1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCSymbol.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <cstring> 105 #include <iterator> 106 #include <limits> 107 #include <numeric> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 Optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 165 const SDValue *Parts, unsigned NumParts, 166 MVT PartVT, EVT ValueVT, const Value *V, 167 Optional<CallingConv::ID> CC = None, 168 Optional<ISD::NodeType> AssertOp = None) { 169 // Let the target assemble the parts if it wants to 170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 172 PartVT, ValueVT, CC)) 173 return Val; 174 175 if (ValueVT.isVector()) 176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 177 CC); 178 179 assert(NumParts > 0 && "No parts to assemble!"); 180 SDValue Val = Parts[0]; 181 182 if (NumParts > 1) { 183 // Assemble the value from multiple parts. 184 if (ValueVT.isInteger()) { 185 unsigned PartBits = PartVT.getSizeInBits(); 186 unsigned ValueBits = ValueVT.getSizeInBits(); 187 188 // Assemble the power of 2 part. 189 unsigned RoundParts = 190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 200 PartVT, HalfVT, V); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 202 RoundParts / 2, PartVT, HalfVT, V); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = 227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getPointerTy(DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 249 } 250 } 251 252 // There is now one part, held in Val. Correct it to match ValueVT. 253 // PartEVT is the type of the register class that holds the value. 254 // ValueVT is the type of the inline asm operation. 255 EVT PartEVT = Val.getValueType(); 256 257 if (PartEVT == ValueVT) 258 return Val; 259 260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 261 ValueVT.bitsLT(PartEVT)) { 262 // For an FP value in an integer part, we need to truncate to the right 263 // width first. 264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 266 } 267 268 // Handle types that have the same size. 269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 271 272 // Handle types with different sizes. 273 if (PartEVT.isInteger() && ValueVT.isInteger()) { 274 if (ValueVT.bitsLT(PartEVT)) { 275 // For a truncate, see if we have any information to 276 // indicate whether the truncated bits will always be 277 // zero or sign-extension. 278 if (AssertOp.hasValue()) 279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 280 DAG.getValueType(ValueVT)); 281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 282 } 283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 284 } 285 286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 287 // FP_ROUND's are always exact here. 288 if (ValueVT.bitsLT(Val.getValueType())) 289 return DAG.getNode( 290 ISD::FP_ROUND, DL, ValueVT, Val, 291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 292 293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 294 } 295 296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 297 // then truncating. 298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 299 ValueVT.bitsLT(PartEVT)) { 300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 302 } 303 304 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 305 } 306 307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 308 const Twine &ErrMsg) { 309 const Instruction *I = dyn_cast_or_null<Instruction>(V); 310 if (!V) 311 return Ctx.emitError(ErrMsg); 312 313 const char *AsmError = ", possible invalid constraint for vector type"; 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) 315 if (CI->isInlineAsm()) 316 return Ctx.emitError(I, ErrMsg + AsmError); 317 318 return Ctx.emitError(I, ErrMsg); 319 } 320 321 /// getCopyFromPartsVector - Create a value that contains the specified legal 322 /// parts combined into the value they represent. If the parts combine to a 323 /// type larger than ValueVT then AssertOp can be used to specify whether the 324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 325 /// ValueVT (ISD::AssertSext). 326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 327 const SDValue *Parts, unsigned NumParts, 328 MVT PartVT, EVT ValueVT, const Value *V, 329 Optional<CallingConv::ID> CallConv) { 330 assert(ValueVT.isVector() && "Not a vector value"); 331 assert(NumParts > 0 && "No parts to assemble!"); 332 const bool IsABIRegCopy = CallConv.hasValue(); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 SDValue Val = Parts[0]; 336 337 // Handle a multi-element vector. 338 if (NumParts > 1) { 339 EVT IntermediateVT; 340 MVT RegisterVT; 341 unsigned NumIntermediates; 342 unsigned NumRegs; 343 344 if (IsABIRegCopy) { 345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 347 NumIntermediates, RegisterVT); 348 } else { 349 NumRegs = 350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 351 NumIntermediates, RegisterVT); 352 } 353 354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 355 NumParts = NumRegs; // Silence a compiler warning. 356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 357 assert(RegisterVT.getSizeInBits() == 358 Parts[0].getSimpleValueType().getSizeInBits() && 359 "Part type sizes don't match!"); 360 361 // Assemble the parts into intermediate operands. 362 SmallVector<SDValue, 8> Ops(NumIntermediates); 363 if (NumIntermediates == NumParts) { 364 // If the register was not expanded, truncate or copy the value, 365 // as appropriate. 366 for (unsigned i = 0; i != NumParts; ++i) 367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 368 PartVT, IntermediateVT, V, CallConv); 369 } else if (NumParts > 0) { 370 // If the intermediate type was expanded, build the intermediate 371 // operands from the parts. 372 assert(NumParts % NumIntermediates == 0 && 373 "Must expand into a divisible number of parts!"); 374 unsigned Factor = NumParts / NumIntermediates; 375 for (unsigned i = 0; i != NumIntermediates; ++i) 376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 377 PartVT, IntermediateVT, V, CallConv); 378 } 379 380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 381 // intermediate operands. 382 EVT BuiltVectorTy = 383 IntermediateVT.isVector() 384 ? EVT::getVectorVT( 385 *DAG.getContext(), IntermediateVT.getScalarType(), 386 IntermediateVT.getVectorElementCount() * NumParts) 387 : EVT::getVectorVT(*DAG.getContext(), 388 IntermediateVT.getScalarType(), 389 NumIntermediates); 390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 391 : ISD::BUILD_VECTOR, 392 DL, BuiltVectorTy, Ops); 393 } 394 395 // There is now one part, held in Val. Correct it to match ValueVT. 396 EVT PartEVT = Val.getValueType(); 397 398 if (PartEVT == ValueVT) 399 return Val; 400 401 if (PartEVT.isVector()) { 402 // If the element type of the source/dest vectors are the same, but the 403 // parts vector has more elements than the value vector, then we have a 404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 405 // elements we want. 406 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.bitsLT(PartEVT)) { 439 // Bitcast Val back the original type and extract the corresponding 440 // vector we want. 441 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 442 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 443 ValueVT.getVectorElementType(), Elts); 444 Val = DAG.getBitcast(WiderVecType, Val); 445 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 446 DAG.getVectorIdxConstant(0, DL)); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, 614 SDValue Val, const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isFixedLengthVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 unsigned PartNumElts = PartVT.getVectorNumElements(); 620 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 621 if (PartNumElts > ValueNumElts && 622 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 623 EVT ElementVT = PartVT.getVectorElementType(); 624 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 625 // undef elements. 626 SmallVector<SDValue, 16> Ops; 627 DAG.ExtractVectorElements(Val, Ops); 628 SDValue EltUndef = DAG.getUNDEF(ElementVT); 629 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 630 Ops.push_back(EltUndef); 631 632 // FIXME: Use CONCAT for 2x -> 4x. 633 return DAG.getBuildVector(PartVT, DL, Ops); 634 } 635 636 return SDValue(); 637 } 638 639 /// getCopyToPartsVector - Create a series of nodes that contain the specified 640 /// value split into legal parts. 641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 642 SDValue Val, SDValue *Parts, unsigned NumParts, 643 MVT PartVT, const Value *V, 644 Optional<CallingConv::ID> CallConv) { 645 EVT ValueVT = Val.getValueType(); 646 assert(ValueVT.isVector() && "Not a vector"); 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 const bool IsABIRegCopy = CallConv.hasValue(); 649 650 if (NumParts == 1) { 651 EVT PartEVT = PartVT; 652 if (PartEVT == ValueVT) { 653 // Nothing to do. 654 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 655 // Bitconvert vector->vector case. 656 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 657 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 658 Val = Widened; 659 } else if (PartVT.isVector() && 660 PartEVT.getVectorElementType().bitsGE( 661 ValueVT.getVectorElementType()) && 662 PartEVT.getVectorElementCount() == 663 ValueVT.getVectorElementCount()) { 664 665 // Promoted vector extract 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } else { 668 if (ValueVT.getVectorElementCount().isScalar()) { 669 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 670 DAG.getVectorIdxConstant(0, DL)); 671 } else { 672 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 673 assert(PartVT.getFixedSizeInBits() > ValueSize && 674 "lossy conversion of vector to scalar type"); 675 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 676 Val = DAG.getBitcast(IntermediateType, Val); 677 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 678 } 679 } 680 681 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 682 Parts[0] = Val; 683 return; 684 } 685 686 // Handle a multi-element vector. 687 EVT IntermediateVT; 688 MVT RegisterVT; 689 unsigned NumIntermediates; 690 unsigned NumRegs; 691 if (IsABIRegCopy) { 692 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 693 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 694 NumIntermediates, RegisterVT); 695 } else { 696 NumRegs = 697 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 698 NumIntermediates, RegisterVT); 699 } 700 701 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 702 NumParts = NumRegs; // Silence a compiler warning. 703 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 704 705 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 706 "Mixing scalable and fixed vectors when copying in parts"); 707 708 Optional<ElementCount> DestEltCnt; 709 710 if (IntermediateVT.isVector()) 711 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 712 else 713 DestEltCnt = ElementCount::getFixed(NumIntermediates); 714 715 EVT BuiltVectorTy = EVT::getVectorVT( 716 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 717 if (ValueVT != BuiltVectorTy) { 718 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 719 Val = Widened; 720 721 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 722 } 723 724 // Split the vector into intermediate operands. 725 SmallVector<SDValue, 8> Ops(NumIntermediates); 726 for (unsigned i = 0; i != NumIntermediates; ++i) { 727 if (IntermediateVT.isVector()) { 728 // This does something sensible for scalable vectors - see the 729 // definition of EXTRACT_SUBVECTOR for further details. 730 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 731 Ops[i] = 732 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 734 } else { 735 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 736 DAG.getVectorIdxConstant(i, DL)); 737 } 738 } 739 740 // Split the intermediate operands into legal parts. 741 if (NumParts == NumIntermediates) { 742 // If the register was not expanded, promote or copy the value, 743 // as appropriate. 744 for (unsigned i = 0; i != NumParts; ++i) 745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 746 } else if (NumParts > 0) { 747 // If the intermediate type was expanded, split each the value into 748 // legal parts. 749 assert(NumIntermediates != 0 && "division by zero"); 750 assert(NumParts % NumIntermediates == 0 && 751 "Must expand into a divisible number of parts!"); 752 unsigned Factor = NumParts / NumIntermediates; 753 for (unsigned i = 0; i != NumIntermediates; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 755 CallConv); 756 } 757 } 758 759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 760 EVT valuevt, Optional<CallingConv::ID> CC) 761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 762 RegCount(1, regs.size()), CallConv(CC) {} 763 764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 765 const DataLayout &DL, unsigned Reg, Type *Ty, 766 Optional<CallingConv::ID> CC) { 767 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 768 769 CallConv = CC; 770 771 for (EVT ValueVT : ValueVTs) { 772 unsigned NumRegs = 773 isABIMangled() 774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 775 : TLI.getNumRegisters(Context, ValueVT); 776 MVT RegisterVT = 777 isABIMangled() 778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 779 : TLI.getRegisterType(Context, ValueVT); 780 for (unsigned i = 0; i != NumRegs; ++i) 781 Regs.push_back(Reg + i); 782 RegVTs.push_back(RegisterVT); 783 RegCount.push_back(NumRegs); 784 Reg += NumRegs; 785 } 786 } 787 788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 789 FunctionLoweringInfo &FuncInfo, 790 const SDLoc &dl, SDValue &Chain, 791 SDValue *Flag, const Value *V) const { 792 // A Value with type {} or [0 x %t] needs no registers. 793 if (ValueVTs.empty()) 794 return SDValue(); 795 796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 797 798 // Assemble the legal parts into the final values. 799 SmallVector<SDValue, 4> Values(ValueVTs.size()); 800 SmallVector<SDValue, 8> Parts; 801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 802 // Copy the legal parts from the registers. 803 EVT ValueVT = ValueVTs[Value]; 804 unsigned NumRegs = RegCount[Value]; 805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 806 *DAG.getContext(), 807 CallConv.getValue(), RegVTs[Value]) 808 : RegVTs[Value]; 809 810 Parts.resize(NumRegs); 811 for (unsigned i = 0; i != NumRegs; ++i) { 812 SDValue P; 813 if (!Flag) { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 815 } else { 816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 817 *Flag = P.getValue(2); 818 } 819 820 Chain = P.getValue(1); 821 Parts[i] = P; 822 823 // If the source register was virtual and if we know something about it, 824 // add an assert node. 825 if (!Register::isVirtualRegister(Regs[Part + i]) || 826 !RegisterVT.isInteger()) 827 continue; 828 829 const FunctionLoweringInfo::LiveOutInfo *LOI = 830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 831 if (!LOI) 832 continue; 833 834 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 835 unsigned NumSignBits = LOI->NumSignBits; 836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 837 838 if (NumZeroBits == RegSize) { 839 // The current value is a zero. 840 // Explicitly express that as it would be easier for 841 // optimizations to kick in. 842 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 843 continue; 844 } 845 846 // FIXME: We capture more information than the dag can represent. For 847 // now, just use the tightest assertzext/assertsext possible. 848 bool isSExt; 849 EVT FromVT(MVT::Other); 850 if (NumZeroBits) { 851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 852 isSExt = false; 853 } else if (NumSignBits > 1) { 854 FromVT = 855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 856 isSExt = true; 857 } else { 858 continue; 859 } 860 // Add an assertion node. 861 assert(FromVT != MVT::Other); 862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 863 RegisterVT, P, DAG.getValueType(FromVT)); 864 } 865 866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 867 RegisterVT, ValueVT, V, CallConv); 868 Part += NumRegs; 869 Parts.clear(); 870 } 871 872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 873 } 874 875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 876 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 877 const Value *V, 878 ISD::NodeType PreferredExtendType) const { 879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 880 ISD::NodeType ExtendKind = PreferredExtendType; 881 882 // Get the list of the values's legal parts. 883 unsigned NumRegs = Regs.size(); 884 SmallVector<SDValue, 8> Parts(NumRegs); 885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 886 unsigned NumParts = RegCount[Value]; 887 888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 889 *DAG.getContext(), 890 CallConv.getValue(), RegVTs[Value]) 891 : RegVTs[Value]; 892 893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 894 ExtendKind = ISD::ZERO_EXTEND; 895 896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 897 NumParts, RegisterVT, V, CallConv, ExtendKind); 898 Part += NumParts; 899 } 900 901 // Copy the parts into the registers. 902 SmallVector<SDValue, 8> Chains(NumRegs); 903 for (unsigned i = 0; i != NumRegs; ++i) { 904 SDValue Part; 905 if (!Flag) { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 907 } else { 908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 909 *Flag = Part.getValue(1); 910 } 911 912 Chains[i] = Part.getValue(0); 913 } 914 915 if (NumRegs == 1 || Flag) 916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 917 // flagged to it. That is the CopyToReg nodes and the user are considered 918 // a single scheduling unit. If we create a TokenFactor and return it as 919 // chain, then the TokenFactor is both a predecessor (operand) of the 920 // user as well as a successor (the TF operands are flagged to the user). 921 // c1, f1 = CopyToReg 922 // c2, f2 = CopyToReg 923 // c3 = TokenFactor c1, c2 924 // ... 925 // = op c3, ..., f2 926 Chain = Chains[NumRegs-1]; 927 else 928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 929 } 930 931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 932 unsigned MatchingIdx, const SDLoc &dl, 933 SelectionDAG &DAG, 934 std::vector<SDValue> &Ops) const { 935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 936 937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 938 if (HasMatching) 939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 940 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 941 // Put the register class of the virtual registers in the flag word. That 942 // way, later passes can recompute register class constraints for inline 943 // assembly as well as normal instructions. 944 // Don't do this for tied operands that can use the regclass information 945 // from the def. 946 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 947 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 948 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 949 } 950 951 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 952 Ops.push_back(Res); 953 954 if (Code == InlineAsm::Kind_Clobber) { 955 // Clobbers should always have a 1:1 mapping with registers, and may 956 // reference registers that have illegal (e.g. vector) types. Hence, we 957 // shouldn't try to apply any sort of splitting logic to them. 958 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 959 "No 1:1 mapping from clobbers to regs?"); 960 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 961 (void)SP; 962 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 963 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 964 assert( 965 (Regs[I] != SP || 966 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 967 "If we clobbered the stack pointer, MFI should know about it."); 968 } 969 return; 970 } 971 972 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 973 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 974 MVT RegisterVT = RegVTs[Value]; 975 for (unsigned i = 0; i != NumRegs; ++i) { 976 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 977 unsigned TheReg = Regs[Reg++]; 978 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 979 } 980 } 981 } 982 983 SmallVector<std::pair<unsigned, TypeSize>, 4> 984 RegsForValue::getRegsAndSizes() const { 985 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 986 unsigned I = 0; 987 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 988 unsigned RegCount = std::get<0>(CountAndVT); 989 MVT RegisterVT = std::get<1>(CountAndVT); 990 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 991 for (unsigned E = I + RegCount; I != E; ++I) 992 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 993 } 994 return OutVec; 995 } 996 997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 998 const TargetLibraryInfo *li) { 999 AA = aa; 1000 GFI = gfi; 1001 LibInfo = li; 1002 DL = &DAG.getDataLayout(); 1003 Context = DAG.getContext(); 1004 LPadToCallSiteMap.clear(); 1005 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1006 } 1007 1008 void SelectionDAGBuilder::clear() { 1009 NodeMap.clear(); 1010 UnusedArgNodeMap.clear(); 1011 PendingLoads.clear(); 1012 PendingExports.clear(); 1013 PendingConstrainedFP.clear(); 1014 PendingConstrainedFPStrict.clear(); 1015 CurInst = nullptr; 1016 HasTailCall = false; 1017 SDNodeOrder = LowestSDNodeOrder; 1018 StatepointLowering.clear(); 1019 } 1020 1021 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1022 DanglingDebugInfoMap.clear(); 1023 } 1024 1025 // Update DAG root to include dependencies on Pending chains. 1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1027 SDValue Root = DAG.getRoot(); 1028 1029 if (Pending.empty()) 1030 return Root; 1031 1032 // Add current root to PendingChains, unless we already indirectly 1033 // depend on it. 1034 if (Root.getOpcode() != ISD::EntryToken) { 1035 unsigned i = 0, e = Pending.size(); 1036 for (; i != e; ++i) { 1037 assert(Pending[i].getNode()->getNumOperands() > 1); 1038 if (Pending[i].getNode()->getOperand(0) == Root) 1039 break; // Don't add the root if we already indirectly depend on it. 1040 } 1041 1042 if (i == e) 1043 Pending.push_back(Root); 1044 } 1045 1046 if (Pending.size() == 1) 1047 Root = Pending[0]; 1048 else 1049 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1050 1051 DAG.setRoot(Root); 1052 Pending.clear(); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getMemoryRoot() { 1057 return updateRoot(PendingLoads); 1058 } 1059 1060 SDValue SelectionDAGBuilder::getRoot() { 1061 // Chain up all pending constrained intrinsics together with all 1062 // pending loads, by simply appending them to PendingLoads and 1063 // then calling getMemoryRoot(). 1064 PendingLoads.reserve(PendingLoads.size() + 1065 PendingConstrainedFP.size() + 1066 PendingConstrainedFPStrict.size()); 1067 PendingLoads.append(PendingConstrainedFP.begin(), 1068 PendingConstrainedFP.end()); 1069 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1070 PendingConstrainedFPStrict.end()); 1071 PendingConstrainedFP.clear(); 1072 PendingConstrainedFPStrict.clear(); 1073 return getMemoryRoot(); 1074 } 1075 1076 SDValue SelectionDAGBuilder::getControlRoot() { 1077 // We need to emit pending fpexcept.strict constrained intrinsics, 1078 // so append them to the PendingExports list. 1079 PendingExports.append(PendingConstrainedFPStrict.begin(), 1080 PendingConstrainedFPStrict.end()); 1081 PendingConstrainedFPStrict.clear(); 1082 return updateRoot(PendingExports); 1083 } 1084 1085 void SelectionDAGBuilder::visit(const Instruction &I) { 1086 // Set up outgoing PHI node register values before emitting the terminator. 1087 if (I.isTerminator()) { 1088 HandlePHINodesInSuccessorBlocks(I.getParent()); 1089 } 1090 1091 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1092 if (!isa<DbgInfoIntrinsic>(I)) 1093 ++SDNodeOrder; 1094 1095 CurInst = &I; 1096 1097 visit(I.getOpcode(), I); 1098 1099 if (!I.isTerminator() && !HasTailCall && 1100 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1101 CopyToExportRegsIfNeeded(&I); 1102 1103 CurInst = nullptr; 1104 } 1105 1106 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1107 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1108 } 1109 1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1111 // Note: this doesn't use InstVisitor, because it has to work with 1112 // ConstantExpr's in addition to instructions. 1113 switch (Opcode) { 1114 default: llvm_unreachable("Unknown instruction type encountered!"); 1115 // Build the switch statement using the Instruction.def file. 1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1117 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1118 #include "llvm/IR/Instruction.def" 1119 } 1120 } 1121 1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1123 const DIExpression *Expr) { 1124 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1125 const DbgValueInst *DI = DDI.getDI(); 1126 DIVariable *DanglingVariable = DI->getVariable(); 1127 DIExpression *DanglingExpr = DI->getExpression(); 1128 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1129 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1130 return true; 1131 } 1132 return false; 1133 }; 1134 1135 for (auto &DDIMI : DanglingDebugInfoMap) { 1136 DanglingDebugInfoVector &DDIV = DDIMI.second; 1137 1138 // If debug info is to be dropped, run it through final checks to see 1139 // whether it can be salvaged. 1140 for (auto &DDI : DDIV) 1141 if (isMatchingDbgValue(DDI)) 1142 salvageUnresolvedDbgValue(DDI); 1143 1144 erase_if(DDIV, isMatchingDbgValue); 1145 } 1146 } 1147 1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1149 // generate the debug data structures now that we've seen its definition. 1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1151 SDValue Val) { 1152 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1153 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1154 return; 1155 1156 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1157 for (auto &DDI : DDIV) { 1158 const DbgValueInst *DI = DDI.getDI(); 1159 assert(DI && "Ill-formed DanglingDebugInfo"); 1160 DebugLoc dl = DDI.getdl(); 1161 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1162 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1163 DILocalVariable *Variable = DI->getVariable(); 1164 DIExpression *Expr = DI->getExpression(); 1165 assert(Variable->isValidLocationForIntrinsic(dl) && 1166 "Expected inlined-at fields to agree"); 1167 SDDbgValue *SDV; 1168 if (Val.getNode()) { 1169 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1170 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1171 // we couldn't resolve it directly when examining the DbgValue intrinsic 1172 // in the first place we should not be more successful here). Unless we 1173 // have some test case that prove this to be correct we should avoid 1174 // calling EmitFuncArgumentDbgValue here. 1175 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1176 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1177 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1178 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1179 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1180 // inserted after the definition of Val when emitting the instructions 1181 // after ISel. An alternative could be to teach 1182 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1183 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1184 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1185 << ValSDNodeOrder << "\n"); 1186 SDV = getDbgValue(Val, Variable, Expr, dl, 1187 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1188 DAG.AddDbgValue(SDV, Val.getNode(), false); 1189 } else 1190 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1191 << "in EmitFuncArgumentDbgValue\n"); 1192 } else { 1193 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1194 auto Undef = 1195 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1196 auto SDV = 1197 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1198 DAG.AddDbgValue(SDV, nullptr, false); 1199 } 1200 } 1201 DDIV.clear(); 1202 } 1203 1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1205 Value *V = DDI.getDI()->getValue(); 1206 DILocalVariable *Var = DDI.getDI()->getVariable(); 1207 DIExpression *Expr = DDI.getDI()->getExpression(); 1208 DebugLoc DL = DDI.getdl(); 1209 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1210 unsigned SDOrder = DDI.getSDNodeOrder(); 1211 1212 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1213 // that DW_OP_stack_value is desired. 1214 assert(isa<DbgValueInst>(DDI.getDI())); 1215 bool StackValue = true; 1216 1217 // Can this Value can be encoded without any further work? 1218 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1219 return; 1220 1221 // Attempt to salvage back through as many instructions as possible. Bail if 1222 // a non-instruction is seen, such as a constant expression or global 1223 // variable. FIXME: Further work could recover those too. 1224 while (isa<Instruction>(V)) { 1225 Instruction &VAsInst = *cast<Instruction>(V); 1226 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1227 1228 // If we cannot salvage any further, and haven't yet found a suitable debug 1229 // expression, bail out. 1230 if (!NewExpr) 1231 break; 1232 1233 // New value and expr now represent this debuginfo. 1234 V = VAsInst.getOperand(0); 1235 Expr = NewExpr; 1236 1237 // Some kind of simplification occurred: check whether the operand of the 1238 // salvaged debug expression can be encoded in this DAG. 1239 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1240 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1241 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1242 return; 1243 } 1244 } 1245 1246 // This was the final opportunity to salvage this debug information, and it 1247 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1248 // any earlier variable location. 1249 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1250 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1251 DAG.AddDbgValue(SDV, nullptr, false); 1252 1253 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1254 << "\n"); 1255 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1256 << "\n"); 1257 } 1258 1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1260 DIExpression *Expr, DebugLoc dl, 1261 DebugLoc InstDL, unsigned Order) { 1262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1263 SDDbgValue *SDV; 1264 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1265 isa<ConstantPointerNull>(V)) { 1266 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1267 DAG.AddDbgValue(SDV, nullptr, false); 1268 return true; 1269 } 1270 1271 // If the Value is a frame index, we can create a FrameIndex debug value 1272 // without relying on the DAG at all. 1273 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1274 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1275 if (SI != FuncInfo.StaticAllocaMap.end()) { 1276 auto SDV = 1277 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1278 /*IsIndirect*/ false, dl, SDNodeOrder); 1279 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1280 // is still available even if the SDNode gets optimized out. 1281 DAG.AddDbgValue(SDV, nullptr, false); 1282 return true; 1283 } 1284 } 1285 1286 // Do not use getValue() in here; we don't want to generate code at 1287 // this point if it hasn't been done yet. 1288 SDValue N = NodeMap[V]; 1289 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1290 N = UnusedArgNodeMap[V]; 1291 if (N.getNode()) { 1292 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1293 return true; 1294 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1295 DAG.AddDbgValue(SDV, N.getNode(), false); 1296 return true; 1297 } 1298 1299 // Special rules apply for the first dbg.values of parameter variables in a 1300 // function. Identify them by the fact they reference Argument Values, that 1301 // they're parameters, and they are parameters of the current function. We 1302 // need to let them dangle until they get an SDNode. 1303 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1304 !InstDL.getInlinedAt(); 1305 if (!IsParamOfFunc) { 1306 // The value is not used in this block yet (or it would have an SDNode). 1307 // We still want the value to appear for the user if possible -- if it has 1308 // an associated VReg, we can refer to that instead. 1309 auto VMI = FuncInfo.ValueMap.find(V); 1310 if (VMI != FuncInfo.ValueMap.end()) { 1311 unsigned Reg = VMI->second; 1312 // If this is a PHI node, it may be split up into several MI PHI nodes 1313 // (in FunctionLoweringInfo::set). 1314 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1315 V->getType(), None); 1316 if (RFV.occupiesMultipleRegs()) { 1317 unsigned Offset = 0; 1318 unsigned BitsToDescribe = 0; 1319 if (auto VarSize = Var->getSizeInBits()) 1320 BitsToDescribe = *VarSize; 1321 if (auto Fragment = Expr->getFragmentInfo()) 1322 BitsToDescribe = Fragment->SizeInBits; 1323 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1324 unsigned RegisterSize = RegAndSize.second; 1325 // Bail out if all bits are described already. 1326 if (Offset >= BitsToDescribe) 1327 break; 1328 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1329 ? BitsToDescribe - Offset 1330 : RegisterSize; 1331 auto FragmentExpr = DIExpression::createFragmentExpression( 1332 Expr, Offset, FragmentSize); 1333 if (!FragmentExpr) 1334 continue; 1335 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1336 false, dl, SDNodeOrder); 1337 DAG.AddDbgValue(SDV, nullptr, false); 1338 Offset += RegisterSize; 1339 } 1340 } else { 1341 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1342 DAG.AddDbgValue(SDV, nullptr, false); 1343 } 1344 return true; 1345 } 1346 } 1347 1348 return false; 1349 } 1350 1351 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1352 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1353 for (auto &Pair : DanglingDebugInfoMap) 1354 for (auto &DDI : Pair.second) 1355 salvageUnresolvedDbgValue(DDI); 1356 clearDanglingDebugInfo(); 1357 } 1358 1359 /// getCopyFromRegs - If there was virtual register allocated for the value V 1360 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1361 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1362 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1363 SDValue Result; 1364 1365 if (It != FuncInfo.ValueMap.end()) { 1366 Register InReg = It->second; 1367 1368 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1369 DAG.getDataLayout(), InReg, Ty, 1370 None); // This is not an ABI copy. 1371 SDValue Chain = DAG.getEntryNode(); 1372 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1373 V); 1374 resolveDanglingDebugInfo(V, Result); 1375 } 1376 1377 return Result; 1378 } 1379 1380 /// getValue - Return an SDValue for the given Value. 1381 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1382 // If we already have an SDValue for this value, use it. It's important 1383 // to do this first, so that we don't create a CopyFromReg if we already 1384 // have a regular SDValue. 1385 SDValue &N = NodeMap[V]; 1386 if (N.getNode()) return N; 1387 1388 // If there's a virtual register allocated and initialized for this 1389 // value, use it. 1390 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1391 return copyFromReg; 1392 1393 // Otherwise create a new SDValue and remember it. 1394 SDValue Val = getValueImpl(V); 1395 NodeMap[V] = Val; 1396 resolveDanglingDebugInfo(V, Val); 1397 return Val; 1398 } 1399 1400 /// getNonRegisterValue - Return an SDValue for the given Value, but 1401 /// don't look in FuncInfo.ValueMap for a virtual register. 1402 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1403 // If we already have an SDValue for this value, use it. 1404 SDValue &N = NodeMap[V]; 1405 if (N.getNode()) { 1406 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1407 // Remove the debug location from the node as the node is about to be used 1408 // in a location which may differ from the original debug location. This 1409 // is relevant to Constant and ConstantFP nodes because they can appear 1410 // as constant expressions inside PHI nodes. 1411 N->setDebugLoc(DebugLoc()); 1412 } 1413 return N; 1414 } 1415 1416 // Otherwise create a new SDValue and remember it. 1417 SDValue Val = getValueImpl(V); 1418 NodeMap[V] = Val; 1419 resolveDanglingDebugInfo(V, Val); 1420 return Val; 1421 } 1422 1423 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1424 /// Create an SDValue for the given value. 1425 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1427 1428 if (const Constant *C = dyn_cast<Constant>(V)) { 1429 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1430 1431 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1432 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1433 1434 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1435 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1436 1437 if (isa<ConstantPointerNull>(C)) { 1438 unsigned AS = V->getType()->getPointerAddressSpace(); 1439 return DAG.getConstant(0, getCurSDLoc(), 1440 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1441 } 1442 1443 if (match(C, m_VScale(DAG.getDataLayout()))) 1444 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1445 1446 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1447 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1448 1449 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1450 return DAG.getUNDEF(VT); 1451 1452 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1453 visit(CE->getOpcode(), *CE); 1454 SDValue N1 = NodeMap[V]; 1455 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1456 return N1; 1457 } 1458 1459 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1460 SmallVector<SDValue, 4> Constants; 1461 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1462 OI != OE; ++OI) { 1463 SDNode *Val = getValue(*OI).getNode(); 1464 // If the operand is an empty aggregate, there are no values. 1465 if (!Val) continue; 1466 // Add each leaf value from the operand to the Constants list 1467 // to form a flattened list of all the values. 1468 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1469 Constants.push_back(SDValue(Val, i)); 1470 } 1471 1472 return DAG.getMergeValues(Constants, getCurSDLoc()); 1473 } 1474 1475 if (const ConstantDataSequential *CDS = 1476 dyn_cast<ConstantDataSequential>(C)) { 1477 SmallVector<SDValue, 4> Ops; 1478 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1479 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1480 // Add each leaf value from the operand to the Constants list 1481 // to form a flattened list of all the values. 1482 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1483 Ops.push_back(SDValue(Val, i)); 1484 } 1485 1486 if (isa<ArrayType>(CDS->getType())) 1487 return DAG.getMergeValues(Ops, getCurSDLoc()); 1488 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1489 } 1490 1491 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1492 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1493 "Unknown struct or array constant!"); 1494 1495 SmallVector<EVT, 4> ValueVTs; 1496 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1497 unsigned NumElts = ValueVTs.size(); 1498 if (NumElts == 0) 1499 return SDValue(); // empty struct 1500 SmallVector<SDValue, 4> Constants(NumElts); 1501 for (unsigned i = 0; i != NumElts; ++i) { 1502 EVT EltVT = ValueVTs[i]; 1503 if (isa<UndefValue>(C)) 1504 Constants[i] = DAG.getUNDEF(EltVT); 1505 else if (EltVT.isFloatingPoint()) 1506 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1507 else 1508 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1509 } 1510 1511 return DAG.getMergeValues(Constants, getCurSDLoc()); 1512 } 1513 1514 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1515 return DAG.getBlockAddress(BA, VT); 1516 1517 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1518 return getValue(Equiv->getGlobalValue()); 1519 1520 VectorType *VecTy = cast<VectorType>(V->getType()); 1521 1522 // Now that we know the number and type of the elements, get that number of 1523 // elements into the Ops array based on what kind of constant it is. 1524 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1525 SmallVector<SDValue, 16> Ops; 1526 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1527 for (unsigned i = 0; i != NumElements; ++i) 1528 Ops.push_back(getValue(CV->getOperand(i))); 1529 1530 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1531 } else if (isa<ConstantAggregateZero>(C)) { 1532 EVT EltVT = 1533 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1534 1535 SDValue Op; 1536 if (EltVT.isFloatingPoint()) 1537 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1538 else 1539 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1540 1541 if (isa<ScalableVectorType>(VecTy)) 1542 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1543 else { 1544 SmallVector<SDValue, 16> Ops; 1545 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1546 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1547 } 1548 } 1549 llvm_unreachable("Unknown vector constant"); 1550 } 1551 1552 // If this is a static alloca, generate it as the frameindex instead of 1553 // computation. 1554 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1555 DenseMap<const AllocaInst*, int>::iterator SI = 1556 FuncInfo.StaticAllocaMap.find(AI); 1557 if (SI != FuncInfo.StaticAllocaMap.end()) 1558 return DAG.getFrameIndex(SI->second, 1559 TLI.getFrameIndexTy(DAG.getDataLayout())); 1560 } 1561 1562 // If this is an instruction which fast-isel has deferred, select it now. 1563 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1564 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1565 1566 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1567 Inst->getType(), None); 1568 SDValue Chain = DAG.getEntryNode(); 1569 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1570 } 1571 1572 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1573 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1574 } 1575 llvm_unreachable("Can't get register for value!"); 1576 } 1577 1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1579 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1580 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1581 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1582 bool IsSEH = isAsynchronousEHPersonality(Pers); 1583 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1584 if (!IsSEH) 1585 CatchPadMBB->setIsEHScopeEntry(); 1586 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1587 if (IsMSVCCXX || IsCoreCLR) 1588 CatchPadMBB->setIsEHFuncletEntry(); 1589 } 1590 1591 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1592 // Update machine-CFG edge. 1593 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1594 FuncInfo.MBB->addSuccessor(TargetMBB); 1595 1596 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1597 bool IsSEH = isAsynchronousEHPersonality(Pers); 1598 if (IsSEH) { 1599 // If this is not a fall-through branch or optimizations are switched off, 1600 // emit the branch. 1601 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1602 TM.getOptLevel() == CodeGenOpt::None) 1603 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1604 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1605 return; 1606 } 1607 1608 // Figure out the funclet membership for the catchret's successor. 1609 // This will be used by the FuncletLayout pass to determine how to order the 1610 // BB's. 1611 // A 'catchret' returns to the outer scope's color. 1612 Value *ParentPad = I.getCatchSwitchParentPad(); 1613 const BasicBlock *SuccessorColor; 1614 if (isa<ConstantTokenNone>(ParentPad)) 1615 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1616 else 1617 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1618 assert(SuccessorColor && "No parent funclet for catchret!"); 1619 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1620 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1621 1622 // Create the terminator node. 1623 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1624 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1625 DAG.getBasicBlock(SuccessorColorMBB)); 1626 DAG.setRoot(Ret); 1627 } 1628 1629 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1630 // Don't emit any special code for the cleanuppad instruction. It just marks 1631 // the start of an EH scope/funclet. 1632 FuncInfo.MBB->setIsEHScopeEntry(); 1633 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1634 if (Pers != EHPersonality::Wasm_CXX) { 1635 FuncInfo.MBB->setIsEHFuncletEntry(); 1636 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1637 } 1638 } 1639 1640 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1641 // the control flow always stops at the single catch pad, as it does for a 1642 // cleanup pad. In case the exception caught is not of the types the catch pad 1643 // catches, it will be rethrown by a rethrow. 1644 static void findWasmUnwindDestinations( 1645 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1646 BranchProbability Prob, 1647 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1648 &UnwindDests) { 1649 while (EHPadBB) { 1650 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1651 if (isa<CleanupPadInst>(Pad)) { 1652 // Stop on cleanup pads. 1653 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1654 UnwindDests.back().first->setIsEHScopeEntry(); 1655 break; 1656 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1657 // Add the catchpad handlers to the possible destinations. We don't 1658 // continue to the unwind destination of the catchswitch for wasm. 1659 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1660 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1661 UnwindDests.back().first->setIsEHScopeEntry(); 1662 } 1663 break; 1664 } else { 1665 continue; 1666 } 1667 } 1668 } 1669 1670 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1671 /// many places it could ultimately go. In the IR, we have a single unwind 1672 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1673 /// This function skips over imaginary basic blocks that hold catchswitch 1674 /// instructions, and finds all the "real" machine 1675 /// basic block destinations. As those destinations may not be successors of 1676 /// EHPadBB, here we also calculate the edge probability to those destinations. 1677 /// The passed-in Prob is the edge probability to EHPadBB. 1678 static void findUnwindDestinations( 1679 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1680 BranchProbability Prob, 1681 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1682 &UnwindDests) { 1683 EHPersonality Personality = 1684 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1685 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1686 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1687 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1688 bool IsSEH = isAsynchronousEHPersonality(Personality); 1689 1690 if (IsWasmCXX) { 1691 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1692 assert(UnwindDests.size() <= 1 && 1693 "There should be at most one unwind destination for wasm"); 1694 return; 1695 } 1696 1697 while (EHPadBB) { 1698 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1699 BasicBlock *NewEHPadBB = nullptr; 1700 if (isa<LandingPadInst>(Pad)) { 1701 // Stop on landingpads. They are not funclets. 1702 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1703 break; 1704 } else if (isa<CleanupPadInst>(Pad)) { 1705 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1706 // personalities. 1707 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1708 UnwindDests.back().first->setIsEHScopeEntry(); 1709 UnwindDests.back().first->setIsEHFuncletEntry(); 1710 break; 1711 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1712 // Add the catchpad handlers to the possible destinations. 