1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 llvm_unreachable("should never codegen catchpads"); 1164 } 1165 1166 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1167 // Update machine-CFG edge. 1168 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1169 FuncInfo.MBB->addSuccessor(TargetMBB); 1170 1171 // Create the terminator node. 1172 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1173 getControlRoot(), DAG.getBasicBlock(TargetMBB)); 1174 DAG.setRoot(Ret); 1175 } 1176 1177 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1178 llvm_unreachable("should never codegen catchendpads"); 1179 } 1180 1181 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1182 // Don't emit any special code for the cleanuppad instruction. It just marks 1183 // the start of a funclet. 1184 FuncInfo.MBB->setIsEHFuncletEntry(); 1185 } 1186 1187 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1188 /// many places it could ultimately go. In the IR, we have a single unwind 1189 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1190 /// This function skips over imaginary basic blocks that hold catchpad, 1191 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1192 /// basic block destinations. 1193 static void 1194 findUnwindDestinations(FunctionLoweringInfo &FuncInfo, 1195 const BasicBlock *EHPadBB, 1196 SmallVectorImpl<MachineBasicBlock *> &UnwindDests) { 1197 bool IsMSVCCXX = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()) == 1198 EHPersonality::MSVC_CXX; 1199 while (EHPadBB) { 1200 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1201 if (isa<LandingPadInst>(Pad)) { 1202 // Stop on landingpads. They are not funclets. 1203 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1204 break; 1205 } else if (isa<CleanupPadInst>(Pad) || isa<LandingPadInst>(Pad)) { 1206 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1207 // personalities. 1208 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1209 UnwindDests.back()->setIsEHFuncletEntry(); 1210 break; 1211 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1212 // Add the catchpad handler to the possible destinations. 1213 UnwindDests.push_back(FuncInfo.MBBMap[CPI->getNormalDest()]); 1214 // In MSVC C++, catchblocks are funclets and need prologues. 1215 if (IsMSVCCXX) 1216 UnwindDests.back()->setIsEHFuncletEntry(); 1217 EHPadBB = CPI->getUnwindDest(); 1218 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) { 1219 EHPadBB = CEPI->getUnwindDest(); 1220 } else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) { 1221 EHPadBB = CEPI->getUnwindDest(); 1222 } 1223 } 1224 } 1225 1226 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1227 // Update successor info. 1228 // FIXME: The weights for catchpads will be wrong. 1229 SmallVector<MachineBasicBlock *, 1> UnwindDests; 1230 findUnwindDestinations(FuncInfo, I.getUnwindDest(), UnwindDests); 1231 for (MachineBasicBlock *UnwindDest : UnwindDests) { 1232 UnwindDest->setIsEHPad(); 1233 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest); 1234 } 1235 1236 // Create the terminator node. 1237 SDValue Ret = 1238 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1239 DAG.setRoot(Ret); 1240 } 1241 1242 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1243 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1244 } 1245 1246 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1247 report_fatal_error("visitTerminatePad not yet implemented!"); 1248 } 1249 1250 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1251 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1252 auto &DL = DAG.getDataLayout(); 1253 SDValue Chain = getControlRoot(); 1254 SmallVector<ISD::OutputArg, 8> Outs; 1255 SmallVector<SDValue, 8> OutVals; 1256 1257 if (!FuncInfo.CanLowerReturn) { 1258 unsigned DemoteReg = FuncInfo.DemoteRegister; 1259 const Function *F = I.getParent()->getParent(); 1260 1261 // Emit a store of the return value through the virtual register. 1262 // Leave Outs empty so that LowerReturn won't try to load return 1263 // registers the usual way. 1264 SmallVector<EVT, 1> PtrValueVTs; 1265 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1266 PtrValueVTs); 1267 1268 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1269 SDValue RetOp = getValue(I.getOperand(0)); 1270 1271 SmallVector<EVT, 4> ValueVTs; 1272 SmallVector<uint64_t, 4> Offsets; 1273 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1274 unsigned NumValues = ValueVTs.size(); 1275 1276 SmallVector<SDValue, 4> Chains(NumValues); 1277 for (unsigned i = 0; i != NumValues; ++i) { 1278 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1279 RetPtr.getValueType(), RetPtr, 1280 DAG.getIntPtrConstant(Offsets[i], 1281 getCurSDLoc())); 1282 Chains[i] = 1283 DAG.getStore(Chain, getCurSDLoc(), 1284 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1285 // FIXME: better loc info would be nice. 1286 Add, MachinePointerInfo(), false, false, 0); 1287 } 1288 1289 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1290 MVT::Other, Chains); 1291 } else if (I.getNumOperands() != 0) { 1292 SmallVector<EVT, 4> ValueVTs; 1293 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1294 unsigned NumValues = ValueVTs.size(); 1295 if (NumValues) { 1296 SDValue RetOp = getValue(I.getOperand(0)); 1297 1298 const Function *F = I.getParent()->getParent(); 1299 1300 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1301 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1302 Attribute::SExt)) 1303 ExtendKind = ISD::SIGN_EXTEND; 1304 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1305 Attribute::ZExt)) 1306 ExtendKind = ISD::ZERO_EXTEND; 1307 1308 LLVMContext &Context = F->getContext(); 1309 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1310 Attribute::InReg); 1311 1312 for (unsigned j = 0; j != NumValues; ++j) { 1313 EVT VT = ValueVTs[j]; 1314 1315 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1316 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1317 1318 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1319 MVT PartVT = TLI.getRegisterType(Context, VT); 1320 SmallVector<SDValue, 4> Parts(NumParts); 1321 getCopyToParts(DAG, getCurSDLoc(), 1322 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1323 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1324 1325 // 'inreg' on function refers to return value 1326 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1327 if (RetInReg) 1328 Flags.setInReg(); 1329 1330 // Propagate extension type if any 1331 if (ExtendKind == ISD::SIGN_EXTEND) 1332 Flags.setSExt(); 1333 else if (ExtendKind == ISD::ZERO_EXTEND) 1334 Flags.setZExt(); 1335 1336 for (unsigned i = 0; i < NumParts; ++i) { 1337 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1338 VT, /*isfixed=*/true, 0, 0)); 1339 OutVals.push_back(Parts[i]); 1340 } 1341 } 1342 } 1343 } 1344 1345 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1346 CallingConv::ID CallConv = 1347 DAG.getMachineFunction().getFunction()->getCallingConv(); 1348 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1349 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1350 1351 // Verify that the target's LowerReturn behaved as expected. 1352 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1353 "LowerReturn didn't return a valid chain!"); 1354 1355 // Update the DAG with the new chain value resulting from return lowering. 1356 DAG.setRoot(Chain); 1357 } 1358 1359 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1360 /// created for it, emit nodes to copy the value into the virtual 1361 /// registers. 1362 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1363 // Skip empty types 1364 if (V->getType()->isEmptyTy()) 1365 return; 1366 1367 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1368 if (VMI != FuncInfo.ValueMap.end()) { 1369 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1370 CopyValueToVirtualRegister(V, VMI->second); 1371 } 1372 } 1373 1374 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1375 /// the current basic block, add it to ValueMap now so that we'll get a 1376 /// CopyTo/FromReg. 1377 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1378 // No need to export constants. 1379 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1380 1381 // Already exported? 1382 if (FuncInfo.isExportedInst(V)) return; 1383 1384 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1385 CopyValueToVirtualRegister(V, Reg); 1386 } 1387 1388 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1389 const BasicBlock *FromBB) { 1390 // The operands of the setcc have to be in this block. We don't know 1391 // how to export them from some other block. 1392 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1393 // Can export from current BB. 1394 if (VI->getParent() == FromBB) 1395 return true; 1396 1397 // Is already exported, noop. 1398 return FuncInfo.isExportedInst(V); 1399 } 1400 1401 // If this is an argument, we can export it if the BB is the entry block or 1402 // if it is already exported. 1403 if (isa<Argument>(V)) { 1404 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1405 return true; 1406 1407 // Otherwise, can only export this if it is already exported. 1408 return FuncInfo.isExportedInst(V); 1409 } 1410 1411 // Otherwise, constants can always be exported. 1412 return true; 1413 } 1414 1415 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1416 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1417 const MachineBasicBlock *Dst) const { 1418 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1419 if (!BPI) 1420 return 0; 1421 const BasicBlock *SrcBB = Src->getBasicBlock(); 1422 const BasicBlock *DstBB = Dst->getBasicBlock(); 1423 return BPI->getEdgeWeight(SrcBB, DstBB); 1424 } 1425 1426 void SelectionDAGBuilder:: 1427 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1428 uint32_t Weight /* = 0 */) { 1429 if (!Weight) 1430 Weight = getEdgeWeight(Src, Dst); 1431 Src->addSuccessor(Dst, Weight); 1432 } 1433 1434 1435 static bool InBlock(const Value *V, const BasicBlock *BB) { 1436 if (const Instruction *I = dyn_cast<Instruction>(V)) 1437 return I->getParent() == BB; 1438 return true; 1439 } 1440 1441 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1442 /// This function emits a branch and is used at the leaves of an OR or an 1443 /// AND operator tree. 1444 /// 1445 void 1446 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1447 MachineBasicBlock *TBB, 1448 MachineBasicBlock *FBB, 1449 MachineBasicBlock *CurBB, 1450 MachineBasicBlock *SwitchBB, 1451 uint32_t TWeight, 1452 uint32_t FWeight) { 1453 const BasicBlock *BB = CurBB->getBasicBlock(); 1454 1455 // If the leaf of the tree is a comparison, merge the condition into 1456 // the caseblock. 1457 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1458 // The operands of the cmp have to be in this block. We don't know 1459 // how to export them from some other block. If this is the first block 1460 // of the sequence, no exporting is needed. 1461 if (CurBB == SwitchBB || 1462 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1463 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1464 ISD::CondCode Condition; 1465 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1466 Condition = getICmpCondCode(IC->getPredicate()); 1467 } else { 1468 const FCmpInst *FC = cast<FCmpInst>(Cond); 1469 Condition = getFCmpCondCode(FC->getPredicate()); 1470 if (TM.Options.NoNaNsFPMath) 1471 Condition = getFCmpCodeWithoutNaN(Condition); 1472 } 1473 1474 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1475 TBB, FBB, CurBB, TWeight, FWeight); 1476 SwitchCases.push_back(CB); 1477 return; 1478 } 1479 } 1480 1481 // Create a CaseBlock record representing this branch. 1482 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1483 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1484 SwitchCases.push_back(CB); 1485 } 1486 1487 /// Scale down both weights to fit into uint32_t. 1488 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1489 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1490 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1491 NewTrue = NewTrue / Scale; 1492 NewFalse = NewFalse / Scale; 1493 } 1494 1495 /// FindMergedConditions - If Cond is an expression like 1496 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1497 MachineBasicBlock *TBB, 1498 MachineBasicBlock *FBB, 1499 MachineBasicBlock *CurBB, 1500 MachineBasicBlock *SwitchBB, 1501 Instruction::BinaryOps Opc, 1502 uint32_t TWeight, 1503 uint32_t FWeight) { 1504 // If this node is not part of the or/and tree, emit it as a branch. 1505 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1506 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1507 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1508 BOp->getParent() != CurBB->getBasicBlock() || 1509 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1510 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1511 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1512 TWeight, FWeight); 1513 return; 1514 } 1515 1516 // Create TmpBB after CurBB. 1517 MachineFunction::iterator BBI = CurBB; 1518 MachineFunction &MF = DAG.getMachineFunction(); 1519 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1520 CurBB->getParent()->insert(++BBI, TmpBB); 1521 1522 if (Opc == Instruction::Or) { 1523 // Codegen X | Y as: 1524 // BB1: 1525 // jmp_if_X TBB 1526 // jmp TmpBB 1527 // TmpBB: 1528 // jmp_if_Y TBB 1529 // jmp FBB 1530 // 1531 1532 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1533 // The requirement is that 1534 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1535 // = TrueProb for original BB. 1536 // Assuming the original weights are A and B, one choice is to set BB1's 1537 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1538 // assumes that 1539 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1540 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1541 // TmpBB, but the math is more complicated. 1542 1543 uint64_t NewTrueWeight = TWeight; 1544 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1545 ScaleWeights(NewTrueWeight, NewFalseWeight); 1546 // Emit the LHS condition. 1547 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1548 NewTrueWeight, NewFalseWeight); 1549 1550 NewTrueWeight = TWeight; 1551 NewFalseWeight = 2 * (uint64_t)FWeight; 1552 ScaleWeights(NewTrueWeight, NewFalseWeight); 1553 // Emit the RHS condition into TmpBB. 1554 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1555 NewTrueWeight, NewFalseWeight); 1556 } else { 1557 assert(Opc == Instruction::And && "Unknown merge op!"); 1558 // Codegen X & Y as: 1559 // BB1: 1560 // jmp_if_X TmpBB 1561 // jmp FBB 1562 // TmpBB: 1563 // jmp_if_Y TBB 1564 // jmp FBB 1565 // 1566 // This requires creation of TmpBB after CurBB. 1567 1568 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1569 // The requirement is that 1570 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1571 // = FalseProb for original BB. 1572 // Assuming the original weights are A and B, one choice is to set BB1's 1573 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1574 // assumes that 1575 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1576 1577 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1578 uint64_t NewFalseWeight = FWeight; 1579 ScaleWeights(NewTrueWeight, NewFalseWeight); 1580 // Emit the LHS condition. 1581 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1582 NewTrueWeight, NewFalseWeight); 1583 1584 NewTrueWeight = 2 * (uint64_t)TWeight; 1585 NewFalseWeight = FWeight; 1586 ScaleWeights(NewTrueWeight, NewFalseWeight); 1587 // Emit the RHS condition into TmpBB. 1588 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1589 NewTrueWeight, NewFalseWeight); 1590 } 1591 } 1592 1593 /// If the set of cases should be emitted as a series of branches, return true. 1594 /// If we should emit this as a bunch of and/or'd together conditions, return 1595 /// false. 1596 bool 1597 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1598 if (Cases.size() != 2) return true; 1599 1600 // If this is two comparisons of the same values or'd or and'd together, they 1601 // will get folded into a single comparison, so don't emit two blocks. 1602 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1603 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1604 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1605 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1606 return false; 1607 } 1608 1609 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1610 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1611 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1612 Cases[0].CC == Cases[1].CC && 1613 isa<Constant>(Cases[0].CmpRHS) && 1614 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1615 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1616 return false; 1617 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1618 return false; 1619 } 1620 1621 return true; 1622 } 1623 1624 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1625 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1626 1627 // Update machine-CFG edges. 1628 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1629 1630 if (I.isUnconditional()) { 1631 // Update machine-CFG edges. 1632 BrMBB->addSuccessor(Succ0MBB); 1633 1634 // If this is not a fall-through branch or optimizations are switched off, 1635 // emit the branch. 1636 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1637 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1638 MVT::Other, getControlRoot(), 1639 DAG.getBasicBlock(Succ0MBB))); 1640 1641 return; 1642 } 1643 1644 // If this condition is one of the special cases we handle, do special stuff 1645 // now. 1646 const Value *CondVal = I.getCondition(); 1647 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1648 1649 // If this is a series of conditions that are or'd or and'd together, emit 1650 // this as a sequence of branches instead of setcc's with and/or operations. 1651 // As long as jumps are not expensive, this should improve performance. 1652 // For example, instead of something like: 1653 // cmp A, B 1654 // C = seteq 1655 // cmp D, E 1656 // F = setle 1657 // or C, F 1658 // jnz foo 1659 // Emit: 1660 // cmp A, B 1661 // je foo 1662 // cmp D, E 1663 // jle foo 1664 // 1665 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1666 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1667 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1668 !I.getMetadata(LLVMContext::MD_unpredictable) && 1669 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1670 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1671 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1672 getEdgeWeight(BrMBB, Succ1MBB)); 1673 // If the compares in later blocks need to use values not currently 1674 // exported from this block, export them now. This block should always 1675 // be the first entry. 1676 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1677 1678 // Allow some cases to be rejected. 1679 if (ShouldEmitAsBranches(SwitchCases)) { 1680 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1681 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1682 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1683 } 1684 1685 // Emit the branch for this block. 1686 visitSwitchCase(SwitchCases[0], BrMBB); 1687 SwitchCases.erase(SwitchCases.begin()); 1688 return; 1689 } 1690 1691 // Okay, we decided not to do this, remove any inserted MBB's and clear 1692 // SwitchCases. 1693 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1694 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1695 1696 SwitchCases.clear(); 1697 } 1698 } 1699 1700 // Create a CaseBlock record representing this branch. 1701 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1702 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1703 1704 // Use visitSwitchCase to actually insert the fast branch sequence for this 1705 // cond branch. 1706 visitSwitchCase(CB, BrMBB); 1707 } 1708 1709 /// visitSwitchCase - Emits the necessary code to represent a single node in 1710 /// the binary search tree resulting from lowering a switch instruction. 1711 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1712 MachineBasicBlock *SwitchBB) { 1713 SDValue Cond; 1714 SDValue CondLHS = getValue(CB.CmpLHS); 1715 SDLoc dl = getCurSDLoc(); 1716 1717 // Build the setcc now. 1718 if (!CB.CmpMHS) { 1719 // Fold "(X == true)" to X and "(X == false)" to !X to 1720 // handle common cases produced by branch lowering. 1721 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1722 CB.CC == ISD::SETEQ) 1723 Cond = CondLHS; 1724 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1725 CB.CC == ISD::SETEQ) { 1726 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1727 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1728 } else 1729 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1730 } else { 1731 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1732 1733 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1734 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1735 1736 SDValue CmpOp = getValue(CB.CmpMHS); 1737 EVT VT = CmpOp.getValueType(); 1738 1739 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1740 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1741 ISD::SETLE); 1742 } else { 1743 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1744 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1745 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1746 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1747 } 1748 } 1749 1750 // Update successor info 1751 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1752 // TrueBB and FalseBB are always different unless the incoming IR is 1753 // degenerate. This only happens when running llc on weird IR. 1754 if (CB.TrueBB != CB.FalseBB) 1755 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1756 1757 // If the lhs block is the next block, invert the condition so that we can 1758 // fall through to the lhs instead of the rhs block. 1759 if (CB.TrueBB == NextBlock(SwitchBB)) { 1760 std::swap(CB.TrueBB, CB.FalseBB); 1761 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1762 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1763 } 1764 1765 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1766 MVT::Other, getControlRoot(), Cond, 1767 DAG.getBasicBlock(CB.TrueBB)); 1768 1769 // Insert the false branch. Do this even if it's a fall through branch, 1770 // this makes it easier to do DAG optimizations which require inverting 1771 // the branch condition. 1772 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1773 DAG.getBasicBlock(CB.FalseBB)); 1774 1775 DAG.setRoot(BrCond); 1776 } 1777 1778 /// visitJumpTable - Emit JumpTable node in the current MBB 1779 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1780 // Emit the code for the jump table 1781 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1782 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1783 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1784 JT.Reg, PTy); 1785 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1786 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1787 MVT::Other, Index.getValue(1), 1788 Table, Index); 1789 DAG.setRoot(BrJumpTable); 1790 } 1791 1792 /// visitJumpTableHeader - This function emits necessary code to produce index 1793 /// in the JumpTable from switch case. 1794 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1795 JumpTableHeader &JTH, 1796 MachineBasicBlock *SwitchBB) { 1797 SDLoc dl = getCurSDLoc(); 1798 1799 // Subtract the lowest switch case value from the value being switched on and 1800 // conditional branch to default mbb if the result is greater than the 1801 // difference between smallest and largest cases. 1802 SDValue SwitchOp = getValue(JTH.SValue); 1803 EVT VT = SwitchOp.getValueType(); 1804 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1805 DAG.getConstant(JTH.First, dl, VT)); 1806 1807 // The SDNode we just created, which holds the value being switched on minus 1808 // the smallest case value, needs to be copied to a virtual register so it 1809 // can be used as an index into the jump table in a subsequent basic block. 1810 // This value may be smaller or larger than the target's pointer type, and 1811 // therefore require extension or truncating. 1812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1813 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1814 1815 unsigned JumpTableReg = 1816 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1817 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1818 JumpTableReg, SwitchOp); 1819 JT.Reg = JumpTableReg; 1820 1821 // Emit the range check for the jump table, and branch to the default block 1822 // for the switch statement if the value being switched on exceeds the largest 1823 // case in the switch. 1824 SDValue CMP = DAG.getSetCC( 1825 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1826 Sub.getValueType()), 1827 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1828 1829 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1830 MVT::Other, CopyTo, CMP, 1831 DAG.getBasicBlock(JT.Default)); 1832 1833 // Avoid emitting unnecessary branches to the next block. 1834 if (JT.MBB != NextBlock(SwitchBB)) 1835 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1836 DAG.getBasicBlock(JT.MBB)); 1837 1838 DAG.setRoot(BrCond); 1839 } 1840 1841 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1842 /// tail spliced into a stack protector check success bb. 1843 /// 1844 /// For a high level explanation of how this fits into the stack protector 1845 /// generation see the comment on the declaration of class 1846 /// StackProtectorDescriptor. 1847 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1848 MachineBasicBlock *ParentBB) { 1849 1850 // First create the loads to the guard/stack slot for the comparison. 1851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1852 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1853 1854 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1855 int FI = MFI->getStackProtectorIndex(); 1856 1857 const Value *IRGuard = SPD.getGuard(); 1858 SDValue GuardPtr = getValue(IRGuard); 1859 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1860 1861 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1862 1863 SDValue Guard; 1864 SDLoc dl = getCurSDLoc(); 1865 1866 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1867 // guard value from the virtual register holding the value. Otherwise, emit a 1868 // volatile load to retrieve the stack guard value. 1869 unsigned GuardReg = SPD.getGuardReg(); 1870 1871 if (GuardReg && TLI.useLoadStackGuardNode()) 1872 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1873 PtrTy); 1874 else 1875 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1876 GuardPtr, MachinePointerInfo(IRGuard, 0), 1877 true, false, false, Align); 1878 1879 SDValue StackSlot = DAG.getLoad( 1880 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1881 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1882 false, false, Align); 1883 1884 // Perform the comparison via a subtract/getsetcc. 1885 EVT VT = Guard.getValueType(); 1886 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1887 1888 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1889 *DAG.getContext(), 1890 Sub.getValueType()), 1891 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1892 1893 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1894 // branch to failure MBB. 1895 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1896 MVT::Other, StackSlot.getOperand(0), 1897 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1898 // Otherwise branch to success MBB. 1899 SDValue Br = DAG.getNode(ISD::BR, dl, 1900 MVT::Other, BrCond, 1901 DAG.getBasicBlock(SPD.getSuccessMBB())); 1902 1903 DAG.setRoot(Br); 1904 } 1905 1906 /// Codegen the failure basic block for a stack protector check. 1907 /// 1908 /// A failure stack protector machine basic block consists simply of a call to 1909 /// __stack_chk_fail(). 1910 /// 1911 /// For a high level explanation of how this fits into the stack protector 1912 /// generation see the comment on the declaration of class 1913 /// StackProtectorDescriptor. 1914 void 1915 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1916 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1917 SDValue Chain = 1918 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1919 nullptr, 0, false, getCurSDLoc(), false, false).second; 1920 DAG.setRoot(Chain); 1921 } 1922 1923 /// visitBitTestHeader - This function emits necessary code to produce value 1924 /// suitable for "bit tests" 1925 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1926 MachineBasicBlock *SwitchBB) { 1927 SDLoc dl = getCurSDLoc(); 1928 1929 // Subtract the minimum value 1930 SDValue SwitchOp = getValue(B.SValue); 1931 EVT VT = SwitchOp.getValueType(); 1932 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1933 DAG.getConstant(B.First, dl, VT)); 1934 1935 // Check range 1936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1937 SDValue RangeCmp = DAG.getSetCC( 1938 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1939 Sub.getValueType()), 1940 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1941 1942 // Determine the type of the test operands. 1943 bool UsePtrType = false; 1944 if (!TLI.isTypeLegal(VT)) 1945 UsePtrType = true; 1946 else { 1947 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1948 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1949 // Switch table case range are encoded into series of masks. 1950 // Just use pointer type, it's guaranteed to fit. 1951 UsePtrType = true; 1952 break; 1953 } 1954 } 1955 if (UsePtrType) { 1956 VT = TLI.getPointerTy(DAG.getDataLayout()); 1957 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1958 } 1959 1960 B.RegVT = VT.getSimpleVT(); 1961 B.Reg = FuncInfo.CreateReg(B.RegVT); 1962 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1963 1964 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1965 1966 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 1967 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1968 1969 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1970 MVT::Other, CopyTo, RangeCmp, 1971 DAG.getBasicBlock(B.Default)); 1972 1973 // Avoid emitting unnecessary branches to the next block. 1974 if (MBB != NextBlock(SwitchBB)) 1975 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1976 DAG.getBasicBlock(MBB)); 1977 1978 DAG.setRoot(BrRange); 1979 } 1980 1981 /// visitBitTestCase - this function produces one "bit test" 1982 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1983 MachineBasicBlock* NextMBB, 1984 uint32_t BranchWeightToNext, 1985 unsigned Reg, 1986 BitTestCase &B, 1987 MachineBasicBlock *SwitchBB) { 1988 SDLoc dl = getCurSDLoc(); 1989 MVT VT = BB.RegVT; 1990 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1991 SDValue Cmp; 1992 unsigned PopCount = countPopulation(B.Mask); 1993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1994 if (PopCount == 1) { 1995 // Testing for a single bit; just compare the shift count with what it 1996 // would need to be to shift a 1 bit in that position. 1997 Cmp = DAG.getSetCC( 1998 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1999 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2000 ISD::SETEQ); 2001 } else if (PopCount == BB.Range) { 2002 // There is only one zero bit in the range, test for it directly. 2003 Cmp = DAG.getSetCC( 2004 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2005 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2006 ISD::SETNE); 2007 } else { 2008 // Make desired shift 2009 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2010 DAG.getConstant(1, dl, VT), ShiftOp); 2011 2012 // Emit bit tests and jumps 2013 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2014 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2015 Cmp = DAG.getSetCC( 2016 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2017 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2018 } 2019 2020 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2021 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2022 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2023 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2024 2025 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2026 MVT::Other, getControlRoot(), 2027 Cmp, DAG.getBasicBlock(B.TargetBB)); 2028 2029 // Avoid emitting unnecessary branches to the next block. 2030 if (NextMBB != NextBlock(SwitchBB)) 2031 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2032 DAG.getBasicBlock(NextMBB)); 2033 2034 DAG.setRoot(BrAnd); 2035 } 2036 2037 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2038 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2039 2040 // Retrieve successors. Look through artificial IR level blocks like catchpads 2041 // and catchendpads for successors. 2042 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2043 const BasicBlock *EHPadBB = I.getSuccessor(1); 2044 2045 const Value *Callee(I.getCalledValue()); 2046 const Function *Fn = dyn_cast<Function>(Callee); 2047 if (isa<InlineAsm>(Callee)) 2048 visitInlineAsm(&I); 2049 else if (Fn && Fn->isIntrinsic()) { 2050 switch (Fn->getIntrinsicID()) { 2051 default: 2052 llvm_unreachable("Cannot invoke this intrinsic"); 2053 case Intrinsic::donothing: 2054 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2055 break; 2056 case Intrinsic::experimental_patchpoint_void: 2057 case Intrinsic::experimental_patchpoint_i64: 2058 visitPatchpoint(&I, EHPadBB); 2059 break; 2060 case Intrinsic::experimental_gc_statepoint: 2061 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2062 break; 2063 } 2064 } else 2065 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2066 2067 // If the value of the invoke is used outside of its defining block, make it 2068 // available as a virtual register. 