1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "FunctionLoweringInfo.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineJumpTableInfo.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameInfo.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 namespace { 74 /// RegsForValue - This struct represents the registers (physical or virtual) 75 /// that a particular set of values is assigned, and the type information 76 /// about the value. The most common situation is to represent one value at a 77 /// time, but struct or array values are handled element-wise as multiple 78 /// values. The splitting of aggregates is performed recursively, so that we 79 /// never have aggregate-typed registers. The values at this point do not 80 /// necessarily have legal types, so each value may require one or more 81 /// registers of some legal type. 82 /// 83 struct RegsForValue { 84 /// TLI - The TargetLowering object. 85 /// 86 const TargetLowering *TLI; 87 88 /// ValueVTs - The value types of the values, which may not be legal, and 89 /// may need be promoted or synthesized from one or more registers. 90 /// 91 SmallVector<EVT, 4> ValueVTs; 92 93 /// RegVTs - The value types of the registers. This is the same size as 94 /// ValueVTs and it records, for each value, what the type of the assigned 95 /// register or registers are. (Individual values are never synthesized 96 /// from more than one type of register.) 97 /// 98 /// With virtual registers, the contents of RegVTs is redundant with TLI's 99 /// getRegisterType member function, however when with physical registers 100 /// it is necessary to have a separate record of the types. 101 /// 102 SmallVector<EVT, 4> RegVTs; 103 104 /// Regs - This list holds the registers assigned to the values. 105 /// Each legal or promoted value requires one register, and each 106 /// expanded value requires multiple registers. 107 /// 108 SmallVector<unsigned, 4> Regs; 109 110 RegsForValue() : TLI(0) {} 111 112 RegsForValue(const TargetLowering &tli, 113 const SmallVector<unsigned, 4> ®s, 114 EVT regvt, EVT valuevt) 115 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 116 RegsForValue(const TargetLowering &tli, 117 const SmallVector<unsigned, 4> ®s, 118 const SmallVector<EVT, 4> ®vts, 119 const SmallVector<EVT, 4> &valuevts) 120 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 121 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 122 unsigned Reg, const Type *Ty) : TLI(&tli) { 123 ComputeValueVTs(tli, Ty, ValueVTs); 124 125 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 126 EVT ValueVT = ValueVTs[Value]; 127 unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); 128 EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); 129 for (unsigned i = 0; i != NumRegs; ++i) 130 Regs.push_back(Reg + i); 131 RegVTs.push_back(RegisterVT); 132 Reg += NumRegs; 133 } 134 } 135 136 /// areValueTypesLegal - Return true if types of all the values are legal. 137 bool areValueTypesLegal() { 138 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 139 EVT RegisterVT = RegVTs[Value]; 140 if (!TLI->isTypeLegal(RegisterVT)) 141 return false; 142 } 143 return true; 144 } 145 146 147 /// append - Add the specified values to this one. 148 void append(const RegsForValue &RHS) { 149 TLI = RHS.TLI; 150 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 151 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 152 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 153 } 154 155 156 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 157 /// this value and returns the result as a ValueVTs value. This uses 158 /// Chain/Flag as the input and updates them for the output Chain/Flag. 159 /// If the Flag pointer is NULL, no flag is used. 160 SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 161 SDValue &Chain, SDValue *Flag) const; 162 163 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 164 /// specified value into the registers specified by this object. This uses 165 /// Chain/Flag as the input and updates them for the output Chain/Flag. 166 /// If the Flag pointer is NULL, no flag is used. 167 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 168 SDValue &Chain, SDValue *Flag) const; 169 170 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 171 /// operand list. This adds the code marker, matching input operand index 172 /// (if applicable), and includes the number of values added into it. 173 void AddInlineAsmOperands(unsigned Kind, 174 bool HasMatching, unsigned MatchingIdx, 175 SelectionDAG &DAG, 176 std::vector<SDValue> &Ops) const; 177 }; 178 } 179 180 /// getCopyFromParts - Create a value that contains the specified legal parts 181 /// combined into the value they represent. If the parts combine to a type 182 /// larger then ValueVT then AssertOp can be used to specify whether the extra 183 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 184 /// (ISD::AssertSext). 185 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, 186 const SDValue *Parts, 187 unsigned NumParts, EVT PartVT, EVT ValueVT, 188 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 189 assert(NumParts > 0 && "No parts to assemble!"); 190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 191 SDValue Val = Parts[0]; 192 193 if (NumParts > 1) { 194 // Assemble the value from multiple parts. 195 if (!ValueVT.isVector() && ValueVT.isInteger()) { 196 unsigned PartBits = PartVT.getSizeInBits(); 197 unsigned ValueBits = ValueVT.getSizeInBits(); 198 199 // Assemble the power of 2 part. 200 unsigned RoundParts = NumParts & (NumParts - 1) ? 201 1 << Log2_32(NumParts) : NumParts; 202 unsigned RoundBits = PartBits * RoundParts; 203 EVT RoundVT = RoundBits == ValueBits ? 204 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 205 SDValue Lo, Hi; 206 207 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 208 209 if (RoundParts > 2) { 210 Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2, 211 PartVT, HalfVT); 212 Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2, 213 RoundParts / 2, PartVT, HalfVT); 214 } else { 215 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 216 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 217 } 218 219 if (TLI.isBigEndian()) 220 std::swap(Lo, Hi); 221 222 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 223 224 if (RoundParts < NumParts) { 225 // Assemble the trailing non-power-of-2 part. 226 unsigned OddParts = NumParts - RoundParts; 227 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 228 Hi = getCopyFromParts(DAG, dl, 229 Parts + RoundParts, OddParts, PartVT, OddVT); 230 231 // Combine the round and odd parts. 232 Lo = Val; 233 if (TLI.isBigEndian()) 234 std::swap(Lo, Hi); 235 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 236 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 237 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 238 DAG.getConstant(Lo.getValueType().getSizeInBits(), 239 TLI.getPointerTy())); 240 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 241 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 242 } 243 } else if (ValueVT.isVector()) { 244 // Handle a multi-element vector. 245 EVT IntermediateVT, RegisterVT; 246 unsigned NumIntermediates; 247 unsigned NumRegs = 248 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 249 NumIntermediates, RegisterVT); 250 assert(NumRegs == NumParts 251 && "Part count doesn't match vector breakdown!"); 252 NumParts = NumRegs; // Silence a compiler warning. 253 assert(RegisterVT == PartVT 254 && "Part type doesn't match vector breakdown!"); 255 assert(RegisterVT == Parts[0].getValueType() && 256 "Part type doesn't match part!"); 257 258 // Assemble the parts into intermediate operands. 259 SmallVector<SDValue, 8> Ops(NumIntermediates); 260 if (NumIntermediates == NumParts) { 261 // If the register was not expanded, truncate or copy the value, 262 // as appropriate. 263 for (unsigned i = 0; i != NumParts; ++i) 264 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, 265 PartVT, IntermediateVT); 266 } else if (NumParts > 0) { 267 // If the intermediate type was expanded, build the intermediate 268 // operands from the parts. 269 assert(NumParts % NumIntermediates == 0 && 270 "Must expand into a divisible number of parts!"); 271 unsigned Factor = NumParts / NumIntermediates; 272 for (unsigned i = 0; i != NumIntermediates; ++i) 273 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, 274 PartVT, IntermediateVT); 275 } 276 277 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 278 // intermediate operands. 279 Val = DAG.getNode(IntermediateVT.isVector() ? 280 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 281 ValueVT, &Ops[0], NumIntermediates); 282 } else if (PartVT.isFloatingPoint()) { 283 // FP split into multiple FP parts (for ppcf128) 284 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 285 "Unexpected split"); 286 SDValue Lo, Hi; 287 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 288 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 289 if (TLI.isBigEndian()) 290 std::swap(Lo, Hi); 291 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 292 } else { 293 // FP split into integer parts (soft fp) 294 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 295 !PartVT.isVector() && "Unexpected split"); 296 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 297 Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); 298 } 299 } 300 301 // There is now one part, held in Val. Correct it to match ValueVT. 302 PartVT = Val.getValueType(); 303 304 if (PartVT == ValueVT) 305 return Val; 306 307 if (PartVT.isVector()) { 308 assert(ValueVT.isVector() && "Unknown vector conversion!"); 309 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 310 } 311 312 if (ValueVT.isVector()) { 313 assert(ValueVT.getVectorElementType() == PartVT && 314 ValueVT.getVectorNumElements() == 1 && 315 "Only trivial scalar-to-vector conversions should get here!"); 316 return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 317 } 318 319 if (PartVT.isInteger() && 320 ValueVT.isInteger()) { 321 if (ValueVT.bitsLT(PartVT)) { 322 // For a truncate, see if we have any information to 323 // indicate whether the truncated bits will always be 324 // zero or sign-extension. 325 if (AssertOp != ISD::DELETED_NODE) 326 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 327 DAG.getValueType(ValueVT)); 328 return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 329 } else { 330 return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 331 } 332 } 333 334 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 335 if (ValueVT.bitsLT(Val.getValueType())) { 336 // FP_ROUND's are always exact here. 337 return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 338 DAG.getIntPtrConstant(1)); 339 } 340 341 return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 342 } 343 344 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 345 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 346 347 llvm_unreachable("Unknown mismatch!"); 348 return SDValue(); 349 } 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 EVT PartVT, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 359 EVT PtrVT = TLI.getPointerTy(); 360 EVT ValueVT = Val.getValueType(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (!NumParts) 366 return; 367 368 if (!ValueVT.isVector()) { 369 if (PartVT == ValueVT) { 370 assert(NumParts == 1 && "No-op copy with multiple parts!"); 371 Parts[0] = Val; 372 return; 373 } 374 375 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 376 // If the parts cover more bits than the value has, promote the value. 377 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 378 assert(NumParts == 1 && "Do not know what to promote to!"); 379 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 380 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 381 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 382 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 383 } else { 384 llvm_unreachable("Unknown mismatch!"); 385 } 386 } else if (PartBits == ValueVT.getSizeInBits()) { 387 // Different types of the same size. 388 assert(NumParts == 1 && PartVT != ValueVT); 389 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 390 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 391 // If the parts cover less bits than value has, truncate the value. 392 if (PartVT.isInteger() && ValueVT.isInteger()) { 393 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 394 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 395 } else { 396 llvm_unreachable("Unknown mismatch!"); 397 } 398 } 399 400 // The value may have changed - recompute ValueVT. 401 ValueVT = Val.getValueType(); 402 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 403 "Failed to tile the value with PartVT!"); 404 405 if (NumParts == 1) { 406 assert(PartVT == ValueVT && "Type conversion failed!"); 407 Parts[0] = Val; 408 return; 409 } 410 411 // Expand the value into multiple parts. 412 if (NumParts & (NumParts - 1)) { 413 // The number of parts is not a power of 2. Split off and copy the tail. 414 assert(PartVT.isInteger() && ValueVT.isInteger() && 415 "Do not know what to expand to!"); 416 unsigned RoundParts = 1 << Log2_32(NumParts); 417 unsigned RoundBits = RoundParts * PartBits; 418 unsigned OddParts = NumParts - RoundParts; 419 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 420 DAG.getConstant(RoundBits, 421 TLI.getPointerTy())); 422 getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, 423 OddParts, PartVT); 424 425 if (TLI.isBigEndian()) 426 // The odd parts were reversed by getCopyToParts - unreverse them. 427 std::reverse(Parts + RoundParts, Parts + NumParts); 428 429 NumParts = RoundParts; 430 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 431 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 432 } 433 434 // The number of parts is a power of 2. Repeatedly bisect the value using 435 // EXTRACT_ELEMENT. 436 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 437 EVT::getIntegerVT(*DAG.getContext(), 438 ValueVT.getSizeInBits()), 439 Val); 440 441 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 442 for (unsigned i = 0; i < NumParts; i += StepSize) { 443 unsigned ThisBits = StepSize * PartBits / 2; 444 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 445 SDValue &Part0 = Parts[i]; 446 SDValue &Part1 = Parts[i+StepSize/2]; 447 448 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 449 ThisVT, Part0, 450 DAG.getConstant(1, PtrVT)); 451 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 452 ThisVT, Part0, 453 DAG.getConstant(0, PtrVT)); 454 455 if (ThisBits == PartBits && ThisVT != PartVT) { 456 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 457 PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 459 PartVT, Part1); 460 } 461 } 462 } 463 464 if (TLI.isBigEndian()) 465 std::reverse(Parts, Parts + OrigNumParts); 466 467 return; 468 } 469 470 // Vector ValueVT. 471 if (NumParts == 1) { 472 if (PartVT != ValueVT) { 473 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 474 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 475 } else { 476 assert(ValueVT.getVectorElementType() == PartVT && 477 ValueVT.getVectorNumElements() == 1 && 478 "Only trivial vector-to-scalar conversions should get here!"); 479 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 480 PartVT, Val, 481 DAG.getConstant(0, PtrVT)); 482 } 483 } 484 485 Parts[0] = Val; 486 return; 487 } 488 489 // Handle a multi-element vector. 490 EVT IntermediateVT, RegisterVT; 491 unsigned NumIntermediates; 492 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 493 IntermediateVT, NumIntermediates, RegisterVT); 494 unsigned NumElements = ValueVT.getVectorNumElements(); 495 496 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 497 NumParts = NumRegs; // Silence a compiler warning. 498 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 499 500 // Split the vector into intermediate operands. 501 SmallVector<SDValue, 8> Ops(NumIntermediates); 502 for (unsigned i = 0; i != NumIntermediates; ++i) { 503 if (IntermediateVT.isVector()) 504 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 505 IntermediateVT, Val, 506 DAG.getConstant(i * (NumElements / NumIntermediates), 507 PtrVT)); 508 else 509 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 510 IntermediateVT, Val, 511 DAG.getConstant(i, PtrVT)); 512 } 513 514 // Split the intermediate operands into legal parts. 515 if (NumParts == NumIntermediates) { 516 // If the register was not expanded, promote or copy the value, 517 // as appropriate. 518 for (unsigned i = 0; i != NumParts; ++i) 519 getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); 520 } else if (NumParts > 0) { 521 // If the intermediate type was expanded, split each the value into 522 // legal parts. 523 assert(NumParts % NumIntermediates == 0 && 524 "Must expand into a divisible number of parts!"); 525 unsigned Factor = NumParts / NumIntermediates; 526 for (unsigned i = 0; i != NumIntermediates; ++i) 527 getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT); 528 } 529 } 530 531 532 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 533 AA = &aa; 534 GFI = gfi; 535 TD = DAG.getTarget().getTargetData(); 536 } 537 538 /// clear - Clear out the current SelectionDAG and the associated 539 /// state and prepare this SelectionDAGBuilder object to be used 540 /// for a new block. This doesn't clear out information about 541 /// additional blocks that are needed to complete switch lowering 542 /// or PHI node updating; that information is cleared out as it is 543 /// consumed. 544 void SelectionDAGBuilder::clear() { 545 NodeMap.clear(); 546 PendingLoads.clear(); 547 PendingExports.clear(); 548 EdgeMapping.clear(); 549 DAG.clear(); 550 CurDebugLoc = DebugLoc(); 551 HasTailCall = false; 552 } 553 554 /// getRoot - Return the current virtual root of the Selection DAG, 555 /// flushing any PendingLoad items. This must be done before emitting 556 /// a store or any other node that may need to be ordered after any 557 /// prior load instructions. 558 /// 559 SDValue SelectionDAGBuilder::getRoot() { 560 if (PendingLoads.empty()) 561 return DAG.getRoot(); 562 563 if (PendingLoads.size() == 1) { 564 SDValue Root = PendingLoads[0]; 565 DAG.setRoot(Root); 566 PendingLoads.clear(); 567 return Root; 568 } 569 570 // Otherwise, we have to make a token factor node. 571 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 572 &PendingLoads[0], PendingLoads.size()); 573 PendingLoads.clear(); 574 DAG.setRoot(Root); 575 return Root; 576 } 577 578 /// getControlRoot - Similar to getRoot, but instead of flushing all the 579 /// PendingLoad items, flush all the PendingExports items. It is necessary 580 /// to do this before emitting a terminator instruction. 581 /// 582 SDValue SelectionDAGBuilder::getControlRoot() { 583 SDValue Root = DAG.getRoot(); 584 585 if (PendingExports.empty()) 586 return Root; 587 588 // Turn all of the CopyToReg chains into one factored node. 589 if (Root.getOpcode() != ISD::EntryToken) { 590 unsigned i = 0, e = PendingExports.size(); 591 for (; i != e; ++i) { 592 assert(PendingExports[i].getNode()->getNumOperands() > 1); 593 if (PendingExports[i].getNode()->getOperand(0) == Root) 594 break; // Don't add the root if we already indirectly depend on it. 595 } 596 597 if (i == e) 598 PendingExports.push_back(Root); 599 } 600 601 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 602 &PendingExports[0], 603 PendingExports.size()); 604 PendingExports.clear(); 605 DAG.setRoot(Root); 606 return Root; 607 } 608 609 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 610 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 611 DAG.AssignOrdering(Node, SDNodeOrder); 612 613 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 614 AssignOrderingToNode(Node->getOperand(I).getNode()); 615 } 616 617 void SelectionDAGBuilder::visit(const Instruction &I) { 618 CurDebugLoc = I.getDebugLoc(); 619 620 visit(I.getOpcode(), I); 621 622 if (!isa<TerminatorInst>(&I) && !HasTailCall) 623 CopyToExportRegsIfNeeded(&I); 624 625 CurDebugLoc = DebugLoc(); 626 } 627 628 void SelectionDAGBuilder::visitPHI(const PHINode &) { 629 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 630 } 631 632 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 633 // Note: this doesn't use InstVisitor, because it has to work with 634 // ConstantExpr's in addition to instructions. 