1713 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1714 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1715 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1716 if (IsMSVCCXX || IsCoreCLR) 1717 UnwindDests.back().first->setIsEHFuncletEntry(); 1718 if (!IsSEH) 1719 UnwindDests.back().first->setIsEHScopeEntry(); 1720 } 1721 NewEHPadBB = CatchSwitch->getUnwindDest(); 1722 } else { 1723 continue; 1724 } 1725 1726 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1727 if (BPI && NewEHPadBB) 1728 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1729 EHPadBB = NewEHPadBB; 1730 } 1731 } 1732 1733 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1734 // Update successor info. 1735 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1736 auto UnwindDest = I.getUnwindDest(); 1737 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1738 BranchProbability UnwindDestProb = 1739 (BPI && UnwindDest) 1740 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1741 : BranchProbability::getZero(); 1742 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1743 for (auto &UnwindDest : UnwindDests) { 1744 UnwindDest.first->setIsEHPad(); 1745 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1746 } 1747 FuncInfo.MBB->normalizeSuccProbs(); 1748 1749 // Create the terminator node. 1750 SDValue Ret = 1751 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1752 DAG.setRoot(Ret); 1753 } 1754 1755 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1756 report_fatal_error("visitCatchSwitch not yet implemented!"); 1757 } 1758 1759 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1761 auto &DL = DAG.getDataLayout(); 1762 SDValue Chain = getControlRoot(); 1763 SmallVector<ISD::OutputArg, 8> Outs; 1764 SmallVector<SDValue, 8> OutVals; 1765 1766 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1767 // lower 1768 // 1769 // %val = call <ty> @llvm.experimental.deoptimize() 1770 // ret <ty> %val 1771 // 1772 // differently. 1773 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1774 LowerDeoptimizingReturn(); 1775 return; 1776 } 1777 1778 if (!FuncInfo.CanLowerReturn) { 1779 unsigned DemoteReg = FuncInfo.DemoteRegister; 1780 const Function *F = I.getParent()->getParent(); 1781 1782 // Emit a store of the return value through the virtual register. 1783 // Leave Outs empty so that LowerReturn won't try to load return 1784 // registers the usual way. 1785 SmallVector<EVT, 1> PtrValueVTs; 1786 ComputeValueVTs(TLI, DL, 1787 F->getReturnType()->getPointerTo( 1788 DAG.getDataLayout().getAllocaAddrSpace()), 1789 PtrValueVTs); 1790 1791 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1792 DemoteReg, PtrValueVTs[0]); 1793 SDValue RetOp = getValue(I.getOperand(0)); 1794 1795 SmallVector<EVT, 4> ValueVTs, MemVTs; 1796 SmallVector<uint64_t, 4> Offsets; 1797 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1798 &Offsets); 1799 unsigned NumValues = ValueVTs.size(); 1800 1801 SmallVector<SDValue, 4> Chains(NumValues); 1802 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1803 for (unsigned i = 0; i != NumValues; ++i) { 1804 // An aggregate return value cannot wrap around the address space, so 1805 // offsets to its parts don't wrap either. 1806 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1807 TypeSize::Fixed(Offsets[i])); 1808 1809 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1810 if (MemVTs[i] != ValueVTs[i]) 1811 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1812 Chains[i] = DAG.getStore( 1813 Chain, getCurSDLoc(), Val, 1814 // FIXME: better loc info would be nice. 1815 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1816 commonAlignment(BaseAlign, Offsets[i])); 1817 } 1818 1819 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1820 MVT::Other, Chains); 1821 } else if (I.getNumOperands() != 0) { 1822 SmallVector<EVT, 4> ValueVTs; 1823 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1824 unsigned NumValues = ValueVTs.size(); 1825 if (NumValues) { 1826 SDValue RetOp = getValue(I.getOperand(0)); 1827 1828 const Function *F = I.getParent()->getParent(); 1829 1830 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1831 I.getOperand(0)->getType(), F->getCallingConv(), 1832 /*IsVarArg*/ false); 1833 1834 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1835 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1836 Attribute::SExt)) 1837 ExtendKind = ISD::SIGN_EXTEND; 1838 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1839 Attribute::ZExt)) 1840 ExtendKind = ISD::ZERO_EXTEND; 1841 1842 LLVMContext &Context = F->getContext(); 1843 bool RetInReg = F->getAttributes().hasAttribute( 1844 AttributeList::ReturnIndex, Attribute::InReg); 1845 1846 for (unsigned j = 0; j != NumValues; ++j) { 1847 EVT VT = ValueVTs[j]; 1848 1849 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1850 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1851 1852 CallingConv::ID CC = F->getCallingConv(); 1853 1854 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1855 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1856 SmallVector<SDValue, 4> Parts(NumParts); 1857 getCopyToParts(DAG, getCurSDLoc(), 1858 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1859 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1860 1861 // 'inreg' on function refers to return value 1862 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1863 if (RetInReg) 1864 Flags.setInReg(); 1865 1866 if (I.getOperand(0)->getType()->isPointerTy()) { 1867 Flags.setPointer(); 1868 Flags.setPointerAddrSpace( 1869 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1870 } 1871 1872 if (NeedsRegBlock) { 1873 Flags.setInConsecutiveRegs(); 1874 if (j == NumValues - 1) 1875 Flags.setInConsecutiveRegsLast(); 1876 } 1877 1878 // Propagate extension type if any 1879 if (ExtendKind == ISD::SIGN_EXTEND) 1880 Flags.setSExt(); 1881 else if (ExtendKind == ISD::ZERO_EXTEND) 1882 Flags.setZExt(); 1883 1884 for (unsigned i = 0; i < NumParts; ++i) { 1885 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1886 VT, /*isfixed=*/true, 0, 0)); 1887 OutVals.push_back(Parts[i]); 1888 } 1889 } 1890 } 1891 } 1892 1893 // Push in swifterror virtual register as the last element of Outs. This makes 1894 // sure swifterror virtual register will be returned in the swifterror 1895 // physical register. 1896 const Function *F = I.getParent()->getParent(); 1897 if (TLI.supportSwiftError() && 1898 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1899 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1900 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1901 Flags.setSwiftError(); 1902 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1903 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1904 true /*isfixed*/, 1 /*origidx*/, 1905 0 /*partOffs*/)); 1906 // Create SDNode for the swifterror virtual register. 1907 OutVals.push_back( 1908 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1909 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1910 EVT(TLI.getPointerTy(DL)))); 1911 } 1912 1913 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1914 CallingConv::ID CallConv = 1915 DAG.getMachineFunction().getFunction().getCallingConv(); 1916 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1917 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1918 1919 // Verify that the target's LowerReturn behaved as expected. 1920 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1921 "LowerReturn didn't return a valid chain!"); 1922 1923 // Update the DAG with the new chain value resulting from return lowering. 1924 DAG.setRoot(Chain); 1925 } 1926 1927 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1928 /// created for it, emit nodes to copy the value into the virtual 1929 /// registers. 1930 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1931 // Skip empty types 1932 if (V->getType()->isEmptyTy()) 1933 return; 1934 1935 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1936 if (VMI != FuncInfo.ValueMap.end()) { 1937 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1938 CopyValueToVirtualRegister(V, VMI->second); 1939 } 1940 } 1941 1942 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1943 /// the current basic block, add it to ValueMap now so that we'll get a 1944 /// CopyTo/FromReg. 1945 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1946 // No need to export constants. 1947 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1948 1949 // Already exported? 1950 if (FuncInfo.isExportedInst(V)) return; 1951 1952 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1953 CopyValueToVirtualRegister(V, Reg); 1954 } 1955 1956 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1957 const BasicBlock *FromBB) { 1958 // The operands of the setcc have to be in this block. We don't know 1959 // how to export them from some other block. 1960 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1961 // Can export from current BB. 1962 if (VI->getParent() == FromBB) 1963 return true; 1964 1965 // Is already exported, noop. 1966 return FuncInfo.isExportedInst(V); 1967 } 1968 1969 // If this is an argument, we can export it if the BB is the entry block or 1970 // if it is already exported. 1971 if (isa<Argument>(V)) { 1972 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1973 return true; 1974 1975 // Otherwise, can only export this if it is already exported. 1976 return FuncInfo.isExportedInst(V); 1977 } 1978 1979 // Otherwise, constants can always be exported. 1980 return true; 1981 } 1982 1983 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1984 BranchProbability 1985 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1986 const MachineBasicBlock *Dst) const { 1987 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1988 const BasicBlock *SrcBB = Src->getBasicBlock(); 1989 const BasicBlock *DstBB = Dst->getBasicBlock(); 1990 if (!BPI) { 1991 // If BPI is not available, set the default probability as 1 / N, where N is 1992 // the number of successors. 1993 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1994 return BranchProbability(1, SuccSize); 1995 } 1996 return BPI->getEdgeProbability(SrcBB, DstBB); 1997 } 1998 1999 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2000 MachineBasicBlock *Dst, 2001 BranchProbability Prob) { 2002 if (!FuncInfo.BPI) 2003 Src->addSuccessorWithoutProb(Dst); 2004 else { 2005 if (Prob.isUnknown()) 2006 Prob = getEdgeProbability(Src, Dst); 2007 Src->addSuccessor(Dst, Prob); 2008 } 2009 } 2010 2011 static bool InBlock(const Value *V, const BasicBlock *BB) { 2012 if (const Instruction *I = dyn_cast<Instruction>(V)) 2013 return I->getParent() == BB; 2014 return true; 2015 } 2016 2017 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2018 /// This function emits a branch and is used at the leaves of an OR or an 2019 /// AND operator tree. 2020 void 2021 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2022 MachineBasicBlock *TBB, 2023 MachineBasicBlock *FBB, 2024 MachineBasicBlock *CurBB, 2025 MachineBasicBlock *SwitchBB, 2026 BranchProbability TProb, 2027 BranchProbability FProb, 2028 bool InvertCond) { 2029 const BasicBlock *BB = CurBB->getBasicBlock(); 2030 2031 // If the leaf of the tree is a comparison, merge the condition into 2032 // the caseblock. 2033 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2034 // The operands of the cmp have to be in this block. We don't know 2035 // how to export them from some other block. If this is the first block 2036 // of the sequence, no exporting is needed. 2037 if (CurBB == SwitchBB || 2038 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2039 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2040 ISD::CondCode Condition; 2041 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2042 ICmpInst::Predicate Pred = 2043 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2044 Condition = getICmpCondCode(Pred); 2045 } else { 2046 const FCmpInst *FC = cast<FCmpInst>(Cond); 2047 FCmpInst::Predicate Pred = 2048 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2049 Condition = getFCmpCondCode(Pred); 2050 if (TM.Options.NoNaNsFPMath) 2051 Condition = getFCmpCodeWithoutNaN(Condition); 2052 } 2053 2054 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2055 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2056 SL->SwitchCases.push_back(CB); 2057 return; 2058 } 2059 } 2060 2061 // Create a CaseBlock record representing this branch. 2062 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2063 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2064 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2065 SL->SwitchCases.push_back(CB); 2066 } 2067 2068 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2069 MachineBasicBlock *TBB, 2070 MachineBasicBlock *FBB, 2071 MachineBasicBlock *CurBB, 2072 MachineBasicBlock *SwitchBB, 2073 Instruction::BinaryOps Opc, 2074 BranchProbability TProb, 2075 BranchProbability FProb, 2076 bool InvertCond) { 2077 // Skip over not part of the tree and remember to invert op and operands at 2078 // next level. 2079 Value *NotCond; 2080 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2081 InBlock(NotCond, CurBB->getBasicBlock())) { 2082 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2083 !InvertCond); 2084 return; 2085 } 2086 2087 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2088 // Compute the effective opcode for Cond, taking into account whether it needs 2089 // to be inverted, e.g. 2090 // and (not (or A, B)), C 2091 // gets lowered as 2092 // and (and (not A, not B), C) 2093 unsigned BOpc = 0; 2094 if (BOp) { 2095 BOpc = BOp->getOpcode(); 2096 if (InvertCond) { 2097 if (BOpc == Instruction::And) 2098 BOpc = Instruction::Or; 2099 else if (BOpc == Instruction::Or) 2100 BOpc = Instruction::And; 2101 } 2102 } 2103 2104 // If this node is not part of the or/and tree, emit it as a branch. 2105 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2106 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2107 BOp->getParent() != CurBB->getBasicBlock() || 2108 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2109 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2110 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2111 TProb, FProb, InvertCond); 2112 return; 2113 } 2114 2115 // Create TmpBB after CurBB. 2116 MachineFunction::iterator BBI(CurBB); 2117 MachineFunction &MF = DAG.getMachineFunction(); 2118 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2119 CurBB->getParent()->insert(++BBI, TmpBB); 2120 2121 if (Opc == Instruction::Or) { 2122 // Codegen X | Y as: 2123 // BB1: 2124 // jmp_if_X TBB 2125 // jmp TmpBB 2126 // TmpBB: 2127 // jmp_if_Y TBB 2128 // jmp FBB 2129 // 2130 2131 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2132 // The requirement is that 2133 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2134 // = TrueProb for original BB. 2135 // Assuming the original probabilities are A and B, one choice is to set 2136 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2137 // A/(1+B) and 2B/(1+B). This choice assumes that 2138 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2139 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2140 // TmpBB, but the math is more complicated. 2141 2142 auto NewTrueProb = TProb / 2; 2143 auto NewFalseProb = TProb / 2 + FProb; 2144 // Emit the LHS condition. 2145 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2146 NewTrueProb, NewFalseProb, InvertCond); 2147 2148 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2149 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2150 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2151 // Emit the RHS condition into TmpBB. 2152 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2153 Probs[0], Probs[1], InvertCond); 2154 } else { 2155 assert(Opc == Instruction::And && "Unknown merge op!"); 2156 // Codegen X & Y as: 2157 // BB1: 2158 // jmp_if_X TmpBB 2159 // jmp FBB 2160 // TmpBB: 2161 // jmp_if_Y TBB 2162 // jmp FBB 2163 // 2164 // This requires creation of TmpBB after CurBB. 2165 2166 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2167 // The requirement is that 2168 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2169 // = FalseProb for original BB. 2170 // Assuming the original probabilities are A and B, one choice is to set 2171 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2172 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2173 // TrueProb for BB1 * FalseProb for TmpBB. 2174 2175 auto NewTrueProb = TProb + FProb / 2; 2176 auto NewFalseProb = FProb / 2; 2177 // Emit the LHS condition. 2178 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2179 NewTrueProb, NewFalseProb, InvertCond); 2180 2181 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2182 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2183 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2184 // Emit the RHS condition into TmpBB. 2185 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2186 Probs[0], Probs[1], InvertCond); 2187 } 2188 } 2189 2190 /// If the set of cases should be emitted as a series of branches, return true. 2191 /// If we should emit this as a bunch of and/or'd together conditions, return 2192 /// false. 2193 bool 2194 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2195 if (Cases.size() != 2) return true; 2196 2197 // If this is two comparisons of the same values or'd or and'd together, they 2198 // will get folded into a single comparison, so don't emit two blocks. 2199 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2200 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2201 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2202 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2203 return false; 2204 } 2205 2206 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2207 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2208 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2209 Cases[0].CC == Cases[1].CC && 2210 isa<Constant>(Cases[0].CmpRHS) && 2211 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2212 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2213 return false; 2214 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2215 return false; 2216 } 2217 2218 return true; 2219 } 2220 2221 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2222 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2223 2224 // Update machine-CFG edges. 2225 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2226 2227 if (I.isUnconditional()) { 2228 // Update machine-CFG edges. 2229 BrMBB->addSuccessor(Succ0MBB); 2230 2231 // If this is not a fall-through branch or optimizations are switched off, 2232 // emit the branch. 2233 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2234 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2235 MVT::Other, getControlRoot(), 2236 DAG.getBasicBlock(Succ0MBB))); 2237 2238 return; 2239 } 2240 2241 // If this condition is one of the special cases we handle, do special stuff 2242 // now. 2243 const Value *CondVal = I.getCondition(); 2244 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2245 2246 // If this is a series of conditions that are or'd or and'd together, emit 2247 // this as a sequence of branches instead of setcc's with and/or operations. 2248 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2249 // unpredictable branches, and vector extracts because those jumps are likely 2250 // expensive for any target), this should improve performance. 2251 // For example, instead of something like: 2252 // cmp A, B 2253 // C = seteq 2254 // cmp D, E 2255 // F = setle 2256 // or C, F 2257 // jnz foo 2258 // Emit: 2259 // cmp A, B 2260 // je foo 2261 // cmp D, E 2262 // jle foo 2263 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2264 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2265 Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1); 2266 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2267 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2268 (Opcode == Instruction::And || Opcode == Instruction::Or) && 2269 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2270 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2271 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2272 Opcode, 2273 getEdgeProbability(BrMBB, Succ0MBB), 2274 getEdgeProbability(BrMBB, Succ1MBB), 2275 /*InvertCond=*/false); 2276 // If the compares in later blocks need to use values not currently 2277 // exported from this block, export them now. This block should always 2278 // be the first entry. 2279 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2280 2281 // Allow some cases to be rejected. 2282 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2283 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2284 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2285 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2286 } 2287 2288 // Emit the branch for this block. 2289 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2290 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2291 return; 2292 } 2293 2294 // Okay, we decided not to do this, remove any inserted MBB's and clear 2295 // SwitchCases. 2296 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2297 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2298 2299 SL->SwitchCases.clear(); 2300 } 2301 } 2302 2303 // Create a CaseBlock record representing this branch. 2304 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2305 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2306 2307 // Use visitSwitchCase to actually insert the fast branch sequence for this 2308 // cond branch. 2309 visitSwitchCase(CB, BrMBB); 2310 } 2311 2312 /// visitSwitchCase - Emits the necessary code to represent a single node in 2313 /// the binary search tree resulting from lowering a switch instruction. 2314 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2315 MachineBasicBlock *SwitchBB) { 2316 SDValue Cond; 2317 SDValue CondLHS = getValue(CB.CmpLHS); 2318 SDLoc dl = CB.DL; 2319 2320 if (CB.CC == ISD::SETTRUE) { 2321 // Branch or fall through to TrueBB. 2322 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2323 SwitchBB->normalizeSuccProbs(); 2324 if (CB.TrueBB != NextBlock(SwitchBB)) { 2325 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2326 DAG.getBasicBlock(CB.TrueBB))); 2327 } 2328 return; 2329 } 2330 2331 auto &TLI = DAG.getTargetLoweringInfo(); 2332 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2333 2334 // Build the setcc now. 2335 if (!CB.CmpMHS) { 2336 // Fold "(X == true)" to X and "(X == false)" to !X to 2337 // handle common cases produced by branch lowering. 2338 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2339 CB.CC == ISD::SETEQ) 2340 Cond = CondLHS; 2341 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2342 CB.CC == ISD::SETEQ) { 2343 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2344 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2345 } else { 2346 SDValue CondRHS = getValue(CB.CmpRHS); 2347 2348 // If a pointer's DAG type is larger than its memory type then the DAG 2349 // values are zero-extended. This breaks signed comparisons so truncate 2350 // back to the underlying type before doing the compare. 2351 if (CondLHS.getValueType() != MemVT) { 2352 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2353 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2354 } 2355 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2356 } 2357 } else { 2358 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2359 2360 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2361 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2362 2363 SDValue CmpOp = getValue(CB.CmpMHS); 2364 EVT VT = CmpOp.getValueType(); 2365 2366 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2367 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2368 ISD::SETLE); 2369 } else { 2370 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2371 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2372 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2373 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2374 } 2375 } 2376 2377 // Update successor info 2378 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2379 // TrueBB and FalseBB are always different unless the incoming IR is 2380 // degenerate. This only happens when running llc on weird IR. 2381 if (CB.TrueBB != CB.FalseBB) 2382 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2383 SwitchBB->normalizeSuccProbs(); 2384 2385 // If the lhs block is the next block, invert the condition so that we can 2386 // fall through to the lhs instead of the rhs block. 2387 if (CB.TrueBB == NextBlock(SwitchBB)) { 2388 std::swap(CB.TrueBB, CB.FalseBB); 2389 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2390 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2391 } 2392 2393 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2394 MVT::Other, getControlRoot(), Cond, 2395 DAG.getBasicBlock(CB.TrueBB)); 2396 2397 // Insert the false branch. Do this even if it's a fall through branch, 2398 // this makes it easier to do DAG optimizations which require inverting 2399 // the branch condition. 2400 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2401 DAG.getBasicBlock(CB.FalseBB)); 2402 2403 DAG.setRoot(BrCond); 2404 } 2405 2406 /// visitJumpTable - Emit JumpTable node in the current MBB 2407 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2408 // Emit the code for the jump table 2409 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2410 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2411 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2412 JT.Reg, PTy); 2413 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2414 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2415 MVT::Other, Index.getValue(1), 2416 Table, Index); 2417 DAG.setRoot(BrJumpTable); 2418 } 2419 2420 /// visitJumpTableHeader - This function emits necessary code to produce index 2421 /// in the JumpTable from switch case. 2422 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2423 JumpTableHeader &JTH, 2424 MachineBasicBlock *SwitchBB) { 2425 SDLoc dl = getCurSDLoc(); 2426 2427 // Subtract the lowest switch case value from the value being switched on. 2428 SDValue SwitchOp = getValue(JTH.SValue); 2429 EVT VT = SwitchOp.getValueType(); 2430 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2431 DAG.getConstant(JTH.First, dl, VT)); 2432 2433 // The SDNode we just created, which holds the value being switched on minus 2434 // the smallest case value, needs to be copied to a virtual register so it 2435 // can be used as an index into the jump table in a subsequent basic block. 2436 // This value may be smaller or larger than the target's pointer type, and 2437 // therefore require extension or truncating. 2438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2439 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2440 2441 unsigned JumpTableReg = 2442 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2443 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2444 JumpTableReg, SwitchOp); 2445 JT.Reg = JumpTableReg; 2446 2447 if (!JTH.OmitRangeCheck) { 2448 // Emit the range check for the jump table, and branch to the default block 2449 // for the switch statement if the value being switched on exceeds the 2450 // largest case in the switch. 2451 SDValue CMP = DAG.getSetCC( 2452 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2453 Sub.getValueType()), 2454 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2455 2456 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2457 MVT::Other, CopyTo, CMP, 2458 DAG.getBasicBlock(JT.Default)); 2459 2460 // Avoid emitting unnecessary branches to the next block. 2461 if (JT.MBB != NextBlock(SwitchBB)) 2462 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2463 DAG.getBasicBlock(JT.MBB)); 2464 2465 DAG.setRoot(BrCond); 2466 } else { 2467 // Avoid emitting unnecessary branches to the next block. 2468 if (JT.MBB != NextBlock(SwitchBB)) 2469 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2470 DAG.getBasicBlock(JT.MBB))); 2471 else 2472 DAG.setRoot(CopyTo); 2473 } 2474 } 2475 2476 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2477 /// variable if there exists one. 2478 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2479 SDValue &Chain) { 2480 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2481 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2482 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2483 MachineFunction &MF = DAG.getMachineFunction(); 2484 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2485 MachineSDNode *Node = 2486 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2487 if (Global) { 2488 MachinePointerInfo MPInfo(Global); 2489 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2490 MachineMemOperand::MODereferenceable; 2491 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2492 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2493 DAG.setNodeMemRefs(Node, {MemRef}); 2494 } 2495 if (PtrTy != PtrMemTy) 2496 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2497 return SDValue(Node, 0); 2498 } 2499 2500 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2501 /// tail spliced into a stack protector check success bb. 2502 /// 2503 /// For a high level explanation of how this fits into the stack protector 2504 /// generation see the comment on the declaration of class 2505 /// StackProtectorDescriptor. 2506 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2507 MachineBasicBlock *ParentBB) { 2508 2509 // First create the loads to the guard/stack slot for the comparison. 2510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2511 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2512 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2513 2514 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2515 int FI = MFI.getStackProtectorIndex(); 2516 2517 SDValue Guard; 2518 SDLoc dl = getCurSDLoc(); 2519 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2520 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2521 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2522 2523 // Generate code to load the content of the guard slot. 2524 SDValue GuardVal = DAG.getLoad( 2525 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2526 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2527 MachineMemOperand::MOVolatile); 2528 2529 if (TLI.useStackGuardXorFP()) 2530 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2531 2532 // Retrieve guard check function, nullptr if instrumentation is inlined. 2533 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2534 // The target provides a guard check function to validate the guard value. 2535 // Generate a call to that function with the content of the guard slot as 2536 // argument. 2537 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2538 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2539 2540 TargetLowering::ArgListTy Args; 2541 TargetLowering::ArgListEntry Entry; 2542 Entry.Node = GuardVal; 2543 Entry.Ty = FnTy->getParamType(0); 2544 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2545 Entry.IsInReg = true; 2546 Args.push_back(Entry); 2547 2548 TargetLowering::CallLoweringInfo CLI(DAG); 2549 CLI.setDebugLoc(getCurSDLoc()) 2550 .setChain(DAG.getEntryNode()) 2551 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2552 getValue(GuardCheckFn), std::move(Args)); 2553 2554 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2555 DAG.setRoot(Result.second); 2556 return; 2557 } 2558 2559 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2560 // Otherwise, emit a volatile load to retrieve the stack guard value. 2561 SDValue Chain = DAG.getEntryNode(); 2562 if (TLI.useLoadStackGuardNode()) { 2563 Guard = getLoadStackGuard(DAG, dl, Chain); 2564 } else { 2565 const Value *IRGuard = TLI.getSDagStackGuard(M); 2566 SDValue GuardPtr = getValue(IRGuard); 2567 2568 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2569 MachinePointerInfo(IRGuard, 0), Align, 2570 MachineMemOperand::MOVolatile); 2571 } 2572 2573 // Perform the comparison via a getsetcc. 2574 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2575 *DAG.getContext(), 2576 Guard.getValueType()), 2577 Guard, GuardVal, ISD::SETNE); 2578 2579 // If the guard/stackslot do not equal, branch to failure MBB. 2580 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2581 MVT::Other, GuardVal.getOperand(0), 2582 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2583 // Otherwise branch to success MBB. 2584 SDValue Br = DAG.getNode(ISD::BR, dl, 2585 MVT::Other, BrCond, 2586 DAG.getBasicBlock(SPD.getSuccessMBB())); 2587 2588 DAG.setRoot(Br); 2589 } 2590 2591 /// Codegen the failure basic block for a stack protector check. 2592 /// 2593 /// A failure stack protector machine basic block consists simply of a call to 2594 /// __stack_chk_fail(). 2595 /// 2596 /// For a high level explanation of how this fits into the stack protector 2597 /// generation see the comment on the declaration of class 2598 /// StackProtectorDescriptor. 2599 void 2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2602 TargetLowering::MakeLibCallOptions CallOptions; 2603 CallOptions.setDiscardResult(true); 2604 SDValue Chain = 2605 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2606 None, CallOptions, getCurSDLoc()).second; 2607 // On PS4, the "return address" must still be within the calling function, 2608 // even if it's at the very end, so emit an explicit TRAP here. 2609 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2610 if (TM.getTargetTriple().isPS4CPU()) 2611 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2612 // WebAssembly needs an unreachable instruction after a non-returning call, 2613 // because the function return type can be different from __stack_chk_fail's 2614 // return type (void). 2615 if (TM.getTargetTriple().isWasm()) 2616 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2617 2618 DAG.setRoot(Chain); 2619 } 2620 2621 /// visitBitTestHeader - This function emits necessary code to produce value 2622 /// suitable for "bit tests" 2623 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2624 MachineBasicBlock *SwitchBB) { 2625 SDLoc dl = getCurSDLoc(); 2626 2627 // Subtract the minimum value. 2628 SDValue SwitchOp = getValue(B.SValue); 2629 EVT VT = SwitchOp.getValueType(); 2630 SDValue RangeSub = 2631 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2632 2633 // Determine the type of the test operands. 2634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2635 bool UsePtrType = false; 2636 if (!TLI.isTypeLegal(VT)) { 2637 UsePtrType = true; 2638 } else { 2639 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2640 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2641 // Switch table case range are encoded into series of masks. 2642 // Just use pointer type, it's guaranteed to fit. 2643 UsePtrType = true; 2644 break; 2645 } 2646 } 2647 SDValue Sub = RangeSub; 2648 if (UsePtrType) { 2649 VT = TLI.getPointerTy(DAG.getDataLayout()); 2650 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2651 } 2652 2653 B.RegVT = VT.getSimpleVT(); 2654 B.Reg = FuncInfo.CreateReg(B.RegVT); 2655 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2656 2657 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2658 2659 if (!B.OmitRangeCheck) 2660 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2661 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2662 SwitchBB->normalizeSuccProbs(); 2663 2664 SDValue Root = CopyTo; 2665 if (!B.OmitRangeCheck) { 2666 // Conditional branch to the default block. 2667 SDValue RangeCmp = DAG.getSetCC(dl, 2668 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2669 RangeSub.getValueType()), 2670 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2671 ISD::SETUGT); 2672 2673 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2674 DAG.getBasicBlock(B.Default)); 2675 } 2676 2677 // Avoid emitting unnecessary branches to the next block. 2678 if (MBB != NextBlock(SwitchBB)) 2679 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2680 2681 DAG.setRoot(Root); 2682 } 2683 2684 /// visitBitTestCase - this function produces one "bit test" 2685 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2686 MachineBasicBlock* NextMBB, 2687 BranchProbability BranchProbToNext, 2688 unsigned Reg, 2689 BitTestCase &B, 2690 MachineBasicBlock *SwitchBB) { 2691 SDLoc dl = getCurSDLoc(); 2692 MVT VT = BB.RegVT; 2693 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2694 SDValue Cmp; 2695 unsigned PopCount = countPopulation(B.Mask); 2696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2697 if (PopCount == 1) { 2698 // Testing for a single bit; just compare the shift count with what it 2699 // would need to be to shift a 1 bit in that position. 2700 Cmp = DAG.getSetCC( 2701 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2702 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2703 ISD::SETEQ); 2704 } else if (PopCount == BB.Range) { 2705 // There is only one zero bit in the range, test for it directly. 2706 Cmp = DAG.getSetCC( 2707 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2708 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2709 ISD::SETNE); 2710 } else { 2711 // Make desired shift 2712 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2713 DAG.getConstant(1, dl, VT), ShiftOp); 2714 2715 // Emit bit tests and jumps 2716 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2717 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2718 Cmp = DAG.getSetCC( 2719 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2720 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2721 } 2722 2723 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2724 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2725 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2726 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2727 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2728 // one as they are relative probabilities (and thus work more like weights), 2729 // and hence we need to normalize them to let the sum of them become one. 2730 SwitchBB->normalizeSuccProbs(); 2731 2732 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2733 MVT::Other, getControlRoot(), 2734 Cmp, DAG.getBasicBlock(B.TargetBB)); 2735 2736 // Avoid emitting unnecessary branches to the next block. 2737 if (NextMBB != NextBlock(SwitchBB)) 2738 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2739 DAG.getBasicBlock(NextMBB)); 2740 2741 DAG.setRoot(BrAnd); 2742 } 2743 2744 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2745 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2746 2747 // Retrieve successors. Look through artificial IR level blocks like 2748 // catchswitch for successors. 2749 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2750 const BasicBlock *EHPadBB = I.getSuccessor(1); 2751 2752 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2753 // have to do anything here to lower funclet bundles. 2754 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2755 LLVMContext::OB_gc_transition, 2756 LLVMContext::OB_gc_live, 2757 LLVMContext::OB_funclet, 2758 LLVMContext::OB_cfguardtarget}) && 2759 "Cannot lower invokes with arbitrary operand bundles yet!"); 2760 2761 const Value *Callee(I.getCalledOperand()); 2762 const Function *Fn = dyn_cast<Function>(Callee); 2763 if (isa<InlineAsm>(Callee)) 2764 visitInlineAsm(I); 2765 else if (Fn && Fn->isIntrinsic()) { 2766 switch (Fn->getIntrinsicID()) { 2767 default: 2768 llvm_unreachable("Cannot invoke this intrinsic"); 2769 case Intrinsic::donothing: 2770 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2771 break; 2772 case Intrinsic::experimental_patchpoint_void: 2773 case Intrinsic::experimental_patchpoint_i64: 2774 visitPatchpoint(I, EHPadBB); 2775 break; 2776 case Intrinsic::experimental_gc_statepoint: 2777 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2778 break; 2779 case Intrinsic::wasm_rethrow_in_catch: { 2780 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2781 // special because it can be invoked, so we manually lower it to a DAG 2782 // node here. 2783 SmallVector<SDValue, 8> Ops; 2784 Ops.push_back(getRoot()); // inchain 2785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2786 Ops.push_back( 2787 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2788 TLI.getPointerTy(DAG.getDataLayout()))); 2789 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2790 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2791 break; 2792 } 2793 } 2794 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2795 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2796 // Eventually we will support lowering the @llvm.experimental.deoptimize 2797 // intrinsic, and right now there are no plans to support other intrinsics 2798 // with deopt state. 2799 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2800 } else { 2801 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2802 } 2803 2804 // If the value of the invoke is used outside of its defining block, make it 2805 // available as a virtual register. 2806 // We already took care of the exported value for the statepoint instruction 2807 // during call to the LowerStatepoint. 2808 if (!isa<GCStatepointInst>(I)) { 2809 CopyToExportRegsIfNeeded(&I); 2810 } 2811 2812 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2813 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2814 BranchProbability EHPadBBProb = 2815 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2816 : BranchProbability::getZero(); 2817 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2818 2819 // Update successor info. 2820 addSuccessorWithProb(InvokeMBB, Return); 2821 for (auto &UnwindDest : UnwindDests) { 2822 UnwindDest.first->setIsEHPad(); 2823 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2824 } 2825 InvokeMBB->normalizeSuccProbs(); 2826 2827 // Drop into normal successor. 2828 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2829 DAG.getBasicBlock(Return))); 2830 } 2831 2832 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2833 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2834 2835 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2836 // have to do anything here to lower funclet bundles. 2837 assert(!I.hasOperandBundlesOtherThan( 2838 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2839 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2840 2841 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2842 visitInlineAsm(I); 2843 CopyToExportRegsIfNeeded(&I); 2844 2845 // Retrieve successors. 2846 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2847 2848 // Update successor info. 2849 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2850 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2851 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2852 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2853 Target->setIsInlineAsmBrIndirectTarget(); 2854 } 2855 CallBrMBB->normalizeSuccProbs(); 2856 2857 // Drop into default successor. 2858 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2859 MVT::Other, getControlRoot(), 2860 DAG.getBasicBlock(Return))); 2861 } 2862 2863 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2864 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2865 } 2866 2867 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2868 assert(FuncInfo.MBB->isEHPad() && 2869 "Call to landingpad not in landing pad!"); 2870 2871 // If there aren't registers to copy the values into (e.g., during SjLj 2872 // exceptions), then don't bother to create these DAG nodes. 2873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2874 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2875 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2876 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2877 return; 2878 2879 // If landingpad's return type is token type, we don't create DAG nodes 2880 // for its exception pointer and selector value. The extraction of exception 2881 // pointer or selector value from token type landingpads is not currently 2882 // supported. 2883 if (LP.getType()->isTokenTy()) 2884 return; 2885 2886 SmallVector<EVT, 2> ValueVTs; 2887 SDLoc dl = getCurSDLoc(); 2888 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2889 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2890 2891 // Get the two live-in registers as SDValues. The physregs have already been 2892 // copied into virtual registers. 2893 SDValue Ops[2]; 2894 if (FuncInfo.ExceptionPointerVirtReg) { 2895 Ops[0] = DAG.getZExtOrTrunc( 2896 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2897 FuncInfo.ExceptionPointerVirtReg, 2898 TLI.getPointerTy(DAG.getDataLayout())), 2899 dl, ValueVTs[0]); 2900 } else { 2901 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2902 } 2903 Ops[1] = DAG.getZExtOrTrunc( 2904 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2905 FuncInfo.ExceptionSelectorVirtReg, 2906 TLI.getPointerTy(DAG.getDataLayout())), 2907 dl, ValueVTs[1]); 2908 2909 // Merge into one. 2910 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2911 DAG.getVTList(ValueVTs), Ops); 2912 setValue(&LP, Res); 2913 } 2914 2915 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2916 MachineBasicBlock *Last) { 2917 // Update JTCases. 2918 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2919 if (SL->JTCases[i].first.HeaderBB == First) 2920 SL->JTCases[i].first.HeaderBB = Last; 2921 2922 // Update BitTestCases. 2923 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2924 if (SL->BitTestCases[i].Parent == First) 2925 SL->BitTestCases[i].Parent = Last; 2926 } 2927 2928 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2929 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2930 2931 // Update machine-CFG edges with unique successors. 2932 SmallSet<BasicBlock*, 32> Done; 2933 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2934 BasicBlock *BB = I.getSuccessor(i); 2935 bool Inserted = Done.insert(BB).second; 2936 if (!Inserted) 2937 continue; 2938 2939 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2940 addSuccessorWithProb(IndirectBrMBB, Succ); 2941 } 2942 IndirectBrMBB->normalizeSuccProbs(); 2943 2944 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2945 MVT::Other, getControlRoot(), 2946 getValue(I.getAddress()))); 2947 } 2948 2949 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2950 if (!DAG.getTarget().Options.TrapUnreachable) 2951 return; 2952 2953 // We may be able to ignore unreachable behind a noreturn call. 2954 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2955 const BasicBlock &BB = *I.getParent(); 2956 if (&I != &BB.front()) { 2957 BasicBlock::const_iterator PredI = 2958 std::prev(BasicBlock::const_iterator(&I)); 2959 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2960 if (Call->doesNotReturn()) 2961 return; 2962 } 2963 } 2964 } 2965 2966 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2967 } 2968 2969 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 2970 SDNodeFlags Flags; 2971 2972 SDValue Op = getValue(I.getOperand(0)); 2973 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 2974 Op, Flags); 2975 setValue(&I, UnNodeValue); 2976 } 2977 2978 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2979 SDNodeFlags Flags; 2980 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2981 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2982 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2983 } 2984 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 2985 Flags.setExact(ExactOp->isExact()); 2986 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 2987 Flags.copyFMF(*FPOp); 2988 2989 SDValue Op1 = getValue(I.getOperand(0)); 2990 SDValue Op2 = getValue(I.getOperand(1)); 2991 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2992 Op1, Op2, Flags); 2993 setValue(&I, BinNodeValue); 2994 } 2995 2996 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2997 SDValue Op1 = getValue(I.getOperand(0)); 2998 SDValue Op2 = getValue(I.getOperand(1)); 2999 3000 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3001 Op1.getValueType(), DAG.getDataLayout()); 3002 3003 // Coerce the shift amount to the right type if we can. 3004 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3005 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3006 unsigned Op2Size = Op2.getValueSizeInBits(); 3007 SDLoc DL = getCurSDLoc(); 3008 3009 // If the operand is smaller than the shift count type, promote it. 3010 if (ShiftSize > Op2Size) 3011 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3012 3013 // If the operand is larger than the shift count type but the shift 3014 // count type has enough bits to represent any shift value, truncate 3015 // it now. This is a common case and it exposes the truncate to 3016 // optimization early. 