, InFlag, Callee, NullPtr;
8759   SmallVector<SDValue, 32> Ops;
8760 
8761   SDLoc DL = getCurSDLoc();
8762   Callee = getValue(CI.getCalledOperand());
8763   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8764 
8765   // The stackmap intrinsic only records the live variables (the arguments
8766   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8767   // intrinsic, this won't be lowered to a function call. This means we don't
8768   // have to worry about calling conventions and target specific lowering code.
8769   // Instead we perform the call lowering right here.
8770   //
8771   // chain, flag = CALLSEQ_START(chain, 0, 0)
8772   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8773   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8774   //
8775   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8776   InFlag = Chain.getValue(1);
8777 
8778   // Add the <id> and <numBytes> constants.
8779   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8780   Ops.push_back(DAG.getTargetConstant(
8781                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8782   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8783   Ops.push_back(DAG.getTargetConstant(
8784                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8785                   MVT::i32));
8786 
8787   // Push live variables for the stack map.
8788   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8789 
8790   // We are not pushing any register mask info here on the operands list,
8791   // because the stackmap doesn't clobber anything.
8792 
8793   // Push the chain and the glue flag.
8794   Ops.push_back(Chain);
8795   Ops.push_back(InFlag);
8796 
8797   // Create the STACKMAP node.
8798   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8799   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8800   Chain = SDValue(SM, 0);
8801   InFlag = Chain.getValue(1);
8802 
8803   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8804 
8805   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8806 
8807   // Set the root to the target-lowered call chain.
8808   DAG.setRoot(Chain);
8809 
8810   // Inform the Frame Information that we have a stackmap in this function.
8811   FuncInfo.MF->getFrameInfo().setHasStackMap();
8812 }
8813 
8814 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8815 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8816                                           const BasicBlock *EHPadBB) {
8817   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8818   //                                                 i32 <numBytes>,
8819   //                                                 i8* <target>,
8820   //                                                 i32 <numArgs>,
8821   //                                                 [Args...],
8822   //                                                 [live variables...])
8823 
8824   CallingConv::ID CC = CB.getCallingConv();
8825   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8826   bool HasDef = !CB.getType()->isVoidTy();
8827   SDLoc dl = getCurSDLoc();
8828   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8829 
8830   // Handle immediate and symbolic callees.
8831   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8832     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8833                                    /*isTarget=*/true);
8834   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8835     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8836                                          SDLoc(SymbolicCallee),
8837                                          SymbolicCallee->getValueType(0));
8838 
8839   // Get the real number of arguments participating in the call <numArgs>
8840   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8841   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8842 
8843   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8844   // Intrinsics include all meta-operands up to but not including CC.
8845   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8846   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8847          "Not enough arguments provided to the patchpoint intrinsic");
8848 
8849   // For AnyRegCC the arguments are lowered later on manually.
8850   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8851   Type *ReturnTy =
8852       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8853 
8854   TargetLowering::CallLoweringInfo CLI(DAG);
8855   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8856                            ReturnTy, true);
8857   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8858 
8859   SDNode *CallEnd = Result.second.getNode();
8860   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8861     CallEnd = CallEnd->getOperand(0).getNode();
8862 
8863   /// Get a call instruction from the call sequence chain.
8864   /// Tail calls are not allowed.
8865   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8866          "Expected a callseq node.");
8867   SDNode *Call = CallEnd->getOperand(0).getNode();
8868   bool HasGlue = Call->getGluedNode();
8869 
8870   // Replace the target specific call node with the patchable intrinsic.
8871   SmallVector<SDValue, 8> Ops;
8872 
8873   // Add the <id> and <numBytes> constants.
8874   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8875   Ops.push_back(DAG.getTargetConstant(
8876                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8877   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8878   Ops.push_back(DAG.getTargetConstant(
8879                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8880                   MVT::i32));
8881 
8882   // Add the callee.
8883   Ops.push_back(Callee);
8884 
8885   // Adjust <numArgs> to account for any arguments that have been passed on the
8886   // stack instead.
8887   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8888   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8889   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8890   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8891 
8892   // Add the calling convention
8893   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8894 
8895   // Add the arguments we omitted previously. The register allocator should
8896   // place these in any free register.
8897   if (IsAnyRegCC)
8898     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8899       Ops.push_back(getValue(CB.getArgOperand(i)));
8900 
8901   // Push the arguments from the call instruction up to the register mask.
8902   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8903   Ops.append(Call->op_begin() + 2, e);
8904 
8905   // Push live variables for the stack map.
8906   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8907 
8908   // Push the register mask info.
8909   if (HasGlue)
8910     Ops.push_back(*(Call->op_end()-2));
8911   else
8912     Ops.push_back(*(Call->op_end()-1));
8913 
8914   // Push the chain (this is originally the first operand of the call, but
8915   // becomes now the last or second to last operand).
8916   Ops.push_back(*(Call->op_begin()));
8917 
8918   // Push the glue flag (last operand).
8919   if (HasGlue)
8920     Ops.push_back(*(Call->op_end()-1));
8921 
8922   SDVTList NodeTys;
8923   if (IsAnyRegCC && HasDef) {
8924     // Create the return types based on the intrinsic definition
8925     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8926     SmallVector<EVT, 3> ValueVTs;
8927     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8928     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8929 
8930     // There is always a chain and a glue type at the end
8931     ValueVTs.push_back(MVT::Other);
8932     ValueVTs.push_back(MVT::Glue);
8933     NodeTys = DAG.getVTList(ValueVTs);
8934   } else
8935     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8936 
8937   // Replace the target specific call node with a PATCHPOINT node.
8938   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8939                                          dl, NodeTys, Ops);
8940 
8941   // Update the NodeMap.
8942   if (HasDef) {
8943     if (IsAnyRegCC)
8944       setValue(&CB, SDValue(MN, 0));
8945     else
8946       setValue(&CB, Result.first);
8947   }
8948 
8949   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8950   // call sequence. Furthermore the location of the chain and glue can change
8951   // when the AnyReg calling convention is used and the intrinsic returns a
8952   // value.
8953   if (IsAnyRegCC && HasDef) {
8954     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8955     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8956     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8957   } else
8958     DAG.ReplaceAllUsesWith(Call, MN);
8959   DAG.DeleteNode(Call);
8960 
8961   // Inform the Frame Information that we have a patchpoint in this function.
8962   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8963 }
8964 
8965 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8966                                             unsigned Intrinsic) {
8967   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8968   SDValue Op1 = getValue(I.getArgOperand(0));
8969   SDValue Op2;
8970   if (I.getNumArgOperands() > 1)
8971     Op2 = getValue(I.getArgOperand(1));
8972   SDLoc dl = getCurSDLoc();
8973   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8974   SDValue Res;
8975   FastMathFlags FMF;
8976   if (isa<FPMathOperator>(I))
8977     FMF = I.getFastMathFlags();
8978 
8979   switch (Intrinsic) {
8980   case Intrinsic::experimental_vector_reduce_v2_fadd:
8981     if (FMF.allowReassoc())
8982       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8983                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8984     else
8985       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8986     break;
8987   case Intrinsic::experimental_vector_reduce_v2_fmul:
8988     if (FMF.allowReassoc())
8989       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8990                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8991     else
8992       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8993     break;
8994   case Intrinsic::experimental_vector_reduce_add:
8995     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8996     break;
8997   case Intrinsic::experimental_vector_reduce_mul:
8998     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8999     break;
9000   case Intrinsic::experimental_vector_reduce_and:
9001     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9002     break;
9003   case Intrinsic::experimental_vector_reduce_or:
9004     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9005     break;
9006   case Intrinsic::experimental_vector_reduce_xor:
9007     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9008     break;
9009   case Intrinsic::experimental_vector_reduce_smax:
9010     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9011     break;
9012   case Intrinsic::experimental_vector_reduce_smin:
9013     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9014     break;
9015   case Intrinsic::experimental_vector_reduce_umax:
9016     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9017     break;
9018   case Intrinsic::experimental_vector_reduce_umin:
9019     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9020     break;
9021   case Intrinsic::experimental_vector_reduce_fmax:
9022     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
9023     break;
9024   case Intrinsic::experimental_vector_reduce_fmin:
9025     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
9026     break;
9027   default:
9028     llvm_unreachable("Unhandled vector reduce intrinsic");
9029   }
9030   setValue(&I, Res);
9031 }
9032 
9033 /// Returns an AttributeList representing the attributes applied to the return
9034 /// value of the given call.