635 switch (Opcode) { 636 default: llvm_unreachable("Unknown instruction type encountered!"); 637 // Build the switch statement using the Instruction.def file. 638 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 639 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 640 #include "llvm/Instruction.def" 641 } 642 643 // Assign the ordering to the freshly created DAG nodes. 644 if (NodeMap.count(&I)) { 645 ++SDNodeOrder; 646 AssignOrderingToNode(getValue(&I).getNode()); 647 } 648 } 649 650 SDValue SelectionDAGBuilder::getValue(const Value *V) { 651 SDValue &N = NodeMap[V]; 652 if (N.getNode()) return N; 653 654 if (const Constant *C = dyn_cast<Constant>(V)) { 655 EVT VT = TLI.getValueType(V->getType(), true); 656 657 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 658 return N = DAG.getConstant(*CI, VT); 659 660 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 661 return N = DAG.getGlobalAddress(GV, VT); 662 663 if (isa<ConstantPointerNull>(C)) 664 return N = DAG.getConstant(0, TLI.getPointerTy()); 665 666 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 667 return N = DAG.getConstantFP(*CFP, VT); 668 669 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 670 return N = DAG.getUNDEF(VT); 671 672 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 673 visit(CE->getOpcode(), *CE); 674 SDValue N1 = NodeMap[V]; 675 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 676 return N1; 677 } 678 679 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 680 SmallVector<SDValue, 4> Constants; 681 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 682 OI != OE; ++OI) { 683 SDNode *Val = getValue(*OI).getNode(); 684 // If the operand is an empty aggregate, there are no values. 685 if (!Val) continue; 686 // Add each leaf value from the operand to the Constants list 687 // to form a flattened list of all the values. 688 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 689 Constants.push_back(SDValue(Val, i)); 690 } 691 692 return DAG.getMergeValues(&Constants[0], Constants.size(), 693 getCurDebugLoc()); 694 } 695 696 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 697 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 698 "Unknown struct or array constant!"); 699 700 SmallVector<EVT, 4> ValueVTs; 701 ComputeValueVTs(TLI, C->getType(), ValueVTs); 702 unsigned NumElts = ValueVTs.size(); 703 if (NumElts == 0) 704 return SDValue(); // empty struct 705 SmallVector<SDValue, 4> Constants(NumElts); 706 for (unsigned i = 0; i != NumElts; ++i) { 707 EVT EltVT = ValueVTs[i]; 708 if (isa<UndefValue>(C)) 709 Constants[i] = DAG.getUNDEF(EltVT); 710 else if (EltVT.isFloatingPoint()) 711 Constants[i] = DAG.getConstantFP(0, EltVT); 712 else 713 Constants[i] = DAG.getConstant(0, EltVT); 714 } 715 716 return DAG.getMergeValues(&Constants[0], NumElts, 717 getCurDebugLoc()); 718 } 719 720 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 721 return DAG.getBlockAddress(BA, VT); 722 723 const VectorType *VecTy = cast<VectorType>(V->getType()); 724 unsigned NumElements = VecTy->getNumElements(); 725 726 // Now that we know the number and type of the elements, get that number of 727 // elements into the Ops array based on what kind of constant it is. 728 SmallVector<SDValue, 16> Ops; 729 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 730 for (unsigned i = 0; i != NumElements; ++i) 731 Ops.push_back(getValue(CP->getOperand(i))); 732 } else { 733 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 734 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 735 736 SDValue Op; 737 if (EltVT.isFloatingPoint()) 738 Op = DAG.getConstantFP(0, EltVT); 739 else 740 Op = DAG.getConstant(0, EltVT); 741 Ops.assign(NumElements, Op); 742 } 743 744 // Create a BUILD_VECTOR node. 745 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 746 VT, &Ops[0], Ops.size()); 747 } 748 749 // If this is a static alloca, generate it as the frameindex instead of 750 // computation. 751 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 752 DenseMap<const AllocaInst*, int>::iterator SI = 753 FuncInfo.StaticAllocaMap.find(AI); 754 if (SI != FuncInfo.StaticAllocaMap.end()) 755 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 756 } 757 758 unsigned InReg = FuncInfo.ValueMap[V]; 759 assert(InReg && "Value not in map!"); 760 761 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 762 SDValue Chain = DAG.getEntryNode(); 763 return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); 764 } 765 766 /// Get the EVTs and ArgFlags collections that represent the legalized return 767 /// type of the given function. This does not require a DAG or a return value, 768 /// and is suitable for use before any DAGs for the function are constructed. 769 static void getReturnInfo(const Type* ReturnType, 770 Attributes attr, SmallVectorImpl<EVT> &OutVTs, 771 SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, 772 const TargetLowering &TLI, 773 SmallVectorImpl<uint64_t> *Offsets = 0) { 774 SmallVector<EVT, 4> ValueVTs; 775 ComputeValueVTs(TLI, ReturnType, ValueVTs); 776 unsigned NumValues = ValueVTs.size(); 777 if (NumValues == 0) return; 778 unsigned Offset = 0; 779 780 for (unsigned j = 0, f = NumValues; j != f; ++j) { 781 EVT VT = ValueVTs[j]; 782 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 783 784 if (attr & Attribute::SExt) 785 ExtendKind = ISD::SIGN_EXTEND; 786 else if (attr & Attribute::ZExt) 787 ExtendKind = ISD::ZERO_EXTEND; 788 789 // FIXME: C calling convention requires the return type to be promoted to 790 // at least 32-bit. But this is not necessary for non-C calling 791 // conventions. The frontend should mark functions whose return values 792 // require promoting with signext or zeroext attributes. 793 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 794 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 795 if (VT.bitsLT(MinVT)) 796 VT = MinVT; 797 } 798 799 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 800 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 801 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( 802 PartVT.getTypeForEVT(ReturnType->getContext())); 803 804 // 'inreg' on function refers to return value 805 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 806 if (attr & Attribute::InReg) 807 Flags.setInReg(); 808 809 // Propagate extension type if any 810 if (attr & Attribute::SExt) 811 Flags.setSExt(); 812 else if (attr & Attribute::ZExt) 813 Flags.setZExt(); 814 815 for (unsigned i = 0; i < NumParts; ++i) { 816 OutVTs.push_back(PartVT); 817 OutFlags.push_back(Flags); 818 if (Offsets) 819 { 820 Offsets->push_back(Offset); 821 Offset += PartSize; 822 } 823 } 824 } 825 } 826 827 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 828 SDValue Chain = getControlRoot(); 829 SmallVector<ISD::OutputArg, 8> Outs; 830 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 831 832 if (!FLI.CanLowerReturn) { 833 unsigned DemoteReg = FLI.DemoteRegister; 834 const Function *F = I.getParent()->getParent(); 835 836 // Emit a store of the return value through the virtual register. 837 // Leave Outs empty so that LowerReturn won't try to load return 838 // registers the usual way. 839 SmallVector<EVT, 1> PtrValueVTs; 840 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 841 PtrValueVTs); 842 843 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 844 SDValue RetOp = getValue(I.getOperand(0)); 845 846 SmallVector<EVT, 4> ValueVTs; 847 SmallVector<uint64_t, 4> Offsets; 848 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 849 unsigned NumValues = ValueVTs.size(); 850 851 SmallVector<SDValue, 4> Chains(NumValues); 852 EVT PtrVT = PtrValueVTs[0]; 853 for (unsigned i = 0; i != NumValues; ++i) { 854 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 855 DAG.getConstant(Offsets[i], PtrVT)); 856 Chains[i] = 857 DAG.getStore(Chain, getCurDebugLoc(), 858 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 859 Add, NULL, Offsets[i], false, false, 0); 860 } 861 862 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 863 MVT::Other, &Chains[0], NumValues); 864 } else if (I.getNumOperands() != 0) { 865 SmallVector<EVT, 4> ValueVTs; 866 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 867 unsigned NumValues = ValueVTs.size(); 868 if (NumValues) { 869 SDValue RetOp = getValue(I.getOperand(0)); 870 for (unsigned j = 0, f = NumValues; j != f; ++j) { 871 EVT VT = ValueVTs[j]; 872 873 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 874 875 const Function *F = I.getParent()->getParent(); 876 if (F->paramHasAttr(0, Attribute::SExt)) 877 ExtendKind = ISD::SIGN_EXTEND; 878 else if (F->paramHasAttr(0, Attribute::ZExt)) 879 ExtendKind = ISD::ZERO_EXTEND; 880 881 // FIXME: C calling convention requires the return type to be promoted 882 // to at least 32-bit. But this is not necessary for non-C calling 883 // conventions. The frontend should mark functions whose return values 884 // require promoting with signext or zeroext attributes. 885 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 886 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 887 if (VT.bitsLT(MinVT)) 888 VT = MinVT; 889 } 890 891 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 892 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 893 SmallVector<SDValue, 4> Parts(NumParts); 894 getCopyToParts(DAG, getCurDebugLoc(), 895 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 896 &Parts[0], NumParts, PartVT, ExtendKind); 897 898 // 'inreg' on function refers to return value 899 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 900 if (F->paramHasAttr(0, Attribute::InReg)) 901 Flags.setInReg(); 902 903 // Propagate extension type if any 904 if (F->paramHasAttr(0, Attribute::SExt)) 905 Flags.setSExt(); 906 else if (F->paramHasAttr(0, Attribute::ZExt)) 907 Flags.setZExt(); 908 909 for (unsigned i = 0; i < NumParts; ++i) 910 Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); 911 } 912 } 913 } 914 915 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 916 CallingConv::ID CallConv = 917 DAG.getMachineFunction().getFunction()->getCallingConv(); 918 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 919 Outs, getCurDebugLoc(), DAG); 920 921 // Verify that the target's LowerReturn behaved as expected. 922 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 923 "LowerReturn didn't return a valid chain!"); 924 925 // Update the DAG with the new chain value resulting from return lowering. 926 DAG.setRoot(Chain); 927 } 928 929 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 930 /// created for it, emit nodes to copy the value into the virtual 931 /// registers. 932 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 933 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 934 if (VMI != FuncInfo.ValueMap.end()) { 935 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 936 CopyValueToVirtualRegister(V, VMI->second); 937 } 938 } 939 940 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 941 /// the current basic block, add it to ValueMap now so that we'll get a 942 /// CopyTo/FromReg. 943 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 944 // No need to export constants. 945 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 946 947 // Already exported? 948 if (FuncInfo.isExportedInst(V)) return; 949 950 unsigned Reg = FuncInfo.InitializeRegForValue(V); 951 CopyValueToVirtualRegister(V, Reg); 952 } 953 954 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 955 const BasicBlock *FromBB) { 956 // The operands of the setcc have to be in this block. We don't know 957 // how to export them from some other block. 958 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 959 // Can export from current BB. 960 if (VI->getParent() == FromBB) 961 return true; 962 963 // Is already exported, noop. 964 return FuncInfo.isExportedInst(V); 965 } 966 967 // If this is an argument, we can export it if the BB is the entry block or 968 // if it is already exported. 969 if (isa<Argument>(V)) { 970 if (FromBB == &FromBB->getParent()->getEntryBlock()) 971 return true; 972 973 // Otherwise, can only export this if it is already exported. 974 return FuncInfo.isExportedInst(V); 975 } 976 977 // Otherwise, constants can always be exported. 978 return true; 979 } 980 981 static bool InBlock(const Value *V, const BasicBlock *BB) { 982 if (const Instruction *I = dyn_cast<Instruction>(V)) 983 return I->getParent() == BB; 984 return true; 985 } 986 987 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 988 /// This function emits a branch and is used at the leaves of an OR or an 989 /// AND operator tree. 990 /// 991 void 992 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 993 MachineBasicBlock *TBB, 994 MachineBasicBlock *FBB, 995 MachineBasicBlock *CurBB, 996 MachineBasicBlock *SwitchBB) { 997 const BasicBlock *BB = CurBB->getBasicBlock(); 998 999 // If the leaf of the tree is a comparison, merge the condition into 1000 // the caseblock. 1001 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1002 // The operands of the cmp have to be in this block. We don't know 1003 // how to export them from some other block. If this is the first block 1004 // of the sequence, no exporting is needed. 1005 if (CurBB == SwitchBB || 1006 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1007 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1008 ISD::CondCode Condition; 1009 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1010 Condition = getICmpCondCode(IC->getPredicate()); 1011 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1012 Condition = getFCmpCondCode(FC->getPredicate()); 1013 } else { 1014 Condition = ISD::SETEQ; // silence warning. 1015 llvm_unreachable("Unknown compare instruction"); 1016 } 1017 1018 CaseBlock CB(Condition, BOp->getOperand(0), 1019 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1020 SwitchCases.push_back(CB); 1021 return; 1022 } 1023 } 1024 1025 // Create a CaseBlock record representing this branch. 1026 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1027 NULL, TBB, FBB, CurBB); 1028 SwitchCases.push_back(CB); 1029 } 1030 1031 /// FindMergedConditions - If Cond is an expression like 1032 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1033 MachineBasicBlock *TBB, 1034 MachineBasicBlock *FBB, 1035 MachineBasicBlock *CurBB, 1036 MachineBasicBlock *SwitchBB, 1037 unsigned Opc) { 1038 // If this node is not part of the or/and tree, emit it as a branch. 1039 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1040 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1041 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1042 BOp->getParent() != CurBB->getBasicBlock() || 1043 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1044 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1045 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1046 return; 1047 } 1048 1049 // Create TmpBB after CurBB. 1050 MachineFunction::iterator BBI = CurBB; 1051 MachineFunction &MF = DAG.getMachineFunction(); 1052 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1053 CurBB->getParent()->insert(++BBI, TmpBB); 1054 1055 if (Opc == Instruction::Or) { 1056 // Codegen X | Y as: 1057 // jmp_if_X TBB 1058 // jmp TmpBB 1059 // TmpBB: 1060 // jmp_if_Y TBB 1061 // jmp FBB 1062 // 1063 1064 // Emit the LHS condition. 1065 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1066 1067 // Emit the RHS condition into TmpBB. 1068 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1069 } else { 1070 assert(Opc == Instruction::And && "Unknown merge op!"); 1071 // Codegen X & Y as: 1072 // jmp_if_X TmpBB 1073 // jmp FBB 1074 // TmpBB: 1075 // jmp_if_Y TBB 1076 // jmp FBB 1077 // 1078 // This requires creation of TmpBB after CurBB. 1079 1080 // Emit the LHS condition. 1081 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1082 1083 // Emit the RHS condition into TmpBB. 1084 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1085 } 1086 } 1087 1088 /// If the set of cases should be emitted as a series of branches, return true. 1089 /// If we should emit this as a bunch of and/or'd together conditions, return 1090 /// false. 1091 bool 1092 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1093 if (Cases.size() != 2) return true; 1094 1095 // If this is two comparisons of the same values or'd or and'd together, they 1096 // will get folded into a single comparison, so don't emit two blocks. 1097 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1098 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1099 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1100 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1101 return false; 1102 } 1103 1104 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1105 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1106 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1107 Cases[0].CC == Cases[1].CC && 1108 isa<Constant>(Cases[0].CmpRHS) && 1109 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1110 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1111 return false; 1112 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1113 return false; 1114 } 1115 1116 return true; 1117 } 1118 1119 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1120 MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()]; 1121 1122 // Update machine-CFG edges. 1123 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1124 1125 // Figure out which block is immediately after the current one. 1126 MachineBasicBlock *NextBlock = 0; 1127 MachineFunction::iterator BBI = BrMBB; 1128 if (++BBI != FuncInfo.MF->end()) 1129 NextBlock = BBI; 1130 1131 if (I.isUnconditional()) { 1132 // Update machine-CFG edges. 1133 BrMBB->addSuccessor(Succ0MBB); 1134 1135 // If this is not a fall-through branch, emit the branch. 1136 if (Succ0MBB != NextBlock) 1137 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1138 MVT::Other, getControlRoot(), 1139 DAG.getBasicBlock(Succ0MBB))); 1140 1141 return; 1142 } 1143 1144 // If this condition is one of the special cases we handle, do special stuff 1145 // now. 1146 const Value *CondVal = I.getCondition(); 1147 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1148 1149 // If this is a series of conditions that are or'd or and'd together, emit 1150 // this as a sequence of branches instead of setcc's with and/or operations. 1151 // For example, instead of something like: 1152 // cmp A, B 1153 // C = seteq 1154 // cmp D, E 1155 // F = setle 1156 // or C, F 1157 // jnz foo 1158 // Emit: 1159 // cmp A, B 1160 // je foo 1161 // cmp D, E 1162 // jle foo 1163 // 1164 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1165 if (BOp->hasOneUse() && 1166 (BOp->getOpcode() == Instruction::And || 1167 BOp->getOpcode() == Instruction::Or)) { 1168 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1169 BOp->getOpcode()); 1170 // If the compares in later blocks need to use values not currently 1171 // exported from this block, export them now. This block should always 1172 // be the first entry. 1173 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1174 1175 // Allow some cases to be rejected. 1176 if (ShouldEmitAsBranches(SwitchCases)) { 1177 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1178 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1179 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1180 } 1181 1182 // Emit the branch for this block. 1183 visitSwitchCase(SwitchCases[0], BrMBB); 1184 SwitchCases.erase(SwitchCases.begin()); 1185 return; 1186 } 1187 1188 // Okay, we decided not to do this, remove any inserted MBB's and clear 1189 // SwitchCases. 1190 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1191 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1192 1193 SwitchCases.clear(); 1194 } 1195 } 1196 1197 // Create a CaseBlock record representing this branch. 1198 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1199 NULL, Succ0MBB, Succ1MBB, BrMBB); 1200 1201 // Use visitSwitchCase to actually insert the fast branch sequence for this 1202 // cond branch. 1203 visitSwitchCase(CB, BrMBB); 1204 } 1205 1206 /// visitSwitchCase - Emits the necessary code to represent a single node in 1207 /// the binary search tree resulting from lowering a switch instruction. 1208 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1209 MachineBasicBlock *SwitchBB) { 1210 SDValue Cond; 1211 SDValue CondLHS = getValue(CB.CmpLHS); 1212 DebugLoc dl = getCurDebugLoc(); 1213 1214 // Build the setcc now. 1215 if (CB.CmpMHS == NULL) { 1216 // Fold "(X == true)" to X and "(X == false)" to !X to 1217 // handle common cases produced by branch lowering. 