3017 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3018 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3019 // Otherwise we'll need to temporarily settle for some other convenient 3020 // type. Type legalization will make adjustments once the shiftee is split. 3021 else 3022 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3023 } 3024 3025 bool nuw = false; 3026 bool nsw = false; 3027 bool exact = false; 3028 3029 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3030 3031 if (const OverflowingBinaryOperator *OFBinOp = 3032 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3033 nuw = OFBinOp->hasNoUnsignedWrap(); 3034 nsw = OFBinOp->hasNoSignedWrap(); 3035 } 3036 if (const PossiblyExactOperator *ExactOp = 3037 dyn_cast<const PossiblyExactOperator>(&I)) 3038 exact = ExactOp->isExact(); 3039 } 3040 SDNodeFlags Flags; 3041 Flags.setExact(exact); 3042 Flags.setNoSignedWrap(nsw); 3043 Flags.setNoUnsignedWrap(nuw); 3044 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3045 Flags); 3046 setValue(&I, Res); 3047 } 3048 3049 void SelectionDAGBuilder::visitSDiv(const User &I) { 3050 SDValue Op1 = getValue(I.getOperand(0)); 3051 SDValue Op2 = getValue(I.getOperand(1)); 3052 3053 SDNodeFlags Flags; 3054 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3055 cast<PossiblyExactOperator>(&I)->isExact()); 3056 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3057 Op2, Flags)); 3058 } 3059 3060 void SelectionDAGBuilder::visitICmp(const User &I) { 3061 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3062 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3063 predicate = IC->getPredicate(); 3064 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3065 predicate = ICmpInst::Predicate(IC->getPredicate()); 3066 SDValue Op1 = getValue(I.getOperand(0)); 3067 SDValue Op2 = getValue(I.getOperand(1)); 3068 ISD::CondCode Opcode = getICmpCondCode(predicate); 3069 3070 auto &TLI = DAG.getTargetLoweringInfo(); 3071 EVT MemVT = 3072 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3073 3074 // If a pointer's DAG type is larger than its memory type then the DAG values 3075 // are zero-extended. This breaks signed comparisons so truncate back to the 3076 // underlying type before doing the compare. 3077 if (Op1.getValueType() != MemVT) { 3078 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3079 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3080 } 3081 3082 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3083 I.getType()); 3084 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3085 } 3086 3087 void SelectionDAGBuilder::visitFCmp(const User &I) { 3088 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3089 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3090 predicate = FC->getPredicate(); 3091 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3092 predicate = FCmpInst::Predicate(FC->getPredicate()); 3093 SDValue Op1 = getValue(I.getOperand(0)); 3094 SDValue Op2 = getValue(I.getOperand(1)); 3095 3096 ISD::CondCode Condition = getFCmpCondCode(predicate); 3097 auto *FPMO = cast<FPMathOperator>(&I); 3098 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3099 Condition = getFCmpCodeWithoutNaN(Condition); 3100 3101 SDNodeFlags Flags; 3102 Flags.copyFMF(*FPMO); 3103 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3104 3105 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3106 I.getType()); 3107 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3108 } 3109 3110 // Check if the condition of the select has one use or two users that are both 3111 // selects with the same condition. 3112 static bool hasOnlySelectUsers(const Value *Cond) { 3113 return llvm::all_of(Cond->users(), [](const Value *V) { 3114 return isa<SelectInst>(V); 3115 }); 3116 } 3117 3118 void SelectionDAGBuilder::visitSelect(const User &I) { 3119 SmallVector<EVT, 4> ValueVTs; 3120 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3121 ValueVTs); 3122 unsigned NumValues = ValueVTs.size(); 3123 if (NumValues == 0) return; 3124 3125 SmallVector<SDValue, 4> Values(NumValues); 3126 SDValue Cond = getValue(I.getOperand(0)); 3127 SDValue LHSVal = getValue(I.getOperand(1)); 3128 SDValue RHSVal = getValue(I.getOperand(2)); 3129 SmallVector<SDValue, 1> BaseOps(1, Cond); 3130 ISD::NodeType OpCode = 3131 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3132 3133 bool IsUnaryAbs = false; 3134 bool Negate = false; 3135 3136 SDNodeFlags Flags; 3137 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3138 Flags.copyFMF(*FPOp); 3139 3140 // Min/max matching is only viable if all output VTs are the same. 3141 if (is_splat(ValueVTs)) { 3142 EVT VT = ValueVTs[0]; 3143 LLVMContext &Ctx = *DAG.getContext(); 3144 auto &TLI = DAG.getTargetLoweringInfo(); 3145 3146 // We care about the legality of the operation after it has been type 3147 // legalized. 3148 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3149 VT = TLI.getTypeToTransformTo(Ctx, VT); 3150 3151 // If the vselect is legal, assume we want to leave this as a vector setcc + 3152 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3153 // min/max is legal on the scalar type. 3154 bool UseScalarMinMax = VT.isVector() && 3155 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3156 3157 Value *LHS, *RHS; 3158 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3159 ISD::NodeType Opc = ISD::DELETED_NODE; 3160 switch (SPR.Flavor) { 3161 case SPF_UMAX: Opc = ISD::UMAX; break; 3162 case SPF_UMIN: Opc = ISD::UMIN; break; 3163 case SPF_SMAX: Opc = ISD::SMAX; break; 3164 case SPF_SMIN: Opc = ISD::SMIN; break; 3165 case SPF_FMINNUM: 3166 switch (SPR.NaNBehavior) { 3167 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3168 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3169 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3170 case SPNB_RETURNS_ANY: { 3171 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3172 Opc = ISD::FMINNUM; 3173 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3174 Opc = ISD::FMINIMUM; 3175 else if (UseScalarMinMax) 3176 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3177 ISD::FMINNUM : ISD::FMINIMUM; 3178 break; 3179 } 3180 } 3181 break; 3182 case SPF_FMAXNUM: 3183 switch (SPR.NaNBehavior) { 3184 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3185 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3186 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3187 case SPNB_RETURNS_ANY: 3188 3189 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3190 Opc = ISD::FMAXNUM; 3191 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3192 Opc = ISD::FMAXIMUM; 3193 else if (UseScalarMinMax) 3194 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3195 ISD::FMAXNUM : ISD::FMAXIMUM; 3196 break; 3197 } 3198 break; 3199 case SPF_NABS: 3200 Negate = true; 3201 LLVM_FALLTHROUGH; 3202 case SPF_ABS: 3203 IsUnaryAbs = true; 3204 Opc = ISD::ABS; 3205 break; 3206 default: break; 3207 } 3208 3209 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3210 (TLI.isOperationLegalOrCustom(Opc, VT) || 3211 (UseScalarMinMax && 3212 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3213 // If the underlying comparison instruction is used by any other 3214 // instruction, the consumed instructions won't be destroyed, so it is 3215 // not profitable to convert to a min/max. 3216 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3217 OpCode = Opc; 3218 LHSVal = getValue(LHS); 3219 RHSVal = getValue(RHS); 3220 BaseOps.clear(); 3221 } 3222 3223 if (IsUnaryAbs) { 3224 OpCode = Opc; 3225 LHSVal = getValue(LHS); 3226 BaseOps.clear(); 3227 } 3228 } 3229 3230 if (IsUnaryAbs) { 3231 for (unsigned i = 0; i != NumValues; ++i) { 3232 SDLoc dl = getCurSDLoc(); 3233 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3234 Values[i] = 3235 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3236 if (Negate) 3237 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3238 Values[i]); 3239 } 3240 } else { 3241 for (unsigned i = 0; i != NumValues; ++i) { 3242 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3243 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3244 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3245 Values[i] = DAG.getNode( 3246 OpCode, getCurSDLoc(), 3247 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3248 } 3249 } 3250 3251 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3252 DAG.getVTList(ValueVTs), Values)); 3253 } 3254 3255 void SelectionDAGBuilder::visitTrunc(const User &I) { 3256 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3257 SDValue N = getValue(I.getOperand(0)); 3258 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3259 I.getType()); 3260 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3261 } 3262 3263 void SelectionDAGBuilder::visitZExt(const User &I) { 3264 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3265 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3266 SDValue N = getValue(I.getOperand(0)); 3267 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3268 I.getType()); 3269 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3270 } 3271 3272 void SelectionDAGBuilder::visitSExt(const User &I) { 3273 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3274 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3275 SDValue N = getValue(I.getOperand(0)); 3276 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3277 I.getType()); 3278 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3279 } 3280 3281 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3282 // FPTrunc is never a no-op cast, no need to check 3283 SDValue N = getValue(I.getOperand(0)); 3284 SDLoc dl = getCurSDLoc(); 3285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3286 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3287 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3288 DAG.getTargetConstant( 3289 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3290 } 3291 3292 void SelectionDAGBuilder::visitFPExt(const User &I) { 3293 // FPExt is never a no-op cast, no need to check 3294 SDValue N = getValue(I.getOperand(0)); 3295 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3296 I.getType()); 3297 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3298 } 3299 3300 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3301 // FPToUI is never a no-op cast, no need to check 3302 SDValue N = getValue(I.getOperand(0)); 3303 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3304 I.getType()); 3305 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3306 } 3307 3308 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3309 // FPToSI is never a no-op cast, no need to check 3310 SDValue N = getValue(I.getOperand(0)); 3311 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3312 I.getType()); 3313 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3314 } 3315 3316 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3317 // UIToFP is never a no-op cast, no need to check 3318 SDValue N = getValue(I.getOperand(0)); 3319 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3320 I.getType()); 3321 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3322 } 3323 3324 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3325 // SIToFP is never a no-op cast, no need to check 3326 SDValue N = getValue(I.getOperand(0)); 3327 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3328 I.getType()); 3329 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3330 } 3331 3332 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3333 // What to do depends on the size of the integer and the size of the pointer. 3334 // We can either truncate, zero extend, or no-op, accordingly. 3335 SDValue N = getValue(I.getOperand(0)); 3336 auto &TLI = DAG.getTargetLoweringInfo(); 3337 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3338 I.getType()); 3339 EVT PtrMemVT = 3340 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3341 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3342 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3343 setValue(&I, N); 3344 } 3345 3346 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3347 // What to do depends on the size of the integer and the size of the pointer. 3348 // We can either truncate, zero extend, or no-op, accordingly. 3349 SDValue N = getValue(I.getOperand(0)); 3350 auto &TLI = DAG.getTargetLoweringInfo(); 3351 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3352 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3353 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3354 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3355 setValue(&I, N); 3356 } 3357 3358 void SelectionDAGBuilder::visitBitCast(const User &I) { 3359 SDValue N = getValue(I.getOperand(0)); 3360 SDLoc dl = getCurSDLoc(); 3361 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3362 I.getType()); 3363 3364 // BitCast assures us that source and destination are the same size so this is 3365 // either a BITCAST or a no-op. 3366 if (DestVT != N.getValueType()) 3367 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3368 DestVT, N)); // convert types. 3369 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3370 // might fold any kind of constant expression to an integer constant and that 3371 // is not what we are looking for. Only recognize a bitcast of a genuine 3372 // constant integer as an opaque constant. 3373 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3374 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3375 /*isOpaque*/true)); 3376 else 3377 setValue(&I, N); // noop cast. 3378 } 3379 3380 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3382 const Value *SV = I.getOperand(0); 3383 SDValue N = getValue(SV); 3384 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3385 3386 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3387 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3388 3389 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3390 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3391 3392 setValue(&I, N); 3393 } 3394 3395 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3396 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3397 SDValue InVec = getValue(I.getOperand(0)); 3398 SDValue InVal = getValue(I.getOperand(1)); 3399 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3400 TLI.getVectorIdxTy(DAG.getDataLayout())); 3401 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3402 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3403 InVec, InVal, InIdx)); 3404 } 3405 3406 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3407 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3408 SDValue InVec = getValue(I.getOperand(0)); 3409 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3410 TLI.getVectorIdxTy(DAG.getDataLayout())); 3411 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3412 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3413 InVec, InIdx)); 3414 } 3415 3416 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3417 SDValue Src1 = getValue(I.getOperand(0)); 3418 SDValue Src2 = getValue(I.getOperand(1)); 3419 ArrayRef<int> Mask; 3420 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3421 Mask = SVI->getShuffleMask(); 3422 else 3423 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3424 SDLoc DL = getCurSDLoc(); 3425 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3426 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3427 EVT SrcVT = Src1.getValueType(); 3428 3429 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3430 VT.isScalableVector()) { 3431 // Canonical splat form of first element of first input vector. 3432 SDValue FirstElt = 3433 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3434 DAG.getVectorIdxConstant(0, DL)); 3435 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3436 return; 3437 } 3438 3439 // For now, we only handle splats for scalable vectors. 3440 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3441 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3442 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3443 3444 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3445 unsigned MaskNumElts = Mask.size(); 3446 3447 if (SrcNumElts == MaskNumElts) { 3448 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3449 return; 3450 } 3451 3452 // Normalize the shuffle vector since mask and vector length don't match. 3453 if (SrcNumElts < MaskNumElts) { 3454 // Mask is longer than the source vectors. We can use concatenate vector to 3455 // make the mask and vectors lengths match. 3456 3457 if (MaskNumElts % SrcNumElts == 0) { 3458 // Mask length is a multiple of the source vector length. 3459 // Check if the shuffle is some kind of concatenation of the input 3460 // vectors. 3461 unsigned NumConcat = MaskNumElts / SrcNumElts; 3462 bool IsConcat = true; 3463 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3464 for (unsigned i = 0; i != MaskNumElts; ++i) { 3465 int Idx = Mask[i]; 3466 if (Idx < 0) 3467 continue; 3468 // Ensure the indices in each SrcVT sized piece are sequential and that 3469 // the same source is used for the whole piece. 3470 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3471 (ConcatSrcs[i / SrcNumElts] >= 0 && 3472 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3473 IsConcat = false; 3474 break; 3475 } 3476 // Remember which source this index came from. 3477 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3478 } 3479 3480 // The shuffle is concatenating multiple vectors together. Just emit 3481 // a CONCAT_VECTORS operation. 3482 if (IsConcat) { 3483 SmallVector<SDValue, 8> ConcatOps; 3484 for (auto Src : ConcatSrcs) { 3485 if (Src < 0) 3486 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3487 else if (Src == 0) 3488 ConcatOps.push_back(Src1); 3489 else 3490 ConcatOps.push_back(Src2); 3491 } 3492 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3493 return; 3494 } 3495 } 3496 3497 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3498 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3499 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3500 PaddedMaskNumElts); 3501 3502 // Pad both vectors with undefs to make them the same length as the mask. 3503 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3504 3505 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3506 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3507 MOps1[0] = Src1; 3508 MOps2[0] = Src2; 3509 3510 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3511 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3512 3513 // Readjust mask for new input vector length. 3514 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3515 for (unsigned i = 0; i != MaskNumElts; ++i) { 3516 int Idx = Mask[i]; 3517 if (Idx >= (int)SrcNumElts) 3518 Idx -= SrcNumElts - PaddedMaskNumElts; 3519 MappedOps[i] = Idx; 3520 } 3521 3522 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3523 3524 // If the concatenated vector was padded, extract a subvector with the 3525 // correct number of elements. 3526 if (MaskNumElts != PaddedMaskNumElts) 3527 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3528 DAG.getVectorIdxConstant(0, DL)); 3529 3530 setValue(&I, Result); 3531 return; 3532 } 3533 3534 if (SrcNumElts > MaskNumElts) { 3535 // Analyze the access pattern of the vector to see if we can extract 3536 // two subvectors and do the shuffle. 3537 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3538 bool CanExtract = true; 3539 for (int Idx : Mask) { 3540 unsigned Input = 0; 3541 if (Idx < 0) 3542 continue; 3543 3544 if (Idx >= (int)SrcNumElts) { 3545 Input = 1; 3546 Idx -= SrcNumElts; 3547 } 3548 3549 // If all the indices come from the same MaskNumElts sized portion of 3550 // the sources we can use extract. Also make sure the extract wouldn't 3551 // extract past the end of the source. 3552 int NewStartIdx = alignDown(Idx, MaskNumElts); 3553 if (NewStartIdx + MaskNumElts > SrcNumElts || 3554 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3555 CanExtract = false; 3556 // Make sure we always update StartIdx as we use it to track if all 3557 // elements are undef. 3558 StartIdx[Input] = NewStartIdx; 3559 } 3560 3561 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3562 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3563 return; 3564 } 3565 if (CanExtract) { 3566 // Extract appropriate subvector and generate a vector shuffle 3567 for (unsigned Input = 0; Input < 2; ++Input) { 3568 SDValue &Src = Input == 0 ? Src1 : Src2; 3569 if (StartIdx[Input] < 0) 3570 Src = DAG.getUNDEF(VT); 3571 else { 3572 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3573 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3574 } 3575 } 3576 3577 // Calculate new mask. 3578 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3579 for (int &Idx : MappedOps) { 3580 if (Idx >= (int)SrcNumElts) 3581 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3582 else if (Idx >= 0) 3583 Idx -= StartIdx[0]; 3584 } 3585 3586 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3587 return; 3588 } 3589 } 3590 3591 // We can't use either concat vectors or extract subvectors so fall back to 3592 // replacing the shuffle with extract and build vector. 3593 // to insert and build vector. 3594 EVT EltVT = VT.getVectorElementType(); 3595 SmallVector<SDValue,8> Ops; 3596 for (int Idx : Mask) { 3597 SDValue Res; 3598 3599 if (Idx < 0) { 3600 Res = DAG.getUNDEF(EltVT); 3601 } else { 3602 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3603 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3604 3605 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3606 DAG.getVectorIdxConstant(Idx, DL)); 3607 } 3608 3609 Ops.push_back(Res); 3610 } 3611 3612 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3613 } 3614 3615 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3616 ArrayRef<unsigned> Indices; 3617 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3618 Indices = IV->getIndices(); 3619 else 3620 Indices = cast<ConstantExpr>(&I)->getIndices(); 3621 3622 const Value *Op0 = I.getOperand(0); 3623 const Value *Op1 = I.getOperand(1); 3624 Type *AggTy = I.getType(); 3625 Type *ValTy = Op1->getType(); 3626 bool IntoUndef = isa<UndefValue>(Op0); 3627 bool FromUndef = isa<UndefValue>(Op1); 3628 3629 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3630 3631 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3632 SmallVector<EVT, 4> AggValueVTs; 3633 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3634 SmallVector<EVT, 4> ValValueVTs; 3635 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3636 3637 unsigned NumAggValues = AggValueVTs.size(); 3638 unsigned NumValValues = ValValueVTs.size(); 3639 SmallVector<SDValue, 4> Values(NumAggValues); 3640 3641 // Ignore an insertvalue that produces an empty object 3642 if (!NumAggValues) { 3643 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3644 return; 3645 } 3646 3647 SDValue Agg = getValue(Op0); 3648 unsigned i = 0; 3649 // Copy the beginning value(s) from the original aggregate. 3650 for (; i != LinearIndex; ++i) 3651 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3652 SDValue(Agg.getNode(), Agg.getResNo() + i); 3653 // Copy values from the inserted value(s). 3654 if (NumValValues) { 3655 SDValue Val = getValue(Op1); 3656 for (; i != LinearIndex + NumValValues; ++i) 3657 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3658 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3659 } 3660 // Copy remaining value(s) from the original aggregate. 3661 for (; i != NumAggValues; ++i) 3662 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3663 SDValue(Agg.getNode(), Agg.getResNo() + i); 3664 3665 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3666 DAG.getVTList(AggValueVTs), Values)); 3667 } 3668 3669 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3670 ArrayRef<unsigned> Indices; 3671 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3672 Indices = EV->getIndices(); 3673 else 3674 Indices = cast<ConstantExpr>(&I)->getIndices(); 3675 3676 const Value *Op0 = I.getOperand(0); 3677 Type *AggTy = Op0->getType(); 3678 Type *ValTy = I.getType(); 3679 bool OutOfUndef = isa<UndefValue>(Op0); 3680 3681 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3682 3683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3684 SmallVector<EVT, 4> ValValueVTs; 3685 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3686 3687 unsigned NumValValues = ValValueVTs.size(); 3688 3689 // Ignore a extractvalue that produces an empty object 3690 if (!NumValValues) { 3691 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3692 return; 3693 } 3694 3695 SmallVector<SDValue, 4> Values(NumValValues); 3696 3697 SDValue Agg = getValue(Op0); 3698 // Copy out the selected value(s). 3699 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3700 Values[i - LinearIndex] = 3701 OutOfUndef ? 3702 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3703 SDValue(Agg.getNode(), Agg.getResNo() + i); 3704 3705 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3706 DAG.getVTList(ValValueVTs), Values)); 3707 } 3708 3709 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3710 Value *Op0 = I.getOperand(0); 3711 // Note that the pointer operand may be a vector of pointers. Take the scalar 3712 // element which holds a pointer. 3713 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3714 SDValue N = getValue(Op0); 3715 SDLoc dl = getCurSDLoc(); 3716 auto &TLI = DAG.getTargetLoweringInfo(); 3717 3718 // Normalize Vector GEP - all scalar operands should be converted to the 3719 // splat vector. 3720 bool IsVectorGEP = I.getType()->isVectorTy(); 3721 ElementCount VectorElementCount = 3722 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3723 : ElementCount::getFixed(0); 3724 3725 if (IsVectorGEP && !N.getValueType().isVector()) { 3726 LLVMContext &Context = *DAG.getContext(); 3727 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3728 if (VectorElementCount.isScalable()) 3729 N = DAG.getSplatVector(VT, dl, N); 3730 else 3731 N = DAG.getSplatBuildVector(VT, dl, N); 3732 } 3733 3734 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3735 GTI != E; ++GTI) { 3736 const Value *Idx = GTI.getOperand(); 3737 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3738 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3739 if (Field) { 3740 // N = N + Offset 3741 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3742 3743 // In an inbounds GEP with an offset that is nonnegative even when 3744 // interpreted as signed, assume there is no unsigned overflow. 3745 SDNodeFlags Flags; 3746 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3747 Flags.setNoUnsignedWrap(true); 3748 3749 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3750 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3751 } 3752 } else { 3753 // IdxSize is the width of the arithmetic according to IR semantics. 3754 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3755 // (and fix up the result later). 3756 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3757 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3758 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3759 // We intentionally mask away the high bits here; ElementSize may not 3760 // fit in IdxTy. 3761 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3762 bool ElementScalable = ElementSize.isScalable(); 3763 3764 // If this is a scalar constant or a splat vector of constants, 3765 // handle it quickly. 3766 const auto *C = dyn_cast<Constant>(Idx); 3767 if (C && isa<VectorType>(C->getType())) 3768 C = C->getSplatValue(); 3769 3770 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3771 if (CI && CI->isZero()) 3772 continue; 3773 if (CI && !ElementScalable) { 3774 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3775 LLVMContext &Context = *DAG.getContext(); 3776 SDValue OffsVal; 3777 if (IsVectorGEP) 3778 OffsVal = DAG.getConstant( 3779 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3780 else 3781 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3782 3783 // In an inbounds GEP with an offset that is nonnegative even when 3784 // interpreted as signed, assume there is no unsigned overflow. 3785 SDNodeFlags Flags; 3786 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3787 Flags.setNoUnsignedWrap(true); 3788 3789 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3790 3791 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3792 continue; 3793 } 3794 3795 // N = N + Idx * ElementMul; 3796 SDValue IdxN = getValue(Idx); 3797 3798 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3799 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3800 VectorElementCount); 3801 if (VectorElementCount.isScalable()) 3802 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3803 else 3804 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3805 } 3806 3807 // If the index is smaller or larger than intptr_t, truncate or extend 3808 // it. 3809 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3810 3811 if (ElementScalable) { 3812 EVT VScaleTy = N.getValueType().getScalarType(); 3813 SDValue VScale = DAG.getNode( 3814 ISD::VSCALE, dl, VScaleTy, 3815 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3816 if (IsVectorGEP) 3817 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3818 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3819 } else { 3820 // If this is a multiply by a power of two, turn it into a shl 3821 // immediately. This is a very common case. 3822 if (ElementMul != 1) { 3823 if (ElementMul.isPowerOf2()) { 3824 unsigned Amt = ElementMul.logBase2(); 3825 IdxN = DAG.getNode(ISD::SHL, dl, 3826 N.getValueType(), IdxN, 3827 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3828 } else { 3829 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3830 IdxN.getValueType()); 3831 IdxN = DAG.getNode(ISD::MUL, dl, 3832 N.getValueType(), IdxN, Scale); 3833 } 3834 } 3835 } 3836 3837 N = DAG.getNode(ISD::ADD, dl, 3838 N.getValueType(), N, IdxN); 3839 } 3840 } 3841 3842 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3843 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3844 if (IsVectorGEP) { 3845 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3846 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3847 } 3848 3849 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3850 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3851 3852 setValue(&I, N); 3853 } 3854 3855 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3856 // If this is a fixed sized alloca in the entry block of the function, 3857 // allocate it statically on the stack. 3858 if (FuncInfo.StaticAllocaMap.count(&I)) 3859 return; // getValue will auto-populate this. 3860 3861 SDLoc dl = getCurSDLoc(); 3862 Type *Ty = I.getAllocatedType(); 3863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3864 auto &DL = DAG.getDataLayout(); 3865 uint64_t TySize = DL.getTypeAllocSize(Ty); 3866 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3867 3868 SDValue AllocSize = getValue(I.getArraySize()); 3869 3870 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3871 if (AllocSize.getValueType() != IntPtr) 3872 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3873 3874 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3875 AllocSize, 3876 DAG.getConstant(TySize, dl, IntPtr)); 3877 3878 // Handle alignment. If the requested alignment is less than or equal to 3879 // the stack alignment, ignore it. If the size is greater than or equal to 3880 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3881 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3882 if (*Alignment <= StackAlign) 3883 Alignment = None; 3884 3885 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3886 // Round the size of the allocation up to the stack alignment size 3887 // by add SA-1 to the size. This doesn't overflow because we're computing 3888 // an address inside an alloca. 3889 SDNodeFlags Flags; 3890 Flags.setNoUnsignedWrap(true); 3891 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3892 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3893 3894 // Mask out the low bits for alignment purposes. 3895 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3896 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3897 3898 SDValue Ops[] = { 3899 getRoot(), AllocSize, 3900 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3901 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3902 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3903 setValue(&I, DSA); 3904 DAG.setRoot(DSA.getValue(1)); 3905 3906 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3907 } 3908 3909 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3910 if (I.isAtomic()) 3911 return visitAtomicLoad(I); 3912 3913 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3914 const Value *SV = I.getOperand(0); 3915 if (TLI.supportSwiftError()) { 3916 // Swifterror values can come from either a function parameter with 3917 // swifterror attribute or an alloca with swifterror attribute. 3918 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3919 if (Arg->hasSwiftErrorAttr()) 3920 return visitLoadFromSwiftError(I); 3921 } 3922 3923 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3924 if (Alloca->isSwiftError()) 3925 return visitLoadFromSwiftError(I); 3926 } 3927 } 3928 3929 SDValue Ptr = getValue(SV); 3930 3931 Type *Ty = I.getType(); 3932 Align Alignment = I.getAlign(); 3933 3934 AAMDNodes AAInfo; 3935 I.getAAMetadata(AAInfo); 3936 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3937 3938 SmallVector<EVT, 4> ValueVTs, MemVTs; 3939 SmallVector<uint64_t, 4> Offsets; 3940 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3941 unsigned NumValues = ValueVTs.size(); 3942 if (NumValues == 0) 3943 return; 3944 3945 bool isVolatile = I.isVolatile(); 3946 3947 SDValue Root; 3948 bool ConstantMemory = false; 3949 if (isVolatile) 3950 // Serialize volatile loads with other side effects. 3951 Root = getRoot(); 3952 else if (NumValues > MaxParallelChains) 3953 Root = getMemoryRoot(); 3954 else if (AA && 3955 AA->pointsToConstantMemory(MemoryLocation( 3956 SV, 3957 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3958 AAInfo))) { 3959 // Do not serialize (non-volatile) loads of constant memory with anything. 3960 Root = DAG.getEntryNode(); 3961 ConstantMemory = true; 3962 } else { 3963 // Do not serialize non-volatile loads against each other. 3964 Root = DAG.getRoot(); 3965 } 3966 3967 SDLoc dl = getCurSDLoc(); 3968 3969 if (isVolatile) 3970 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3971 3972 // An aggregate load cannot wrap around the address space, so offsets to its 3973 // parts don't wrap either. 3974 SDNodeFlags Flags; 3975 Flags.setNoUnsignedWrap(true); 3976 3977 SmallVector<SDValue, 4> Values(NumValues); 3978 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3979 EVT PtrVT = Ptr.getValueType(); 3980 3981 MachineMemOperand::Flags MMOFlags 3982 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 3983 3984 unsigned ChainI = 0; 3985 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3986 // Serializing loads here may result in excessive register pressure, and 3987 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3988 // could recover a bit by hoisting nodes upward in the chain by recognizing 3989 // they are side-effect free or do not alias. The optimizer should really 3990 // avoid this case by converting large object/array copies to llvm.memcpy 3991 // (MaxParallelChains should always remain as failsafe). 3992 if (ChainI == MaxParallelChains) { 3993 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3994 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3995 makeArrayRef(Chains.data(), ChainI)); 3996 Root = Chain; 3997 ChainI = 0; 3998 } 3999 SDValue A = DAG.getNode(ISD::ADD, dl, 4000 PtrVT, Ptr, 4001 DAG.getConstant(Offsets[i], dl, PtrVT), 4002 Flags); 4003 4004 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4005 MachinePointerInfo(SV, Offsets[i]), Alignment, 4006 MMOFlags, AAInfo, Ranges); 4007 Chains[ChainI] = L.getValue(1); 4008 4009 if (MemVTs[i] != ValueVTs[i]) 4010 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4011 4012 Values[i] = L; 4013 } 4014 4015 if (!ConstantMemory) { 4016 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4017 makeArrayRef(Chains.data(), ChainI)); 4018 if (isVolatile) 4019 DAG.setRoot(Chain); 4020 else 4021 PendingLoads.push_back(Chain); 4022 } 4023 4024 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4025 DAG.getVTList(ValueVTs), Values)); 4026 } 4027 4028 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4029 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4030 "call visitStoreToSwiftError when backend supports swifterror"); 4031 4032 SmallVector<EVT, 4> ValueVTs; 4033 SmallVector<uint64_t, 4> Offsets; 4034 const Value *SrcV = I.getOperand(0); 4035 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4036 SrcV->getType(), ValueVTs, &Offsets); 4037 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4038 "expect a single EVT for swifterror"); 4039 4040 SDValue Src = getValue(SrcV); 4041 // Create a virtual register, then update the virtual register. 4042 Register VReg = 4043 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4044 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4045 // Chain can be getRoot or getControlRoot. 4046 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4047 SDValue(Src.getNode(), Src.getResNo())); 4048 DAG.setRoot(CopyNode); 4049 } 4050 4051 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4052 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4053 "call visitLoadFromSwiftError when backend supports swifterror"); 4054 4055 assert(!I.isVolatile() && 4056 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4057 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4058 "Support volatile, non temporal, invariant for load_from_swift_error"); 4059 4060 const Value *SV = I.getOperand(0); 4061 Type *Ty = I.getType(); 4062 AAMDNodes AAInfo; 4063 I.getAAMetadata(AAInfo); 4064 assert( 4065 (!AA || 4066 !AA->pointsToConstantMemory(MemoryLocation( 4067 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4068 AAInfo))) && 4069 "load_from_swift_error should not be constant memory"); 4070 4071 SmallVector<EVT, 4> ValueVTs; 4072 SmallVector<uint64_t, 4> Offsets; 4073 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4074 ValueVTs, &Offsets); 4075 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4076 "expect a single EVT for swifterror"); 4077 4078 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4079 SDValue L = DAG.getCopyFromReg( 4080 getRoot(), getCurSDLoc(), 4081 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4082 4083 setValue(&I, L); 4084 } 4085 4086 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4087 if (I.isAtomic()) 4088 return visitAtomicStore(I); 4089 4090 const Value *SrcV = I.getOperand(0); 4091 const Value *PtrV = I.getOperand(1); 4092 4093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4094 if (TLI.supportSwiftError()) { 4095 // Swifterror values can come from either a function parameter with 4096 // swifterror attribute or an alloca with swifterror attribute. 4097 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4098 if (Arg->hasSwiftErrorAttr()) 4099 return visitStoreToSwiftError(I); 4100 } 4101 4102 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4103 if (Alloca->isSwiftError()) 4104 return visitStoreToSwiftError(I); 4105 } 4106 } 4107 4108 SmallVector<EVT, 4> ValueVTs, MemVTs; 4109 SmallVector<uint64_t, 4> Offsets; 4110 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4111 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4112 unsigned NumValues = ValueVTs.size(); 4113 if (NumValues == 0) 4114 return; 4115 4116 // Get the lowered operands. Note that we do this after 4117 // checking if NumResults is zero, because with zero results 4118 // the operands won't have values in the map. 4119 SDValue Src = getValue(SrcV); 4120 SDValue Ptr = getValue(PtrV); 4121 4122 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4123 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4124 SDLoc dl = getCurSDLoc(); 4125 Align Alignment = I.getAlign(); 4126 AAMDNodes AAInfo; 4127 I.getAAMetadata(AAInfo); 4128 4129 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4130 4131 // An aggregate load cannot wrap around the address space, so offsets to its 4132 // parts don't wrap either. 4133 SDNodeFlags Flags; 4134 Flags.setNoUnsignedWrap(true); 4135 4136 unsigned ChainI = 0; 4137 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4138 // See visitLoad comments. 4139 if (ChainI == MaxParallelChains) { 4140 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4141 makeArrayRef(Chains.data(), ChainI)); 4142 Root = Chain; 4143 ChainI = 0; 4144 } 4145 SDValue Add = 4146 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4147 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4148 if (MemVTs[i] != ValueVTs[i]) 4149 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4150 SDValue St = 4151 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4152 Alignment, MMOFlags, AAInfo); 4153 Chains[ChainI] = St; 4154 } 4155 4156 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4157 makeArrayRef(Chains.data(), ChainI)); 4158 DAG.setRoot(StoreNode); 4159 } 4160 4161 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4162 bool IsCompressing) { 4163 SDLoc sdl = getCurSDLoc(); 4164 4165 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4166 MaybeAlign &Alignment) { 4167 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4168 Src0 = I.getArgOperand(0); 4169 Ptr = I.getArgOperand(1); 4170 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4171 Mask = I.getArgOperand(3); 4172 }; 4173 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4174 MaybeAlign &Alignment) { 4175 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4176 Src0 = I.getArgOperand(0); 4177 Ptr = I.getArgOperand(1); 4178 Mask = I.getArgOperand(2); 4179 Alignment = None; 4180 }; 4181 4182 Value *PtrOperand, *MaskOperand, *Src0Operand; 4183 MaybeAlign Alignment; 4184 if (IsCompressing) 4185 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4186 else 4187 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4188 4189 SDValue Ptr = getValue(PtrOperand); 4190 SDValue Src0 = getValue(Src0Operand); 4191 SDValue Mask = getValue(MaskOperand); 4192 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4193 4194 EVT VT = Src0.getValueType(); 4195 if (!Alignment) 4196 Alignment = DAG.getEVTAlign(VT); 4197 4198 AAMDNodes AAInfo; 4199 I.getAAMetadata(AAInfo); 4200 4201 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4202 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4203 // TODO: Make MachineMemOperands aware of scalable 4204 // vectors. 4205 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4206 SDValue StoreNode = 4207 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4208 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4209 DAG.setRoot(StoreNode); 4210 setValue(&I, StoreNode); 4211 } 4212 4213 // Get a uniform base for the Gather/Scatter intrinsic. 4214 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4215 // We try to represent it as a base pointer + vector of indices. 4216 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4217 // The first operand of the GEP may be a single pointer or a vector of pointers 4218 // Example: 4219 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4220 // or 4221 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4222 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4223 // 4224 // When the first GEP operand is a single pointer - it is the uniform base we 4225 // are looking for. If first operand of the GEP is a splat vector - we 4226 // extract the splat value and use it as a uniform base. 4227 // In all other cases the function returns 'false'. 4228 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4229 ISD::MemIndexType &IndexType, SDValue &Scale, 4230 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4231 SelectionDAG& DAG = SDB->DAG; 4232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4233 const DataLayout &DL = DAG.getDataLayout(); 4234 4235 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4236 4237 // Handle splat constant pointer. 4238 if (auto *C = dyn_cast<Constant>(Ptr)) { 4239 C = C->getSplatValue(); 4240 if (!C) 4241 return false; 4242 4243 Base = SDB->getValue(C); 4244 4245 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 4246 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4247 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4248 IndexType = ISD::SIGNED_SCALED; 4249 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4250 return true; 4251 } 4252 4253 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4254 if (!GEP || GEP->getParent() != CurBB) 4255 return false; 4256 4257 if (GEP->getNumOperands() != 2) 4258 return false; 4259 4260 const Value *BasePtr = GEP->getPointerOperand(); 4261 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4262 4263 // Make sure the base is scalar and the index is a vector. 4264 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4265 return false; 4266 4267 Base = SDB->getValue(BasePtr); 4268 Index = SDB->getValue(IndexVal); 4269 IndexType = ISD::SIGNED_SCALED; 4270 Scale = DAG.getTargetConstant( 4271 DL.getTypeAllocSize(GEP->getResultElementType()), 4272 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4273 return true; 4274 } 4275 4276 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4277 SDLoc sdl = getCurSDLoc(); 4278 4279 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4280 const Value *Ptr = I.getArgOperand(1); 4281 SDValue Src0 = getValue(I.getArgOperand(0)); 4282 SDValue Mask = getValue(I.getArgOperand(3)); 4283 EVT VT = Src0.getValueType(); 4284 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4285 ->getMaybeAlignValue() 4286 .getValueOr(DAG.getEVTAlign(VT)); 4287 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4288 4289 AAMDNodes AAInfo; 4290 I.getAAMetadata(AAInfo); 4291 4292 SDValue Base; 4293 SDValue Index; 4294 ISD::MemIndexType IndexType; 4295 SDValue Scale; 4296 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4297 I.getParent()); 4298 4299 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4300 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4301 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4302 // TODO: Make MachineMemOperands aware of scalable 4303 // vectors. 