2069 // We already took care of the exported value for the statepoint instruction 2070 // during call to the LowerStatepoint. 2071 if (!isStatepoint(I)) { 2072 CopyToExportRegsIfNeeded(&I); 2073 } 2074 2075 SmallVector<MachineBasicBlock *, 1> UnwindDests; 2076 findUnwindDestinations(FuncInfo, EHPadBB, UnwindDests); 2077 2078 // Update successor info. 2079 // FIXME: The weights for catchpads will be wrong. 2080 addSuccessorWithWeight(InvokeMBB, Return); 2081 for (MachineBasicBlock *UnwindDest : UnwindDests) { 2082 UnwindDest->setIsEHPad(); 2083 addSuccessorWithWeight(InvokeMBB, UnwindDest); 2084 } 2085 2086 // Drop into normal successor. 2087 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2088 MVT::Other, getControlRoot(), 2089 DAG.getBasicBlock(Return))); 2090 } 2091 2092 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2093 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2094 } 2095 2096 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2097 assert(FuncInfo.MBB->isEHPad() && 2098 "Call to landingpad not in landing pad!"); 2099 2100 MachineBasicBlock *MBB = FuncInfo.MBB; 2101 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2102 AddLandingPadInfo(LP, MMI, MBB); 2103 2104 // If there aren't registers to copy the values into (e.g., during SjLj 2105 // exceptions), then don't bother to create these DAG nodes. 2106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2107 if (TLI.getExceptionPointerRegister() == 0 && 2108 TLI.getExceptionSelectorRegister() == 0) 2109 return; 2110 2111 SmallVector<EVT, 2> ValueVTs; 2112 SDLoc dl = getCurSDLoc(); 2113 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2114 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2115 2116 // Get the two live-in registers as SDValues. The physregs have already been 2117 // copied into virtual registers. 2118 SDValue Ops[2]; 2119 if (FuncInfo.ExceptionPointerVirtReg) { 2120 Ops[0] = DAG.getZExtOrTrunc( 2121 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2122 FuncInfo.ExceptionPointerVirtReg, 2123 TLI.getPointerTy(DAG.getDataLayout())), 2124 dl, ValueVTs[0]); 2125 } else { 2126 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2127 } 2128 Ops[1] = DAG.getZExtOrTrunc( 2129 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2130 FuncInfo.ExceptionSelectorVirtReg, 2131 TLI.getPointerTy(DAG.getDataLayout())), 2132 dl, ValueVTs[1]); 2133 2134 // Merge into one. 2135 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2136 DAG.getVTList(ValueVTs), Ops); 2137 setValue(&LP, Res); 2138 } 2139 2140 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2141 #ifndef NDEBUG 2142 for (const CaseCluster &CC : Clusters) 2143 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2144 #endif 2145 2146 std::sort(Clusters.begin(), Clusters.end(), 2147 [](const CaseCluster &a, const CaseCluster &b) { 2148 return a.Low->getValue().slt(b.Low->getValue()); 2149 }); 2150 2151 // Merge adjacent clusters with the same destination. 2152 const unsigned N = Clusters.size(); 2153 unsigned DstIndex = 0; 2154 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2155 CaseCluster &CC = Clusters[SrcIndex]; 2156 const ConstantInt *CaseVal = CC.Low; 2157 MachineBasicBlock *Succ = CC.MBB; 2158 2159 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2160 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2161 // If this case has the same successor and is a neighbour, merge it into 2162 // the previous cluster. 2163 Clusters[DstIndex - 1].High = CaseVal; 2164 Clusters[DstIndex - 1].Weight += CC.Weight; 2165 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2166 } else { 2167 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2168 sizeof(Clusters[SrcIndex])); 2169 } 2170 } 2171 Clusters.resize(DstIndex); 2172 } 2173 2174 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2175 MachineBasicBlock *Last) { 2176 // Update JTCases. 2177 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2178 if (JTCases[i].first.HeaderBB == First) 2179 JTCases[i].first.HeaderBB = Last; 2180 2181 // Update BitTestCases. 2182 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2183 if (BitTestCases[i].Parent == First) 2184 BitTestCases[i].Parent = Last; 2185 } 2186 2187 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2188 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2189 2190 // Update machine-CFG edges with unique successors. 2191 SmallSet<BasicBlock*, 32> Done; 2192 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2193 BasicBlock *BB = I.getSuccessor(i); 2194 bool Inserted = Done.insert(BB).second; 2195 if (!Inserted) 2196 continue; 2197 2198 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2199 addSuccessorWithWeight(IndirectBrMBB, Succ); 2200 } 2201 2202 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2203 MVT::Other, getControlRoot(), 2204 getValue(I.getAddress()))); 2205 } 2206 2207 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2208 if (DAG.getTarget().Options.TrapUnreachable) 2209 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2210 } 2211 2212 void SelectionDAGBuilder::visitFSub(const User &I) { 2213 // -0.0 - X --> fneg 2214 Type *Ty = I.getType(); 2215 if (isa<Constant>(I.getOperand(0)) && 2216 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2217 SDValue Op2 = getValue(I.getOperand(1)); 2218 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2219 Op2.getValueType(), Op2)); 2220 return; 2221 } 2222 2223 visitBinary(I, ISD::FSUB); 2224 } 2225 2226 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2227 SDValue Op1 = getValue(I.getOperand(0)); 2228 SDValue Op2 = getValue(I.getOperand(1)); 2229 2230 bool nuw = false; 2231 bool nsw = false; 2232 bool exact = false; 2233 FastMathFlags FMF; 2234 2235 if (const OverflowingBinaryOperator *OFBinOp = 2236 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2237 nuw = OFBinOp->hasNoUnsignedWrap(); 2238 nsw = OFBinOp->hasNoSignedWrap(); 2239 } 2240 if (const PossiblyExactOperator *ExactOp = 2241 dyn_cast<const PossiblyExactOperator>(&I)) 2242 exact = ExactOp->isExact(); 2243 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2244 FMF = FPOp->getFastMathFlags(); 2245 2246 SDNodeFlags Flags; 2247 Flags.setExact(exact); 2248 Flags.setNoSignedWrap(nsw); 2249 Flags.setNoUnsignedWrap(nuw); 2250 if (EnableFMFInDAG) { 2251 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2252 Flags.setNoInfs(FMF.noInfs()); 2253 Flags.setNoNaNs(FMF.noNaNs()); 2254 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2255 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2256 } 2257 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2258 Op1, Op2, &Flags); 2259 setValue(&I, BinNodeValue); 2260 } 2261 2262 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2263 SDValue Op1 = getValue(I.getOperand(0)); 2264 SDValue Op2 = getValue(I.getOperand(1)); 2265 2266 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2267 Op2.getValueType(), DAG.getDataLayout()); 2268 2269 // Coerce the shift amount to the right type if we can. 2270 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2271 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2272 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2273 SDLoc DL = getCurSDLoc(); 2274 2275 // If the operand is smaller than the shift count type, promote it. 2276 if (ShiftSize > Op2Size) 2277 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2278 2279 // If the operand is larger than the shift count type but the shift 2280 // count type has enough bits to represent any shift value, truncate 2281 // it now. This is a common case and it exposes the truncate to 2282 // optimization early. 2283 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2284 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2285 // Otherwise we'll need to temporarily settle for some other convenient 2286 // type. Type legalization will make adjustments once the shiftee is split. 2287 else 2288 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2289 } 2290 2291 bool nuw = false; 2292 bool nsw = false; 2293 bool exact = false; 2294 2295 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2296 2297 if (const OverflowingBinaryOperator *OFBinOp = 2298 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2299 nuw = OFBinOp->hasNoUnsignedWrap(); 2300 nsw = OFBinOp->hasNoSignedWrap(); 2301 } 2302 if (const PossiblyExactOperator *ExactOp = 2303 dyn_cast<const PossiblyExactOperator>(&I)) 2304 exact = ExactOp->isExact(); 2305 } 2306 SDNodeFlags Flags; 2307 Flags.setExact(exact); 2308 Flags.setNoSignedWrap(nsw); 2309 Flags.setNoUnsignedWrap(nuw); 2310 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2311 &Flags); 2312 setValue(&I, Res); 2313 } 2314 2315 void SelectionDAGBuilder::visitSDiv(const User &I) { 2316 SDValue Op1 = getValue(I.getOperand(0)); 2317 SDValue Op2 = getValue(I.getOperand(1)); 2318 2319 SDNodeFlags Flags; 2320 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2321 cast<PossiblyExactOperator>(&I)->isExact()); 2322 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2323 Op2, &Flags)); 2324 } 2325 2326 void SelectionDAGBuilder::visitICmp(const User &I) { 2327 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2328 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2329 predicate = IC->getPredicate(); 2330 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2331 predicate = ICmpInst::Predicate(IC->getPredicate()); 2332 SDValue Op1 = getValue(I.getOperand(0)); 2333 SDValue Op2 = getValue(I.getOperand(1)); 2334 ISD::CondCode Opcode = getICmpCondCode(predicate); 2335 2336 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2337 I.getType()); 2338 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2339 } 2340 2341 void SelectionDAGBuilder::visitFCmp(const User &I) { 2342 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2343 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2344 predicate = FC->getPredicate(); 2345 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2346 predicate = FCmpInst::Predicate(FC->getPredicate()); 2347 SDValue Op1 = getValue(I.getOperand(0)); 2348 SDValue Op2 = getValue(I.getOperand(1)); 2349 ISD::CondCode Condition = getFCmpCondCode(predicate); 2350 2351 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2352 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2353 // further optimization, but currently FMF is only applicable to binary nodes. 2354 if (TM.Options.NoNaNsFPMath) 2355 Condition = getFCmpCodeWithoutNaN(Condition); 2356 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2357 I.getType()); 2358 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2359 } 2360 2361 void SelectionDAGBuilder::visitSelect(const User &I) { 2362 SmallVector<EVT, 4> ValueVTs; 2363 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2364 ValueVTs); 2365 unsigned NumValues = ValueVTs.size(); 2366 if (NumValues == 0) return; 2367 2368 SmallVector<SDValue, 4> Values(NumValues); 2369 SDValue Cond = getValue(I.getOperand(0)); 2370 SDValue LHSVal = getValue(I.getOperand(1)); 2371 SDValue RHSVal = getValue(I.getOperand(2)); 2372 auto BaseOps = {Cond}; 2373 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2374 ISD::VSELECT : ISD::SELECT; 2375 2376 // Min/max matching is only viable if all output VTs are the same. 2377 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2378 EVT VT = ValueVTs[0]; 2379 LLVMContext &Ctx = *DAG.getContext(); 2380 auto &TLI = DAG.getTargetLoweringInfo(); 2381 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2382 VT = TLI.getTypeToTransformTo(Ctx, VT); 2383 2384 Value *LHS, *RHS; 2385 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2386 ISD::NodeType Opc = ISD::DELETED_NODE; 2387 switch (SPR.Flavor) { 2388 case SPF_UMAX: Opc = ISD::UMAX; break; 2389 case SPF_UMIN: Opc = ISD::UMIN; break; 2390 case SPF_SMAX: Opc = ISD::SMAX; break; 2391 case SPF_SMIN: Opc = ISD::SMIN; break; 2392 case SPF_FMINNUM: 2393 switch (SPR.NaNBehavior) { 2394 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2395 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2396 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2397 case SPNB_RETURNS_ANY: 2398 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2399 : ISD::FMINNAN; 2400 break; 2401 } 2402 break; 2403 case SPF_FMAXNUM: 2404 switch (SPR.NaNBehavior) { 2405 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2406 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2407 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2408 case SPNB_RETURNS_ANY: 2409 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2410 : ISD::FMAXNAN; 2411 break; 2412 } 2413 break; 2414 default: break; 2415 } 2416 2417 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2418 // If the underlying comparison instruction is used by any other instruction, 2419 // the consumed instructions won't be destroyed, so it is not profitable 2420 // to convert to a min/max. 2421 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2422 OpCode = Opc; 2423 LHSVal = getValue(LHS); 2424 RHSVal = getValue(RHS); 2425 BaseOps = {}; 2426 } 2427 } 2428 2429 for (unsigned i = 0; i != NumValues; ++i) { 2430 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2431 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2432 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2433 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2434 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2435 Ops); 2436 } 2437 2438 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2439 DAG.getVTList(ValueVTs), Values)); 2440 } 2441 2442 void SelectionDAGBuilder::visitTrunc(const User &I) { 2443 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2444 SDValue N = getValue(I.getOperand(0)); 2445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2446 I.getType()); 2447 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2448 } 2449 2450 void SelectionDAGBuilder::visitZExt(const User &I) { 2451 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2452 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2453 SDValue N = getValue(I.getOperand(0)); 2454 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2455 I.getType()); 2456 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2457 } 2458 2459 void SelectionDAGBuilder::visitSExt(const User &I) { 2460 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2461 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2462 SDValue N = getValue(I.getOperand(0)); 2463 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2464 I.getType()); 2465 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2466 } 2467 2468 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2469 // FPTrunc is never a no-op cast, no need to check 2470 SDValue N = getValue(I.getOperand(0)); 2471 SDLoc dl = getCurSDLoc(); 2472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2473 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2474 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2475 DAG.getTargetConstant( 2476 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2477 } 2478 2479 void SelectionDAGBuilder::visitFPExt(const User &I) { 2480 // FPExt is never a no-op cast, no need to check 2481 SDValue N = getValue(I.getOperand(0)); 2482 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2483 I.getType()); 2484 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2485 } 2486 2487 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2488 // FPToUI is never a no-op cast, no need to check 2489 SDValue N = getValue(I.getOperand(0)); 2490 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2491 I.getType()); 2492 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2493 } 2494 2495 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2496 // FPToSI is never a no-op cast, no need to check 2497 SDValue N = getValue(I.getOperand(0)); 2498 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2499 I.getType()); 2500 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2501 } 2502 2503 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2504 // UIToFP is never a no-op cast, no need to check 2505 SDValue N = getValue(I.getOperand(0)); 2506 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2507 I.getType()); 2508 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2509 } 2510 2511 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2512 // SIToFP is never a no-op cast, no need to check 2513 SDValue N = getValue(I.getOperand(0)); 2514 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2515 I.getType()); 2516 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2517 } 2518 2519 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2520 // What to do depends on the size of the integer and the size of the pointer. 2521 // We can either truncate, zero extend, or no-op, accordingly. 2522 SDValue N = getValue(I.getOperand(0)); 2523 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2524 I.getType()); 2525 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2526 } 2527 2528 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2529 // What to do depends on the size of the integer and the size of the pointer. 2530 // We can either truncate, zero extend, or no-op, accordingly. 2531 SDValue N = getValue(I.getOperand(0)); 2532 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2533 I.getType()); 2534 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2535 } 2536 2537 void SelectionDAGBuilder::visitBitCast(const User &I) { 2538 SDValue N = getValue(I.getOperand(0)); 2539 SDLoc dl = getCurSDLoc(); 2540 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2541 I.getType()); 2542 2543 // BitCast assures us that source and destination are the same size so this is 2544 // either a BITCAST or a no-op. 2545 if (DestVT != N.getValueType()) 2546 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2547 DestVT, N)); // convert types. 2548 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2549 // might fold any kind of constant expression to an integer constant and that 2550 // is not what we are looking for. Only regcognize a bitcast of a genuine 2551 // constant integer as an opaque constant. 2552 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2553 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2554 /*isOpaque*/true)); 2555 else 2556 setValue(&I, N); // noop cast. 2557 } 2558 2559 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2561 const Value *SV = I.getOperand(0); 2562 SDValue N = getValue(SV); 2563 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2564 2565 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2566 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2567 2568 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2569 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2570 2571 setValue(&I, N); 2572 } 2573 2574 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2576 SDValue InVec = getValue(I.getOperand(0)); 2577 SDValue InVal = getValue(I.getOperand(1)); 2578 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2579 TLI.getVectorIdxTy(DAG.getDataLayout())); 2580 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2581 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2582 InVec, InVal, InIdx)); 2583 } 2584 2585 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2587 SDValue InVec = getValue(I.getOperand(0)); 2588 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2589 TLI.getVectorIdxTy(DAG.getDataLayout())); 2590 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2591 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2592 InVec, InIdx)); 2593 } 2594 2595 // Utility for visitShuffleVector - Return true if every element in Mask, 2596 // beginning from position Pos and ending in Pos+Size, falls within the 2597 // specified sequential range [L, L+Pos). or is undef. 2598 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2599 unsigned Pos, unsigned Size, int Low) { 2600 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2601 if (Mask[i] >= 0 && Mask[i] != Low) 2602 return false; 2603 return true; 2604 } 2605 2606 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2607 SDValue Src1 = getValue(I.getOperand(0)); 2608 SDValue Src2 = getValue(I.getOperand(1)); 2609 2610 SmallVector<int, 8> Mask; 2611 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2612 unsigned MaskNumElts = Mask.size(); 2613 2614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2615 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2616 EVT SrcVT = Src1.getValueType(); 2617 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2618 2619 if (SrcNumElts == MaskNumElts) { 2620 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2621 &Mask[0])); 2622 return; 2623 } 2624 2625 // Normalize the shuffle vector since mask and vector length don't match. 2626 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2627 // Mask is longer than the source vectors and is a multiple of the source 2628 // vectors. We can use concatenate vector to make the mask and vectors 2629 // lengths match. 2630 if (SrcNumElts*2 == MaskNumElts) { 2631 // First check for Src1 in low and Src2 in high 2632 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2633 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2634 // The shuffle is concatenating two vectors together. 2635 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2636 VT, Src1, Src2)); 2637 return; 2638 } 2639 // Then check for Src2 in low and Src1 in high 2640 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2641 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2642 // The shuffle is concatenating two vectors together. 2643 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2644 VT, Src2, Src1)); 2645 return; 2646 } 2647 } 2648 2649 // Pad both vectors with undefs to make them the same length as the mask. 2650 unsigned NumConcat = MaskNumElts / SrcNumElts; 2651 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2652 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2653 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2654 2655 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2656 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2657 MOps1[0] = Src1; 2658 MOps2[0] = Src2; 2659 2660 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2661 getCurSDLoc(), VT, MOps1); 2662 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2663 getCurSDLoc(), VT, MOps2); 2664 2665 // Readjust mask for new input vector length. 2666 SmallVector<int, 8> MappedOps; 2667 for (unsigned i = 0; i != MaskNumElts; ++i) { 2668 int Idx = Mask[i]; 2669 if (Idx >= (int)SrcNumElts) 2670 Idx -= SrcNumElts - MaskNumElts; 2671 MappedOps.push_back(Idx); 2672 } 2673 2674 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2675 &MappedOps[0])); 2676 return; 2677 } 2678 2679 if (SrcNumElts > MaskNumElts) { 2680 // Analyze the access pattern of the vector to see if we can extract 2681 // two subvectors and do the shuffle. The analysis is done by calculating 2682 // the range of elements the mask access on both vectors. 2683 int MinRange[2] = { static_cast<int>(SrcNumElts), 2684 static_cast<int>(SrcNumElts)}; 2685 int MaxRange[2] = {-1, -1}; 2686 2687 for (unsigned i = 0; i != MaskNumElts; ++i) { 2688 int Idx = Mask[i]; 2689 unsigned Input = 0; 2690 if (Idx < 0) 2691 continue; 2692 2693 if (Idx >= (int)SrcNumElts) { 2694 Input = 1; 2695 Idx -= SrcNumElts; 2696 } 2697 if (Idx > MaxRange[Input]) 2698 MaxRange[Input] = Idx; 2699 if (Idx < MinRange[Input]) 2700 MinRange[Input] = Idx; 2701 } 2702 2703 // Check if the access is smaller than the vector size and can we find 2704 // a reasonable extract index. 2705 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2706 // Extract. 2707 int StartIdx[2]; // StartIdx to extract from 2708 for (unsigned Input = 0; Input < 2; ++Input) { 2709 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2710 RangeUse[Input] = 0; // Unused 2711 StartIdx[Input] = 0; 2712 continue; 2713 } 2714 2715 // Find a good start index that is a multiple of the mask length. Then 2716 // see if the rest of the elements are in range. 2717 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2718 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2719 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2720 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2721 } 2722 2723 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2724 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2725 return; 2726 } 2727 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2728 // Extract appropriate subvector and generate a vector shuffle 2729 for (unsigned Input = 0; Input < 2; ++Input) { 2730 SDValue &Src = Input == 0 ? Src1 : Src2; 2731 if (RangeUse[Input] == 0) 2732 Src = DAG.getUNDEF(VT); 2733 else { 2734 SDLoc dl = getCurSDLoc(); 2735 Src = DAG.getNode( 2736 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2737 DAG.getConstant(StartIdx[Input], dl, 2738 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2739 } 2740 } 2741 2742 // Calculate new mask. 2743 SmallVector<int, 8> MappedOps; 2744 for (unsigned i = 0; i != MaskNumElts; ++i) { 2745 int Idx = Mask[i]; 2746 if (Idx >= 0) { 2747 if (Idx < (int)SrcNumElts) 2748 Idx -= StartIdx[0]; 2749 else 2750 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2751 } 2752 MappedOps.push_back(Idx); 2753 } 2754 2755 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2756 &MappedOps[0])); 2757 return; 2758 } 2759 } 2760 2761 // We can't use either concat vectors or extract subvectors so fall back to 2762 // replacing the shuffle with extract and build vector. 2763 // to insert and build vector. 2764 EVT EltVT = VT.getVectorElementType(); 2765 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2766 SDLoc dl = getCurSDLoc(); 2767 SmallVector<SDValue,8> Ops; 2768 for (unsigned i = 0; i != MaskNumElts; ++i) { 2769 int Idx = Mask[i]; 2770 SDValue Res; 2771 2772 if (Idx < 0) { 2773 Res = DAG.getUNDEF(EltVT); 2774 } else { 2775 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2776 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2777 2778 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2779 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2780 } 2781 2782 Ops.push_back(Res); 2783 } 2784 2785 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2786 } 2787 2788 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2789 const Value *Op0 = I.getOperand(0); 2790 const Value *Op1 = I.getOperand(1); 2791 Type *AggTy = I.getType(); 2792 Type *ValTy = Op1->getType(); 2793 bool IntoUndef = isa<UndefValue>(Op0); 2794 bool FromUndef = isa<UndefValue>(Op1); 2795 2796 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2797 2798 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2799 SmallVector<EVT, 4> AggValueVTs; 2800 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2801 SmallVector<EVT, 4> ValValueVTs; 2802 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2803 2804 unsigned NumAggValues = AggValueVTs.size(); 2805 unsigned NumValValues = ValValueVTs.size(); 2806 SmallVector<SDValue, 4> Values(NumAggValues); 2807 2808 // Ignore an insertvalue that produces an empty object 2809 if (!NumAggValues) { 2810 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2811 return; 2812 } 2813 2814 SDValue Agg = getValue(Op0); 2815 unsigned i = 0; 2816 // Copy the beginning value(s) from the original aggregate. 2817 for (; i != LinearIndex; ++i) 2818 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2819 SDValue(Agg.getNode(), Agg.getResNo() + i); 2820 // Copy values from the inserted value(s). 2821 if (NumValValues) { 2822 SDValue Val = getValue(Op1); 2823 for (; i != LinearIndex + NumValValues; ++i) 2824 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2825 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2826 } 2827 // Copy remaining value(s) from the original aggregate. 2828 for (; i != NumAggValues; ++i) 2829 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2830 SDValue(Agg.getNode(), Agg.getResNo() + i); 2831 2832 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2833 DAG.getVTList(AggValueVTs), Values)); 2834 } 2835 2836 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2837 const Value *Op0 = I.getOperand(0); 2838 Type *AggTy = Op0->getType(); 2839 Type *ValTy = I.getType(); 2840 bool OutOfUndef = isa<UndefValue>(Op0); 2841 2842 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2843 2844 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2845 SmallVector<EVT, 4> ValValueVTs; 2846 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2847 2848 unsigned NumValValues = ValValueVTs.size(); 2849 2850 // Ignore a extractvalue that produces an empty object 2851 if (!NumValValues) { 2852 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2853 return; 2854 } 2855 2856 SmallVector<SDValue, 4> Values(NumValValues); 2857 2858 SDValue Agg = getValue(Op0); 2859 // Copy out the selected value(s). 2860 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2861 Values[i - LinearIndex] = 2862 OutOfUndef ? 2863 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2864 SDValue(Agg.getNode(), Agg.getResNo() + i); 2865 2866 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2867 DAG.getVTList(ValValueVTs), Values)); 2868 } 2869 2870 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2871 Value *Op0 = I.getOperand(0); 2872 // Note that the pointer operand may be a vector of pointers. Take the scalar 2873 // element which holds a pointer. 2874 Type *Ty = Op0->getType()->getScalarType(); 2875 unsigned AS = Ty->getPointerAddressSpace(); 2876 SDValue N = getValue(Op0); 2877 SDLoc dl = getCurSDLoc(); 2878 2879 // Normalize Vector GEP - all scalar operands should be converted to the 2880 // splat vector. 2881 unsigned VectorWidth = I.getType()->isVectorTy() ? 2882 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2883 2884 if (VectorWidth && !N.getValueType().isVector()) { 2885 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2886 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2887 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2888 } 2889 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2890 OI != E; ++OI) { 2891 const Value *Idx = *OI; 2892 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2893 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2894 if (Field) { 2895 // N = N + Offset 2896 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2897 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2898 DAG.getConstant(Offset, dl, N.getValueType())); 2899 } 2900 2901 Ty = StTy->getElementType(Field); 2902 } else { 2903 Ty = cast<SequentialType>(Ty)->getElementType(); 2904 MVT PtrTy = 2905 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2906 unsigned PtrSize = PtrTy.getSizeInBits(); 2907 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2908 2909 // If this is a scalar constant or a splat vector of constants, 2910 // handle it quickly. 2911 const auto *CI = dyn_cast<ConstantInt>(Idx); 2912 if (!CI && isa<ConstantDataVector>(Idx) && 2913 cast<ConstantDataVector>(Idx)->getSplatValue()) 2914 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2915 2916 if (CI) { 2917 if (CI->isZero()) 2918 continue; 2919 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2920 SDValue OffsVal = VectorWidth ? 2921 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2922 DAG.getConstant(Offs, dl, PtrTy); 2923 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2924 continue; 2925 } 2926 2927 // N = N + Idx * ElementSize; 2928 SDValue IdxN = getValue(Idx); 2929 2930 if (!IdxN.getValueType().isVector() && VectorWidth) { 2931 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2932 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2933 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2934 } 2935 // If the index is smaller or larger than intptr_t, truncate or extend 2936 // it. 2937 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2938 2939 // If this is a multiply by a power of two, turn it into a shl 2940 // immediately. This is a very common case. 2941 if (ElementSize != 1) { 2942 if (ElementSize.isPowerOf2()) { 2943 unsigned Amt = ElementSize.logBase2(); 2944 IdxN = DAG.getNode(ISD::SHL, dl, 2945 N.getValueType(), IdxN, 2946 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2947 } else { 2948 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2949 IdxN = DAG.getNode(ISD::MUL, dl, 2950 N.getValueType(), IdxN, Scale); 2951 } 2952 } 2953 2954 N = DAG.getNode(ISD::ADD, dl, 2955 N.getValueType(), N, IdxN); 2956 } 2957 } 2958 2959 setValue(&I, N); 2960 } 2961 2962 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2963 // If this is a fixed sized alloca in the entry block of the function, 2964 // allocate it statically on the stack. 2965 if (FuncInfo.StaticAllocaMap.count(&I)) 2966 return; // getValue will auto-populate this. 2967 2968 SDLoc dl = getCurSDLoc(); 2969 Type *Ty = I.getAllocatedType(); 2970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2971 auto &DL = DAG.getDataLayout(); 2972 uint64_t TySize = DL.getTypeAllocSize(Ty); 2973 unsigned Align = 2974 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2975 2976 SDValue AllocSize = getValue(I.getArraySize()); 2977 2978 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2979 if (AllocSize.getValueType() != IntPtr) 2980 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2981 2982 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2983 AllocSize, 2984 DAG.getConstant(TySize, dl, IntPtr)); 2985 2986 // Handle alignment. If the requested alignment is less than or equal to 2987 // the stack alignment, ignore it. If the size is greater than or equal to 2988 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2989 unsigned StackAlign = 2990 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2991 if (Align <= StackAlign) 2992 Align = 0; 2993 2994 // Round the size of the allocation up to the stack alignment size 2995 // by add SA-1 to the size. 2996 AllocSize = DAG.getNode(ISD::ADD, dl, 2997 AllocSize.getValueType(), AllocSize, 2998 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2999 3000 // Mask out the low bits for alignment purposes. 