1218 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1219 CB.CC == ISD::SETEQ) 1220 Cond = CondLHS; 1221 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1222 CB.CC == ISD::SETEQ) { 1223 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1224 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1225 } else 1226 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1227 } else { 1228 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1229 1230 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1231 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1232 1233 SDValue CmpOp = getValue(CB.CmpMHS); 1234 EVT VT = CmpOp.getValueType(); 1235 1236 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1237 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1238 ISD::SETLE); 1239 } else { 1240 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1241 VT, CmpOp, DAG.getConstant(Low, VT)); 1242 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1243 DAG.getConstant(High-Low, VT), ISD::SETULE); 1244 } 1245 } 1246 1247 // Update successor info 1248 SwitchBB->addSuccessor(CB.TrueBB); 1249 SwitchBB->addSuccessor(CB.FalseBB); 1250 1251 // Set NextBlock to be the MBB immediately after the current one, if any. 1252 // This is used to avoid emitting unnecessary branches to the next block. 1253 MachineBasicBlock *NextBlock = 0; 1254 MachineFunction::iterator BBI = SwitchBB; 1255 if (++BBI != FuncInfo.MF->end()) 1256 NextBlock = BBI; 1257 1258 // If the lhs block is the next block, invert the condition so that we can 1259 // fall through to the lhs instead of the rhs block. 1260 if (CB.TrueBB == NextBlock) { 1261 std::swap(CB.TrueBB, CB.FalseBB); 1262 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1263 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1264 } 1265 1266 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1267 MVT::Other, getControlRoot(), Cond, 1268 DAG.getBasicBlock(CB.TrueBB)); 1269 1270 // If the branch was constant folded, fix up the CFG. 1271 if (BrCond.getOpcode() == ISD::BR) { 1272 SwitchBB->removeSuccessor(CB.FalseBB); 1273 } else { 1274 // Otherwise, go ahead and insert the false branch. 1275 if (BrCond == getControlRoot()) 1276 SwitchBB->removeSuccessor(CB.TrueBB); 1277 1278 if (CB.FalseBB != NextBlock) 1279 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1280 DAG.getBasicBlock(CB.FalseBB)); 1281 } 1282 1283 DAG.setRoot(BrCond); 1284 } 1285 1286 /// visitJumpTable - Emit JumpTable node in the current MBB 1287 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1288 // Emit the code for the jump table 1289 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1290 EVT PTy = TLI.getPointerTy(); 1291 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1292 JT.Reg, PTy); 1293 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1294 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1295 MVT::Other, Index.getValue(1), 1296 Table, Index); 1297 DAG.setRoot(BrJumpTable); 1298 } 1299 1300 /// visitJumpTableHeader - This function emits necessary code to produce index 1301 /// in the JumpTable from switch case. 1302 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1303 JumpTableHeader &JTH, 1304 MachineBasicBlock *SwitchBB) { 1305 // Subtract the lowest switch case value from the value being switched on and 1306 // conditional branch to default mbb if the result is greater than the 1307 // difference between smallest and largest cases. 1308 SDValue SwitchOp = getValue(JTH.SValue); 1309 EVT VT = SwitchOp.getValueType(); 1310 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1311 DAG.getConstant(JTH.First, VT)); 1312 1313 // The SDNode we just created, which holds the value being switched on minus 1314 // the smallest case value, needs to be copied to a virtual register so it 1315 // can be used as an index into the jump table in a subsequent basic block. 1316 // This value may be smaller or larger than the target's pointer type, and 1317 // therefore require extension or truncating. 1318 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1319 1320 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1321 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1322 JumpTableReg, SwitchOp); 1323 JT.Reg = JumpTableReg; 1324 1325 // Emit the range check for the jump table, and branch to the default block 1326 // for the switch statement if the value being switched on exceeds the largest 1327 // case in the switch. 1328 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1329 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1330 DAG.getConstant(JTH.Last-JTH.First,VT), 1331 ISD::SETUGT); 1332 1333 // Set NextBlock to be the MBB immediately after the current one, if any. 1334 // This is used to avoid emitting unnecessary branches to the next block. 1335 MachineBasicBlock *NextBlock = 0; 1336 MachineFunction::iterator BBI = SwitchBB; 1337 1338 if (++BBI != FuncInfo.MF->end()) 1339 NextBlock = BBI; 1340 1341 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1342 MVT::Other, CopyTo, CMP, 1343 DAG.getBasicBlock(JT.Default)); 1344 1345 if (JT.MBB != NextBlock) 1346 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1347 DAG.getBasicBlock(JT.MBB)); 1348 1349 DAG.setRoot(BrCond); 1350 } 1351 1352 /// visitBitTestHeader - This function emits necessary code to produce value 1353 /// suitable for "bit tests" 1354 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1355 MachineBasicBlock *SwitchBB) { 1356 // Subtract the minimum value 1357 SDValue SwitchOp = getValue(B.SValue); 1358 EVT VT = SwitchOp.getValueType(); 1359 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1360 DAG.getConstant(B.First, VT)); 1361 1362 // Check range 1363 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1364 TLI.getSetCCResultType(Sub.getValueType()), 1365 Sub, DAG.getConstant(B.Range, VT), 1366 ISD::SETUGT); 1367 1368 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1369 TLI.getPointerTy()); 1370 1371 B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); 1372 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1373 B.Reg, ShiftOp); 1374 1375 // Set NextBlock to be the MBB immediately after the current one, if any. 1376 // This is used to avoid emitting unnecessary branches to the next block. 1377 MachineBasicBlock *NextBlock = 0; 1378 MachineFunction::iterator BBI = SwitchBB; 1379 if (++BBI != FuncInfo.MF->end()) 1380 NextBlock = BBI; 1381 1382 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1383 1384 SwitchBB->addSuccessor(B.Default); 1385 SwitchBB->addSuccessor(MBB); 1386 1387 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1388 MVT::Other, CopyTo, RangeCmp, 1389 DAG.getBasicBlock(B.Default)); 1390 1391 if (MBB != NextBlock) 1392 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1393 DAG.getBasicBlock(MBB)); 1394 1395 DAG.setRoot(BrRange); 1396 } 1397 1398 /// visitBitTestCase - this function produces one "bit test" 1399 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1400 unsigned Reg, 1401 BitTestCase &B, 1402 MachineBasicBlock *SwitchBB) { 1403 // Make desired shift 1404 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1405 TLI.getPointerTy()); 1406 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1407 TLI.getPointerTy(), 1408 DAG.getConstant(1, TLI.getPointerTy()), 1409 ShiftOp); 1410 1411 // Emit bit tests and jumps 1412 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1413 TLI.getPointerTy(), SwitchVal, 1414 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1415 SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), 1416 TLI.getSetCCResultType(AndOp.getValueType()), 1417 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1418 ISD::SETNE); 1419 1420 SwitchBB->addSuccessor(B.TargetBB); 1421 SwitchBB->addSuccessor(NextMBB); 1422 1423 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1424 MVT::Other, getControlRoot(), 1425 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1426 1427 // Set NextBlock to be the MBB immediately after the current one, if any. 1428 // This is used to avoid emitting unnecessary branches to the next block. 1429 MachineBasicBlock *NextBlock = 0; 1430 MachineFunction::iterator BBI = SwitchBB; 1431 if (++BBI != FuncInfo.MF->end()) 1432 NextBlock = BBI; 1433 1434 if (NextMBB != NextBlock) 1435 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1436 DAG.getBasicBlock(NextMBB)); 1437 1438 DAG.setRoot(BrAnd); 1439 } 1440 1441 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1442 MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()]; 1443 1444 // Retrieve successors. 1445 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1446 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1447 1448 const Value *Callee(I.getCalledValue()); 1449 if (isa<InlineAsm>(Callee)) 1450 visitInlineAsm(&I); 1451 else 1452 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1453 1454 // If the value of the invoke is used outside of its defining block, make it 1455 // available as a virtual register. 1456 CopyToExportRegsIfNeeded(&I); 1457 1458 // Update successor info 1459 InvokeMBB->addSuccessor(Return); 1460 InvokeMBB->addSuccessor(LandingPad); 1461 1462 // Drop into normal successor. 1463 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1464 MVT::Other, getControlRoot(), 1465 DAG.getBasicBlock(Return))); 1466 } 1467 1468 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1469 } 1470 1471 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1472 /// small case ranges). 1473 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1474 CaseRecVector& WorkList, 1475 const Value* SV, 1476 MachineBasicBlock *Default, 1477 MachineBasicBlock *SwitchBB) { 1478 Case& BackCase = *(CR.Range.second-1); 1479 1480 // Size is the number of Cases represented by this range. 1481 size_t Size = CR.Range.second - CR.Range.first; 1482 if (Size > 3) 1483 return false; 1484 1485 // Get the MachineFunction which holds the current MBB. This is used when 1486 // inserting any additional MBBs necessary to represent the switch. 1487 MachineFunction *CurMF = FuncInfo.MF; 1488 1489 // Figure out which block is immediately after the current one. 1490 MachineBasicBlock *NextBlock = 0; 1491 MachineFunction::iterator BBI = CR.CaseBB; 1492 1493 if (++BBI != FuncInfo.MF->end()) 1494 NextBlock = BBI; 1495 1496 // TODO: If any two of the cases has the same destination, and if one value 1497 // is the same as the other, but has one bit unset that the other has set, 1498 // use bit manipulation to do two compares at once. For example: 1499 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1500 1501 // Rearrange the case blocks so that the last one falls through if possible. 1502 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1503 // The last case block won't fall through into 'NextBlock' if we emit the 1504 // branches in this order. See if rearranging a case value would help. 1505 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1506 if (I->BB == NextBlock) { 1507 std::swap(*I, BackCase); 1508 break; 1509 } 1510 } 1511 } 1512 1513 // Create a CaseBlock record representing a conditional branch to 1514 // the Case's target mbb if the value being switched on SV is equal 1515 // to C. 1516 MachineBasicBlock *CurBlock = CR.CaseBB; 1517 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1518 MachineBasicBlock *FallThrough; 1519 if (I != E-1) { 1520 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1521 CurMF->insert(BBI, FallThrough); 1522 1523 // Put SV in a virtual register to make it available from the new blocks. 1524 ExportFromCurrentBlock(SV); 1525 } else { 1526 // If the last case doesn't match, go to the default block. 1527 FallThrough = Default; 1528 } 1529 1530 const Value *RHS, *LHS, *MHS; 1531 ISD::CondCode CC; 1532 if (I->High == I->Low) { 1533 // This is just small small case range :) containing exactly 1 case 1534 CC = ISD::SETEQ; 1535 LHS = SV; RHS = I->High; MHS = NULL; 1536 } else { 1537 CC = ISD::SETLE; 1538 LHS = I->Low; MHS = SV; RHS = I->High; 1539 } 1540 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1541 1542 // If emitting the first comparison, just call visitSwitchCase to emit the 1543 // code into the current block. Otherwise, push the CaseBlock onto the 1544 // vector to be later processed by SDISel, and insert the node's MBB 1545 // before the next MBB. 1546 if (CurBlock == SwitchBB) 1547 visitSwitchCase(CB, SwitchBB); 1548 else 1549 SwitchCases.push_back(CB); 1550 1551 CurBlock = FallThrough; 1552 } 1553 1554 return true; 1555 } 1556 1557 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1558 return !DisableJumpTables && 1559 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1560 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1561 } 1562 1563 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1564 APInt LastExt(Last), FirstExt(First); 1565 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1566 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1567 return (LastExt - FirstExt + 1ULL); 1568 } 1569 1570 /// handleJTSwitchCase - Emit jumptable for current switch case range 1571 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1572 CaseRecVector& WorkList, 1573 const Value* SV, 1574 MachineBasicBlock* Default, 1575 MachineBasicBlock *SwitchBB) { 1576 Case& FrontCase = *CR.Range.first; 1577 Case& BackCase = *(CR.Range.second-1); 1578 1579 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1580 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1581 1582 APInt TSize(First.getBitWidth(), 0); 1583 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1584 I!=E; ++I) 1585 TSize += I->size(); 1586 1587 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1588 return false; 1589 1590 APInt Range = ComputeRange(First, Last); 1591 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1592 if (Density < 0.4) 1593 return false; 1594 1595 DEBUG(dbgs() << "Lowering jump table\n" 1596 << "First entry: " << First << ". Last entry: " << Last << '\n' 1597 << "Range: " << Range 1598 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1599 1600 // Get the MachineFunction which holds the current MBB. This is used when 1601 // inserting any additional MBBs necessary to represent the switch. 1602 MachineFunction *CurMF = FuncInfo.MF; 1603 1604 // Figure out which block is immediately after the current one. 1605 MachineFunction::iterator BBI = CR.CaseBB; 1606 ++BBI; 1607 1608 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1609 1610 // Create a new basic block to hold the code for loading the address 1611 // of the jump table, and jumping to it. Update successor information; 1612 // we will either branch to the default case for the switch, or the jump 1613 // table. 1614 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1615 CurMF->insert(BBI, JumpTableBB); 1616 CR.CaseBB->addSuccessor(Default); 1617 CR.CaseBB->addSuccessor(JumpTableBB); 1618 1619 // Build a vector of destination BBs, corresponding to each target 1620 // of the jump table. If the value of the jump table slot corresponds to 1621 // a case statement, push the case's BB onto the vector, otherwise, push 1622 // the default BB. 1623 std::vector<MachineBasicBlock*> DestBBs; 1624 APInt TEI = First; 1625 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1626 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1627 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1628 1629 if (Low.sle(TEI) && TEI.sle(High)) { 1630 DestBBs.push_back(I->BB); 1631 if (TEI==High) 1632 ++I; 1633 } else { 1634 DestBBs.push_back(Default); 1635 } 1636 } 1637 1638 // Update successor info. Add one edge to each unique successor. 1639 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1640 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1641 E = DestBBs.end(); I != E; ++I) { 1642 if (!SuccsHandled[(*I)->getNumber()]) { 1643 SuccsHandled[(*I)->getNumber()] = true; 1644 JumpTableBB->addSuccessor(*I); 1645 } 1646 } 1647 1648 // Create a jump table index for this jump table. 1649 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1650 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1651 ->createJumpTableIndex(DestBBs); 1652 1653 // Set the jump table information so that we can codegen it as a second 1654 // MachineBasicBlock 1655 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1656 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1657 if (CR.CaseBB == SwitchBB) 1658 visitJumpTableHeader(JT, JTH, SwitchBB); 1659 1660 JTCases.push_back(JumpTableBlock(JTH, JT)); 1661 1662 return true; 1663 } 1664 1665 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1666 /// 2 subtrees. 1667 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1668 CaseRecVector& WorkList, 1669 const Value* SV, 1670 MachineBasicBlock *Default, 1671 MachineBasicBlock *SwitchBB) { 1672 // Get the MachineFunction which holds the current MBB. This is used when 1673 // inserting any additional MBBs necessary to represent the switch. 1674 MachineFunction *CurMF = FuncInfo.MF; 1675 1676 // Figure out which block is immediately after the current one. 1677 MachineFunction::iterator BBI = CR.CaseBB; 1678 ++BBI; 1679 1680 Case& FrontCase = *CR.Range.first; 1681 Case& BackCase = *(CR.Range.second-1); 1682 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1683 1684 // Size is the number of Cases represented by this range. 1685 unsigned Size = CR.Range.second - CR.Range.first; 1686 1687 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1688 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1689 double FMetric = 0; 1690 CaseItr Pivot = CR.Range.first + Size/2; 1691 1692 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1693 // (heuristically) allow us to emit JumpTable's later. 1694 APInt TSize(First.getBitWidth(), 0); 1695 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1696 I!=E; ++I) 1697 TSize += I->size(); 1698 1699 APInt LSize = FrontCase.size(); 1700 APInt RSize = TSize-LSize; 1701 DEBUG(dbgs() << "Selecting best pivot: \n" 1702 << "First: " << First << ", Last: " << Last <<'\n' 1703 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1704 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1705 J!=E; ++I, ++J) { 1706 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1707 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1708 APInt Range = ComputeRange(LEnd, RBegin); 1709 assert((Range - 2ULL).isNonNegative() && 1710 "Invalid case distance"); 1711 double LDensity = (double)LSize.roundToDouble() / 1712 (LEnd - First + 1ULL).roundToDouble(); 1713 double RDensity = (double)RSize.roundToDouble() / 1714 (Last - RBegin + 1ULL).roundToDouble(); 1715 double Metric = Range.logBase2()*(LDensity+RDensity); 1716 // Should always split in some non-trivial place 1717 DEBUG(dbgs() <<"=>Step\n" 1718 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1719 << "LDensity: " << LDensity 1720 << ", RDensity: " << RDensity << '\n' 1721 << "Metric: " << Metric << '\n'); 1722 if (FMetric < Metric) { 1723 Pivot = J; 1724 FMetric = Metric; 1725 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1726 } 1727 1728 LSize += J->size(); 1729 RSize -= J->size(); 1730 } 1731 if (areJTsAllowed(TLI)) { 1732 // If our case is dense we *really* should handle it earlier! 1733 assert((FMetric > 0) && "Should handle dense range earlier!"); 1734 } else { 1735 Pivot = CR.Range.first + Size/2; 1736 } 1737 1738 CaseRange LHSR(CR.Range.first, Pivot); 1739 CaseRange RHSR(Pivot, CR.Range.second); 1740 Constant *C = Pivot->Low; 1741 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1742 1743 // We know that we branch to the LHS if the Value being switched on is 1744 // less than the Pivot value, C. We use this to optimize our binary 1745 // tree a bit, by recognizing that if SV is greater than or equal to the 1746 // LHS's Case Value, and that Case Value is exactly one less than the 1747 // Pivot's Value, then we can branch directly to the LHS's Target, 1748 // rather than creating a leaf node for it. 1749 if ((LHSR.second - LHSR.first) == 1 && 1750 LHSR.first->High == CR.GE && 1751 cast<ConstantInt>(C)->getValue() == 1752 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1753 TrueBB = LHSR.first->BB; 1754 } else { 1755 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1756 CurMF->insert(BBI, TrueBB); 1757 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1758 1759 // Put SV in a virtual register to make it available from the new blocks. 