4304 MemoryLocation::UnknownSize, Alignment, AAInfo); 4305 if (!UniformBase) { 4306 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4307 Index = getValue(Ptr); 4308 IndexType = ISD::SIGNED_UNSCALED; 4309 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4310 } 4311 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4312 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4313 Ops, MMO, IndexType, false); 4314 DAG.setRoot(Scatter); 4315 setValue(&I, Scatter); 4316 } 4317 4318 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4319 SDLoc sdl = getCurSDLoc(); 4320 4321 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4322 MaybeAlign &Alignment) { 4323 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4324 Ptr = I.getArgOperand(0); 4325 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4326 Mask = I.getArgOperand(2); 4327 Src0 = I.getArgOperand(3); 4328 }; 4329 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4330 MaybeAlign &Alignment) { 4331 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4332 Ptr = I.getArgOperand(0); 4333 Alignment = None; 4334 Mask = I.getArgOperand(1); 4335 Src0 = I.getArgOperand(2); 4336 }; 4337 4338 Value *PtrOperand, *MaskOperand, *Src0Operand; 4339 MaybeAlign Alignment; 4340 if (IsExpanding) 4341 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4342 else 4343 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4344 4345 SDValue Ptr = getValue(PtrOperand); 4346 SDValue Src0 = getValue(Src0Operand); 4347 SDValue Mask = getValue(MaskOperand); 4348 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4349 4350 EVT VT = Src0.getValueType(); 4351 if (!Alignment) 4352 Alignment = DAG.getEVTAlign(VT); 4353 4354 AAMDNodes AAInfo; 4355 I.getAAMetadata(AAInfo); 4356 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4357 4358 // Do not serialize masked loads of constant memory with anything. 4359 MemoryLocation ML; 4360 if (VT.isScalableVector()) 4361 ML = MemoryLocation::getAfter(PtrOperand); 4362 else 4363 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4364 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4365 AAInfo); 4366 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4367 4368 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4369 4370 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4371 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4372 // TODO: Make MachineMemOperands aware of scalable 4373 // vectors. 4374 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4375 4376 SDValue Load = 4377 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4378 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4379 if (AddToChain) 4380 PendingLoads.push_back(Load.getValue(1)); 4381 setValue(&I, Load); 4382 } 4383 4384 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4385 SDLoc sdl = getCurSDLoc(); 4386 4387 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4388 const Value *Ptr = I.getArgOperand(0); 4389 SDValue Src0 = getValue(I.getArgOperand(3)); 4390 SDValue Mask = getValue(I.getArgOperand(2)); 4391 4392 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4393 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4394 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4395 ->getMaybeAlignValue() 4396 .getValueOr(DAG.getEVTAlign(VT)); 4397 4398 AAMDNodes AAInfo; 4399 I.getAAMetadata(AAInfo); 4400 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4401 4402 SDValue Root = DAG.getRoot(); 4403 SDValue Base; 4404 SDValue Index; 4405 ISD::MemIndexType IndexType; 4406 SDValue Scale; 4407 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4408 I.getParent()); 4409 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4410 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4411 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4412 // TODO: Make MachineMemOperands aware of scalable 4413 // vectors. 4414 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4415 4416 if (!UniformBase) { 4417 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4418 Index = getValue(Ptr); 4419 IndexType = ISD::SIGNED_UNSCALED; 4420 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4421 } 4422 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4423 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4424 Ops, MMO, IndexType); 4425 4426 PendingLoads.push_back(Gather.getValue(1)); 4427 setValue(&I, Gather); 4428 } 4429 4430 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4431 SDLoc dl = getCurSDLoc(); 4432 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4433 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4434 SyncScope::ID SSID = I.getSyncScopeID(); 4435 4436 SDValue InChain = getRoot(); 4437 4438 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4439 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4440 4441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4442 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4443 4444 MachineFunction &MF = DAG.getMachineFunction(); 4445 MachineMemOperand *MMO = MF.getMachineMemOperand( 4446 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4447 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4448 FailureOrdering); 4449 4450 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4451 dl, MemVT, VTs, InChain, 4452 getValue(I.getPointerOperand()), 4453 getValue(I.getCompareOperand()), 4454 getValue(I.getNewValOperand()), MMO); 4455 4456 SDValue OutChain = L.getValue(2); 4457 4458 setValue(&I, L); 4459 DAG.setRoot(OutChain); 4460 } 4461 4462 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4463 SDLoc dl = getCurSDLoc(); 4464 ISD::NodeType NT; 4465 switch (I.getOperation()) { 4466 default: llvm_unreachable("Unknown atomicrmw operation"); 4467 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4468 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4469 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4470 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4471 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4472 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4473 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4474 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4475 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4476 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4477 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4478 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4479 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4480 } 4481 AtomicOrdering Ordering = I.getOrdering(); 4482 SyncScope::ID SSID = I.getSyncScopeID(); 4483 4484 SDValue InChain = getRoot(); 4485 4486 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4488 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4489 4490 MachineFunction &MF = DAG.getMachineFunction(); 4491 MachineMemOperand *MMO = MF.getMachineMemOperand( 4492 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4493 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4494 4495 SDValue L = 4496 DAG.getAtomic(NT, dl, MemVT, InChain, 4497 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4498 MMO); 4499 4500 SDValue OutChain = L.getValue(1); 4501 4502 setValue(&I, L); 4503 DAG.setRoot(OutChain); 4504 } 4505 4506 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4507 SDLoc dl = getCurSDLoc(); 4508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4509 SDValue Ops[3]; 4510 Ops[0] = getRoot(); 4511 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4512 TLI.getFenceOperandTy(DAG.getDataLayout())); 4513 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4514 TLI.getFenceOperandTy(DAG.getDataLayout())); 4515 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4516 } 4517 4518 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4519 SDLoc dl = getCurSDLoc(); 4520 AtomicOrdering Order = I.getOrdering(); 4521 SyncScope::ID SSID = I.getSyncScopeID(); 4522 4523 SDValue InChain = getRoot(); 4524 4525 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4526 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4527 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4528 4529 if (!TLI.supportsUnalignedAtomics() && 4530 I.getAlignment() < MemVT.getSizeInBits() / 8) 4531 report_fatal_error("Cannot generate unaligned atomic load"); 4532 4533 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4534 4535 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4536 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4537 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4538 4539 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4540 4541 SDValue Ptr = getValue(I.getPointerOperand()); 4542 4543 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4544 // TODO: Once this is better exercised by tests, it should be merged with 4545 // the normal path for loads to prevent future divergence. 4546 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4547 if (MemVT != VT) 4548 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4549 4550 setValue(&I, L); 4551 SDValue OutChain = L.getValue(1); 4552 if (!I.isUnordered()) 4553 DAG.setRoot(OutChain); 4554 else 4555 PendingLoads.push_back(OutChain); 4556 return; 4557 } 4558 4559 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4560 Ptr, MMO); 4561 4562 SDValue OutChain = L.getValue(1); 4563 if (MemVT != VT) 4564 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4565 4566 setValue(&I, L); 4567 DAG.setRoot(OutChain); 4568 } 4569 4570 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4571 SDLoc dl = getCurSDLoc(); 4572 4573 AtomicOrdering Ordering = I.getOrdering(); 4574 SyncScope::ID SSID = I.getSyncScopeID(); 4575 4576 SDValue InChain = getRoot(); 4577 4578 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4579 EVT MemVT = 4580 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4581 4582 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4583 report_fatal_error("Cannot generate unaligned atomic store"); 4584 4585 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4586 4587 MachineFunction &MF = DAG.getMachineFunction(); 4588 MachineMemOperand *MMO = MF.getMachineMemOperand( 4589 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4590 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4591 4592 SDValue Val = getValue(I.getValueOperand()); 4593 if (Val.getValueType() != MemVT) 4594 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4595 SDValue Ptr = getValue(I.getPointerOperand()); 4596 4597 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4598 // TODO: Once this is better exercised by tests, it should be merged with 4599 // the normal path for stores to prevent future divergence. 4600 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4601 DAG.setRoot(S); 4602 return; 4603 } 4604 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4605 Ptr, Val, MMO); 4606 4607 4608 DAG.setRoot(OutChain); 4609 } 4610 4611 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4612 /// node. 4613 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4614 unsigned Intrinsic) { 4615 // Ignore the callsite's attributes. A specific call site may be marked with 4616 // readnone, but the lowering code will expect the chain based on the 4617 // definition. 4618 const Function *F = I.getCalledFunction(); 4619 bool HasChain = !F->doesNotAccessMemory(); 4620 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4621 4622 // Build the operand list. 4623 SmallVector<SDValue, 8> Ops; 4624 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4625 if (OnlyLoad) { 4626 // We don't need to serialize loads against other loads. 4627 Ops.push_back(DAG.getRoot()); 4628 } else { 4629 Ops.push_back(getRoot()); 4630 } 4631 } 4632 4633 // Info is set by getTgtMemInstrinsic 4634 TargetLowering::IntrinsicInfo Info; 4635 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4636 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4637 DAG.getMachineFunction(), 4638 Intrinsic); 4639 4640 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4641 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4642 Info.opc == ISD::INTRINSIC_W_CHAIN) 4643 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4644 TLI.getPointerTy(DAG.getDataLayout()))); 4645 4646 // Add all operands of the call to the operand list. 4647 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4648 const Value *Arg = I.getArgOperand(i); 4649 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4650 Ops.push_back(getValue(Arg)); 4651 continue; 4652 } 4653 4654 // Use TargetConstant instead of a regular constant for immarg. 4655 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4656 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4657 assert(CI->getBitWidth() <= 64 && 4658 "large intrinsic immediates not handled"); 4659 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4660 } else { 4661 Ops.push_back( 4662 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4663 } 4664 } 4665 4666 SmallVector<EVT, 4> ValueVTs; 4667 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4668 4669 if (HasChain) 4670 ValueVTs.push_back(MVT::Other); 4671 4672 SDVTList VTs = DAG.getVTList(ValueVTs); 4673 4674 // Create the node. 4675 SDValue Result; 4676 if (IsTgtIntrinsic) { 4677 // This is target intrinsic that touches memory 4678 AAMDNodes AAInfo; 4679 I.getAAMetadata(AAInfo); 4680 Result = 4681 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4682 MachinePointerInfo(Info.ptrVal, Info.offset), 4683 Info.align, Info.flags, Info.size, AAInfo); 4684 } else if (!HasChain) { 4685 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4686 } else if (!I.getType()->isVoidTy()) { 4687 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4688 } else { 4689 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4690 } 4691 4692 if (HasChain) { 4693 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4694 if (OnlyLoad) 4695 PendingLoads.push_back(Chain); 4696 else 4697 DAG.setRoot(Chain); 4698 } 4699 4700 if (!I.getType()->isVoidTy()) { 4701 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4702 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4703 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4704 } else 4705 Result = lowerRangeToAssertZExt(DAG, I, Result); 4706 4707 MaybeAlign Alignment = I.getRetAlign(); 4708 if (!Alignment) 4709 Alignment = F->getAttributes().getRetAlignment(); 4710 // Insert `assertalign` node if there's an alignment. 4711 if (InsertAssertAlign && Alignment) { 4712 Result = 4713 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4714 } 4715 4716 setValue(&I, Result); 4717 } 4718 } 4719 4720 /// GetSignificand - Get the significand and build it into a floating-point 4721 /// number with exponent of 1: 4722 /// 4723 /// Op = (Op & 0x007fffff) | 0x3f800000; 4724 /// 4725 /// where Op is the hexadecimal representation of floating point value. 4726 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4727 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4728 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4729 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4730 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4731 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4732 } 4733 4734 /// GetExponent - Get the exponent: 4735 /// 4736 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4737 /// 4738 /// where Op is the hexadecimal representation of floating point value. 4739 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4740 const TargetLowering &TLI, const SDLoc &dl) { 4741 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4742 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4743 SDValue t1 = DAG.getNode( 4744 ISD::SRL, dl, MVT::i32, t0, 4745 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4746 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4747 DAG.getConstant(127, dl, MVT::i32)); 4748 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4749 } 4750 4751 /// getF32Constant - Get 32-bit floating point constant. 4752 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4753 const SDLoc &dl) { 4754 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4755 MVT::f32); 4756 } 4757 4758 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4759 SelectionDAG &DAG) { 4760 // TODO: What fast-math-flags should be set on the floating-point nodes? 4761 4762 // IntegerPartOfX = ((int32_t)(t0); 4763 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4764 4765 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4766 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4767 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4768 4769 // IntegerPartOfX <<= 23; 4770 IntegerPartOfX = DAG.getNode( 4771 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4772 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4773 DAG.getDataLayout()))); 4774 4775 SDValue TwoToFractionalPartOfX; 4776 if (LimitFloatPrecision <= 6) { 4777 // For floating-point precision of 6: 4778 // 4779 // TwoToFractionalPartOfX = 4780 // 0.997535578f + 4781 // (0.735607626f + 0.252464424f * x) * x; 4782 // 4783 // error 0.0144103317, which is 6 bits 4784 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4785 getF32Constant(DAG, 0x3e814304, dl)); 4786 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4787 getF32Constant(DAG, 0x3f3c50c8, dl)); 4788 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4789 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4790 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4791 } else if (LimitFloatPrecision <= 12) { 4792 // For floating-point precision of 12: 4793 // 4794 // TwoToFractionalPartOfX = 4795 // 0.999892986f + 4796 // (0.696457318f + 4797 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4798 // 4799 // error 0.000107046256, which is 13 to 14 bits 4800 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4801 getF32Constant(DAG, 0x3da235e3, dl)); 4802 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4803 getF32Constant(DAG, 0x3e65b8f3, dl)); 4804 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4805 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4806 getF32Constant(DAG, 0x3f324b07, dl)); 4807 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4808 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4809 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4810 } else { // LimitFloatPrecision <= 18 4811 // For floating-point precision of 18: 4812 // 4813 // TwoToFractionalPartOfX = 4814 // 0.999999982f + 4815 // (0.693148872f + 4816 // (0.240227044f + 4817 // (0.554906021e-1f + 4818 // (0.961591928e-2f + 4819 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4820 // error 2.47208000*10^(-7), which is better than 18 bits 4821 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4822 getF32Constant(DAG, 0x3924b03e, dl)); 4823 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4824 getF32Constant(DAG, 0x3ab24b87, dl)); 4825 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4826 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4827 getF32Constant(DAG, 0x3c1d8c17, dl)); 4828 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4829 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4830 getF32Constant(DAG, 0x3d634a1d, dl)); 4831 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4832 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4833 getF32Constant(DAG, 0x3e75fe14, dl)); 4834 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4835 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4836 getF32Constant(DAG, 0x3f317234, dl)); 4837 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4838 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4839 getF32Constant(DAG, 0x3f800000, dl)); 4840 } 4841 4842 // Add the exponent into the result in integer domain. 4843 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4844 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4845 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4846 } 4847 4848 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4849 /// limited-precision mode. 4850 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4851 const TargetLowering &TLI, SDNodeFlags Flags) { 4852 if (Op.getValueType() == MVT::f32 && 4853 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4854 4855 // Put the exponent in the right bit position for later addition to the 4856 // final result: 4857 // 4858 // t0 = Op * log2(e) 4859 4860 // TODO: What fast-math-flags should be set here? 4861 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4862 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4863 return getLimitedPrecisionExp2(t0, dl, DAG); 4864 } 4865 4866 // No special expansion. 4867 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 4868 } 4869 4870 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4871 /// limited-precision mode. 4872 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4873 const TargetLowering &TLI, SDNodeFlags Flags) { 4874 // TODO: What fast-math-flags should be set on the floating-point nodes? 4875 4876 if (Op.getValueType() == MVT::f32 && 4877 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4878 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4879 4880 // Scale the exponent by log(2). 4881 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4882 SDValue LogOfExponent = 4883 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4884 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4885 4886 // Get the significand and build it into a floating-point number with 4887 // exponent of 1. 4888 SDValue X = GetSignificand(DAG, Op1, dl); 4889 4890 SDValue LogOfMantissa; 4891 if (LimitFloatPrecision <= 6) { 4892 // For floating-point precision of 6: 4893 // 4894 // LogofMantissa = 4895 // -1.1609546f + 4896 // (1.4034025f - 0.23903021f * x) * x; 4897 // 4898 // error 0.0034276066, which is better than 8 bits 4899 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4900 getF32Constant(DAG, 0xbe74c456, dl)); 4901 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4902 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4903 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4904 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4905 getF32Constant(DAG, 0x3f949a29, dl)); 4906 } else if (LimitFloatPrecision <= 12) { 4907 // For floating-point precision of 12: 4908 // 4909 // LogOfMantissa = 4910 // -1.7417939f + 4911 // (2.8212026f + 4912 // (-1.4699568f + 4913 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4914 // 4915 // error 0.000061011436, which is 14 bits 4916 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4917 getF32Constant(DAG, 0xbd67b6d6, dl)); 4918 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4919 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4920 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4921 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4922 getF32Constant(DAG, 0x3fbc278b, dl)); 4923 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4924 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4925 getF32Constant(DAG, 0x40348e95, dl)); 4926 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4927 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4928 getF32Constant(DAG, 0x3fdef31a, dl)); 4929 } else { // LimitFloatPrecision <= 18 4930 // For floating-point precision of 18: 4931 // 4932 // LogOfMantissa = 4933 // -2.1072184f + 4934 // (4.2372794f + 4935 // (-3.7029485f + 4936 // (2.2781945f + 4937 // (-0.87823314f + 4938 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4939 // 4940 // error 0.0000023660568, which is better than 18 bits 4941 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4942 getF32Constant(DAG, 0xbc91e5ac, dl)); 4943 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4944 getF32Constant(DAG, 0x3e4350aa, dl)); 4945 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4946 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4947 getF32Constant(DAG, 0x3f60d3e3, dl)); 4948 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4949 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4950 getF32Constant(DAG, 0x4011cdf0, dl)); 4951 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4952 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4953 getF32Constant(DAG, 0x406cfd1c, dl)); 4954 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4955 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4956 getF32Constant(DAG, 0x408797cb, dl)); 4957 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4958 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4959 getF32Constant(DAG, 0x4006dcab, dl)); 4960 } 4961 4962 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4963 } 4964 4965 // No special expansion. 4966 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 4967 } 4968 4969 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4970 /// limited-precision mode. 4971 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4972 const TargetLowering &TLI, SDNodeFlags Flags) { 4973 // TODO: What fast-math-flags should be set on the floating-point nodes? 4974 4975 if (Op.getValueType() == MVT::f32 && 4976 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4977 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4978 4979 // Get the exponent. 4980 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4981 4982 // Get the significand and build it into a floating-point number with 4983 // exponent of 1. 4984 SDValue X = GetSignificand(DAG, Op1, dl); 4985 4986 // Different possible minimax approximations of significand in 4987 // floating-point for various degrees of accuracy over [1,2]. 4988 SDValue Log2ofMantissa; 4989 if (LimitFloatPrecision <= 6) { 4990 // For floating-point precision of 6: 4991 // 4992 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4993 // 4994 // error 0.0049451742, which is more than 7 bits 4995 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4996 getF32Constant(DAG, 0xbeb08fe0, dl)); 4997 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4998 getF32Constant(DAG, 0x40019463, dl)); 4999 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5000 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5001 getF32Constant(DAG, 0x3fd6633d, dl)); 5002 } else if (LimitFloatPrecision <= 12) { 5003 // For floating-point precision of 12: 5004 // 5005 // Log2ofMantissa = 5006 // -2.51285454f + 5007 // (4.07009056f + 5008 // (-2.12067489f + 5009 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5010 // 5011 // error 0.0000876136000, which is better than 13 bits 5012 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5013 getF32Constant(DAG, 0xbda7262e, dl)); 5014 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5015 getF32Constant(DAG, 0x3f25280b, dl)); 5016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5017 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5018 getF32Constant(DAG, 0x4007b923, dl)); 5019 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5020 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5021 getF32Constant(DAG, 0x40823e2f, dl)); 5022 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5023 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5024 getF32Constant(DAG, 0x4020d29c, dl)); 5025 } else { // LimitFloatPrecision <= 18 5026 // For floating-point precision of 18: 5027 // 5028 // Log2ofMantissa = 5029 // -3.0400495f + 5030 // (6.1129976f + 5031 // (-5.3420409f + 5032 // (3.2865683f + 5033 // (-1.2669343f + 5034 // (0.27515199f - 5035 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5036 // 5037 // error 0.0000018516, which is better than 18 bits 5038 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5039 getF32Constant(DAG, 0xbcd2769e, dl)); 5040 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5041 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5042 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5043 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5044 getF32Constant(DAG, 0x3fa22ae7, dl)); 5045 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5046 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5047 getF32Constant(DAG, 0x40525723, dl)); 5048 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5049 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5050 getF32Constant(DAG, 0x40aaf200, dl)); 5051 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5052 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5053 getF32Constant(DAG, 0x40c39dad, dl)); 5054 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5055 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5056 getF32Constant(DAG, 0x4042902c, dl)); 5057 } 5058 5059 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5060 } 5061 5062 // No special expansion. 5063 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5064 } 5065 5066 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5067 /// limited-precision mode. 5068 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5069 const TargetLowering &TLI, SDNodeFlags Flags) { 5070 // TODO: What fast-math-flags should be set on the floating-point nodes? 5071 5072 if (Op.getValueType() == MVT::f32 && 5073 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5074 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5075 5076 // Scale the exponent by log10(2) [0.30102999f]. 5077 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5078 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5079 getF32Constant(DAG, 0x3e9a209a, dl)); 5080 5081 // Get the significand and build it into a floating-point number with 5082 // exponent of 1. 5083 SDValue X = GetSignificand(DAG, Op1, dl); 5084 5085 SDValue Log10ofMantissa; 5086 if (LimitFloatPrecision <= 6) { 5087 // For floating-point precision of 6: 5088 // 5089 // Log10ofMantissa = 5090 // -0.50419619f + 5091 // (0.60948995f - 0.10380950f * x) * x; 5092 // 5093 // error 0.0014886165, which is 6 bits 5094 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5095 getF32Constant(DAG, 0xbdd49a13, dl)); 5096 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5097 getF32Constant(DAG, 0x3f1c0789, dl)); 5098 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5099 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5100 getF32Constant(DAG, 0x3f011300, dl)); 5101 } else if (LimitFloatPrecision <= 12) { 5102 // For floating-point precision of 12: 5103 // 5104 // Log10ofMantissa = 5105 // -0.64831180f + 5106 // (0.91751397f + 5107 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5108 // 5109 // error 0.00019228036, which is better than 12 bits 5110 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5111 getF32Constant(DAG, 0x3d431f31, dl)); 5112 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5113 getF32Constant(DAG, 0x3ea21fb2, dl)); 5114 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5115 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5116 getF32Constant(DAG, 0x3f6ae232, dl)); 5117 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5118 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5119 getF32Constant(DAG, 0x3f25f7c3, dl)); 5120 } else { // LimitFloatPrecision <= 18 5121 // For floating-point precision of 18: 5122 // 5123 // Log10ofMantissa = 5124 // -0.84299375f + 5125 // (1.5327582f + 5126 // (-1.0688956f + 5127 // (0.49102474f + 5128 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5129 // 5130 // error 0.0000037995730, which is better than 18 bits 5131 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5132 getF32Constant(DAG, 0x3c5d51ce, dl)); 5133 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5134 getF32Constant(DAG, 0x3e00685a, dl)); 5135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5136 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5137 getF32Constant(DAG, 0x3efb6798, dl)); 5138 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5139 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5140 getF32Constant(DAG, 0x3f88d192, dl)); 5141 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5142 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5143 getF32Constant(DAG, 0x3fc4316c, dl)); 5144 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5145 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5146 getF32Constant(DAG, 0x3f57ce70, dl)); 5147 } 5148 5149 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5150 } 5151 5152 // No special expansion. 5153 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5154 } 5155 5156 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5157 /// limited-precision mode. 5158 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5159 const TargetLowering &TLI, SDNodeFlags Flags) { 5160 if (Op.getValueType() == MVT::f32 && 5161 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5162 return getLimitedPrecisionExp2(Op, dl, DAG); 5163 5164 // No special expansion. 5165 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5166 } 5167 5168 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5169 /// limited-precision mode with x == 10.0f. 5170 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5171 SelectionDAG &DAG, const TargetLowering &TLI, 5172 SDNodeFlags Flags) { 5173 bool IsExp10 = false; 5174 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5175 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5176 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5177 APFloat Ten(10.0f); 5178 IsExp10 = LHSC->isExactlyValue(Ten); 5179 } 5180 } 5181 5182 // TODO: What fast-math-flags should be set on the FMUL node? 5183 if (IsExp10) { 5184 // Put the exponent in the right bit position for later addition to the 5185 // final result: 5186 // 5187 // #define LOG2OF10 3.3219281f 5188 // t0 = Op * LOG2OF10; 5189 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5190 getF32Constant(DAG, 0x40549a78, dl)); 5191 return getLimitedPrecisionExp2(t0, dl, DAG); 5192 } 5193 5194 // No special expansion. 5195 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5196 } 5197 5198 /// ExpandPowI - Expand a llvm.powi intrinsic. 5199 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5200 SelectionDAG &DAG) { 5201 // If RHS is a constant, we can expand this out to a multiplication tree, 5202 // otherwise we end up lowering to a call to __powidf2 (for example). When 5203 // optimizing for size, we only want to do this if the expansion would produce 5204 // a small number of multiplies, otherwise we do the full expansion. 5205 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5206 // Get the exponent as a positive value. 5207 unsigned Val = RHSC->getSExtValue(); 5208 if ((int)Val < 0) Val = -Val; 5209 5210 // powi(x, 0) -> 1.0 5211 if (Val == 0) 5212 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5213 5214 bool OptForSize = DAG.shouldOptForSize(); 5215 if (!OptForSize || 5216 // If optimizing for size, don't insert too many multiplies. 5217 // This inserts up to 5 multiplies. 5218 countPopulation(Val) + Log2_32(Val) < 7) { 5219 // We use the simple binary decomposition method to generate the multiply 5220 // sequence. There are more optimal ways to do this (for example, 5221 // powi(x,15) generates one more multiply than it should), but this has 5222 // the benefit of being both really simple and much better than a libcall. 5223 SDValue Res; // Logically starts equal to 1.0 5224 SDValue CurSquare = LHS; 5225 // TODO: Intrinsics should have fast-math-flags that propagate to these 5226 // nodes. 5227 while (Val) { 5228 if (Val & 1) { 5229 if (Res.getNode()) 5230 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5231 else 5232 Res = CurSquare; // 1.0*CurSquare. 5233 } 5234 5235 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5236 CurSquare, CurSquare); 5237 Val >>= 1; 5238 } 5239 5240 // If the original was negative, invert the result, producing 1/(x*x*x). 5241 if (RHSC->getSExtValue() < 0) 5242 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5243 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5244 return Res; 5245 } 5246 } 5247 5248 // Otherwise, expand to a libcall. 5249 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5250 } 5251 5252 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5253 SDValue LHS, SDValue RHS, SDValue Scale, 5254 SelectionDAG &DAG, const TargetLowering &TLI) { 5255 EVT VT = LHS.getValueType(); 5256 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5257 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5258 LLVMContext &Ctx = *DAG.getContext(); 5259 5260 // If the type is legal but the operation isn't, this node might survive all 5261 // the way to operation legalization. If we end up there and we do not have 5262 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5263 // node. 5264 5265 // Coax the legalizer into expanding the node during type legalization instead 5266 // by bumping the size by one bit. This will force it to Promote, enabling the 5267 // early expansion and avoiding the need to expand later. 5268 5269 // We don't have to do this if Scale is 0; that can always be expanded, unless 5270 // it's a saturating signed operation. Those can experience true integer 5271 // division overflow, a case which we must avoid. 5272 5273 // FIXME: We wouldn't have to do this (or any of the early 5274 // expansion/promotion) if it was possible to expand a libcall of an 5275 // illegal type during operation legalization. But it's not, so things 5276 // get a bit hacky. 5277 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5278 if ((ScaleInt > 0 || (Saturating && Signed)) && 5279 (TLI.isTypeLegal(VT) || 5280 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5281 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5282 Opcode, VT, ScaleInt); 5283 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5284 EVT PromVT; 5285 if (VT.isScalarInteger()) 5286 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5287 else if (VT.isVector()) { 5288 PromVT = VT.getVectorElementType(); 5289 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5290 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5291 } else 5292 llvm_unreachable("Wrong VT for DIVFIX?"); 5293 if (Signed) { 5294 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5295 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5296 } else { 5297 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5298 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5299 } 5300 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5301 // For saturating operations, we need to shift up the LHS to get the 5302 // proper saturation width, and then shift down again afterwards. 5303 if (Saturating) 5304 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5305 DAG.getConstant(1, DL, ShiftTy)); 5306 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5307 if (Saturating) 5308 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5309 DAG.getConstant(1, DL, ShiftTy)); 5310 return DAG.getZExtOrTrunc(Res, DL, VT); 5311 } 5312 } 5313 5314 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5315 } 5316 5317 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5318 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5319 static void 5320 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5321 const SDValue &N) { 5322 switch (N.getOpcode()) { 5323 case ISD::CopyFromReg: { 5324 SDValue Op = N.getOperand(1); 5325 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5326 Op.getValueType().getSizeInBits()); 5327 return; 5328 } 5329 case ISD::BITCAST: 5330 case ISD::AssertZext: 5331 case ISD::AssertSext: 5332 case ISD::TRUNCATE: 5333 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5334 return; 5335 case ISD::BUILD_PAIR: 5336 case ISD::BUILD_VECTOR: 5337 case ISD::CONCAT_VECTORS: 5338 for (SDValue Op : N->op_values()) 5339 getUnderlyingArgRegs(Regs, Op); 5340 return; 5341 default: 5342 return; 5343 } 5344 } 5345 5346 /// If the DbgValueInst is a dbg_value of a function argument, create the 5347 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5348 /// instruction selection, they will be inserted to the entry BB. 5349 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5350 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5351 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5352 const Argument *Arg = dyn_cast<Argument>(V); 5353 if (!Arg) 5354 return false; 5355 5356 if (!IsDbgDeclare) { 5357 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5358 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5359 // the entry block. 5360 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5361 if (!IsInEntryBlock) 5362 return false; 5363 5364 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5365 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5366 // variable that also is a param. 5367 // 5368 // Although, if we are at the top of the entry block already, we can still 5369 // emit using ArgDbgValue. This might catch some situations when the 5370 // dbg.value refers to an argument that isn't used in the entry block, so 5371 // any CopyToReg node would be optimized out and the only way to express 5372 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5373 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5374 // we should only emit as ArgDbgValue if the Variable is an argument to the 5375 // current function, and the dbg.value intrinsic is found in the entry 5376 // block. 5377 bool VariableIsFunctionInputArg = Variable->isParameter() && 5378 !DL->getInlinedAt(); 5379 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5380 if (!IsInPrologue && !VariableIsFunctionInputArg) 5381 return false; 5382 5383 // Here we assume that a function argument on IR level only can be used to 5384 // describe one input parameter on source level. If we for example have 5385 // source code like this 5386 // 5387 // struct A { long x, y; }; 5388 // void foo(struct A a, long b) { 5389 // ... 5390 // b = a.x; 5391 // ... 5392 // } 5393 // 5394 // and IR like this 5395 // 5396 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5397 // entry: 5398 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5399 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5400 // call void @llvm.dbg.value(metadata i32 %b, "b", 5401 // ... 5402 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5403 // ... 5404 // 5405 // then the last dbg.value is describing a parameter "b" using a value that 5406 // is an argument. But since we already has used %a1 to describe a parameter 5407 // we should not handle that last dbg.value here (that would result in an 5408 // incorrect hoisting of the DBG_VALUE to the function entry). 5409 // Notice that we allow one dbg.value per IR level argument, to accommodate 5410 // for the situation with fragments above. 5411 if (VariableIsFunctionInputArg) { 5412 unsigned ArgNo = Arg->getArgNo(); 5413 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5414 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5415 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5416 return false; 5417 FuncInfo.DescribedArgs.set(ArgNo); 5418 } 5419 } 5420 5421 MachineFunction &MF = DAG.getMachineFunction(); 5422 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5423 5424 bool IsIndirect = false; 5425 Optional<MachineOperand> Op; 5426 // Some arguments' frame index is recorded during argument lowering. 5427 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5428 if (FI != std::numeric_limits<int>::max()) 5429 Op = MachineOperand::CreateFI(FI); 5430 5431 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5432 if (!Op && N.getNode()) { 5433 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5434 Register Reg; 5435 if (ArgRegsAndSizes.size() == 1) 5436 Reg = ArgRegsAndSizes.front().first; 5437 5438 if (Reg && Reg.isVirtual()) { 5439 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5440 Register PR = RegInfo.getLiveInPhysReg(Reg); 5441 if (PR) 5442 Reg = PR; 5443 } 5444 if (Reg) { 5445 Op = MachineOperand::CreateReg(Reg, false); 5446 IsIndirect = IsDbgDeclare; 5447 } 5448 } 5449 5450 if (!Op && N.getNode()) { 5451 // Check if frame index is available. 5452 SDValue LCandidate = peekThroughBitcasts(N); 5453 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5454 if (FrameIndexSDNode *FINode = 5455 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5456 Op = MachineOperand::CreateFI(FINode->getIndex()); 5457 } 5458 5459 if (!Op) { 5460 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5461 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5462 SplitRegs) { 5463 unsigned Offset = 0; 5464 for (auto RegAndSize : SplitRegs) { 5465 // If the expression is already a fragment, the current register 5466 // offset+size might extend beyond the fragment. In this case, only 5467 // the register bits that are inside the fragment are relevant. 5468 int RegFragmentSizeInBits = RegAndSize.second; 5469 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5470 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5471 // The register is entirely outside the expression fragment, 5472 // so is irrelevant for debug info. 5473 if (Offset >= ExprFragmentSizeInBits) 5474 break; 5475 // The register is partially outside the expression fragment, only 5476 // the low bits within the fragment are relevant for debug info. 5477 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5478 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5479 } 5480 } 5481 5482 auto FragmentExpr = DIExpression::createFragmentExpression( 5483 Expr, Offset, RegFragmentSizeInBits); 5484 Offset += RegAndSize.second; 5485 // If a valid fragment expression cannot be created, the variable's 5486 // correct value cannot be determined and so it is set as Undef. 5487 if (!FragmentExpr) { 5488 SDDbgValue *SDV = DAG.getConstantDbgValue( 5489 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5490 DAG.AddDbgValue(SDV, nullptr, false); 5491 continue; 5492 } 5493 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5494 FuncInfo.ArgDbgValues.push_back( 5495 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5496 RegAndSize.first, Variable, *FragmentExpr)); 5497 } 5498 }; 5499 5500 // Check if ValueMap has reg number. 5501 DenseMap<const Value *, Register>::const_iterator 5502 VMI = FuncInfo.ValueMap.find(V); 5503 if (VMI != FuncInfo.ValueMap.end()) { 5504 const auto &TLI = DAG.getTargetLoweringInfo(); 5505 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5506 V->getType(), None); 5507 if (RFV.occupiesMultipleRegs()) { 5508 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5509 return true; 5510 } 5511 5512 Op = MachineOperand::CreateReg(VMI->second, false); 5513 IsIndirect = IsDbgDeclare; 5514 } else if (ArgRegsAndSizes.size() > 1) { 5515 // This was split due to the calling convention, and no virtual register 5516 // mapping exists for the value. 5517 splitMultiRegDbgValue(ArgRegsAndSizes); 5518 return true; 5519 } 5520 } 5521 5522 if (!Op) 5523 return false; 5524 5525 assert(Variable->isValidLocationForIntrinsic(DL) && 5526 "Expected inlined-at fields to agree"); 5527 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5528 FuncInfo.ArgDbgValues.push_back( 5529 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5530 *Op, Variable, Expr)); 5531 5532 return true; 5533 } 5534 5535 /// Return the appropriate SDDbgValue based on N. 5536 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5537 DILocalVariable *Variable, 5538 DIExpression *Expr, 5539 const DebugLoc &dl, 5540 unsigned DbgSDNodeOrder) { 5541 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5542 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5543 // stack slot locations. 5544 // 5545 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5546 // debug values here after optimization: 5547 // 5548 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5549 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5550 // 5551 // Both describe the direct values of their associated variables. 