3001 AllocSize = DAG.getNode(ISD::AND, dl, 3002 AllocSize.getValueType(), AllocSize, 3003 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3004 dl)); 3005 3006 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3007 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3008 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3009 setValue(&I, DSA); 3010 DAG.setRoot(DSA.getValue(1)); 3011 3012 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3013 } 3014 3015 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3016 if (I.isAtomic()) 3017 return visitAtomicLoad(I); 3018 3019 const Value *SV = I.getOperand(0); 3020 SDValue Ptr = getValue(SV); 3021 3022 Type *Ty = I.getType(); 3023 3024 bool isVolatile = I.isVolatile(); 3025 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3026 3027 // The IR notion of invariant_load only guarantees that all *non-faulting* 3028 // invariant loads result in the same value. The MI notion of invariant load 3029 // guarantees that the load can be legally moved to any location within its 3030 // containing function. The MI notion of invariant_load is stronger than the 3031 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3032 // with a guarantee that the location being loaded from is dereferenceable 3033 // throughout the function's lifetime. 3034 3035 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3036 isDereferenceablePointer(SV, DAG.getDataLayout()); 3037 unsigned Alignment = I.getAlignment(); 3038 3039 AAMDNodes AAInfo; 3040 I.getAAMetadata(AAInfo); 3041 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3042 3043 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3044 SmallVector<EVT, 4> ValueVTs; 3045 SmallVector<uint64_t, 4> Offsets; 3046 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3047 unsigned NumValues = ValueVTs.size(); 3048 if (NumValues == 0) 3049 return; 3050 3051 SDValue Root; 3052 bool ConstantMemory = false; 3053 if (isVolatile || NumValues > MaxParallelChains) 3054 // Serialize volatile loads with other side effects. 3055 Root = getRoot(); 3056 else if (AA->pointsToConstantMemory(MemoryLocation( 3057 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3058 // Do not serialize (non-volatile) loads of constant memory with anything. 3059 Root = DAG.getEntryNode(); 3060 ConstantMemory = true; 3061 } else { 3062 // Do not serialize non-volatile loads against each other. 3063 Root = DAG.getRoot(); 3064 } 3065 3066 SDLoc dl = getCurSDLoc(); 3067 3068 if (isVolatile) 3069 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3070 3071 SmallVector<SDValue, 4> Values(NumValues); 3072 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3073 EVT PtrVT = Ptr.getValueType(); 3074 unsigned ChainI = 0; 3075 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3076 // Serializing loads here may result in excessive register pressure, and 3077 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3078 // could recover a bit by hoisting nodes upward in the chain by recognizing 3079 // they are side-effect free or do not alias. The optimizer should really 3080 // avoid this case by converting large object/array copies to llvm.memcpy 3081 // (MaxParallelChains should always remain as failsafe). 3082 if (ChainI == MaxParallelChains) { 3083 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3084 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3085 makeArrayRef(Chains.data(), ChainI)); 3086 Root = Chain; 3087 ChainI = 0; 3088 } 3089 SDValue A = DAG.getNode(ISD::ADD, dl, 3090 PtrVT, Ptr, 3091 DAG.getConstant(Offsets[i], dl, PtrVT)); 3092 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3093 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3094 isNonTemporal, isInvariant, Alignment, AAInfo, 3095 Ranges); 3096 3097 Values[i] = L; 3098 Chains[ChainI] = L.getValue(1); 3099 } 3100 3101 if (!ConstantMemory) { 3102 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3103 makeArrayRef(Chains.data(), ChainI)); 3104 if (isVolatile) 3105 DAG.setRoot(Chain); 3106 else 3107 PendingLoads.push_back(Chain); 3108 } 3109 3110 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3111 DAG.getVTList(ValueVTs), Values)); 3112 } 3113 3114 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3115 if (I.isAtomic()) 3116 return visitAtomicStore(I); 3117 3118 const Value *SrcV = I.getOperand(0); 3119 const Value *PtrV = I.getOperand(1); 3120 3121 SmallVector<EVT, 4> ValueVTs; 3122 SmallVector<uint64_t, 4> Offsets; 3123 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3124 SrcV->getType(), ValueVTs, &Offsets); 3125 unsigned NumValues = ValueVTs.size(); 3126 if (NumValues == 0) 3127 return; 3128 3129 // Get the lowered operands. Note that we do this after 3130 // checking if NumResults is zero, because with zero results 3131 // the operands won't have values in the map. 3132 SDValue Src = getValue(SrcV); 3133 SDValue Ptr = getValue(PtrV); 3134 3135 SDValue Root = getRoot(); 3136 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3137 EVT PtrVT = Ptr.getValueType(); 3138 bool isVolatile = I.isVolatile(); 3139 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3140 unsigned Alignment = I.getAlignment(); 3141 SDLoc dl = getCurSDLoc(); 3142 3143 AAMDNodes AAInfo; 3144 I.getAAMetadata(AAInfo); 3145 3146 unsigned ChainI = 0; 3147 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3148 // See visitLoad comments. 3149 if (ChainI == MaxParallelChains) { 3150 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3151 makeArrayRef(Chains.data(), ChainI)); 3152 Root = Chain; 3153 ChainI = 0; 3154 } 3155 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3156 DAG.getConstant(Offsets[i], dl, PtrVT)); 3157 SDValue St = DAG.getStore(Root, dl, 3158 SDValue(Src.getNode(), Src.getResNo() + i), 3159 Add, MachinePointerInfo(PtrV, Offsets[i]), 3160 isVolatile, isNonTemporal, Alignment, AAInfo); 3161 Chains[ChainI] = St; 3162 } 3163 3164 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3165 makeArrayRef(Chains.data(), ChainI)); 3166 DAG.setRoot(StoreNode); 3167 } 3168 3169 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3170 SDLoc sdl = getCurSDLoc(); 3171 3172 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3173 Value *PtrOperand = I.getArgOperand(1); 3174 SDValue Ptr = getValue(PtrOperand); 3175 SDValue Src0 = getValue(I.getArgOperand(0)); 3176 SDValue Mask = getValue(I.getArgOperand(3)); 3177 EVT VT = Src0.getValueType(); 3178 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3179 if (!Alignment) 3180 Alignment = DAG.getEVTAlignment(VT); 3181 3182 AAMDNodes AAInfo; 3183 I.getAAMetadata(AAInfo); 3184 3185 MachineMemOperand *MMO = 3186 DAG.getMachineFunction(). 3187 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3188 MachineMemOperand::MOStore, VT.getStoreSize(), 3189 Alignment, AAInfo); 3190 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3191 MMO, false); 3192 DAG.setRoot(StoreNode); 3193 setValue(&I, StoreNode); 3194 } 3195 3196 // Get a uniform base for the Gather/Scatter intrinsic. 3197 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3198 // We try to represent it as a base pointer + vector of indices. 3199 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3200 // The first operand of the GEP may be a single pointer or a vector of pointers 3201 // Example: 3202 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3203 // or 3204 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3205 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3206 // 3207 // When the first GEP operand is a single pointer - it is the uniform base we 3208 // are looking for. If first operand of the GEP is a splat vector - we 3209 // extract the spalt value and use it as a uniform base. 3210 // In all other cases the function returns 'false'. 3211 // 3212 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3213 SelectionDAGBuilder* SDB) { 3214 3215 SelectionDAG& DAG = SDB->DAG; 3216 LLVMContext &Context = *DAG.getContext(); 3217 3218 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3219 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3220 if (!GEP || GEP->getNumOperands() > 2) 3221 return false; 3222 3223 Value *GEPPtr = GEP->getPointerOperand(); 3224 if (!GEPPtr->getType()->isVectorTy()) 3225 Ptr = GEPPtr; 3226 else if (!(Ptr = getSplatValue(GEPPtr))) 3227 return false; 3228 3229 Value *IndexVal = GEP->getOperand(1); 3230 3231 // The operands of the GEP may be defined in another basic block. 3232 // In this case we'll not find nodes for the operands. 3233 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3234 return false; 3235 3236 Base = SDB->getValue(Ptr); 3237 Index = SDB->getValue(IndexVal); 3238 3239 // Suppress sign extension. 3240 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3241 if (SDB->findValue(Sext->getOperand(0))) { 3242 IndexVal = Sext->getOperand(0); 3243 Index = SDB->getValue(IndexVal); 3244 } 3245 } 3246 if (!Index.getValueType().isVector()) { 3247 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3248 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3249 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3250 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3251 } 3252 return true; 3253 } 3254 3255 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3256 SDLoc sdl = getCurSDLoc(); 3257 3258 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3259 Value *Ptr = I.getArgOperand(1); 3260 SDValue Src0 = getValue(I.getArgOperand(0)); 3261 SDValue Mask = getValue(I.getArgOperand(3)); 3262 EVT VT = Src0.getValueType(); 3263 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3264 if (!Alignment) 3265 Alignment = DAG.getEVTAlignment(VT); 3266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3267 3268 AAMDNodes AAInfo; 3269 I.getAAMetadata(AAInfo); 3270 3271 SDValue Base; 3272 SDValue Index; 3273 Value *BasePtr = Ptr; 3274 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3275 3276 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3277 MachineMemOperand *MMO = DAG.getMachineFunction(). 3278 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3279 MachineMemOperand::MOStore, VT.getStoreSize(), 3280 Alignment, AAInfo); 3281 if (!UniformBase) { 3282 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3283 Index = getValue(Ptr); 3284 } 3285 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3286 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3287 Ops, MMO); 3288 DAG.setRoot(Scatter); 3289 setValue(&I, Scatter); 3290 } 3291 3292 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3293 SDLoc sdl = getCurSDLoc(); 3294 3295 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3296 Value *PtrOperand = I.getArgOperand(0); 3297 SDValue Ptr = getValue(PtrOperand); 3298 SDValue Src0 = getValue(I.getArgOperand(3)); 3299 SDValue Mask = getValue(I.getArgOperand(2)); 3300 3301 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3302 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3303 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3304 if (!Alignment) 3305 Alignment = DAG.getEVTAlignment(VT); 3306 3307 AAMDNodes AAInfo; 3308 I.getAAMetadata(AAInfo); 3309 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3310 3311 SDValue InChain = DAG.getRoot(); 3312 if (AA->pointsToConstantMemory(MemoryLocation( 3313 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3314 AAInfo))) { 3315 // Do not serialize (non-volatile) loads of constant memory with anything. 3316 InChain = DAG.getEntryNode(); 3317 } 3318 3319 MachineMemOperand *MMO = 3320 DAG.getMachineFunction(). 3321 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3322 MachineMemOperand::MOLoad, VT.getStoreSize(), 3323 Alignment, AAInfo, Ranges); 3324 3325 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3326 ISD::NON_EXTLOAD); 3327 SDValue OutChain = Load.getValue(1); 3328 DAG.setRoot(OutChain); 3329 setValue(&I, Load); 3330 } 3331 3332 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3333 SDLoc sdl = getCurSDLoc(); 3334 3335 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3336 Value *Ptr = I.getArgOperand(0); 3337 SDValue Src0 = getValue(I.getArgOperand(3)); 3338 SDValue Mask = getValue(I.getArgOperand(2)); 3339 3340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3341 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3342 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3343 if (!Alignment) 3344 Alignment = DAG.getEVTAlignment(VT); 3345 3346 AAMDNodes AAInfo; 3347 I.getAAMetadata(AAInfo); 3348 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3349 3350 SDValue Root = DAG.getRoot(); 3351 SDValue Base; 3352 SDValue Index; 3353 Value *BasePtr = Ptr; 3354 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3355 bool ConstantMemory = false; 3356 if (UniformBase && 3357 AA->pointsToConstantMemory(MemoryLocation( 3358 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3359 AAInfo))) { 3360 // Do not serialize (non-volatile) loads of constant memory with anything. 3361 Root = DAG.getEntryNode(); 3362 ConstantMemory = true; 3363 } 3364 3365 MachineMemOperand *MMO = 3366 DAG.getMachineFunction(). 3367 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3368 MachineMemOperand::MOLoad, VT.getStoreSize(), 3369 Alignment, AAInfo, Ranges); 3370 3371 if (!UniformBase) { 3372 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3373 Index = getValue(Ptr); 3374 } 3375 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3376 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3377 Ops, MMO); 3378 3379 SDValue OutChain = Gather.getValue(1); 3380 if (!ConstantMemory) 3381 PendingLoads.push_back(OutChain); 3382 setValue(&I, Gather); 3383 } 3384 3385 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3386 SDLoc dl = getCurSDLoc(); 3387 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3388 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3389 SynchronizationScope Scope = I.getSynchScope(); 3390 3391 SDValue InChain = getRoot(); 3392 3393 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3394 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3395 SDValue L = DAG.getAtomicCmpSwap( 3396 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3397 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3398 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3399 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3400 3401 SDValue OutChain = L.getValue(2); 3402 3403 setValue(&I, L); 3404 DAG.setRoot(OutChain); 3405 } 3406 3407 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3408 SDLoc dl = getCurSDLoc(); 3409 ISD::NodeType NT; 3410 switch (I.getOperation()) { 3411 default: llvm_unreachable("Unknown atomicrmw operation"); 3412 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3413 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3414 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3415 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3416 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3417 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3418 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3419 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3420 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3421 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3422 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3423 } 3424 AtomicOrdering Order = I.getOrdering(); 3425 SynchronizationScope Scope = I.getSynchScope(); 3426 3427 SDValue InChain = getRoot(); 3428 3429 SDValue L = 3430 DAG.getAtomic(NT, dl, 3431 getValue(I.getValOperand()).getSimpleValueType(), 3432 InChain, 3433 getValue(I.getPointerOperand()), 3434 getValue(I.getValOperand()), 3435 I.getPointerOperand(), 3436 /* Alignment=*/ 0, Order, Scope); 3437 3438 SDValue OutChain = L.getValue(1); 3439 3440 setValue(&I, L); 3441 DAG.setRoot(OutChain); 3442 } 3443 3444 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3445 SDLoc dl = getCurSDLoc(); 3446 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3447 SDValue Ops[3]; 3448 Ops[0] = getRoot(); 3449 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3450 TLI.getPointerTy(DAG.getDataLayout())); 3451 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3452 TLI.getPointerTy(DAG.getDataLayout())); 3453 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3454 } 3455 3456 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3457 SDLoc dl = getCurSDLoc(); 3458 AtomicOrdering Order = I.getOrdering(); 3459 SynchronizationScope Scope = I.getSynchScope(); 3460 3461 SDValue InChain = getRoot(); 3462 3463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3464 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3465 3466 if (I.getAlignment() < VT.getSizeInBits() / 8) 3467 report_fatal_error("Cannot generate unaligned atomic load"); 3468 3469 MachineMemOperand *MMO = 3470 DAG.getMachineFunction(). 3471 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3472 MachineMemOperand::MOVolatile | 3473 MachineMemOperand::MOLoad, 3474 VT.getStoreSize(), 3475 I.getAlignment() ? I.getAlignment() : 3476 DAG.getEVTAlignment(VT)); 3477 3478 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3479 SDValue L = 3480 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3481 getValue(I.getPointerOperand()), MMO, 3482 Order, Scope); 3483 3484 SDValue OutChain = L.getValue(1); 3485 3486 setValue(&I, L); 3487 DAG.setRoot(OutChain); 3488 } 3489 3490 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3491 SDLoc dl = getCurSDLoc(); 3492 3493 AtomicOrdering Order = I.getOrdering(); 3494 SynchronizationScope Scope = I.getSynchScope(); 3495 3496 SDValue InChain = getRoot(); 3497 3498 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3499 EVT VT = 3500 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3501 3502 if (I.getAlignment() < VT.getSizeInBits() / 8) 3503 report_fatal_error("Cannot generate unaligned atomic store"); 3504 3505 SDValue OutChain = 3506 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3507 InChain, 3508 getValue(I.getPointerOperand()), 3509 getValue(I.getValueOperand()), 3510 I.getPointerOperand(), I.getAlignment(), 3511 Order, Scope); 3512 3513 DAG.setRoot(OutChain); 3514 } 3515 3516 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3517 /// node. 3518 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3519 unsigned Intrinsic) { 3520 bool HasChain = !I.doesNotAccessMemory(); 3521 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3522 3523 // Build the operand list. 3524 SmallVector<SDValue, 8> Ops; 3525 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3526 if (OnlyLoad) { 3527 // We don't need to serialize loads against other loads. 3528 Ops.push_back(DAG.getRoot()); 3529 } else { 3530 Ops.push_back(getRoot()); 3531 } 3532 } 3533 3534 // Info is set by getTgtMemInstrinsic 3535 TargetLowering::IntrinsicInfo Info; 3536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3537 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3538 3539 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3540 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3541 Info.opc == ISD::INTRINSIC_W_CHAIN) 3542 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3543 TLI.getPointerTy(DAG.getDataLayout()))); 3544 3545 // Add all operands of the call to the operand list. 3546 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3547 SDValue Op = getValue(I.getArgOperand(i)); 3548 Ops.push_back(Op); 3549 } 3550 3551 SmallVector<EVT, 4> ValueVTs; 3552 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3553 3554 if (HasChain) 3555 ValueVTs.push_back(MVT::Other); 3556 3557 SDVTList VTs = DAG.getVTList(ValueVTs); 3558 3559 // Create the node. 3560 SDValue Result; 3561 if (IsTgtIntrinsic) { 3562 // This is target intrinsic that touches memory 3563 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3564 VTs, Ops, Info.memVT, 3565 MachinePointerInfo(Info.ptrVal, Info.offset), 3566 Info.align, Info.vol, 3567 Info.readMem, Info.writeMem, Info.size); 3568 } else if (!HasChain) { 3569 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3570 } else if (!I.getType()->isVoidTy()) { 3571 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3572 } else { 3573 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3574 } 3575 3576 if (HasChain) { 3577 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3578 if (OnlyLoad) 3579 PendingLoads.push_back(Chain); 3580 else 3581 DAG.setRoot(Chain); 3582 } 3583 3584 if (!I.getType()->isVoidTy()) { 3585 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3586 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3587 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3588 } 3589 3590 setValue(&I, Result); 3591 } 3592 } 3593 3594 /// GetSignificand - Get the significand and build it into a floating-point 3595 /// number with exponent of 1: 3596 /// 3597 /// Op = (Op & 0x007fffff) | 0x3f800000; 3598 /// 3599 /// where Op is the hexadecimal representation of floating point value. 3600 static SDValue 3601 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3602 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3603 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3604 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3605 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3606 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3607 } 3608 3609 /// GetExponent - Get the exponent: 3610 /// 3611 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3612 /// 3613 /// where Op is the hexadecimal representation of floating point value. 3614 static SDValue 3615 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3616 SDLoc dl) { 3617 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3618 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3619 SDValue t1 = DAG.getNode( 3620 ISD::SRL, dl, MVT::i32, t0, 3621 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3622 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3623 DAG.getConstant(127, dl, MVT::i32)); 3624 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3625 } 3626 3627 /// getF32Constant - Get 32-bit floating point constant. 3628 static SDValue 3629 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3630 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3631 MVT::f32); 3632 } 3633 3634 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3635 SelectionDAG &DAG) { 3636 // TODO: What fast-math-flags should be set on the floating-point nodes? 3637 3638 // IntegerPartOfX = ((int32_t)(t0); 3639 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3640 3641 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3642 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3643 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3644 3645 // IntegerPartOfX <<= 23; 3646 IntegerPartOfX = DAG.getNode( 3647 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3648 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3649 DAG.getDataLayout()))); 3650 3651 SDValue TwoToFractionalPartOfX; 3652 if (LimitFloatPrecision <= 6) { 3653 // For floating-point precision of 6: 3654 // 3655 // TwoToFractionalPartOfX = 3656 // 0.997535578f + 3657 // (0.735607626f + 0.252464424f * x) * x; 3658 // 3659 // error 0.0144103317, which is 6 bits 3660 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3661 getF32Constant(DAG, 0x3e814304, dl)); 3662 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3663 getF32Constant(DAG, 0x3f3c50c8, dl)); 3664 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3665 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3666 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3667 } else if (LimitFloatPrecision <= 12) { 3668 // For floating-point precision of 12: 3669 // 3670 // TwoToFractionalPartOfX = 3671 // 0.999892986f + 3672 // (0.696457318f + 3673 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3674 // 3675 // error 0.000107046256, which is 13 to 14 bits 3676 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3677 getF32Constant(DAG, 0x3da235e3, dl)); 3678 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3679 getF32Constant(DAG, 0x3e65b8f3, dl)); 3680 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3681 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3682 getF32Constant(DAG, 0x3f324b07, dl)); 3683 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3684 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3685 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3686 } else { // LimitFloatPrecision <= 18 3687 // For floating-point precision of 18: 3688 // 3689 // TwoToFractionalPartOfX = 3690 // 0.999999982f + 3691 // (0.693148872f + 3692 // (0.240227044f + 3693 // (0.554906021e-1f + 3694 // (0.961591928e-2f + 3695 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3696 // error 2.47208000*10^(-7), which is better than 18 bits 3697 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3698 getF32Constant(DAG, 0x3924b03e, dl)); 3699 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3700 getF32Constant(DAG, 0x3ab24b87, dl)); 3701 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3702 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3703 getF32Constant(DAG, 0x3c1d8c17, dl)); 3704 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3705 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3706 getF32Constant(DAG, 0x3d634a1d, dl)); 3707 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3708 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3709 getF32Constant(DAG, 0x3e75fe14, dl)); 3710 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3711 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3712 getF32Constant(DAG, 0x3f317234, dl)); 3713 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3714 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3715 getF32Constant(DAG, 0x3f800000, dl)); 3716 } 3717 3718 // Add the exponent into the result in integer domain. 3719 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3720 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3721 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3722 } 3723 3724 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3725 /// limited-precision mode. 3726 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3727 const TargetLowering &TLI) { 3728 if (Op.getValueType() == MVT::f32 && 3729 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3730 3731 // Put the exponent in the right bit position for later addition to the 3732 // final result: 3733 // 3734 // #define LOG2OFe 1.4426950f 3735 // t0 = Op * LOG2OFe 3736 3737 // TODO: What fast-math-flags should be set here? 3738 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3739 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3740 return getLimitedPrecisionExp2(t0, dl, DAG); 3741 } 3742 3743 // No special expansion. 3744 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3745 } 3746 3747 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3748 /// limited-precision mode. 3749 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3750 const TargetLowering &TLI) { 3751 3752 // TODO: What fast-math-flags should be set on the floating-point nodes? 3753 3754 if (Op.getValueType() == MVT::f32 && 3755 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3756 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3757 3758 // Scale the exponent by log(2) [0.69314718f]. 3759 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3760 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3761 getF32Constant(DAG, 0x3f317218, dl)); 3762 3763 // Get the significand and build it into a floating-point number with 3764 // exponent of 1. 3765 SDValue X = GetSignificand(DAG, Op1, dl); 3766 3767 SDValue LogOfMantissa; 3768 if (LimitFloatPrecision <= 6) { 3769 // For floating-point precision of 6: 3770 // 3771 // LogofMantissa = 3772 // -1.1609546f + 3773 // (1.4034025f - 0.23903021f * x) * x; 3774 // 3775 // error 0.0034276066, which is better than 8 bits 3776 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3777 getF32Constant(DAG, 0xbe74c456, dl)); 3778 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3779 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3780 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3781 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3782 getF32Constant(DAG, 0x3f949a29, dl)); 3783 } else if (LimitFloatPrecision <= 12) { 3784 // For floating-point precision of 12: 3785 // 3786 // LogOfMantissa = 3787 // -1.7417939f + 3788 // (2.8212026f + 3789 // (-1.4699568f + 3790 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3791 // 3792 // error 0.000061011436, which is 14 bits 3793 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3794 getF32Constant(DAG, 0xbd67b6d6, dl)); 3795 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3796 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3797 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3798 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3799 getF32Constant(DAG, 0x3fbc278b, dl)); 3800 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3801 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3802 getF32Constant(DAG, 0x40348e95, dl)); 3803 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3804 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3805 getF32Constant(DAG, 0x3fdef31a, dl)); 3806 } else { // LimitFloatPrecision <= 18 3807 // For floating-point precision of 18: 3808 // 3809 // LogOfMantissa = 3810 // -2.1072184f + 3811 // (4.2372794f + 3812 // (-3.7029485f + 3813 // (2.2781945f + 3814 // (-0.87823314f + 3815 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3816 // 3817 // error 0.0000023660568, which is better than 18 bits 3818 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3819 getF32Constant(DAG, 0xbc91e5ac, dl)); 3820 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3821 getF32Constant(DAG, 0x3e4350aa, dl)); 3822 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3823 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3824 getF32Constant(DAG, 0x3f60d3e3, dl)); 3825 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3826 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3827 getF32Constant(DAG, 0x4011cdf0, dl)); 3828 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3829 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3830 getF32Constant(DAG, 0x406cfd1c, dl)); 3831 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3832 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3833 getF32Constant(DAG, 0x408797cb, dl)); 3834 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3835 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3836 getF32Constant(DAG, 0x4006dcab, dl)); 3837 } 3838 3839 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3840 } 3841 3842 // No special expansion. 3843 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3844 } 3845 3846 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3847 /// limited-precision mode. 3848 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3849 const TargetLowering &TLI) { 3850 3851 // TODO: What fast-math-flags should be set on the floating-point nodes? 3852 3853 if (Op.getValueType() == MVT::f32 && 3854 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3855 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3856 3857 // Get the exponent. 3858 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3859 3860 // Get the significand and build it into a floating-point number with 3861 // exponent of 1. 3862 SDValue X = GetSignificand(DAG, Op1, dl); 3863 3864 // Different possible minimax approximations of significand in 3865 // floating-point for various degrees of accuracy over [1,2]. 3866 SDValue Log2ofMantissa; 3867 if (LimitFloatPrecision <= 6) { 3868 // For floating-point precision of 6: 3869 // 3870 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3871 // 3872 // error 0.0049451742, which is more than 7 bits 3873 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3874 getF32Constant(DAG, 0xbeb08fe0, dl)); 3875 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3876 getF32Constant(DAG, 0x40019463, dl)); 3877 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3878 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3879 getF32Constant(DAG, 0x3fd6633d, dl)); 3880 } else if (LimitFloatPrecision <= 12) { 3881 // For floating-point precision of 12: 3882 // 3883 // Log2ofMantissa = 3884 // -2.51285454f + 3885 // (4.07009056f + 3886 // (-2.12067489f + 3887 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3888 // 3889 // error 0.0000876136000, which is better than 13 bits 3890 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3891 getF32Constant(DAG, 0xbda7262e, dl)); 3892 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3893 getF32Constant(DAG, 0x3f25280b, dl)); 3894 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3895 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3896 getF32Constant(DAG, 0x4007b923, dl)); 3897 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3898 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3899 getF32Constant(DAG, 0x40823e2f, dl)); 3900 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3901 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3902 getF32Constant(DAG, 0x4020d29c, dl)); 3903 } else { // LimitFloatPrecision <= 18 3904 // For floating-point precision of 18: 3905 // 3906 // Log2ofMantissa = 3907 // -3.0400495f + 3908 // (6.1129976f + 3909 // (-5.3420409f + 3910 // (3.2865683f + 3911 // (-1.2669343f + 3912 // (0.27515199f - 3913 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3914 // 3915 // error 0.0000018516, which is better than 18 bits 3916 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3917 getF32Constant(DAG, 0xbcd2769e, dl)); 3918 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3919 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3920 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3921 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3922 getF32Constant(DAG, 0x3fa22ae7, dl)); 3923 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3924 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3925 getF32Constant(DAG, 0x40525723, dl)); 3926 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3927 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3928 getF32Constant(DAG, 0x40aaf200, dl)); 3929 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3930 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3931 getF32Constant(DAG, 0x40c39dad, dl)); 3932 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3933 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3934 getF32Constant(DAG, 0x4042902c, dl)); 3935 } 3936 3937 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3938 } 3939 3940 // No special expansion. 