1760 ExportFromCurrentBlock(SV); 1761 } 1762 1763 // Similar to the optimization above, if the Value being switched on is 1764 // known to be less than the Constant CR.LT, and the current Case Value 1765 // is CR.LT - 1, then we can branch directly to the target block for 1766 // the current Case Value, rather than emitting a RHS leaf node for it. 1767 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1768 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1769 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1770 FalseBB = RHSR.first->BB; 1771 } else { 1772 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1773 CurMF->insert(BBI, FalseBB); 1774 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1775 1776 // Put SV in a virtual register to make it available from the new blocks. 1777 ExportFromCurrentBlock(SV); 1778 } 1779 1780 // Create a CaseBlock record representing a conditional branch to 1781 // the LHS node if the value being switched on SV is less than C. 1782 // Otherwise, branch to LHS. 1783 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1784 1785 if (CR.CaseBB == SwitchBB) 1786 visitSwitchCase(CB, SwitchBB); 1787 else 1788 SwitchCases.push_back(CB); 1789 1790 return true; 1791 } 1792 1793 /// handleBitTestsSwitchCase - if current case range has few destination and 1794 /// range span less, than machine word bitwidth, encode case range into series 1795 /// of masks and emit bit tests with these masks. 1796 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1797 CaseRecVector& WorkList, 1798 const Value* SV, 1799 MachineBasicBlock* Default, 1800 MachineBasicBlock *SwitchBB){ 1801 EVT PTy = TLI.getPointerTy(); 1802 unsigned IntPtrBits = PTy.getSizeInBits(); 1803 1804 Case& FrontCase = *CR.Range.first; 1805 Case& BackCase = *(CR.Range.second-1); 1806 1807 // Get the MachineFunction which holds the current MBB. This is used when 1808 // inserting any additional MBBs necessary to represent the switch. 1809 MachineFunction *CurMF = FuncInfo.MF; 1810 1811 // If target does not have legal shift left, do not emit bit tests at all. 1812 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1813 return false; 1814 1815 size_t numCmps = 0; 1816 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1817 I!=E; ++I) { 1818 // Single case counts one, case range - two. 1819 numCmps += (I->Low == I->High ? 1 : 2); 1820 } 1821 1822 // Count unique destinations 1823 SmallSet<MachineBasicBlock*, 4> Dests; 1824 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1825 Dests.insert(I->BB); 1826 if (Dests.size() > 3) 1827 // Don't bother the code below, if there are too much unique destinations 1828 return false; 1829 } 1830 DEBUG(dbgs() << "Total number of unique destinations: " 1831 << Dests.size() << '\n' 1832 << "Total number of comparisons: " << numCmps << '\n'); 1833 1834 // Compute span of values. 1835 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 1836 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 1837 APInt cmpRange = maxValue - minValue; 1838 1839 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 1840 << "Low bound: " << minValue << '\n' 1841 << "High bound: " << maxValue << '\n'); 1842 1843 if (cmpRange.uge(IntPtrBits) || 1844 (!(Dests.size() == 1 && numCmps >= 3) && 1845 !(Dests.size() == 2 && numCmps >= 5) && 1846 !(Dests.size() >= 3 && numCmps >= 6))) 1847 return false; 1848 1849 DEBUG(dbgs() << "Emitting bit tests\n"); 1850 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 1851 1852 // Optimize the case where all the case values fit in a 1853 // word without having to subtract minValue. In this case, 1854 // we can optimize away the subtraction. 1855 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 1856 cmpRange = maxValue; 1857 } else { 1858 lowBound = minValue; 1859 } 1860 1861 CaseBitsVector CasesBits; 1862 unsigned i, count = 0; 1863 1864 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1865 MachineBasicBlock* Dest = I->BB; 1866 for (i = 0; i < count; ++i) 1867 if (Dest == CasesBits[i].BB) 1868 break; 1869 1870 if (i == count) { 1871 assert((count < 3) && "Too much destinations to test!"); 1872 CasesBits.push_back(CaseBits(0, Dest, 0)); 1873 count++; 1874 } 1875 1876 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 1877 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 1878 1879 uint64_t lo = (lowValue - lowBound).getZExtValue(); 1880 uint64_t hi = (highValue - lowBound).getZExtValue(); 1881 1882 for (uint64_t j = lo; j <= hi; j++) { 1883 CasesBits[i].Mask |= 1ULL << j; 1884 CasesBits[i].Bits++; 1885 } 1886 1887 } 1888 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 1889 1890 BitTestInfo BTC; 1891 1892 // Figure out which block is immediately after the current one. 1893 MachineFunction::iterator BBI = CR.CaseBB; 1894 ++BBI; 1895 1896 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1897 1898 DEBUG(dbgs() << "Cases:\n"); 1899 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 1900 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 1901 << ", Bits: " << CasesBits[i].Bits 1902 << ", BB: " << CasesBits[i].BB << '\n'); 1903 1904 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1905 CurMF->insert(BBI, CaseBB); 1906 BTC.push_back(BitTestCase(CasesBits[i].Mask, 1907 CaseBB, 1908 CasesBits[i].BB)); 1909 1910 // Put SV in a virtual register to make it available from the new blocks. 1911 ExportFromCurrentBlock(SV); 1912 } 1913 1914 BitTestBlock BTB(lowBound, cmpRange, SV, 1915 -1U, (CR.CaseBB == SwitchBB), 1916 CR.CaseBB, Default, BTC); 1917 1918 if (CR.CaseBB == SwitchBB) 1919 visitBitTestHeader(BTB, SwitchBB); 1920 1921 BitTestCases.push_back(BTB); 1922 1923 return true; 1924 } 1925 1926 /// Clusterify - Transform simple list of Cases into list of CaseRange's 1927 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 1928 const SwitchInst& SI) { 1929 size_t numCmps = 0; 1930 1931 // Start with "simple" cases 1932 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 1933 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 1934 Cases.push_back(Case(SI.getSuccessorValue(i), 1935 SI.getSuccessorValue(i), 1936 SMBB)); 1937 } 1938 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 1939 1940 // Merge case into clusters 1941 if (Cases.size() >= 2) 1942 // Must recompute end() each iteration because it may be 1943 // invalidated by erase if we hold on to it 1944 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 1945 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 1946 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 1947 MachineBasicBlock* nextBB = J->BB; 1948 MachineBasicBlock* currentBB = I->BB; 1949 1950 // If the two neighboring cases go to the same destination, merge them 1951 // into a single case. 1952 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 1953 I->High = J->High; 1954 J = Cases.erase(J); 1955 } else { 1956 I = J++; 1957 } 1958 } 1959 1960 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 1961 if (I->Low != I->High) 1962 // A range counts double, since it requires two compares. 1963 ++numCmps; 1964 } 1965 1966 return numCmps; 1967 } 1968 1969 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 1970 MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()]; 1971 1972 // Figure out which block is immediately after the current one. 1973 MachineBasicBlock *NextBlock = 0; 1974 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 1975 1976 // If there is only the default destination, branch to it if it is not the 1977 // next basic block. Otherwise, just fall through. 1978 if (SI.getNumOperands() == 2) { 1979 // Update machine-CFG edges. 1980 1981 // If this is not a fall-through branch, emit the branch. 1982 SwitchMBB->addSuccessor(Default); 1983 if (Default != NextBlock) 1984 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1985 MVT::Other, getControlRoot(), 1986 DAG.getBasicBlock(Default))); 1987 1988 return; 1989 } 1990 1991 // If there are any non-default case statements, create a vector of Cases 1992 // representing each one, and sort the vector so that we can efficiently 1993 // create a binary search tree from them. 1994 CaseVector Cases; 1995 size_t numCmps = Clusterify(Cases, SI); 1996 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 1997 << ". Total compares: " << numCmps << '\n'); 1998 numCmps = 0; 1999 2000 // Get the Value to be switched on and default basic blocks, which will be 2001 // inserted into CaseBlock records, representing basic blocks in the binary 2002 // search tree. 2003 const Value *SV = SI.getOperand(0); 2004 2005 // Push the initial CaseRec onto the worklist 2006 CaseRecVector WorkList; 2007 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2008 CaseRange(Cases.begin(),Cases.end()))); 2009 2010 while (!WorkList.empty()) { 2011 // Grab a record representing a case range to process off the worklist 2012 CaseRec CR = WorkList.back(); 2013 WorkList.pop_back(); 2014 2015 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2016 continue; 2017 2018 // If the range has few cases (two or less) emit a series of specific 2019 // tests. 2020 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2021 continue; 2022 2023 // If the switch has more than 5 blocks, and at least 40% dense, and the 2024 // target supports indirect branches, then emit a jump table rather than 2025 // lowering the switch to a binary tree of conditional branches. 2026 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2027 continue; 2028 2029 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2030 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2031 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2032 } 2033 } 2034 2035 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2036 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()]; 2037 2038 // Update machine-CFG edges with unique successors. 2039 SmallVector<BasicBlock*, 32> succs; 2040 succs.reserve(I.getNumSuccessors()); 2041 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2042 succs.push_back(I.getSuccessor(i)); 2043 array_pod_sort(succs.begin(), succs.end()); 2044 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2045 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2046 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2047 2048 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2049 MVT::Other, getControlRoot(), 2050 getValue(I.getAddress()))); 2051 } 2052 2053 void SelectionDAGBuilder::visitFSub(const User &I) { 2054 // -0.0 - X --> fneg 2055 const Type *Ty = I.getType(); 2056 if (Ty->isVectorTy()) { 2057 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2058 const VectorType *DestTy = cast<VectorType>(I.getType()); 2059 const Type *ElTy = DestTy->getElementType(); 2060 unsigned VL = DestTy->getNumElements(); 2061 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2062 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2063 if (CV == CNZ) { 2064 SDValue Op2 = getValue(I.getOperand(1)); 2065 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2066 Op2.getValueType(), Op2)); 2067 return; 2068 } 2069 } 2070 } 2071 2072 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2073 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2074 SDValue Op2 = getValue(I.getOperand(1)); 2075 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2076 Op2.getValueType(), Op2)); 2077 return; 2078 } 2079 2080 visitBinary(I, ISD::FSUB); 2081 } 2082 2083 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2084 SDValue Op1 = getValue(I.getOperand(0)); 2085 SDValue Op2 = getValue(I.getOperand(1)); 2086 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2087 Op1.getValueType(), Op1, Op2)); 2088 } 2089 2090 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2091 SDValue Op1 = getValue(I.getOperand(0)); 2092 SDValue Op2 = getValue(I.getOperand(1)); 2093 if (!I.getType()->isVectorTy() && 2094 Op2.getValueType() != TLI.getShiftAmountTy()) { 2095 // If the operand is smaller than the shift count type, promote it. 2096 EVT PTy = TLI.getPointerTy(); 2097 EVT STy = TLI.getShiftAmountTy(); 2098 if (STy.bitsGT(Op2.getValueType())) 2099 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2100 TLI.getShiftAmountTy(), Op2); 2101 // If the operand is larger than the shift count type but the shift 2102 // count type has enough bits to represent any shift value, truncate 2103 // it now. This is a common case and it exposes the truncate to 2104 // optimization early. 2105 else if (STy.getSizeInBits() >= 2106 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2107 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2108 TLI.getShiftAmountTy(), Op2); 2109 // Otherwise we'll need to temporarily settle for some other 2110 // convenient type; type legalization will make adjustments as 2111 // needed. 2112 else if (PTy.bitsLT(Op2.getValueType())) 2113 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2114 TLI.getPointerTy(), Op2); 2115 else if (PTy.bitsGT(Op2.getValueType())) 2116 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2117 TLI.getPointerTy(), Op2); 2118 } 2119 2120 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2121 Op1.getValueType(), Op1, Op2)); 2122 } 2123 2124 void SelectionDAGBuilder::visitICmp(const User &I) { 2125 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2126 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2127 predicate = IC->getPredicate(); 2128 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2129 predicate = ICmpInst::Predicate(IC->getPredicate()); 2130 SDValue Op1 = getValue(I.getOperand(0)); 2131 SDValue Op2 = getValue(I.getOperand(1)); 2132 ISD::CondCode Opcode = getICmpCondCode(predicate); 2133 2134 EVT DestVT = TLI.getValueType(I.getType()); 2135 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2136 } 2137 2138 void SelectionDAGBuilder::visitFCmp(const User &I) { 2139 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2140 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2141 predicate = FC->getPredicate(); 2142 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2143 predicate = FCmpInst::Predicate(FC->getPredicate()); 2144 SDValue Op1 = getValue(I.getOperand(0)); 2145 SDValue Op2 = getValue(I.getOperand(1)); 2146 ISD::CondCode Condition = getFCmpCondCode(predicate); 2147 EVT DestVT = TLI.getValueType(I.getType()); 2148 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2149 } 2150 2151 void SelectionDAGBuilder::visitSelect(const User &I) { 2152 SmallVector<EVT, 4> ValueVTs; 2153 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2154 unsigned NumValues = ValueVTs.size(); 2155 if (NumValues == 0) return; 2156 2157 SmallVector<SDValue, 4> Values(NumValues); 2158 SDValue Cond = getValue(I.getOperand(0)); 2159 SDValue TrueVal = getValue(I.getOperand(1)); 2160 SDValue FalseVal = getValue(I.getOperand(2)); 2161 2162 for (unsigned i = 0; i != NumValues; ++i) 2163 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2164 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2165 Cond, 2166 SDValue(TrueVal.getNode(), 2167 TrueVal.getResNo() + i), 2168 SDValue(FalseVal.getNode(), 2169 FalseVal.getResNo() + i)); 2170 2171 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2172 DAG.getVTList(&ValueVTs[0], NumValues), 2173 &Values[0], NumValues)); 2174 } 2175 2176 void SelectionDAGBuilder::visitTrunc(const User &I) { 2177 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2178 SDValue N = getValue(I.getOperand(0)); 2179 EVT DestVT = TLI.getValueType(I.getType()); 2180 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2181 } 2182 2183 void SelectionDAGBuilder::visitZExt(const User &I) { 2184 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2185 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2186 SDValue N = getValue(I.getOperand(0)); 2187 EVT DestVT = TLI.getValueType(I.getType()); 2188 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2189 } 2190 2191 void SelectionDAGBuilder::visitSExt(const User &I) { 2192 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2193 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2194 SDValue N = getValue(I.getOperand(0)); 2195 EVT DestVT = TLI.getValueType(I.getType()); 2196 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2197 } 2198 2199 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2200 // FPTrunc is never a no-op cast, no need to check 2201 SDValue N = getValue(I.getOperand(0)); 2202 EVT DestVT = TLI.getValueType(I.getType()); 2203 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2204 DestVT, N, DAG.getIntPtrConstant(0))); 2205 } 2206 2207 void SelectionDAGBuilder::visitFPExt(const User &I){ 2208 // FPTrunc is never a no-op cast, no need to check 2209 SDValue N = getValue(I.getOperand(0)); 2210 EVT DestVT = TLI.getValueType(I.getType()); 2211 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2212 } 2213 2214 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2215 // FPToUI is never a no-op cast, no need to check 2216 SDValue N = getValue(I.getOperand(0)); 2217 EVT DestVT = TLI.getValueType(I.getType()); 2218 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2219 } 2220 2221 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2222 // FPToSI is never a no-op cast, no need to check 2223 SDValue N = getValue(I.getOperand(0)); 2224 EVT DestVT = TLI.getValueType(I.getType()); 2225 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2226 } 2227 2228 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2229 // UIToFP is never a no-op cast, no need to check 2230 SDValue N = getValue(I.getOperand(0)); 2231 EVT DestVT = TLI.getValueType(I.getType()); 2232 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2233 } 2234 2235 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2236 // SIToFP is never a no-op cast, no need to check 2237 SDValue N = getValue(I.getOperand(0)); 2238 EVT DestVT = TLI.getValueType(I.getType()); 2239 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2240 } 2241 2242 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2243 // What to do depends on the size of the integer and the size of the pointer. 2244 // We can either truncate, zero extend, or no-op, accordingly. 2245 SDValue N = getValue(I.getOperand(0)); 2246 EVT SrcVT = N.getValueType(); 2247 EVT DestVT = TLI.getValueType(I.getType()); 2248 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2249 } 2250 2251 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2252 // What to do depends on the size of the integer and the size of the pointer. 2253 // We can either truncate, zero extend, or no-op, accordingly. 2254 SDValue N = getValue(I.getOperand(0)); 2255 EVT SrcVT = N.getValueType(); 2256 EVT DestVT = TLI.getValueType(I.getType()); 2257 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2258 } 2259 2260 void SelectionDAGBuilder::visitBitCast(const User &I) { 2261 SDValue N = getValue(I.getOperand(0)); 2262 EVT DestVT = TLI.getValueType(I.getType()); 2263 2264 // BitCast assures us that source and destination are the same size so this is 2265 // either a BIT_CONVERT or a no-op. 2266 if (DestVT != N.getValueType()) 2267 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2268 DestVT, N)); // convert types. 2269 else 2270 setValue(&I, N); // noop cast. 2271 } 2272 2273 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2274 SDValue InVec = getValue(I.getOperand(0)); 2275 SDValue InVal = getValue(I.getOperand(1)); 2276 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2277 TLI.getPointerTy(), 2278 getValue(I.getOperand(2))); 2279 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2280 TLI.getValueType(I.getType()), 2281 InVec, InVal, InIdx)); 2282 } 2283 2284 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2285 SDValue InVec = getValue(I.getOperand(0)); 2286 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2287 TLI.getPointerTy(), 2288 getValue(I.getOperand(1))); 2289 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2290 TLI.getValueType(I.getType()), InVec, InIdx)); 2291 } 2292 2293 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2294 // from SIndx and increasing to the element length (undefs are allowed). 2295 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2296 unsigned MaskNumElts = Mask.size(); 2297 for (unsigned i = 0; i != MaskNumElts; ++i) 2298 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2299 return false; 2300 return true; 2301 } 2302 2303 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2304 SmallVector<int, 8> Mask; 2305 SDValue Src1 = getValue(I.getOperand(0)); 2306 SDValue Src2 = getValue(I.getOperand(1)); 2307 2308 // Convert the ConstantVector mask operand into an array of ints, with -1 2309 // representing undef values. 