5552 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5553 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5554 } 5555 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5556 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5557 } 5558 5559 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5560 switch (Intrinsic) { 5561 case Intrinsic::smul_fix: 5562 return ISD::SMULFIX; 5563 case Intrinsic::umul_fix: 5564 return ISD::UMULFIX; 5565 case Intrinsic::smul_fix_sat: 5566 return ISD::SMULFIXSAT; 5567 case Intrinsic::umul_fix_sat: 5568 return ISD::UMULFIXSAT; 5569 case Intrinsic::sdiv_fix: 5570 return ISD::SDIVFIX; 5571 case Intrinsic::udiv_fix: 5572 return ISD::UDIVFIX; 5573 case Intrinsic::sdiv_fix_sat: 5574 return ISD::SDIVFIXSAT; 5575 case Intrinsic::udiv_fix_sat: 5576 return ISD::UDIVFIXSAT; 5577 default: 5578 llvm_unreachable("Unhandled fixed point intrinsic"); 5579 } 5580 } 5581 5582 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5583 const char *FunctionName) { 5584 assert(FunctionName && "FunctionName must not be nullptr"); 5585 SDValue Callee = DAG.getExternalSymbol( 5586 FunctionName, 5587 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5588 LowerCallTo(I, Callee, I.isTailCall()); 5589 } 5590 5591 /// Given a @llvm.call.preallocated.setup, return the corresponding 5592 /// preallocated call. 5593 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5594 assert(cast<CallBase>(PreallocatedSetup) 5595 ->getCalledFunction() 5596 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5597 "expected call_preallocated_setup Value"); 5598 for (auto *U : PreallocatedSetup->users()) { 5599 auto *UseCall = cast<CallBase>(U); 5600 const Function *Fn = UseCall->getCalledFunction(); 5601 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5602 return UseCall; 5603 } 5604 } 5605 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5606 } 5607 5608 /// Lower the call to the specified intrinsic function. 5609 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5610 unsigned Intrinsic) { 5611 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5612 SDLoc sdl = getCurSDLoc(); 5613 DebugLoc dl = getCurDebugLoc(); 5614 SDValue Res; 5615 5616 SDNodeFlags Flags; 5617 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5618 Flags.copyFMF(*FPOp); 5619 5620 switch (Intrinsic) { 5621 default: 5622 // By default, turn this into a target intrinsic node. 5623 visitTargetIntrinsic(I, Intrinsic); 5624 return; 5625 case Intrinsic::vscale: { 5626 match(&I, m_VScale(DAG.getDataLayout())); 5627 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5628 setValue(&I, 5629 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5630 return; 5631 } 5632 case Intrinsic::vastart: visitVAStart(I); return; 5633 case Intrinsic::vaend: visitVAEnd(I); return; 5634 case Intrinsic::vacopy: visitVACopy(I); return; 5635 case Intrinsic::returnaddress: 5636 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5637 TLI.getPointerTy(DAG.getDataLayout()), 5638 getValue(I.getArgOperand(0)))); 5639 return; 5640 case Intrinsic::addressofreturnaddress: 5641 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5642 TLI.getPointerTy(DAG.getDataLayout()))); 5643 return; 5644 case Intrinsic::sponentry: 5645 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5646 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5647 return; 5648 case Intrinsic::frameaddress: 5649 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5650 TLI.getFrameIndexTy(DAG.getDataLayout()), 5651 getValue(I.getArgOperand(0)))); 5652 return; 5653 case Intrinsic::read_volatile_register: 5654 case Intrinsic::read_register: { 5655 Value *Reg = I.getArgOperand(0); 5656 SDValue Chain = getRoot(); 5657 SDValue RegName = 5658 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5659 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5660 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5661 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5662 setValue(&I, Res); 5663 DAG.setRoot(Res.getValue(1)); 5664 return; 5665 } 5666 case Intrinsic::write_register: { 5667 Value *Reg = I.getArgOperand(0); 5668 Value *RegValue = I.getArgOperand(1); 5669 SDValue Chain = getRoot(); 5670 SDValue RegName = 5671 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5672 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5673 RegName, getValue(RegValue))); 5674 return; 5675 } 5676 case Intrinsic::memcpy: { 5677 const auto &MCI = cast<MemCpyInst>(I); 5678 SDValue Op1 = getValue(I.getArgOperand(0)); 5679 SDValue Op2 = getValue(I.getArgOperand(1)); 5680 SDValue Op3 = getValue(I.getArgOperand(2)); 5681 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5682 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5683 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5684 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5685 bool isVol = MCI.isVolatile(); 5686 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5687 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5688 // node. 5689 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5690 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5691 /* AlwaysInline */ false, isTC, 5692 MachinePointerInfo(I.getArgOperand(0)), 5693 MachinePointerInfo(I.getArgOperand(1))); 5694 updateDAGForMaybeTailCall(MC); 5695 return; 5696 } 5697 case Intrinsic::memcpy_inline: { 5698 const auto &MCI = cast<MemCpyInlineInst>(I); 5699 SDValue Dst = getValue(I.getArgOperand(0)); 5700 SDValue Src = getValue(I.getArgOperand(1)); 5701 SDValue Size = getValue(I.getArgOperand(2)); 5702 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5703 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5704 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5705 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5706 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5707 bool isVol = MCI.isVolatile(); 5708 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5709 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5710 // node. 5711 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5712 /* AlwaysInline */ true, isTC, 5713 MachinePointerInfo(I.getArgOperand(0)), 5714 MachinePointerInfo(I.getArgOperand(1))); 5715 updateDAGForMaybeTailCall(MC); 5716 return; 5717 } 5718 case Intrinsic::memset: { 5719 const auto &MSI = cast<MemSetInst>(I); 5720 SDValue Op1 = getValue(I.getArgOperand(0)); 5721 SDValue Op2 = getValue(I.getArgOperand(1)); 5722 SDValue Op3 = getValue(I.getArgOperand(2)); 5723 // @llvm.memset defines 0 and 1 to both mean no alignment. 5724 Align Alignment = MSI.getDestAlign().valueOrOne(); 5725 bool isVol = MSI.isVolatile(); 5726 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5727 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5728 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5729 MachinePointerInfo(I.getArgOperand(0))); 5730 updateDAGForMaybeTailCall(MS); 5731 return; 5732 } 5733 case Intrinsic::memmove: { 5734 const auto &MMI = cast<MemMoveInst>(I); 5735 SDValue Op1 = getValue(I.getArgOperand(0)); 5736 SDValue Op2 = getValue(I.getArgOperand(1)); 5737 SDValue Op3 = getValue(I.getArgOperand(2)); 5738 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5739 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5740 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5741 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5742 bool isVol = MMI.isVolatile(); 5743 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5744 // FIXME: Support passing different dest/src alignments to the memmove DAG 5745 // node. 5746 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5747 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5748 isTC, MachinePointerInfo(I.getArgOperand(0)), 5749 MachinePointerInfo(I.getArgOperand(1))); 5750 updateDAGForMaybeTailCall(MM); 5751 return; 5752 } 5753 case Intrinsic::memcpy_element_unordered_atomic: { 5754 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5755 SDValue Dst = getValue(MI.getRawDest()); 5756 SDValue Src = getValue(MI.getRawSource()); 5757 SDValue Length = getValue(MI.getLength()); 5758 5759 unsigned DstAlign = MI.getDestAlignment(); 5760 unsigned SrcAlign = MI.getSourceAlignment(); 5761 Type *LengthTy = MI.getLength()->getType(); 5762 unsigned ElemSz = MI.getElementSizeInBytes(); 5763 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5764 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5765 SrcAlign, Length, LengthTy, ElemSz, isTC, 5766 MachinePointerInfo(MI.getRawDest()), 5767 MachinePointerInfo(MI.getRawSource())); 5768 updateDAGForMaybeTailCall(MC); 5769 return; 5770 } 5771 case Intrinsic::memmove_element_unordered_atomic: { 5772 auto &MI = cast<AtomicMemMoveInst>(I); 5773 SDValue Dst = getValue(MI.getRawDest()); 5774 SDValue Src = getValue(MI.getRawSource()); 5775 SDValue Length = getValue(MI.getLength()); 5776 5777 unsigned DstAlign = MI.getDestAlignment(); 5778 unsigned SrcAlign = MI.getSourceAlignment(); 5779 Type *LengthTy = MI.getLength()->getType(); 5780 unsigned ElemSz = MI.getElementSizeInBytes(); 5781 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5782 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5783 SrcAlign, Length, LengthTy, ElemSz, isTC, 5784 MachinePointerInfo(MI.getRawDest()), 5785 MachinePointerInfo(MI.getRawSource())); 5786 updateDAGForMaybeTailCall(MC); 5787 return; 5788 } 5789 case Intrinsic::memset_element_unordered_atomic: { 5790 auto &MI = cast<AtomicMemSetInst>(I); 5791 SDValue Dst = getValue(MI.getRawDest()); 5792 SDValue Val = getValue(MI.getValue()); 5793 SDValue Length = getValue(MI.getLength()); 5794 5795 unsigned DstAlign = MI.getDestAlignment(); 5796 Type *LengthTy = MI.getLength()->getType(); 5797 unsigned ElemSz = MI.getElementSizeInBytes(); 5798 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5799 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5800 LengthTy, ElemSz, isTC, 5801 MachinePointerInfo(MI.getRawDest())); 5802 updateDAGForMaybeTailCall(MC); 5803 return; 5804 } 5805 case Intrinsic::call_preallocated_setup: { 5806 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5807 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5808 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5809 getRoot(), SrcValue); 5810 setValue(&I, Res); 5811 DAG.setRoot(Res); 5812 return; 5813 } 5814 case Intrinsic::call_preallocated_arg: { 5815 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5816 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5817 SDValue Ops[3]; 5818 Ops[0] = getRoot(); 5819 Ops[1] = SrcValue; 5820 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5821 MVT::i32); // arg index 5822 SDValue Res = DAG.getNode( 5823 ISD::PREALLOCATED_ARG, sdl, 5824 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5825 setValue(&I, Res); 5826 DAG.setRoot(Res.getValue(1)); 5827 return; 5828 } 5829 case Intrinsic::dbg_addr: 5830 case Intrinsic::dbg_declare: { 5831 const auto &DI = cast<DbgVariableIntrinsic>(I); 5832 DILocalVariable *Variable = DI.getVariable(); 5833 DIExpression *Expression = DI.getExpression(); 5834 dropDanglingDebugInfo(Variable, Expression); 5835 assert(Variable && "Missing variable"); 5836 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5837 << "\n"); 5838 // Check if address has undef value. 5839 const Value *Address = DI.getVariableLocation(); 5840 if (!Address || isa<UndefValue>(Address) || 5841 (Address->use_empty() && !isa<Argument>(Address))) { 5842 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5843 << " (bad/undef/unused-arg address)\n"); 5844 return; 5845 } 5846 5847 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5848 5849 // Check if this variable can be described by a frame index, typically 5850 // either as a static alloca or a byval parameter. 5851 int FI = std::numeric_limits<int>::max(); 5852 if (const auto *AI = 5853 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5854 if (AI->isStaticAlloca()) { 5855 auto I = FuncInfo.StaticAllocaMap.find(AI); 5856 if (I != FuncInfo.StaticAllocaMap.end()) 5857 FI = I->second; 5858 } 5859 } else if (const auto *Arg = dyn_cast<Argument>( 5860 Address->stripInBoundsConstantOffsets())) { 5861 FI = FuncInfo.getArgumentFrameIndex(Arg); 5862 } 5863 5864 // llvm.dbg.addr is control dependent and always generates indirect 5865 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5866 // the MachineFunction variable table. 5867 if (FI != std::numeric_limits<int>::max()) { 5868 if (Intrinsic == Intrinsic::dbg_addr) { 5869 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5870 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5871 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5872 } else { 5873 LLVM_DEBUG(dbgs() << "Skipping " << DI 5874 << " (variable info stashed in MF side table)\n"); 5875 } 5876 return; 5877 } 5878 5879 SDValue &N = NodeMap[Address]; 5880 if (!N.getNode() && isa<Argument>(Address)) 5881 // Check unused arguments map. 5882 N = UnusedArgNodeMap[Address]; 5883 SDDbgValue *SDV; 5884 if (N.getNode()) { 5885 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5886 Address = BCI->getOperand(0); 5887 // Parameters are handled specially. 5888 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5889 if (isParameter && FINode) { 5890 // Byval parameter. We have a frame index at this point. 5891 SDV = 5892 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5893 /*IsIndirect*/ true, dl, SDNodeOrder); 5894 } else if (isa<Argument>(Address)) { 5895 // Address is an argument, so try to emit its dbg value using 5896 // virtual register info from the FuncInfo.ValueMap. 5897 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5898 return; 5899 } else { 5900 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5901 true, dl, SDNodeOrder); 5902 } 5903 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5904 } else { 5905 // If Address is an argument then try to emit its dbg value using 5906 // virtual register info from the FuncInfo.ValueMap. 5907 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5908 N)) { 5909 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5910 << " (could not emit func-arg dbg_value)\n"); 5911 } 5912 } 5913 return; 5914 } 5915 case Intrinsic::dbg_label: { 5916 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5917 DILabel *Label = DI.getLabel(); 5918 assert(Label && "Missing label"); 5919 5920 SDDbgLabel *SDV; 5921 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5922 DAG.AddDbgLabel(SDV); 5923 return; 5924 } 5925 case Intrinsic::dbg_value: { 5926 const DbgValueInst &DI = cast<DbgValueInst>(I); 5927 assert(DI.getVariable() && "Missing variable"); 5928 5929 DILocalVariable *Variable = DI.getVariable(); 5930 DIExpression *Expression = DI.getExpression(); 5931 dropDanglingDebugInfo(Variable, Expression); 5932 const Value *V = DI.getValue(); 5933 if (!V) 5934 return; 5935 5936 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5937 SDNodeOrder)) 5938 return; 5939 5940 // TODO: Dangling debug info will eventually either be resolved or produce 5941 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5942 // between the original dbg.value location and its resolved DBG_VALUE, which 5943 // we should ideally fill with an extra Undef DBG_VALUE. 5944 5945 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5946 return; 5947 } 5948 5949 case Intrinsic::eh_typeid_for: { 5950 // Find the type id for the given typeinfo. 5951 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5952 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5953 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5954 setValue(&I, Res); 5955 return; 5956 } 5957 5958 case Intrinsic::eh_return_i32: 5959 case Intrinsic::eh_return_i64: 5960 DAG.getMachineFunction().setCallsEHReturn(true); 5961 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5962 MVT::Other, 5963 getControlRoot(), 5964 getValue(I.getArgOperand(0)), 5965 getValue(I.getArgOperand(1)))); 5966 return; 5967 case Intrinsic::eh_unwind_init: 5968 DAG.getMachineFunction().setCallsUnwindInit(true); 5969 return; 5970 case Intrinsic::eh_dwarf_cfa: 5971 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5972 TLI.getPointerTy(DAG.getDataLayout()), 5973 getValue(I.getArgOperand(0)))); 5974 return; 5975 case Intrinsic::eh_sjlj_callsite: { 5976 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5977 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5978 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5979 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5980 5981 MMI.setCurrentCallSite(CI->getZExtValue()); 5982 return; 5983 } 5984 case Intrinsic::eh_sjlj_functioncontext: { 5985 // Get and store the index of the function context. 5986 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5987 AllocaInst *FnCtx = 5988 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5989 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5990 MFI.setFunctionContextIndex(FI); 5991 return; 5992 } 5993 case Intrinsic::eh_sjlj_setjmp: { 5994 SDValue Ops[2]; 5995 Ops[0] = getRoot(); 5996 Ops[1] = getValue(I.getArgOperand(0)); 5997 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5998 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5999 setValue(&I, Op.getValue(0)); 6000 DAG.setRoot(Op.getValue(1)); 6001 return; 6002 } 6003 case Intrinsic::eh_sjlj_longjmp: 6004 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6005 getRoot(), getValue(I.getArgOperand(0)))); 6006 return; 6007 case Intrinsic::eh_sjlj_setup_dispatch: 6008 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6009 getRoot())); 6010 return; 6011 case Intrinsic::masked_gather: 6012 visitMaskedGather(I); 6013 return; 6014 case Intrinsic::masked_load: 6015 visitMaskedLoad(I); 6016 return; 6017 case Intrinsic::masked_scatter: 6018 visitMaskedScatter(I); 6019 return; 6020 case Intrinsic::masked_store: 6021 visitMaskedStore(I); 6022 return; 6023 case Intrinsic::masked_expandload: 6024 visitMaskedLoad(I, true /* IsExpanding */); 6025 return; 6026 case Intrinsic::masked_compressstore: 6027 visitMaskedStore(I, true /* IsCompressing */); 6028 return; 6029 case Intrinsic::powi: 6030 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6031 getValue(I.getArgOperand(1)), DAG)); 6032 return; 6033 case Intrinsic::log: 6034 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6035 return; 6036 case Intrinsic::log2: 6037 setValue(&I, 6038 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6039 return; 6040 case Intrinsic::log10: 6041 setValue(&I, 6042 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6043 return; 6044 case Intrinsic::exp: 6045 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6046 return; 6047 case Intrinsic::exp2: 6048 setValue(&I, 6049 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6050 return; 6051 case Intrinsic::pow: 6052 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6053 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6054 return; 6055 case Intrinsic::sqrt: 6056 case Intrinsic::fabs: 6057 case Intrinsic::sin: 6058 case Intrinsic::cos: 6059 case Intrinsic::floor: 6060 case Intrinsic::ceil: 6061 case Intrinsic::trunc: 6062 case Intrinsic::rint: 6063 case Intrinsic::nearbyint: 6064 case Intrinsic::round: 6065 case Intrinsic::roundeven: 6066 case Intrinsic::canonicalize: { 6067 unsigned Opcode; 6068 switch (Intrinsic) { 6069 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6070 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6071 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6072 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6073 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6074 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6075 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6076 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6077 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6078 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6079 case Intrinsic::round: Opcode = ISD::FROUND; break; 6080 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6081 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6082 } 6083 6084 setValue(&I, DAG.getNode(Opcode, sdl, 6085 getValue(I.getArgOperand(0)).getValueType(), 6086 getValue(I.getArgOperand(0)), Flags)); 6087 return; 6088 } 6089 case Intrinsic::lround: 6090 case Intrinsic::llround: 6091 case Intrinsic::lrint: 6092 case Intrinsic::llrint: { 6093 unsigned Opcode; 6094 switch (Intrinsic) { 6095 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6096 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6097 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6098 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6099 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6100 } 6101 6102 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6103 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6104 getValue(I.getArgOperand(0)))); 6105 return; 6106 } 6107 case Intrinsic::minnum: 6108 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6109 getValue(I.getArgOperand(0)).getValueType(), 6110 getValue(I.getArgOperand(0)), 6111 getValue(I.getArgOperand(1)), Flags)); 6112 return; 6113 case Intrinsic::maxnum: 6114 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6115 getValue(I.getArgOperand(0)).getValueType(), 6116 getValue(I.getArgOperand(0)), 6117 getValue(I.getArgOperand(1)), Flags)); 6118 return; 6119 case Intrinsic::minimum: 6120 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6121 getValue(I.getArgOperand(0)).getValueType(), 6122 getValue(I.getArgOperand(0)), 6123 getValue(I.getArgOperand(1)), Flags)); 6124 return; 6125 case Intrinsic::maximum: 6126 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6127 getValue(I.getArgOperand(0)).getValueType(), 6128 getValue(I.getArgOperand(0)), 6129 getValue(I.getArgOperand(1)), Flags)); 6130 return; 6131 case Intrinsic::copysign: 6132 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6133 getValue(I.getArgOperand(0)).getValueType(), 6134 getValue(I.getArgOperand(0)), 6135 getValue(I.getArgOperand(1)), Flags)); 6136 return; 6137 case Intrinsic::fma: 6138 setValue(&I, DAG.getNode( 6139 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6140 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6141 getValue(I.getArgOperand(2)), Flags)); 6142 return; 6143 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6144 case Intrinsic::INTRINSIC: 6145 #include "llvm/IR/ConstrainedOps.def" 6146 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6147 return; 6148 case Intrinsic::fmuladd: { 6149 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6150 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6151 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6152 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6153 getValue(I.getArgOperand(0)).getValueType(), 6154 getValue(I.getArgOperand(0)), 6155 getValue(I.getArgOperand(1)), 6156 getValue(I.getArgOperand(2)), Flags)); 6157 } else { 6158 // TODO: Intrinsic calls should have fast-math-flags. 6159 SDValue Mul = DAG.getNode( 6160 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6161 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6162 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6163 getValue(I.getArgOperand(0)).getValueType(), 6164 Mul, getValue(I.getArgOperand(2)), Flags); 6165 setValue(&I, Add); 6166 } 6167 return; 6168 } 6169 case Intrinsic::convert_to_fp16: 6170 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6171 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6172 getValue(I.getArgOperand(0)), 6173 DAG.getTargetConstant(0, sdl, 6174 MVT::i32)))); 6175 return; 6176 case Intrinsic::convert_from_fp16: 6177 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6178 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6179 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6180 getValue(I.getArgOperand(0))))); 6181 return; 6182 case Intrinsic::pcmarker: { 6183 SDValue Tmp = getValue(I.getArgOperand(0)); 6184 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6185 return; 6186 } 6187 case Intrinsic::readcyclecounter: { 6188 SDValue Op = getRoot(); 6189 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6190 DAG.getVTList(MVT::i64, MVT::Other), Op); 6191 setValue(&I, Res); 6192 DAG.setRoot(Res.getValue(1)); 6193 return; 6194 } 6195 case Intrinsic::bitreverse: 6196 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6197 getValue(I.getArgOperand(0)).getValueType(), 6198 getValue(I.getArgOperand(0)))); 6199 return; 6200 case Intrinsic::bswap: 6201 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6202 getValue(I.getArgOperand(0)).getValueType(), 6203 getValue(I.getArgOperand(0)))); 6204 return; 6205 case Intrinsic::cttz: { 6206 SDValue Arg = getValue(I.getArgOperand(0)); 6207 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6208 EVT Ty = Arg.getValueType(); 6209 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6210 sdl, Ty, Arg)); 6211 return; 6212 } 6213 case Intrinsic::ctlz: { 6214 SDValue Arg = getValue(I.getArgOperand(0)); 6215 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6216 EVT Ty = Arg.getValueType(); 6217 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6218 sdl, Ty, Arg)); 6219 return; 6220 } 6221 case Intrinsic::ctpop: { 6222 SDValue Arg = getValue(I.getArgOperand(0)); 6223 EVT Ty = Arg.getValueType(); 6224 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6225 return; 6226 } 6227 case Intrinsic::fshl: 6228 case Intrinsic::fshr: { 6229 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6230 SDValue X = getValue(I.getArgOperand(0)); 6231 SDValue Y = getValue(I.getArgOperand(1)); 6232 SDValue Z = getValue(I.getArgOperand(2)); 6233 EVT VT = X.getValueType(); 6234 6235 if (X == Y) { 6236 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6237 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6238 } else { 6239 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6240 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6241 } 6242 return; 6243 } 6244 case Intrinsic::sadd_sat: { 6245 SDValue Op1 = getValue(I.getArgOperand(0)); 6246 SDValue Op2 = getValue(I.getArgOperand(1)); 6247 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6248 return; 6249 } 6250 case Intrinsic::uadd_sat: { 6251 SDValue Op1 = getValue(I.getArgOperand(0)); 6252 SDValue Op2 = getValue(I.getArgOperand(1)); 6253 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6254 return; 6255 } 6256 case Intrinsic::ssub_sat: { 6257 SDValue Op1 = getValue(I.getArgOperand(0)); 6258 SDValue Op2 = getValue(I.getArgOperand(1)); 6259 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6260 return; 6261 } 6262 case Intrinsic::usub_sat: { 6263 SDValue Op1 = getValue(I.getArgOperand(0)); 6264 SDValue Op2 = getValue(I.getArgOperand(1)); 6265 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6266 return; 6267 } 6268 case Intrinsic::sshl_sat: { 6269 SDValue Op1 = getValue(I.getArgOperand(0)); 6270 SDValue Op2 = getValue(I.getArgOperand(1)); 6271 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6272 return; 6273 } 6274 case Intrinsic::ushl_sat: { 6275 SDValue Op1 = getValue(I.getArgOperand(0)); 6276 SDValue Op2 = getValue(I.getArgOperand(1)); 6277 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6278 return; 6279 } 6280 case Intrinsic::smul_fix: 6281 case Intrinsic::umul_fix: 6282 case Intrinsic::smul_fix_sat: 6283 case Intrinsic::umul_fix_sat: { 6284 SDValue Op1 = getValue(I.getArgOperand(0)); 6285 SDValue Op2 = getValue(I.getArgOperand(1)); 6286 SDValue Op3 = getValue(I.getArgOperand(2)); 6287 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6288 Op1.getValueType(), Op1, Op2, Op3)); 6289 return; 6290 } 6291 case Intrinsic::sdiv_fix: 6292 case Intrinsic::udiv_fix: 6293 case Intrinsic::sdiv_fix_sat: 6294 case Intrinsic::udiv_fix_sat: { 6295 SDValue Op1 = getValue(I.getArgOperand(0)); 6296 SDValue Op2 = getValue(I.getArgOperand(1)); 6297 SDValue Op3 = getValue(I.getArgOperand(2)); 6298 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6299 Op1, Op2, Op3, DAG, TLI)); 6300 return; 6301 } 6302 case Intrinsic::smax: { 6303 SDValue Op1 = getValue(I.getArgOperand(0)); 6304 SDValue Op2 = getValue(I.getArgOperand(1)); 6305 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6306 return; 6307 } 6308 case Intrinsic::smin: { 6309 SDValue Op1 = getValue(I.getArgOperand(0)); 6310 SDValue Op2 = getValue(I.getArgOperand(1)); 6311 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6312 return; 6313 } 6314 case Intrinsic::umax: { 6315 SDValue Op1 = getValue(I.getArgOperand(0)); 6316 SDValue Op2 = getValue(I.getArgOperand(1)); 6317 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6318 return; 6319 } 6320 case Intrinsic::umin: { 6321 SDValue Op1 = getValue(I.getArgOperand(0)); 6322 SDValue Op2 = getValue(I.getArgOperand(1)); 6323 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6324 return; 6325 } 6326 case Intrinsic::abs: { 6327 // TODO: Preserve "int min is poison" arg in SDAG? 6328 SDValue Op1 = getValue(I.getArgOperand(0)); 6329 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6330 return; 6331 } 6332 case Intrinsic::stacksave: { 6333 SDValue Op = getRoot(); 6334 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6335 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6336 setValue(&I, Res); 6337 DAG.setRoot(Res.getValue(1)); 6338 return; 6339 } 6340 case Intrinsic::stackrestore: 6341 Res = getValue(I.getArgOperand(0)); 6342 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6343 return; 6344 case Intrinsic::get_dynamic_area_offset: { 6345 SDValue Op = getRoot(); 6346 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6347 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6348 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6349 // target. 6350 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6351 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6352 " intrinsic!"); 6353 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6354 Op); 6355 DAG.setRoot(Op); 6356 setValue(&I, Res); 6357 return; 6358 } 6359 case Intrinsic::stackguard: { 6360 MachineFunction &MF = DAG.getMachineFunction(); 6361 const Module &M = *MF.getFunction().getParent(); 6362 SDValue Chain = getRoot(); 6363 if (TLI.useLoadStackGuardNode()) { 6364 Res = getLoadStackGuard(DAG, sdl, Chain); 6365 } else { 6366 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6367 const Value *Global = TLI.getSDagStackGuard(M); 6368 Align Align = DL->getPrefTypeAlign(Global->getType()); 6369 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6370 MachinePointerInfo(Global, 0), Align, 6371 MachineMemOperand::MOVolatile); 6372 } 6373 if (TLI.useStackGuardXorFP()) 6374 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6375 DAG.setRoot(Chain); 6376 setValue(&I, Res); 6377 return; 6378 } 6379 case Intrinsic::stackprotector: { 6380 // Emit code into the DAG to store the stack guard onto the stack. 6381 MachineFunction &MF = DAG.getMachineFunction(); 6382 MachineFrameInfo &MFI = MF.getFrameInfo(); 6383 SDValue Src, Chain = getRoot(); 6384 6385 if (TLI.useLoadStackGuardNode()) 6386 Src = getLoadStackGuard(DAG, sdl, Chain); 6387 else 6388 Src = getValue(I.getArgOperand(0)); // The guard's value. 6389 6390 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6391 6392 int FI = FuncInfo.StaticAllocaMap[Slot]; 6393 MFI.setStackProtectorIndex(FI); 6394 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6395 6396 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6397 6398 // Store the stack protector onto the stack. 6399 Res = DAG.getStore( 6400 Chain, sdl, Src, FIN, 6401 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6402 MaybeAlign(), MachineMemOperand::MOVolatile); 6403 setValue(&I, Res); 6404 DAG.setRoot(Res); 6405 return; 6406 } 6407 case Intrinsic::objectsize: 6408 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6409 6410 case Intrinsic::is_constant: 6411 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6412 6413 case Intrinsic::annotation: 6414 case Intrinsic::ptr_annotation: 6415 case Intrinsic::launder_invariant_group: 6416 case Intrinsic::strip_invariant_group: 6417 // Drop the intrinsic, but forward the value 6418 setValue(&I, getValue(I.getOperand(0))); 6419 return; 6420 case Intrinsic::assume: 6421 case Intrinsic::var_annotation: 6422 case Intrinsic::sideeffect: 6423 // Discard annotate attributes, assumptions, and artificial side-effects. 6424 return; 6425 6426 case Intrinsic::codeview_annotation: { 6427 // Emit a label associated with this metadata. 6428 MachineFunction &MF = DAG.getMachineFunction(); 6429 MCSymbol *Label = 6430 MF.getMMI().getContext().createTempSymbol("annotation", true); 6431 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6432 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6433 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6434 DAG.setRoot(Res); 6435 return; 6436 } 6437 6438 case Intrinsic::init_trampoline: { 6439 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6440 6441 SDValue Ops[6]; 6442 Ops[0] = getRoot(); 6443 Ops[1] = getValue(I.getArgOperand(0)); 6444 Ops[2] = getValue(I.getArgOperand(1)); 6445 Ops[3] = getValue(I.getArgOperand(2)); 6446 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6447 Ops[5] = DAG.getSrcValue(F); 6448 6449 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6450 6451 DAG.setRoot(Res); 6452 return; 6453 } 6454 case Intrinsic::adjust_trampoline: 6455 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6456 TLI.getPointerTy(DAG.getDataLayout()), 6457 getValue(I.getArgOperand(0)))); 6458 return; 6459 case Intrinsic::gcroot: { 6460 assert(DAG.getMachineFunction().getFunction().hasGC() && 6461 "only valid in functions with gc specified, enforced by Verifier"); 6462 assert(GFI && "implied by previous"); 6463 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6464 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6465 6466 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6467 GFI->addStackRoot(FI->getIndex(), TypeMap); 6468 return; 6469 } 6470 case Intrinsic::gcread: 6471 case Intrinsic::gcwrite: 6472 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6473 case Intrinsic::flt_rounds: 6474 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6475 setValue(&I, Res); 6476 DAG.setRoot(Res.getValue(1)); 6477 return; 6478 6479 case Intrinsic::expect: 6480 // Just replace __builtin_expect(exp, c) with EXP. 6481 setValue(&I, getValue(I.getArgOperand(0))); 6482 return; 6483 6484 case Intrinsic::ubsantrap: 6485 case Intrinsic::debugtrap: 6486 case Intrinsic::trap: { 6487 StringRef TrapFuncName = 6488 I.getAttributes() 6489 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6490 .getValueAsString(); 6491 if (TrapFuncName.empty()) { 6492 switch (Intrinsic) { 6493 case Intrinsic::trap: 6494 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6495 break; 6496 case Intrinsic::debugtrap: 6497 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6498 break; 6499 case Intrinsic::ubsantrap: 6500 DAG.setRoot(DAG.getNode( 6501 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6502 DAG.getTargetConstant( 6503 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6504 MVT::i32))); 6505 break; 6506 default: llvm_unreachable("unknown trap intrinsic"); 6507 } 6508 return; 6509 } 6510 TargetLowering::ArgListTy Args; 6511 if (Intrinsic == Intrinsic::ubsantrap) { 6512 Args.push_back(TargetLoweringBase::ArgListEntry()); 6513 Args[0].Val = I.getArgOperand(0); 6514 Args[0].Node = getValue(Args[0].Val); 6515 Args[0].Ty = Args[0].Val->getType(); 6516 } 6517 6518 TargetLowering::CallLoweringInfo CLI(DAG); 6519 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6520 CallingConv::C, I.getType(), 6521 DAG.getExternalSymbol(TrapFuncName.data(), 6522 TLI.getPointerTy(DAG.getDataLayout())), 6523 std::move(Args)); 6524 6525 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6526 DAG.setRoot(Result.second); 6527 return; 6528 } 6529 6530 case Intrinsic::uadd_with_overflow: 6531 case Intrinsic::sadd_with_overflow: 6532 case Intrinsic::usub_with_overflow: 6533 case Intrinsic::ssub_with_overflow: 6534 case Intrinsic::umul_with_overflow: 6535 case Intrinsic::smul_with_overflow: { 6536 ISD::NodeType Op; 6537 switch (Intrinsic) { 6538 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6539 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6540 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6541 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6542 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6543 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6544 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6545 } 6546 SDValue Op1 = getValue(I.getArgOperand(0)); 6547 SDValue Op2 = getValue(I.getArgOperand(1)); 6548 6549 EVT ResultVT = Op1.getValueType(); 6550 EVT OverflowVT = MVT::i1; 6551 if (ResultVT.isVector()) 6552 OverflowVT = EVT::getVectorVT( 6553 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6554 6555 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6556 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6557 return; 6558 } 6559 case Intrinsic::prefetch: { 6560 SDValue Ops[5]; 6561 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6562 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6563 Ops[0] = DAG.getRoot(); 6564 Ops[1] = getValue(I.getArgOperand(0)); 6565 Ops[2] = getValue(I.getArgOperand(1)); 6566 Ops[3] = getValue(I.getArgOperand(2)); 6567 Ops[4] = getValue(I.getArgOperand(3)); 6568 SDValue Result = DAG.getMemIntrinsicNode( 6569 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6570 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6571 /* align */ None, Flags); 6572 6573 // Chain the prefetch in parallell with any pending loads, to stay out of 6574 // the way of later optimizations. 6575 PendingLoads.push_back(Result); 6576 Result = getRoot(); 6577 DAG.setRoot(Result); 6578 return; 6579 } 6580 case Intrinsic::lifetime_start: 6581 case Intrinsic::lifetime_end: { 6582 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6583 // Stack coloring is not enabled in O0, discard region information. 6584 if (TM.getOptLevel() == CodeGenOpt::None) 6585 return; 6586 6587 const int64_t ObjectSize = 6588 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6589 Value *const ObjectPtr = I.getArgOperand(1); 6590 SmallVector<const Value *, 4> Allocas; 6591 getUnderlyingObjects(ObjectPtr, Allocas); 6592 6593 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6594 E = Allocas.end(); Object != E; ++Object) { 6595 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6596 6597 // Could not find an Alloca. 6598 if (!LifetimeObject) 6599 continue; 6600 6601 // First check that the Alloca is static, otherwise it won't have a 6602 // valid frame index. 6603 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6604 if (SI == FuncInfo.StaticAllocaMap.end()) 6605 return; 6606 6607 const int FrameIndex = SI->second; 6608 int64_t Offset; 6609 if (GetPointerBaseWithConstantOffset( 6610 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6611 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6612 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6613 Offset); 6614 DAG.setRoot(Res); 6615 } 6616 return; 6617 } 6618 case Intrinsic::pseudoprobe: { 6619 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6620 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6621 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6622 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6623 DAG.setRoot(Res); 6624 return; 6625 } 6626 case Intrinsic::invariant_start: 6627 // Discard region information. 6628 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6629 return; 6630 case Intrinsic::invariant_end: 6631 // Discard region information. 6632 return; 6633 case Intrinsic::clear_cache: 6634 /// FunctionName may be null. 6635 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6636 lowerCallToExternalSymbol(I, FunctionName); 6637 return; 6638 case Intrinsic::donothing: 6639 // ignore 6640 return; 6641 case Intrinsic::experimental_stackmap: 6642 visitStackmap(I); 6643 return; 6644 case Intrinsic::experimental_patchpoint_void: 6645 case Intrinsic::experimental_patchpoint_i64: 6646 visitPatchpoint(I); 6647 return; 6648 case Intrinsic::experimental_gc_statepoint: 6649 LowerStatepoint(cast<GCStatepointInst>(I)); 6650 return; 6651 case Intrinsic::experimental_gc_result: 6652 visitGCResult(cast<GCResultInst>(I)); 6653 return; 6654 case Intrinsic::experimental_gc_relocate: 6655 visitGCRelocate(cast<GCRelocateInst>(I)); 6656 return; 6657 case Intrinsic::instrprof_increment: 6658 llvm_unreachable("instrprof failed to lower an increment"); 6659 case Intrinsic::instrprof_value_profile: 6660 llvm_unreachable("instrprof failed to lower a value profiling call"); 6661 case Intrinsic::localescape: { 6662 MachineFunction &MF = DAG.getMachineFunction(); 6663 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6664 6665 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6666 // is the same on all targets. 6667 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6668 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6669 if (isa<ConstantPointerNull>(Arg)) 6670 continue; // Skip null pointers. They represent a hole in index space. 6671 AllocaInst *Slot = cast<AllocaInst>(Arg); 6672 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6673 "can only escape static allocas"); 6674 int FI = FuncInfo.StaticAllocaMap[Slot]; 6675 MCSymbol *FrameAllocSym = 6676 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6677 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6678 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6679 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6680 .addSym(FrameAllocSym) 6681 .addFrameIndex(FI); 6682 } 6683 6684 return; 6685 } 6686 6687 case Intrinsic::localrecover: { 6688 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6689 MachineFunction &MF = DAG.getMachineFunction(); 6690 6691 // Get the symbol that defines the frame offset. 6692 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6693 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6694 unsigned IdxVal = 6695 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6696 MCSymbol *FrameAllocSym = 6697 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6698 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6699 6700 Value *FP = I.getArgOperand(1); 6701 SDValue FPVal = getValue(FP); 6702 EVT PtrVT = FPVal.getValueType(); 6703 6704 // Create a MCSymbol for the label to avoid any target lowering 6705 // that would make this PC relative. 6706 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6707 SDValue OffsetVal = 6708 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6709 6710 // Add the offset to the FP. 6711 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6712 setValue(&I, Add); 6713 6714 return; 6715 } 6716 6717 case Intrinsic::eh_exceptionpointer: 6718 case Intrinsic::eh_exceptioncode: { 6719 // Get the exception pointer vreg, copy from it, and resize it to fit. 6720 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6721 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6722 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6723 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6724 SDValue N = 6725 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6726 if (Intrinsic == Intrinsic::eh_exceptioncode) 6727 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6728 setValue(&I, N); 6729 return; 6730 } 6731 case Intrinsic::xray_customevent: { 6732 // Here we want to make sure that the intrinsic behaves as if it has a 6733 // specific calling convention, and only for x86_64. 6734 // FIXME: Support other platforms later. 6735 const auto &Triple = DAG.getTarget().getTargetTriple(); 6736 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6737 return; 6738 6739 SDLoc DL = getCurSDLoc(); 6740 SmallVector<SDValue, 8> Ops; 6741 6742 // We want to say that we always want the arguments in registers. 6743 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6744 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6745 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6746 SDValue Chain = getRoot(); 6747 Ops.push_back(LogEntryVal); 6748 Ops.push_back(StrSizeVal); 6749 Ops.push_back(Chain); 6750 6751 // We need to enforce the calling convention for the callsite, so that 6752 // argument ordering is enforced correctly, and that register allocation can 6753 // see that some registers may be assumed clobbered and have to preserve 6754 // them across calls to the intrinsic. 6755 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6756 DL, NodeTys, Ops); 6757 SDValue patchableNode = SDValue(MN, 0); 6758 DAG.setRoot(patchableNode); 6759 setValue(&I, patchableNode); 6760 return; 6761 } 6762 case Intrinsic::xray_typedevent: { 6763 // Here we want to make sure that the intrinsic behaves as if it has a 6764 // specific calling convention, and only for x86_64. 6765 // FIXME: Support other platforms later. 6766 const auto &Triple = DAG.getTarget().getTargetTriple(); 6767 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6768 return; 6769 6770 SDLoc DL = getCurSDLoc(); 6771 SmallVector<SDValue, 8> Ops; 6772 6773 // We want to say that we always want the arguments in registers. 6774 // It's unclear to me how manipulating the selection DAG here forces callers 6775 // to provide arguments in registers instead of on the stack. 6776 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6777 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6778 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6779 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6780 SDValue Chain = getRoot(); 6781 Ops.push_back(LogTypeId); 6782 Ops.push_back(LogEntryVal); 6783 Ops.push_back(StrSizeVal); 6784 Ops.push_back(Chain); 6785 6786 // We need to enforce the calling convention for the callsite, so that 6787 // argument ordering is enforced correctly, and that register allocation can 6788 // see that some registers may be assumed clobbered and have to preserve 6789 // them across calls to the intrinsic. 6790 MachineSDNode *MN = DAG.getMachineNode( 6791 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6792 SDValue patchableNode = SDValue(MN, 0); 6793 DAG.setRoot(patchableNode); 6794 setValue(&I, patchableNode); 6795 return; 6796 } 6797 case Intrinsic::experimental_deoptimize: 6798 LowerDeoptimizeCall(&I); 6799 return; 6800 6801 case Intrinsic::vector_reduce_fadd: 6802 case Intrinsic::vector_reduce_fmul: 6803 case Intrinsic::vector_reduce_add: 6804 case Intrinsic::vector_reduce_mul: 6805 case Intrinsic::vector_reduce_and: 6806 case Intrinsic::vector_reduce_or: 6807 case Intrinsic::vector_reduce_xor: 6808 case Intrinsic::vector_reduce_smax: 6809 case Intrinsic::vector_reduce_smin: 6810 case Intrinsic::vector_reduce_umax: 6811 case Intrinsic::vector_reduce_umin: 6812 case Intrinsic::vector_reduce_fmax: 6813 case Intrinsic::vector_reduce_fmin: 6814 visitVectorReduce(I, Intrinsic); 6815 return; 6816 6817 case Intrinsic::icall_branch_funnel: { 6818 SmallVector<SDValue, 16> Ops; 6819 Ops.push_back(getValue(I.getArgOperand(0))); 6820 6821 int64_t Offset; 6822 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6823 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6824 if (!Base) 6825 report_fatal_error( 6826 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6827 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6828 6829 struct BranchFunnelTarget { 6830 int64_t Offset; 6831 SDValue Target; 6832 }; 6833 SmallVector<BranchFunnelTarget, 8> Targets; 6834 6835 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6836 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6837 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6838 if (ElemBase != Base) 6839 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6840 "to the same GlobalValue"); 6841 6842 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6843 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6844 if (!GA) 6845 report_fatal_error( 6846 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6847 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6848 GA->getGlobal(), getCurSDLoc(), 6849 Val.getValueType(), GA->getOffset())}); 6850 } 6851 llvm::sort(Targets, 6852 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6853 return T1.Offset < T2.Offset; 6854 }); 6855 6856 for (auto &T : Targets) { 6857 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6858 Ops.push_back(T.Target); 6859 } 6860 6861 Ops.push_back(DAG.getRoot()); // Chain 6862 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6863 getCurSDLoc(), MVT::Other, Ops), 6864 0); 6865 DAG.setRoot(N); 6866 setValue(&I, N); 6867 HasTailCall = true; 6868 return; 6869 } 6870 6871 case Intrinsic::wasm_landingpad_index: 6872 // Information this intrinsic contained has been transferred to 6873 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6874 // delete it now. 6875 return; 6876 6877 case Intrinsic::aarch64_settag: 6878 case Intrinsic::aarch64_settag_zero: { 6879 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6880 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6881 SDValue Val = TSI.EmitTargetCodeForSetTag( 6882 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6883 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6884 ZeroMemory); 6885 DAG.setRoot(Val); 6886 setValue(&I, Val); 6887 return; 6888 } 6889 case Intrinsic::ptrmask: { 6890 SDValue Ptr = getValue(I.getOperand(0)); 6891 SDValue Const = getValue(I.getOperand(1)); 6892 6893 EVT PtrVT = Ptr.getValueType(); 6894 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6895 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6896 return; 6897 } 6898 case Intrinsic::get_active_lane_mask: { 6899 auto DL = getCurSDLoc(); 6900 SDValue Index = getValue(I.getOperand(0)); 6901 SDValue TripCount = getValue(I.getOperand(1)); 6902 Type *ElementTy = I.getOperand(0)->getType(); 6903 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6904 unsigned VecWidth = VT.getVectorNumElements(); 6905 6906 SmallVector<SDValue, 16> OpsTripCount; 6907 SmallVector<SDValue, 16> OpsIndex; 6908 SmallVector<SDValue, 16> OpsStepConstants; 6909 for (unsigned i = 0; i < VecWidth; i++) { 6910 OpsTripCount.push_back(TripCount); 6911 OpsIndex.push_back(Index); 6912 OpsStepConstants.push_back( 6913 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 6914 } 6915 6916 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 6917 6918 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 6919 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 6920 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 6921 SDValue VectorInduction = DAG.getNode( 6922 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 6923 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 6924 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 6925 VectorTripCount, ISD::CondCode::SETULT); 6926 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 6927 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 6928 SetCC)); 6929 return; 6930 } 6931 } 6932 } 6933 6934 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6935 const ConstrainedFPIntrinsic &FPI) { 6936 SDLoc sdl = getCurSDLoc(); 6937 6938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6939 SmallVector<EVT, 4> ValueVTs; 6940 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6941 ValueVTs.push_back(MVT::Other); // Out chain 6942 6943 // We do not need to serialize constrained FP intrinsics against 6944 // each other or against (nonvolatile) loads, so they can be 6945 // chained like loads. 