9035 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9036   SmallVector<Attribute::AttrKind, 2> Attrs;
9037   if (CLI.RetSExt)
9038     Attrs.push_back(Attribute::SExt);
9039   if (CLI.RetZExt)
9040     Attrs.push_back(Attribute::ZExt);
9041   if (CLI.IsInReg)
9042     Attrs.push_back(Attribute::InReg);
9043 
9044   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9045                             Attrs);
9046 }
9047 
9048 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9049 /// implementation, which just calls LowerCall.
9050 /// FIXME: When all targets are
9051 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9052 std::pair<SDValue, SDValue>
9053 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9054   // Handle the incoming return values from the call.
9055   CLI.Ins.clear();
9056   Type *OrigRetTy = CLI.RetTy;
9057   SmallVector<EVT, 4> RetTys;
9058   SmallVector<uint64_t, 4> Offsets;
9059   auto &DL = CLI.DAG.getDataLayout();
9060   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9061 
9062   if (CLI.IsPostTypeLegalization) {
9063     // If we are lowering a libcall after legalization, split the return type.
9064     SmallVector<EVT, 4> OldRetTys;
9065     SmallVector<uint64_t, 4> OldOffsets;
9066     RetTys.swap(OldRetTys);
9067     Offsets.swap(OldOffsets);
9068 
9069     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9070       EVT RetVT = OldRetTys[i];
9071       uint64_t Offset = OldOffsets[i];
9072       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9073       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9074       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9075       RetTys.append(NumRegs, RegisterVT);
9076       for (unsigned j = 0; j != NumRegs; ++j)
9077         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9078     }
9079   }
9080 
9081   SmallVector<ISD::OutputArg, 4> Outs;
9082   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9083 
9084   bool CanLowerReturn =
9085       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9086                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9087 
9088   SDValue DemoteStackSlot;
9089   int DemoteStackIdx = -100;
9090   if (!CanLowerReturn) {
9091     // FIXME: equivalent assert?
9092     // assert(!CS.hasInAllocaArgument() &&
9093     //        "sret demotion is incompatible with inalloca");
9094     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9095     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9096     MachineFunction &MF = CLI.DAG.getMachineFunction();
9097     DemoteStackIdx =
9098         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9099     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9100                                               DL.getAllocaAddrSpace());
9101 
9102     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9103     ArgListEntry Entry;
9104     Entry.Node = DemoteStackSlot;
9105     Entry.Ty = StackSlotPtrType;
9106     Entry.IsSExt = false;
9107     Entry.IsZExt = false;
9108     Entry.IsInReg = false;
9109     Entry.IsSRet = true;
9110     Entry.IsNest = false;
9111     Entry.IsByVal = false;
9112     Entry.IsReturned = false;
9113     Entry.IsSwiftSelf = false;
9114     Entry.IsSwiftError = false;
9115     Entry.IsCFGuardTarget = false;
9116     Entry.Alignment = Alignment;
9117     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9118     CLI.NumFixedArgs += 1;
9119     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9120 
9121     // sret demotion isn't compatible with tail-calls, since the sret argument
9122     // points into the callers stack frame.
9123     CLI.IsTailCall = false;
9124   } else {
9125     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9126         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9127     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9128       ISD::ArgFlagsTy Flags;
9129       if (NeedsRegBlock) {
9130         Flags.setInConsecutiveRegs();
9131         if (I == RetTys.size() - 1)
9132           Flags.setInConsecutiveRegsLast();
9133       }
9134       EVT VT = RetTys[I];
9135       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9136                                                      CLI.CallConv, VT);
9137       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9138                                                        CLI.CallConv, VT);
9139       for (unsigned i = 0; i != NumRegs; ++i) {
9140         ISD::InputArg MyFlags;
9141         MyFlags.Flags = Flags;
9142         MyFlags.VT = RegisterVT;
9143         MyFlags.ArgVT = VT;
9144         MyFlags.Used = CLI.IsReturnValueUsed;
9145         if (CLI.RetTy->isPointerTy()) {
9146           MyFlags.Flags.setPointer();
9147           MyFlags.Flags.setPointerAddrSpace(
9148               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9149         }
9150         if (CLI.RetSExt)
9151           MyFlags.Flags.setSExt();
9152         if (CLI.RetZExt)
9153           MyFlags.Flags.setZExt();
9154         if (CLI.IsInReg)
9155           MyFlags.Flags.setInReg();
9156         CLI.Ins.push_back(MyFlags);
9157       }
9158     }
9159   }
9160 
9161   // We push in swifterror return as the last element of CLI.Ins.
9162   ArgListTy &Args = CLI.getArgs();
9163   if (supportSwiftError()) {
9164     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9165       if (Args[i].IsSwiftError) {
9166         ISD::InputArg MyFlags;
9167         MyFlags.VT = getPointerTy(DL);
9168         MyFlags.ArgVT = EVT(getPointerTy(DL));
9169         MyFlags.Flags.setSwiftError();
9170         CLI.Ins.push_back(MyFlags);
9171       }
9172     }
9173   }
9174 
9175   // Handle all of the outgoing arguments.
9176   CLI.Outs.clear();
9177   CLI.OutVals.clear();
9178   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9179     SmallVector<EVT, 4> ValueVTs;
9180     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9181     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9182     Type *FinalType = Args[i].Ty;
9183     if (Args[i].IsByVal)
9184       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9185     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9186         FinalType, CLI.CallConv, CLI.IsVarArg);
9187     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9188          ++Value) {
9189       EVT VT = ValueVTs[Value];
9190       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9191       SDValue Op = SDValue(Args[i].Node.getNode(),
9192                            Args[i].Node.getResNo() + Value);
9193       ISD::ArgFlagsTy Flags;
9194 
9195       // Certain targets (such as MIPS), may have a different ABI alignment
9196       // for a type depending on the context. Give the target a chance to
9197       // specify the alignment it wants.
9198       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9199 
9200       if (Args[i].Ty->isPointerTy()) {
9201         Flags.setPointer();
9202         Flags.setPointerAddrSpace(
9203             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9204       }
9205       if (Args[i].IsZExt)
9206         Flags.setZExt();
9207       if (Args[i].IsSExt)
9208         Flags.setSExt();
9209       if (Args[i].IsInReg) {
9210         // If we are using vectorcall calling convention, a structure that is
9211         // passed InReg - is surely an HVA
9212         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9213             isa<StructType>(FinalType)) {
9214           // The first value of a structure is marked
9215           if (0 == Value)
9216             Flags.setHvaStart();
9217           Flags.setHva();
9218         }
9219         // Set InReg Flag
9220         Flags.setInReg();
9221       }
9222       if (Args[i].IsSRet)
9223         Flags.setSRet();
9224       if (Args[i].IsSwiftSelf)
9225         Flags.setSwiftSelf();
9226       if (Args[i].IsSwiftError)
9227         Flags.setSwiftError();
9228       if (Args[i].IsCFGuardTarget)
9229         Flags.setCFGuardTarget();
9230       if (Args[i].IsByVal)
9231         Flags.setByVal();
9232       if (Args[i].IsPreallocated) {
9233         Flags.setPreallocated();
9234         // Set the byval flag for CCAssignFn callbacks that don't know about
9235         // preallocated.  This way we can know how many bytes we should've
9236         // allocated and how many bytes a callee cleanup function will pop.  If
9237         // we port preallocated to more targets, we'll have to add custom
9238         // preallocated handling in the various CC lowering callbacks.
9239         Flags.setByVal();
9240       }
9241       if (Args[i].IsInAlloca) {
9242         Flags.setInAlloca();
9243         // Set the byval flag for CCAssignFn callbacks that don't know about
9244         // inalloca.  This way we can know how many bytes we should've allocated
9245         // and how many bytes a callee cleanup function will pop.  If we port
9246         // inalloca to more targets, we'll have to add custom inalloca handling
9247         // in the various CC lowering callbacks.
9248         Flags.setByVal();
9249       }
9250       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9251         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9252         Type *ElementTy = Ty->getElementType();
9253 
9254         unsigned FrameSize = DL.getTypeAllocSize(
9255             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9256         Flags.setByValSize(FrameSize);
9257 
9258         // info is not there but there are cases it cannot get right.