2310 SmallVector<Constant*, 8> MaskElts; 2311 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2312 unsigned MaskNumElts = MaskElts.size(); 2313 for (unsigned i = 0; i != MaskNumElts; ++i) { 2314 if (isa<UndefValue>(MaskElts[i])) 2315 Mask.push_back(-1); 2316 else 2317 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2318 } 2319 2320 EVT VT = TLI.getValueType(I.getType()); 2321 EVT SrcVT = Src1.getValueType(); 2322 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2323 2324 if (SrcNumElts == MaskNumElts) { 2325 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2326 &Mask[0])); 2327 return; 2328 } 2329 2330 // Normalize the shuffle vector since mask and vector length don't match. 2331 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2332 // Mask is longer than the source vectors and is a multiple of the source 2333 // vectors. We can use concatenate vector to make the mask and vectors 2334 // lengths match. 2335 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2336 // The shuffle is concatenating two vectors together. 2337 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2338 VT, Src1, Src2)); 2339 return; 2340 } 2341 2342 // Pad both vectors with undefs to make them the same length as the mask. 2343 unsigned NumConcat = MaskNumElts / SrcNumElts; 2344 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2345 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2346 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2347 2348 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2349 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2350 MOps1[0] = Src1; 2351 MOps2[0] = Src2; 2352 2353 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2354 getCurDebugLoc(), VT, 2355 &MOps1[0], NumConcat); 2356 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2357 getCurDebugLoc(), VT, 2358 &MOps2[0], NumConcat); 2359 2360 // Readjust mask for new input vector length. 2361 SmallVector<int, 8> MappedOps; 2362 for (unsigned i = 0; i != MaskNumElts; ++i) { 2363 int Idx = Mask[i]; 2364 if (Idx < (int)SrcNumElts) 2365 MappedOps.push_back(Idx); 2366 else 2367 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2368 } 2369 2370 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2371 &MappedOps[0])); 2372 return; 2373 } 2374 2375 if (SrcNumElts > MaskNumElts) { 2376 // Analyze the access pattern of the vector to see if we can extract 2377 // two subvectors and do the shuffle. The analysis is done by calculating 2378 // the range of elements the mask access on both vectors. 2379 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2380 int MaxRange[2] = {-1, -1}; 2381 2382 for (unsigned i = 0; i != MaskNumElts; ++i) { 2383 int Idx = Mask[i]; 2384 int Input = 0; 2385 if (Idx < 0) 2386 continue; 2387 2388 if (Idx >= (int)SrcNumElts) { 2389 Input = 1; 2390 Idx -= SrcNumElts; 2391 } 2392 if (Idx > MaxRange[Input]) 2393 MaxRange[Input] = Idx; 2394 if (Idx < MinRange[Input]) 2395 MinRange[Input] = Idx; 2396 } 2397 2398 // Check if the access is smaller than the vector size and can we find 2399 // a reasonable extract index. 2400 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2401 // Extract. 2402 int StartIdx[2]; // StartIdx to extract from 2403 for (int Input=0; Input < 2; ++Input) { 2404 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2405 RangeUse[Input] = 0; // Unused 2406 StartIdx[Input] = 0; 2407 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2408 // Fits within range but we should see if we can find a good 2409 // start index that is a multiple of the mask length. 2410 if (MaxRange[Input] < (int)MaskNumElts) { 2411 RangeUse[Input] = 1; // Extract from beginning of the vector 2412 StartIdx[Input] = 0; 2413 } else { 2414 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2415 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2416 StartIdx[Input] + MaskNumElts < SrcNumElts) 2417 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2418 } 2419 } 2420 } 2421 2422 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2423 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2424 return; 2425 } 2426 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2427 // Extract appropriate subvector and generate a vector shuffle 2428 for (int Input=0; Input < 2; ++Input) { 2429 SDValue &Src = Input == 0 ? Src1 : Src2; 2430 if (RangeUse[Input] == 0) 2431 Src = DAG.getUNDEF(VT); 2432 else 2433 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2434 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2435 } 2436 2437 // Calculate new mask. 2438 SmallVector<int, 8> MappedOps; 2439 for (unsigned i = 0; i != MaskNumElts; ++i) { 2440 int Idx = Mask[i]; 2441 if (Idx < 0) 2442 MappedOps.push_back(Idx); 2443 else if (Idx < (int)SrcNumElts) 2444 MappedOps.push_back(Idx - StartIdx[0]); 2445 else 2446 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2447 } 2448 2449 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2450 &MappedOps[0])); 2451 return; 2452 } 2453 } 2454 2455 // We can't use either concat vectors or extract subvectors so fall back to 2456 // replacing the shuffle with extract and build vector. 2457 // to insert and build vector. 2458 EVT EltVT = VT.getVectorElementType(); 2459 EVT PtrVT = TLI.getPointerTy(); 2460 SmallVector<SDValue,8> Ops; 2461 for (unsigned i = 0; i != MaskNumElts; ++i) { 2462 if (Mask[i] < 0) { 2463 Ops.push_back(DAG.getUNDEF(EltVT)); 2464 } else { 2465 int Idx = Mask[i]; 2466 SDValue Res; 2467 2468 if (Idx < (int)SrcNumElts) 2469 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2470 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2471 else 2472 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2473 EltVT, Src2, 2474 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2475 2476 Ops.push_back(Res); 2477 } 2478 } 2479 2480 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2481 VT, &Ops[0], Ops.size())); 2482 } 2483 2484 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2485 const Value *Op0 = I.getOperand(0); 2486 const Value *Op1 = I.getOperand(1); 2487 const Type *AggTy = I.getType(); 2488 const Type *ValTy = Op1->getType(); 2489 bool IntoUndef = isa<UndefValue>(Op0); 2490 bool FromUndef = isa<UndefValue>(Op1); 2491 2492 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2493 I.idx_begin(), I.idx_end()); 2494 2495 SmallVector<EVT, 4> AggValueVTs; 2496 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2497 SmallVector<EVT, 4> ValValueVTs; 2498 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2499 2500 unsigned NumAggValues = AggValueVTs.size(); 2501 unsigned NumValValues = ValValueVTs.size(); 2502 SmallVector<SDValue, 4> Values(NumAggValues); 2503 2504 SDValue Agg = getValue(Op0); 2505 SDValue Val = getValue(Op1); 2506 unsigned i = 0; 2507 // Copy the beginning value(s) from the original aggregate. 2508 for (; i != LinearIndex; ++i) 2509 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2510 SDValue(Agg.getNode(), Agg.getResNo() + i); 2511 // Copy values from the inserted value(s). 2512 for (; i != LinearIndex + NumValValues; ++i) 2513 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2514 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2515 // Copy remaining value(s) from the original aggregate. 2516 for (; i != NumAggValues; ++i) 2517 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2518 SDValue(Agg.getNode(), Agg.getResNo() + i); 2519 2520 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2521 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2522 &Values[0], NumAggValues)); 2523 } 2524 2525 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2526 const Value *Op0 = I.getOperand(0); 2527 const Type *AggTy = Op0->getType(); 2528 const Type *ValTy = I.getType(); 2529 bool OutOfUndef = isa<UndefValue>(Op0); 2530 2531 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2532 I.idx_begin(), I.idx_end()); 2533 2534 SmallVector<EVT, 4> ValValueVTs; 2535 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2536 2537 unsigned NumValValues = ValValueVTs.size(); 2538 SmallVector<SDValue, 4> Values(NumValValues); 2539 2540 SDValue Agg = getValue(Op0); 2541 // Copy out the selected value(s). 2542 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2543 Values[i - LinearIndex] = 2544 OutOfUndef ? 2545 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2546 SDValue(Agg.getNode(), Agg.getResNo() + i); 2547 2548 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2549 DAG.getVTList(&ValValueVTs[0], NumValValues), 2550 &Values[0], NumValValues)); 2551 } 2552 2553 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2554 SDValue N = getValue(I.getOperand(0)); 2555 const Type *Ty = I.getOperand(0)->getType(); 2556 2557 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2558 OI != E; ++OI) { 2559 const Value *Idx = *OI; 2560 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2561 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2562 if (Field) { 2563 // N = N + Offset 2564 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2565 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2566 DAG.getIntPtrConstant(Offset)); 2567 } 2568 2569 Ty = StTy->getElementType(Field); 2570 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2571 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2572 2573 // Offset canonically 0 for unions, but type changes 2574 Ty = UnTy->getElementType(Field); 2575 } else { 2576 Ty = cast<SequentialType>(Ty)->getElementType(); 2577 2578 // If this is a constant subscript, handle it quickly. 2579 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2580 if (CI->getZExtValue() == 0) continue; 2581 uint64_t Offs = 2582 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2583 SDValue OffsVal; 2584 EVT PTy = TLI.getPointerTy(); 2585 unsigned PtrBits = PTy.getSizeInBits(); 2586 if (PtrBits < 64) 2587 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2588 TLI.getPointerTy(), 2589 DAG.getConstant(Offs, MVT::i64)); 2590 else 2591 OffsVal = DAG.getIntPtrConstant(Offs); 2592 2593 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2594 OffsVal); 2595 continue; 2596 } 2597 2598 // N = N + Idx * ElementSize; 2599 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2600 TD->getTypeAllocSize(Ty)); 2601 SDValue IdxN = getValue(Idx); 2602 2603 // If the index is smaller or larger than intptr_t, truncate or extend 2604 // it. 2605 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2606 2607 // If this is a multiply by a power of two, turn it into a shl 2608 // immediately. This is a very common case. 2609 if (ElementSize != 1) { 2610 if (ElementSize.isPowerOf2()) { 2611 unsigned Amt = ElementSize.logBase2(); 2612 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2613 N.getValueType(), IdxN, 2614 DAG.getConstant(Amt, TLI.getPointerTy())); 2615 } else { 2616 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2617 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2618 N.getValueType(), IdxN, Scale); 2619 } 2620 } 2621 2622 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2623 N.getValueType(), N, IdxN); 2624 } 2625 } 2626 2627 setValue(&I, N); 2628 } 2629 2630 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2631 // If this is a fixed sized alloca in the entry block of the function, 2632 // allocate it statically on the stack. 2633 if (FuncInfo.StaticAllocaMap.count(&I)) 2634 return; // getValue will auto-populate this. 2635 2636 const Type *Ty = I.getAllocatedType(); 2637 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2638 unsigned Align = 2639 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2640 I.getAlignment()); 2641 2642 SDValue AllocSize = getValue(I.getArraySize()); 2643 2644 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), 2645 AllocSize, 2646 DAG.getConstant(TySize, AllocSize.getValueType())); 2647 2648 EVT IntPtr = TLI.getPointerTy(); 2649 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2650 2651 // Handle alignment. If the requested alignment is less than or equal to 2652 // the stack alignment, ignore it. If the size is greater than or equal to 2653 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2654 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2655 if (Align <= StackAlign) 2656 Align = 0; 2657 2658 // Round the size of the allocation up to the stack alignment size 2659 // by add SA-1 to the size. 2660 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2661 AllocSize.getValueType(), AllocSize, 2662 DAG.getIntPtrConstant(StackAlign-1)); 2663 2664 // Mask out the low bits for alignment purposes. 2665 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2666 AllocSize.getValueType(), AllocSize, 2667 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2668 2669 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2670 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2671 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2672 VTs, Ops, 3); 2673 setValue(&I, DSA); 2674 DAG.setRoot(DSA.getValue(1)); 2675 2676 // Inform the Frame Information that we have just allocated a variable-sized 2677 // object. 2678 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2679 } 2680 2681 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2682 const Value *SV = I.getOperand(0); 2683 SDValue Ptr = getValue(SV); 2684 2685 const Type *Ty = I.getType(); 2686 2687 bool isVolatile = I.isVolatile(); 2688 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2689 unsigned Alignment = I.getAlignment(); 2690 2691 SmallVector<EVT, 4> ValueVTs; 2692 SmallVector<uint64_t, 4> Offsets; 2693 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2694 unsigned NumValues = ValueVTs.size(); 2695 if (NumValues == 0) 2696 return; 2697 2698 SDValue Root; 2699 bool ConstantMemory = false; 2700 if (I.isVolatile()) 2701 // Serialize volatile loads with other side effects. 2702 Root = getRoot(); 2703 else if (AA->pointsToConstantMemory(SV)) { 2704 // Do not serialize (non-volatile) loads of constant memory with anything. 2705 Root = DAG.getEntryNode(); 2706 ConstantMemory = true; 2707 } else { 2708 // Do not serialize non-volatile loads against each other. 2709 Root = DAG.getRoot(); 2710 } 2711 2712 SmallVector<SDValue, 4> Values(NumValues); 2713 SmallVector<SDValue, 4> Chains(NumValues); 2714 EVT PtrVT = Ptr.getValueType(); 2715 for (unsigned i = 0; i != NumValues; ++i) { 2716 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2717 PtrVT, Ptr, 2718 DAG.getConstant(Offsets[i], PtrVT)); 2719 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2720 A, SV, Offsets[i], isVolatile, 2721 isNonTemporal, Alignment); 2722 2723 Values[i] = L; 2724 Chains[i] = L.getValue(1); 2725 } 2726 2727 if (!ConstantMemory) { 2728 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2729 MVT::Other, &Chains[0], NumValues); 2730 if (isVolatile) 2731 DAG.setRoot(Chain); 2732 else 2733 PendingLoads.push_back(Chain); 2734 } 2735 2736 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2737 DAG.getVTList(&ValueVTs[0], NumValues), 2738 &Values[0], NumValues)); 2739 } 2740 2741 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2742 const Value *SrcV = I.getOperand(0); 2743 const Value *PtrV = I.getOperand(1); 2744 2745 SmallVector<EVT, 4> ValueVTs; 2746 SmallVector<uint64_t, 4> Offsets; 2747 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2748 unsigned NumValues = ValueVTs.size(); 2749 if (NumValues == 0) 2750 return; 2751 2752 // Get the lowered operands. Note that we do this after 2753 // checking if NumResults is zero, because with zero results 2754 // the operands won't have values in the map. 2755 SDValue Src = getValue(SrcV); 2756 SDValue Ptr = getValue(PtrV); 2757 2758 SDValue Root = getRoot(); 2759 SmallVector<SDValue, 4> Chains(NumValues); 2760 EVT PtrVT = Ptr.getValueType(); 2761 bool isVolatile = I.isVolatile(); 2762 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2763 unsigned Alignment = I.getAlignment(); 2764 2765 for (unsigned i = 0; i != NumValues; ++i) { 2766 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 2767 DAG.getConstant(Offsets[i], PtrVT)); 2768 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 2769 SDValue(Src.getNode(), Src.getResNo() + i), 2770 Add, PtrV, Offsets[i], isVolatile, 2771 isNonTemporal, Alignment); 2772 } 2773 2774 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2775 MVT::Other, &Chains[0], NumValues)); 2776 } 2777 2778 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2779 /// node. 2780 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 2781 unsigned Intrinsic) { 2782 bool HasChain = !I.doesNotAccessMemory(); 2783 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2784 2785 // Build the operand list. 2786 SmallVector<SDValue, 8> Ops; 2787 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2788 if (OnlyLoad) { 2789 // We don't need to serialize loads against other loads. 2790 Ops.push_back(DAG.getRoot()); 2791 } else { 2792 Ops.push_back(getRoot()); 2793 } 2794 } 2795 2796 // Info is set by getTgtMemInstrinsic 2797 TargetLowering::IntrinsicInfo Info; 2798 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 2799 2800 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 2801 if (!IsTgtIntrinsic) 2802 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 2803 2804 // Add all operands of the call to the operand list. 2805 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 2806 SDValue Op = getValue(I.getOperand(i)); 2807 assert(TLI.isTypeLegal(Op.getValueType()) && 2808 "Intrinsic uses a non-legal type?"); 2809 Ops.push_back(Op); 2810 } 2811 2812 SmallVector<EVT, 4> ValueVTs; 2813 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2814 #ifndef NDEBUG 2815 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 2816 assert(TLI.isTypeLegal(ValueVTs[Val]) && 2817 "Intrinsic uses a non-legal type?"); 2818 } 2819 #endif // NDEBUG 2820 2821 if (HasChain) 2822 ValueVTs.push_back(MVT::Other); 2823 2824 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 2825 2826 // Create the node. 2827 SDValue Result; 2828 if (IsTgtIntrinsic) { 2829 // This is target intrinsic that touches memory 2830 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 2831 VTs, &Ops[0], Ops.size(), 2832 Info.memVT, Info.ptrVal, Info.offset, 2833 Info.align, Info.vol, 2834 Info.readMem, Info.writeMem); 2835 } else if (!HasChain) { 2836 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 2837 VTs, &Ops[0], Ops.size()); 2838 } else if (!I.getType()->isVoidTy()) { 2839 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 2840 VTs, &Ops[0], Ops.size()); 2841 } else { 2842 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 2843 VTs, &Ops[0], Ops.size()); 2844 } 2845 2846 if (HasChain) { 2847 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 2848 if (OnlyLoad) 2849 PendingLoads.push_back(Chain); 2850 else 2851 DAG.setRoot(Chain); 2852 } 2853 2854 if (!I.getType()->isVoidTy()) { 2855 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 2856 EVT VT = TLI.getValueType(PTy); 2857 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 2858 } 2859 2860 setValue(&I, Result); 2861 } 2862 } 2863 2864 /// GetSignificand - Get the significand and build it into a floating-point 2865 /// number with exponent of 1: 2866 /// 2867 /// Op = (Op & 0x007fffff) | 0x3f800000; 2868 /// 2869 /// where Op is the hexidecimal representation of floating point value. 2870 static SDValue 2871 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 2872 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2873 DAG.getConstant(0x007fffff, MVT::i32)); 2874 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 2875 DAG.getConstant(0x3f800000, MVT::i32)); 2876 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 2877 } 2878 2879 /// GetExponent - Get the exponent: 2880 /// 2881 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 2882 /// 2883 /// where Op is the hexidecimal representation of floating point value. 2884 static SDValue 2885 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 2886 DebugLoc dl) { 2887 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2888 DAG.getConstant(0x7f800000, MVT::i32)); 2889 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 2890 DAG.getConstant(23, TLI.getPointerTy())); 2891 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 2892 DAG.getConstant(127, MVT::i32)); 2893 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 2894 } 2895 2896 /// getF32Constant - Get 32-bit floating point constant. 