3941 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3942 } 3943 3944 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3945 /// limited-precision mode. 3946 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3947 const TargetLowering &TLI) { 3948 3949 // TODO: What fast-math-flags should be set on the floating-point nodes? 3950 3951 if (Op.getValueType() == MVT::f32 && 3952 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3953 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3954 3955 // Scale the exponent by log10(2) [0.30102999f]. 3956 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3957 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3958 getF32Constant(DAG, 0x3e9a209a, dl)); 3959 3960 // Get the significand and build it into a floating-point number with 3961 // exponent of 1. 3962 SDValue X = GetSignificand(DAG, Op1, dl); 3963 3964 SDValue Log10ofMantissa; 3965 if (LimitFloatPrecision <= 6) { 3966 // For floating-point precision of 6: 3967 // 3968 // Log10ofMantissa = 3969 // -0.50419619f + 3970 // (0.60948995f - 0.10380950f * x) * x; 3971 // 3972 // error 0.0014886165, which is 6 bits 3973 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3974 getF32Constant(DAG, 0xbdd49a13, dl)); 3975 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3976 getF32Constant(DAG, 0x3f1c0789, dl)); 3977 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3978 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3979 getF32Constant(DAG, 0x3f011300, dl)); 3980 } else if (LimitFloatPrecision <= 12) { 3981 // For floating-point precision of 12: 3982 // 3983 // Log10ofMantissa = 3984 // -0.64831180f + 3985 // (0.91751397f + 3986 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3987 // 3988 // error 0.00019228036, which is better than 12 bits 3989 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3990 getF32Constant(DAG, 0x3d431f31, dl)); 3991 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3992 getF32Constant(DAG, 0x3ea21fb2, dl)); 3993 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3994 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3995 getF32Constant(DAG, 0x3f6ae232, dl)); 3996 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3997 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3998 getF32Constant(DAG, 0x3f25f7c3, dl)); 3999 } else { // LimitFloatPrecision <= 18 4000 // For floating-point precision of 18: 4001 // 4002 // Log10ofMantissa = 4003 // -0.84299375f + 4004 // (1.5327582f + 4005 // (-1.0688956f + 4006 // (0.49102474f + 4007 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4008 // 4009 // error 0.0000037995730, which is better than 18 bits 4010 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4011 getF32Constant(DAG, 0x3c5d51ce, dl)); 4012 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4013 getF32Constant(DAG, 0x3e00685a, dl)); 4014 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4015 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4016 getF32Constant(DAG, 0x3efb6798, dl)); 4017 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4018 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4019 getF32Constant(DAG, 0x3f88d192, dl)); 4020 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4021 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4022 getF32Constant(DAG, 0x3fc4316c, dl)); 4023 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4024 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4025 getF32Constant(DAG, 0x3f57ce70, dl)); 4026 } 4027 4028 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4029 } 4030 4031 // No special expansion. 4032 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4033 } 4034 4035 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4036 /// limited-precision mode. 4037 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4038 const TargetLowering &TLI) { 4039 if (Op.getValueType() == MVT::f32 && 4040 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4041 return getLimitedPrecisionExp2(Op, dl, DAG); 4042 4043 // No special expansion. 4044 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4045 } 4046 4047 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4048 /// limited-precision mode with x == 10.0f. 4049 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4050 SelectionDAG &DAG, const TargetLowering &TLI) { 4051 bool IsExp10 = false; 4052 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4053 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4054 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4055 APFloat Ten(10.0f); 4056 IsExp10 = LHSC->isExactlyValue(Ten); 4057 } 4058 } 4059 4060 // TODO: What fast-math-flags should be set on the FMUL node? 4061 if (IsExp10) { 4062 // Put the exponent in the right bit position for later addition to the 4063 // final result: 4064 // 4065 // #define LOG2OF10 3.3219281f 4066 // t0 = Op * LOG2OF10; 4067 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4068 getF32Constant(DAG, 0x40549a78, dl)); 4069 return getLimitedPrecisionExp2(t0, dl, DAG); 4070 } 4071 4072 // No special expansion. 4073 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4074 } 4075 4076 4077 /// ExpandPowI - Expand a llvm.powi intrinsic. 4078 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4079 SelectionDAG &DAG) { 4080 // If RHS is a constant, we can expand this out to a multiplication tree, 4081 // otherwise we end up lowering to a call to __powidf2 (for example). When 4082 // optimizing for size, we only want to do this if the expansion would produce 4083 // a small number of multiplies, otherwise we do the full expansion. 4084 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4085 // Get the exponent as a positive value. 4086 unsigned Val = RHSC->getSExtValue(); 4087 if ((int)Val < 0) Val = -Val; 4088 4089 // powi(x, 0) -> 1.0 4090 if (Val == 0) 4091 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4092 4093 const Function *F = DAG.getMachineFunction().getFunction(); 4094 if (!F->optForSize() || 4095 // If optimizing for size, don't insert too many multiplies. 4096 // This inserts up to 5 multiplies. 4097 countPopulation(Val) + Log2_32(Val) < 7) { 4098 // We use the simple binary decomposition method to generate the multiply 4099 // sequence. There are more optimal ways to do this (for example, 4100 // powi(x,15) generates one more multiply than it should), but this has 4101 // the benefit of being both really simple and much better than a libcall. 4102 SDValue Res; // Logically starts equal to 1.0 4103 SDValue CurSquare = LHS; 4104 // TODO: Intrinsics should have fast-math-flags that propagate to these 4105 // nodes. 4106 while (Val) { 4107 if (Val & 1) { 4108 if (Res.getNode()) 4109 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4110 else 4111 Res = CurSquare; // 1.0*CurSquare. 4112 } 4113 4114 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4115 CurSquare, CurSquare); 4116 Val >>= 1; 4117 } 4118 4119 // If the original was negative, invert the result, producing 1/(x*x*x). 4120 if (RHSC->getSExtValue() < 0) 4121 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4122 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4123 return Res; 4124 } 4125 } 4126 4127 // Otherwise, expand to a libcall. 4128 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4129 } 4130 4131 // getTruncatedArgReg - Find underlying register used for an truncated 4132 // argument. 4133 static unsigned getTruncatedArgReg(const SDValue &N) { 4134 if (N.getOpcode() != ISD::TRUNCATE) 4135 return 0; 4136 4137 const SDValue &Ext = N.getOperand(0); 4138 if (Ext.getOpcode() == ISD::AssertZext || 4139 Ext.getOpcode() == ISD::AssertSext) { 4140 const SDValue &CFR = Ext.getOperand(0); 4141 if (CFR.getOpcode() == ISD::CopyFromReg) 4142 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4143 if (CFR.getOpcode() == ISD::TRUNCATE) 4144 return getTruncatedArgReg(CFR); 4145 } 4146 return 0; 4147 } 4148 4149 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4150 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4151 /// At the end of instruction selection, they will be inserted to the entry BB. 4152 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4153 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4154 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4155 const Argument *Arg = dyn_cast<Argument>(V); 4156 if (!Arg) 4157 return false; 4158 4159 MachineFunction &MF = DAG.getMachineFunction(); 4160 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4161 4162 // Ignore inlined function arguments here. 4163 // 4164 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4165 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4166 return false; 4167 4168 Optional<MachineOperand> Op; 4169 // Some arguments' frame index is recorded during argument lowering. 4170 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4171 Op = MachineOperand::CreateFI(FI); 4172 4173 if (!Op && N.getNode()) { 4174 unsigned Reg; 4175 if (N.getOpcode() == ISD::CopyFromReg) 4176 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4177 else 4178 Reg = getTruncatedArgReg(N); 4179 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4180 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4181 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4182 if (PR) 4183 Reg = PR; 4184 } 4185 if (Reg) 4186 Op = MachineOperand::CreateReg(Reg, false); 4187 } 4188 4189 if (!Op) { 4190 // Check if ValueMap has reg number. 4191 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4192 if (VMI != FuncInfo.ValueMap.end()) 4193 Op = MachineOperand::CreateReg(VMI->second, false); 4194 } 4195 4196 if (!Op && N.getNode()) 4197 // Check if frame index is available. 4198 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4199 if (FrameIndexSDNode *FINode = 4200 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4201 Op = MachineOperand::CreateFI(FINode->getIndex()); 4202 4203 if (!Op) 4204 return false; 4205 4206 assert(Variable->isValidLocationForIntrinsic(DL) && 4207 "Expected inlined-at fields to agree"); 4208 if (Op->isReg()) 4209 FuncInfo.ArgDbgValues.push_back( 4210 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4211 Op->getReg(), Offset, Variable, Expr)); 4212 else 4213 FuncInfo.ArgDbgValues.push_back( 4214 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4215 .addOperand(*Op) 4216 .addImm(Offset) 4217 .addMetadata(Variable) 4218 .addMetadata(Expr)); 4219 4220 return true; 4221 } 4222 4223 // VisualStudio defines setjmp as _setjmp 4224 #if defined(_MSC_VER) && defined(setjmp) && \ 4225 !defined(setjmp_undefined_for_msvc) 4226 # pragma push_macro("setjmp") 4227 # undef setjmp 4228 # define setjmp_undefined_for_msvc 4229 #endif 4230 4231 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4232 /// we want to emit this as a call to a named external function, return the name 4233 /// otherwise lower it and return null. 4234 const char * 4235 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4236 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4237 SDLoc sdl = getCurSDLoc(); 4238 DebugLoc dl = getCurDebugLoc(); 4239 SDValue Res; 4240 4241 switch (Intrinsic) { 4242 default: 4243 // By default, turn this into a target intrinsic node. 4244 visitTargetIntrinsic(I, Intrinsic); 4245 return nullptr; 4246 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4247 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4248 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4249 case Intrinsic::returnaddress: 4250 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4251 TLI.getPointerTy(DAG.getDataLayout()), 4252 getValue(I.getArgOperand(0)))); 4253 return nullptr; 4254 case Intrinsic::frameaddress: 4255 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4256 TLI.getPointerTy(DAG.getDataLayout()), 4257 getValue(I.getArgOperand(0)))); 4258 return nullptr; 4259 case Intrinsic::read_register: { 4260 Value *Reg = I.getArgOperand(0); 4261 SDValue Chain = getRoot(); 4262 SDValue RegName = 4263 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4264 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4265 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4266 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4267 setValue(&I, Res); 4268 DAG.setRoot(Res.getValue(1)); 4269 return nullptr; 4270 } 4271 case Intrinsic::write_register: { 4272 Value *Reg = I.getArgOperand(0); 4273 Value *RegValue = I.getArgOperand(1); 4274 SDValue Chain = getRoot(); 4275 SDValue RegName = 4276 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4277 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4278 RegName, getValue(RegValue))); 4279 return nullptr; 4280 } 4281 case Intrinsic::setjmp: 4282 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4283 case Intrinsic::longjmp: 4284 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4285 case Intrinsic::memcpy: { 4286 // FIXME: this definition of "user defined address space" is x86-specific 4287 // Assert for address < 256 since we support only user defined address 4288 // spaces. 4289 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4290 < 256 && 4291 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4292 < 256 && 4293 "Unknown address space"); 4294 SDValue Op1 = getValue(I.getArgOperand(0)); 4295 SDValue Op2 = getValue(I.getArgOperand(1)); 4296 SDValue Op3 = getValue(I.getArgOperand(2)); 4297 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4298 if (!Align) 4299 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4300 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4301 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4302 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4303 false, isTC, 4304 MachinePointerInfo(I.getArgOperand(0)), 4305 MachinePointerInfo(I.getArgOperand(1))); 4306 updateDAGForMaybeTailCall(MC); 4307 return nullptr; 4308 } 4309 case Intrinsic::memset: { 4310 // FIXME: this definition of "user defined address space" is x86-specific 4311 // Assert for address < 256 since we support only user defined address 4312 // spaces. 4313 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4314 < 256 && 4315 "Unknown address space"); 4316 SDValue Op1 = getValue(I.getArgOperand(0)); 4317 SDValue Op2 = getValue(I.getArgOperand(1)); 4318 SDValue Op3 = getValue(I.getArgOperand(2)); 4319 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4320 if (!Align) 4321 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4322 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4323 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4324 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4325 isTC, MachinePointerInfo(I.getArgOperand(0))); 4326 updateDAGForMaybeTailCall(MS); 4327 return nullptr; 4328 } 4329 case Intrinsic::memmove: { 4330 // FIXME: this definition of "user defined address space" is x86-specific 4331 // Assert for address < 256 since we support only user defined address 4332 // spaces. 4333 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4334 < 256 && 4335 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4336 < 256 && 4337 "Unknown address space"); 4338 SDValue Op1 = getValue(I.getArgOperand(0)); 4339 SDValue Op2 = getValue(I.getArgOperand(1)); 4340 SDValue Op3 = getValue(I.getArgOperand(2)); 4341 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4342 if (!Align) 4343 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4344 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4345 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4346 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4347 isTC, MachinePointerInfo(I.getArgOperand(0)), 4348 MachinePointerInfo(I.getArgOperand(1))); 4349 updateDAGForMaybeTailCall(MM); 4350 return nullptr; 4351 } 4352 case Intrinsic::dbg_declare: { 4353 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4354 DILocalVariable *Variable = DI.getVariable(); 4355 DIExpression *Expression = DI.getExpression(); 4356 const Value *Address = DI.getAddress(); 4357 assert(Variable && "Missing variable"); 4358 if (!Address) { 4359 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4360 return nullptr; 4361 } 4362 4363 // Check if address has undef value. 4364 if (isa<UndefValue>(Address) || 4365 (Address->use_empty() && !isa<Argument>(Address))) { 4366 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4367 return nullptr; 4368 } 4369 4370 SDValue &N = NodeMap[Address]; 4371 if (!N.getNode() && isa<Argument>(Address)) 4372 // Check unused arguments map. 4373 N = UnusedArgNodeMap[Address]; 4374 SDDbgValue *SDV; 4375 if (N.getNode()) { 4376 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4377 Address = BCI->getOperand(0); 4378 // Parameters are handled specially. 4379 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4380 4381 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4382 4383 if (isParameter && !AI) { 4384 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4385 if (FINode) 4386 // Byval parameter. We have a frame index at this point. 4387 SDV = DAG.getFrameIndexDbgValue( 4388 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4389 else { 4390 // Address is an argument, so try to emit its dbg value using 4391 // virtual register info from the FuncInfo.ValueMap. 4392 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4393 N); 4394 return nullptr; 4395 } 4396 } else if (AI) 4397 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4398 true, 0, dl, SDNodeOrder); 4399 else { 4400 // Can't do anything with other non-AI cases yet. 4401 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4402 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4403 DEBUG(Address->dump()); 4404 return nullptr; 4405 } 4406 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4407 } else { 4408 // If Address is an argument then try to emit its dbg value using 4409 // virtual register info from the FuncInfo.ValueMap. 4410 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4411 N)) { 4412 // If variable is pinned by a alloca in dominating bb then 4413 // use StaticAllocaMap. 4414 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4415 if (AI->getParent() != DI.getParent()) { 4416 DenseMap<const AllocaInst*, int>::iterator SI = 4417 FuncInfo.StaticAllocaMap.find(AI); 4418 if (SI != FuncInfo.StaticAllocaMap.end()) { 4419 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4420 0, dl, SDNodeOrder); 4421 DAG.AddDbgValue(SDV, nullptr, false); 4422 return nullptr; 4423 } 4424 } 4425 } 4426 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4427 } 4428 } 4429 return nullptr; 4430 } 4431 case Intrinsic::dbg_value: { 4432 const DbgValueInst &DI = cast<DbgValueInst>(I); 4433 assert(DI.getVariable() && "Missing variable"); 4434 4435 DILocalVariable *Variable = DI.getVariable(); 4436 DIExpression *Expression = DI.getExpression(); 4437 uint64_t Offset = DI.getOffset(); 4438 const Value *V = DI.getValue(); 4439 if (!V) 4440 return nullptr; 4441 4442 SDDbgValue *SDV; 4443 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4444 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4445 SDNodeOrder); 4446 DAG.AddDbgValue(SDV, nullptr, false); 4447 } else { 4448 // Do not use getValue() in here; we don't want to generate code at 4449 // this point if it hasn't been done yet. 4450 SDValue N = NodeMap[V]; 4451 if (!N.getNode() && isa<Argument>(V)) 4452 // Check unused arguments map. 4453 N = UnusedArgNodeMap[V]; 4454 if (N.getNode()) { 4455 // A dbg.value for an alloca is always indirect. 4456 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4457 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4458 IsIndirect, N)) { 4459 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4460 IsIndirect, Offset, dl, SDNodeOrder); 4461 DAG.AddDbgValue(SDV, N.getNode(), false); 4462 } 4463 } else if (!V->use_empty() ) { 4464 // Do not call getValue(V) yet, as we don't want to generate code. 4465 // Remember it for later. 4466 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4467 DanglingDebugInfoMap[V] = DDI; 4468 } else { 4469 // We may expand this to cover more cases. One case where we have no 4470 // data available is an unreferenced parameter. 4471 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4472 } 4473 } 4474 4475 // Build a debug info table entry. 4476 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4477 V = BCI->getOperand(0); 4478 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4479 // Don't handle byval struct arguments or VLAs, for example. 4480 if (!AI) { 4481 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4482 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4483 return nullptr; 4484 } 4485 DenseMap<const AllocaInst*, int>::iterator SI = 4486 FuncInfo.StaticAllocaMap.find(AI); 4487 if (SI == FuncInfo.StaticAllocaMap.end()) 4488 return nullptr; // VLAs. 4489 return nullptr; 4490 } 4491 4492 case Intrinsic::eh_typeid_for: { 4493 // Find the type id for the given typeinfo. 4494 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4495 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4496 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4497 setValue(&I, Res); 4498 return nullptr; 4499 } 4500 4501 case Intrinsic::eh_return_i32: 4502 case Intrinsic::eh_return_i64: 4503 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4504 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4505 MVT::Other, 4506 getControlRoot(), 4507 getValue(I.getArgOperand(0)), 4508 getValue(I.getArgOperand(1)))); 4509 return nullptr; 4510 case Intrinsic::eh_unwind_init: 4511 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4512 return nullptr; 4513 case Intrinsic::eh_dwarf_cfa: { 4514 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4515 TLI.getPointerTy(DAG.getDataLayout())); 4516 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4517 CfaArg.getValueType(), 4518 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4519 CfaArg.getValueType()), 4520 CfaArg); 4521 SDValue FA = DAG.getNode( 4522 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4523 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4524 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4525 FA, Offset)); 4526 return nullptr; 4527 } 4528 case Intrinsic::eh_sjlj_callsite: { 4529 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4530 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4531 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4532 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4533 4534 MMI.setCurrentCallSite(CI->getZExtValue()); 4535 return nullptr; 4536 } 4537 case Intrinsic::eh_sjlj_functioncontext: { 4538 // Get and store the index of the function context. 4539 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4540 AllocaInst *FnCtx = 4541 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4542 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4543 MFI->setFunctionContextIndex(FI); 4544 return nullptr; 4545 } 4546 case Intrinsic::eh_sjlj_setjmp: { 4547 SDValue Ops[2]; 4548 Ops[0] = getRoot(); 4549 Ops[1] = getValue(I.getArgOperand(0)); 4550 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4551 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4552 setValue(&I, Op.getValue(0)); 4553 DAG.setRoot(Op.getValue(1)); 4554 return nullptr; 4555 } 4556 case Intrinsic::eh_sjlj_longjmp: { 4557 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4558 getRoot(), getValue(I.getArgOperand(0)))); 4559 return nullptr; 4560 } 4561 case Intrinsic::eh_sjlj_setup_dispatch: { 4562 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4563 getRoot())); 4564 return nullptr; 4565 } 4566 4567 case Intrinsic::masked_gather: 4568 visitMaskedGather(I); 4569 return nullptr; 4570 case Intrinsic::masked_load: 4571 visitMaskedLoad(I); 4572 return nullptr; 4573 case Intrinsic::masked_scatter: 4574 visitMaskedScatter(I); 4575 return nullptr; 4576 case Intrinsic::masked_store: 4577 visitMaskedStore(I); 4578 return nullptr; 4579 case Intrinsic::x86_mmx_pslli_w: 4580 case Intrinsic::x86_mmx_pslli_d: 4581 case Intrinsic::x86_mmx_pslli_q: 4582 case Intrinsic::x86_mmx_psrli_w: 4583 case Intrinsic::x86_mmx_psrli_d: 4584 case Intrinsic::x86_mmx_psrli_q: 4585 case Intrinsic::x86_mmx_psrai_w: 4586 case Intrinsic::x86_mmx_psrai_d: { 4587 SDValue ShAmt = getValue(I.getArgOperand(1)); 4588 if (isa<ConstantSDNode>(ShAmt)) { 4589 visitTargetIntrinsic(I, Intrinsic); 4590 return nullptr; 4591 } 4592 unsigned NewIntrinsic = 0; 4593 EVT ShAmtVT = MVT::v2i32; 4594 switch (Intrinsic) { 4595 case Intrinsic::x86_mmx_pslli_w: 4596 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4597 break; 4598 case Intrinsic::x86_mmx_pslli_d: 4599 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4600 break; 4601 case Intrinsic::x86_mmx_pslli_q: 4602 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4603 break; 4604 case Intrinsic::x86_mmx_psrli_w: 4605 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4606 break; 4607 case Intrinsic::x86_mmx_psrli_d: 4608 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4609 break; 4610 case Intrinsic::x86_mmx_psrli_q: 4611 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4612 break; 4613 case Intrinsic::x86_mmx_psrai_w: 4614 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4615 break; 4616 case Intrinsic::x86_mmx_psrai_d: 4617 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4618 break; 4619 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4620 } 4621 4622 // The vector shift intrinsics with scalars uses 32b shift amounts but 4623 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4624 // to be zero. 4625 // We must do this early because v2i32 is not a legal type. 4626 SDValue ShOps[2]; 4627 ShOps[0] = ShAmt; 4628 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4629 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4630 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4631 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4632 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4633 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4634 getValue(I.getArgOperand(0)), ShAmt); 4635 setValue(&I, Res); 4636 return nullptr; 4637 } 4638 case Intrinsic::convertff: 4639 case Intrinsic::convertfsi: 4640 case Intrinsic::convertfui: 4641 case Intrinsic::convertsif: 4642 case Intrinsic::convertuif: 4643 case Intrinsic::convertss: 4644 case Intrinsic::convertsu: 4645 case Intrinsic::convertus: 4646 case Intrinsic::convertuu: { 4647 ISD::CvtCode Code = ISD::CVT_INVALID; 4648 switch (Intrinsic) { 4649 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4650 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4651 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4652 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4653 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4654 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4655 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4656 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4657 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4658 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4659 } 4660 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4661 const Value *Op1 = I.getArgOperand(0); 4662 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4663 DAG.getValueType(DestVT), 4664 DAG.getValueType(getValue(Op1).getValueType()), 4665 getValue(I.getArgOperand(1)), 4666 getValue(I.getArgOperand(2)), 4667 Code); 4668 setValue(&I, Res); 4669 return nullptr; 4670 } 4671 case Intrinsic::powi: 4672 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4673 getValue(I.getArgOperand(1)), DAG)); 4674 return nullptr; 4675 case Intrinsic::log: 4676 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4677 return nullptr; 4678 case Intrinsic::log2: 4679 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4680 return nullptr; 4681 case Intrinsic::log10: 4682 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4683 return nullptr; 4684 case Intrinsic::exp: 4685 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4686 return nullptr; 4687 case Intrinsic::exp2: 4688 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4689 return nullptr; 4690 case Intrinsic::pow: 4691 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4692 getValue(I.getArgOperand(1)), DAG, TLI)); 4693 return nullptr; 4694 case Intrinsic::sqrt: 4695 case Intrinsic::fabs: 4696 case Intrinsic::sin: 4697 case Intrinsic::cos: 4698 case Intrinsic::floor: 4699 case Intrinsic::ceil: 4700 case Intrinsic::trunc: 4701 case Intrinsic::rint: 4702 case Intrinsic::nearbyint: 4703 case Intrinsic::round: { 4704 unsigned Opcode; 4705 switch (Intrinsic) { 4706 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4707 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4708 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4709 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4710 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4711 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4712 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4713 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4714 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4715 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4716 case Intrinsic::round: Opcode = ISD::FROUND; break; 4717 } 4718 4719 setValue(&I, DAG.getNode(Opcode, sdl, 4720 getValue(I.getArgOperand(0)).getValueType(), 4721 getValue(I.getArgOperand(0)))); 4722 return nullptr; 4723 } 4724 case Intrinsic::minnum: 4725 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4726 getValue(I.getArgOperand(0)).getValueType(), 4727 getValue(I.getArgOperand(0)), 4728 getValue(I.getArgOperand(1)))); 4729 return nullptr; 4730 case Intrinsic::maxnum: 4731 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4732 getValue(I.getArgOperand(0)).getValueType(), 4733 getValue(I.getArgOperand(0)), 4734 getValue(I.getArgOperand(1)))); 4735 return nullptr; 4736 case Intrinsic::copysign: 4737 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4738 getValue(I.getArgOperand(0)).getValueType(), 4739 getValue(I.getArgOperand(0)), 4740 getValue(I.getArgOperand(1)))); 4741 return nullptr; 4742 case Intrinsic::fma: 4743 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4744 getValue(I.getArgOperand(0)).getValueType(), 4745 getValue(I.getArgOperand(0)), 4746 getValue(I.getArgOperand(1)), 4747 getValue(I.getArgOperand(2)))); 4748 return nullptr; 4749 case Intrinsic::fmuladd: { 4750 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4751 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4752 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4753 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4754 getValue(I.getArgOperand(0)).getValueType(), 4755 getValue(I.getArgOperand(0)), 4756 getValue(I.getArgOperand(1)), 4757 getValue(I.getArgOperand(2)))); 4758 } else { 4759 // TODO: Intrinsic calls should have fast-math-flags. 