9259         Align FrameAlign;
9260         if (auto MA = Args[i].Alignment)
9261           FrameAlign = *MA;
9262         else
9263           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9264         Flags.setByValAlign(FrameAlign);
9265       }
9266       if (Args[i].IsNest)
9267         Flags.setNest();
9268       if (NeedsRegBlock)
9269         Flags.setInConsecutiveRegs();
9270       Flags.setOrigAlign(OriginalAlignment);
9271 
9272       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9273                                                  CLI.CallConv, VT);
9274       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9275                                                         CLI.CallConv, VT);
9276       SmallVector<SDValue, 4> Parts(NumParts);
9277       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9278 
9279       if (Args[i].IsSExt)
9280         ExtendKind = ISD::SIGN_EXTEND;
9281       else if (Args[i].IsZExt)
9282         ExtendKind = ISD::ZERO_EXTEND;
9283 
9284       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9285       // for now.
9286       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9287           CanLowerReturn) {
9288         assert((CLI.RetTy == Args[i].Ty ||
9289                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9290                  CLI.RetTy->getPointerAddressSpace() ==
9291                      Args[i].Ty->getPointerAddressSpace())) &&
9292                RetTys.size() == NumValues && "unexpected use of 'returned'");
9293         // Before passing 'returned' to the target lowering code, ensure that
9294         // either the register MVT and the actual EVT are the same size or that
9295         // the return value and argument are extended in the same way; in these
9296         // cases it's safe to pass the argument register value unchanged as the
9297         // return register value (although it's at the target's option whether
9298         // to do so)
9299         // TODO: allow code generation to take advantage of partially preserved
9300         // registers rather than clobbering the entire register when the
9301         // parameter extension method is not compatible with the return
9302         // extension method
9303         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9304             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9305              CLI.RetZExt == Args[i].IsZExt))
9306           Flags.setReturned();
9307       }
9308 
9309       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9310                      CLI.CallConv, ExtendKind);
9311 
9312       for (unsigned j = 0; j != NumParts; ++j) {
9313         // if it isn't first piece, alignment must be 1
9314         // For scalable vectors the scalable part is currently handled
9315         // by individual targets, so we just use the known minimum size here.
9316         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9317                     i < CLI.NumFixedArgs, i,
9318                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9319         if (NumParts > 1 && j == 0)
9320           MyFlags.Flags.setSplit();
9321         else if (j != 0) {
9322           MyFlags.Flags.setOrigAlign(Align(1));
9323           if (j == NumParts - 1)
9324             MyFlags.Flags.setSplitEnd();
9325         }
9326 
9327         CLI.Outs.push_back(MyFlags);
9328         CLI.OutVals.push_back(Parts[j]);
9329       }
9330 
9331       if (NeedsRegBlock && Value == NumValues - 1)
9332         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9333     }
9334   }
9335 
9336   SmallVector<SDValue, 4> InVals;
9337   CLI.Chain = LowerCall(CLI, InVals);
9338 
9339   // Update CLI.InVals to use outside of this function.
9340   CLI.InVals = InVals;
9341 
9342   // Verify that the target's LowerCall behaved as expected.
9343   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9344          "LowerCall didn't return a valid chain!");
9345   assert((!CLI.IsTailCall || InVals.empty()) &&
9346          "LowerCall emitted a return value for a tail call!");
9347   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9348          "LowerCall didn't emit the correct number of values!");
9349 
9350   // For a tail call, the return value is merely live-out and there aren't
9351   // any nodes in the DAG representing it. Return a special value to
9352   // indicate that a tail call has been emitted and no more Instructions
9353   // should be processed in the current block.
9354   if (CLI.IsTailCall) {
9355     CLI.DAG.setRoot(CLI.Chain);
9356     return std::make_pair(SDValue(), SDValue());
9357   }
9358 
9359 #ifndef NDEBUG
9360   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9361     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9362     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9363            "LowerCall emitted a value with the wrong type!");
9364   }
9365 #endif
9366 
9367   SmallVector<SDValue, 4> ReturnValues;
9368   if (!CanLowerReturn) {
9369     // The instruction result is the result of loading from the
9370     // hidden sret parameter.
9371     SmallVector<EVT, 1> PVTs;
9372     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9373 
9374     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9375     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9376     EVT PtrVT = PVTs[0];
9377 
9378     unsigned NumValues = RetTys.size();
9379     ReturnValues.resize(NumValues);
9380     SmallVector<SDValue, 4> Chains(NumValues);
9381 
9382     // An aggregate return value cannot wrap around the address space, so
9383     // offsets to its parts don't wrap either.
9384     SDNodeFlags Flags;
9385     Flags.setNoUnsignedWrap(true);
9386 
9387     MachineFunction &MF = CLI.DAG.getMachineFunction();
9388     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9389     for (unsigned i = 0; i < NumValues; ++i) {
9390       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9391                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9392                                                         PtrVT), Flags);
9393       SDValue L = CLI.DAG.getLoad(
9394           RetTys[i], CLI.DL, CLI.Chain, Add,
9395           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9396                                             DemoteStackIdx, Offsets[i]),
9397           HiddenSRetAlign);
9398       ReturnValues[i] = L;
9399       Chains[i] = L.getValue(1);
9400     }
9401 
9402     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9403   } else {
9404     // Collect the legal value parts into potentially illegal values
9405     // that correspond to the original function's return values.
9406     Optional<ISD::NodeType> AssertOp;
9407     if (CLI.RetSExt)
9408       AssertOp = ISD::AssertSext;
9409     else if (CLI.RetZExt)
9410       AssertOp = ISD::AssertZext;
9411     unsigned CurReg = 0;
9412     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9413       EVT VT = RetTys[I];
9414       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9415                                                      CLI.CallConv, VT);
9416       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9417                                                        CLI.CallConv, VT);
9418 
9419       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9420                                               NumRegs, RegisterVT, VT, nullptr,
9421                                               CLI.CallConv, AssertOp));
9422       CurReg += NumRegs;
9423     }
9424 
9425     // For a function returning void, there is no return value. We can't create
9426     // such a node, so we just return a null return value in that case. In
9427     // that case, nothing will actually look at the value.
9428     if (ReturnValues.empty())
9429       return std::make_pair(SDValue(), CLI.Chain);
9430   }
9431 
9432   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9433                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9434   return std::make_pair(Res, CLI.Chain);
9435 }
9436 
9437 void TargetLowering::LowerOperationWrapper(SDNode *N,
9438                                            SmallVectorImpl<SDValue> &Results,
9439                                            SelectionDAG &DAG) const {
9440   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9441     Results.push_back(Res);
9442 }
9443 
9444 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9445   llvm_unreachable("LowerOperation not implemented for this target!");
9446 }
9447 
9448 void
9449 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9450   SDValue Op = getNonRegisterValue(V);
9451   assert((Op.getOpcode() != ISD::CopyFromReg ||
9452           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9453          "Copy from a reg to the same reg!");
9454   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9455 
9456   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9457   // If this is an InlineAsm we have to match the registers required, not the
9458   // notional registers required by the type.
9459 
9460   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9461                    None); // This is not an ABI copy.
9462   SDValue Chain = DAG.getEntryNode();
9463 
9464   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9465                               FuncInfo.PreferredExtendType.end())
9466                                  ? ISD::ANY_EXTEND
9467                                  : FuncInfo.PreferredExtendType[V];
9468   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9469   PendingExports.push_back(Chain);
9470 }
9471 
9472 #include "llvm/CodeGen/SelectionDAGISel.h"
9473 
9474 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9475 /// entry block, return true.  This includes arguments used by switches, since
9476 /// the switch may expand into multiple basic blocks.
9477 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9478   // With FastISel active, we may be splitting blocks, so force creation
9479   // of virtual registers for all non-dead arguments.
9480   if (FastISel)
9481     return A->use_empty();
9482 
9483   const BasicBlock &Entry = A->getParent()->front();
9484   for (const User *U : A->users())
9485     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9486       return false;  // Use not in entry block.
9487 
9488   return true;
9489 }
9490 
9491 using ArgCopyElisionMapTy =
9492     DenseMap<const Argument *,
9493              std::pair<const AllocaInst *, const StoreInst *>>;
9494 
9495 /// Scan the entry block of the function in FuncInfo for arguments that look
9496 /// like copies into a local alloca. Record any copied arguments in
9497 /// ArgCopyElisionCandidates.