2897 static SDValue 2898 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 2899 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 2900 } 2901 2902 /// Inlined utility function to implement binary input atomic intrinsics for 2903 /// visitIntrinsicCall: I is a call instruction 2904 /// Op is the associated NodeType for I 2905 const char * 2906 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 2907 ISD::NodeType Op) { 2908 SDValue Root = getRoot(); 2909 SDValue L = 2910 DAG.getAtomic(Op, getCurDebugLoc(), 2911 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 2912 Root, 2913 getValue(I.getOperand(1)), 2914 getValue(I.getOperand(2)), 2915 I.getOperand(1)); 2916 setValue(&I, L); 2917 DAG.setRoot(L.getValue(1)); 2918 return 0; 2919 } 2920 2921 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 2922 const char * 2923 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 2924 SDValue Op1 = getValue(I.getOperand(1)); 2925 SDValue Op2 = getValue(I.getOperand(2)); 2926 2927 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 2928 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 2929 return 0; 2930 } 2931 2932 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 2933 /// limited-precision mode. 2934 void 2935 SelectionDAGBuilder::visitExp(const CallInst &I) { 2936 SDValue result; 2937 DebugLoc dl = getCurDebugLoc(); 2938 2939 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 2940 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 2941 SDValue Op = getValue(I.getOperand(1)); 2942 2943 // Put the exponent in the right bit position for later addition to the 2944 // final result: 2945 // 2946 // #define LOG2OFe 1.4426950f 2947 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 2948 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 2949 getF32Constant(DAG, 0x3fb8aa3b)); 2950 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 2951 2952 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 2953 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 2954 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 2955 2956 // IntegerPartOfX <<= 23; 2957 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 2958 DAG.getConstant(23, TLI.getPointerTy())); 2959 2960 if (LimitFloatPrecision <= 6) { 2961 // For floating-point precision of 6: 2962 // 2963 // TwoToFractionalPartOfX = 2964 // 0.997535578f + 2965 // (0.735607626f + 0.252464424f * x) * x; 2966 // 2967 // error 0.0144103317, which is 6 bits 2968 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2969 getF32Constant(DAG, 0x3e814304)); 2970 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2971 getF32Constant(DAG, 0x3f3c50c8)); 2972 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2973 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2974 getF32Constant(DAG, 0x3f7f5e7e)); 2975 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 2976 2977 // Add the exponent into the result in integer domain. 2978 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2979 TwoToFracPartOfX, IntegerPartOfX); 2980 2981 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 2982 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 2983 // For floating-point precision of 12: 2984 // 2985 // TwoToFractionalPartOfX = 2986 // 0.999892986f + 2987 // (0.696457318f + 2988 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 2989 // 2990 // 0.000107046256 error, which is 13 to 14 bits 2991 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2992 getF32Constant(DAG, 0x3da235e3)); 2993 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2994 getF32Constant(DAG, 0x3e65b8f3)); 2995 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2996 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2997 getF32Constant(DAG, 0x3f324b07)); 2998 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 2999 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3000 getF32Constant(DAG, 0x3f7ff8fd)); 3001 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3002 3003 // Add the exponent into the result in integer domain. 3004 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3005 TwoToFracPartOfX, IntegerPartOfX); 3006 3007 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3008 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3009 // For floating-point precision of 18: 3010 // 3011 // TwoToFractionalPartOfX = 3012 // 0.999999982f + 3013 // (0.693148872f + 3014 // (0.240227044f + 3015 // (0.554906021e-1f + 3016 // (0.961591928e-2f + 3017 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3018 // 3019 // error 2.47208000*10^(-7), which is better than 18 bits 3020 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3021 getF32Constant(DAG, 0x3924b03e)); 3022 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3023 getF32Constant(DAG, 0x3ab24b87)); 3024 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3025 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3026 getF32Constant(DAG, 0x3c1d8c17)); 3027 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3028 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3029 getF32Constant(DAG, 0x3d634a1d)); 3030 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3031 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3032 getF32Constant(DAG, 0x3e75fe14)); 3033 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3034 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3035 getF32Constant(DAG, 0x3f317234)); 3036 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3037 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3038 getF32Constant(DAG, 0x3f800000)); 3039 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3040 MVT::i32, t13); 3041 3042 // Add the exponent into the result in integer domain. 3043 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3044 TwoToFracPartOfX, IntegerPartOfX); 3045 3046 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3047 } 3048 } else { 3049 // No special expansion. 3050 result = DAG.getNode(ISD::FEXP, dl, 3051 getValue(I.getOperand(1)).getValueType(), 3052 getValue(I.getOperand(1))); 3053 } 3054 3055 setValue(&I, result); 3056 } 3057 3058 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3059 /// limited-precision mode. 3060 void 3061 SelectionDAGBuilder::visitLog(const CallInst &I) { 3062 SDValue result; 3063 DebugLoc dl = getCurDebugLoc(); 3064 3065 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3066 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3067 SDValue Op = getValue(I.getOperand(1)); 3068 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3069 3070 // Scale the exponent by log(2) [0.69314718f]. 3071 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3072 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3073 getF32Constant(DAG, 0x3f317218)); 3074 3075 // Get the significand and build it into a floating-point number with 3076 // exponent of 1. 3077 SDValue X = GetSignificand(DAG, Op1, dl); 3078 3079 if (LimitFloatPrecision <= 6) { 3080 // For floating-point precision of 6: 3081 // 3082 // LogofMantissa = 3083 // -1.1609546f + 3084 // (1.4034025f - 0.23903021f * x) * x; 3085 // 3086 // error 0.0034276066, which is better than 8 bits 3087 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3088 getF32Constant(DAG, 0xbe74c456)); 3089 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3090 getF32Constant(DAG, 0x3fb3a2b1)); 3091 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3092 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3093 getF32Constant(DAG, 0x3f949a29)); 3094 3095 result = DAG.getNode(ISD::FADD, dl, 3096 MVT::f32, LogOfExponent, LogOfMantissa); 3097 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3098 // For floating-point precision of 12: 3099 // 3100 // LogOfMantissa = 3101 // -1.7417939f + 3102 // (2.8212026f + 3103 // (-1.4699568f + 3104 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3105 // 3106 // error 0.000061011436, which is 14 bits 3107 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3108 getF32Constant(DAG, 0xbd67b6d6)); 3109 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3110 getF32Constant(DAG, 0x3ee4f4b8)); 3111 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3112 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3113 getF32Constant(DAG, 0x3fbc278b)); 3114 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3115 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3116 getF32Constant(DAG, 0x40348e95)); 3117 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3118 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3119 getF32Constant(DAG, 0x3fdef31a)); 3120 3121 result = DAG.getNode(ISD::FADD, dl, 3122 MVT::f32, LogOfExponent, LogOfMantissa); 3123 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3124 // For floating-point precision of 18: 3125 // 3126 // LogOfMantissa = 3127 // -2.1072184f + 3128 // (4.2372794f + 3129 // (-3.7029485f + 3130 // (2.2781945f + 3131 // (-0.87823314f + 3132 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3133 // 3134 // error 0.0000023660568, which is better than 18 bits 3135 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3136 getF32Constant(DAG, 0xbc91e5ac)); 3137 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3138 getF32Constant(DAG, 0x3e4350aa)); 3139 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3140 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3141 getF32Constant(DAG, 0x3f60d3e3)); 3142 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3143 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3144 getF32Constant(DAG, 0x4011cdf0)); 3145 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3146 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3147 getF32Constant(DAG, 0x406cfd1c)); 3148 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3149 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3150 getF32Constant(DAG, 0x408797cb)); 3151 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3152 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3153 getF32Constant(DAG, 0x4006dcab)); 3154 3155 result = DAG.getNode(ISD::FADD, dl, 3156 MVT::f32, LogOfExponent, LogOfMantissa); 3157 } 3158 } else { 3159 // No special expansion. 3160 result = DAG.getNode(ISD::FLOG, dl, 3161 getValue(I.getOperand(1)).getValueType(), 3162 getValue(I.getOperand(1))); 3163 } 3164 3165 setValue(&I, result); 3166 } 3167 3168 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3169 /// limited-precision mode. 3170 void 3171 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3172 SDValue result; 3173 DebugLoc dl = getCurDebugLoc(); 3174 3175 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3176 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3177 SDValue Op = getValue(I.getOperand(1)); 3178 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3179 3180 // Get the exponent. 3181 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3182 3183 // Get the significand and build it into a floating-point number with 3184 // exponent of 1. 3185 SDValue X = GetSignificand(DAG, Op1, dl); 3186 3187 // Different possible minimax approximations of significand in 3188 // floating-point for various degrees of accuracy over [1,2]. 3189 if (LimitFloatPrecision <= 6) { 3190 // For floating-point precision of 6: 3191 // 3192 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3193 // 3194 // error 0.0049451742, which is more than 7 bits 3195 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3196 getF32Constant(DAG, 0xbeb08fe0)); 3197 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3198 getF32Constant(DAG, 0x40019463)); 3199 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3200 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3201 getF32Constant(DAG, 0x3fd6633d)); 3202 3203 result = DAG.getNode(ISD::FADD, dl, 3204 MVT::f32, LogOfExponent, Log2ofMantissa); 3205 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3206 // For floating-point precision of 12: 3207 // 3208 // Log2ofMantissa = 3209 // -2.51285454f + 3210 // (4.07009056f + 3211 // (-2.12067489f + 3212 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3213 // 3214 // error 0.0000876136000, which is better than 13 bits 3215 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3216 getF32Constant(DAG, 0xbda7262e)); 3217 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3218 getF32Constant(DAG, 0x3f25280b)); 3219 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3220 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3221 getF32Constant(DAG, 0x4007b923)); 3222 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3223 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3224 getF32Constant(DAG, 0x40823e2f)); 3225 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3226 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3227 getF32Constant(DAG, 0x4020d29c)); 3228 3229 result = DAG.getNode(ISD::FADD, dl, 3230 MVT::f32, LogOfExponent, Log2ofMantissa); 3231 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3232 // For floating-point precision of 18: 3233 // 3234 // Log2ofMantissa = 3235 // -3.0400495f + 3236 // (6.1129976f + 3237 // (-5.3420409f + 3238 // (3.2865683f + 3239 // (-1.2669343f + 3240 // (0.27515199f - 3241 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3242 // 3243 // error 0.0000018516, which is better than 18 bits 3244 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3245 getF32Constant(DAG, 0xbcd2769e)); 3246 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3247 getF32Constant(DAG, 0x3e8ce0b9)); 3248 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3249 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3250 getF32Constant(DAG, 0x3fa22ae7)); 3251 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3252 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3253 getF32Constant(DAG, 0x40525723)); 3254 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3255 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3256 getF32Constant(DAG, 0x40aaf200)); 3257 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3258 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3259 getF32Constant(DAG, 0x40c39dad)); 3260 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3261 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3262 getF32Constant(DAG, 0x4042902c)); 3263 3264 result = DAG.getNode(ISD::FADD, dl, 3265 MVT::f32, LogOfExponent, Log2ofMantissa); 3266 } 3267 } else { 3268 // No special expansion. 3269 result = DAG.getNode(ISD::FLOG2, dl, 3270 getValue(I.getOperand(1)).getValueType(), 3271 getValue(I.getOperand(1))); 3272 } 3273 3274 setValue(&I, result); 3275 } 3276 3277 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3278 /// limited-precision mode. 3279 void 3280 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3281 SDValue result; 3282 DebugLoc dl = getCurDebugLoc(); 3283 3284 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3285 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3286 SDValue Op = getValue(I.getOperand(1)); 3287 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3288 3289 // Scale the exponent by log10(2) [0.30102999f]. 3290 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3291 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3292 getF32Constant(DAG, 0x3e9a209a)); 3293 3294 // Get the significand and build it into a floating-point number with 3295 // exponent of 1. 3296 SDValue X = GetSignificand(DAG, Op1, dl); 3297 3298 if (LimitFloatPrecision <= 6) { 3299 // For floating-point precision of 6: 3300 // 3301 // Log10ofMantissa = 3302 // -0.50419619f + 3303 // (0.60948995f - 0.10380950f * x) * x; 3304 // 3305 // error 0.0014886165, which is 6 bits 3306 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3307 getF32Constant(DAG, 0xbdd49a13)); 3308 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3309 getF32Constant(DAG, 0x3f1c0789)); 3310 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3311 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3312 getF32Constant(DAG, 0x3f011300)); 3313 3314 result = DAG.getNode(ISD::FADD, dl, 3315 MVT::f32, LogOfExponent, Log10ofMantissa); 3316 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3317 // For floating-point precision of 12: 3318 // 3319 // Log10ofMantissa = 3320 // -0.64831180f + 3321 // (0.91751397f + 3322 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3323 // 3324 // error 0.00019228036, which is better than 12 bits 3325 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3326 getF32Constant(DAG, 0x3d431f31)); 3327 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3328 getF32Constant(DAG, 0x3ea21fb2)); 3329 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3330 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3331 getF32Constant(DAG, 0x3f6ae232)); 3332 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3333 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3334 getF32Constant(DAG, 0x3f25f7c3)); 3335 3336 result = DAG.getNode(ISD::FADD, dl, 3337 MVT::f32, LogOfExponent, Log10ofMantissa); 3338 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3339 // For floating-point precision of 18: 3340 // 3341 // Log10ofMantissa = 3342 // -0.84299375f + 3343 // (1.5327582f + 3344 // (-1.0688956f + 3345 // (0.49102474f + 3346 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3347 // 3348 // error 0.0000037995730, which is better than 18 bits 3349 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3350 getF32Constant(DAG, 0x3c5d51ce)); 3351 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3352 getF32Constant(DAG, 0x3e00685a)); 3353 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3354 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3355 getF32Constant(DAG, 0x3efb6798)); 3356 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3357 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3358 getF32Constant(DAG, 0x3f88d192)); 3359 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3360 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3361 getF32Constant(DAG, 0x3fc4316c)); 3362 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3363 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3364 getF32Constant(DAG, 0x3f57ce70)); 3365 3366 result = DAG.getNode(ISD::FADD, dl, 3367 MVT::f32, LogOfExponent, Log10ofMantissa); 3368 } 3369 } else { 3370 // No special expansion. 