4760 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4761 getValue(I.getArgOperand(0)).getValueType(), 4762 getValue(I.getArgOperand(0)), 4763 getValue(I.getArgOperand(1))); 4764 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4765 getValue(I.getArgOperand(0)).getValueType(), 4766 Mul, 4767 getValue(I.getArgOperand(2))); 4768 setValue(&I, Add); 4769 } 4770 return nullptr; 4771 } 4772 case Intrinsic::convert_to_fp16: 4773 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4774 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4775 getValue(I.getArgOperand(0)), 4776 DAG.getTargetConstant(0, sdl, 4777 MVT::i32)))); 4778 return nullptr; 4779 case Intrinsic::convert_from_fp16: 4780 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4781 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4782 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4783 getValue(I.getArgOperand(0))))); 4784 return nullptr; 4785 case Intrinsic::pcmarker: { 4786 SDValue Tmp = getValue(I.getArgOperand(0)); 4787 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4788 return nullptr; 4789 } 4790 case Intrinsic::readcyclecounter: { 4791 SDValue Op = getRoot(); 4792 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4793 DAG.getVTList(MVT::i64, MVT::Other), Op); 4794 setValue(&I, Res); 4795 DAG.setRoot(Res.getValue(1)); 4796 return nullptr; 4797 } 4798 case Intrinsic::bswap: 4799 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4800 getValue(I.getArgOperand(0)).getValueType(), 4801 getValue(I.getArgOperand(0)))); 4802 return nullptr; 4803 case Intrinsic::uabsdiff: 4804 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4805 getValue(I.getArgOperand(0)).getValueType(), 4806 getValue(I.getArgOperand(0)), 4807 getValue(I.getArgOperand(1)))); 4808 return nullptr; 4809 case Intrinsic::sabsdiff: 4810 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4811 getValue(I.getArgOperand(0)).getValueType(), 4812 getValue(I.getArgOperand(0)), 4813 getValue(I.getArgOperand(1)))); 4814 return nullptr; 4815 case Intrinsic::cttz: { 4816 SDValue Arg = getValue(I.getArgOperand(0)); 4817 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4818 EVT Ty = Arg.getValueType(); 4819 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4820 sdl, Ty, Arg)); 4821 return nullptr; 4822 } 4823 case Intrinsic::ctlz: { 4824 SDValue Arg = getValue(I.getArgOperand(0)); 4825 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4826 EVT Ty = Arg.getValueType(); 4827 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4828 sdl, Ty, Arg)); 4829 return nullptr; 4830 } 4831 case Intrinsic::ctpop: { 4832 SDValue Arg = getValue(I.getArgOperand(0)); 4833 EVT Ty = Arg.getValueType(); 4834 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4835 return nullptr; 4836 } 4837 case Intrinsic::stacksave: { 4838 SDValue Op = getRoot(); 4839 Res = DAG.getNode( 4840 ISD::STACKSAVE, sdl, 4841 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4842 setValue(&I, Res); 4843 DAG.setRoot(Res.getValue(1)); 4844 return nullptr; 4845 } 4846 case Intrinsic::stackrestore: { 4847 Res = getValue(I.getArgOperand(0)); 4848 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4849 return nullptr; 4850 } 4851 case Intrinsic::stackprotector: { 4852 // Emit code into the DAG to store the stack guard onto the stack. 4853 MachineFunction &MF = DAG.getMachineFunction(); 4854 MachineFrameInfo *MFI = MF.getFrameInfo(); 4855 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4856 SDValue Src, Chain = getRoot(); 4857 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4858 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4859 4860 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4861 // global variable __stack_chk_guard. 4862 if (!GV) 4863 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4864 if (BC->getOpcode() == Instruction::BitCast) 4865 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4866 4867 if (GV && TLI.useLoadStackGuardNode()) { 4868 // Emit a LOAD_STACK_GUARD node. 4869 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4870 sdl, PtrTy, Chain); 4871 MachinePointerInfo MPInfo(GV); 4872 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4873 unsigned Flags = MachineMemOperand::MOLoad | 4874 MachineMemOperand::MOInvariant; 4875 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4876 PtrTy.getSizeInBits() / 8, 4877 DAG.getEVTAlignment(PtrTy)); 4878 Node->setMemRefs(MemRefs, MemRefs + 1); 4879 4880 // Copy the guard value to a virtual register so that it can be 4881 // retrieved in the epilogue. 4882 Src = SDValue(Node, 0); 4883 const TargetRegisterClass *RC = 4884 TLI.getRegClassFor(Src.getSimpleValueType()); 4885 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4886 4887 SPDescriptor.setGuardReg(Reg); 4888 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4889 } else { 4890 Src = getValue(I.getArgOperand(0)); // The guard's value. 4891 } 4892 4893 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4894 4895 int FI = FuncInfo.StaticAllocaMap[Slot]; 4896 MFI->setStackProtectorIndex(FI); 4897 4898 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4899 4900 // Store the stack protector onto the stack. 4901 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4902 DAG.getMachineFunction(), FI), 4903 true, false, 0); 4904 setValue(&I, Res); 4905 DAG.setRoot(Res); 4906 return nullptr; 4907 } 4908 case Intrinsic::objectsize: { 4909 // If we don't know by now, we're never going to know. 4910 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4911 4912 assert(CI && "Non-constant type in __builtin_object_size?"); 4913 4914 SDValue Arg = getValue(I.getCalledValue()); 4915 EVT Ty = Arg.getValueType(); 4916 4917 if (CI->isZero()) 4918 Res = DAG.getConstant(-1ULL, sdl, Ty); 4919 else 4920 Res = DAG.getConstant(0, sdl, Ty); 4921 4922 setValue(&I, Res); 4923 return nullptr; 4924 } 4925 case Intrinsic::annotation: 4926 case Intrinsic::ptr_annotation: 4927 // Drop the intrinsic, but forward the value 4928 setValue(&I, getValue(I.getOperand(0))); 4929 return nullptr; 4930 case Intrinsic::assume: 4931 case Intrinsic::var_annotation: 4932 // Discard annotate attributes and assumptions 4933 return nullptr; 4934 4935 case Intrinsic::init_trampoline: { 4936 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4937 4938 SDValue Ops[6]; 4939 Ops[0] = getRoot(); 4940 Ops[1] = getValue(I.getArgOperand(0)); 4941 Ops[2] = getValue(I.getArgOperand(1)); 4942 Ops[3] = getValue(I.getArgOperand(2)); 4943 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4944 Ops[5] = DAG.getSrcValue(F); 4945 4946 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4947 4948 DAG.setRoot(Res); 4949 return nullptr; 4950 } 4951 case Intrinsic::adjust_trampoline: { 4952 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4953 TLI.getPointerTy(DAG.getDataLayout()), 4954 getValue(I.getArgOperand(0)))); 4955 return nullptr; 4956 } 4957 case Intrinsic::gcroot: 4958 if (GFI) { 4959 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4960 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4961 4962 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4963 GFI->addStackRoot(FI->getIndex(), TypeMap); 4964 } 4965 return nullptr; 4966 case Intrinsic::gcread: 4967 case Intrinsic::gcwrite: 4968 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4969 case Intrinsic::flt_rounds: 4970 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4971 return nullptr; 4972 4973 case Intrinsic::expect: { 4974 // Just replace __builtin_expect(exp, c) with EXP. 4975 setValue(&I, getValue(I.getArgOperand(0))); 4976 return nullptr; 4977 } 4978 4979 case Intrinsic::debugtrap: 4980 case Intrinsic::trap: { 4981 StringRef TrapFuncName = 4982 I.getAttributes() 4983 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4984 .getValueAsString(); 4985 if (TrapFuncName.empty()) { 4986 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4987 ISD::TRAP : ISD::DEBUGTRAP; 4988 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4989 return nullptr; 4990 } 4991 TargetLowering::ArgListTy Args; 4992 4993 TargetLowering::CallLoweringInfo CLI(DAG); 4994 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4995 CallingConv::C, I.getType(), 4996 DAG.getExternalSymbol(TrapFuncName.data(), 4997 TLI.getPointerTy(DAG.getDataLayout())), 4998 std::move(Args), 0); 4999 5000 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5001 DAG.setRoot(Result.second); 5002 return nullptr; 5003 } 5004 5005 case Intrinsic::uadd_with_overflow: 5006 case Intrinsic::sadd_with_overflow: 5007 case Intrinsic::usub_with_overflow: 5008 case Intrinsic::ssub_with_overflow: 5009 case Intrinsic::umul_with_overflow: 5010 case Intrinsic::smul_with_overflow: { 5011 ISD::NodeType Op; 5012 switch (Intrinsic) { 5013 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5014 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5015 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5016 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5017 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5018 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5019 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5020 } 5021 SDValue Op1 = getValue(I.getArgOperand(0)); 5022 SDValue Op2 = getValue(I.getArgOperand(1)); 5023 5024 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5025 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5026 return nullptr; 5027 } 5028 case Intrinsic::prefetch: { 5029 SDValue Ops[5]; 5030 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5031 Ops[0] = getRoot(); 5032 Ops[1] = getValue(I.getArgOperand(0)); 5033 Ops[2] = getValue(I.getArgOperand(1)); 5034 Ops[3] = getValue(I.getArgOperand(2)); 5035 Ops[4] = getValue(I.getArgOperand(3)); 5036 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5037 DAG.getVTList(MVT::Other), Ops, 5038 EVT::getIntegerVT(*Context, 8), 5039 MachinePointerInfo(I.getArgOperand(0)), 5040 0, /* align */ 5041 false, /* volatile */ 5042 rw==0, /* read */ 5043 rw==1)); /* write */ 5044 return nullptr; 5045 } 5046 case Intrinsic::lifetime_start: 5047 case Intrinsic::lifetime_end: { 5048 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5049 // Stack coloring is not enabled in O0, discard region information. 5050 if (TM.getOptLevel() == CodeGenOpt::None) 5051 return nullptr; 5052 5053 SmallVector<Value *, 4> Allocas; 5054 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5055 5056 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5057 E = Allocas.end(); Object != E; ++Object) { 5058 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5059 5060 // Could not find an Alloca. 5061 if (!LifetimeObject) 5062 continue; 5063 5064 // First check that the Alloca is static, otherwise it won't have a 5065 // valid frame index. 5066 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5067 if (SI == FuncInfo.StaticAllocaMap.end()) 5068 return nullptr; 5069 5070 int FI = SI->second; 5071 5072 SDValue Ops[2]; 5073 Ops[0] = getRoot(); 5074 Ops[1] = 5075 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5076 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5077 5078 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5079 DAG.setRoot(Res); 5080 } 5081 return nullptr; 5082 } 5083 case Intrinsic::invariant_start: 5084 // Discard region information. 5085 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5086 return nullptr; 5087 case Intrinsic::invariant_end: 5088 // Discard region information. 5089 return nullptr; 5090 case Intrinsic::stackprotectorcheck: { 5091 // Do not actually emit anything for this basic block. Instead we initialize 5092 // the stack protector descriptor and export the guard variable so we can 5093 // access it in FinishBasicBlock. 5094 const BasicBlock *BB = I.getParent(); 5095 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5096 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5097 5098 // Flush our exports since we are going to process a terminator. 5099 (void)getControlRoot(); 5100 return nullptr; 5101 } 5102 case Intrinsic::clear_cache: 5103 return TLI.getClearCacheBuiltinName(); 5104 case Intrinsic::eh_actions: 5105 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5106 return nullptr; 5107 case Intrinsic::donothing: 5108 // ignore 5109 return nullptr; 5110 case Intrinsic::experimental_stackmap: { 5111 visitStackmap(I); 5112 return nullptr; 5113 } 5114 case Intrinsic::experimental_patchpoint_void: 5115 case Intrinsic::experimental_patchpoint_i64: { 5116 visitPatchpoint(&I); 5117 return nullptr; 5118 } 5119 case Intrinsic::experimental_gc_statepoint: { 5120 visitStatepoint(I); 5121 return nullptr; 5122 } 5123 case Intrinsic::experimental_gc_result_int: 5124 case Intrinsic::experimental_gc_result_float: 5125 case Intrinsic::experimental_gc_result_ptr: 5126 case Intrinsic::experimental_gc_result: { 5127 visitGCResult(I); 5128 return nullptr; 5129 } 5130 case Intrinsic::experimental_gc_relocate: { 5131 visitGCRelocate(I); 5132 return nullptr; 5133 } 5134 case Intrinsic::instrprof_increment: 5135 llvm_unreachable("instrprof failed to lower an increment"); 5136 5137 case Intrinsic::localescape: { 5138 MachineFunction &MF = DAG.getMachineFunction(); 5139 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5140 5141 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5142 // is the same on all targets. 5143 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5144 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5145 if (isa<ConstantPointerNull>(Arg)) 5146 continue; // Skip null pointers. They represent a hole in index space. 5147 AllocaInst *Slot = cast<AllocaInst>(Arg); 5148 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5149 "can only escape static allocas"); 5150 int FI = FuncInfo.StaticAllocaMap[Slot]; 5151 MCSymbol *FrameAllocSym = 5152 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5153 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5154 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5155 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5156 .addSym(FrameAllocSym) 5157 .addFrameIndex(FI); 5158 } 5159 5160 return nullptr; 5161 } 5162 5163 case Intrinsic::localrecover: { 5164 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5165 MachineFunction &MF = DAG.getMachineFunction(); 5166 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5167 5168 // Get the symbol that defines the frame offset. 5169 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5170 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5171 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5172 MCSymbol *FrameAllocSym = 5173 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5174 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5175 5176 // Create a MCSymbol for the label to avoid any target lowering 5177 // that would make this PC relative. 5178 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5179 SDValue OffsetVal = 5180 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5181 5182 // Add the offset to the FP. 5183 Value *FP = I.getArgOperand(1); 5184 SDValue FPVal = getValue(FP); 5185 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5186 setValue(&I, Add); 5187 5188 return nullptr; 5189 } 5190 case Intrinsic::eh_begincatch: 5191 case Intrinsic::eh_endcatch: 5192 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5193 case Intrinsic::eh_exceptioncode: { 5194 unsigned Reg = TLI.getExceptionPointerRegister(); 5195 assert(Reg && "cannot get exception code on this platform"); 5196 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5197 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5198 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5199 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5200 SDValue N = 5201 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5202 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5203 setValue(&I, N); 5204 return nullptr; 5205 } 5206 } 5207 } 5208 5209 std::pair<SDValue, SDValue> 5210 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5211 const BasicBlock *EHPadBB) { 5212 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5213 MCSymbol *BeginLabel = nullptr; 5214 5215 if (EHPadBB) { 5216 // Insert a label before the invoke call to mark the try range. This can be 5217 // used to detect deletion of the invoke via the MachineModuleInfo. 5218 BeginLabel = MMI.getContext().createTempSymbol(); 5219 5220 // For SjLj, keep track of which landing pads go with which invokes 5221 // so as to maintain the ordering of pads in the LSDA. 5222 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5223 if (CallSiteIndex) { 5224 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5225 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5226 5227 // Now that the call site is handled, stop tracking it. 5228 MMI.setCurrentCallSite(0); 5229 } 5230 5231 // Both PendingLoads and PendingExports must be flushed here; 5232 // this call might not return. 5233 (void)getRoot(); 5234 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5235 5236 CLI.setChain(getRoot()); 5237 } 5238 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5239 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5240 5241 assert((CLI.IsTailCall || Result.second.getNode()) && 5242 "Non-null chain expected with non-tail call!"); 5243 assert((Result.second.getNode() || !Result.first.getNode()) && 5244 "Null value expected with tail call!"); 5245 5246 if (!Result.second.getNode()) { 5247 // As a special case, a null chain means that a tail call has been emitted 5248 // and the DAG root is already updated. 5249 HasTailCall = true; 5250 5251 // Since there's no actual continuation from this block, nothing can be 5252 // relying on us setting vregs for them. 5253 PendingExports.clear(); 5254 } else { 5255 DAG.setRoot(Result.second); 5256 } 5257 5258 if (EHPadBB) { 5259 // Insert a label at the end of the invoke call to mark the try range. This 5260 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5261 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5262 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5263 5264 // Inform MachineModuleInfo of range. 5265 if (MMI.hasEHFunclets()) { 5266 WinEHFuncInfo &EHInfo = 5267 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5268 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5269 } else { 5270 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5271 } 5272 } 5273 5274 return Result; 5275 } 5276 5277 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5278 bool isTailCall, 5279 const BasicBlock *EHPadBB) { 5280 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5281 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5282 Type *RetTy = FTy->getReturnType(); 5283 5284 TargetLowering::ArgListTy Args; 5285 TargetLowering::ArgListEntry Entry; 5286 Args.reserve(CS.arg_size()); 5287 5288 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5289 i != e; ++i) { 5290 const Value *V = *i; 5291 5292 // Skip empty types 5293 if (V->getType()->isEmptyTy()) 5294 continue; 5295 5296 SDValue ArgNode = getValue(V); 5297 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5298 5299 // Skip the first return-type Attribute to get to params. 5300 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5301 Args.push_back(Entry); 5302 5303 // If we have an explicit sret argument that is an Instruction, (i.e., it 5304 // might point to function-local memory), we can't meaningfully tail-call. 5305 if (Entry.isSRet && isa<Instruction>(V)) 5306 isTailCall = false; 5307 } 5308 5309 // Check if target-independent constraints permit a tail call here. 5310 // Target-dependent constraints are checked within TLI->LowerCallTo. 5311 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5312 isTailCall = false; 5313 5314 TargetLowering::CallLoweringInfo CLI(DAG); 5315 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5316 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5317 .setTailCall(isTailCall); 5318 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5319 5320 if (Result.first.getNode()) 5321 setValue(CS.getInstruction(), Result.first); 5322 } 5323 5324 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5325 /// value is equal or not-equal to zero. 5326 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5327 for (const User *U : V->users()) { 5328 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5329 if (IC->isEquality()) 5330 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5331 if (C->isNullValue()) 5332 continue; 5333 // Unknown instruction. 5334 return false; 5335 } 5336 return true; 5337 } 5338 5339 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5340 Type *LoadTy, 5341 SelectionDAGBuilder &Builder) { 5342 5343 // Check to see if this load can be trivially constant folded, e.g. if the 5344 // input is from a string literal. 5345 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5346 // Cast pointer to the type we really want to load. 5347 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5348 PointerType::getUnqual(LoadTy)); 5349 5350 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5351 const_cast<Constant *>(LoadInput), *Builder.DL)) 5352 return Builder.getValue(LoadCst); 5353 } 5354 5355 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5356 // still constant memory, the input chain can be the entry node. 5357 SDValue Root; 5358 bool ConstantMemory = false; 5359 5360 // Do not serialize (non-volatile) loads of constant memory with anything. 5361 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5362 Root = Builder.DAG.getEntryNode(); 5363 ConstantMemory = true; 5364 } else { 5365 // Do not serialize non-volatile loads against each other. 5366 Root = Builder.DAG.getRoot(); 5367 } 5368 5369 SDValue Ptr = Builder.getValue(PtrVal); 5370 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5371 Ptr, MachinePointerInfo(PtrVal), 5372 false /*volatile*/, 5373 false /*nontemporal*/, 5374 false /*isinvariant*/, 1 /* align=1 */); 5375 5376 if (!ConstantMemory) 5377 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5378 return LoadVal; 5379 } 5380 5381 /// processIntegerCallValue - Record the value for an instruction that 5382 /// produces an integer result, converting the type where necessary. 5383 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5384 SDValue Value, 5385 bool IsSigned) { 5386 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5387 I.getType(), true); 5388 if (IsSigned) 5389 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5390 else 5391 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5392 setValue(&I, Value); 5393 } 5394 5395 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5396 /// If so, return true and lower it, otherwise return false and it will be 5397 /// lowered like a normal call. 5398 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5399 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5400 if (I.getNumArgOperands() != 3) 5401 return false; 5402 5403 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5404 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5405 !I.getArgOperand(2)->getType()->isIntegerTy() || 5406 !I.getType()->isIntegerTy()) 5407 return false; 5408 5409 const Value *Size = I.getArgOperand(2); 5410 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5411 if (CSize && CSize->getZExtValue() == 0) { 5412 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5413 I.getType(), true); 5414 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5415 return true; 5416 } 5417 5418 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5419 std::pair<SDValue, SDValue> Res = 5420 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5421 getValue(LHS), getValue(RHS), getValue(Size), 5422 MachinePointerInfo(LHS), 5423 MachinePointerInfo(RHS)); 5424 if (Res.first.getNode()) { 5425 processIntegerCallValue(I, Res.first, true); 5426 PendingLoads.push_back(Res.second); 5427 return true; 5428 } 5429 5430 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5431 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5432 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5433 bool ActuallyDoIt = true; 5434 MVT LoadVT; 5435 Type *LoadTy; 5436 switch (CSize->getZExtValue()) { 5437 default: 5438 LoadVT = MVT::Other; 5439 LoadTy = nullptr; 5440 ActuallyDoIt = false; 5441 break; 5442 case 2: 5443 LoadVT = MVT::i16; 5444 LoadTy = Type::getInt16Ty(CSize->getContext()); 5445 break; 5446 case 4: 5447 LoadVT = MVT::i32; 5448 LoadTy = Type::getInt32Ty(CSize->getContext()); 5449 break; 5450 case 8: 5451 LoadVT = MVT::i64; 5452 LoadTy = Type::getInt64Ty(CSize->getContext()); 5453 break; 5454 /* 5455 case 16: 5456 LoadVT = MVT::v4i32; 5457 LoadTy = Type::getInt32Ty(CSize->getContext()); 5458 LoadTy = VectorType::get(LoadTy, 4); 5459 break; 5460 */ 5461 } 5462 5463 // This turns into unaligned loads. We only do this if the target natively 5464 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5465 // we'll only produce a small number of byte loads. 5466 5467 // Require that we can find a legal MVT, and only do this if the target 5468 // supports unaligned loads of that type. Expanding into byte loads would 5469 // bloat the code. 5470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5471 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5472 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5473 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5474 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5475 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5476 // TODO: Check alignment of src and dest ptrs. 5477 if (!TLI.isTypeLegal(LoadVT) || 5478 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5479 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5480 ActuallyDoIt = false; 5481 } 5482 5483 if (ActuallyDoIt) { 5484 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5485 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5486 5487 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5488 ISD::SETNE); 5489 processIntegerCallValue(I, Res, false); 5490 return true; 5491 } 5492 } 5493 5494 5495 return false; 5496 } 5497 5498 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5499 /// form. If so, return true and lower it, otherwise return false and it 5500 /// will be lowered like a normal call. 5501 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5502 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5503 if (I.getNumArgOperands() != 3) 5504 return false; 5505 5506 const Value *Src = I.getArgOperand(0); 5507 const Value *Char = I.getArgOperand(1); 5508 const Value *Length = I.getArgOperand(2); 5509 if (!Src->getType()->isPointerTy() || 5510 !Char->getType()->isIntegerTy() || 5511 !Length->getType()->isIntegerTy() || 5512 !I.getType()->isPointerTy()) 5513 return false; 5514 5515 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5516 std::pair<SDValue, SDValue> Res = 5517 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5518 getValue(Src), getValue(Char), getValue(Length), 5519 MachinePointerInfo(Src)); 5520 if (Res.first.getNode()) { 5521 setValue(&I, Res.first); 5522 PendingLoads.push_back(Res.second); 5523 return true; 5524 } 5525 5526 return false; 5527 } 5528 5529 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5530 /// optimized form. If so, return true and lower it, otherwise return false 5531 /// and it will be lowered like a normal call. 5532 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5533 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5534 if (I.getNumArgOperands() != 2) 5535 return false; 5536 5537 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5538 if (!Arg0->getType()->isPointerTy() || 5539 !Arg1->getType()->isPointerTy() || 5540 !I.getType()->isPointerTy()) 5541 return false; 5542 5543 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5544 std::pair<SDValue, SDValue> Res = 5545 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5546 getValue(Arg0), getValue(Arg1), 5547 MachinePointerInfo(Arg0), 5548 MachinePointerInfo(Arg1), isStpcpy); 5549 if (Res.first.getNode()) { 5550 setValue(&I, Res.first); 5551 DAG.setRoot(Res.second); 5552 return true; 5553 } 5554 5555 return false; 5556 } 5557 5558 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5559 /// If so, return true and lower it, otherwise return false and it will be 5560 /// lowered like a normal call. 5561 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5562 // Verify that the prototype makes sense. int strcmp(void*,void*) 5563 if (I.getNumArgOperands() != 2) 5564 return false; 5565 5566 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5567 if (!Arg0->getType()->isPointerTy() || 5568 !Arg1->getType()->isPointerTy() || 5569 !I.getType()->isIntegerTy()) 5570 return false; 5571 5572 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5573 std::pair<SDValue, SDValue> Res = 5574 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5575 getValue(Arg0), getValue(Arg1), 5576 MachinePointerInfo(Arg0), 5577 MachinePointerInfo(Arg1)); 5578 if (Res.first.getNode()) { 5579 processIntegerCallValue(I, Res.first, true); 5580 PendingLoads.push_back(Res.second); 5581 return true; 5582 } 5583 5584 return false; 5585 } 5586 5587 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5588 /// form. If so, return true and lower it, otherwise return false and it 5589 /// will be lowered like a normal call. 5590 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5591 // Verify that the prototype makes sense. size_t strlen(char *) 5592 if (I.getNumArgOperands() != 1) 5593 return false; 5594 5595 const Value *Arg0 = I.getArgOperand(0); 5596 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5597 return false; 5598 5599 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5600 std::pair<SDValue, SDValue> Res = 5601 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5602 getValue(Arg0), MachinePointerInfo(Arg0)); 5603 if (Res.first.getNode()) { 5604 processIntegerCallValue(I, Res.first, false); 5605 PendingLoads.push_back(Res.second); 5606 return true; 5607 } 5608 5609 return false; 5610 } 5611 5612 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5613 /// form. If so, return true and lower it, otherwise return false and it 5614 /// will be lowered like a normal call. 5615 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5616 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5617 if (I.getNumArgOperands() != 2) 5618 return false; 5619 5620 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5621 if (!Arg0->getType()->isPointerTy() || 5622 !Arg1->getType()->isIntegerTy() || 5623 !I.getType()->isIntegerTy()) 5624 return false; 5625 5626 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5627 std::pair<SDValue, SDValue> Res = 5628 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5629 getValue(Arg0), getValue(Arg1), 5630 MachinePointerInfo(Arg0)); 5631 if (Res.first.getNode()) { 5632 processIntegerCallValue(I, Res.first, false); 5633 PendingLoads.push_back(Res.second); 5634 return true; 5635 } 5636 5637 return false; 5638 } 5639 5640 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5641 /// operation (as expected), translate it to an SDNode with the specified opcode 5642 /// and return true. 5643 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5644 unsigned Opcode) { 5645 // Sanity check that it really is a unary floating-point call. 5646 if (I.getNumArgOperands() != 1 || 5647 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5648 I.getType() != I.getArgOperand(0)->getType() || 5649 !I.onlyReadsMemory()) 5650 return false; 5651 5652 SDValue Tmp = getValue(I.getArgOperand(0)); 5653 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5654 return true; 5655 } 5656 5657 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5658 /// operation (as expected), translate it to an SDNode with the specified opcode 5659 /// and return true. 5660 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5661 unsigned Opcode) { 5662 // Sanity check that it really is a binary floating-point call. 5663 if (I.getNumArgOperands() != 2 || 5664 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5665 I.getType() != I.getArgOperand(0)->getType() || 5666 I.getType() != I.getArgOperand(1)->getType() || 5667 !I.onlyReadsMemory()) 5668 return false; 5669 5670 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5671 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5672 EVT VT = Tmp0.getValueType(); 5673 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5674 return true; 5675 } 5676 5677 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5678 // Handle inline assembly differently. 5679 if (isa<InlineAsm>(I.getCalledValue())) { 5680 visitInlineAsm(&I); 5681 return; 5682 } 5683 5684 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5685 ComputeUsesVAFloatArgument(I, &MMI); 5686 5687 const char *RenameFn = nullptr; 5688 if (Function *F = I.getCalledFunction()) { 5689 if (F->isDeclaration()) { 5690 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5691 if (unsigned IID = II->getIntrinsicID(F)) { 5692 RenameFn = visitIntrinsicCall(I, IID); 5693 if (!RenameFn) 5694 return; 5695 } 5696 } 5697 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5698 RenameFn = visitIntrinsicCall(I, IID); 5699 if (!RenameFn) 5700 return; 5701 } 5702 } 5703 5704 // Check for well-known libc/libm calls. If the function is internal, it 5705 // can't be a library call. 5706 LibFunc::Func Func; 5707 if (!F->hasLocalLinkage() && F->hasName() && 5708 LibInfo->getLibFunc(F->getName(), Func) && 5709 LibInfo->hasOptimizedCodeGen(Func)) { 5710 switch (Func) { 5711 default: break; 5712 case LibFunc::copysign: 5713 case LibFunc::copysignf: 5714 case LibFunc::copysignl: 5715 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5716 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5717 I.getType() == I.getArgOperand(0)->getType() && 5718 I.getType() == I.getArgOperand(1)->getType() && 5719 I.onlyReadsMemory()) { 5720 SDValue LHS = getValue(I.getArgOperand(0)); 5721 SDValue RHS = getValue(I.getArgOperand(1)); 5722 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5723 LHS.getValueType(), LHS, RHS)); 5724 return; 5725 } 5726 break; 5727 case LibFunc::fabs: 5728 case LibFunc::fabsf: 5729 case LibFunc::fabsl: 5730 if (visitUnaryFloatCall(I, ISD::FABS)) 5731 return; 5732 break; 5733 case LibFunc::fmin: 5734 case LibFunc::fminf: 5735 case LibFunc::fminl: 5736 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5737 return; 5738 break; 5739 case LibFunc::fmax: 5740 case LibFunc::fmaxf: 5741 case LibFunc::fmaxl: 5742 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5743 return; 5744 break; 5745 case LibFunc::sin: 5746 case LibFunc::sinf: 5747 case LibFunc::sinl: 5748 if (visitUnaryFloatCall(I, ISD::FSIN)) 5749 return; 5750 break; 5751 case LibFunc::cos: 5752 case LibFunc::cosf: 5753 case LibFunc::cosl: 5754 if (visitUnaryFloatCall(I, ISD::FCOS)) 5755 return; 5756 break; 5757 case LibFunc::sqrt: 5758 case LibFunc::sqrtf: 5759 case LibFunc::sqrtl: 5760 case LibFunc::sqrt_finite: 5761 case LibFunc::sqrtf_finite: 5762 case LibFunc::sqrtl_finite: 5763 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5764 return; 5765 break; 5766 case LibFunc::floor: 5767 case LibFunc::floorf: 5768 case LibFunc::floorl: 5769 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5770 return; 5771 break; 5772 case LibFunc::nearbyint: 5773 case LibFunc::nearbyintf: 5774 case LibFunc::nearbyintl: 5775 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5776 return; 5777 break; 5778 case LibFunc::ceil: 5779 case LibFunc::ceilf: 5780 case LibFunc::ceill: 5781 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5782 return; 5783 break; 5784 case LibFunc::rint: 5785 case LibFunc::rintf: 5786 case LibFunc::rintl: 5787 if (visitUnaryFloatCall(I, ISD::FRINT)) 5788 return; 5789 break; 5790 case LibFunc::round: 5791 case LibFunc::roundf: 5792 case LibFunc::roundl: 5793 if (visitUnaryFloatCall(I, ISD::FROUND)) 5794 return; 5795 break; 5796 case LibFunc::trunc: 5797 case LibFunc::truncf: 5798 case LibFunc::truncl: 5799 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5800 return; 5801 break; 5802 case LibFunc::log2: 5803 case LibFunc::log2f: 5804 case LibFunc::log2l: 5805 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5806 return; 5807 break; 5808 case LibFunc::exp2: 5809 case LibFunc::exp2f: 5810 case LibFunc::exp2l: 5811 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5812 return; 5813 break; 5814 case LibFunc::memcmp: 5815 if (visitMemCmpCall(I)) 5816 return; 5817 break; 5818 case LibFunc::memchr: 5819 if (visitMemChrCall(I)) 5820 return; 5821 break; 5822 case LibFunc::strcpy: 5823 if (visitStrCpyCall(I, false)) 5824 return; 5825 break; 5826 case LibFunc::stpcpy: 5827 if (visitStrCpyCall(I, true)) 5828 return; 5829 break; 5830 case LibFunc::strcmp: 5831 if (visitStrCmpCall(I)) 5832 return; 5833 break; 5834 case LibFunc::strlen: 5835 if (visitStrLenCall(I)) 5836 return; 5837 break; 5838 case LibFunc::strnlen: 5839 if (visitStrNLenCall(I)) 5840 return; 5841 break; 5842 } 5843 } 5844 } 5845 5846 SDValue Callee; 5847 if (!RenameFn) 5848 Callee = getValue(I.getCalledValue()); 5849 else 5850 Callee = DAG.getExternalSymbol( 5851 RenameFn, 5852 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5853 5854 // Check if we can potentially perform a tail call. More detailed checking is 5855 // be done within LowerCallTo, after more information about the call is known. 