6946 SDValue Chain = DAG.getRoot(); 6947 SmallVector<SDValue, 4> Opers; 6948 Opers.push_back(Chain); 6949 if (FPI.isUnaryOp()) { 6950 Opers.push_back(getValue(FPI.getArgOperand(0))); 6951 } else if (FPI.isTernaryOp()) { 6952 Opers.push_back(getValue(FPI.getArgOperand(0))); 6953 Opers.push_back(getValue(FPI.getArgOperand(1))); 6954 Opers.push_back(getValue(FPI.getArgOperand(2))); 6955 } else { 6956 Opers.push_back(getValue(FPI.getArgOperand(0))); 6957 Opers.push_back(getValue(FPI.getArgOperand(1))); 6958 } 6959 6960 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6961 assert(Result.getNode()->getNumValues() == 2); 6962 6963 // Push node to the appropriate list so that future instructions can be 6964 // chained up correctly. 6965 SDValue OutChain = Result.getValue(1); 6966 switch (EB) { 6967 case fp::ExceptionBehavior::ebIgnore: 6968 // The only reason why ebIgnore nodes still need to be chained is that 6969 // they might depend on the current rounding mode, and therefore must 6970 // not be moved across instruction that may change that mode. 6971 LLVM_FALLTHROUGH; 6972 case fp::ExceptionBehavior::ebMayTrap: 6973 // These must not be moved across calls or instructions that may change 6974 // floating-point exception masks. 6975 PendingConstrainedFP.push_back(OutChain); 6976 break; 6977 case fp::ExceptionBehavior::ebStrict: 6978 // These must not be moved across calls or instructions that may change 6979 // floating-point exception masks or read floating-point exception flags. 6980 // In addition, they cannot be optimized out even if unused. 6981 PendingConstrainedFPStrict.push_back(OutChain); 6982 break; 6983 } 6984 }; 6985 6986 SDVTList VTs = DAG.getVTList(ValueVTs); 6987 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6988 6989 SDNodeFlags Flags; 6990 if (EB == fp::ExceptionBehavior::ebIgnore) 6991 Flags.setNoFPExcept(true); 6992 6993 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6994 Flags.copyFMF(*FPOp); 6995 6996 unsigned Opcode; 6997 switch (FPI.getIntrinsicID()) { 6998 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6999 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7000 case Intrinsic::INTRINSIC: \ 7001 Opcode = ISD::STRICT_##DAGN; \ 7002 break; 7003 #include "llvm/IR/ConstrainedOps.def" 7004 case Intrinsic::experimental_constrained_fmuladd: { 7005 Opcode = ISD::STRICT_FMA; 7006 // Break fmuladd into fmul and fadd. 7007 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7008 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7009 ValueVTs[0])) { 7010 Opers.pop_back(); 7011 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7012 pushOutChain(Mul, EB); 7013 Opcode = ISD::STRICT_FADD; 7014 Opers.clear(); 7015 Opers.push_back(Mul.getValue(1)); 7016 Opers.push_back(Mul.getValue(0)); 7017 Opers.push_back(getValue(FPI.getArgOperand(2))); 7018 } 7019 break; 7020 } 7021 } 7022 7023 // A few strict DAG nodes carry additional operands that are not 7024 // set up by the default code above. 7025 switch (Opcode) { 7026 default: break; 7027 case ISD::STRICT_FP_ROUND: 7028 Opers.push_back( 7029 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7030 break; 7031 case ISD::STRICT_FSETCC: 7032 case ISD::STRICT_FSETCCS: { 7033 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7034 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7035 break; 7036 } 7037 } 7038 7039 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7040 pushOutChain(Result, EB); 7041 7042 SDValue FPResult = Result.getValue(0); 7043 setValue(&FPI, FPResult); 7044 } 7045 7046 std::pair<SDValue, SDValue> 7047 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7048 const BasicBlock *EHPadBB) { 7049 MachineFunction &MF = DAG.getMachineFunction(); 7050 MachineModuleInfo &MMI = MF.getMMI(); 7051 MCSymbol *BeginLabel = nullptr; 7052 7053 if (EHPadBB) { 7054 // Insert a label before the invoke call to mark the try range. This can be 7055 // used to detect deletion of the invoke via the MachineModuleInfo. 7056 BeginLabel = MMI.getContext().createTempSymbol(); 7057 7058 // For SjLj, keep track of which landing pads go with which invokes 7059 // so as to maintain the ordering of pads in the LSDA. 7060 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7061 if (CallSiteIndex) { 7062 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7063 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7064 7065 // Now that the call site is handled, stop tracking it. 7066 MMI.setCurrentCallSite(0); 7067 } 7068 7069 // Both PendingLoads and PendingExports must be flushed here; 7070 // this call might not return. 7071 (void)getRoot(); 7072 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7073 7074 CLI.setChain(getRoot()); 7075 } 7076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7077 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7078 7079 assert((CLI.IsTailCall || Result.second.getNode()) && 7080 "Non-null chain expected with non-tail call!"); 7081 assert((Result.second.getNode() || !Result.first.getNode()) && 7082 "Null value expected with tail call!"); 7083 7084 if (!Result.second.getNode()) { 7085 // As a special case, a null chain means that a tail call has been emitted 7086 // and the DAG root is already updated. 7087 HasTailCall = true; 7088 7089 // Since there's no actual continuation from this block, nothing can be 7090 // relying on us setting vregs for them. 7091 PendingExports.clear(); 7092 } else { 7093 DAG.setRoot(Result.second); 7094 } 7095 7096 if (EHPadBB) { 7097 // Insert a label at the end of the invoke call to mark the try range. This 7098 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7099 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7100 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7101 7102 // Inform MachineModuleInfo of range. 7103 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7104 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7105 // actually use outlined funclets and their LSDA info style. 7106 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7107 assert(CLI.CB); 7108 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7109 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7110 } else if (!isScopedEHPersonality(Pers)) { 7111 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7112 } 7113 } 7114 7115 return Result; 7116 } 7117 7118 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7119 bool isTailCall, 7120 const BasicBlock *EHPadBB) { 7121 auto &DL = DAG.getDataLayout(); 7122 FunctionType *FTy = CB.getFunctionType(); 7123 Type *RetTy = CB.getType(); 7124 7125 TargetLowering::ArgListTy Args; 7126 Args.reserve(CB.arg_size()); 7127 7128 const Value *SwiftErrorVal = nullptr; 7129 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7130 7131 if (isTailCall) { 7132 // Avoid emitting tail calls in functions with the disable-tail-calls 7133 // attribute. 7134 auto *Caller = CB.getParent()->getParent(); 7135 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7136 "true") 7137 isTailCall = false; 7138 7139 // We can't tail call inside a function with a swifterror argument. Lowering 7140 // does not support this yet. It would have to move into the swifterror 7141 // register before the call. 7142 if (TLI.supportSwiftError() && 7143 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7144 isTailCall = false; 7145 } 7146 7147 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7148 TargetLowering::ArgListEntry Entry; 7149 const Value *V = *I; 7150 7151 // Skip empty types 7152 if (V->getType()->isEmptyTy()) 7153 continue; 7154 7155 SDValue ArgNode = getValue(V); 7156 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7157 7158 Entry.setAttributes(&CB, I - CB.arg_begin()); 7159 7160 // Use swifterror virtual register as input to the call. 7161 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7162 SwiftErrorVal = V; 7163 // We find the virtual register for the actual swifterror argument. 7164 // Instead of using the Value, we use the virtual register instead. 7165 Entry.Node = 7166 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7167 EVT(TLI.getPointerTy(DL))); 7168 } 7169 7170 Args.push_back(Entry); 7171 7172 // If we have an explicit sret argument that is an Instruction, (i.e., it 7173 // might point to function-local memory), we can't meaningfully tail-call. 7174 if (Entry.IsSRet && isa<Instruction>(V)) 7175 isTailCall = false; 7176 } 7177 7178 // If call site has a cfguardtarget operand bundle, create and add an 7179 // additional ArgListEntry. 7180 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7181 TargetLowering::ArgListEntry Entry; 7182 Value *V = Bundle->Inputs[0]; 7183 SDValue ArgNode = getValue(V); 7184 Entry.Node = ArgNode; 7185 Entry.Ty = V->getType(); 7186 Entry.IsCFGuardTarget = true; 7187 Args.push_back(Entry); 7188 } 7189 7190 // Check if target-independent constraints permit a tail call here. 7191 // Target-dependent constraints are checked within TLI->LowerCallTo. 7192 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7193 isTailCall = false; 7194 7195 // Disable tail calls if there is an swifterror argument. Targets have not 7196 // been updated to support tail calls. 7197 if (TLI.supportSwiftError() && SwiftErrorVal) 7198 isTailCall = false; 7199 7200 TargetLowering::CallLoweringInfo CLI(DAG); 7201 CLI.setDebugLoc(getCurSDLoc()) 7202 .setChain(getRoot()) 7203 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7204 .setTailCall(isTailCall) 7205 .setConvergent(CB.isConvergent()) 7206 .setIsPreallocated( 7207 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7208 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7209 7210 if (Result.first.getNode()) { 7211 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7212 setValue(&CB, Result.first); 7213 } 7214 7215 // The last element of CLI.InVals has the SDValue for swifterror return. 7216 // Here we copy it to a virtual register and update SwiftErrorMap for 7217 // book-keeping. 7218 if (SwiftErrorVal && TLI.supportSwiftError()) { 7219 // Get the last element of InVals. 7220 SDValue Src = CLI.InVals.back(); 7221 Register VReg = 7222 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7223 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7224 DAG.setRoot(CopyNode); 7225 } 7226 } 7227 7228 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7229 SelectionDAGBuilder &Builder) { 7230 // Check to see if this load can be trivially constant folded, e.g. if the 7231 // input is from a string literal. 7232 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7233 // Cast pointer to the type we really want to load. 7234 Type *LoadTy = 7235 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7236 if (LoadVT.isVector()) 7237 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7238 7239 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7240 PointerType::getUnqual(LoadTy)); 7241 7242 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7243 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7244 return Builder.getValue(LoadCst); 7245 } 7246 7247 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7248 // still constant memory, the input chain can be the entry node. 7249 SDValue Root; 7250 bool ConstantMemory = false; 7251 7252 // Do not serialize (non-volatile) loads of constant memory with anything. 7253 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7254 Root = Builder.DAG.getEntryNode(); 7255 ConstantMemory = true; 7256 } else { 7257 // Do not serialize non-volatile loads against each other. 7258 Root = Builder.DAG.getRoot(); 7259 } 7260 7261 SDValue Ptr = Builder.getValue(PtrVal); 7262 SDValue LoadVal = 7263 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7264 MachinePointerInfo(PtrVal), Align(1)); 7265 7266 if (!ConstantMemory) 7267 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7268 return LoadVal; 7269 } 7270 7271 /// Record the value for an instruction that produces an integer result, 7272 /// converting the type where necessary. 7273 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7274 SDValue Value, 7275 bool IsSigned) { 7276 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7277 I.getType(), true); 7278 if (IsSigned) 7279 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7280 else 7281 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7282 setValue(&I, Value); 7283 } 7284 7285 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7286 /// true and lower it. Otherwise return false, and it will be lowered like a 7287 /// normal call. 7288 /// The caller already checked that \p I calls the appropriate LibFunc with a 7289 /// correct prototype. 7290 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7291 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7292 const Value *Size = I.getArgOperand(2); 7293 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7294 if (CSize && CSize->getZExtValue() == 0) { 7295 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7296 I.getType(), true); 7297 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7298 return true; 7299 } 7300 7301 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7302 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7303 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7304 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7305 if (Res.first.getNode()) { 7306 processIntegerCallValue(I, Res.first, true); 7307 PendingLoads.push_back(Res.second); 7308 return true; 7309 } 7310 7311 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7312 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7313 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7314 return false; 7315 7316 // If the target has a fast compare for the given size, it will return a 7317 // preferred load type for that size. Require that the load VT is legal and 7318 // that the target supports unaligned loads of that type. Otherwise, return 7319 // INVALID. 7320 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7322 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7323 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7324 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7325 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7326 // TODO: Check alignment of src and dest ptrs. 7327 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7328 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7329 if (!TLI.isTypeLegal(LVT) || 7330 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7331 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7332 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7333 } 7334 7335 return LVT; 7336 }; 7337 7338 // This turns into unaligned loads. We only do this if the target natively 7339 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7340 // we'll only produce a small number of byte loads. 7341 MVT LoadVT; 7342 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7343 switch (NumBitsToCompare) { 7344 default: 7345 return false; 7346 case 16: 7347 LoadVT = MVT::i16; 7348 break; 7349 case 32: 7350 LoadVT = MVT::i32; 7351 break; 7352 case 64: 7353 case 128: 7354 case 256: 7355 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7356 break; 7357 } 7358 7359 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7360 return false; 7361 7362 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7363 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7364 7365 // Bitcast to a wide integer type if the loads are vectors. 7366 if (LoadVT.isVector()) { 7367 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7368 LoadL = DAG.getBitcast(CmpVT, LoadL); 7369 LoadR = DAG.getBitcast(CmpVT, LoadR); 7370 } 7371 7372 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7373 processIntegerCallValue(I, Cmp, false); 7374 return true; 7375 } 7376 7377 /// See if we can lower a memchr call into an optimized form. If so, return 7378 /// true and lower it. Otherwise return false, and it will be lowered like a 7379 /// normal call. 7380 /// The caller already checked that \p I calls the appropriate LibFunc with a 7381 /// correct prototype. 7382 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7383 const Value *Src = I.getArgOperand(0); 7384 const Value *Char = I.getArgOperand(1); 7385 const Value *Length = I.getArgOperand(2); 7386 7387 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7388 std::pair<SDValue, SDValue> Res = 7389 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7390 getValue(Src), getValue(Char), getValue(Length), 7391 MachinePointerInfo(Src)); 7392 if (Res.first.getNode()) { 7393 setValue(&I, Res.first); 7394 PendingLoads.push_back(Res.second); 7395 return true; 7396 } 7397 7398 return false; 7399 } 7400 7401 /// See if we can lower a mempcpy call into an optimized form. If so, return 7402 /// true and lower it. Otherwise return false, and it will be lowered like a 7403 /// normal call. 7404 /// The caller already checked that \p I calls the appropriate LibFunc with a 7405 /// correct prototype. 7406 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7407 SDValue Dst = getValue(I.getArgOperand(0)); 7408 SDValue Src = getValue(I.getArgOperand(1)); 7409 SDValue Size = getValue(I.getArgOperand(2)); 7410 7411 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7412 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7413 // DAG::getMemcpy needs Alignment to be defined. 7414 Align Alignment = std::min(DstAlign, SrcAlign); 7415 7416 bool isVol = false; 7417 SDLoc sdl = getCurSDLoc(); 7418 7419 // In the mempcpy context we need to pass in a false value for isTailCall 7420 // because the return pointer needs to be adjusted by the size of 7421 // the copied memory. 7422 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7423 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7424 /*isTailCall=*/false, 7425 MachinePointerInfo(I.getArgOperand(0)), 7426 MachinePointerInfo(I.getArgOperand(1))); 7427 assert(MC.getNode() != nullptr && 7428 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7429 DAG.setRoot(MC); 7430 7431 // Check if Size needs to be truncated or extended. 7432 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7433 7434 // Adjust return pointer to point just past the last dst byte. 7435 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7436 Dst, Size); 7437 setValue(&I, DstPlusSize); 7438 return true; 7439 } 7440 7441 /// See if we can lower a strcpy call into an optimized form. If so, return 7442 /// true and lower it, otherwise return false and it will be lowered like a 7443 /// normal call. 7444 /// The caller already checked that \p I calls the appropriate LibFunc with a 7445 /// correct prototype. 7446 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7447 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7448 7449 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7450 std::pair<SDValue, SDValue> Res = 7451 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7452 getValue(Arg0), getValue(Arg1), 7453 MachinePointerInfo(Arg0), 7454 MachinePointerInfo(Arg1), isStpcpy); 7455 if (Res.first.getNode()) { 7456 setValue(&I, Res.first); 7457 DAG.setRoot(Res.second); 7458 return true; 7459 } 7460 7461 return false; 7462 } 7463 7464 /// See if we can lower a strcmp call into an optimized form. If so, return 7465 /// true and lower it, otherwise return false and it will be lowered like a 7466 /// normal call. 7467 /// The caller already checked that \p I calls the appropriate LibFunc with a 7468 /// correct prototype. 7469 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7470 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7471 7472 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7473 std::pair<SDValue, SDValue> Res = 7474 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7475 getValue(Arg0), getValue(Arg1), 7476 MachinePointerInfo(Arg0), 7477 MachinePointerInfo(Arg1)); 7478 if (Res.first.getNode()) { 7479 processIntegerCallValue(I, Res.first, true); 7480 PendingLoads.push_back(Res.second); 7481 return true; 7482 } 7483 7484 return false; 7485 } 7486 7487 /// See if we can lower a strlen call into an optimized form. If so, return 7488 /// true and lower it, otherwise return false and it will be lowered like a 7489 /// normal call. 7490 /// The caller already checked that \p I calls the appropriate LibFunc with a 7491 /// correct prototype. 7492 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7493 const Value *Arg0 = I.getArgOperand(0); 7494 7495 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7496 std::pair<SDValue, SDValue> Res = 7497 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7498 getValue(Arg0), MachinePointerInfo(Arg0)); 7499 if (Res.first.getNode()) { 7500 processIntegerCallValue(I, Res.first, false); 7501 PendingLoads.push_back(Res.second); 7502 return true; 7503 } 7504 7505 return false; 7506 } 7507 7508 /// See if we can lower a strnlen call into an optimized form. If so, return 7509 /// true and lower it, otherwise return false and it will be lowered like a 7510 /// normal call. 7511 /// The caller already checked that \p I calls the appropriate LibFunc with a 7512 /// correct prototype. 7513 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7514 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7515 7516 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7517 std::pair<SDValue, SDValue> Res = 7518 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7519 getValue(Arg0), getValue(Arg1), 7520 MachinePointerInfo(Arg0)); 7521 if (Res.first.getNode()) { 7522 processIntegerCallValue(I, Res.first, false); 7523 PendingLoads.push_back(Res.second); 7524 return true; 7525 } 7526 7527 return false; 7528 } 7529 7530 /// See if we can lower a unary floating-point operation into an SDNode with 7531 /// the specified Opcode. If so, return true and lower it, otherwise return 7532 /// false and it will be lowered like a normal call. 7533 /// The caller already checked that \p I calls the appropriate LibFunc with a 7534 /// correct prototype. 7535 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7536 unsigned Opcode) { 7537 // We already checked this call's prototype; verify it doesn't modify errno. 7538 if (!I.onlyReadsMemory()) 7539 return false; 7540 7541 SDNodeFlags Flags; 7542 Flags.copyFMF(cast<FPMathOperator>(I)); 7543 7544 SDValue Tmp = getValue(I.getArgOperand(0)); 7545 setValue(&I, 7546 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7547 return true; 7548 } 7549 7550 /// See if we can lower a binary floating-point operation into an SDNode with 7551 /// the specified Opcode. If so, return true and lower it. Otherwise return 7552 /// false, and it will be lowered like a normal call. 7553 /// The caller already checked that \p I calls the appropriate LibFunc with a 7554 /// correct prototype. 7555 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7556 unsigned Opcode) { 7557 // We already checked this call's prototype; verify it doesn't modify errno. 7558 if (!I.onlyReadsMemory()) 7559 return false; 7560 7561 SDNodeFlags Flags; 7562 Flags.copyFMF(cast<FPMathOperator>(I)); 7563 7564 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7565 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7566 EVT VT = Tmp0.getValueType(); 7567 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 7568 return true; 7569 } 7570 7571 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7572 // Handle inline assembly differently. 7573 if (I.isInlineAsm()) { 7574 visitInlineAsm(I); 7575 return; 7576 } 7577 7578 if (Function *F = I.getCalledFunction()) { 7579 if (F->isDeclaration()) { 7580 // Is this an LLVM intrinsic or a target-specific intrinsic? 7581 unsigned IID = F->getIntrinsicID(); 7582 if (!IID) 7583 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7584 IID = II->getIntrinsicID(F); 7585 7586 if (IID) { 7587 visitIntrinsicCall(I, IID); 7588 return; 7589 } 7590 } 7591 7592 // Check for well-known libc/libm calls. If the function is internal, it 7593 // can't be a library call. Don't do the check if marked as nobuiltin for 7594 // some reason or the call site requires strict floating point semantics. 7595 LibFunc Func; 7596 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7597 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7598 LibInfo->hasOptimizedCodeGen(Func)) { 7599 switch (Func) { 7600 default: break; 7601 case LibFunc_bcmp: 7602 if (visitMemCmpBCmpCall(I)) 7603 return; 7604 break; 7605 case LibFunc_copysign: 7606 case LibFunc_copysignf: 7607 case LibFunc_copysignl: 7608 // We already checked this call's prototype; verify it doesn't modify 7609 // errno. 7610 if (I.onlyReadsMemory()) { 7611 SDValue LHS = getValue(I.getArgOperand(0)); 7612 SDValue RHS = getValue(I.getArgOperand(1)); 7613 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7614 LHS.getValueType(), LHS, RHS)); 7615 return; 7616 } 7617 break; 7618 case LibFunc_fabs: 7619 case LibFunc_fabsf: 7620 case LibFunc_fabsl: 7621 if (visitUnaryFloatCall(I, ISD::FABS)) 7622 return; 7623 break; 7624 case LibFunc_fmin: 7625 case LibFunc_fminf: 7626 case LibFunc_fminl: 7627 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7628 return; 7629 break; 7630 case LibFunc_fmax: 7631 case LibFunc_fmaxf: 7632 case LibFunc_fmaxl: 7633 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7634 return; 7635 break; 7636 case LibFunc_sin: 7637 case LibFunc_sinf: 7638 case LibFunc_sinl: 7639 if (visitUnaryFloatCall(I, ISD::FSIN)) 7640 return; 7641 break; 7642 case LibFunc_cos: 7643 case LibFunc_cosf: 7644 case LibFunc_cosl: 7645 if (visitUnaryFloatCall(I, ISD::FCOS)) 7646 return; 7647 break; 7648 case LibFunc_sqrt: 7649 case LibFunc_sqrtf: 7650 case LibFunc_sqrtl: 7651 case LibFunc_sqrt_finite: 7652 case LibFunc_sqrtf_finite: 7653 case LibFunc_sqrtl_finite: 7654 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7655 return; 7656 break; 7657 case LibFunc_floor: 7658 case LibFunc_floorf: 7659 case LibFunc_floorl: 7660 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7661 return; 7662 break; 7663 case LibFunc_nearbyint: 7664 case LibFunc_nearbyintf: 7665 case LibFunc_nearbyintl: 7666 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7667 return; 7668 break; 7669 case LibFunc_ceil: 7670 case LibFunc_ceilf: 7671 case LibFunc_ceill: 7672 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7673 return; 7674 break; 7675 case LibFunc_rint: 7676 case LibFunc_rintf: 7677 case LibFunc_rintl: 7678 if (visitUnaryFloatCall(I, ISD::FRINT)) 7679 return; 7680 break; 7681 case LibFunc_round: 7682 case LibFunc_roundf: 7683 case LibFunc_roundl: 7684 if (visitUnaryFloatCall(I, ISD::FROUND)) 7685 return; 7686 break; 7687 case LibFunc_trunc: 7688 case LibFunc_truncf: 7689 case LibFunc_truncl: 7690 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7691 return; 7692 break; 7693 case LibFunc_log2: 7694 case LibFunc_log2f: 7695 case LibFunc_log2l: 7696 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7697 return; 7698 break; 7699 case LibFunc_exp2: 7700 case LibFunc_exp2f: 7701 case LibFunc_exp2l: 7702 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7703 return; 7704 break; 7705 case LibFunc_memcmp: 7706 if (visitMemCmpBCmpCall(I)) 7707 return; 7708 break; 7709 case LibFunc_mempcpy: 7710 if (visitMemPCpyCall(I)) 7711 return; 7712 break; 7713 case LibFunc_memchr: 7714 if (visitMemChrCall(I)) 7715 return; 7716 break; 7717 case LibFunc_strcpy: 7718 if (visitStrCpyCall(I, false)) 7719 return; 7720 break; 7721 case LibFunc_stpcpy: 7722 if (visitStrCpyCall(I, true)) 7723 return; 7724 break; 7725 case LibFunc_strcmp: 7726 if (visitStrCmpCall(I)) 7727 return; 7728 break; 7729 case LibFunc_strlen: 7730 if (visitStrLenCall(I)) 7731 return; 7732 break; 7733 case LibFunc_strnlen: 7734 if (visitStrNLenCall(I)) 7735 return; 7736 break; 7737 } 7738 } 7739 } 7740 7741 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7742 // have to do anything here to lower funclet bundles. 7743 // CFGuardTarget bundles are lowered in LowerCallTo. 7744 assert(!I.hasOperandBundlesOtherThan( 7745 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7746 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7747 "Cannot lower calls with arbitrary operand bundles!"); 7748 7749 SDValue Callee = getValue(I.getCalledOperand()); 7750 7751 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7752 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7753 else 7754 // Check if we can potentially perform a tail call. More detailed checking 7755 // is be done within LowerCallTo, after more information about the call is 7756 // known. 7757 LowerCallTo(I, Callee, I.isTailCall()); 7758 } 7759 7760 namespace { 7761 7762 /// AsmOperandInfo - This contains information for each constraint that we are 7763 /// lowering. 7764 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7765 public: 7766 /// CallOperand - If this is the result output operand or a clobber 7767 /// this is null, otherwise it is the incoming operand to the CallInst. 7768 /// This gets modified as the asm is processed. 7769 SDValue CallOperand; 7770 7771 /// AssignedRegs - If this is a register or register class operand, this 7772 /// contains the set of register corresponding to the operand. 7773 RegsForValue AssignedRegs; 7774 7775 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7776 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7777 } 7778 7779 /// Whether or not this operand accesses memory 7780 bool hasMemory(const TargetLowering &TLI) const { 7781 // Indirect operand accesses access memory. 7782 if (isIndirect) 7783 return true; 7784 7785 for (const auto &Code : Codes) 7786 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7787 return true; 7788 7789 return false; 7790 } 7791 7792 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7793 /// corresponds to. If there is no Value* for this operand, it returns 7794 /// MVT::Other. 7795 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7796 const DataLayout &DL) const { 7797 if (!CallOperandVal) return MVT::Other; 7798 7799 if (isa<BasicBlock>(CallOperandVal)) 7800 return TLI.getProgramPointerTy(DL); 7801 7802 llvm::Type *OpTy = CallOperandVal->getType(); 7803 7804 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7805 // If this is an indirect operand, the operand is a pointer to the 7806 // accessed type. 7807 if (isIndirect) { 7808 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7809 if (!PtrTy) 7810 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7811 OpTy = PtrTy->getElementType(); 7812 } 7813 7814 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7815 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7816 if (STy->getNumElements() == 1) 7817 OpTy = STy->getElementType(0); 7818 7819 // If OpTy is not a single value, it may be a struct/union that we 7820 // can tile with integers. 7821 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7822 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7823 switch (BitSize) { 7824 default: break; 7825 case 1: 7826 case 8: 7827 case 16: 7828 case 32: 7829 case 64: 7830 case 128: 7831 OpTy = IntegerType::get(Context, BitSize); 7832 break; 7833 } 7834 } 7835 7836 return TLI.getValueType(DL, OpTy, true); 7837 } 7838 }; 7839 7840 7841 } // end anonymous namespace 7842 7843 /// Make sure that the output operand \p OpInfo and its corresponding input 7844 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7845 /// out). 7846 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7847 SDISelAsmOperandInfo &MatchingOpInfo, 7848 SelectionDAG &DAG) { 7849 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7850 return; 7851 7852 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7853 const auto &TLI = DAG.getTargetLoweringInfo(); 7854 7855 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7856 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7857 OpInfo.ConstraintVT); 7858 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7859 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7860 MatchingOpInfo.ConstraintVT); 7861 if ((OpInfo.ConstraintVT.isInteger() != 7862 MatchingOpInfo.ConstraintVT.isInteger()) || 7863 (MatchRC.second != InputRC.second)) { 7864 // FIXME: error out in a more elegant fashion 7865 report_fatal_error("Unsupported asm: input constraint" 7866 " with a matching output constraint of" 7867 " incompatible type!"); 7868 } 7869 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7870 } 7871 7872 /// Get a direct memory input to behave well as an indirect operand. 7873 /// This may introduce stores, hence the need for a \p Chain. 7874 /// \return The (possibly updated) chain. 7875 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7876 SDISelAsmOperandInfo &OpInfo, 7877 SelectionDAG &DAG) { 7878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7879 7880 // If we don't have an indirect input, put it in the constpool if we can, 7881 // otherwise spill it to a stack slot. 7882 // TODO: This isn't quite right. We need to handle these according to 7883 // the addressing mode that the constraint wants. Also, this may take 7884 // an additional register for the computation and we don't want that 7885 // either. 7886 7887 // If the operand is a float, integer, or vector constant, spill to a 7888 // constant pool entry to get its address. 7889 const Value *OpVal = OpInfo.CallOperandVal; 7890 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7891 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7892 OpInfo.CallOperand = DAG.getConstantPool( 7893 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7894 return Chain; 7895 } 7896 7897 // Otherwise, create a stack slot and emit a store to it before the asm. 7898 Type *Ty = OpVal->getType(); 7899 auto &DL = DAG.getDataLayout(); 7900 uint64_t TySize = DL.getTypeAllocSize(Ty); 7901 MachineFunction &MF = DAG.getMachineFunction(); 7902 int SSFI = MF.getFrameInfo().CreateStackObject( 7903 TySize, DL.getPrefTypeAlign(Ty), false); 7904 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7905 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7906 MachinePointerInfo::getFixedStack(MF, SSFI), 7907 TLI.getMemValueType(DL, Ty)); 7908 OpInfo.CallOperand = StackSlot; 7909 7910 return Chain; 7911 } 7912 7913 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7914 /// specified operand. We prefer to assign virtual registers, to allow the 7915 /// register allocator to handle the assignment process. However, if the asm 7916 /// uses features that we can't model on machineinstrs, we have SDISel do the 7917 /// allocation. This produces generally horrible, but correct, code. 7918 /// 7919 /// OpInfo describes the operand 7920 /// RefOpInfo describes the matching operand if any, the operand otherwise 7921 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7922 SDISelAsmOperandInfo &OpInfo, 7923 SDISelAsmOperandInfo &RefOpInfo) { 7924 LLVMContext &Context = *DAG.getContext(); 7925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7926 7927 MachineFunction &MF = DAG.getMachineFunction(); 7928 SmallVector<unsigned, 4> Regs; 7929 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7930 7931 // No work to do for memory operations. 7932 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7933 return; 7934 7935 // If this is a constraint for a single physreg, or a constraint for a 7936 // register class, find it. 7937 unsigned AssignedReg; 7938 const TargetRegisterClass *RC; 7939 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7940 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7941 // RC is unset only on failure. Return immediately. 7942 if (!RC) 7943 return; 7944 7945 // Get the actual register value type. This is important, because the user 7946 // may have asked for (e.g.) the AX register in i32 type. We need to 7947 // remember that AX is actually i16 to get the right extension. 7948 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7949 7950 if (OpInfo.ConstraintVT != MVT::Other) { 7951 // If this is an FP operand in an integer register (or visa versa), or more 7952 // generally if the operand value disagrees with the register class we plan 7953 // to stick it in, fix the operand type. 7954 // 7955 // If this is an input value, the bitcast to the new type is done now. 7956 // Bitcast for output value is done at the end of visitInlineAsm(). 7957 if ((OpInfo.Type == InlineAsm::isOutput || 7958 OpInfo.Type == InlineAsm::isInput) && 7959 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7960 // Try to convert to the first EVT that the reg class contains. If the 7961 // types are identical size, use a bitcast to convert (e.g. two differing 7962 // vector types). Note: output bitcast is done at the end of 7963 // visitInlineAsm(). 7964 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7965 // Exclude indirect inputs while they are unsupported because the code 7966 // to perform the load is missing and thus OpInfo.CallOperand still 7967 // refers to the input address rather than the pointed-to value. 7968 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7969 OpInfo.CallOperand = 7970 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7971 OpInfo.ConstraintVT = RegVT; 7972 // If the operand is an FP value and we want it in integer registers, 7973 // use the corresponding integer type. This turns an f64 value into 7974 // i64, which can be passed with two i32 values on a 32-bit machine. 7975 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7976 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7977 if (OpInfo.Type == InlineAsm::isInput) 7978 OpInfo.CallOperand = 7979 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7980 OpInfo.ConstraintVT = VT; 7981 } 7982 } 7983 } 7984 7985 // No need to allocate a matching input constraint since the constraint it's 7986 // matching to has already been allocated. 7987 if (OpInfo.isMatchingInputConstraint()) 7988 return; 7989 7990 EVT ValueVT = OpInfo.ConstraintVT; 7991 if (OpInfo.ConstraintVT == MVT::Other) 7992 ValueVT = RegVT; 7993 7994 // Initialize NumRegs. 7995 unsigned NumRegs = 1; 7996 if (OpInfo.ConstraintVT != MVT::Other) 7997 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7998 7999 // If this is a constraint for a specific physical register, like {r17}, 8000 // assign it now. 8001 8002 // If this associated to a specific register, initialize iterator to correct 8003 // place. If virtual, make sure we have enough registers 8004 8005 // Initialize iterator if necessary 8006 TargetRegisterClass::iterator I = RC->begin(); 8007 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8008 8009 // Do not check for single registers. 8010 if (AssignedReg) { 8011 for (; *I != AssignedReg; ++I) 8012 assert(I != RC->end() && "AssignedReg should be member of RC"); 8013 } 8014 8015 for (; NumRegs; --NumRegs, ++I) { 8016 assert(I != RC->end() && "Ran out of registers to allocate!"); 8017 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8018 Regs.push_back(R); 8019 } 8020 8021 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8022 } 8023 8024 static unsigned 8025 findMatchingInlineAsmOperand(unsigned OperandNo, 8026 const std::vector<SDValue> &AsmNodeOperands) { 8027 // Scan until we find the definition we already emitted of this operand. 8028 unsigned CurOp = InlineAsm::Op_FirstOperand; 8029 for (; OperandNo; --OperandNo) { 8030 // Advance to the next operand. 8031 unsigned OpFlag = 8032 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8033 assert((InlineAsm::isRegDefKind(OpFlag) || 8034 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8035 InlineAsm::isMemKind(OpFlag)) && 8036 "Skipped past definitions?"); 8037 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8038 } 8039 return CurOp; 8040 } 8041 8042 namespace { 8043 8044 class ExtraFlags { 8045 unsigned Flags = 0; 8046 8047 public: 8048 explicit ExtraFlags(const CallBase &Call) { 8049 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8050 if (IA->hasSideEffects()) 8051 Flags |= InlineAsm::Extra_HasSideEffects; 8052 if (IA->isAlignStack()) 8053 Flags |= InlineAsm::Extra_IsAlignStack; 8054 if (Call.isConvergent()) 8055 Flags |= InlineAsm::Extra_IsConvergent; 8056 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8057 } 8058 8059 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8060 // Ideally, we would only check against memory constraints. However, the 8061 // meaning of an Other constraint can be target-specific and we can't easily 8062 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8063 // for Other constraints as well. 8064 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8065 OpInfo.ConstraintType == TargetLowering::C_Other) { 8066 if (OpInfo.Type == InlineAsm::isInput) 8067 Flags |= InlineAsm::Extra_MayLoad; 8068 else if (OpInfo.Type == InlineAsm::isOutput) 8069 Flags |= InlineAsm::Extra_MayStore; 8070 else if (OpInfo.Type == InlineAsm::isClobber) 8071 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8072 } 8073 } 8074 8075 unsigned get() const { return Flags; } 8076 }; 8077 8078 } // end anonymous namespace 8079 8080 /// visitInlineAsm - Handle a call to an InlineAsm object. 8081 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8082 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8083 8084 /// ConstraintOperands - Information about all of the constraints. 8085 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8086 8087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8088 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8089 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8090 8091 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8092 // AsmDialect, MayLoad, MayStore). 8093 bool HasSideEffect = IA->hasSideEffects(); 8094 ExtraFlags ExtraInfo(Call); 8095 8096 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8097 unsigned ResNo = 0; // ResNo - The result number of the next output. 8098 unsigned NumMatchingOps = 0; 8099 for (auto &T : TargetConstraints) { 8100 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8101 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8102 8103 // Compute the value type for each operand. 8104 if (OpInfo.Type == InlineAsm::isInput || 8105 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8106 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8107 8108 // Process the call argument. BasicBlocks are labels, currently appearing 8109 // only in asm's. 8110 if (isa<CallBrInst>(Call) && 8111 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8112 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8113 NumMatchingOps) && 8114 (NumMatchingOps == 0 || 8115 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8116 NumMatchingOps))) { 8117 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8118 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8119 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8120 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8121 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8122 } else { 8123 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8124 } 8125 8126 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8127 DAG.getDataLayout()); 8128 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8129 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8130 // The return value of the call is this value. As such, there is no 8131 // corresponding argument. 8132 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8133 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8134 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8135 DAG.getDataLayout(), STy->getElementType(ResNo)); 8136 } else { 8137 assert(ResNo == 0 && "Asm only has one result!"); 8138 OpInfo.ConstraintVT = 8139 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8140 } 8141 ++ResNo; 8142 } else { 8143 OpInfo.ConstraintVT = MVT::Other; 8144 } 8145 8146 if (OpInfo.hasMatchingInput()) 8147 ++NumMatchingOps; 8148 8149 if (!HasSideEffect) 8150 HasSideEffect = OpInfo.hasMemory(TLI); 8151 8152 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8153 // FIXME: Could we compute this on OpInfo rather than T? 8154 8155 // Compute the constraint code and ConstraintType to use. 8156 TLI.ComputeConstraintToUse(T, SDValue()); 8157 8158 if (T.ConstraintType == TargetLowering::C_Immediate && 8159 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8160 // We've delayed emitting a diagnostic like the "n" constraint because 8161 // inlining could cause an integer showing up. 8162 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8163 "' expects an integer constant " 8164 "expression"); 8165 8166 ExtraInfo.update(T); 8167 } 8168 8169 8170 // We won't need to flush pending loads if this asm doesn't touch 8171 // memory and is nonvolatile. 8172 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8173 8174 bool IsCallBr = isa<CallBrInst>(Call); 8175 if (IsCallBr) { 8176 // If this is a callbr we need to flush pending exports since inlineasm_br 8177 // is a terminator. We need to do this before nodes are glued to 8178 // the inlineasm_br node. 8179 Chain = getControlRoot(); 8180 } 8181 8182 // Second pass over the constraints: compute which constraint option to use. 8183 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8184 // If this is an output operand with a matching input operand, look up the 8185 // matching input. If their types mismatch, e.g. one is an integer, the 8186 // other is floating point, or their sizes are different, flag it as an 8187 // error. 