9498 static void
9499 findArgumentCopyElisionCandidates(const DataLayout &DL,
9500                                   FunctionLoweringInfo *FuncInfo,
9501                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9502   // Record the state of every static alloca used in the entry block. Argument
9503   // allocas are all used in the entry block, so we need approximately as many
9504   // entries as we have arguments.
9505   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9506   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9507   unsigned NumArgs = FuncInfo->Fn->arg_size();
9508   StaticAllocas.reserve(NumArgs * 2);
9509 
9510   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9511     if (!V)
9512       return nullptr;
9513     V = V->stripPointerCasts();
9514     const auto *AI = dyn_cast<AllocaInst>(V);
9515     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9516       return nullptr;
9517     auto Iter = StaticAllocas.insert({AI, Unknown});
9518     return &Iter.first->second;
9519   };
9520 
9521   // Look for stores of arguments to static allocas. Look through bitcasts and
9522   // GEPs to handle type coercions, as long as the alloca is fully initialized
9523   // by the store. Any non-store use of an alloca escapes it and any subsequent
9524   // unanalyzed store might write it.
9525   // FIXME: Handle structs initialized with multiple stores.
9526   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9527     // Look for stores, and handle non-store uses conservatively.
9528     const auto *SI = dyn_cast<StoreInst>(&I);
9529     if (!SI) {
9530       // We will look through cast uses, so ignore them completely.
9531       if (I.isCast())
9532         continue;
9533       // Ignore debug info intrinsics, they don't escape or store to allocas.
9534       if (isa<DbgInfoIntrinsic>(I))
9535         continue;
9536       // This is an unknown instruction. Assume it escapes or writes to all
9537       // static alloca operands.
9538       for (const Use &U : I.operands()) {
9539         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9540           *Info = StaticAllocaInfo::Clobbered;
9541       }
9542       continue;
9543     }
9544 
9545     // If the stored value is a static alloca, mark it as escaped.
9546     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9547       *Info = StaticAllocaInfo::Clobbered;
9548 
9549     // Check if the destination is a static alloca.
9550     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9551     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9552     if (!Info)
9553       continue;
9554     const AllocaInst *AI = cast<AllocaInst>(Dst);
9555 
9556     // Skip allocas that have been initialized or clobbered.
9557     if (*Info != StaticAllocaInfo::Unknown)
9558       continue;
9559 
9560     // Check if the stored value is an argument, and that this store fully
9561     // initializes the alloca. Don't elide copies from the same argument twice.
9562     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9563     const auto *Arg = dyn_cast<Argument>(Val);
9564     if (!Arg || Arg->hasPassPointeeByValueAttr() ||
9565         Arg->getType()->isEmptyTy() ||
9566         DL.getTypeStoreSize(Arg->getType()) !=
9567             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9568         ArgCopyElisionCandidates.count(Arg)) {
9569       *Info = StaticAllocaInfo::Clobbered;
9570       continue;
9571     }
9572 
9573     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9574                       << '\n');
9575 
9576     // Mark this alloca and store for argument copy elision.
9577     *Info = StaticAllocaInfo::Elidable;
9578     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9579 
9580     // Stop scanning if we've seen all arguments. This will happen early in -O0
9581     // builds, which is useful, because -O0 builds have large entry blocks and
9582     // many allocas.
9583     if (ArgCopyElisionCandidates.size() == NumArgs)
9584       break;
9585   }
9586 }
9587 
9588 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9589 /// ArgVal is a load from a suitable fixed stack object.
9590 static void tryToElideArgumentCopy(
9591     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9592     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9593     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9594     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9595     SDValue ArgVal, bool &ArgHasUses) {
9596   // Check if this is a load from a fixed stack object.
9597   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9598   if (!LNode)
9599     return;
9600   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9601   if (!FINode)
9602     return;
9603 
9604   // Check that the fixed stack object is the right size and alignment.
9605   // Look at the alignment that the user wrote on the alloca instead of looking
9606   // at the stack object.
9607   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9608   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9609   const AllocaInst *AI = ArgCopyIter->second.first;
9610   int FixedIndex = FINode->getIndex();
9611   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9612   int OldIndex = AllocaIndex;
9613   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9614   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9615     LLVM_DEBUG(
9616         dbgs() << "  argument copy elision failed due to bad fixed stack "
9617                   "object size\n");
9618     return;
9619   }
9620   Align RequiredAlignment = AI->getAlign();
9621   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9622     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9623                          "greater than stack argument alignment ("
9624                       << DebugStr(RequiredAlignment) << " vs "
9625                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9626     return;
9627   }
9628 
9629   // Perform the elision. Delete the old stack object and replace its only use
9630   // in the variable info map. Mark the stack object as mutable.
9631   LLVM_DEBUG({
9632     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9633            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9634            << '\n';
9635   });
9636   MFI.RemoveStackObject(OldIndex);
9637   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9638   AllocaIndex = FixedIndex;
9639   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9640   Chains.push_back(ArgVal.getValue(1));
9641 
9642   // Avoid emitting code for the store implementing the copy.
9643   const StoreInst *SI = ArgCopyIter->second.second;
9644   ElidedArgCopyInstrs.insert(SI);
9645 
9646   // Check for uses of the argument again so that we can avoid exporting ArgVal
9647   // if it is't used by anything other than the store.
9648   for (const Value *U : Arg.users()) {
9649     if (U != SI) {
9650       ArgHasUses = true;
9651       break;
9652     }
9653   }
9654 }
9655 
9656 void SelectionDAGISel::LowerArguments(const Function &F) {
9657   SelectionDAG &DAG = SDB->DAG;
9658   SDLoc dl = SDB->getCurSDLoc();
9659   const DataLayout &DL = DAG.getDataLayout();
9660   SmallVector<ISD::InputArg, 16> Ins;
9661 
9662   // In Naked functions we aren't going to save any registers.
9663   if (F.hasFnAttribute(Attribute::Naked))
9664     return;
9665 
9666   if (!FuncInfo->CanLowerReturn) {
9667     // Put in an sret pointer parameter before all the other parameters.
9668     SmallVector<EVT, 1> ValueVTs;
9669     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9670                     F.getReturnType()->getPointerTo(
9671                         DAG.getDataLayout().getAllocaAddrSpace()),
9672                     ValueVTs);
9673 
9674     // NOTE: Assuming that a pointer will never break down to more than one VT
9675     // or one register.
9676     ISD::ArgFlagsTy Flags;
9677     Flags.setSRet();
9678     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9679     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9680                          ISD::InputArg::NoArgIndex, 0);
9681     Ins.push_back(RetArg);
9682   }
9683 
9684   // Look for stores of arguments to static allocas. Mark such arguments with a
9685   // flag to ask the target to give us the memory location of that argument if
9686   // available.
9687   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9688   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9689                                     ArgCopyElisionCandidates);
9690 
9691   // Set up the incoming argument description vector.
9692   for (const Argument &Arg : F.args()) {
9693     unsigned ArgNo = Arg.getArgNo();
9694     SmallVector<EVT, 4> ValueVTs;
9695     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9696     bool isArgValueUsed = !Arg.use_empty();
9697     unsigned PartBase = 0;
9698     Type *FinalType = Arg.getType();
9699     if (Arg.hasAttribute(Attribute::ByVal))
9700       FinalType = Arg.getParamByValType();
9701     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9702         FinalType, F.getCallingConv(), F.isVarArg());
9703     for (unsigned Value = 0, NumValues = ValueVTs.size();
9704          Value != NumValues; ++Value) {
9705       EVT VT = ValueVTs[Value];
9706       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9707       ISD::ArgFlagsTy Flags;
9708 
9709       // Certain targets (such as MIPS), may have a different ABI alignment
9710       // for a type depending on the context. Give the target a chance to
9711       // specify the alignment it wants.