5856 LowerCallTo(&I, Callee, I.isTailCall()); 5857 } 5858 5859 namespace { 5860 5861 /// AsmOperandInfo - This contains information for each constraint that we are 5862 /// lowering. 5863 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5864 public: 5865 /// CallOperand - If this is the result output operand or a clobber 5866 /// this is null, otherwise it is the incoming operand to the CallInst. 5867 /// This gets modified as the asm is processed. 5868 SDValue CallOperand; 5869 5870 /// AssignedRegs - If this is a register or register class operand, this 5871 /// contains the set of register corresponding to the operand. 5872 RegsForValue AssignedRegs; 5873 5874 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5875 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5876 } 5877 5878 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5879 /// corresponds to. If there is no Value* for this operand, it returns 5880 /// MVT::Other. 5881 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5882 const DataLayout &DL) const { 5883 if (!CallOperandVal) return MVT::Other; 5884 5885 if (isa<BasicBlock>(CallOperandVal)) 5886 return TLI.getPointerTy(DL); 5887 5888 llvm::Type *OpTy = CallOperandVal->getType(); 5889 5890 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5891 // If this is an indirect operand, the operand is a pointer to the 5892 // accessed type. 5893 if (isIndirect) { 5894 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5895 if (!PtrTy) 5896 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5897 OpTy = PtrTy->getElementType(); 5898 } 5899 5900 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5901 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5902 if (STy->getNumElements() == 1) 5903 OpTy = STy->getElementType(0); 5904 5905 // If OpTy is not a single value, it may be a struct/union that we 5906 // can tile with integers. 5907 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5908 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5909 switch (BitSize) { 5910 default: break; 5911 case 1: 5912 case 8: 5913 case 16: 5914 case 32: 5915 case 64: 5916 case 128: 5917 OpTy = IntegerType::get(Context, BitSize); 5918 break; 5919 } 5920 } 5921 5922 return TLI.getValueType(DL, OpTy, true); 5923 } 5924 }; 5925 5926 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5927 5928 } // end anonymous namespace 5929 5930 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5931 /// specified operand. We prefer to assign virtual registers, to allow the 5932 /// register allocator to handle the assignment process. However, if the asm 5933 /// uses features that we can't model on machineinstrs, we have SDISel do the 5934 /// allocation. This produces generally horrible, but correct, code. 5935 /// 5936 /// OpInfo describes the operand. 5937 /// 5938 static void GetRegistersForValue(SelectionDAG &DAG, 5939 const TargetLowering &TLI, 5940 SDLoc DL, 5941 SDISelAsmOperandInfo &OpInfo) { 5942 LLVMContext &Context = *DAG.getContext(); 5943 5944 MachineFunction &MF = DAG.getMachineFunction(); 5945 SmallVector<unsigned, 4> Regs; 5946 5947 // If this is a constraint for a single physreg, or a constraint for a 5948 // register class, find it. 5949 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5950 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5951 OpInfo.ConstraintCode, 5952 OpInfo.ConstraintVT); 5953 5954 unsigned NumRegs = 1; 5955 if (OpInfo.ConstraintVT != MVT::Other) { 5956 // If this is a FP input in an integer register (or visa versa) insert a bit 5957 // cast of the input value. More generally, handle any case where the input 5958 // value disagrees with the register class we plan to stick this in. 5959 if (OpInfo.Type == InlineAsm::isInput && 5960 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5961 // Try to convert to the first EVT that the reg class contains. If the 5962 // types are identical size, use a bitcast to convert (e.g. two differing 5963 // vector types). 5964 MVT RegVT = *PhysReg.second->vt_begin(); 5965 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5966 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5967 RegVT, OpInfo.CallOperand); 5968 OpInfo.ConstraintVT = RegVT; 5969 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5970 // If the input is a FP value and we want it in FP registers, do a 5971 // bitcast to the corresponding integer type. This turns an f64 value 5972 // into i64, which can be passed with two i32 values on a 32-bit 5973 // machine. 5974 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5975 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5976 RegVT, OpInfo.CallOperand); 5977 OpInfo.ConstraintVT = RegVT; 5978 } 5979 } 5980 5981 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5982 } 5983 5984 MVT RegVT; 5985 EVT ValueVT = OpInfo.ConstraintVT; 5986 5987 // If this is a constraint for a specific physical register, like {r17}, 5988 // assign it now. 5989 if (unsigned AssignedReg = PhysReg.first) { 5990 const TargetRegisterClass *RC = PhysReg.second; 5991 if (OpInfo.ConstraintVT == MVT::Other) 5992 ValueVT = *RC->vt_begin(); 5993 5994 // Get the actual register value type. This is important, because the user 5995 // may have asked for (e.g.) the AX register in i32 type. We need to 5996 // remember that AX is actually i16 to get the right extension. 5997 RegVT = *RC->vt_begin(); 5998 5999 // This is a explicit reference to a physical register. 6000 Regs.push_back(AssignedReg); 6001 6002 // If this is an expanded reference, add the rest of the regs to Regs. 6003 if (NumRegs != 1) { 6004 TargetRegisterClass::iterator I = RC->begin(); 6005 for (; *I != AssignedReg; ++I) 6006 assert(I != RC->end() && "Didn't find reg!"); 6007 6008 // Already added the first reg. 6009 --NumRegs; ++I; 6010 for (; NumRegs; --NumRegs, ++I) { 6011 assert(I != RC->end() && "Ran out of registers to allocate!"); 6012 Regs.push_back(*I); 6013 } 6014 } 6015 6016 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6017 return; 6018 } 6019 6020 // Otherwise, if this was a reference to an LLVM register class, create vregs 6021 // for this reference. 6022 if (const TargetRegisterClass *RC = PhysReg.second) { 6023 RegVT = *RC->vt_begin(); 6024 if (OpInfo.ConstraintVT == MVT::Other) 6025 ValueVT = RegVT; 6026 6027 // Create the appropriate number of virtual registers. 6028 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6029 for (; NumRegs; --NumRegs) 6030 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6031 6032 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6033 return; 6034 } 6035 6036 // Otherwise, we couldn't allocate enough registers for this. 6037 } 6038 6039 /// visitInlineAsm - Handle a call to an InlineAsm object. 6040 /// 6041 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6042 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6043 6044 /// ConstraintOperands - Information about all of the constraints. 6045 SDISelAsmOperandInfoVector ConstraintOperands; 6046 6047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6048 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6049 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6050 6051 bool hasMemory = false; 6052 6053 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6054 unsigned ResNo = 0; // ResNo - The result number of the next output. 6055 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6056 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6057 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6058 6059 MVT OpVT = MVT::Other; 6060 6061 // Compute the value type for each operand. 6062 switch (OpInfo.Type) { 6063 case InlineAsm::isOutput: 6064 // Indirect outputs just consume an argument. 6065 if (OpInfo.isIndirect) { 6066 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6067 break; 6068 } 6069 6070 // The return value of the call is this value. As such, there is no 6071 // corresponding argument. 6072 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6073 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6074 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6075 STy->getElementType(ResNo)); 6076 } else { 6077 assert(ResNo == 0 && "Asm only has one result!"); 6078 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6079 } 6080 ++ResNo; 6081 break; 6082 case InlineAsm::isInput: 6083 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6084 break; 6085 case InlineAsm::isClobber: 6086 // Nothing to do. 6087 break; 6088 } 6089 6090 // If this is an input or an indirect output, process the call argument. 6091 // BasicBlocks are labels, currently appearing only in asm's. 6092 if (OpInfo.CallOperandVal) { 6093 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6094 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6095 } else { 6096 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6097 } 6098 6099 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6100 DAG.getDataLayout()).getSimpleVT(); 6101 } 6102 6103 OpInfo.ConstraintVT = OpVT; 6104 6105 // Indirect operand accesses access memory. 6106 if (OpInfo.isIndirect) 6107 hasMemory = true; 6108 else { 6109 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6110 TargetLowering::ConstraintType 6111 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6112 if (CType == TargetLowering::C_Memory) { 6113 hasMemory = true; 6114 break; 6115 } 6116 } 6117 } 6118 } 6119 6120 SDValue Chain, Flag; 6121 6122 // We won't need to flush pending loads if this asm doesn't touch 6123 // memory and is nonvolatile. 6124 if (hasMemory || IA->hasSideEffects()) 6125 Chain = getRoot(); 6126 else 6127 Chain = DAG.getRoot(); 6128 6129 // Second pass over the constraints: compute which constraint option to use 6130 // and assign registers to constraints that want a specific physreg. 6131 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6132 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6133 6134 // If this is an output operand with a matching input operand, look up the 6135 // matching input. If their types mismatch, e.g. one is an integer, the 6136 // other is floating point, or their sizes are different, flag it as an 6137 // error. 6138 if (OpInfo.hasMatchingInput()) { 6139 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6140 6141 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6142 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6143 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6144 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6145 OpInfo.ConstraintVT); 6146 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6147 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6148 Input.ConstraintVT); 6149 if ((OpInfo.ConstraintVT.isInteger() != 6150 Input.ConstraintVT.isInteger()) || 6151 (MatchRC.second != InputRC.second)) { 6152 report_fatal_error("Unsupported asm: input constraint" 6153 " with a matching output constraint of" 6154 " incompatible type!"); 6155 } 6156 Input.ConstraintVT = OpInfo.ConstraintVT; 6157 } 6158 } 6159 6160 // Compute the constraint code and ConstraintType to use. 6161 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6162 6163 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6164 OpInfo.Type == InlineAsm::isClobber) 6165 continue; 6166 6167 // If this is a memory input, and if the operand is not indirect, do what we 6168 // need to to provide an address for the memory input. 6169 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6170 !OpInfo.isIndirect) { 6171 assert((OpInfo.isMultipleAlternative || 6172 (OpInfo.Type == InlineAsm::isInput)) && 6173 "Can only indirectify direct input operands!"); 6174 6175 // Memory operands really want the address of the value. If we don't have 6176 // an indirect input, put it in the constpool if we can, otherwise spill 6177 // it to a stack slot. 6178 // TODO: This isn't quite right. We need to handle these according to 6179 // the addressing mode that the constraint wants. Also, this may take 6180 // an additional register for the computation and we don't want that 6181 // either. 6182 6183 // If the operand is a float, integer, or vector constant, spill to a 6184 // constant pool entry to get its address. 6185 const Value *OpVal = OpInfo.CallOperandVal; 6186 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6187 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6188 OpInfo.CallOperand = DAG.getConstantPool( 6189 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6190 } else { 6191 // Otherwise, create a stack slot and emit a store to it before the 6192 // asm. 6193 Type *Ty = OpVal->getType(); 6194 auto &DL = DAG.getDataLayout(); 6195 uint64_t TySize = DL.getTypeAllocSize(Ty); 6196 unsigned Align = DL.getPrefTypeAlignment(Ty); 6197 MachineFunction &MF = DAG.getMachineFunction(); 6198 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6199 SDValue StackSlot = 6200 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6201 Chain = DAG.getStore( 6202 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6203 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6204 false, false, 0); 6205 OpInfo.CallOperand = StackSlot; 6206 } 6207 6208 // There is no longer a Value* corresponding to this operand. 6209 OpInfo.CallOperandVal = nullptr; 6210 6211 // It is now an indirect operand. 6212 OpInfo.isIndirect = true; 6213 } 6214 6215 // If this constraint is for a specific register, allocate it before 6216 // anything else. 6217 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6218 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6219 } 6220 6221 // Second pass - Loop over all of the operands, assigning virtual or physregs 6222 // to register class operands. 6223 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6224 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6225 6226 // C_Register operands have already been allocated, Other/Memory don't need 6227 // to be. 6228 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6229 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6230 } 6231 6232 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6233 std::vector<SDValue> AsmNodeOperands; 6234 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6235 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6236 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6237 6238 // If we have a !srcloc metadata node associated with it, we want to attach 6239 // this to the ultimately generated inline asm machineinstr. To do this, we 6240 // pass in the third operand as this (potentially null) inline asm MDNode. 6241 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6242 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6243 6244 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6245 // bits as operand 3. 6246 unsigned ExtraInfo = 0; 6247 if (IA->hasSideEffects()) 6248 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6249 if (IA->isAlignStack()) 6250 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6251 // Set the asm dialect. 6252 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6253 6254 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6255 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6256 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6257 6258 // Compute the constraint code and ConstraintType to use. 6259 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6260 6261 // Ideally, we would only check against memory constraints. However, the 6262 // meaning of an other constraint can be target-specific and we can't easily 6263 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6264 // for other constriants as well. 6265 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6266 OpInfo.ConstraintType == TargetLowering::C_Other) { 6267 if (OpInfo.Type == InlineAsm::isInput) 6268 ExtraInfo |= InlineAsm::Extra_MayLoad; 6269 else if (OpInfo.Type == InlineAsm::isOutput) 6270 ExtraInfo |= InlineAsm::Extra_MayStore; 6271 else if (OpInfo.Type == InlineAsm::isClobber) 6272 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6273 } 6274 } 6275 6276 AsmNodeOperands.push_back(DAG.getTargetConstant( 6277 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6278 6279 // Loop over all of the inputs, copying the operand values into the 6280 // appropriate registers and processing the output regs. 6281 RegsForValue RetValRegs; 6282 6283 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6284 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6285 6286 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6287 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6288 6289 switch (OpInfo.Type) { 6290 case InlineAsm::isOutput: { 6291 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6292 OpInfo.ConstraintType != TargetLowering::C_Register) { 6293 // Memory output, or 'other' output (e.g. 'X' constraint). 6294 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6295 6296 unsigned ConstraintID = 6297 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6298 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6299 "Failed to convert memory constraint code to constraint id."); 6300 6301 // Add information to the INLINEASM node to know about this output. 6302 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6303 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6304 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6305 MVT::i32)); 6306 AsmNodeOperands.push_back(OpInfo.CallOperand); 6307 break; 6308 } 6309 6310 // Otherwise, this is a register or register class output. 6311 6312 // Copy the output from the appropriate register. Find a register that 6313 // we can use. 6314 if (OpInfo.AssignedRegs.Regs.empty()) { 6315 LLVMContext &Ctx = *DAG.getContext(); 6316 Ctx.emitError(CS.getInstruction(), 6317 "couldn't allocate output register for constraint '" + 6318 Twine(OpInfo.ConstraintCode) + "'"); 6319 return; 6320 } 6321 6322 // If this is an indirect operand, store through the pointer after the 6323 // asm. 6324 if (OpInfo.isIndirect) { 6325 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6326 OpInfo.CallOperandVal)); 6327 } else { 6328 // This is the result value of the call. 6329 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6330 // Concatenate this output onto the outputs list. 6331 RetValRegs.append(OpInfo.AssignedRegs); 6332 } 6333 6334 // Add information to the INLINEASM node to know that this register is 6335 // set. 6336 OpInfo.AssignedRegs 6337 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6338 ? InlineAsm::Kind_RegDefEarlyClobber 6339 : InlineAsm::Kind_RegDef, 6340 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6341 break; 6342 } 6343 case InlineAsm::isInput: { 6344 SDValue InOperandVal = OpInfo.CallOperand; 6345 6346 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6347 // If this is required to match an output register we have already set, 6348 // just use its register. 6349 unsigned OperandNo = OpInfo.getMatchedOperand(); 6350 6351 // Scan until we find the definition we already emitted of this operand. 6352 // When we find it, create a RegsForValue operand. 6353 unsigned CurOp = InlineAsm::Op_FirstOperand; 6354 for (; OperandNo; --OperandNo) { 6355 // Advance to the next operand. 6356 unsigned OpFlag = 6357 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6358 assert((InlineAsm::isRegDefKind(OpFlag) || 6359 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6360 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6361 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6362 } 6363 6364 unsigned OpFlag = 6365 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6366 if (InlineAsm::isRegDefKind(OpFlag) || 6367 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6368 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6369 if (OpInfo.isIndirect) { 6370 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6371 LLVMContext &Ctx = *DAG.getContext(); 6372 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6373 " don't know how to handle tied " 6374 "indirect register inputs"); 6375 return; 6376 } 6377 6378 RegsForValue MatchedRegs; 6379 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6380 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6381 MatchedRegs.RegVTs.push_back(RegVT); 6382 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6383 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6384 i != e; ++i) { 6385 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6386 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6387 else { 6388 LLVMContext &Ctx = *DAG.getContext(); 6389 Ctx.emitError(CS.getInstruction(), 6390 "inline asm error: This value" 6391 " type register class is not natively supported!"); 6392 return; 6393 } 6394 } 6395 SDLoc dl = getCurSDLoc(); 6396 // Use the produced MatchedRegs object to 6397 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6398 Chain, &Flag, CS.getInstruction()); 6399 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6400 true, OpInfo.getMatchedOperand(), dl, 6401 DAG, AsmNodeOperands); 6402 break; 6403 } 6404 6405 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6406 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6407 "Unexpected number of operands"); 6408 // Add information to the INLINEASM node to know about this input. 6409 // See InlineAsm.h isUseOperandTiedToDef. 6410 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6411 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6412 OpInfo.getMatchedOperand()); 6413 AsmNodeOperands.push_back(DAG.getTargetConstant( 6414 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6415 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6416 break; 6417 } 6418 6419 // Treat indirect 'X' constraint as memory. 6420 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6421 OpInfo.isIndirect) 6422 OpInfo.ConstraintType = TargetLowering::C_Memory; 6423 6424 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6425 std::vector<SDValue> Ops; 6426 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6427 Ops, DAG); 6428 if (Ops.empty()) { 6429 LLVMContext &Ctx = *DAG.getContext(); 6430 Ctx.emitError(CS.getInstruction(), 6431 "invalid operand for inline asm constraint '" + 6432 Twine(OpInfo.ConstraintCode) + "'"); 6433 return; 6434 } 6435 6436 // Add information to the INLINEASM node to know about this input. 6437 unsigned ResOpType = 6438 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6439 AsmNodeOperands.push_back(DAG.getTargetConstant( 6440 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6441 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6442 break; 6443 } 6444 6445 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6446 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6447 assert(InOperandVal.getValueType() == 6448 TLI.getPointerTy(DAG.getDataLayout()) && 6449 "Memory operands expect pointer values"); 6450 6451 unsigned ConstraintID = 6452 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6453 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6454 "Failed to convert memory constraint code to constraint id."); 6455 6456 // Add information to the INLINEASM node to know about this input. 6457 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6458 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6459 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6460 getCurSDLoc(), 6461 MVT::i32)); 6462 AsmNodeOperands.push_back(InOperandVal); 6463 break; 6464 } 6465 6466 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6467 OpInfo.ConstraintType == TargetLowering::C_Register) && 6468 "Unknown constraint type!"); 6469 6470 // TODO: Support this. 6471 if (OpInfo.isIndirect) { 6472 LLVMContext &Ctx = *DAG.getContext(); 6473 Ctx.emitError(CS.getInstruction(), 6474 "Don't know how to handle indirect register inputs yet " 6475 "for constraint '" + 6476 Twine(OpInfo.ConstraintCode) + "'"); 6477 return; 6478 } 6479 6480 // Copy the input into the appropriate registers. 6481 if (OpInfo.AssignedRegs.Regs.empty()) { 6482 LLVMContext &Ctx = *DAG.getContext(); 6483 Ctx.emitError(CS.getInstruction(), 6484 "couldn't allocate input reg for constraint '" + 6485 Twine(OpInfo.ConstraintCode) + "'"); 6486 return; 6487 } 6488 6489 SDLoc dl = getCurSDLoc(); 6490 6491 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6492 Chain, &Flag, CS.getInstruction()); 6493 6494 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6495 dl, DAG, AsmNodeOperands); 6496 break; 6497 } 6498 case InlineAsm::isClobber: { 6499 // Add the clobbered value to the operand list, so that the register 6500 // allocator is aware that the physreg got clobbered. 6501 if (!OpInfo.AssignedRegs.Regs.empty()) 6502 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6503 false, 0, getCurSDLoc(), DAG, 6504 AsmNodeOperands); 6505 break; 6506 } 6507 } 6508 } 6509 6510 // Finish up input operands. Set the input chain and add the flag last. 6511 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6512 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6513 6514 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6515 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6516 Flag = Chain.getValue(1); 6517 6518 // If this asm returns a register value, copy the result from that register 6519 // and set it as the value of the call. 6520 if (!RetValRegs.Regs.empty()) { 6521 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6522 Chain, &Flag, CS.getInstruction()); 6523 6524 // FIXME: Why don't we do this for inline asms with MRVs? 6525 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6526 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6527 6528 // If any of the results of the inline asm is a vector, it may have the 6529 // wrong width/num elts. This can happen for register classes that can 6530 // contain multiple different value types. The preg or vreg allocated may 6531 // not have the same VT as was expected. Convert it to the right type 6532 // with bit_convert. 6533 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6534 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6535 ResultType, Val); 6536 6537 } else if (ResultType != Val.getValueType() && 6538 ResultType.isInteger() && Val.getValueType().isInteger()) { 6539 // If a result value was tied to an input value, the computed result may 6540 // have a wider width than the expected result. Extract the relevant 6541 // portion. 6542 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6543 } 6544 6545 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6546 } 6547 6548 setValue(CS.getInstruction(), Val); 6549 // Don't need to use this as a chain in this case. 6550 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6551 return; 6552 } 6553 6554 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6555 6556 // Process indirect outputs, first output all of the flagged copies out of 6557 // physregs. 6558 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6559 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6560 const Value *Ptr = IndirectStoresToEmit[i].second; 6561 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6562 Chain, &Flag, IA); 6563 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6564 } 6565 6566 // Emit the non-flagged stores from the physregs. 6567 SmallVector<SDValue, 8> OutChains; 6568 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6569 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6570 StoresToEmit[i].first, 6571 getValue(StoresToEmit[i].second), 6572 MachinePointerInfo(StoresToEmit[i].second), 6573 false, false, 0); 6574 OutChains.push_back(Val); 6575 } 6576 6577 if (!OutChains.empty()) 6578 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6579 6580 DAG.setRoot(Chain); 6581 } 6582 6583 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6584 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6585 MVT::Other, getRoot(), 6586 getValue(I.getArgOperand(0)), 6587 DAG.getSrcValue(I.getArgOperand(0)))); 6588 } 6589 6590 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6591 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6592 const DataLayout &DL = DAG.getDataLayout(); 6593 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6594 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6595 DAG.getSrcValue(I.getOperand(0)), 6596 DL.getABITypeAlignment(I.getType())); 6597 setValue(&I, V); 6598 DAG.setRoot(V.getValue(1)); 6599 } 6600 6601 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6602 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6603 MVT::Other, getRoot(), 6604 getValue(I.getArgOperand(0)), 6605 DAG.getSrcValue(I.getArgOperand(0)))); 6606 } 6607 6608 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6609 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6610 MVT::Other, getRoot(), 6611 getValue(I.getArgOperand(0)), 6612 getValue(I.getArgOperand(1)), 6613 DAG.getSrcValue(I.getArgOperand(0)), 6614 DAG.getSrcValue(I.getArgOperand(1)))); 6615 } 6616 6617 /// \brief Lower an argument list according to the target calling convention. 6618 /// 6619 /// \return A tuple of <return-value, token-chain> 6620 /// 6621 /// This is a helper for lowering intrinsics that follow a target calling 6622 /// convention or require stack pointer adjustment. Only a subset of the 6623 /// intrinsic's operands need to participate in the calling convention. 6624 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6625 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6626 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6627 TargetLowering::ArgListTy Args; 6628 Args.reserve(NumArgs); 6629 6630 // Populate the argument list. 6631 // Attributes for args start at offset 1, after the return attribute. 6632 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6633 ArgI != ArgE; ++ArgI) { 6634 const Value *V = CS->getOperand(ArgI); 6635 6636 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6637 6638 TargetLowering::ArgListEntry Entry; 6639 Entry.Node = getValue(V); 6640 Entry.Ty = V->getType(); 6641 Entry.setAttributes(&CS, AttrI); 6642 Args.push_back(Entry); 6643 } 6644 6645 TargetLowering::CallLoweringInfo CLI(DAG); 6646 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6647 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6648 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6649 6650 return lowerInvokable(CLI, EHPadBB); 6651 } 6652 6653 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6654 /// or patchpoint target node's operand list. 6655 /// 6656 /// Constants are converted to TargetConstants purely as an optimization to 6657 /// avoid constant materialization and register allocation. 6658 /// 6659 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6660 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6661 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6662 /// address materialization and register allocation, but may also be required 6663 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6664 /// alloca in the entry block, then the runtime may assume that the alloca's 6665 /// StackMap location can be read immediately after compilation and that the 6666 /// location is valid at any point during execution (this is similar to the 6667 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6668 /// only available in a register, then the runtime would need to trap when 6669 /// execution reaches the StackMap in order to read the alloca's location. 