8188 if (OpInfo.hasMatchingInput()) { 8189 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8190 patchMatchingInput(OpInfo, Input, DAG); 8191 } 8192 8193 // Compute the constraint code and ConstraintType to use. 8194 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8195 8196 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8197 OpInfo.Type == InlineAsm::isClobber) 8198 continue; 8199 8200 // If this is a memory input, and if the operand is not indirect, do what we 8201 // need to provide an address for the memory input. 8202 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8203 !OpInfo.isIndirect) { 8204 assert((OpInfo.isMultipleAlternative || 8205 (OpInfo.Type == InlineAsm::isInput)) && 8206 "Can only indirectify direct input operands!"); 8207 8208 // Memory operands really want the address of the value. 8209 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8210 8211 // There is no longer a Value* corresponding to this operand. 8212 OpInfo.CallOperandVal = nullptr; 8213 8214 // It is now an indirect operand. 8215 OpInfo.isIndirect = true; 8216 } 8217 8218 } 8219 8220 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8221 std::vector<SDValue> AsmNodeOperands; 8222 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8223 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8224 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8225 8226 // If we have a !srcloc metadata node associated with it, we want to attach 8227 // this to the ultimately generated inline asm machineinstr. To do this, we 8228 // pass in the third operand as this (potentially null) inline asm MDNode. 8229 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8230 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8231 8232 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8233 // bits as operand 3. 8234 AsmNodeOperands.push_back(DAG.getTargetConstant( 8235 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8236 8237 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8238 // this, assign virtual and physical registers for inputs and otput. 8239 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8240 // Assign Registers. 8241 SDISelAsmOperandInfo &RefOpInfo = 8242 OpInfo.isMatchingInputConstraint() 8243 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8244 : OpInfo; 8245 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8246 8247 auto DetectWriteToReservedRegister = [&]() { 8248 const MachineFunction &MF = DAG.getMachineFunction(); 8249 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8250 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8251 if (Register::isPhysicalRegister(Reg) && 8252 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8253 const char *RegName = TRI.getName(Reg); 8254 emitInlineAsmError(Call, "write to reserved register '" + 8255 Twine(RegName) + "'"); 8256 return true; 8257 } 8258 } 8259 return false; 8260 }; 8261 8262 switch (OpInfo.Type) { 8263 case InlineAsm::isOutput: 8264 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8265 unsigned ConstraintID = 8266 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8267 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8268 "Failed to convert memory constraint code to constraint id."); 8269 8270 // Add information to the INLINEASM node to know about this output. 8271 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8272 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8273 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8274 MVT::i32)); 8275 AsmNodeOperands.push_back(OpInfo.CallOperand); 8276 } else { 8277 // Otherwise, this outputs to a register (directly for C_Register / 8278 // C_RegisterClass, and a target-defined fashion for 8279 // C_Immediate/C_Other). Find a register that we can use. 8280 if (OpInfo.AssignedRegs.Regs.empty()) { 8281 emitInlineAsmError( 8282 Call, "couldn't allocate output register for constraint '" + 8283 Twine(OpInfo.ConstraintCode) + "'"); 8284 return; 8285 } 8286 8287 if (DetectWriteToReservedRegister()) 8288 return; 8289 8290 // Add information to the INLINEASM node to know that this register is 8291 // set. 8292 OpInfo.AssignedRegs.AddInlineAsmOperands( 8293 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8294 : InlineAsm::Kind_RegDef, 8295 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8296 } 8297 break; 8298 8299 case InlineAsm::isInput: { 8300 SDValue InOperandVal = OpInfo.CallOperand; 8301 8302 if (OpInfo.isMatchingInputConstraint()) { 8303 // If this is required to match an output register we have already set, 8304 // just use its register. 8305 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8306 AsmNodeOperands); 8307 unsigned OpFlag = 8308 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8309 if (InlineAsm::isRegDefKind(OpFlag) || 8310 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8311 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8312 if (OpInfo.isIndirect) { 8313 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8314 emitInlineAsmError(Call, "inline asm not supported yet: " 8315 "don't know how to handle tied " 8316 "indirect register inputs"); 8317 return; 8318 } 8319 8320 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8321 SmallVector<unsigned, 4> Regs; 8322 8323 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8324 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8325 MachineRegisterInfo &RegInfo = 8326 DAG.getMachineFunction().getRegInfo(); 8327 for (unsigned i = 0; i != NumRegs; ++i) 8328 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8329 } else { 8330 emitInlineAsmError(Call, 8331 "inline asm error: This value type register " 8332 "class is not natively supported!"); 8333 return; 8334 } 8335 8336 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8337 8338 SDLoc dl = getCurSDLoc(); 8339 // Use the produced MatchedRegs object to 8340 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8341 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8342 true, OpInfo.getMatchedOperand(), dl, 8343 DAG, AsmNodeOperands); 8344 break; 8345 } 8346 8347 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8348 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8349 "Unexpected number of operands"); 8350 // Add information to the INLINEASM node to know about this input. 8351 // See InlineAsm.h isUseOperandTiedToDef. 8352 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8353 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8354 OpInfo.getMatchedOperand()); 8355 AsmNodeOperands.push_back(DAG.getTargetConstant( 8356 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8357 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8358 break; 8359 } 8360 8361 // Treat indirect 'X' constraint as memory. 8362 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8363 OpInfo.isIndirect) 8364 OpInfo.ConstraintType = TargetLowering::C_Memory; 8365 8366 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8367 OpInfo.ConstraintType == TargetLowering::C_Other) { 8368 std::vector<SDValue> Ops; 8369 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8370 Ops, DAG); 8371 if (Ops.empty()) { 8372 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8373 if (isa<ConstantSDNode>(InOperandVal)) { 8374 emitInlineAsmError(Call, "value out of range for constraint '" + 8375 Twine(OpInfo.ConstraintCode) + "'"); 8376 return; 8377 } 8378 8379 emitInlineAsmError(Call, 8380 "invalid operand for inline asm constraint '" + 8381 Twine(OpInfo.ConstraintCode) + "'"); 8382 return; 8383 } 8384 8385 // Add information to the INLINEASM node to know about this input. 8386 unsigned ResOpType = 8387 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8388 AsmNodeOperands.push_back(DAG.getTargetConstant( 8389 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8390 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8391 break; 8392 } 8393 8394 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8395 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8396 assert(InOperandVal.getValueType() == 8397 TLI.getPointerTy(DAG.getDataLayout()) && 8398 "Memory operands expect pointer values"); 8399 8400 unsigned ConstraintID = 8401 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8402 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8403 "Failed to convert memory constraint code to constraint id."); 8404 8405 // Add information to the INLINEASM node to know about this input. 8406 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8407 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8408 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8409 getCurSDLoc(), 8410 MVT::i32)); 8411 AsmNodeOperands.push_back(InOperandVal); 8412 break; 8413 } 8414 8415 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8416 OpInfo.ConstraintType == TargetLowering::C_Register) && 8417 "Unknown constraint type!"); 8418 8419 // TODO: Support this. 8420 if (OpInfo.isIndirect) { 8421 emitInlineAsmError( 8422 Call, "Don't know how to handle indirect register inputs yet " 8423 "for constraint '" + 8424 Twine(OpInfo.ConstraintCode) + "'"); 8425 return; 8426 } 8427 8428 // Copy the input into the appropriate registers. 8429 if (OpInfo.AssignedRegs.Regs.empty()) { 8430 emitInlineAsmError(Call, 8431 "couldn't allocate input reg for constraint '" + 8432 Twine(OpInfo.ConstraintCode) + "'"); 8433 return; 8434 } 8435 8436 if (DetectWriteToReservedRegister()) 8437 return; 8438 8439 SDLoc dl = getCurSDLoc(); 8440 8441 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8442 &Call); 8443 8444 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8445 dl, DAG, AsmNodeOperands); 8446 break; 8447 } 8448 case InlineAsm::isClobber: 8449 // Add the clobbered value to the operand list, so that the register 8450 // allocator is aware that the physreg got clobbered. 8451 if (!OpInfo.AssignedRegs.Regs.empty()) 8452 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8453 false, 0, getCurSDLoc(), DAG, 8454 AsmNodeOperands); 8455 break; 8456 } 8457 } 8458 8459 // Finish up input operands. Set the input chain and add the flag last. 8460 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8461 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8462 8463 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8464 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8465 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8466 Flag = Chain.getValue(1); 8467 8468 // Do additional work to generate outputs. 8469 8470 SmallVector<EVT, 1> ResultVTs; 8471 SmallVector<SDValue, 1> ResultValues; 8472 SmallVector<SDValue, 8> OutChains; 8473 8474 llvm::Type *CallResultType = Call.getType(); 8475 ArrayRef<Type *> ResultTypes; 8476 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8477 ResultTypes = StructResult->elements(); 8478 else if (!CallResultType->isVoidTy()) 8479 ResultTypes = makeArrayRef(CallResultType); 8480 8481 auto CurResultType = ResultTypes.begin(); 8482 auto handleRegAssign = [&](SDValue V) { 8483 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8484 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8485 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8486 ++CurResultType; 8487 // If the type of the inline asm call site return value is different but has 8488 // same size as the type of the asm output bitcast it. One example of this 8489 // is for vectors with different width / number of elements. This can 8490 // happen for register classes that can contain multiple different value 8491 // types. The preg or vreg allocated may not have the same VT as was 8492 // expected. 8493 // 8494 // This can also happen for a return value that disagrees with the register 8495 // class it is put in, eg. a double in a general-purpose register on a 8496 // 32-bit machine. 8497 if (ResultVT != V.getValueType() && 8498 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8499 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8500 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8501 V.getValueType().isInteger()) { 8502 // If a result value was tied to an input value, the computed result 8503 // may have a wider width than the expected result. Extract the 8504 // relevant portion. 8505 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8506 } 8507 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8508 ResultVTs.push_back(ResultVT); 8509 ResultValues.push_back(V); 8510 }; 8511 8512 // Deal with output operands. 8513 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8514 if (OpInfo.Type == InlineAsm::isOutput) { 8515 SDValue Val; 8516 // Skip trivial output operands. 8517 if (OpInfo.AssignedRegs.Regs.empty()) 8518 continue; 8519 8520 switch (OpInfo.ConstraintType) { 8521 case TargetLowering::C_Register: 8522 case TargetLowering::C_RegisterClass: 8523 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8524 Chain, &Flag, &Call); 8525 break; 8526 case TargetLowering::C_Immediate: 8527 case TargetLowering::C_Other: 8528 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8529 OpInfo, DAG); 8530 break; 8531 case TargetLowering::C_Memory: 8532 break; // Already handled. 8533 case TargetLowering::C_Unknown: 8534 assert(false && "Unexpected unknown constraint"); 8535 } 8536 8537 // Indirect output manifest as stores. Record output chains. 8538 if (OpInfo.isIndirect) { 8539 const Value *Ptr = OpInfo.CallOperandVal; 8540 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8541 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8542 MachinePointerInfo(Ptr)); 8543 OutChains.push_back(Store); 8544 } else { 8545 // generate CopyFromRegs to associated registers. 8546 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8547 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8548 for (const SDValue &V : Val->op_values()) 8549 handleRegAssign(V); 8550 } else 8551 handleRegAssign(Val); 8552 } 8553 } 8554 } 8555 8556 // Set results. 8557 if (!ResultValues.empty()) { 8558 assert(CurResultType == ResultTypes.end() && 8559 "Mismatch in number of ResultTypes"); 8560 assert(ResultValues.size() == ResultTypes.size() && 8561 "Mismatch in number of output operands in asm result"); 8562 8563 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8564 DAG.getVTList(ResultVTs), ResultValues); 8565 setValue(&Call, V); 8566 } 8567 8568 // Collect store chains. 8569 if (!OutChains.empty()) 8570 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8571 8572 // Only Update Root if inline assembly has a memory effect. 8573 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8574 DAG.setRoot(Chain); 8575 } 8576 8577 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8578 const Twine &Message) { 8579 LLVMContext &Ctx = *DAG.getContext(); 8580 Ctx.emitError(&Call, Message); 8581 8582 // Make sure we leave the DAG in a valid state 8583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8584 SmallVector<EVT, 1> ValueVTs; 8585 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8586 8587 if (ValueVTs.empty()) 8588 return; 8589 8590 SmallVector<SDValue, 1> Ops; 8591 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8592 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8593 8594 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8595 } 8596 8597 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8598 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8599 MVT::Other, getRoot(), 8600 getValue(I.getArgOperand(0)), 8601 DAG.getSrcValue(I.getArgOperand(0)))); 8602 } 8603 8604 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8606 const DataLayout &DL = DAG.getDataLayout(); 8607 SDValue V = DAG.getVAArg( 8608 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8609 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8610 DL.getABITypeAlign(I.getType()).value()); 8611 DAG.setRoot(V.getValue(1)); 8612 8613 if (I.getType()->isPointerTy()) 8614 V = DAG.getPtrExtOrTrunc( 8615 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8616 setValue(&I, V); 8617 } 8618 8619 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8620 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8621 MVT::Other, getRoot(), 8622 getValue(I.getArgOperand(0)), 8623 DAG.getSrcValue(I.getArgOperand(0)))); 8624 } 8625 8626 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8627 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8628 MVT::Other, getRoot(), 8629 getValue(I.getArgOperand(0)), 8630 getValue(I.getArgOperand(1)), 8631 DAG.getSrcValue(I.getArgOperand(0)), 8632 DAG.getSrcValue(I.getArgOperand(1)))); 8633 } 8634 8635 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8636 const Instruction &I, 8637 SDValue Op) { 8638 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8639 if (!Range) 8640 return Op; 8641 8642 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8643 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8644 return Op; 8645 8646 APInt Lo = CR.getUnsignedMin(); 8647 if (!Lo.isMinValue()) 8648 return Op; 8649 8650 APInt Hi = CR.getUnsignedMax(); 8651 unsigned Bits = std::max(Hi.getActiveBits(), 8652 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8653 8654 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8655 8656 SDLoc SL = getCurSDLoc(); 8657 8658 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8659 DAG.getValueType(SmallVT)); 8660 unsigned NumVals = Op.getNode()->getNumValues(); 8661 if (NumVals == 1) 8662 return ZExt; 8663 8664 SmallVector<SDValue, 4> Ops; 8665 8666 Ops.push_back(ZExt); 8667 for (unsigned I = 1; I != NumVals; ++I) 8668 Ops.push_back(Op.getValue(I)); 8669 8670 return DAG.getMergeValues(Ops, SL); 8671 } 8672 8673 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8674 /// the call being lowered. 8675 /// 8676 /// This is a helper for lowering intrinsics that follow a target calling 8677 /// convention or require stack pointer adjustment. Only a subset of the 8678 /// intrinsic's operands need to participate in the calling convention. 8679 void SelectionDAGBuilder::populateCallLoweringInfo( 8680 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8681 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8682 bool IsPatchPoint) { 8683 TargetLowering::ArgListTy Args; 8684 Args.reserve(NumArgs); 8685 8686 // Populate the argument list. 8687 // Attributes for args start at offset 1, after the return attribute. 8688 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8689 ArgI != ArgE; ++ArgI) { 8690 const Value *V = Call->getOperand(ArgI); 8691 8692 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8693 8694 TargetLowering::ArgListEntry Entry; 8695 Entry.Node = getValue(V); 8696 Entry.Ty = V->getType(); 8697 Entry.setAttributes(Call, ArgI); 8698 Args.push_back(Entry); 8699 } 8700 8701 CLI.setDebugLoc(getCurSDLoc()) 8702 .setChain(getRoot()) 8703 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8704 .setDiscardResult(Call->use_empty()) 8705 .setIsPatchPoint(IsPatchPoint) 8706 .setIsPreallocated( 8707 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8708 } 8709 8710 /// Add a stack map intrinsic call's live variable operands to a stackmap 8711 /// or patchpoint target node's operand list. 8712 /// 8713 /// Constants are converted to TargetConstants purely as an optimization to 8714 /// avoid constant materialization and register allocation. 8715 /// 8716 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8717 /// generate addess computation nodes, and so FinalizeISel can convert the 8718 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8719 /// address materialization and register allocation, but may also be required 8720 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8721 /// alloca in the entry block, then the runtime may assume that the alloca's 8722 /// StackMap location can be read immediately after compilation and that the 8723 /// location is valid at any point during execution (this is similar to the 8724 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8725 /// only available in a register, then the runtime would need to trap when 8726 /// execution reaches the StackMap in order to read the alloca's location. 8727 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8728 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8729 SelectionDAGBuilder &Builder) { 8730 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8731 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8732 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8733 Ops.push_back( 8734 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8735 Ops.push_back( 8736 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8737 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8738 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8739 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8740 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8741 } else 8742 Ops.push_back(OpVal); 8743 } 8744 } 8745 8746 /// Lower llvm.experimental.stackmap directly to its target opcode. 8747 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8748 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8749 // [live variables...]) 8750 8751 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8752 8753 SDValue Chain, InFlag, Callee, NullPtr; 8754 SmallVector<SDValue, 32> Ops; 8755 8756 SDLoc DL = getCurSDLoc(); 8757 Callee = getValue(CI.getCalledOperand()); 8758 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8759 8760 // The stackmap intrinsic only records the live variables (the arguments 8761 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8762 // intrinsic, this won't be lowered to a function call. This means we don't 8763 // have to worry about calling conventions and target specific lowering code. 8764 // Instead we perform the call lowering right here. 8765 // 8766 // chain, flag = CALLSEQ_START(chain, 0, 0) 8767 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8768 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8769 // 8770 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8771 InFlag = Chain.getValue(1); 8772 8773 // Add the <id> and <numBytes> constants. 8774 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8775 Ops.push_back(DAG.getTargetConstant( 8776 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8777 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8778 Ops.push_back(DAG.getTargetConstant( 8779 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8780 MVT::i32)); 8781 8782 // Push live variables for the stack map. 8783 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8784 8785 // We are not pushing any register mask info here on the operands list, 8786 // because the stackmap doesn't clobber anything. 8787 8788 // Push the chain and the glue flag. 8789 Ops.push_back(Chain); 8790 Ops.push_back(InFlag); 8791 8792 // Create the STACKMAP node. 8793 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8794 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8795 Chain = SDValue(SM, 0); 8796 InFlag = Chain.getValue(1); 8797 8798 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8799 8800 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8801 8802 // Set the root to the target-lowered call chain. 8803 DAG.setRoot(Chain); 8804 8805 // Inform the Frame Information that we have a stackmap in this function. 8806 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8807 } 8808 8809 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8810 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8811 const BasicBlock *EHPadBB) { 8812 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8813 // i32 <numBytes>, 8814 // i8* <target>, 8815 // i32 <numArgs>, 8816 // [Args...], 8817 // [live variables...]) 8818 8819 CallingConv::ID CC = CB.getCallingConv(); 8820 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8821 bool HasDef = !CB.getType()->isVoidTy(); 8822 SDLoc dl = getCurSDLoc(); 8823 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8824 8825 // Handle immediate and symbolic callees. 8826 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8827 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8828 /*isTarget=*/true); 8829 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8830 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8831 SDLoc(SymbolicCallee), 8832 SymbolicCallee->getValueType(0)); 8833 8834 // Get the real number of arguments participating in the call <numArgs> 8835 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8836 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8837 8838 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8839 // Intrinsics include all meta-operands up to but not including CC. 8840 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8841 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8842 "Not enough arguments provided to the patchpoint intrinsic"); 8843 8844 // For AnyRegCC the arguments are lowered later on manually. 8845 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8846 Type *ReturnTy = 8847 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8848 8849 TargetLowering::CallLoweringInfo CLI(DAG); 8850 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8851 ReturnTy, true); 8852 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8853 8854 SDNode *CallEnd = Result.second.getNode(); 8855 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8856 CallEnd = CallEnd->getOperand(0).getNode(); 8857 8858 /// Get a call instruction from the call sequence chain. 8859 /// Tail calls are not allowed. 8860 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8861 "Expected a callseq node."); 8862 SDNode *Call = CallEnd->getOperand(0).getNode(); 8863 bool HasGlue = Call->getGluedNode(); 8864 8865 // Replace the target specific call node with the patchable intrinsic. 8866 SmallVector<SDValue, 8> Ops; 8867 8868 // Add the <id> and <numBytes> constants. 8869 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8870 Ops.push_back(DAG.getTargetConstant( 8871 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8872 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8873 Ops.push_back(DAG.getTargetConstant( 8874 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8875 MVT::i32)); 8876 8877 // Add the callee. 8878 Ops.push_back(Callee); 8879 8880 // Adjust <numArgs> to account for any arguments that have been passed on the 8881 // stack instead. 8882 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8883 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8884 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8885 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8886 8887 // Add the calling convention 8888 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8889 8890 // Add the arguments we omitted previously. The register allocator should 8891 // place these in any free register. 8892 if (IsAnyRegCC) 8893 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8894 Ops.push_back(getValue(CB.getArgOperand(i))); 8895 8896 // Push the arguments from the call instruction up to the register mask. 8897 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8898 Ops.append(Call->op_begin() + 2, e); 8899 8900 // Push live variables for the stack map. 8901 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8902 8903 // Push the register mask info. 8904 if (HasGlue) 8905 Ops.push_back(*(Call->op_end()-2)); 8906 else 8907 Ops.push_back(*(Call->op_end()-1)); 8908 8909 // Push the chain (this is originally the first operand of the call, but 8910 // becomes now the last or second to last operand). 8911 Ops.push_back(*(Call->op_begin())); 8912 8913 // Push the glue flag (last operand). 8914 if (HasGlue) 8915 Ops.push_back(*(Call->op_end()-1)); 8916 8917 SDVTList NodeTys; 8918 if (IsAnyRegCC && HasDef) { 8919 // Create the return types based on the intrinsic definition 8920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8921 SmallVector<EVT, 3> ValueVTs; 8922 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8923 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8924 8925 // There is always a chain and a glue type at the end 8926 ValueVTs.push_back(MVT::Other); 8927 ValueVTs.push_back(MVT::Glue); 8928 NodeTys = DAG.getVTList(ValueVTs); 8929 } else 8930 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8931 8932 // Replace the target specific call node with a PATCHPOINT node. 8933 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8934 dl, NodeTys, Ops); 8935 8936 // Update the NodeMap. 8937 if (HasDef) { 8938 if (IsAnyRegCC) 8939 setValue(&CB, SDValue(MN, 0)); 8940 else 8941 setValue(&CB, Result.first); 8942 } 8943 8944 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8945 // call sequence. Furthermore the location of the chain and glue can change 8946 // when the AnyReg calling convention is used and the intrinsic returns a 8947 // value. 8948 if (IsAnyRegCC && HasDef) { 8949 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8950 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8951 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8952 } else 8953 DAG.ReplaceAllUsesWith(Call, MN); 8954 DAG.DeleteNode(Call); 8955 8956 // Inform the Frame Information that we have a patchpoint in this function. 8957 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8958 } 8959 8960 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8961 unsigned Intrinsic) { 8962 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8963 SDValue Op1 = getValue(I.getArgOperand(0)); 8964 SDValue Op2; 8965 if (I.getNumArgOperands() > 1) 8966 Op2 = getValue(I.getArgOperand(1)); 8967 SDLoc dl = getCurSDLoc(); 8968 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8969 SDValue Res; 8970 SDNodeFlags SDFlags; 8971 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 8972 SDFlags.copyFMF(*FPMO); 8973 8974 switch (Intrinsic) { 8975 case Intrinsic::vector_reduce_fadd: 8976 if (SDFlags.hasAllowReassociation()) 8977 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8978 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 8979 SDFlags); 8980 else 8981 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 8982 break; 8983 case Intrinsic::vector_reduce_fmul: 8984 if (SDFlags.hasAllowReassociation()) 8985 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8986 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 8987 SDFlags); 8988 else 8989 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 8990 break; 8991 case Intrinsic::vector_reduce_add: 8992 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8993 break; 8994 case Intrinsic::vector_reduce_mul: 8995 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8996 break; 8997 case Intrinsic::vector_reduce_and: 8998 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8999 break; 9000 case Intrinsic::vector_reduce_or: 9001 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9002 break; 9003 case Intrinsic::vector_reduce_xor: 9004 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9005 break; 9006 case Intrinsic::vector_reduce_smax: 9007 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9008 break; 9009 case Intrinsic::vector_reduce_smin: 9010 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9011 break; 9012 case Intrinsic::vector_reduce_umax: 9013 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9014 break; 9015 case Intrinsic::vector_reduce_umin: 9016 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9017 break; 9018 case Intrinsic::vector_reduce_fmax: 9019 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9020 break; 9021 case Intrinsic::vector_reduce_fmin: 9022 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9023 break; 9024 default: 9025 llvm_unreachable("Unhandled vector reduce intrinsic"); 9026 } 9027 setValue(&I, Res); 9028 } 9029 9030 /// Returns an AttributeList representing the attributes applied to the return 9031 /// value of the given call. 9032 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9033 SmallVector<Attribute::AttrKind, 2> Attrs; 9034 if (CLI.RetSExt) 9035 Attrs.push_back(Attribute::SExt); 9036 if (CLI.RetZExt) 9037 Attrs.push_back(Attribute::ZExt); 9038 if (CLI.IsInReg) 9039 Attrs.push_back(Attribute::InReg); 9040 9041 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9042 Attrs); 9043 } 9044 9045 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9046 /// implementation, which just calls LowerCall. 9047 /// FIXME: When all targets are 9048 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9049 std::pair<SDValue, SDValue> 9050 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9051 // Handle the incoming return values from the call. 9052 CLI.Ins.clear(); 9053 Type *OrigRetTy = CLI.RetTy; 9054 SmallVector<EVT, 4> RetTys; 9055 SmallVector<uint64_t, 4> Offsets; 9056 auto &DL = CLI.DAG.getDataLayout(); 9057 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9058 9059 if (CLI.IsPostTypeLegalization) { 9060 // If we are lowering a libcall after legalization, split the return type. 9061 SmallVector<EVT, 4> OldRetTys; 9062 SmallVector<uint64_t, 4> OldOffsets; 9063 RetTys.swap(OldRetTys); 9064 Offsets.swap(OldOffsets); 9065 9066 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9067 EVT RetVT = OldRetTys[i]; 9068 uint64_t Offset = OldOffsets[i]; 9069 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9070 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9071 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9072 RetTys.append(NumRegs, RegisterVT); 9073 for (unsigned j = 0; j != NumRegs; ++j) 9074 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9075 } 9076 } 9077 9078 SmallVector<ISD::OutputArg, 4> Outs; 9079 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9080 9081 bool CanLowerReturn = 9082 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9083 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9084 9085 SDValue DemoteStackSlot; 9086 int DemoteStackIdx = -100; 9087 if (!CanLowerReturn) { 9088 // FIXME: equivalent assert? 9089 // assert(!CS.hasInAllocaArgument() && 9090 // "sret demotion is incompatible with inalloca"); 9091 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9092 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9093 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9094 DemoteStackIdx = 9095 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9096 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9097 DL.getAllocaAddrSpace()); 9098 9099 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9100 ArgListEntry Entry; 9101 Entry.Node = DemoteStackSlot; 9102 Entry.Ty = StackSlotPtrType; 9103 Entry.IsSExt = false; 9104 Entry.IsZExt = false; 9105 Entry.IsInReg = false; 9106 Entry.IsSRet = true; 9107 Entry.IsNest = false; 9108 Entry.IsByVal = false; 9109 Entry.IsByRef = false; 9110 Entry.IsReturned = false; 9111 Entry.IsSwiftSelf = false; 9112 Entry.IsSwiftError = false; 9113 Entry.IsCFGuardTarget = false; 9114 Entry.Alignment = Alignment; 9115 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9116 CLI.NumFixedArgs += 1; 9117 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9118 9119 // sret demotion isn't compatible with tail-calls, since the sret argument 9120 // points into the callers stack frame. 9121 CLI.IsTailCall = false; 9122 } else { 9123 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9124 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9125 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9126 ISD::ArgFlagsTy Flags; 9127 if (NeedsRegBlock) { 9128 Flags.setInConsecutiveRegs(); 9129 if (I == RetTys.size() - 1) 9130 Flags.setInConsecutiveRegsLast(); 9131 } 9132 EVT VT = RetTys[I]; 9133 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9134 CLI.CallConv, VT); 9135 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9136 CLI.CallConv, VT); 9137 for (unsigned i = 0; i != NumRegs; ++i) { 9138 ISD::InputArg MyFlags; 9139 MyFlags.Flags = Flags; 9140 MyFlags.VT = RegisterVT; 9141 MyFlags.ArgVT = VT; 9142 MyFlags.Used = CLI.IsReturnValueUsed; 9143 if (CLI.RetTy->isPointerTy()) { 9144 MyFlags.Flags.setPointer(); 9145 MyFlags.Flags.setPointerAddrSpace( 9146 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9147 } 9148 if (CLI.RetSExt) 9149 MyFlags.Flags.setSExt(); 9150 if (CLI.RetZExt) 9151 MyFlags.Flags.setZExt(); 9152 if (CLI.IsInReg) 9153 MyFlags.Flags.setInReg(); 9154 CLI.Ins.push_back(MyFlags); 9155 } 9156 } 9157 } 9158 9159 // We push in swifterror return as the last element of CLI.Ins. 9160 ArgListTy &Args = CLI.getArgs(); 9161 if (supportSwiftError()) { 9162 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9163 if (Args[i].IsSwiftError) { 9164 ISD::InputArg MyFlags; 9165 MyFlags.VT = getPointerTy(DL); 9166 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9167 MyFlags.Flags.setSwiftError(); 9168 CLI.Ins.push_back(MyFlags); 9169 } 9170 } 9171 } 9172 9173 // Handle all of the outgoing arguments. 9174 CLI.Outs.clear(); 9175 CLI.OutVals.clear(); 9176 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9177 SmallVector<EVT, 4> ValueVTs; 9178 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9179 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9180 Type *FinalType = Args[i].Ty; 9181 if (Args[i].IsByVal) 9182 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9183 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9184 FinalType, CLI.CallConv, CLI.IsVarArg); 9185 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9186 ++Value) { 9187 EVT VT = ValueVTs[Value]; 9188 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9189 SDValue Op = SDValue(Args[i].Node.getNode(), 9190 Args[i].Node.getResNo() + Value); 9191 ISD::ArgFlagsTy Flags; 9192 9193 // Certain targets (such as MIPS), may have a different ABI alignment 9194 // for a type depending on the context. Give the target a chance to 9195 // specify the alignment it wants. 9196 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9197 9198 if (Args[i].Ty->isPointerTy()) { 9199 Flags.setPointer(); 9200 Flags.setPointerAddrSpace( 9201 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9202 } 9203 if (Args[i].IsZExt) 9204 Flags.setZExt(); 9205 if (Args[i].IsSExt) 9206 Flags.setSExt(); 9207 if (Args[i].IsInReg) { 9208 // If we are using vectorcall calling convention, a structure that is 9209 // passed InReg - is surely an HVA 9210 if (CLI.CallConv == CallingConv::X86_VectorCall && 9211 isa<StructType>(FinalType)) { 9212 // The first value of a structure is marked 9213 if (0 == Value) 9214 Flags.setHvaStart(); 9215 Flags.setHva(); 9216 } 9217 // Set InReg Flag 9218 Flags.setInReg(); 9219 } 9220 if (Args[i].IsSRet) 9221 Flags.setSRet(); 9222 if (Args[i].IsSwiftSelf) 9223 Flags.setSwiftSelf(); 9224 if (Args[i].IsSwiftError) 9225 Flags.setSwiftError(); 9226 if (Args[i].IsCFGuardTarget) 9227 Flags.setCFGuardTarget(); 9228 if (Args[i].IsByVal) 9229 Flags.setByVal(); 9230 if (Args[i].IsByRef) 9231 Flags.setByRef(); 9232 if (Args[i].IsPreallocated) { 9233 Flags.setPreallocated(); 9234 // Set the byval flag for CCAssignFn callbacks that don't know about 9235 // preallocated. This way we can know how many bytes we should've 9236 // allocated and how many bytes a callee cleanup function will pop. If 9237 // we port preallocated to more targets, we'll have to add custom 9238 // preallocated handling in the various CC lowering callbacks. 9239 Flags.setByVal(); 9240 } 9241 if (Args[i].IsInAlloca) { 9242 Flags.setInAlloca(); 9243 // Set the byval flag for CCAssignFn callbacks that don't know about 9244 // inalloca. This way we can know how many bytes we should've allocated 9245 // and how many bytes a callee cleanup function will pop. If we port 9246 // inalloca to more targets, we'll have to add custom inalloca handling 9247 // in the various CC lowering callbacks. 9248 Flags.setByVal(); 9249 } 9250 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9251 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9252 Type *ElementTy = Ty->getElementType(); 9253 9254 unsigned FrameSize = DL.getTypeAllocSize( 9255 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9256 Flags.setByValSize(FrameSize); 9257 9258 // info is not there but there are cases it cannot get right. 9259 Align FrameAlign; 9260 if (auto MA = Args[i].Alignment) 9261 FrameAlign = *MA; 9262 else 9263 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9264 Flags.setByValAlign(FrameAlign); 9265 } 9266 if (Args[i].IsNest) 9267 Flags.setNest(); 9268 if (NeedsRegBlock) 9269 Flags.setInConsecutiveRegs(); 9270 Flags.setOrigAlign(OriginalAlignment); 9271 9272 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9273 CLI.CallConv, VT); 9274 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9275 CLI.CallConv, VT); 9276 SmallVector<SDValue, 4> Parts(NumParts); 9277 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9278 9279 if (Args[i].IsSExt) 9280 ExtendKind = ISD::SIGN_EXTEND; 9281 else if (Args[i].IsZExt) 9282 ExtendKind = ISD::ZERO_EXTEND; 9283 9284 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9285 // for now. 9286 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9287 CanLowerReturn) { 9288 assert((CLI.RetTy == Args[i].Ty || 9289 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9290 CLI.RetTy->getPointerAddressSpace() == 9291 Args[i].Ty->getPointerAddressSpace())) && 9292 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9293 // Before passing 'returned' to the target lowering code, ensure that 9294 // either the register MVT and the actual EVT are the same size or that 9295 // the return value and argument are extended in the same way; in these 9296 // cases it's safe to pass the argument register value unchanged as the 9297 // return register value (although it's at the target's option whether 9298 // to do so) 9299 // TODO: allow code generation to take advantage of partially preserved 9300 // registers rather than clobbering the entire register when the 9301 // parameter extension method is not compatible with the return 9302 // extension method 9303 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9304 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9305 CLI.RetZExt == Args[i].IsZExt)) 9306 Flags.setReturned(); 9307 } 9308 9309 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9310 CLI.CallConv, ExtendKind); 9311 9312 for (unsigned j = 0; j != NumParts; ++j) { 9313 // if it isn't first piece, alignment must be 1 9314 // For scalable vectors the scalable part is currently handled 9315 // by individual targets, so we just use the known minimum size here. 9316 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9317 i < CLI.NumFixedArgs, i, 9318 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9319 if (NumParts > 1 && j == 0) 9320 MyFlags.Flags.setSplit(); 9321 else if (j != 0) { 9322 MyFlags.Flags.setOrigAlign(Align(1)); 9323 if (j == NumParts - 1) 9324 MyFlags.Flags.setSplitEnd(); 9325 } 9326 9327 CLI.Outs.push_back(MyFlags); 9328 CLI.OutVals.push_back(Parts[j]); 9329 } 9330 9331 if (NeedsRegBlock && Value == NumValues - 1) 9332 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9333 } 9334 } 9335 9336 SmallVector<SDValue, 4> InVals; 9337 CLI.Chain = LowerCall(CLI, InVals); 9338 9339 // Update CLI.InVals to use outside of this function. 9340 CLI.InVals = InVals; 9341 9342 // Verify that the target's LowerCall behaved as expected. 9343 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9344 "LowerCall didn't return a valid chain!"); 9345 assert((!CLI.IsTailCall || InVals.empty()) && 9346 "LowerCall emitted a return value for a tail call!"); 9347 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9348 "LowerCall didn't emit the correct number of values!"); 9349 9350 // For a tail call, the return value is merely live-out and there aren't 9351 // any nodes in the DAG representing it. Return a special value to 9352 // indicate that a tail call has been emitted and no more Instructions 9353 // should be processed in the current block. 9354 if (CLI.IsTailCall) { 9355 CLI.DAG.setRoot(CLI.Chain); 9356 return std::make_pair(SDValue(), SDValue()); 9357 } 9358 9359 #ifndef NDEBUG 9360 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9361 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9362 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9363 "LowerCall emitted a value with the wrong type!"); 9364 } 9365 #endif 9366 9367 SmallVector<SDValue, 4> ReturnValues; 9368 if (!CanLowerReturn) { 9369 // The instruction result is the result of loading from the 9370 // hidden sret parameter. 9371 SmallVector<EVT, 1> PVTs; 9372 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9373 9374 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9375 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9376 EVT PtrVT = PVTs[0]; 9377 9378 unsigned NumValues = RetTys.size(); 9379 ReturnValues.resize(NumValues); 9380 SmallVector<SDValue, 4> Chains(NumValues); 9381 9382 // An aggregate return value cannot wrap around the address space, so 9383 // offsets to its parts don't wrap either. 9384 SDNodeFlags Flags; 9385 Flags.setNoUnsignedWrap(true); 9386 9387 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9388 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9389 for (unsigned i = 0; i < NumValues; ++i) { 9390 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9391 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9392 PtrVT), Flags); 9393 SDValue L = CLI.DAG.getLoad( 9394 RetTys[i], CLI.DL, CLI.Chain, Add, 9395 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9396 DemoteStackIdx, Offsets[i]), 9397 HiddenSRetAlign); 9398 ReturnValues[i] = L; 9399 Chains[i] = L.getValue(1); 9400 } 9401 9402 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9403 } else { 9404 // Collect the legal value parts into potentially illegal values 9405 // that correspond to the original function's return values. 9406 Optional<ISD::NodeType> AssertOp; 9407 if (CLI.RetSExt) 9408 AssertOp = ISD::AssertSext; 9409 else if (CLI.RetZExt) 9410 AssertOp = ISD::AssertZext; 9411 unsigned CurReg = 0; 9412 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9413 EVT VT = RetTys[I]; 9414 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9415 CLI.CallConv, VT); 9416 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9417 CLI.CallConv, VT); 9418 9419 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9420 NumRegs, RegisterVT, VT, nullptr, 9421 CLI.CallConv, AssertOp)); 9422 CurReg += NumRegs; 9423 } 9424 9425 // For a function returning void, there is no return value. We can't create 9426 // such a node, so we just return a null return value in that case. In 9427 // that case, nothing will actually look at the value. 9428 if (ReturnValues.empty()) 9429 return std::make_pair(SDValue(), CLI.Chain); 9430 } 9431 9432 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9433 CLI.DAG.getVTList(RetTys), ReturnValues); 9434 return std::make_pair(Res, CLI.Chain); 9435 } 9436 9437 /// Places new result values for the node in Results (their number 9438 /// and types must exactly match those of the original return values of 9439 /// the node), or leaves Results empty, which indicates that the node is not 9440 /// to be custom lowered after all. 9441 void TargetLowering::LowerOperationWrapper(SDNode *N, 9442 SmallVectorImpl<SDValue> &Results, 9443 SelectionDAG &DAG) const { 9444 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9445 9446 if (!Res.getNode()) 9447 return; 9448 9449 // If the original node has one result, take the return value from 9450 // LowerOperation as is. It might not be result number 0. 9451 if (N->getNumValues() == 1) { 9452 Results.push_back(Res); 9453 return; 9454 } 9455 9456 // If the original node has multiple results, then the return node should 9457 // have the same number of results. 9458 assert((N->getNumValues() == Res->getNumValues()) && 9459 "Lowering returned the wrong number of results!"); 9460 9461 // Places new result values base on N result number. 