9712       const Align OriginalAlignment(
9713           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9714 
9715       if (Arg.getType()->isPointerTy()) {
9716         Flags.setPointer();
9717         Flags.setPointerAddrSpace(
9718             cast<PointerType>(Arg.getType())->getAddressSpace());
9719       }
9720       if (Arg.hasAttribute(Attribute::ZExt))
9721         Flags.setZExt();
9722       if (Arg.hasAttribute(Attribute::SExt))
9723         Flags.setSExt();
9724       if (Arg.hasAttribute(Attribute::InReg)) {
9725         // If we are using vectorcall calling convention, a structure that is
9726         // passed InReg - is surely an HVA
9727         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9728             isa<StructType>(Arg.getType())) {
9729           // The first value of a structure is marked
9730           if (0 == Value)
9731             Flags.setHvaStart();
9732           Flags.setHva();
9733         }
9734         // Set InReg Flag
9735         Flags.setInReg();
9736       }
9737       if (Arg.hasAttribute(Attribute::StructRet))
9738         Flags.setSRet();
9739       if (Arg.hasAttribute(Attribute::SwiftSelf))
9740         Flags.setSwiftSelf();
9741       if (Arg.hasAttribute(Attribute::SwiftError))
9742         Flags.setSwiftError();
9743       if (Arg.hasAttribute(Attribute::ByVal))
9744         Flags.setByVal();
9745       if (Arg.hasAttribute(Attribute::InAlloca)) {
9746         Flags.setInAlloca();
9747         // Set the byval flag for CCAssignFn callbacks that don't know about
9748         // inalloca.  This way we can know how many bytes we should've allocated
9749         // and how many bytes a callee cleanup function will pop.  If we port
9750         // inalloca to more targets, we'll have to add custom inalloca handling
9751         // in the various CC lowering callbacks.
9752         Flags.setByVal();
9753       }
9754       if (Arg.hasAttribute(Attribute::Preallocated)) {
9755         Flags.setPreallocated();
9756         // Set the byval flag for CCAssignFn callbacks that don't know about
9757         // preallocated.  This way we can know how many bytes we should've
9758         // allocated and how many bytes a callee cleanup function will pop.  If
9759         // we port preallocated to more targets, we'll have to add custom
9760         // preallocated handling in the various CC lowering callbacks.
9761         Flags.setByVal();
9762       }
9763       if (F.getCallingConv() == CallingConv::X86_INTR) {
9764         // IA Interrupt passes frame (1st parameter) by value in the stack.
9765         if (ArgNo == 0)
9766           Flags.setByVal();
9767       }
9768       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
9769         Type *ElementTy = Arg.getParamByValType();
9770 
9771         // For ByVal, size and alignment should be passed from FE.  BE will
9772         // guess if this info is not there but there are cases it cannot get
9773         // right.
9774         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9775         Flags.setByValSize(FrameSize);
9776 
9777         unsigned FrameAlign;
9778         if (Arg.getParamAlignment())
9779           FrameAlign = Arg.getParamAlignment();
9780         else
9781           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9782         Flags.setByValAlign(Align(FrameAlign));
9783       }
9784       if (Arg.hasAttribute(Attribute::Nest))
9785         Flags.setNest();
9786       if (NeedsRegBlock)
9787         Flags.setInConsecutiveRegs();
9788       Flags.setOrigAlign(OriginalAlignment);
9789       if (ArgCopyElisionCandidates.count(&Arg))
9790         Flags.setCopyElisionCandidate();
9791       if (Arg.hasAttribute(Attribute::Returned))
9792         Flags.setReturned();
9793 
9794       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9795           *CurDAG->getContext(), F.getCallingConv(), VT);
9796       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9797           *CurDAG->getContext(), F.getCallingConv(), VT);
9798       for (unsigned i = 0; i != NumRegs; ++i) {
9799         // For scalable vectors, use the minimum size; individual targets
9800         // are responsible for handling scalable vector arguments and
9801         // return values.
9802         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9803                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9804         if (NumRegs > 1 && i == 0)
9805           MyFlags.Flags.setSplit();
9806         // if it isn't first piece, alignment must be 1
9807         else if (i > 0) {
9808           MyFlags.Flags.setOrigAlign(Align(1));
9809           if (i == NumRegs - 1)
9810             MyFlags.Flags.setSplitEnd();
9811         }
9812         Ins.push_back(MyFlags);
9813       }
9814       if (NeedsRegBlock && Value == NumValues - 1)
9815         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9816       PartBase += VT.getStoreSize().getKnownMinSize();
9817     }
9818   }
9819 
9820   // Call the target to set up the argument values.
9821   SmallVector<SDValue, 8> InVals;
9822   SDValue NewRoot = TLI->LowerFormalArguments(
9823       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9824 
9825   // Verify that the target's LowerFormalArguments behaved as expected.
9826   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9827          "LowerFormalArguments didn't return a valid chain!");
9828   assert(InVals.size() == Ins.size() &&
9829          "LowerFormalArguments didn't emit the correct number of values!");
9830   LLVM_DEBUG({
9831     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9832       assert(InVals[i].getNode() &&
9833              "LowerFormalArguments emitted a null value!");
9834       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9835              "LowerFormalArguments emitted a value with the wrong type!");
9836     }
9837   });
9838 
9839   // Update the DAG with the new chain value resulting from argument lowering.
9840   DAG.setRoot(NewRoot);
9841 
9842   // Set up the argument values.
9843   unsigned i = 0;
9844   if (!FuncInfo->CanLowerReturn) {
9845     // Create a virtual register for the sret pointer, and put in a copy
9846     // from the sret argument into it.
9847     SmallVector<EVT, 1> ValueVTs;
9848     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9849                     F.getReturnType()->getPointerTo(
9850                         DAG.getDataLayout().getAllocaAddrSpace()),
9851                     ValueVTs);
9852     MVT VT = ValueVTs[0].getSimpleVT();
9853     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9854     Optional<ISD::NodeType> AssertOp = None;
9855     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9856                                         nullptr, F.getCallingConv(), AssertOp);
9857 
9858     MachineFunction& MF = SDB->DAG.getMachineFunction();
9859     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9860     Register SRetReg =
9861         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9862     FuncInfo->DemoteRegister = SRetReg;
9863     NewRoot =
9864         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9865     DAG.setRoot(NewRoot);
9866 
9867     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9868     ++i;
9869   }
9870 
9871   SmallVector<SDValue, 4> Chains;
9872   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9873   for (const Argument &Arg : F.args()) {
9874     SmallVector<SDValue, 4> ArgValues;
9875     SmallVector<EVT, 4> ValueVTs;
9876     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9877     unsigned NumValues = ValueVTs.size();
9878     if (NumValues == 0)
9879       continue;
9880 
9881     bool ArgHasUses = !Arg.use_empty();
9882 
9883     // Elide the copying store if the target loaded this argument from a
9884     // suitable fixed stack object.
9885     if (Ins[i].Flags.isCopyElisionCandidate()) {
9886       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9887                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9888                              InVals[i], ArgHasUses);
9889     }
9890 
9891     // If this argument is unused then remember its value. It is used to generate
9892     // debugging information.
9893     bool isSwiftErrorArg =
9894         TLI->supportSwiftError() &&
9895         Arg.hasAttribute(Attribute::SwiftError);
9896     if (!ArgHasUses && !isSwiftErrorArg) {
9897       SDB->setUnusedArgValue(&Arg, InVals[i]);
9898 
9899       // Also remember any frame index for use in FastISel.
9900       if (FrameIndexSDNode *FI =
9901           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9902         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9903     }
9904 
9905     for (unsigned Val = 0; Val != NumValues; ++Val) {
9906       EVT VT = ValueVTs[Val];
9907       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9908                                                       F.getCallingConv(), VT);
9909       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9910           *CurDAG->getContext(), F.getCallingConv(), VT);
9911 
9912       // Even an apparent 'unused' swifterror argument needs to be returned. So
9913       // we do generate a copy for it that can be used on return from the
9914       // function.
9915       if (ArgHasUses || isSwiftErrorArg) {
9916         Optional<ISD::NodeType> AssertOp;
9917         if (Arg.hasAttribute(Attribute::SExt))
9918           AssertOp = ISD::AssertSext;
9919         else if (Arg.hasAttribute(Attribute::ZExt))
9920           AssertOp = ISD::AssertZext;
9921 
9922         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9923                                              PartVT, VT, nullptr,
9924                                              F.getCallingConv(), AssertOp));
9925       }
9926 
9927       i += NumParts;
9928     }
9929 
9930     // We don't need to do anything else for unused arguments.
9931     if (ArgValues.empty())
9932       continue;
9933 
9934     // Note down frame index.
9935     if (FrameIndexSDNode *FI =
9936         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9937       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9938 
9939     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9940                                      SDB->getCurSDLoc());
9941 
9942     SDB->setValue(&Arg, Res);
9943     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9944       // We want to associate the argument with the frame index, among
9945       // involved operands, that correspond to the lowest address. The
9946       // getCopyFromParts function, called earlier, is swapping the order of
9947       // the operands to BUILD_PAIR depending on endianness. The result of
9948       // that swapping is that the least significant bits of the argument will
9949       // be in the first operand of the BUILD_PAIR node, and the most
9950       // significant bits will be in the second operand.