6670 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6671 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6672 SelectionDAGBuilder &Builder) { 6673 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6674 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6675 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6676 Ops.push_back( 6677 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6678 Ops.push_back( 6679 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6680 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6681 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6682 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6683 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6684 } else 6685 Ops.push_back(OpVal); 6686 } 6687 } 6688 6689 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6690 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6691 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6692 // [live variables...]) 6693 6694 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6695 6696 SDValue Chain, InFlag, Callee, NullPtr; 6697 SmallVector<SDValue, 32> Ops; 6698 6699 SDLoc DL = getCurSDLoc(); 6700 Callee = getValue(CI.getCalledValue()); 6701 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6702 6703 // The stackmap intrinsic only records the live variables (the arguemnts 6704 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6705 // intrinsic, this won't be lowered to a function call. This means we don't 6706 // have to worry about calling conventions and target specific lowering code. 6707 // Instead we perform the call lowering right here. 6708 // 6709 // chain, flag = CALLSEQ_START(chain, 0) 6710 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6711 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6712 // 6713 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6714 InFlag = Chain.getValue(1); 6715 6716 // Add the <id> and <numBytes> constants. 6717 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6718 Ops.push_back(DAG.getTargetConstant( 6719 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6720 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6721 Ops.push_back(DAG.getTargetConstant( 6722 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6723 MVT::i32)); 6724 6725 // Push live variables for the stack map. 6726 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6727 6728 // We are not pushing any register mask info here on the operands list, 6729 // because the stackmap doesn't clobber anything. 6730 6731 // Push the chain and the glue flag. 6732 Ops.push_back(Chain); 6733 Ops.push_back(InFlag); 6734 6735 // Create the STACKMAP node. 6736 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6737 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6738 Chain = SDValue(SM, 0); 6739 InFlag = Chain.getValue(1); 6740 6741 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6742 6743 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6744 6745 // Set the root to the target-lowered call chain. 6746 DAG.setRoot(Chain); 6747 6748 // Inform the Frame Information that we have a stackmap in this function. 6749 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6750 } 6751 6752 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6753 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6754 const BasicBlock *EHPadBB) { 6755 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6756 // i32 <numBytes>, 6757 // i8* <target>, 6758 // i32 <numArgs>, 6759 // [Args...], 6760 // [live variables...]) 6761 6762 CallingConv::ID CC = CS.getCallingConv(); 6763 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6764 bool HasDef = !CS->getType()->isVoidTy(); 6765 SDLoc dl = getCurSDLoc(); 6766 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6767 6768 // Handle immediate and symbolic callees. 6769 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6770 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6771 /*isTarget=*/true); 6772 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6773 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6774 SDLoc(SymbolicCallee), 6775 SymbolicCallee->getValueType(0)); 6776 6777 // Get the real number of arguments participating in the call <numArgs> 6778 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6779 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6780 6781 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6782 // Intrinsics include all meta-operands up to but not including CC. 6783 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6784 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6785 "Not enough arguments provided to the patchpoint intrinsic"); 6786 6787 // For AnyRegCC the arguments are lowered later on manually. 6788 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6789 Type *ReturnTy = 6790 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6791 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6792 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6793 6794 SDNode *CallEnd = Result.second.getNode(); 6795 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6796 CallEnd = CallEnd->getOperand(0).getNode(); 6797 6798 /// Get a call instruction from the call sequence chain. 6799 /// Tail calls are not allowed. 6800 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6801 "Expected a callseq node."); 6802 SDNode *Call = CallEnd->getOperand(0).getNode(); 6803 bool HasGlue = Call->getGluedNode(); 6804 6805 // Replace the target specific call node with the patchable intrinsic. 6806 SmallVector<SDValue, 8> Ops; 6807 6808 // Add the <id> and <numBytes> constants. 6809 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6810 Ops.push_back(DAG.getTargetConstant( 6811 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6812 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6813 Ops.push_back(DAG.getTargetConstant( 6814 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6815 MVT::i32)); 6816 6817 // Add the callee. 6818 Ops.push_back(Callee); 6819 6820 // Adjust <numArgs> to account for any arguments that have been passed on the 6821 // stack instead. 6822 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6823 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6824 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6825 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6826 6827 // Add the calling convention 6828 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6829 6830 // Add the arguments we omitted previously. The register allocator should 6831 // place these in any free register. 6832 if (IsAnyRegCC) 6833 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6834 Ops.push_back(getValue(CS.getArgument(i))); 6835 6836 // Push the arguments from the call instruction up to the register mask. 6837 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6838 Ops.append(Call->op_begin() + 2, e); 6839 6840 // Push live variables for the stack map. 6841 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6842 6843 // Push the register mask info. 6844 if (HasGlue) 6845 Ops.push_back(*(Call->op_end()-2)); 6846 else 6847 Ops.push_back(*(Call->op_end()-1)); 6848 6849 // Push the chain (this is originally the first operand of the call, but 6850 // becomes now the last or second to last operand). 6851 Ops.push_back(*(Call->op_begin())); 6852 6853 // Push the glue flag (last operand). 6854 if (HasGlue) 6855 Ops.push_back(*(Call->op_end()-1)); 6856 6857 SDVTList NodeTys; 6858 if (IsAnyRegCC && HasDef) { 6859 // Create the return types based on the intrinsic definition 6860 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6861 SmallVector<EVT, 3> ValueVTs; 6862 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6863 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6864 6865 // There is always a chain and a glue type at the end 6866 ValueVTs.push_back(MVT::Other); 6867 ValueVTs.push_back(MVT::Glue); 6868 NodeTys = DAG.getVTList(ValueVTs); 6869 } else 6870 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6871 6872 // Replace the target specific call node with a PATCHPOINT node. 6873 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6874 dl, NodeTys, Ops); 6875 6876 // Update the NodeMap. 6877 if (HasDef) { 6878 if (IsAnyRegCC) 6879 setValue(CS.getInstruction(), SDValue(MN, 0)); 6880 else 6881 setValue(CS.getInstruction(), Result.first); 6882 } 6883 6884 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6885 // call sequence. Furthermore the location of the chain and glue can change 6886 // when the AnyReg calling convention is used and the intrinsic returns a 6887 // value. 6888 if (IsAnyRegCC && HasDef) { 6889 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6890 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6891 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6892 } else 6893 DAG.ReplaceAllUsesWith(Call, MN); 6894 DAG.DeleteNode(Call); 6895 6896 // Inform the Frame Information that we have a patchpoint in this function. 6897 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6898 } 6899 6900 /// Returns an AttributeSet representing the attributes applied to the return 6901 /// value of the given call. 6902 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6903 SmallVector<Attribute::AttrKind, 2> Attrs; 6904 if (CLI.RetSExt) 6905 Attrs.push_back(Attribute::SExt); 6906 if (CLI.RetZExt) 6907 Attrs.push_back(Attribute::ZExt); 6908 if (CLI.IsInReg) 6909 Attrs.push_back(Attribute::InReg); 6910 6911 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6912 Attrs); 6913 } 6914 6915 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6916 /// implementation, which just calls LowerCall. 6917 /// FIXME: When all targets are 6918 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6919 std::pair<SDValue, SDValue> 6920 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6921 // Handle the incoming return values from the call. 6922 CLI.Ins.clear(); 6923 Type *OrigRetTy = CLI.RetTy; 6924 SmallVector<EVT, 4> RetTys; 6925 SmallVector<uint64_t, 4> Offsets; 6926 auto &DL = CLI.DAG.getDataLayout(); 6927 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6928 6929 SmallVector<ISD::OutputArg, 4> Outs; 6930 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6931 6932 bool CanLowerReturn = 6933 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6934 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6935 6936 SDValue DemoteStackSlot; 6937 int DemoteStackIdx = -100; 6938 if (!CanLowerReturn) { 6939 // FIXME: equivalent assert? 6940 // assert(!CS.hasInAllocaArgument() && 6941 // "sret demotion is incompatible with inalloca"); 6942 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6943 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6944 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6945 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6946 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6947 6948 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6949 ArgListEntry Entry; 6950 Entry.Node = DemoteStackSlot; 6951 Entry.Ty = StackSlotPtrType; 6952 Entry.isSExt = false; 6953 Entry.isZExt = false; 6954 Entry.isInReg = false; 6955 Entry.isSRet = true; 6956 Entry.isNest = false; 6957 Entry.isByVal = false; 6958 Entry.isReturned = false; 6959 Entry.Alignment = Align; 6960 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6961 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6962 6963 // sret demotion isn't compatible with tail-calls, since the sret argument 6964 // points into the callers stack frame. 6965 CLI.IsTailCall = false; 6966 } else { 6967 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6968 EVT VT = RetTys[I]; 6969 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6970 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6971 for (unsigned i = 0; i != NumRegs; ++i) { 6972 ISD::InputArg MyFlags; 6973 MyFlags.VT = RegisterVT; 6974 MyFlags.ArgVT = VT; 6975 MyFlags.Used = CLI.IsReturnValueUsed; 6976 if (CLI.RetSExt) 6977 MyFlags.Flags.setSExt(); 6978 if (CLI.RetZExt) 6979 MyFlags.Flags.setZExt(); 6980 if (CLI.IsInReg) 6981 MyFlags.Flags.setInReg(); 6982 CLI.Ins.push_back(MyFlags); 6983 } 6984 } 6985 } 6986 6987 // Handle all of the outgoing arguments. 6988 CLI.Outs.clear(); 6989 CLI.OutVals.clear(); 6990 ArgListTy &Args = CLI.getArgs(); 6991 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6992 SmallVector<EVT, 4> ValueVTs; 6993 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6994 Type *FinalType = Args[i].Ty; 6995 if (Args[i].isByVal) 6996 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6997 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6998 FinalType, CLI.CallConv, CLI.IsVarArg); 6999 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7000 ++Value) { 7001 EVT VT = ValueVTs[Value]; 7002 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7003 SDValue Op = SDValue(Args[i].Node.getNode(), 7004 Args[i].Node.getResNo() + Value); 7005 ISD::ArgFlagsTy Flags; 7006 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7007 7008 if (Args[i].isZExt) 7009 Flags.setZExt(); 7010 if (Args[i].isSExt) 7011 Flags.setSExt(); 7012 if (Args[i].isInReg) 7013 Flags.setInReg(); 7014 if (Args[i].isSRet) 7015 Flags.setSRet(); 7016 if (Args[i].isByVal) 7017 Flags.setByVal(); 7018 if (Args[i].isInAlloca) { 7019 Flags.setInAlloca(); 7020 // Set the byval flag for CCAssignFn callbacks that don't know about 7021 // inalloca. This way we can know how many bytes we should've allocated 7022 // and how many bytes a callee cleanup function will pop. If we port 7023 // inalloca to more targets, we'll have to add custom inalloca handling 7024 // in the various CC lowering callbacks. 7025 Flags.setByVal(); 7026 } 7027 if (Args[i].isByVal || Args[i].isInAlloca) { 7028 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7029 Type *ElementTy = Ty->getElementType(); 7030 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7031 // For ByVal, alignment should come from FE. BE will guess if this 7032 // info is not there but there are cases it cannot get right. 7033 unsigned FrameAlign; 7034 if (Args[i].Alignment) 7035 FrameAlign = Args[i].Alignment; 7036 else 7037 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7038 Flags.setByValAlign(FrameAlign); 7039 } 7040 if (Args[i].isNest) 7041 Flags.setNest(); 7042 if (NeedsRegBlock) 7043 Flags.setInConsecutiveRegs(); 7044 Flags.setOrigAlign(OriginalAlignment); 7045 7046 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7047 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7048 SmallVector<SDValue, 4> Parts(NumParts); 7049 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7050 7051 if (Args[i].isSExt) 7052 ExtendKind = ISD::SIGN_EXTEND; 7053 else if (Args[i].isZExt) 7054 ExtendKind = ISD::ZERO_EXTEND; 7055 7056 // Conservatively only handle 'returned' on non-vectors for now 7057 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7058 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7059 "unexpected use of 'returned'"); 7060 // Before passing 'returned' to the target lowering code, ensure that 7061 // either the register MVT and the actual EVT are the same size or that 7062 // the return value and argument are extended in the same way; in these 7063 // cases it's safe to pass the argument register value unchanged as the 7064 // return register value (although it's at the target's option whether 7065 // to do so) 7066 // TODO: allow code generation to take advantage of partially preserved 7067 // registers rather than clobbering the entire register when the 7068 // parameter extension method is not compatible with the return 7069 // extension method 7070 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7071 (ExtendKind != ISD::ANY_EXTEND && 7072 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7073 Flags.setReturned(); 7074 } 7075 7076 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7077 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7078 7079 for (unsigned j = 0; j != NumParts; ++j) { 7080 // if it isn't first piece, alignment must be 1 7081 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7082 i < CLI.NumFixedArgs, 7083 i, j*Parts[j].getValueType().getStoreSize()); 7084 if (NumParts > 1 && j == 0) 7085 MyFlags.Flags.setSplit(); 7086 else if (j != 0) 7087 MyFlags.Flags.setOrigAlign(1); 7088 7089 CLI.Outs.push_back(MyFlags); 7090 CLI.OutVals.push_back(Parts[j]); 7091 } 7092 7093 if (NeedsRegBlock && Value == NumValues - 1) 7094 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7095 } 7096 } 7097 7098 SmallVector<SDValue, 4> InVals; 7099 CLI.Chain = LowerCall(CLI, InVals); 7100 7101 // Verify that the target's LowerCall behaved as expected. 7102 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7103 "LowerCall didn't return a valid chain!"); 7104 assert((!CLI.IsTailCall || InVals.empty()) && 7105 "LowerCall emitted a return value for a tail call!"); 7106 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7107 "LowerCall didn't emit the correct number of values!"); 7108 7109 // For a tail call, the return value is merely live-out and there aren't 7110 // any nodes in the DAG representing it. Return a special value to 7111 // indicate that a tail call has been emitted and no more Instructions 7112 // should be processed in the current block. 7113 if (CLI.IsTailCall) { 7114 CLI.DAG.setRoot(CLI.Chain); 7115 return std::make_pair(SDValue(), SDValue()); 7116 } 7117 7118 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7119 assert(InVals[i].getNode() && 7120 "LowerCall emitted a null value!"); 7121 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7122 "LowerCall emitted a value with the wrong type!"); 7123 }); 7124 7125 SmallVector<SDValue, 4> ReturnValues; 7126 if (!CanLowerReturn) { 7127 // The instruction result is the result of loading from the 7128 // hidden sret parameter. 7129 SmallVector<EVT, 1> PVTs; 7130 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7131 7132 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7133 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7134 EVT PtrVT = PVTs[0]; 7135 7136 unsigned NumValues = RetTys.size(); 7137 ReturnValues.resize(NumValues); 7138 SmallVector<SDValue, 4> Chains(NumValues); 7139 7140 for (unsigned i = 0; i < NumValues; ++i) { 7141 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7142 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7143 PtrVT)); 7144 SDValue L = CLI.DAG.getLoad( 7145 RetTys[i], CLI.DL, CLI.Chain, Add, 7146 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7147 DemoteStackIdx, Offsets[i]), 7148 false, false, false, 1); 7149 ReturnValues[i] = L; 7150 Chains[i] = L.getValue(1); 7151 } 7152 7153 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7154 } else { 7155 // Collect the legal value parts into potentially illegal values 7156 // that correspond to the original function's return values. 7157 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7158 if (CLI.RetSExt) 7159 AssertOp = ISD::AssertSext; 7160 else if (CLI.RetZExt) 7161 AssertOp = ISD::AssertZext; 7162 unsigned CurReg = 0; 7163 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7164 EVT VT = RetTys[I]; 7165 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7166 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7167 7168 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7169 NumRegs, RegisterVT, VT, nullptr, 7170 AssertOp)); 7171 CurReg += NumRegs; 7172 } 7173 7174 // For a function returning void, there is no return value. We can't create 7175 // such a node, so we just return a null return value in that case. In 7176 // that case, nothing will actually look at the value. 7177 if (ReturnValues.empty()) 7178 return std::make_pair(SDValue(), CLI.Chain); 7179 } 7180 7181 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7182 CLI.DAG.getVTList(RetTys), ReturnValues); 7183 return std::make_pair(Res, CLI.Chain); 7184 } 7185 7186 void TargetLowering::LowerOperationWrapper(SDNode *N, 7187 SmallVectorImpl<SDValue> &Results, 7188 SelectionDAG &DAG) const { 7189 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7190 if (Res.getNode()) 7191 Results.push_back(Res); 7192 } 7193 7194 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7195 llvm_unreachable("LowerOperation not implemented for this target!"); 7196 } 7197 7198 void 7199 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7200 SDValue Op = getNonRegisterValue(V); 7201 assert((Op.getOpcode() != ISD::CopyFromReg || 7202 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7203 "Copy from a reg to the same reg!"); 7204 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7205 7206 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7207 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7208 V->getType()); 7209 SDValue Chain = DAG.getEntryNode(); 7210 7211 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7212 FuncInfo.PreferredExtendType.end()) 7213 ? ISD::ANY_EXTEND 7214 : FuncInfo.PreferredExtendType[V]; 7215 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7216 PendingExports.push_back(Chain); 7217 } 7218 7219 #include "llvm/CodeGen/SelectionDAGISel.h" 7220 7221 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7222 /// entry block, return true. This includes arguments used by switches, since 7223 /// the switch may expand into multiple basic blocks. 7224 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7225 // With FastISel active, we may be splitting blocks, so force creation 7226 // of virtual registers for all non-dead arguments. 7227 if (FastISel) 7228 return A->use_empty(); 7229 7230 const BasicBlock *Entry = A->getParent()->begin(); 7231 for (const User *U : A->users()) 7232 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7233 return false; // Use not in entry block. 7234 7235 return true; 7236 } 7237 7238 void SelectionDAGISel::LowerArguments(const Function &F) { 7239 SelectionDAG &DAG = SDB->DAG; 7240 SDLoc dl = SDB->getCurSDLoc(); 7241 const DataLayout &DL = DAG.getDataLayout(); 7242 SmallVector<ISD::InputArg, 16> Ins; 7243 7244 if (!FuncInfo->CanLowerReturn) { 7245 // Put in an sret pointer parameter before all the other parameters. 7246 SmallVector<EVT, 1> ValueVTs; 7247 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7248 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7249 7250 // NOTE: Assuming that a pointer will never break down to more than one VT 7251 // or one register. 7252 ISD::ArgFlagsTy Flags; 7253 Flags.setSRet(); 7254 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7255 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7256 ISD::InputArg::NoArgIndex, 0); 7257 Ins.push_back(RetArg); 7258 } 7259 7260 // Set up the incoming argument description vector. 7261 unsigned Idx = 1; 7262 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7263 I != E; ++I, ++Idx) { 7264 SmallVector<EVT, 4> ValueVTs; 7265 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7266 bool isArgValueUsed = !I->use_empty(); 7267 unsigned PartBase = 0; 7268 Type *FinalType = I->getType(); 7269 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7270 FinalType = cast<PointerType>(FinalType)->getElementType(); 7271 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7272 FinalType, F.getCallingConv(), F.isVarArg()); 7273 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7274 Value != NumValues; ++Value) { 7275 EVT VT = ValueVTs[Value]; 7276 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7277 ISD::ArgFlagsTy Flags; 7278 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7279 7280 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7281 Flags.setZExt(); 7282 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7283 Flags.setSExt(); 7284 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7285 Flags.setInReg(); 7286 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7287 Flags.setSRet(); 7288 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7289 Flags.setByVal(); 7290 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7291 Flags.setInAlloca(); 7292 // Set the byval flag for CCAssignFn callbacks that don't know about 7293 // inalloca. This way we can know how many bytes we should've allocated 7294 // and how many bytes a callee cleanup function will pop. If we port 7295 // inalloca to more targets, we'll have to add custom inalloca handling 7296 // in the various CC lowering callbacks. 7297 Flags.setByVal(); 7298 } 7299 if (Flags.isByVal() || Flags.isInAlloca()) { 7300 PointerType *Ty = cast<PointerType>(I->getType()); 7301 Type *ElementTy = Ty->getElementType(); 7302 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7303 // For ByVal, alignment should be passed from FE. BE will guess if 7304 // this info is not there but there are cases it cannot get right. 7305 unsigned FrameAlign; 7306 if (F.getParamAlignment(Idx)) 7307 FrameAlign = F.getParamAlignment(Idx); 7308 else 7309 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7310 Flags.setByValAlign(FrameAlign); 7311 } 7312 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7313 Flags.setNest(); 7314 if (NeedsRegBlock) 7315 Flags.setInConsecutiveRegs(); 7316 Flags.setOrigAlign(OriginalAlignment); 7317 7318 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7319 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7320 for (unsigned i = 0; i != NumRegs; ++i) { 7321 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7322 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7323 if (NumRegs > 1 && i == 0) 7324 MyFlags.Flags.setSplit(); 7325 // if it isn't first piece, alignment must be 1 7326 else if (i > 0) 7327 MyFlags.Flags.setOrigAlign(1); 7328 Ins.push_back(MyFlags); 7329 } 7330 if (NeedsRegBlock && Value == NumValues - 1) 7331 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7332 PartBase += VT.getStoreSize(); 7333 } 7334 } 7335 7336 // Call the target to set up the argument values. 7337 SmallVector<SDValue, 8> InVals; 7338 SDValue NewRoot = TLI->LowerFormalArguments( 7339 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7340 7341 // Verify that the target's LowerFormalArguments behaved as expected. 7342 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7343 "LowerFormalArguments didn't return a valid chain!"); 7344 assert(InVals.size() == Ins.size() && 7345 "LowerFormalArguments didn't emit the correct number of values!"); 7346 DEBUG({ 7347 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7348 assert(InVals[i].getNode() && 7349 "LowerFormalArguments emitted a null value!"); 7350 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7351 "LowerFormalArguments emitted a value with the wrong type!"); 7352 } 7353 }); 7354 7355 // Update the DAG with the new chain value resulting from argument lowering. 7356 DAG.setRoot(NewRoot); 7357 7358 // Set up the argument values. 7359 unsigned i = 0; 7360 Idx = 1; 7361 if (!FuncInfo->CanLowerReturn) { 7362 // Create a virtual register for the sret pointer, and put in a copy 7363 // from the sret argument into it. 7364 SmallVector<EVT, 1> ValueVTs; 7365 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7366 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7367 MVT VT = ValueVTs[0].getSimpleVT(); 7368 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7369 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7370 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7371 RegVT, VT, nullptr, AssertOp); 7372 7373 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7374 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7375 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7376 FuncInfo->DemoteRegister = SRetReg; 7377 NewRoot = 7378 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7379 DAG.setRoot(NewRoot); 7380 7381 // i indexes lowered arguments. Bump it past the hidden sret argument. 7382 // Idx indexes LLVM arguments. Don't touch it. 7383 ++i; 7384 } 7385 7386 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7387 ++I, ++Idx) { 7388 SmallVector<SDValue, 4> ArgValues; 7389 SmallVector<EVT, 4> ValueVTs; 7390 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7391 unsigned NumValues = ValueVTs.size(); 7392 7393 // If this argument is unused then remember its value. It is used to generate 7394 // debugging information. 7395 if (I->use_empty() && NumValues) { 7396 SDB->setUnusedArgValue(I, InVals[i]); 7397 7398 // Also remember any frame index for use in FastISel. 7399 if (FrameIndexSDNode *FI = 7400 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7401 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7402 } 7403 7404 for (unsigned Val = 0; Val != NumValues; ++Val) { 7405 EVT VT = ValueVTs[Val]; 7406 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7407 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7408 7409 if (!I->use_empty()) { 7410 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7411 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7412 AssertOp = ISD::AssertSext; 7413 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7414 AssertOp = ISD::AssertZext; 7415 7416 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7417 NumParts, PartVT, VT, 7418 nullptr, AssertOp)); 7419 } 7420 7421 i += NumParts; 7422 } 7423 7424 // We don't need to do anything else for unused arguments. 7425 if (ArgValues.empty()) 7426 continue; 7427 7428 // Note down frame index. 7429 if (FrameIndexSDNode *FI = 7430 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7431 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7432 7433 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7434 SDB->getCurSDLoc()); 7435 7436 SDB->setValue(I, Res); 7437 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7438 if (LoadSDNode *LNode = 7439 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7440 if (FrameIndexSDNode *FI = 7441 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7442 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7443 } 7444 7445 // If this argument is live outside of the entry block, insert a copy from 7446 // wherever we got it to the vreg that other BB's will reference it as. 7447 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7448 // If we can, though, try to skip creating an unnecessary vreg. 7449 // FIXME: This isn't very clean... it would be nice to make this more 7450 // general. It's also subtly incompatible with the hacks FastISel 7451 // uses with vregs. 7452 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7453 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7454 FuncInfo->ValueMap[I] = Reg; 7455 continue; 7456 } 7457 } 7458 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7459 FuncInfo->InitializeRegForValue(I); 7460 SDB->CopyToExportRegsIfNeeded(I); 7461 } 7462 } 7463 7464 assert(i == InVals.size() && "Argument register count mismatch!"); 7465 7466 // Finally, if the target has anything special to do, allow it to do so. 7467 EmitFunctionEntryCode(); 7468 } 7469 7470 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7471 /// ensure constants are generated when needed. Remember the virtual registers 7472 /// that need to be added to the Machine PHI nodes as input. We cannot just 7473 /// directly add them, because expansion might result in multiple MBB's for one 7474 /// BB. As such, the start of the BB might correspond to a different MBB than 7475 /// the end. 7476 /// 7477 void 7478 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7479 const TerminatorInst *TI = LLVMBB->getTerminator(); 7480 7481 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7482 7483 // Check PHI nodes in successors that expect a value to be available from this 7484 // block. 7485 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7486 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7487 if (!isa<PHINode>(SuccBB->begin())) continue; 7488 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7489 7490 // If this terminator has multiple identical successors (common for 7491 // switches), only handle each succ once. 7492 if (!SuccsHandled.insert(SuccMBB).second) 7493 continue; 7494 7495 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7496 7497 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7498 // nodes and Machine PHI nodes, but the incoming operands have not been 7499 // emitted yet. 7500 for (BasicBlock::const_iterator I = SuccBB->begin(); 7501 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7502 // Ignore dead phi's. 7503 if (PN->use_empty()) continue; 7504 7505 // Skip empty types 7506 if (PN->getType()->isEmptyTy()) 7507 continue; 7508 7509 unsigned Reg; 7510 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7511 7512 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7513 unsigned &RegOut = ConstantsOut[C]; 7514 if (RegOut == 0) { 7515 RegOut = FuncInfo.CreateRegs(C->getType()); 7516 CopyValueToVirtualRegister(C, RegOut); 7517 } 7518 Reg = RegOut; 7519 } else { 7520 DenseMap<const Value *, unsigned>::iterator I = 7521 FuncInfo.ValueMap.find(PHIOp); 7522 if (I != FuncInfo.ValueMap.end()) 7523 Reg = I->second; 7524 else { 7525 assert(isa<AllocaInst>(PHIOp) && 7526 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7527 "Didn't codegen value into a register!??"); 7528 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7529 CopyValueToVirtualRegister(PHIOp, Reg); 7530 } 7531 } 7532 7533 // Remember that this register needs to added to the machine PHI node as 7534 // the input for this MBB. 7535 SmallVector<EVT, 4> ValueVTs; 7536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7537 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7538 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7539 EVT VT = ValueVTs[vti]; 7540 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7541 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7542 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7543 Reg += NumRegisters; 7544 } 7545 } 7546 } 7547 7548 ConstantsOut.clear(); 7549 } 7550 7551 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7552 /// is 0. 