3371 result = DAG.getNode(ISD::FLOG10, dl, 3372 getValue(I.getOperand(1)).getValueType(), 3373 getValue(I.getOperand(1))); 3374 } 3375 3376 setValue(&I, result); 3377 } 3378 3379 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3380 /// limited-precision mode. 3381 void 3382 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3383 SDValue result; 3384 DebugLoc dl = getCurDebugLoc(); 3385 3386 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3387 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3388 SDValue Op = getValue(I.getOperand(1)); 3389 3390 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3391 3392 // FractionalPartOfX = x - (float)IntegerPartOfX; 3393 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3394 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3395 3396 // IntegerPartOfX <<= 23; 3397 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3398 DAG.getConstant(23, TLI.getPointerTy())); 3399 3400 if (LimitFloatPrecision <= 6) { 3401 // For floating-point precision of 6: 3402 // 3403 // TwoToFractionalPartOfX = 3404 // 0.997535578f + 3405 // (0.735607626f + 0.252464424f * x) * x; 3406 // 3407 // error 0.0144103317, which is 6 bits 3408 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3409 getF32Constant(DAG, 0x3e814304)); 3410 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3411 getF32Constant(DAG, 0x3f3c50c8)); 3412 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3413 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3414 getF32Constant(DAG, 0x3f7f5e7e)); 3415 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3416 SDValue TwoToFractionalPartOfX = 3417 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3418 3419 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3420 MVT::f32, TwoToFractionalPartOfX); 3421 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3422 // For floating-point precision of 12: 3423 // 3424 // TwoToFractionalPartOfX = 3425 // 0.999892986f + 3426 // (0.696457318f + 3427 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3428 // 3429 // error 0.000107046256, which is 13 to 14 bits 3430 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3431 getF32Constant(DAG, 0x3da235e3)); 3432 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3433 getF32Constant(DAG, 0x3e65b8f3)); 3434 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3435 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3436 getF32Constant(DAG, 0x3f324b07)); 3437 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3438 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3439 getF32Constant(DAG, 0x3f7ff8fd)); 3440 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3441 SDValue TwoToFractionalPartOfX = 3442 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3443 3444 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3445 MVT::f32, TwoToFractionalPartOfX); 3446 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3447 // For floating-point precision of 18: 3448 // 3449 // TwoToFractionalPartOfX = 3450 // 0.999999982f + 3451 // (0.693148872f + 3452 // (0.240227044f + 3453 // (0.554906021e-1f + 3454 // (0.961591928e-2f + 3455 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3456 // error 2.47208000*10^(-7), which is better than 18 bits 3457 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3458 getF32Constant(DAG, 0x3924b03e)); 3459 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3460 getF32Constant(DAG, 0x3ab24b87)); 3461 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3462 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3463 getF32Constant(DAG, 0x3c1d8c17)); 3464 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3465 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3466 getF32Constant(DAG, 0x3d634a1d)); 3467 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3468 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3469 getF32Constant(DAG, 0x3e75fe14)); 3470 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3471 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3472 getF32Constant(DAG, 0x3f317234)); 3473 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3474 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3475 getF32Constant(DAG, 0x3f800000)); 3476 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3477 SDValue TwoToFractionalPartOfX = 3478 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3479 3480 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3481 MVT::f32, TwoToFractionalPartOfX); 3482 } 3483 } else { 3484 // No special expansion. 3485 result = DAG.getNode(ISD::FEXP2, dl, 3486 getValue(I.getOperand(1)).getValueType(), 3487 getValue(I.getOperand(1))); 3488 } 3489 3490 setValue(&I, result); 3491 } 3492 3493 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3494 /// limited-precision mode with x == 10.0f. 3495 void 3496 SelectionDAGBuilder::visitPow(const CallInst &I) { 3497 SDValue result; 3498 const Value *Val = I.getOperand(1); 3499 DebugLoc dl = getCurDebugLoc(); 3500 bool IsExp10 = false; 3501 3502 if (getValue(Val).getValueType() == MVT::f32 && 3503 getValue(I.getOperand(2)).getValueType() == MVT::f32 && 3504 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3505 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3506 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3507 APFloat Ten(10.0f); 3508 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3509 } 3510 } 3511 } 3512 3513 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3514 SDValue Op = getValue(I.getOperand(2)); 3515 3516 // Put the exponent in the right bit position for later addition to the 3517 // final result: 3518 // 3519 // #define LOG2OF10 3.3219281f 3520 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3521 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3522 getF32Constant(DAG, 0x40549a78)); 3523 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3524 3525 // FractionalPartOfX = x - (float)IntegerPartOfX; 3526 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3527 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3528 3529 // IntegerPartOfX <<= 23; 3530 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3531 DAG.getConstant(23, TLI.getPointerTy())); 3532 3533 if (LimitFloatPrecision <= 6) { 3534 // For floating-point precision of 6: 3535 // 3536 // twoToFractionalPartOfX = 3537 // 0.997535578f + 3538 // (0.735607626f + 0.252464424f * x) * x; 3539 // 3540 // error 0.0144103317, which is 6 bits 3541 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3542 getF32Constant(DAG, 0x3e814304)); 3543 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3544 getF32Constant(DAG, 0x3f3c50c8)); 3545 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3546 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3547 getF32Constant(DAG, 0x3f7f5e7e)); 3548 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3549 SDValue TwoToFractionalPartOfX = 3550 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3551 3552 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3553 MVT::f32, TwoToFractionalPartOfX); 3554 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3555 // For floating-point precision of 12: 3556 // 3557 // TwoToFractionalPartOfX = 3558 // 0.999892986f + 3559 // (0.696457318f + 3560 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3561 // 3562 // error 0.000107046256, which is 13 to 14 bits 3563 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3564 getF32Constant(DAG, 0x3da235e3)); 3565 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3566 getF32Constant(DAG, 0x3e65b8f3)); 3567 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3568 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3569 getF32Constant(DAG, 0x3f324b07)); 3570 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3571 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3572 getF32Constant(DAG, 0x3f7ff8fd)); 3573 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3574 SDValue TwoToFractionalPartOfX = 3575 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3576 3577 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3578 MVT::f32, TwoToFractionalPartOfX); 3579 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3580 // For floating-point precision of 18: 3581 // 3582 // TwoToFractionalPartOfX = 3583 // 0.999999982f + 3584 // (0.693148872f + 3585 // (0.240227044f + 3586 // (0.554906021e-1f + 3587 // (0.961591928e-2f + 3588 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3589 // error 2.47208000*10^(-7), which is better than 18 bits 3590 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3591 getF32Constant(DAG, 0x3924b03e)); 3592 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3593 getF32Constant(DAG, 0x3ab24b87)); 3594 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3595 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3596 getF32Constant(DAG, 0x3c1d8c17)); 3597 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3598 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3599 getF32Constant(DAG, 0x3d634a1d)); 3600 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3601 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3602 getF32Constant(DAG, 0x3e75fe14)); 3603 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3604 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3605 getF32Constant(DAG, 0x3f317234)); 3606 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3607 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3608 getF32Constant(DAG, 0x3f800000)); 3609 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3610 SDValue TwoToFractionalPartOfX = 3611 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3612 3613 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3614 MVT::f32, TwoToFractionalPartOfX); 3615 } 3616 } else { 3617 // No special expansion. 3618 result = DAG.getNode(ISD::FPOW, dl, 3619 getValue(I.getOperand(1)).getValueType(), 3620 getValue(I.getOperand(1)), 3621 getValue(I.getOperand(2))); 3622 } 3623 3624 setValue(&I, result); 3625 } 3626 3627 3628 /// ExpandPowI - Expand a llvm.powi intrinsic. 3629 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3630 SelectionDAG &DAG) { 3631 // If RHS is a constant, we can expand this out to a multiplication tree, 3632 // otherwise we end up lowering to a call to __powidf2 (for example). When 3633 // optimizing for size, we only want to do this if the expansion would produce 3634 // a small number of multiplies, otherwise we do the full expansion. 3635 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3636 // Get the exponent as a positive value. 3637 unsigned Val = RHSC->getSExtValue(); 3638 if ((int)Val < 0) Val = -Val; 3639 3640 // powi(x, 0) -> 1.0 3641 if (Val == 0) 3642 return DAG.getConstantFP(1.0, LHS.getValueType()); 3643 3644 const Function *F = DAG.getMachineFunction().getFunction(); 3645 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3646 // If optimizing for size, don't insert too many multiplies. This 3647 // inserts up to 5 multiplies. 3648 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3649 // We use the simple binary decomposition method to generate the multiply 3650 // sequence. There are more optimal ways to do this (for example, 3651 // powi(x,15) generates one more multiply than it should), but this has 3652 // the benefit of being both really simple and much better than a libcall. 3653 SDValue Res; // Logically starts equal to 1.0 3654 SDValue CurSquare = LHS; 3655 while (Val) { 3656 if (Val & 1) { 3657 if (Res.getNode()) 3658 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3659 else 3660 Res = CurSquare; // 1.0*CurSquare. 3661 } 3662 3663 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3664 CurSquare, CurSquare); 3665 Val >>= 1; 3666 } 3667 3668 // If the original was negative, invert the result, producing 1/(x*x*x). 3669 if (RHSC->getSExtValue() < 0) 3670 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3671 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3672 return Res; 3673 } 3674 } 3675 3676 // Otherwise, expand to a libcall. 3677 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3678 } 3679 3680 3681 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3682 /// we want to emit this as a call to a named external function, return the name 3683 /// otherwise lower it and return null. 3684 const char * 3685 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3686 DebugLoc dl = getCurDebugLoc(); 3687 SDValue Res; 3688 3689 switch (Intrinsic) { 3690 default: 3691 // By default, turn this into a target intrinsic node. 3692 visitTargetIntrinsic(I, Intrinsic); 3693 return 0; 3694 case Intrinsic::vastart: visitVAStart(I); return 0; 3695 case Intrinsic::vaend: visitVAEnd(I); return 0; 3696 case Intrinsic::vacopy: visitVACopy(I); return 0; 3697 case Intrinsic::returnaddress: 3698 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3699 getValue(I.getOperand(1)))); 3700 return 0; 3701 case Intrinsic::frameaddress: 3702 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3703 getValue(I.getOperand(1)))); 3704 return 0; 3705 case Intrinsic::setjmp: 3706 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3707 case Intrinsic::longjmp: 3708 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3709 case Intrinsic::memcpy: { 3710 // Assert for address < 256 since we support only user defined address 3711 // spaces. 3712 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3713 < 256 && 3714 cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace() 3715 < 256 && 3716 "Unknown address space"); 3717 SDValue Op1 = getValue(I.getOperand(1)); 3718 SDValue Op2 = getValue(I.getOperand(2)); 3719 SDValue Op3 = getValue(I.getOperand(3)); 3720 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3721 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3722 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 3723 I.getOperand(1), 0, I.getOperand(2), 0)); 3724 return 0; 3725 } 3726 case Intrinsic::memset: { 3727 // Assert for address < 256 since we support only user defined address 3728 // spaces. 3729 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3730 < 256 && 3731 "Unknown address space"); 3732 SDValue Op1 = getValue(I.getOperand(1)); 3733 SDValue Op2 = getValue(I.getOperand(2)); 3734 SDValue Op3 = getValue(I.getOperand(3)); 3735 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3736 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3737 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3738 I.getOperand(1), 0)); 3739 return 0; 3740 } 3741 case Intrinsic::memmove: { 3742 // Assert for address < 256 since we support only user defined address 3743 // spaces. 3744 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3745 < 256 && 3746 cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace() 3747 < 256 && 3748 "Unknown address space"); 3749 SDValue Op1 = getValue(I.getOperand(1)); 3750 SDValue Op2 = getValue(I.getOperand(2)); 3751 SDValue Op3 = getValue(I.getOperand(3)); 3752 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3753 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3754 3755 // If the source and destination are known to not be aliases, we can 3756 // lower memmove as memcpy. 3757 uint64_t Size = -1ULL; 3758 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 3759 Size = C->getZExtValue(); 3760 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == 3761 AliasAnalysis::NoAlias) { 3762 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3763 false, I.getOperand(1), 0, I.getOperand(2), 0)); 3764 return 0; 3765 } 3766 3767 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3768 I.getOperand(1), 0, I.getOperand(2), 0)); 3769 return 0; 3770 } 3771 case Intrinsic::dbg_declare: { 3772 // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None. 3773 // The real handling of this intrinsic is in FastISel. 3774 if (OptLevel != CodeGenOpt::None) 3775 // FIXME: Variable debug info is not supported here. 3776 return 0; 3777 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 3778 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3779 return 0; 3780 3781 MDNode *Variable = DI.getVariable(); 3782 const Value *Address = DI.getAddress(); 3783 if (!Address) 3784 return 0; 3785 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 3786 Address = BCI->getOperand(0); 3787 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 3788 // Don't handle byval struct arguments or VLAs, for example. 3789 if (!AI) 3790 return 0; 3791 DenseMap<const AllocaInst*, int>::iterator SI = 3792 FuncInfo.StaticAllocaMap.find(AI); 3793 if (SI == FuncInfo.StaticAllocaMap.end()) 3794 return 0; // VLAs. 3795 int FI = SI->second; 3796 3797 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3798 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 3799 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 3800 return 0; 3801 } 3802 case Intrinsic::dbg_value: { 3803 const DbgValueInst &DI = cast<DbgValueInst>(I); 3804 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3805 return 0; 3806 3807 MDNode *Variable = DI.getVariable(); 3808 uint64_t Offset = DI.getOffset(); 3809 const Value *V = DI.getValue(); 3810 if (!V) 3811 return 0; 3812 3813 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 3814 // but do not always have a corresponding SDNode built. The SDNodeOrder 3815 // absolute, but not relative, values are different depending on whether 3816 // debug info exists. 3817 ++SDNodeOrder; 3818 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 3819 DAG.AddDbgValue(DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder)); 3820 } else { 3821 SDValue &N = NodeMap[V]; 3822 if (N.getNode()) 3823 DAG.AddDbgValue(DAG.getDbgValue(Variable, N.getNode(), 3824 N.getResNo(), Offset, dl, SDNodeOrder), 3825 N.getNode()); 3826 else 3827 // We may expand this to cover more cases. One case where we have no 3828 // data available is an unreferenced parameter; we need this fallback. 3829 DAG.AddDbgValue(DAG.getDbgValue(Variable, 3830 UndefValue::get(V->getType()), 3831 Offset, dl, SDNodeOrder)); 3832 } 3833 3834 // Build a debug info table entry. 3835 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 3836 V = BCI->getOperand(0); 3837 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 3838 // Don't handle byval struct arguments or VLAs, for example. 3839 if (!AI) 3840 return 0; 3841 DenseMap<const AllocaInst*, int>::iterator SI = 3842 FuncInfo.StaticAllocaMap.find(AI); 3843 if (SI == FuncInfo.StaticAllocaMap.end()) 3844 return 0; // VLAs. 3845 int FI = SI->second; 3846 3847 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3848 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 3849 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 3850 return 0; 3851 } 3852 case Intrinsic::eh_exception: { 3853 // Insert the EXCEPTIONADDR instruction. 3854 assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() && 3855 "Call to eh.exception not in landing pad!"); 3856 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3857 SDValue Ops[1]; 3858 Ops[0] = DAG.getRoot(); 3859 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 3860 setValue(&I, Op); 3861 DAG.setRoot(Op.getValue(1)); 3862 return 0; 3863 } 3864 3865 case Intrinsic::eh_selector: { 3866 MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()]; 3867 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3868 if (CallMBB->isLandingPad()) 3869 AddCatchInfo(I, &MMI, CallMBB); 3870 else { 3871 #ifndef NDEBUG 3872 FuncInfo.CatchInfoLost.insert(&I); 3873 #endif 3874 // FIXME: Mark exception selector register as live in. Hack for PR1508. 3875 unsigned Reg = TLI.getExceptionSelectorRegister(); 3876 if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg); 3877 } 3878 3879 // Insert the EHSELECTION instruction. 3880 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3881 SDValue Ops[2]; 3882 Ops[0] = getValue(I.getOperand(1)); 3883 Ops[1] = getRoot(); 3884 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 3885 DAG.setRoot(Op.getValue(1)); 3886 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 3887 return 0; 3888 } 3889 3890 case Intrinsic::eh_typeid_for: { 3891 // Find the type id for the given typeinfo. 