9951       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9952       if (LoadSDNode *LNode =
9953           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9954         if (FrameIndexSDNode *FI =
9955             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9956           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9957     }
9958 
9959     // Analyses past this point are naive and don't expect an assertion.
9960     if (Res.getOpcode() == ISD::AssertZext)
9961       Res = Res.getOperand(0);
9962 
9963     // Update the SwiftErrorVRegDefMap.
9964     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9965       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9966       if (Register::isVirtualRegister(Reg))
9967         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9968                                    Reg);
9969     }
9970 
9971     // If this argument is live outside of the entry block, insert a copy from
9972     // wherever we got it to the vreg that other BB's will reference it as.
9973     if (Res.getOpcode() == ISD::CopyFromReg) {
9974       // If we can, though, try to skip creating an unnecessary vreg.
9975       // FIXME: This isn't very clean... it would be nice to make this more
9976       // general.
9977       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9978       if (Register::isVirtualRegister(Reg)) {
9979         FuncInfo->ValueMap[&Arg] = Reg;
9980         continue;
9981       }
9982     }
9983     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9984       FuncInfo->InitializeRegForValue(&Arg);
9985       SDB->CopyToExportRegsIfNeeded(&Arg);
9986     }
9987   }
9988 
9989   if (!Chains.empty()) {
9990     Chains.push_back(NewRoot);
9991     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9992   }
9993 
9994   DAG.setRoot(NewRoot);
9995 
9996   assert(i == InVals.size() && "Argument register count mismatch!");
9997 
9998   // If any argument copy elisions occurred and we have debug info, update the
9999   // stale frame indices used in the dbg.declare variable info table.
10000   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10001   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10002     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10003       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10004       if (I != ArgCopyElisionFrameIndexMap.end())
10005         VI.Slot = I->second;
10006     }
10007   }
10008 
10009   // Finally, if the target has anything special to do, allow it to do so.
10010   emitFunctionEntryCode();
10011 }
10012 
10013 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10014 /// ensure constants are generated when needed.  Remember the virtual registers
10015 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10016 /// directly add them, because expansion might result in multiple MBB's for one
10017 /// BB.  As such, the start of the BB might correspond to a different MBB than
10018 /// the end.
10019 void
10020 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10021   const Instruction *TI = LLVMBB->getTerminator();
10022 
10023   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10024 
10025   // Check PHI nodes in successors that expect a value to be available from this
10026   // block.
10027   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10028     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10029     if (!isa<PHINode>(SuccBB->begin())) continue;
10030     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10031 
10032     // If this terminator has multiple identical successors (common for
10033     // switches), only handle each succ once.
10034     if (!SuccsHandled.insert(SuccMBB).second)
10035       continue;
10036 
10037     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10038 
10039     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10040     // nodes and Machine PHI nodes, but the incoming operands have not been
10041     // emitted yet.
10042     for (const PHINode &PN : SuccBB->phis()) {
10043       // Ignore dead phi's.
10044       if (PN.use_empty())
10045         continue;
10046 
10047       // Skip empty types
10048       if (PN.getType()->isEmptyTy())
10049         continue;
10050 
10051       unsigned Reg;
10052       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10053 
10054       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10055         unsigned &RegOut = ConstantsOut[C];
10056         if (RegOut == 0) {
10057           RegOut = FuncInfo.CreateRegs(C);
10058           CopyValueToVirtualRegister(C, RegOut);
10059         }
10060         Reg = RegOut;
10061       } else {
10062         DenseMap<const Value *, Register>::iterator I =
10063           FuncInfo.ValueMap.find(PHIOp);
10064         if (I != FuncInfo.ValueMap.end())
10065           Reg = I->second;
10066         else {
10067           assert(isa<AllocaInst>(PHIOp) &&
10068                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10069                  "Didn't codegen value into a register!??");
10070           Reg = FuncInfo.CreateRegs(PHIOp);
10071           CopyValueToVirtualRegister(PHIOp, Reg);
10072         }
10073       }
10074 
10075       // Remember that this register needs to added to the machine PHI node as
10076       // the input for this MBB.
10077       SmallVector<EVT, 4> ValueVTs;
10078       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10079       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10080       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10081         EVT VT = ValueVTs[vti];
10082         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10083         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10084           FuncInfo.PHINodesToUpdate.push_back(
10085               std::make_pair(&*MBBI++, Reg + i));
10086         Reg += NumRegisters;
10087       }
10088     }
10089   }
10090 
10091   ConstantsOut.clear();
10092 }
10093 
10094 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10095 /// is 0.
10096 MachineBasicBlock *
10097 SelectionDAGBuilder::StackProtectorDescriptor::
10098 AddSuccessorMBB(const BasicBlock *BB,
10099                 MachineBasicBlock *ParentMBB,
10100                 bool IsLikely,
10101                 MachineBasicBlock *SuccMBB) {
10102   // If SuccBB has not been created yet, create it.
10103   if (!SuccMBB) {
10104     MachineFunction *MF = ParentMBB->getParent();
10105     MachineFunction::iterator BBI(ParentMBB);
10106     SuccMBB = MF->CreateMachineBasicBlock(BB);
10107     MF->insert(++BBI, SuccMBB);
10108   }
10109   // Add it as a successor of ParentMBB.
10110   ParentMBB->addSuccessor(
10111       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10112   return SuccMBB;
10113 }
10114 
10115 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10116   MachineFunction::iterator I(MBB);
10117   if (++I == FuncInfo.MF->end())
10118     return nullptr;
10119   return &*I;
10120 }
10121 
10122 /// During lowering new call nodes can be created (such as memset, etc.).
10123 /// Those will become new roots of the current DAG, but complications arise
10124 /// when they are tail calls. In such cases, the call lowering will update
10125 /// the root, but the builder still needs to know that a tail call has been
10126 /// lowered in order to avoid generating an additional return.
10127 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10128   // If the node is null, we do have a tail call.
10129   if (MaybeTC.getNode() != nullptr)
10130     DAG.setRoot(MaybeTC);
10131   else
10132     HasTailCall = true;
10133 }
10134 
10135 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10136                                         MachineBasicBlock *SwitchMBB,
10137                                         MachineBasicBlock *DefaultMBB) {
10138   MachineFunction *CurMF = FuncInfo.MF;
10139   MachineBasicBlock *NextMBB = nullptr;
10140   MachineFunction::iterator BBI(W.MBB);
10141   if (++BBI != FuncInfo.MF->end())
10142     NextMBB = &*BBI;
10143 
10144   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10145 
10146   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10147 
10148   if (Size == 2 && W.MBB == SwitchMBB) {
10149     // If any two of the cases has the same destination, and if one value
10150     // is the same as the other, but has one bit unset that the other has set,
10151     // use bit manipulation to do two compares at once.  For example:
10152     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10153     // TODO: This could be extended to merge any 2 cases in switches with 3
10154     // cases.
10155     // TODO: Handle cases where W.CaseBB != SwitchBB.
10156     CaseCluster &Small = *W.FirstCluster;
10157     CaseCluster &Big = *W.LastCluster;
10158 
10159     if (Small.Low == Small.High && Big.Low == Big.High &&
10160         Small.MBB == Big.MBB) {
10161       const APInt &SmallValue = Small.Low->getValue();
10162       const APInt &BigValue = Big.Low->getValue();
10163 
10164       // Check that there is only one bit different.
10165       APInt CommonBit = BigValue ^ SmallValue;
10166       if (CommonBit.isPowerOf2()) {
10167         SDValue CondLHS = getValue(Cond);
10168         EVT VT = CondLHS.getValueType();
10169         SDLoc DL = getCurSDLoc();
10170 
10171         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10172                                  DAG.getConstant(CommonBit, DL, VT));
10173         SDValue Cond = DAG.getSetCC(
10174             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10175             ISD::SETEQ);
10176 
10177         // Update successor info.
10178         // Both Small and Big will jump to Small.BB, so we sum up the
10179         // probabilities.
10180         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10181         if (BPI)
10182           addSuccessorWithProb(
10183               SwitchMBB, DefaultMBB,
10184               // The default destination is the first successor in IR.
10185               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10186         else
10187           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10188 
10189         // Insert the true branch.