9462 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9463 Results.push_back(Res.getValue(I)); 9464 } 9465 9466 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9467 llvm_unreachable("LowerOperation not implemented for this target!"); 9468 } 9469 9470 void 9471 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9472 SDValue Op = getNonRegisterValue(V); 9473 assert((Op.getOpcode() != ISD::CopyFromReg || 9474 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9475 "Copy from a reg to the same reg!"); 9476 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9477 9478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9479 // If this is an InlineAsm we have to match the registers required, not the 9480 // notional registers required by the type. 9481 9482 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9483 None); // This is not an ABI copy. 9484 SDValue Chain = DAG.getEntryNode(); 9485 9486 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9487 FuncInfo.PreferredExtendType.end()) 9488 ? ISD::ANY_EXTEND 9489 : FuncInfo.PreferredExtendType[V]; 9490 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9491 PendingExports.push_back(Chain); 9492 } 9493 9494 #include "llvm/CodeGen/SelectionDAGISel.h" 9495 9496 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9497 /// entry block, return true. This includes arguments used by switches, since 9498 /// the switch may expand into multiple basic blocks. 9499 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9500 // With FastISel active, we may be splitting blocks, so force creation 9501 // of virtual registers for all non-dead arguments. 9502 if (FastISel) 9503 return A->use_empty(); 9504 9505 const BasicBlock &Entry = A->getParent()->front(); 9506 for (const User *U : A->users()) 9507 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9508 return false; // Use not in entry block. 9509 9510 return true; 9511 } 9512 9513 using ArgCopyElisionMapTy = 9514 DenseMap<const Argument *, 9515 std::pair<const AllocaInst *, const StoreInst *>>; 9516 9517 /// Scan the entry block of the function in FuncInfo for arguments that look 9518 /// like copies into a local alloca. Record any copied arguments in 9519 /// ArgCopyElisionCandidates. 9520 static void 9521 findArgumentCopyElisionCandidates(const DataLayout &DL, 9522 FunctionLoweringInfo *FuncInfo, 9523 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9524 // Record the state of every static alloca used in the entry block. Argument 9525 // allocas are all used in the entry block, so we need approximately as many 9526 // entries as we have arguments. 9527 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9528 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9529 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9530 StaticAllocas.reserve(NumArgs * 2); 9531 9532 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9533 if (!V) 9534 return nullptr; 9535 V = V->stripPointerCasts(); 9536 const auto *AI = dyn_cast<AllocaInst>(V); 9537 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9538 return nullptr; 9539 auto Iter = StaticAllocas.insert({AI, Unknown}); 9540 return &Iter.first->second; 9541 }; 9542 9543 // Look for stores of arguments to static allocas. Look through bitcasts and 9544 // GEPs to handle type coercions, as long as the alloca is fully initialized 9545 // by the store. Any non-store use of an alloca escapes it and any subsequent 9546 // unanalyzed store might write it. 9547 // FIXME: Handle structs initialized with multiple stores. 9548 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9549 // Look for stores, and handle non-store uses conservatively. 9550 const auto *SI = dyn_cast<StoreInst>(&I); 9551 if (!SI) { 9552 // We will look through cast uses, so ignore them completely. 9553 if (I.isCast()) 9554 continue; 9555 // Ignore debug info intrinsics, they don't escape or store to allocas. 9556 if (isa<DbgInfoIntrinsic>(I)) 9557 continue; 9558 // This is an unknown instruction. Assume it escapes or writes to all 9559 // static alloca operands. 9560 for (const Use &U : I.operands()) { 9561 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9562 *Info = StaticAllocaInfo::Clobbered; 9563 } 9564 continue; 9565 } 9566 9567 // If the stored value is a static alloca, mark it as escaped. 9568 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9569 *Info = StaticAllocaInfo::Clobbered; 9570 9571 // Check if the destination is a static alloca. 9572 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9573 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9574 if (!Info) 9575 continue; 9576 const AllocaInst *AI = cast<AllocaInst>(Dst); 9577 9578 // Skip allocas that have been initialized or clobbered. 9579 if (*Info != StaticAllocaInfo::Unknown) 9580 continue; 9581 9582 // Check if the stored value is an argument, and that this store fully 9583 // initializes the alloca. Don't elide copies from the same argument twice. 9584 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9585 const auto *Arg = dyn_cast<Argument>(Val); 9586 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9587 Arg->getType()->isEmptyTy() || 9588 DL.getTypeStoreSize(Arg->getType()) != 9589 DL.getTypeAllocSize(AI->getAllocatedType()) || 9590 ArgCopyElisionCandidates.count(Arg)) { 9591 *Info = StaticAllocaInfo::Clobbered; 9592 continue; 9593 } 9594 9595 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9596 << '\n'); 9597 9598 // Mark this alloca and store for argument copy elision. 9599 *Info = StaticAllocaInfo::Elidable; 9600 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9601 9602 // Stop scanning if we've seen all arguments. This will happen early in -O0 9603 // builds, which is useful, because -O0 builds have large entry blocks and 9604 // many allocas. 9605 if (ArgCopyElisionCandidates.size() == NumArgs) 9606 break; 9607 } 9608 } 9609 9610 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9611 /// ArgVal is a load from a suitable fixed stack object. 9612 static void tryToElideArgumentCopy( 9613 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9614 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9615 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9616 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9617 SDValue ArgVal, bool &ArgHasUses) { 9618 // Check if this is a load from a fixed stack object. 9619 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9620 if (!LNode) 9621 return; 9622 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9623 if (!FINode) 9624 return; 9625 9626 // Check that the fixed stack object is the right size and alignment. 9627 // Look at the alignment that the user wrote on the alloca instead of looking 9628 // at the stack object. 9629 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9630 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9631 const AllocaInst *AI = ArgCopyIter->second.first; 9632 int FixedIndex = FINode->getIndex(); 9633 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9634 int OldIndex = AllocaIndex; 9635 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9636 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9637 LLVM_DEBUG( 9638 dbgs() << " argument copy elision failed due to bad fixed stack " 9639 "object size\n"); 9640 return; 9641 } 9642 Align RequiredAlignment = AI->getAlign(); 9643 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9644 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9645 "greater than stack argument alignment (" 9646 << DebugStr(RequiredAlignment) << " vs " 9647 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9648 return; 9649 } 9650 9651 // Perform the elision. Delete the old stack object and replace its only use 9652 // in the variable info map. Mark the stack object as mutable. 9653 LLVM_DEBUG({ 9654 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9655 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9656 << '\n'; 9657 }); 9658 MFI.RemoveStackObject(OldIndex); 9659 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9660 AllocaIndex = FixedIndex; 9661 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9662 Chains.push_back(ArgVal.getValue(1)); 9663 9664 // Avoid emitting code for the store implementing the copy. 9665 const StoreInst *SI = ArgCopyIter->second.second; 9666 ElidedArgCopyInstrs.insert(SI); 9667 9668 // Check for uses of the argument again so that we can avoid exporting ArgVal 9669 // if it is't used by anything other than the store. 9670 for (const Value *U : Arg.users()) { 9671 if (U != SI) { 9672 ArgHasUses = true; 9673 break; 9674 } 9675 } 9676 } 9677 9678 void SelectionDAGISel::LowerArguments(const Function &F) { 9679 SelectionDAG &DAG = SDB->DAG; 9680 SDLoc dl = SDB->getCurSDLoc(); 9681 const DataLayout &DL = DAG.getDataLayout(); 9682 SmallVector<ISD::InputArg, 16> Ins; 9683 9684 // In Naked functions we aren't going to save any registers. 9685 if (F.hasFnAttribute(Attribute::Naked)) 9686 return; 9687 9688 if (!FuncInfo->CanLowerReturn) { 9689 // Put in an sret pointer parameter before all the other parameters. 9690 SmallVector<EVT, 1> ValueVTs; 9691 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9692 F.getReturnType()->getPointerTo( 9693 DAG.getDataLayout().getAllocaAddrSpace()), 9694 ValueVTs); 9695 9696 // NOTE: Assuming that a pointer will never break down to more than one VT 9697 // or one register. 9698 ISD::ArgFlagsTy Flags; 9699 Flags.setSRet(); 9700 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9701 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9702 ISD::InputArg::NoArgIndex, 0); 9703 Ins.push_back(RetArg); 9704 } 9705 9706 // Look for stores of arguments to static allocas. Mark such arguments with a 9707 // flag to ask the target to give us the memory location of that argument if 9708 // available. 9709 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9710 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9711 ArgCopyElisionCandidates); 9712 9713 // Set up the incoming argument description vector. 9714 for (const Argument &Arg : F.args()) { 9715 unsigned ArgNo = Arg.getArgNo(); 9716 SmallVector<EVT, 4> ValueVTs; 9717 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9718 bool isArgValueUsed = !Arg.use_empty(); 9719 unsigned PartBase = 0; 9720 Type *FinalType = Arg.getType(); 9721 if (Arg.hasAttribute(Attribute::ByVal)) 9722 FinalType = Arg.getParamByValType(); 9723 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9724 FinalType, F.getCallingConv(), F.isVarArg()); 9725 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9726 Value != NumValues; ++Value) { 9727 EVT VT = ValueVTs[Value]; 9728 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9729 ISD::ArgFlagsTy Flags; 9730 9731 // Certain targets (such as MIPS), may have a different ABI alignment 9732 // for a type depending on the context. Give the target a chance to 9733 // specify the alignment it wants. 9734 const Align OriginalAlignment( 9735 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9736 9737 if (Arg.getType()->isPointerTy()) { 9738 Flags.setPointer(); 9739 Flags.setPointerAddrSpace( 9740 cast<PointerType>(Arg.getType())->getAddressSpace()); 9741 } 9742 if (Arg.hasAttribute(Attribute::ZExt)) 9743 Flags.setZExt(); 9744 if (Arg.hasAttribute(Attribute::SExt)) 9745 Flags.setSExt(); 9746 if (Arg.hasAttribute(Attribute::InReg)) { 9747 // If we are using vectorcall calling convention, a structure that is 9748 // passed InReg - is surely an HVA 9749 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9750 isa<StructType>(Arg.getType())) { 9751 // The first value of a structure is marked 9752 if (0 == Value) 9753 Flags.setHvaStart(); 9754 Flags.setHva(); 9755 } 9756 // Set InReg Flag 9757 Flags.setInReg(); 9758 } 9759 if (Arg.hasAttribute(Attribute::StructRet)) 9760 Flags.setSRet(); 9761 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9762 Flags.setSwiftSelf(); 9763 if (Arg.hasAttribute(Attribute::SwiftError)) 9764 Flags.setSwiftError(); 9765 if (Arg.hasAttribute(Attribute::ByVal)) 9766 Flags.setByVal(); 9767 if (Arg.hasAttribute(Attribute::ByRef)) 9768 Flags.setByRef(); 9769 if (Arg.hasAttribute(Attribute::InAlloca)) { 9770 Flags.setInAlloca(); 9771 // Set the byval flag for CCAssignFn callbacks that don't know about 9772 // inalloca. This way we can know how many bytes we should've allocated 9773 // and how many bytes a callee cleanup function will pop. If we port 9774 // inalloca to more targets, we'll have to add custom inalloca handling 9775 // in the various CC lowering callbacks. 9776 Flags.setByVal(); 9777 } 9778 if (Arg.hasAttribute(Attribute::Preallocated)) { 9779 Flags.setPreallocated(); 9780 // Set the byval flag for CCAssignFn callbacks that don't know about 9781 // preallocated. This way we can know how many bytes we should've 9782 // allocated and how many bytes a callee cleanup function will pop. If 9783 // we port preallocated to more targets, we'll have to add custom 9784 // preallocated handling in the various CC lowering callbacks. 9785 Flags.setByVal(); 9786 } 9787 9788 Type *ArgMemTy = nullptr; 9789 if (F.getCallingConv() == CallingConv::X86_INTR) { 9790 // IA Interrupt passes frame (1st parameter) by value in the stack. 9791 if (ArgNo == 0) { 9792 Flags.setByVal(); 9793 // FIXME: Dependence on pointee element type. See bug 46672. 9794 ArgMemTy = Arg.getType()->getPointerElementType(); 9795 } 9796 } 9797 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 9798 Flags.isByRef()) { 9799 if (!ArgMemTy) 9800 ArgMemTy = Arg.getPointeeInMemoryValueType(); 9801 9802 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 9803 9804 // For in-memory arguments, size and alignment should be passed from FE. 9805 // BE will guess if this info is not there but there are cases it cannot 9806 // get right. 9807 MaybeAlign MemAlign = Arg.getParamAlign(); 9808 if (!MemAlign) 9809 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 9810 9811 if (Flags.isByRef()) { 9812 Flags.setByRefSize(MemSize); 9813 Flags.setByRefAlign(*MemAlign); 9814 } else { 9815 Flags.setByValSize(MemSize); 9816 Flags.setByValAlign(*MemAlign); 9817 } 9818 } 9819 9820 if (Arg.hasAttribute(Attribute::Nest)) 9821 Flags.setNest(); 9822 if (NeedsRegBlock) 9823 Flags.setInConsecutiveRegs(); 9824 Flags.setOrigAlign(OriginalAlignment); 9825 if (ArgCopyElisionCandidates.count(&Arg)) 9826 Flags.setCopyElisionCandidate(); 9827 if (Arg.hasAttribute(Attribute::Returned)) 9828 Flags.setReturned(); 9829 9830 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9831 *CurDAG->getContext(), F.getCallingConv(), VT); 9832 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9833 *CurDAG->getContext(), F.getCallingConv(), VT); 9834 for (unsigned i = 0; i != NumRegs; ++i) { 9835 // For scalable vectors, use the minimum size; individual targets 9836 // are responsible for handling scalable vector arguments and 9837 // return values. 9838 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9839 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9840 if (NumRegs > 1 && i == 0) 9841 MyFlags.Flags.setSplit(); 9842 // if it isn't first piece, alignment must be 1 9843 else if (i > 0) { 9844 MyFlags.Flags.setOrigAlign(Align(1)); 9845 if (i == NumRegs - 1) 9846 MyFlags.Flags.setSplitEnd(); 9847 } 9848 Ins.push_back(MyFlags); 9849 } 9850 if (NeedsRegBlock && Value == NumValues - 1) 9851 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9852 PartBase += VT.getStoreSize().getKnownMinSize(); 9853 } 9854 } 9855 9856 // Call the target to set up the argument values. 9857 SmallVector<SDValue, 8> InVals; 9858 SDValue NewRoot = TLI->LowerFormalArguments( 9859 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9860 9861 // Verify that the target's LowerFormalArguments behaved as expected. 9862 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9863 "LowerFormalArguments didn't return a valid chain!"); 9864 assert(InVals.size() == Ins.size() && 9865 "LowerFormalArguments didn't emit the correct number of values!"); 9866 LLVM_DEBUG({ 9867 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9868 assert(InVals[i].getNode() && 9869 "LowerFormalArguments emitted a null value!"); 9870 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9871 "LowerFormalArguments emitted a value with the wrong type!"); 9872 } 9873 }); 9874 9875 // Update the DAG with the new chain value resulting from argument lowering. 9876 DAG.setRoot(NewRoot); 9877 9878 // Set up the argument values. 9879 unsigned i = 0; 9880 if (!FuncInfo->CanLowerReturn) { 9881 // Create a virtual register for the sret pointer, and put in a copy 9882 // from the sret argument into it. 9883 SmallVector<EVT, 1> ValueVTs; 9884 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9885 F.getReturnType()->getPointerTo( 9886 DAG.getDataLayout().getAllocaAddrSpace()), 9887 ValueVTs); 9888 MVT VT = ValueVTs[0].getSimpleVT(); 9889 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9890 Optional<ISD::NodeType> AssertOp = None; 9891 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9892 nullptr, F.getCallingConv(), AssertOp); 9893 9894 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9895 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9896 Register SRetReg = 9897 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9898 FuncInfo->DemoteRegister = SRetReg; 9899 NewRoot = 9900 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9901 DAG.setRoot(NewRoot); 9902 9903 // i indexes lowered arguments. Bump it past the hidden sret argument. 9904 ++i; 9905 } 9906 9907 SmallVector<SDValue, 4> Chains; 9908 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9909 for (const Argument &Arg : F.args()) { 9910 SmallVector<SDValue, 4> ArgValues; 9911 SmallVector<EVT, 4> ValueVTs; 9912 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9913 unsigned NumValues = ValueVTs.size(); 9914 if (NumValues == 0) 9915 continue; 9916 9917 bool ArgHasUses = !Arg.use_empty(); 9918 9919 // Elide the copying store if the target loaded this argument from a 9920 // suitable fixed stack object. 9921 if (Ins[i].Flags.isCopyElisionCandidate()) { 9922 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9923 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9924 InVals[i], ArgHasUses); 9925 } 9926 9927 // If this argument is unused then remember its value. It is used to generate 9928 // debugging information. 9929 bool isSwiftErrorArg = 9930 TLI->supportSwiftError() && 9931 Arg.hasAttribute(Attribute::SwiftError); 9932 if (!ArgHasUses && !isSwiftErrorArg) { 9933 SDB->setUnusedArgValue(&Arg, InVals[i]); 9934 9935 // Also remember any frame index for use in FastISel. 9936 if (FrameIndexSDNode *FI = 9937 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9938 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9939 } 9940 9941 for (unsigned Val = 0; Val != NumValues; ++Val) { 9942 EVT VT = ValueVTs[Val]; 9943 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9944 F.getCallingConv(), VT); 9945 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9946 *CurDAG->getContext(), F.getCallingConv(), VT); 9947 9948 // Even an apparent 'unused' swifterror argument needs to be returned. So 9949 // we do generate a copy for it that can be used on return from the 9950 // function. 9951 if (ArgHasUses || isSwiftErrorArg) { 9952 Optional<ISD::NodeType> AssertOp; 9953 if (Arg.hasAttribute(Attribute::SExt)) 9954 AssertOp = ISD::AssertSext; 9955 else if (Arg.hasAttribute(Attribute::ZExt)) 9956 AssertOp = ISD::AssertZext; 9957 9958 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9959 PartVT, VT, nullptr, 9960 F.getCallingConv(), AssertOp)); 9961 } 9962 9963 i += NumParts; 9964 } 9965 9966 // We don't need to do anything else for unused arguments. 9967 if (ArgValues.empty()) 9968 continue; 9969 9970 // Note down frame index. 9971 if (FrameIndexSDNode *FI = 9972 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9973 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9974 9975 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9976 SDB->getCurSDLoc()); 9977 9978 SDB->setValue(&Arg, Res); 9979 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9980 // We want to associate the argument with the frame index, among 9981 // involved operands, that correspond to the lowest address. The 9982 // getCopyFromParts function, called earlier, is swapping the order of 9983 // the operands to BUILD_PAIR depending on endianness. The result of 9984 // that swapping is that the least significant bits of the argument will 9985 // be in the first operand of the BUILD_PAIR node, and the most 9986 // significant bits will be in the second operand. 9987 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9988 if (LoadSDNode *LNode = 9989 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9990 if (FrameIndexSDNode *FI = 9991 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9992 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9993 } 9994 9995 // Analyses past this point are naive and don't expect an assertion. 9996 if (Res.getOpcode() == ISD::AssertZext) 9997 Res = Res.getOperand(0); 9998 9999 // Update the SwiftErrorVRegDefMap. 10000 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10001 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10002 if (Register::isVirtualRegister(Reg)) 10003 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10004 Reg); 10005 } 10006 10007 // If this argument is live outside of the entry block, insert a copy from 10008 // wherever we got it to the vreg that other BB's will reference it as. 10009 if (Res.getOpcode() == ISD::CopyFromReg) { 10010 // If we can, though, try to skip creating an unnecessary vreg. 10011 // FIXME: This isn't very clean... it would be nice to make this more 10012 // general. 10013 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10014 if (Register::isVirtualRegister(Reg)) { 10015 FuncInfo->ValueMap[&Arg] = Reg; 10016 continue; 10017 } 10018 } 10019 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10020 FuncInfo->InitializeRegForValue(&Arg); 10021 SDB->CopyToExportRegsIfNeeded(&Arg); 10022 } 10023 } 10024 10025 if (!Chains.empty()) { 10026 Chains.push_back(NewRoot); 10027 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10028 } 10029 10030 DAG.setRoot(NewRoot); 10031 10032 assert(i == InVals.size() && "Argument register count mismatch!"); 10033 10034 // If any argument copy elisions occurred and we have debug info, update the 10035 // stale frame indices used in the dbg.declare variable info table. 10036 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10037 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10038 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10039 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10040 if (I != ArgCopyElisionFrameIndexMap.end()) 10041 VI.Slot = I->second; 10042 } 10043 } 10044 10045 // Finally, if the target has anything special to do, allow it to do so. 10046 emitFunctionEntryCode(); 10047 } 10048 10049 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10050 /// ensure constants are generated when needed. Remember the virtual registers 10051 /// that need to be added to the Machine PHI nodes as input. We cannot just 10052 /// directly add them, because expansion might result in multiple MBB's for one 10053 /// BB. As such, the start of the BB might correspond to a different MBB than 10054 /// the end. 10055 void 10056 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10057 const Instruction *TI = LLVMBB->getTerminator(); 10058 10059 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10060 10061 // Check PHI nodes in successors that expect a value to be available from this 10062 // block. 10063 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10064 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10065 if (!isa<PHINode>(SuccBB->begin())) continue; 10066 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10067 10068 // If this terminator has multiple identical successors (common for 10069 // switches), only handle each succ once. 10070 if (!SuccsHandled.insert(SuccMBB).second) 10071 continue; 10072 10073 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10074 10075 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10076 // nodes and Machine PHI nodes, but the incoming operands have not been 10077 // emitted yet. 10078 for (const PHINode &PN : SuccBB->phis()) { 10079 // Ignore dead phi's. 10080 if (PN.use_empty()) 10081 continue; 10082 10083 // Skip empty types 10084 if (PN.getType()->isEmptyTy()) 10085 continue; 10086 10087 unsigned Reg; 10088 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10089 10090 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10091 unsigned &RegOut = ConstantsOut[C]; 10092 if (RegOut == 0) { 10093 RegOut = FuncInfo.CreateRegs(C); 10094 CopyValueToVirtualRegister(C, RegOut); 10095 } 10096 Reg = RegOut; 10097 } else { 10098 DenseMap<const Value *, Register>::iterator I = 10099 FuncInfo.ValueMap.find(PHIOp); 10100 if (I != FuncInfo.ValueMap.end()) 10101 Reg = I->second; 10102 else { 10103 assert(isa<AllocaInst>(PHIOp) && 10104 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10105 "Didn't codegen value into a register!??"); 10106 Reg = FuncInfo.CreateRegs(PHIOp); 10107 CopyValueToVirtualRegister(PHIOp, Reg); 10108 } 10109 } 10110 10111 // Remember that this register needs to added to the machine PHI node as 10112 // the input for this MBB. 10113 SmallVector<EVT, 4> ValueVTs; 10114 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10115 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10116 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10117 EVT VT = ValueVTs[vti]; 10118 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10119 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10120 FuncInfo.PHINodesToUpdate.push_back( 10121 std::make_pair(&*MBBI++, Reg + i)); 10122 Reg += NumRegisters; 10123 } 10124 } 10125 } 10126 10127 ConstantsOut.clear(); 10128 } 10129 10130 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10131 /// is 0. 10132 MachineBasicBlock * 10133 SelectionDAGBuilder::StackProtectorDescriptor:: 10134 AddSuccessorMBB(const BasicBlock *BB, 10135 MachineBasicBlock *ParentMBB, 10136 bool IsLikely, 10137 MachineBasicBlock *SuccMBB) { 10138 // If SuccBB has not been created yet, create it. 10139 if (!SuccMBB) { 10140 MachineFunction *MF = ParentMBB->getParent(); 10141 MachineFunction::iterator BBI(ParentMBB); 10142 SuccMBB = MF->CreateMachineBasicBlock(BB); 10143 MF->insert(++BBI, SuccMBB); 10144 } 10145 // Add it as a successor of ParentMBB. 10146 ParentMBB->addSuccessor( 10147 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10148 return SuccMBB; 10149 } 10150 10151 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10152 MachineFunction::iterator I(MBB); 10153 if (++I == FuncInfo.MF->end()) 10154 return nullptr; 10155 return &*I; 10156 } 10157 10158 /// During lowering new call nodes can be created (such as memset, etc.). 10159 /// Those will become new roots of the current DAG, but complications arise 10160 /// when they are tail calls. In such cases, the call lowering will update 10161 /// the root, but the builder still needs to know that a tail call has been 10162 /// lowered in order to avoid generating an additional return. 10163 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10164 // If the node is null, we do have a tail call. 10165 if (MaybeTC.getNode() != nullptr) 10166 DAG.setRoot(MaybeTC); 10167 else 10168 HasTailCall = true; 10169 } 10170 10171 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10172 MachineBasicBlock *SwitchMBB, 10173 MachineBasicBlock *DefaultMBB) { 10174 MachineFunction *CurMF = FuncInfo.MF; 10175 MachineBasicBlock *NextMBB = nullptr; 10176 MachineFunction::iterator BBI(W.MBB); 10177 if (++BBI != FuncInfo.MF->end()) 10178 NextMBB = &*BBI; 10179 10180 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10181 10182 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10183 10184 if (Size == 2 && W.MBB == SwitchMBB) { 10185 // If any two of the cases has the same destination, and if one value 10186 // is the same as the other, but has one bit unset that the other has set, 10187 // use bit manipulation to do two compares at once. For example: 10188 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10189 // TODO: This could be extended to merge any 2 cases in switches with 3 10190 // cases. 10191 // TODO: Handle cases where W.CaseBB != SwitchBB. 10192 CaseCluster &Small = *W.FirstCluster; 10193 CaseCluster &Big = *W.LastCluster; 10194 10195 if (Small.Low == Small.High && Big.Low == Big.High && 10196 Small.MBB == Big.MBB) { 10197 const APInt &SmallValue = Small.Low->getValue(); 10198 const APInt &BigValue = Big.Low->getValue(); 10199 10200 // Check that there is only one bit different. 10201 APInt CommonBit = BigValue ^ SmallValue; 10202 if (CommonBit.isPowerOf2()) { 10203 SDValue CondLHS = getValue(Cond); 10204 EVT VT = CondLHS.getValueType(); 10205 SDLoc DL = getCurSDLoc(); 10206 10207 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10208 DAG.getConstant(CommonBit, DL, VT)); 10209 SDValue Cond = DAG.getSetCC( 10210 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10211 ISD::SETEQ); 10212 10213 // Update successor info. 10214 // Both Small and Big will jump to Small.BB, so we sum up the 10215 // probabilities. 10216 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10217 if (BPI) 10218 addSuccessorWithProb( 10219 SwitchMBB, DefaultMBB, 10220 // The default destination is the first successor in IR. 10221 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10222 else 10223 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10224 10225 // Insert the true branch. 10226 SDValue BrCond = 10227 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10228 DAG.getBasicBlock(Small.MBB)); 10229 // Insert the false branch. 10230 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10231 DAG.getBasicBlock(DefaultMBB)); 10232 10233 DAG.setRoot(BrCond); 10234 return; 10235 } 10236 } 10237 } 10238 10239 if (TM.getOptLevel() != CodeGenOpt::None) { 10240 // Here, we order cases by probability so the most likely case will be 10241 // checked first. However, two clusters can have the same probability in 10242 // which case their relative ordering is non-deterministic. So we use Low 10243 // as a tie-breaker as clusters are guaranteed to never overlap. 10244 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10245 [](const CaseCluster &a, const CaseCluster &b) { 10246 return a.Prob != b.Prob ? 10247 a.Prob > b.Prob : 10248 a.Low->getValue().slt(b.Low->getValue()); 10249 }); 10250 10251 // Rearrange the case blocks so that the last one falls through if possible 10252 // without changing the order of probabilities. 10253 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10254 --I; 10255 if (I->Prob > W.LastCluster->Prob) 10256 break; 10257 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10258 std::swap(*I, *W.LastCluster); 10259 break; 10260 } 10261 } 10262 } 10263 10264 // Compute total probability. 10265 BranchProbability DefaultProb = W.DefaultProb; 10266 BranchProbability UnhandledProbs = DefaultProb; 10267 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10268 UnhandledProbs += I->Prob; 10269 10270 MachineBasicBlock *CurMBB = W.MBB; 10271 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10272 bool FallthroughUnreachable = false; 10273 MachineBasicBlock *Fallthrough; 10274 if (I == W.LastCluster) { 10275 // For the last cluster, fall through to the default destination. 10276 Fallthrough = DefaultMBB; 10277 FallthroughUnreachable = isa<UnreachableInst>( 10278 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10279 } else { 10280 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10281 CurMF->insert(BBI, Fallthrough); 10282 // Put Cond in a virtual register to make it available from the new blocks. 10283 ExportFromCurrentBlock(Cond); 10284 } 10285 UnhandledProbs -= I->Prob; 10286 10287 switch (I->Kind) { 10288 case CC_JumpTable: { 10289 // FIXME: Optimize away range check based on pivot comparisons. 10290 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10291 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10292 10293 // The jump block hasn't been inserted yet; insert it here. 10294 MachineBasicBlock *JumpMBB = JT->MBB; 10295 CurMF->insert(BBI, JumpMBB); 10296 10297 auto JumpProb = I->Prob; 10298 auto FallthroughProb = UnhandledProbs; 10299 10300 // If the default statement is a target of the jump table, we evenly 10301 // distribute the default probability to successors of CurMBB. Also 10302 // update the probability on the edge from JumpMBB to Fallthrough. 10303 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10304 SE = JumpMBB->succ_end(); 10305 SI != SE; ++SI) { 10306 if (*SI == DefaultMBB) { 10307 JumpProb += DefaultProb / 2; 10308 FallthroughProb -= DefaultProb / 2; 10309 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10310 JumpMBB->normalizeSuccProbs(); 10311 break; 10312 } 10313 } 10314 10315 if (FallthroughUnreachable) { 10316 // Skip the range check if the fallthrough block is unreachable. 10317 JTH->OmitRangeCheck = true; 10318 } 10319 10320 if (!JTH->OmitRangeCheck) 10321 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10322 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10323 CurMBB->normalizeSuccProbs(); 10324 10325 // The jump table header will be inserted in our current block, do the 10326 // range check, and fall through to our fallthrough block. 10327 JTH->HeaderBB = CurMBB; 10328 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10329 10330 // If we're in the right place, emit the jump table header right now. 10331 if (CurMBB == SwitchMBB) { 10332 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10333 JTH->Emitted = true; 10334 } 10335 break; 10336 } 10337 case CC_BitTests: { 10338 // FIXME: Optimize away range check based on pivot comparisons. 10339 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10340 10341 // The bit test blocks haven't been inserted yet; insert them here. 10342 for (BitTestCase &BTC : BTB->Cases) 10343 CurMF->insert(BBI, BTC.ThisBB); 10344 10345 // Fill in fields of the BitTestBlock. 10346 BTB->Parent = CurMBB; 10347 BTB->Default = Fallthrough; 10348 10349 BTB->DefaultProb = UnhandledProbs; 10350 // If the cases in bit test don't form a contiguous range, we evenly 10351 // distribute the probability on the edge to Fallthrough to two 10352 // successors of CurMBB. 10353 if (!BTB->ContiguousRange) { 10354 BTB->Prob += DefaultProb / 2; 10355 BTB->DefaultProb -= DefaultProb / 2; 10356 } 10357 10358 if (FallthroughUnreachable) { 10359 // Skip the range check if the fallthrough block is unreachable. 10360 BTB->OmitRangeCheck = true; 10361 } 10362 10363 // If we're in the right place, emit the bit test header right now. 10364 if (CurMBB == SwitchMBB) { 10365 visitBitTestHeader(*BTB, SwitchMBB); 10366 BTB->Emitted = true; 10367 } 10368 break; 10369 } 10370 case CC_Range: { 10371 const Value *RHS, *LHS, *MHS; 10372 ISD::CondCode CC; 10373 if (I->Low == I->High) { 10374 // Check Cond == I->Low. 10375 CC = ISD::SETEQ; 10376 LHS = Cond; 10377 RHS=I->Low; 10378 MHS = nullptr; 10379 } else { 10380 // Check I->Low <= Cond <= I->High. 10381 CC = ISD::SETLE; 10382 LHS = I->Low; 10383 MHS = Cond; 10384 RHS = I->High; 10385 } 10386 10387 // If Fallthrough is unreachable, fold away the comparison. 10388 if (FallthroughUnreachable) 10389 CC = ISD::SETTRUE; 10390 10391 // The false probability is the sum of all unhandled cases. 10392 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10393 getCurSDLoc(), I->Prob, UnhandledProbs); 10394 10395 if (CurMBB == SwitchMBB) 10396 visitSwitchCase(CB, SwitchMBB); 10397 else 10398 SL->SwitchCases.push_back(CB); 10399 10400 break; 10401 } 10402 } 10403 CurMBB = Fallthrough; 10404 } 10405 } 10406 10407 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10408 CaseClusterIt First, 10409 CaseClusterIt Last) { 10410 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10411 if (X.Prob != CC.Prob) 10412 return X.Prob > CC.Prob; 10413 10414 // Ties are broken by comparing the case value. 10415 return X.Low->getValue().slt(CC.Low->getValue()); 10416 }); 10417 } 10418 10419 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10420 const SwitchWorkListItem &W, 10421 Value *Cond, 10422 MachineBasicBlock *SwitchMBB) { 10423 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10424 "Clusters not sorted?"); 10425 10426 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10427 10428 // Balance the tree based on branch probabilities to create a near-optimal (in 10429 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10430 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10431 CaseClusterIt LastLeft = W.FirstCluster; 10432 CaseClusterIt FirstRight = W.LastCluster; 10433 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10434 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10435 10436 // Move LastLeft and FirstRight towards each other from opposite directions to 10437 // find a partitioning of the clusters which balances the probability on both 10438 // sides. If LeftProb and RightProb are equal, alternate which side is 10439 // taken to ensure 0-probability nodes are distributed evenly. 10440 unsigned I = 0; 10441 while (LastLeft + 1 < FirstRight) { 10442 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10443 LeftProb += (++LastLeft)->Prob; 10444 else 10445 RightProb += (--FirstRight)->Prob; 10446 I++; 10447 } 10448 10449 while (true) { 10450 // Our binary search tree differs from a typical BST in that ours can have up 10451 // to three values in each leaf. The pivot selection above doesn't take that 10452 // into account, which means the tree might require more nodes and be less 10453 // efficient. We compensate for this here. 10454 10455 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10456 unsigned NumRight = W.LastCluster - FirstRight + 1; 10457 10458 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10459 // If one side has less than 3 clusters, and the other has more than 3, 10460 // consider taking a cluster from the other side. 10461 10462 if (NumLeft < NumRight) { 10463 // Consider moving the first cluster on the right to the left side. 10464 CaseCluster &CC = *FirstRight; 10465 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10466 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10467 if (LeftSideRank <= RightSideRank) { 10468 // Moving the cluster to the left does not demote it. 10469 ++LastLeft; 10470 ++FirstRight; 10471 continue; 10472 } 10473 } else { 10474 assert(NumRight < NumLeft); 10475 // Consider moving the last element on the left to the right side. 10476 CaseCluster &CC = *LastLeft; 10477 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10478 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10479 if (RightSideRank <= LeftSideRank) { 10480 // Moving the cluster to the right does not demot it. 10481 --LastLeft; 10482 --FirstRight; 10483 continue; 10484 } 10485 } 10486 } 10487 break; 10488 } 10489 10490 assert(LastLeft + 1 == FirstRight); 10491 assert(LastLeft >= W.FirstCluster); 10492 assert(FirstRight <= W.LastCluster); 10493 10494 // Use the first element on the right as pivot since we will make less-than 10495 // comparisons against it. 10496 CaseClusterIt PivotCluster = FirstRight; 10497 assert(PivotCluster > W.FirstCluster); 10498 assert(PivotCluster <= W.LastCluster); 10499 10500 CaseClusterIt FirstLeft = W.FirstCluster; 10501 CaseClusterIt LastRight = W.LastCluster; 10502 10503 const ConstantInt *Pivot = PivotCluster->Low; 10504 10505 // New blocks will be inserted immediately after the current one. 10506 MachineFunction::iterator BBI(W.MBB); 10507 ++BBI; 10508 10509 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10510 // we can branch to its destination directly if it's squeezed exactly in 10511 // between the known lower bound and Pivot - 1. 10512 MachineBasicBlock *LeftMBB; 10513 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10514 FirstLeft->Low == W.GE && 10515 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10516 LeftMBB = FirstLeft->MBB; 10517 } else { 10518 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10519 FuncInfo.MF->insert(BBI, LeftMBB); 10520 WorkList.push_back( 10521 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10522 // Put Cond in a virtual register to make it available from the new blocks. 10523 ExportFromCurrentBlock(Cond); 10524 } 10525 10526 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10527 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10528 // directly if RHS.High equals the current upper bound. 10529 MachineBasicBlock *RightMBB; 10530 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10531 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10532 RightMBB = FirstRight->MBB; 10533 } else { 10534 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10535 FuncInfo.MF->insert(BBI, RightMBB); 10536 WorkList.push_back( 10537 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10538 // Put Cond in a virtual register to make it available from the new blocks. 10539 ExportFromCurrentBlock(Cond); 10540 } 10541 10542 // Create the CaseBlock record that will be used to lower the branch. 10543 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10544 getCurSDLoc(), LeftProb, RightProb); 10545 10546 if (W.MBB == SwitchMBB) 10547 visitSwitchCase(CB, SwitchMBB); 10548 else 10549 SL->SwitchCases.push_back(CB); 10550 } 10551 10552 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10553 // from the swith statement. 10554 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10555 BranchProbability PeeledCaseProb) { 10556 if (PeeledCaseProb == BranchProbability::getOne()) 10557 return BranchProbability::getZero(); 10558 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10559 10560 uint32_t Numerator = CaseProb.getNumerator(); 10561 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10562 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10563 } 10564 10565 // Try to peel the top probability case if it exceeds the threshold. 10566 // Return current MachineBasicBlock for the switch statement if the peeling 10567 // does not occur. 10568 // If the peeling is performed, return the newly created MachineBasicBlock 10569 // for the peeled switch statement. Also update Clusters to remove the peeled 10570 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10571 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10572 const SwitchInst &SI, CaseClusterVector &Clusters, 10573 BranchProbability &PeeledCaseProb) { 10574 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10575 // Don't perform if there is only one cluster or optimizing for size. 10576 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10577 TM.getOptLevel() == CodeGenOpt::None || 10578 SwitchMBB->getParent()->getFunction().hasMinSize()) 10579 return SwitchMBB; 10580 10581 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10582 unsigned PeeledCaseIndex = 0; 10583 bool SwitchPeeled = false; 10584 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10585 CaseCluster &CC = Clusters[Index]; 10586 if (CC.Prob < TopCaseProb) 10587 continue; 10588 TopCaseProb = CC.Prob; 10589 PeeledCaseIndex = Index; 10590 SwitchPeeled = true; 10591 } 10592 if (!SwitchPeeled) 10593 return SwitchMBB; 10594 10595 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10596 << TopCaseProb << "\n"); 10597 10598 // Record the MBB for the peeled switch statement. 10599 MachineFunction::iterator BBI(SwitchMBB); 10600 ++BBI; 10601 MachineBasicBlock *PeeledSwitchMBB = 10602 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10603 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10604 10605 ExportFromCurrentBlock(SI.getCondition()); 10606 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10607 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10608 nullptr, nullptr, TopCaseProb.getCompl()}; 10609 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10610 10611 Clusters.erase(PeeledCaseIt); 10612 for (CaseCluster &CC : Clusters) { 10613 LLVM_DEBUG( 10614 dbgs() << "Scale the probablity for one cluster, before scaling: " 10615 << CC.Prob << "\n"); 10616 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10617 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10618 } 10619 PeeledCaseProb = TopCaseProb; 10620 return PeeledSwitchMBB; 10621 } 10622 10623 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10624 // Extract cases from the switch. 10625 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10626 CaseClusterVector Clusters; 10627 Clusters.reserve(SI.getNumCases()); 10628 for (auto I : SI.cases()) { 10629 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10630 const ConstantInt *CaseVal = I.getCaseValue(); 10631 BranchProbability Prob = 10632 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10633 : BranchProbability(1, SI.getNumCases() + 1); 10634 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10635 } 10636 10637 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10638 10639 // Cluster adjacent cases with the same destination. We do this at all 10640 // optimization levels because it's cheap to do and will make codegen faster 10641 // if there are many clusters. 10642 sortAndRangeify(Clusters); 10643 10644 // The branch probablity of the peeled case. 10645 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10646 MachineBasicBlock *PeeledSwitchMBB = 10647 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10648 10649 // If there is only the default destination, jump there directly. 10650 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10651 if (Clusters.empty()) { 10652 assert(PeeledSwitchMBB == SwitchMBB); 10653 SwitchMBB->addSuccessor(DefaultMBB); 10654 if (DefaultMBB != NextBlock(SwitchMBB)) { 10655 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10656 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10657 } 10658 return; 10659 } 10660 10661 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10662 SL->findBitTestClusters(Clusters, &SI); 10663 10664 LLVM_DEBUG({ 10665 dbgs() << "Case clusters: "; 10666 for (const CaseCluster &C : Clusters) { 10667 if (C.Kind == CC_JumpTable) 10668 dbgs() << "JT:"; 10669 if (C.Kind == CC_BitTests) 10670 dbgs() << "BT:"; 10671 10672 C.Low->getValue().print(dbgs(), true); 10673 if (C.Low != C.High) { 10674 dbgs() << '-'; 10675 C.High->getValue().print(dbgs(), true); 10676 } 10677 dbgs() << ' '; 10678 } 10679 dbgs() << '\n'; 10680 }); 10681 10682 assert(!Clusters.empty()); 10683 SwitchWorkList WorkList; 10684 CaseClusterIt First = Clusters.begin(); 10685 CaseClusterIt Last = Clusters.end() - 1; 10686 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10687 // Scale the branchprobability for DefaultMBB if the peel occurs and 10688 // DefaultMBB is not replaced. 10689 if (PeeledCaseProb != BranchProbability::getZero() && 10690 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10691 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10692 WorkList.push_back( 10693 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10694 10695 while (!WorkList.empty()) { 10696 SwitchWorkListItem W = WorkList.back(); 10697 WorkList.pop_back(); 10698 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10699 10700 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10701 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10702 // For optimized builds, lower large range as a balanced binary tree. 10703 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10704 continue; 10705 } 10706 10707 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10708 } 10709 } 10710 10711 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10712 SmallVector<EVT, 4> ValueVTs; 10713 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10714 ValueVTs); 10715 unsigned NumValues = ValueVTs.size(); 10716 if (NumValues == 0) return; 10717 10718 SmallVector<SDValue, 4> Values(NumValues); 10719 SDValue Op = getValue(I.getOperand(0)); 10720 10721 for (unsigned i = 0; i != NumValues; ++i) 10722 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10723 SDValue(Op.getNode(), Op.getResNo() + i)); 10724 10725 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10726 DAG.getVTList(ValueVTs), Values)); 10727 } 10728