7553 MachineBasicBlock * 7554 SelectionDAGBuilder::StackProtectorDescriptor:: 7555 AddSuccessorMBB(const BasicBlock *BB, 7556 MachineBasicBlock *ParentMBB, 7557 bool IsLikely, 7558 MachineBasicBlock *SuccMBB) { 7559 // If SuccBB has not been created yet, create it. 7560 if (!SuccMBB) { 7561 MachineFunction *MF = ParentMBB->getParent(); 7562 MachineFunction::iterator BBI = ParentMBB; 7563 SuccMBB = MF->CreateMachineBasicBlock(BB); 7564 MF->insert(++BBI, SuccMBB); 7565 } 7566 // Add it as a successor of ParentMBB. 7567 ParentMBB->addSuccessor( 7568 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7569 return SuccMBB; 7570 } 7571 7572 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7573 MachineFunction::iterator I = MBB; 7574 if (++I == FuncInfo.MF->end()) 7575 return nullptr; 7576 return I; 7577 } 7578 7579 /// During lowering new call nodes can be created (such as memset, etc.). 7580 /// Those will become new roots of the current DAG, but complications arise 7581 /// when they are tail calls. In such cases, the call lowering will update 7582 /// the root, but the builder still needs to know that a tail call has been 7583 /// lowered in order to avoid generating an additional return. 7584 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7585 // If the node is null, we do have a tail call. 7586 if (MaybeTC.getNode() != nullptr) 7587 DAG.setRoot(MaybeTC); 7588 else 7589 HasTailCall = true; 7590 } 7591 7592 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7593 unsigned *TotalCases, unsigned First, 7594 unsigned Last) { 7595 assert(Last >= First); 7596 assert(TotalCases[Last] >= TotalCases[First]); 7597 7598 APInt LowCase = Clusters[First].Low->getValue(); 7599 APInt HighCase = Clusters[Last].High->getValue(); 7600 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7601 7602 // FIXME: A range of consecutive cases has 100% density, but only requires one 7603 // comparison to lower. We should discriminate against such consecutive ranges 7604 // in jump tables. 7605 7606 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7607 uint64_t Range = Diff + 1; 7608 7609 uint64_t NumCases = 7610 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7611 7612 assert(NumCases < UINT64_MAX / 100); 7613 assert(Range >= NumCases); 7614 7615 return NumCases * 100 >= Range * MinJumpTableDensity; 7616 } 7617 7618 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7619 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7620 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7621 } 7622 7623 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7624 unsigned First, unsigned Last, 7625 const SwitchInst *SI, 7626 MachineBasicBlock *DefaultMBB, 7627 CaseCluster &JTCluster) { 7628 assert(First <= Last); 7629 7630 uint32_t Weight = 0; 7631 unsigned NumCmps = 0; 7632 std::vector<MachineBasicBlock*> Table; 7633 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7634 for (unsigned I = First; I <= Last; ++I) { 7635 assert(Clusters[I].Kind == CC_Range); 7636 Weight += Clusters[I].Weight; 7637 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7638 APInt Low = Clusters[I].Low->getValue(); 7639 APInt High = Clusters[I].High->getValue(); 7640 NumCmps += (Low == High) ? 1 : 2; 7641 if (I != First) { 7642 // Fill the gap between this and the previous cluster. 7643 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7644 assert(PreviousHigh.slt(Low)); 7645 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7646 for (uint64_t J = 0; J < Gap; J++) 7647 Table.push_back(DefaultMBB); 7648 } 7649 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7650 for (uint64_t J = 0; J < ClusterSize; ++J) 7651 Table.push_back(Clusters[I].MBB); 7652 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7653 } 7654 7655 unsigned NumDests = JTWeights.size(); 7656 if (isSuitableForBitTests(NumDests, NumCmps, 7657 Clusters[First].Low->getValue(), 7658 Clusters[Last].High->getValue())) { 7659 // Clusters[First..Last] should be lowered as bit tests instead. 7660 return false; 7661 } 7662 7663 // Create the MBB that will load from and jump through the table. 7664 // Note: We create it here, but it's not inserted into the function yet. 7665 MachineFunction *CurMF = FuncInfo.MF; 7666 MachineBasicBlock *JumpTableMBB = 7667 CurMF->CreateMachineBasicBlock(SI->getParent()); 7668 7669 // Add successors. Note: use table order for determinism. 7670 SmallPtrSet<MachineBasicBlock *, 8> Done; 7671 for (MachineBasicBlock *Succ : Table) { 7672 if (Done.count(Succ)) 7673 continue; 7674 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7675 Done.insert(Succ); 7676 } 7677 7678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7679 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7680 ->createJumpTableIndex(Table); 7681 7682 // Set up the jump table info. 7683 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7684 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7685 Clusters[Last].High->getValue(), SI->getCondition(), 7686 nullptr, false); 7687 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7688 7689 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7690 JTCases.size() - 1, Weight); 7691 return true; 7692 } 7693 7694 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7695 const SwitchInst *SI, 7696 MachineBasicBlock *DefaultMBB) { 7697 #ifndef NDEBUG 7698 // Clusters must be non-empty, sorted, and only contain Range clusters. 7699 assert(!Clusters.empty()); 7700 for (CaseCluster &C : Clusters) 7701 assert(C.Kind == CC_Range); 7702 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7703 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7704 #endif 7705 7706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7707 if (!areJTsAllowed(TLI)) 7708 return; 7709 7710 const int64_t N = Clusters.size(); 7711 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7712 7713 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7714 SmallVector<unsigned, 8> TotalCases(N); 7715 7716 for (unsigned i = 0; i < N; ++i) { 7717 APInt Hi = Clusters[i].High->getValue(); 7718 APInt Lo = Clusters[i].Low->getValue(); 7719 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7720 if (i != 0) 7721 TotalCases[i] += TotalCases[i - 1]; 7722 } 7723 7724 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7725 // Cheap case: the whole range might be suitable for jump table. 7726 CaseCluster JTCluster; 7727 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7728 Clusters[0] = JTCluster; 7729 Clusters.resize(1); 7730 return; 7731 } 7732 } 7733 7734 // The algorithm below is not suitable for -O0. 7735 if (TM.getOptLevel() == CodeGenOpt::None) 7736 return; 7737 7738 // Split Clusters into minimum number of dense partitions. The algorithm uses 7739 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7740 // for the Case Statement'" (1994), but builds the MinPartitions array in 7741 // reverse order to make it easier to reconstruct the partitions in ascending 7742 // order. In the choice between two optimal partitionings, it picks the one 7743 // which yields more jump tables. 7744 7745 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7746 SmallVector<unsigned, 8> MinPartitions(N); 7747 // LastElement[i] is the last element of the partition starting at i. 7748 SmallVector<unsigned, 8> LastElement(N); 7749 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7750 SmallVector<unsigned, 8> NumTables(N); 7751 7752 // Base case: There is only one way to partition Clusters[N-1]. 7753 MinPartitions[N - 1] = 1; 7754 LastElement[N - 1] = N - 1; 7755 assert(MinJumpTableSize > 1); 7756 NumTables[N - 1] = 0; 7757 7758 // Note: loop indexes are signed to avoid underflow. 7759 for (int64_t i = N - 2; i >= 0; i--) { 7760 // Find optimal partitioning of Clusters[i..N-1]. 7761 // Baseline: Put Clusters[i] into a partition on its own. 7762 MinPartitions[i] = MinPartitions[i + 1] + 1; 7763 LastElement[i] = i; 7764 NumTables[i] = NumTables[i + 1]; 7765 7766 // Search for a solution that results in fewer partitions. 7767 for (int64_t j = N - 1; j > i; j--) { 7768 // Try building a partition from Clusters[i..j]. 7769 if (isDense(Clusters, &TotalCases[0], i, j)) { 7770 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7771 bool IsTable = j - i + 1 >= MinJumpTableSize; 7772 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7773 7774 // If this j leads to fewer partitions, or same number of partitions 7775 // with more lookup tables, it is a better partitioning. 7776 if (NumPartitions < MinPartitions[i] || 7777 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7778 MinPartitions[i] = NumPartitions; 7779 LastElement[i] = j; 7780 NumTables[i] = Tables; 7781 } 7782 } 7783 } 7784 } 7785 7786 // Iterate over the partitions, replacing some with jump tables in-place. 7787 unsigned DstIndex = 0; 7788 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7789 Last = LastElement[First]; 7790 assert(Last >= First); 7791 assert(DstIndex <= First); 7792 unsigned NumClusters = Last - First + 1; 7793 7794 CaseCluster JTCluster; 7795 if (NumClusters >= MinJumpTableSize && 7796 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7797 Clusters[DstIndex++] = JTCluster; 7798 } else { 7799 for (unsigned I = First; I <= Last; ++I) 7800 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7801 } 7802 } 7803 Clusters.resize(DstIndex); 7804 } 7805 7806 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7807 // FIXME: Using the pointer type doesn't seem ideal. 7808 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7809 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7810 return Range <= BW; 7811 } 7812 7813 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7814 unsigned NumCmps, 7815 const APInt &Low, 7816 const APInt &High) { 7817 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7818 // range of cases both require only one branch to lower. Just looking at the 7819 // number of clusters and destinations should be enough to decide whether to 7820 // build bit tests. 7821 7822 // To lower a range with bit tests, the range must fit the bitwidth of a 7823 // machine word. 7824 if (!rangeFitsInWord(Low, High)) 7825 return false; 7826 7827 // Decide whether it's profitable to lower this range with bit tests. Each 7828 // destination requires a bit test and branch, and there is an overall range 7829 // check branch. For a small number of clusters, separate comparisons might be 7830 // cheaper, and for many destinations, splitting the range might be better. 7831 return (NumDests == 1 && NumCmps >= 3) || 7832 (NumDests == 2 && NumCmps >= 5) || 7833 (NumDests == 3 && NumCmps >= 6); 7834 } 7835 7836 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7837 unsigned First, unsigned Last, 7838 const SwitchInst *SI, 7839 CaseCluster &BTCluster) { 7840 assert(First <= Last); 7841 if (First == Last) 7842 return false; 7843 7844 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7845 unsigned NumCmps = 0; 7846 for (int64_t I = First; I <= Last; ++I) { 7847 assert(Clusters[I].Kind == CC_Range); 7848 Dests.set(Clusters[I].MBB->getNumber()); 7849 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7850 } 7851 unsigned NumDests = Dests.count(); 7852 7853 APInt Low = Clusters[First].Low->getValue(); 7854 APInt High = Clusters[Last].High->getValue(); 7855 assert(Low.slt(High)); 7856 7857 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7858 return false; 7859 7860 APInt LowBound; 7861 APInt CmpRange; 7862 7863 const int BitWidth = DAG.getTargetLoweringInfo() 7864 .getPointerTy(DAG.getDataLayout()) 7865 .getSizeInBits(); 7866 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7867 7868 // Check if the clusters cover a contiguous range such that no value in the 7869 // range will jump to the default statement. 7870 bool ContiguousRange = true; 7871 for (int64_t I = First + 1; I <= Last; ++I) { 7872 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7873 ContiguousRange = false; 7874 break; 7875 } 7876 } 7877 7878 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7879 // Optimize the case where all the case values fit in a word without having 7880 // to subtract minValue. In this case, we can optimize away the subtraction. 7881 LowBound = APInt::getNullValue(Low.getBitWidth()); 7882 CmpRange = High; 7883 ContiguousRange = false; 7884 } else { 7885 LowBound = Low; 7886 CmpRange = High - Low; 7887 } 7888 7889 CaseBitsVector CBV; 7890 uint32_t TotalWeight = 0; 7891 for (unsigned i = First; i <= Last; ++i) { 7892 // Find the CaseBits for this destination. 7893 unsigned j; 7894 for (j = 0; j < CBV.size(); ++j) 7895 if (CBV[j].BB == Clusters[i].MBB) 7896 break; 7897 if (j == CBV.size()) 7898 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7899 CaseBits *CB = &CBV[j]; 7900 7901 // Update Mask, Bits and ExtraWeight. 7902 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7903 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7904 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7905 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7906 CB->Bits += Hi - Lo + 1; 7907 CB->ExtraWeight += Clusters[i].Weight; 7908 TotalWeight += Clusters[i].Weight; 7909 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7910 } 7911 7912 BitTestInfo BTI; 7913 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7914 // Sort by weight first, number of bits second. 7915 if (a.ExtraWeight != b.ExtraWeight) 7916 return a.ExtraWeight > b.ExtraWeight; 7917 return a.Bits > b.Bits; 7918 }); 7919 7920 for (auto &CB : CBV) { 7921 MachineBasicBlock *BitTestBB = 7922 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7923 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7924 } 7925 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7926 SI->getCondition(), -1U, MVT::Other, false, 7927 ContiguousRange, nullptr, nullptr, std::move(BTI), 7928 TotalWeight); 7929 7930 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7931 BitTestCases.size() - 1, TotalWeight); 7932 return true; 7933 } 7934 7935 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7936 const SwitchInst *SI) { 7937 // Partition Clusters into as few subsets as possible, where each subset has a 7938 // range that fits in a machine word and has <= 3 unique destinations. 7939 7940 #ifndef NDEBUG 7941 // Clusters must be sorted and contain Range or JumpTable clusters. 7942 assert(!Clusters.empty()); 7943 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7944 for (const CaseCluster &C : Clusters) 7945 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7946 for (unsigned i = 1; i < Clusters.size(); ++i) 7947 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7948 #endif 7949 7950 // The algorithm below is not suitable for -O0. 7951 if (TM.getOptLevel() == CodeGenOpt::None) 7952 return; 7953 7954 // If target does not have legal shift left, do not emit bit tests at all. 7955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7956 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7957 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7958 return; 7959 7960 int BitWidth = PTy.getSizeInBits(); 7961 const int64_t N = Clusters.size(); 7962 7963 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7964 SmallVector<unsigned, 8> MinPartitions(N); 7965 // LastElement[i] is the last element of the partition starting at i. 7966 SmallVector<unsigned, 8> LastElement(N); 7967 7968 // FIXME: This might not be the best algorithm for finding bit test clusters. 7969 7970 // Base case: There is only one way to partition Clusters[N-1]. 7971 MinPartitions[N - 1] = 1; 7972 LastElement[N - 1] = N - 1; 7973 7974 // Note: loop indexes are signed to avoid underflow. 7975 for (int64_t i = N - 2; i >= 0; --i) { 7976 // Find optimal partitioning of Clusters[i..N-1]. 7977 // Baseline: Put Clusters[i] into a partition on its own. 7978 MinPartitions[i] = MinPartitions[i + 1] + 1; 7979 LastElement[i] = i; 7980 7981 // Search for a solution that results in fewer partitions. 7982 // Note: the search is limited by BitWidth, reducing time complexity. 7983 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7984 // Try building a partition from Clusters[i..j]. 7985 7986 // Check the range. 7987 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7988 Clusters[j].High->getValue())) 7989 continue; 7990 7991 // Check nbr of destinations and cluster types. 7992 // FIXME: This works, but doesn't seem very efficient. 7993 bool RangesOnly = true; 7994 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7995 for (int64_t k = i; k <= j; k++) { 7996 if (Clusters[k].Kind != CC_Range) { 7997 RangesOnly = false; 7998 break; 7999 } 8000 Dests.set(Clusters[k].MBB->getNumber()); 8001 } 8002 if (!RangesOnly || Dests.count() > 3) 8003 break; 8004 8005 // Check if it's a better partition. 8006 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8007 if (NumPartitions < MinPartitions[i]) { 8008 // Found a better partition. 8009 MinPartitions[i] = NumPartitions; 8010 LastElement[i] = j; 8011 } 8012 } 8013 } 8014 8015 // Iterate over the partitions, replacing with bit-test clusters in-place. 8016 unsigned DstIndex = 0; 8017 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8018 Last = LastElement[First]; 8019 assert(First <= Last); 8020 assert(DstIndex <= First); 8021 8022 CaseCluster BitTestCluster; 8023 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8024 Clusters[DstIndex++] = BitTestCluster; 8025 } else { 8026 size_t NumClusters = Last - First + 1; 8027 std::memmove(&Clusters[DstIndex], &Clusters[First], 8028 sizeof(Clusters[0]) * NumClusters); 8029 DstIndex += NumClusters; 8030 } 8031 } 8032 Clusters.resize(DstIndex); 8033 } 8034 8035 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8036 MachineBasicBlock *SwitchMBB, 8037 MachineBasicBlock *DefaultMBB) { 8038 MachineFunction *CurMF = FuncInfo.MF; 8039 MachineBasicBlock *NextMBB = nullptr; 8040 MachineFunction::iterator BBI = W.MBB; 8041 if (++BBI != FuncInfo.MF->end()) 8042 NextMBB = BBI; 8043 8044 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8045 8046 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8047 8048 if (Size == 2 && W.MBB == SwitchMBB) { 8049 // If any two of the cases has the same destination, and if one value 8050 // is the same as the other, but has one bit unset that the other has set, 8051 // use bit manipulation to do two compares at once. For example: 8052 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8053 // TODO: This could be extended to merge any 2 cases in switches with 3 8054 // cases. 8055 // TODO: Handle cases where W.CaseBB != SwitchBB. 8056 CaseCluster &Small = *W.FirstCluster; 8057 CaseCluster &Big = *W.LastCluster; 8058 8059 if (Small.Low == Small.High && Big.Low == Big.High && 8060 Small.MBB == Big.MBB) { 8061 const APInt &SmallValue = Small.Low->getValue(); 8062 const APInt &BigValue = Big.Low->getValue(); 8063 8064 // Check that there is only one bit different. 8065 APInt CommonBit = BigValue ^ SmallValue; 8066 if (CommonBit.isPowerOf2()) { 8067 SDValue CondLHS = getValue(Cond); 8068 EVT VT = CondLHS.getValueType(); 8069 SDLoc DL = getCurSDLoc(); 8070 8071 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8072 DAG.getConstant(CommonBit, DL, VT)); 8073 SDValue Cond = DAG.getSetCC( 8074 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8075 ISD::SETEQ); 8076 8077 // Update successor info. 8078 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8079 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8080 addSuccessorWithWeight( 8081 SwitchMBB, DefaultMBB, 8082 // The default destination is the first successor in IR. 8083 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8084 : 0); 8085 8086 // Insert the true branch. 8087 SDValue BrCond = 8088 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8089 DAG.getBasicBlock(Small.MBB)); 8090 // Insert the false branch. 8091 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8092 DAG.getBasicBlock(DefaultMBB)); 8093 8094 DAG.setRoot(BrCond); 8095 return; 8096 } 8097 } 8098 } 8099 8100 if (TM.getOptLevel() != CodeGenOpt::None) { 8101 // Order cases by weight so the most likely case will be checked first. 8102 std::sort(W.FirstCluster, W.LastCluster + 1, 8103 [](const CaseCluster &a, const CaseCluster &b) { 8104 return a.Weight > b.Weight; 8105 }); 8106 8107 // Rearrange the case blocks so that the last one falls through if possible 8108 // without without changing the order of weights. 8109 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8110 --I; 8111 if (I->Weight > W.LastCluster->Weight) 8112 break; 8113 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8114 std::swap(*I, *W.LastCluster); 8115 break; 8116 } 8117 } 8118 } 8119 8120 // Compute total weight. 8121 uint32_t DefaultWeight = W.DefaultWeight; 8122 uint32_t UnhandledWeights = DefaultWeight; 8123 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8124 UnhandledWeights += I->Weight; 8125 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8126 } 8127 8128 MachineBasicBlock *CurMBB = W.MBB; 8129 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8130 MachineBasicBlock *Fallthrough; 8131 if (I == W.LastCluster) { 8132 // For the last cluster, fall through to the default destination. 8133 Fallthrough = DefaultMBB; 8134 } else { 8135 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8136 CurMF->insert(BBI, Fallthrough); 8137 // Put Cond in a virtual register to make it available from the new blocks. 8138 ExportFromCurrentBlock(Cond); 8139 } 8140 UnhandledWeights -= I->Weight; 8141 8142 switch (I->Kind) { 8143 case CC_JumpTable: { 8144 // FIXME: Optimize away range check based on pivot comparisons. 8145 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8146 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8147 8148 // The jump block hasn't been inserted yet; insert it here. 8149 MachineBasicBlock *JumpMBB = JT->MBB; 8150 CurMF->insert(BBI, JumpMBB); 8151 8152 uint32_t JumpWeight = I->Weight; 8153 uint32_t FallthroughWeight = UnhandledWeights; 8154 8155 // If the default statement is a target of the jump table, we evenly 8156 // distribute the default weight to successors of CurMBB. Also update 8157 // the weight on the edge from JumpMBB to Fallthrough. 8158 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8159 SE = JumpMBB->succ_end(); 8160 SI != SE; ++SI) { 8161 if (*SI == DefaultMBB) { 8162 JumpWeight += DefaultWeight / 2; 8163 FallthroughWeight -= DefaultWeight / 2; 8164 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8165 break; 8166 } 8167 } 8168 8169 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8170 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8171 8172 // The jump table header will be inserted in our current block, do the 8173 // range check, and fall through to our fallthrough block. 8174 JTH->HeaderBB = CurMBB; 8175 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8176 8177 // If we're in the right place, emit the jump table header right now. 8178 if (CurMBB == SwitchMBB) { 8179 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8180 JTH->Emitted = true; 8181 } 8182 break; 8183 } 8184 case CC_BitTests: { 8185 // FIXME: Optimize away range check based on pivot comparisons. 8186 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8187 8188 // The bit test blocks haven't been inserted yet; insert them here. 8189 for (BitTestCase &BTC : BTB->Cases) 8190 CurMF->insert(BBI, BTC.ThisBB); 8191 8192 // Fill in fields of the BitTestBlock. 8193 BTB->Parent = CurMBB; 8194 BTB->Default = Fallthrough; 8195 8196 BTB->DefaultWeight = UnhandledWeights; 8197 // If the cases in bit test don't form a contiguous range, we evenly 8198 // distribute the weight on the edge to Fallthrough to two successors 8199 // of CurMBB. 8200 if (!BTB->ContiguousRange) { 8201 BTB->Weight += DefaultWeight / 2; 8202 BTB->DefaultWeight -= DefaultWeight / 2; 8203 } 8204 8205 // If we're in the right place, emit the bit test header right now. 8206 if (CurMBB == SwitchMBB) { 8207 visitBitTestHeader(*BTB, SwitchMBB); 8208 BTB->Emitted = true; 8209 } 8210 break; 8211 } 8212 case CC_Range: { 8213 const Value *RHS, *LHS, *MHS; 8214 ISD::CondCode CC; 8215 if (I->Low == I->High) { 8216 // Check Cond == I->Low. 8217 CC = ISD::SETEQ; 8218 LHS = Cond; 8219 RHS=I->Low; 8220 MHS = nullptr; 8221 } else { 8222 // Check I->Low <= Cond <= I->High. 8223 CC = ISD::SETLE; 8224 LHS = I->Low; 8225 MHS = Cond; 8226 RHS = I->High; 8227 } 8228 8229 // The false weight is the sum of all unhandled cases. 8230 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8231 UnhandledWeights); 8232 8233 if (CurMBB == SwitchMBB) 8234 visitSwitchCase(CB, SwitchMBB); 8235 else 8236 SwitchCases.push_back(CB); 8237 8238 break; 8239 } 8240 } 8241 CurMBB = Fallthrough; 8242 } 8243 } 8244 8245 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8246 CaseClusterIt First, 8247 CaseClusterIt Last) { 8248 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8249 if (X.Weight != CC.Weight) 8250 return X.Weight > CC.Weight; 8251 8252 // Ties are broken by comparing the case value. 8253 return X.Low->getValue().slt(CC.Low->getValue()); 8254 }); 8255 } 8256 8257 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8258 const SwitchWorkListItem &W, 8259 Value *Cond, 8260 MachineBasicBlock *SwitchMBB) { 8261 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8262 "Clusters not sorted?"); 8263 8264 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8265 8266 // Balance the tree based on branch weights to create a near-optimal (in terms 8267 // of search time given key frequency) binary search tree. See e.g. Kurt 8268 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8269 CaseClusterIt LastLeft = W.FirstCluster; 8270 CaseClusterIt FirstRight = W.LastCluster; 8271 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8272 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8273 8274 // Move LastLeft and FirstRight towards each other from opposite directions to 8275 // find a partitioning of the clusters which balances the weight on both 8276 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8277 // taken to ensure 0-weight nodes are distributed evenly. 8278 unsigned I = 0; 8279 while (LastLeft + 1 < FirstRight) { 8280 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8281 LeftWeight += (++LastLeft)->Weight; 8282 else 8283 RightWeight += (--FirstRight)->Weight; 8284 I++; 8285 } 8286 8287 for (;;) { 8288 // Our binary search tree differs from a typical BST in that ours can have up 8289 // to three values in each leaf. The pivot selection above doesn't take that 8290 // into account, which means the tree might require more nodes and be less 8291 // efficient. We compensate for this here. 8292 8293 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8294 unsigned NumRight = W.LastCluster - FirstRight + 1; 8295 8296 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8297 // If one side has less than 3 clusters, and the other has more than 3, 8298 // consider taking a cluster from the other side. 8299 8300 if (NumLeft < NumRight) { 8301 // Consider moving the first cluster on the right to the left side. 8302 CaseCluster &CC = *FirstRight; 8303 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8304 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8305 if (LeftSideRank <= RightSideRank) { 8306 // Moving the cluster to the left does not demote it. 8307 ++LastLeft; 8308 ++FirstRight; 8309 continue; 8310 } 8311 } else { 8312 assert(NumRight < NumLeft); 8313 // Consider moving the last element on the left to the right side. 8314 CaseCluster &CC = *LastLeft; 8315 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8316 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8317 if (RightSideRank <= LeftSideRank) { 8318 // Moving the cluster to the right does not demot it. 8319 --LastLeft; 8320 --FirstRight; 8321 continue; 8322 } 8323 } 8324 } 8325 break; 8326 } 8327 8328 assert(LastLeft + 1 == FirstRight); 8329 assert(LastLeft >= W.FirstCluster); 8330 assert(FirstRight <= W.LastCluster); 8331 8332 // Use the first element on the right as pivot since we will make less-than 8333 // comparisons against it. 8334 CaseClusterIt PivotCluster = FirstRight; 8335 assert(PivotCluster > W.FirstCluster); 8336 assert(PivotCluster <= W.LastCluster); 8337 8338 CaseClusterIt FirstLeft = W.FirstCluster; 8339 CaseClusterIt LastRight = W.LastCluster; 8340 8341 const ConstantInt *Pivot = PivotCluster->Low; 8342 8343 // New blocks will be inserted immediately after the current one. 8344 MachineFunction::iterator BBI = W.MBB; 8345 ++BBI; 8346 8347 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8348 // we can branch to its destination directly if it's squeezed exactly in 8349 // between the known lower bound and Pivot - 1. 8350 MachineBasicBlock *LeftMBB; 8351 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8352 FirstLeft->Low == W.GE && 8353 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8354 LeftMBB = FirstLeft->MBB; 8355 } else { 8356 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8357 FuncInfo.MF->insert(BBI, LeftMBB); 8358 WorkList.push_back( 8359 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8360 // Put Cond in a virtual register to make it available from the new blocks. 8361 ExportFromCurrentBlock(Cond); 8362 } 8363 8364 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8365 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8366 // directly if RHS.High equals the current upper bound. 8367 MachineBasicBlock *RightMBB; 8368 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8369 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8370 RightMBB = FirstRight->MBB; 8371 } else { 8372 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8373 FuncInfo.MF->insert(BBI, RightMBB); 8374 WorkList.push_back( 8375 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8376 // Put Cond in a virtual register to make it available from the new blocks. 8377 ExportFromCurrentBlock(Cond); 8378 } 8379 8380 // Create the CaseBlock record that will be used to lower the branch. 8381 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8382 LeftWeight, RightWeight); 8383 8384 if (W.MBB == SwitchMBB) 8385 visitSwitchCase(CB, SwitchMBB); 8386 else 8387 SwitchCases.push_back(CB); 8388 } 8389 8390 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8391 // Extract cases from the switch. 8392 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8393 CaseClusterVector Clusters; 8394 Clusters.reserve(SI.getNumCases()); 8395 for (auto I : SI.cases()) { 8396 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8397 const ConstantInt *CaseVal = I.getCaseValue(); 8398 uint32_t Weight = 8399 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8400 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8401 } 8402 8403 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8404 8405 // Cluster adjacent cases with the same destination. We do this at all 8406 // optimization levels because it's cheap to do and will make codegen faster 8407 // if there are many clusters. 8408 sortAndRangeify(Clusters); 8409 8410 if (TM.getOptLevel() != CodeGenOpt::None) { 8411 // Replace an unreachable default with the most popular destination. 8412 // FIXME: Exploit unreachable default more aggressively. 8413 bool UnreachableDefault = 8414 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8415 if (UnreachableDefault && !Clusters.empty()) { 8416 DenseMap<const BasicBlock *, unsigned> Popularity; 8417 unsigned MaxPop = 0; 8418 const BasicBlock *MaxBB = nullptr; 8419 for (auto I : SI.cases()) { 8420 const BasicBlock *BB = I.getCaseSuccessor(); 8421 if (++Popularity[BB] > MaxPop) { 8422 MaxPop = Popularity[BB]; 8423 MaxBB = BB; 8424 } 8425 } 8426 // Set new default. 8427 assert(MaxPop > 0 && MaxBB); 8428 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8429 8430 // Remove cases that were pointing to the destination that is now the 8431 // default. 8432 CaseClusterVector New; 8433 New.reserve(Clusters.size()); 8434 for (CaseCluster &CC : Clusters) { 8435 if (CC.MBB != DefaultMBB) 8436 New.push_back(CC); 8437 } 8438 Clusters = std::move(New); 8439 } 8440 } 8441 8442 // If there is only the default destination, jump there directly. 8443 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8444 if (Clusters.empty()) { 8445 SwitchMBB->addSuccessor(DefaultMBB); 8446 if (DefaultMBB != NextBlock(SwitchMBB)) { 8447 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8448 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8449 } 8450 return; 8451 } 8452 8453 findJumpTables(Clusters, &SI, DefaultMBB); 8454 findBitTestClusters(Clusters, &SI); 8455 8456 DEBUG({ 8457 dbgs() << "Case clusters: "; 8458 for (const CaseCluster &C : Clusters) { 8459 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8460 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8461 8462 C.Low->getValue().print(dbgs(), true); 8463 if (C.Low != C.High) { 8464 dbgs() << '-'; 8465 C.High->getValue().print(dbgs(), true); 8466 } 8467 dbgs() << ' '; 8468 } 8469 dbgs() << '\n'; 8470 }); 8471 8472 assert(!Clusters.empty()); 8473 SwitchWorkList WorkList; 8474 CaseClusterIt First = Clusters.begin(); 8475 CaseClusterIt Last = Clusters.end() - 1; 8476 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8477 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8478 8479 while (!WorkList.empty()) { 8480 SwitchWorkListItem W = WorkList.back(); 8481 WorkList.pop_back(); 8482 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8483 8484 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8485 // For optimized builds, lower large range as a balanced binary tree. 8486 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8487 continue; 8488 } 8489 8490 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8491 } 8492 } 8493