10190         SDValue BrCond =
10191             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10192                         DAG.getBasicBlock(Small.MBB));
10193         // Insert the false branch.
10194         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10195                              DAG.getBasicBlock(DefaultMBB));
10196 
10197         DAG.setRoot(BrCond);
10198         return;
10199       }
10200     }
10201   }
10202 
10203   if (TM.getOptLevel() != CodeGenOpt::None) {
10204     // Here, we order cases by probability so the most likely case will be
10205     // checked first. However, two clusters can have the same probability in
10206     // which case their relative ordering is non-deterministic. So we use Low
10207     // as a tie-breaker as clusters are guaranteed to never overlap.
10208     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10209                [](const CaseCluster &a, const CaseCluster &b) {
10210       return a.Prob != b.Prob ?
10211              a.Prob > b.Prob :
10212              a.Low->getValue().slt(b.Low->getValue());
10213     });
10214 
10215     // Rearrange the case blocks so that the last one falls through if possible
10216     // without changing the order of probabilities.
10217     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10218       --I;
10219       if (I->Prob > W.LastCluster->Prob)
10220         break;
10221       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10222         std::swap(*I, *W.LastCluster);
10223         break;
10224       }
10225     }
10226   }
10227 
10228   // Compute total probability.
10229   BranchProbability DefaultProb = W.DefaultProb;
10230   BranchProbability UnhandledProbs = DefaultProb;
10231   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10232     UnhandledProbs += I->Prob;
10233 
10234   MachineBasicBlock *CurMBB = W.MBB;
10235   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10236     bool FallthroughUnreachable = false;
10237     MachineBasicBlock *Fallthrough;
10238     if (I == W.LastCluster) {
10239       // For the last cluster, fall through to the default destination.
10240       Fallthrough = DefaultMBB;
10241       FallthroughUnreachable = isa<UnreachableInst>(
10242           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10243     } else {
10244       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10245       CurMF->insert(BBI, Fallthrough);
10246       // Put Cond in a virtual register to make it available from the new blocks.
10247       ExportFromCurrentBlock(Cond);
10248     }
10249     UnhandledProbs -= I->Prob;
10250 
10251     switch (I->Kind) {
10252       case CC_JumpTable: {
10253         // FIXME: Optimize away range check based on pivot comparisons.
10254         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10255         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10256 
10257         // The jump block hasn't been inserted yet; insert it here.
10258         MachineBasicBlock *JumpMBB = JT->MBB;
10259         CurMF->insert(BBI, JumpMBB);
10260 
10261         auto JumpProb = I->Prob;
10262         auto FallthroughProb = UnhandledProbs;
10263 
10264         // If the default statement is a target of the jump table, we evenly
10265         // distribute the default probability to successors of CurMBB. Also
10266         // update the probability on the edge from JumpMBB to Fallthrough.
10267         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10268                                               SE = JumpMBB->succ_end();
10269              SI != SE; ++SI) {
10270           if (*SI == DefaultMBB) {
10271             JumpProb += DefaultProb / 2;
10272             FallthroughProb -= DefaultProb / 2;
10273             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10274             JumpMBB->normalizeSuccProbs();
10275             break;
10276           }
10277         }
10278 
10279         if (FallthroughUnreachable) {
10280           // Skip the range check if the fallthrough block is unreachable.
10281           JTH->OmitRangeCheck = true;
10282         }
10283 
10284         if (!JTH->OmitRangeCheck)
10285           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10286         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10287         CurMBB->normalizeSuccProbs();
10288 
10289         // The jump table header will be inserted in our current block, do the
10290         // range check, and fall through to our fallthrough block.
10291         JTH->HeaderBB = CurMBB;
10292         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10293 
10294         // If we're in the right place, emit the jump table header right now.
10295         if (CurMBB == SwitchMBB) {
10296           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10297           JTH->Emitted = true;
10298         }
10299         break;
10300       }
10301       case CC_BitTests: {
10302         // FIXME: Optimize away range check based on pivot comparisons.
10303         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10304 
10305         // The bit test blocks haven't been inserted yet; insert them here.
10306         for (BitTestCase &BTC : BTB->Cases)
10307           CurMF->insert(BBI, BTC.ThisBB);
10308 
10309         // Fill in fields of the BitTestBlock.
10310         BTB->Parent = CurMBB;
10311         BTB->Default = Fallthrough;
10312 
10313         BTB->DefaultProb = UnhandledProbs;
10314         // If the cases in bit test don't form a contiguous range, we evenly
10315         // distribute the probability on the edge to Fallthrough to two
10316         // successors of CurMBB.
10317         if (!BTB->ContiguousRange) {
10318           BTB->Prob += DefaultProb / 2;
10319           BTB->DefaultProb -= DefaultProb / 2;
10320         }
10321 
10322         if (FallthroughUnreachable) {
10323           // Skip the range check if the fallthrough block is unreachable.
10324           BTB->OmitRangeCheck = true;
10325         }
10326 
10327         // If we're in the right place, emit the bit test header right now.
10328         if (CurMBB == SwitchMBB) {
10329           visitBitTestHeader(*BTB, SwitchMBB);
10330           BTB->Emitted = true;
10331         }
10332         break;
10333       }
10334       case CC_Range: {
10335         const Value *RHS, *LHS, *MHS;
10336         ISD::CondCode CC;
10337         if (I->Low == I->High) {
10338           // Check Cond == I->Low.
10339           CC = ISD::SETEQ;
10340           LHS = Cond;
10341           RHS=I->Low;
10342           MHS = nullptr;
10343         } else {
10344           // Check I->Low <= Cond <= I->High.
10345           CC = ISD::SETLE;
10346           LHS = I->Low;
10347           MHS = Cond;
10348           RHS = I->High;
10349         }
10350 
10351         // If Fallthrough is unreachable, fold away the comparison.
10352         if (FallthroughUnreachable)
10353           CC = ISD::SETTRUE;
10354 
10355         // The false probability is the sum of all unhandled cases.
10356         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10357                      getCurSDLoc(), I->Prob, UnhandledProbs);
10358 
10359         if (CurMBB == SwitchMBB)
10360           visitSwitchCase(CB, SwitchMBB);
10361         else
10362           SL->SwitchCases.push_back(CB);
10363 
10364         break;
10365       }
10366     }
10367     CurMBB = Fallthrough;
10368   }
10369 }
10370 
10371 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10372                                               CaseClusterIt First,
10373                                               CaseClusterIt Last) {
10374   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10375     if (X.Prob != CC.Prob)
10376       return X.Prob > CC.Prob;
10377 
10378     // Ties are broken by comparing the case value.
10379     return X.Low->getValue().slt(CC.Low->getValue());
10380   });
10381 }
10382 
10383 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10384                                         const SwitchWorkListItem &W,
10385                                         Value *Cond,
10386                                         MachineBasicBlock *SwitchMBB) {
10387   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10388          "Clusters not sorted?");
10389 
10390   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10391 
10392   // Balance the tree based on branch probabilities to create a near-optimal (in
10393   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10394   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10395   CaseClusterIt LastLeft = W.FirstCluster;
10396   CaseClusterIt FirstRight = W.LastCluster;
10397   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10398   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10399 
10400   // Move LastLeft and FirstRight towards each other from opposite directions to
10401   // find a partitioning of the clusters which balances the probability on both
10402   // sides. If LeftProb and RightProb are equal, alternate which side is
10403   // taken to ensure 0-probability nodes are distributed evenly.
10404   unsigned I = 0;
10405   while (LastLeft + 1 < FirstRight) {
10406     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10407       LeftProb += (++LastLeft)->Prob;
10408     else
10409       RightProb += (--FirstRight)->Prob;
10410     I++;
10411   }
10412 
10413   while (true) {
10414     // Our binary search tree differs from a typical BST in that ours can have up
10415     // to three values in each leaf. The pivot selection above doesn't take that
10416     // into account, which means the tree might require more nodes and be less
10417     // efficient. We compensate for this here.
10418 
10419     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10420     unsigned NumRight = W.LastCluster - FirstRight + 1;
10421 
10422     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10423       // If one side has less than 3 clusters, and the other has more than 3,
10424       // consider taking a cluster from the other side.
10425 
10426       if (NumLeft < NumRight) {
10427         // Consider moving the first cluster on the right to the left side.
10428         CaseCluster &CC = *FirstRight;
10429         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10430         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10431         if (LeftSideRank <= RightSideRank) {
10432           // Moving the cluster to the left does not demote it.
10433           ++LastLeft;
10434           ++FirstRight;
10435           continue;
10436         }
10437       } else {
10438         assert(NumRight < NumLeft);
10439         // Consider moving the last element on the left to the right side.
10440         CaseCluster &CC = *LastLeft;
10441         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10442         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10443         if (RightSideRank <= LeftSideRank) {
10444           // Moving the cluster to the right does not demot it.
10445           --LastLeft;
10446           --FirstRight;
10447           continue;
10448         }
10449       }
10450     }
10451     break;
10452   }
10453 
10454   assert(LastLeft + 1 == FirstRight);
10455   assert(LastLeft >= W.FirstCluster);
10456   assert(FirstRight <= W.LastCluster);
10457 
10458   // Use the first element on the right as pivot since we will make less-than
10459   // comparisons against it.
10460   CaseClusterIt PivotCluster = FirstRight;
10461   assert(PivotCluster > W.FirstCluster);
10462   assert(PivotCluster <= W.LastCluster);
10463 
10464   CaseClusterIt FirstLeft = W.FirstCluster;
10465   CaseClusterIt LastRight = W.LastCluster;
10466 
10467   const ConstantInt *Pivot = PivotCluster->Low;
10468 
10469   // New blocks will be inserted immediately after the current one.
10470   MachineFunction::iterator BBI(W.MBB);
10471   ++BBI;
10472 
10473   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10474   // we can branch to its destination directly if it's squeezed exactly in
10475   // between the known lower bound and Pivot - 1.
10476   MachineBasicBlock *LeftMBB;
10477   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10478       FirstLeft->Low == W.GE &&
10479       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10480     LeftMBB = FirstLeft->MBB;
10481   } else {
10482     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10483     FuncInfo.MF->insert(BBI, LeftMBB);
10484     WorkList.push_back(
10485         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10486     // Put Cond in a virtual register to make it available from the new blocks.
10487     ExportFromCurrentBlock(Cond);
10488   }
10489 
10490   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10491   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10492   // directly if RHS.High equals the current upper bound.
10493   MachineBasicBlock *RightMBB;
10494   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10495       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10496     RightMBB = FirstRight->MBB;
10497   } else {
10498     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10499     FuncInfo.MF->insert(BBI, RightMBB);
10500     WorkList.push_back(
10501         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10502     // Put Cond in a virtual register to make it available from the new blocks.
10503     ExportFromCurrentBlock(Cond);
10504   }
10505 
10506   // Create the CaseBlock record that will be used to lower the branch.
10507   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10508                getCurSDLoc(), LeftProb, RightProb);
10509 
10510   if (W.MBB == SwitchMBB)
10511     visitSwitchCase(CB, SwitchMBB);
10512   else
10513     SL->SwitchCases.push_back(CB);
10514 }
10515 
10516 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10517 // from the swith statement.
10518 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10519                                             BranchProbability PeeledCaseProb) {
10520   if (PeeledCaseProb == BranchProbability::getOne())
10521     return BranchProbability::getZero();
10522   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10523 
10524   uint32_t Numerator = CaseProb.getNumerator();
10525   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10526   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10527 }
10528 
10529 // Try to peel the top probability case if it exceeds the threshold.
10530 // Return current MachineBasicBlock for the switch statement if the peeling
10531 // does not occur.
10532 // If the peeling is performed, return the newly created MachineBasicBlock
10533 // for the peeled switch statement. Also update Clusters to remove the peeled
10534 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10535 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10536     const SwitchInst &SI, CaseClusterVector &Clusters,
10537     BranchProbability &PeeledCaseProb) {
10538   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10539   // Don't perform if there is only one cluster or optimizing for size.
10540   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10541       TM.getOptLevel() == CodeGenOpt::None ||
10542       SwitchMBB->getParent()->getFunction().hasMinSize())
10543     return SwitchMBB;
10544 
10545   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10546   unsigned PeeledCaseIndex = 0;
10547   bool SwitchPeeled = false;
10548   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10549     CaseCluster &CC = Clusters[Index];
10550     if (CC.Prob < TopCaseProb)
10551       continue;
10552     TopCaseProb = CC.Prob;
10553     PeeledCaseIndex = Index;
10554     SwitchPeeled = true;
10555   }
10556   if (!SwitchPeeled)
10557     return SwitchMBB;
10558 
10559   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10560                     << TopCaseProb << "\n");
10561 
10562   // Record the MBB for the peeled switch statement.
10563   MachineFunction::iterator BBI(SwitchMBB);
10564   ++BBI;
10565   MachineBasicBlock *PeeledSwitchMBB =
10566       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10567   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10568 
10569   ExportFromCurrentBlock(SI.getCondition());
10570   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10571   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10572                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10573   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10574 
10575   Clusters.erase(PeeledCaseIt);
10576   for (CaseCluster &CC : Clusters) {
10577     LLVM_DEBUG(
10578         dbgs() << "Scale the probablity for one cluster, before scaling: "
10579                << CC.Prob << "\n");
10580     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10581     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10582   }
10583   PeeledCaseProb = TopCaseProb;
10584   return PeeledSwitchMBB;
10585 }
10586 
10587 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10588   // Extract cases from the switch.
10589   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10590   CaseClusterVector Clusters;
10591   Clusters.reserve(SI.getNumCases());
10592   for (auto I : SI.cases()) {
10593     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10594     const ConstantInt *CaseVal = I.getCaseValue();
10595     BranchProbability Prob =
10596         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10597             : BranchProbability(1, SI.getNumCases() + 1);
10598     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10599   }
10600 
10601   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10602 
10603   // Cluster adjacent cases with the same destination. We do this at all
10604   // optimization levels because it's cheap to do and will make codegen faster
10605   // if there are many clusters.
10606   sortAndRangeify(Clusters);
10607 
10608   // The branch probablity of the peeled case.
10609   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10610   MachineBasicBlock *PeeledSwitchMBB =
10611       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10612 
10613   // If there is only the default destination, jump there directly.
10614   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10615   if (Clusters.empty()) {
10616     assert(PeeledSwitchMBB == SwitchMBB);
10617     SwitchMBB->addSuccessor(DefaultMBB);
10618     if (DefaultMBB != NextBlock(SwitchMBB)) {
10619       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10620                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10621     }
10622     return;
10623   }
10624 
10625   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10626   SL->findBitTestClusters(Clusters, &SI);
10627 
10628   LLVM_DEBUG({
10629     dbgs() << "Case clusters: ";
10630     for (const CaseCluster &C : Clusters) {
10631       if (C.Kind == CC_JumpTable)
10632         dbgs() << "JT:";
10633       if (C.Kind == CC_BitTests)
10634         dbgs() << "BT:";
10635 
10636       C.Low->getValue().print(dbgs(), true);
10637       if (C.Low != C.High) {
10638         dbgs() << '-';
10639         C.High->getValue().print(dbgs(), true);
10640       }
10641       dbgs() << ' ';
10642     }
10643     dbgs() << '\n';
10644   });
10645 
10646   assert(!Clusters.empty());
10647   SwitchWorkList WorkList;
10648   CaseClusterIt First = Clusters.begin();
10649   CaseClusterIt Last = Clusters.end() - 1;
10650   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10651   // Scale the branchprobability for DefaultMBB if the peel occurs and
10652   // DefaultMBB is not replaced.
10653   if (PeeledCaseProb != BranchProbability::getZero() &&
10654       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10655     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10656   WorkList.push_back(
10657       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10658 
10659   while (!WorkList.empty()) {
10660     SwitchWorkListItem W = WorkList.back();
10661     WorkList.pop_back();
10662     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10663 
10664     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10665         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10666       // For optimized builds, lower large range as a balanced binary tree.
10667       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10668       continue;
10669     }
10670 
10671     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10672   }
10673 }
10674 
10675 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10676   SmallVector<EVT, 4> ValueVTs;
10677   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10678                   ValueVTs);
10679   unsigned NumValues = ValueVTs.size();
10680   if (NumValues == 0) return;
10681 
10682   SmallVector<SDValue, 4> Values(NumValues);
10683   SDValue Op = getValue(I.getOperand(0));
10684 
10685   for (unsigned i = 0; i != NumValues; ++i)
10686     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10687                             SDValue(Op.getNode(), Op.getResNo() + i));
10688 
10689   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10690                            DAG.getVTList(ValueVTs), Values));
10691 }
10692