3892 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 3893 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 3894 Res = DAG.getConstant(TypeID, MVT::i32); 3895 setValue(&I, Res); 3896 return 0; 3897 } 3898 3899 case Intrinsic::eh_return_i32: 3900 case Intrinsic::eh_return_i64: 3901 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 3902 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 3903 MVT::Other, 3904 getControlRoot(), 3905 getValue(I.getOperand(1)), 3906 getValue(I.getOperand(2)))); 3907 return 0; 3908 case Intrinsic::eh_unwind_init: 3909 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 3910 return 0; 3911 case Intrinsic::eh_dwarf_cfa: { 3912 EVT VT = getValue(I.getOperand(1)).getValueType(); 3913 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, 3914 TLI.getPointerTy()); 3915 SDValue Offset = DAG.getNode(ISD::ADD, dl, 3916 TLI.getPointerTy(), 3917 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 3918 TLI.getPointerTy()), 3919 CfaArg); 3920 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 3921 TLI.getPointerTy(), 3922 DAG.getConstant(0, TLI.getPointerTy())); 3923 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 3924 FA, Offset)); 3925 return 0; 3926 } 3927 case Intrinsic::eh_sjlj_callsite: { 3928 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3929 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 3930 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 3931 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 3932 3933 MMI.setCurrentCallSite(CI->getZExtValue()); 3934 return 0; 3935 } 3936 3937 case Intrinsic::convertff: 3938 case Intrinsic::convertfsi: 3939 case Intrinsic::convertfui: 3940 case Intrinsic::convertsif: 3941 case Intrinsic::convertuif: 3942 case Intrinsic::convertss: 3943 case Intrinsic::convertsu: 3944 case Intrinsic::convertus: 3945 case Intrinsic::convertuu: { 3946 ISD::CvtCode Code = ISD::CVT_INVALID; 3947 switch (Intrinsic) { 3948 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 3949 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 3950 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 3951 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 3952 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 3953 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 3954 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 3955 case Intrinsic::convertus: Code = ISD::CVT_US; break; 3956 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 3957 } 3958 EVT DestVT = TLI.getValueType(I.getType()); 3959 const Value *Op1 = I.getOperand(1); 3960 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 3961 DAG.getValueType(DestVT), 3962 DAG.getValueType(getValue(Op1).getValueType()), 3963 getValue(I.getOperand(2)), 3964 getValue(I.getOperand(3)), 3965 Code); 3966 setValue(&I, Res); 3967 return 0; 3968 } 3969 case Intrinsic::sqrt: 3970 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 3971 getValue(I.getOperand(1)).getValueType(), 3972 getValue(I.getOperand(1)))); 3973 return 0; 3974 case Intrinsic::powi: 3975 setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)), 3976 getValue(I.getOperand(2)), DAG)); 3977 return 0; 3978 case Intrinsic::sin: 3979 setValue(&I, DAG.getNode(ISD::FSIN, dl, 3980 getValue(I.getOperand(1)).getValueType(), 3981 getValue(I.getOperand(1)))); 3982 return 0; 3983 case Intrinsic::cos: 3984 setValue(&I, DAG.getNode(ISD::FCOS, dl, 3985 getValue(I.getOperand(1)).getValueType(), 3986 getValue(I.getOperand(1)))); 3987 return 0; 3988 case Intrinsic::log: 3989 visitLog(I); 3990 return 0; 3991 case Intrinsic::log2: 3992 visitLog2(I); 3993 return 0; 3994 case Intrinsic::log10: 3995 visitLog10(I); 3996 return 0; 3997 case Intrinsic::exp: 3998 visitExp(I); 3999 return 0; 4000 case Intrinsic::exp2: 4001 visitExp2(I); 4002 return 0; 4003 case Intrinsic::pow: 4004 visitPow(I); 4005 return 0; 4006 case Intrinsic::convert_to_fp16: 4007 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4008 MVT::i16, getValue(I.getOperand(1)))); 4009 return 0; 4010 case Intrinsic::convert_from_fp16: 4011 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4012 MVT::f32, getValue(I.getOperand(1)))); 4013 return 0; 4014 case Intrinsic::pcmarker: { 4015 SDValue Tmp = getValue(I.getOperand(1)); 4016 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4017 return 0; 4018 } 4019 case Intrinsic::readcyclecounter: { 4020 SDValue Op = getRoot(); 4021 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4022 DAG.getVTList(MVT::i64, MVT::Other), 4023 &Op, 1); 4024 setValue(&I, Res); 4025 DAG.setRoot(Res.getValue(1)); 4026 return 0; 4027 } 4028 case Intrinsic::bswap: 4029 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4030 getValue(I.getOperand(1)).getValueType(), 4031 getValue(I.getOperand(1)))); 4032 return 0; 4033 case Intrinsic::cttz: { 4034 SDValue Arg = getValue(I.getOperand(1)); 4035 EVT Ty = Arg.getValueType(); 4036 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4037 return 0; 4038 } 4039 case Intrinsic::ctlz: { 4040 SDValue Arg = getValue(I.getOperand(1)); 4041 EVT Ty = Arg.getValueType(); 4042 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4043 return 0; 4044 } 4045 case Intrinsic::ctpop: { 4046 SDValue Arg = getValue(I.getOperand(1)); 4047 EVT Ty = Arg.getValueType(); 4048 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4049 return 0; 4050 } 4051 case Intrinsic::stacksave: { 4052 SDValue Op = getRoot(); 4053 Res = DAG.getNode(ISD::STACKSAVE, dl, 4054 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4055 setValue(&I, Res); 4056 DAG.setRoot(Res.getValue(1)); 4057 return 0; 4058 } 4059 case Intrinsic::stackrestore: { 4060 Res = getValue(I.getOperand(1)); 4061 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4062 return 0; 4063 } 4064 case Intrinsic::stackprotector: { 4065 // Emit code into the DAG to store the stack guard onto the stack. 4066 MachineFunction &MF = DAG.getMachineFunction(); 4067 MachineFrameInfo *MFI = MF.getFrameInfo(); 4068 EVT PtrTy = TLI.getPointerTy(); 4069 4070 SDValue Src = getValue(I.getOperand(1)); // The guard's value. 4071 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); 4072 4073 int FI = FuncInfo.StaticAllocaMap[Slot]; 4074 MFI->setStackProtectorIndex(FI); 4075 4076 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4077 4078 // Store the stack protector onto the stack. 4079 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4080 PseudoSourceValue::getFixedStack(FI), 4081 0, true, false, 0); 4082 setValue(&I, Res); 4083 DAG.setRoot(Res); 4084 return 0; 4085 } 4086 case Intrinsic::objectsize: { 4087 // If we don't know by now, we're never going to know. 4088 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); 4089 4090 assert(CI && "Non-constant type in __builtin_object_size?"); 4091 4092 SDValue Arg = getValue(I.getOperand(0)); 4093 EVT Ty = Arg.getValueType(); 4094 4095 if (CI->getZExtValue() == 0) 4096 Res = DAG.getConstant(-1ULL, Ty); 4097 else 4098 Res = DAG.getConstant(0, Ty); 4099 4100 setValue(&I, Res); 4101 return 0; 4102 } 4103 case Intrinsic::var_annotation: 4104 // Discard annotate attributes 4105 return 0; 4106 4107 case Intrinsic::init_trampoline: { 4108 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 4109 4110 SDValue Ops[6]; 4111 Ops[0] = getRoot(); 4112 Ops[1] = getValue(I.getOperand(1)); 4113 Ops[2] = getValue(I.getOperand(2)); 4114 Ops[3] = getValue(I.getOperand(3)); 4115 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 4116 Ops[5] = DAG.getSrcValue(F); 4117 4118 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4119 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4120 Ops, 6); 4121 4122 setValue(&I, Res); 4123 DAG.setRoot(Res.getValue(1)); 4124 return 0; 4125 } 4126 case Intrinsic::gcroot: 4127 if (GFI) { 4128 const Value *Alloca = I.getOperand(1); 4129 const Constant *TypeMap = cast<Constant>(I.getOperand(2)); 4130 4131 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4132 GFI->addStackRoot(FI->getIndex(), TypeMap); 4133 } 4134 return 0; 4135 case Intrinsic::gcread: 4136 case Intrinsic::gcwrite: 4137 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4138 return 0; 4139 case Intrinsic::flt_rounds: 4140 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4141 return 0; 4142 case Intrinsic::trap: 4143 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4144 return 0; 4145 case Intrinsic::uadd_with_overflow: 4146 return implVisitAluOverflow(I, ISD::UADDO); 4147 case Intrinsic::sadd_with_overflow: 4148 return implVisitAluOverflow(I, ISD::SADDO); 4149 case Intrinsic::usub_with_overflow: 4150 return implVisitAluOverflow(I, ISD::USUBO); 4151 case Intrinsic::ssub_with_overflow: 4152 return implVisitAluOverflow(I, ISD::SSUBO); 4153 case Intrinsic::umul_with_overflow: 4154 return implVisitAluOverflow(I, ISD::UMULO); 4155 case Intrinsic::smul_with_overflow: 4156 return implVisitAluOverflow(I, ISD::SMULO); 4157 4158 case Intrinsic::prefetch: { 4159 SDValue Ops[4]; 4160 Ops[0] = getRoot(); 4161 Ops[1] = getValue(I.getOperand(1)); 4162 Ops[2] = getValue(I.getOperand(2)); 4163 Ops[3] = getValue(I.getOperand(3)); 4164 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4165 return 0; 4166 } 4167 4168 case Intrinsic::memory_barrier: { 4169 SDValue Ops[6]; 4170 Ops[0] = getRoot(); 4171 for (int x = 1; x < 6; ++x) 4172 Ops[x] = getValue(I.getOperand(x)); 4173 4174 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4175 return 0; 4176 } 4177 case Intrinsic::atomic_cmp_swap: { 4178 SDValue Root = getRoot(); 4179 SDValue L = 4180 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4181 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 4182 Root, 4183 getValue(I.getOperand(1)), 4184 getValue(I.getOperand(2)), 4185 getValue(I.getOperand(3)), 4186 I.getOperand(1)); 4187 setValue(&I, L); 4188 DAG.setRoot(L.getValue(1)); 4189 return 0; 4190 } 4191 case Intrinsic::atomic_load_add: 4192 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4193 case Intrinsic::atomic_load_sub: 4194 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4195 case Intrinsic::atomic_load_or: 4196 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4197 case Intrinsic::atomic_load_xor: 4198 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4199 case Intrinsic::atomic_load_and: 4200 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4201 case Intrinsic::atomic_load_nand: 4202 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4203 case Intrinsic::atomic_load_max: 4204 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4205 case Intrinsic::atomic_load_min: 4206 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4207 case Intrinsic::atomic_load_umin: 4208 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4209 case Intrinsic::atomic_load_umax: 4210 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4211 case Intrinsic::atomic_swap: 4212 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4213 4214 case Intrinsic::invariant_start: 4215 case Intrinsic::lifetime_start: 4216 // Discard region information. 4217 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4218 return 0; 4219 case Intrinsic::invariant_end: 4220 case Intrinsic::lifetime_end: 4221 // Discard region information. 4222 return 0; 4223 } 4224 } 4225 4226 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4227 bool isTailCall, 4228 MachineBasicBlock *LandingPad) { 4229 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4230 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4231 const Type *RetTy = FTy->getReturnType(); 4232 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4233 MCSymbol *BeginLabel = 0; 4234 4235 TargetLowering::ArgListTy Args; 4236 TargetLowering::ArgListEntry Entry; 4237 Args.reserve(CS.arg_size()); 4238 4239 // Check whether the function can return without sret-demotion. 4240 SmallVector<EVT, 4> OutVTs; 4241 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 4242 SmallVector<uint64_t, 4> Offsets; 4243 getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4244 OutVTs, OutsFlags, TLI, &Offsets); 4245 4246 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4247 FTy->isVarArg(), OutVTs, OutsFlags, DAG); 4248 4249 SDValue DemoteStackSlot; 4250 4251 if (!CanLowerReturn) { 4252 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4253 FTy->getReturnType()); 4254 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4255 FTy->getReturnType()); 4256 MachineFunction &MF = DAG.getMachineFunction(); 4257 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4258 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4259 4260 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4261 Entry.Node = DemoteStackSlot; 4262 Entry.Ty = StackSlotPtrType; 4263 Entry.isSExt = false; 4264 Entry.isZExt = false; 4265 Entry.isInReg = false; 4266 Entry.isSRet = true; 4267 Entry.isNest = false; 4268 Entry.isByVal = false; 4269 Entry.Alignment = Align; 4270 Args.push_back(Entry); 4271 RetTy = Type::getVoidTy(FTy->getContext()); 4272 } 4273 4274 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4275 i != e; ++i) { 4276 SDValue ArgNode = getValue(*i); 4277 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4278 4279 unsigned attrInd = i - CS.arg_begin() + 1; 4280 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4281 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4282 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4283 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4284 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4285 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4286 Entry.Alignment = CS.getParamAlignment(attrInd); 4287 Args.push_back(Entry); 4288 } 4289 4290 if (LandingPad) { 4291 // Insert a label before the invoke call to mark the try range. This can be 4292 // used to detect deletion of the invoke via the MachineModuleInfo. 4293 BeginLabel = MMI.getContext().CreateTempSymbol(); 4294 4295 // For SjLj, keep track of which landing pads go with which invokes 4296 // so as to maintain the ordering of pads in the LSDA. 4297 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4298 if (CallSiteIndex) { 4299 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4300 // Now that the call site is handled, stop tracking it. 4301 MMI.setCurrentCallSite(0); 4302 } 4303 4304 // Both PendingLoads and PendingExports must be flushed here; 4305 // this call might not return. 4306 (void)getRoot(); 4307 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4308 } 4309 4310 // Check if target-independent constraints permit a tail call here. 4311 // Target-dependent constraints are checked within TLI.LowerCallTo. 4312 if (isTailCall && 4313 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4314 isTailCall = false; 4315 4316 std::pair<SDValue,SDValue> Result = 4317 TLI.LowerCallTo(getRoot(), RetTy, 4318 CS.paramHasAttr(0, Attribute::SExt), 4319 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4320 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4321 CS.getCallingConv(), 4322 isTailCall, 4323 !CS.getInstruction()->use_empty(), 4324 Callee, Args, DAG, getCurDebugLoc()); 4325 assert((isTailCall || Result.second.getNode()) && 4326 "Non-null chain expected with non-tail call!"); 4327 assert((Result.second.getNode() || !Result.first.getNode()) && 4328 "Null value expected with tail call!"); 4329 if (Result.first.getNode()) { 4330 setValue(CS.getInstruction(), Result.first); 4331 } else if (!CanLowerReturn && Result.second.getNode()) { 4332 // The instruction result is the result of loading from the 4333 // hidden sret parameter. 4334 SmallVector<EVT, 1> PVTs; 4335 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4336 4337 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4338 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4339 EVT PtrVT = PVTs[0]; 4340 unsigned NumValues = OutVTs.size(); 4341 SmallVector<SDValue, 4> Values(NumValues); 4342 SmallVector<SDValue, 4> Chains(NumValues); 4343 4344 for (unsigned i = 0; i < NumValues; ++i) { 4345 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4346 DemoteStackSlot, 4347 DAG.getConstant(Offsets[i], PtrVT)); 4348 SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, 4349 Add, NULL, Offsets[i], false, false, 1); 4350 Values[i] = L; 4351 Chains[i] = L.getValue(1); 4352 } 4353 4354 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4355 MVT::Other, &Chains[0], NumValues); 4356 PendingLoads.push_back(Chain); 4357 4358 // Collect the legal value parts into potentially illegal values 4359 // that correspond to the original function's return values. 4360 SmallVector<EVT, 4> RetTys; 4361 RetTy = FTy->getReturnType(); 4362 ComputeValueVTs(TLI, RetTy, RetTys); 4363 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4364 SmallVector<SDValue, 4> ReturnValues; 4365 unsigned CurReg = 0; 4366 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4367 EVT VT = RetTys[I]; 4368 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4369 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4370 4371 SDValue ReturnValue = 4372 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4373 RegisterVT, VT, AssertOp); 4374 ReturnValues.push_back(ReturnValue); 4375 CurReg += NumRegs; 4376 } 4377 4378 setValue(CS.getInstruction(), 4379 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4380 DAG.getVTList(&RetTys[0], RetTys.size()), 4381 &ReturnValues[0], ReturnValues.size())); 4382 4383 } 4384 4385 // As a special case, a null chain means that a tail call has been emitted and 4386 // the DAG root is already updated. 4387 if (Result.second.getNode()) 4388 DAG.setRoot(Result.second); 4389 else 4390 HasTailCall = true; 4391 4392 if (LandingPad) { 4393 // Insert a label at the end of the invoke call to mark the try range. This 4394 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4395 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4396 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4397 4398 // Inform MachineModuleInfo of range. 4399 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4400 } 4401 } 4402 4403 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4404 /// value is equal or not-equal to zero. 4405 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4406 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4407 UI != E; ++UI) { 4408 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4409 if (IC->isEquality()) 4410 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4411 if (C->isNullValue()) 4412 continue; 4413 // Unknown instruction. 4414 return false; 4415 } 4416 return true; 4417 } 4418 4419 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4420 const Type *LoadTy, 4421 SelectionDAGBuilder &Builder) { 4422 4423 // Check to see if this load can be trivially constant folded, e.g. if the 4424 // input is from a string literal. 4425 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4426 // Cast pointer to the type we really want to load. 4427 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4428 PointerType::getUnqual(LoadTy)); 4429 4430 if (const Constant *LoadCst = 4431 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4432 Builder.TD)) 4433 return Builder.getValue(LoadCst); 4434 } 4435 4436 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4437 // still constant memory, the input chain can be the entry node. 4438 SDValue Root; 4439 bool ConstantMemory = false; 4440 4441 // Do not serialize (non-volatile) loads of constant memory with anything. 4442 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4443 Root = Builder.DAG.getEntryNode(); 4444 ConstantMemory = true; 4445 } else { 4446 // Do not serialize non-volatile loads against each other. 4447 Root = Builder.DAG.getRoot(); 4448 } 4449 4450 SDValue Ptr = Builder.getValue(PtrVal); 4451 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4452 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4453 false /*volatile*/, 4454 false /*nontemporal*/, 1 /* align=1 */); 4455 4456 if (!ConstantMemory) 4457 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4458 return LoadVal; 4459 } 4460 4461 4462 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4463 /// If so, return true and lower it, otherwise return false and it will be 4464 /// lowered like a normal call. 4465 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4466 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4467 if (I.getNumOperands() != 4) 4468 return false; 4469 4470 const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2); 4471 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4472 !I.getOperand(3)->getType()->isIntegerTy() || 4473 !I.getType()->isIntegerTy()) 4474 return false; 4475 4476 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3)); 4477 4478 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4479 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4480 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4481 bool ActuallyDoIt = true; 4482 MVT LoadVT; 4483 const Type *LoadTy; 4484 switch (Size->getZExtValue()) { 4485 default: 4486 LoadVT = MVT::Other; 4487 LoadTy = 0; 4488 ActuallyDoIt = false; 4489 break; 4490 case 2: 4491 LoadVT = MVT::i16; 4492 LoadTy = Type::getInt16Ty(Size->getContext()); 4493 break; 4494 case 4: 4495 LoadVT = MVT::i32; 4496 LoadTy = Type::getInt32Ty(Size->getContext()); 4497 break; 4498 case 8: 4499 LoadVT = MVT::i64; 4500 LoadTy = Type::getInt64Ty(Size->getContext()); 4501 break; 4502 /* 4503 case 16: 4504 LoadVT = MVT::v4i32; 4505 LoadTy = Type::getInt32Ty(Size->getContext()); 4506 LoadTy = VectorType::get(LoadTy, 4); 4507 break; 4508 */ 4509 } 4510 4511 // This turns into unaligned loads. We only do this if the target natively 4512 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4513 // we'll only produce a small number of byte loads. 4514 4515 // Require that we can find a legal MVT, and only do this if the target 4516 // supports unaligned loads of that type. Expanding into byte loads would 4517 // bloat the code. 4518 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4519 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4520 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4521 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4522 ActuallyDoIt = false; 4523 } 4524 4525 if (ActuallyDoIt) { 4526 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4527 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4528 4529 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4530 ISD::SETNE); 4531 EVT CallVT = TLI.getValueType(I.getType(), true); 4532 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4533 return true; 4534 } 4535 } 4536 4537 4538 return false; 4539 } 4540 4541 4542 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4543 const char *RenameFn = 0; 4544 if (Function *F = I.getCalledFunction()) { 4545 if (F->isDeclaration()) { 4546 const TargetIntrinsicInfo *II = TM.getIntrinsicInfo(); 4547 if (II) { 4548 if (unsigned IID = II->getIntrinsicID(F)) { 4549 RenameFn = visitIntrinsicCall(I, IID); 4550 if (!RenameFn) 4551 return; 4552 } 4553 } 4554 if (unsigned IID = F->getIntrinsicID()) { 4555 RenameFn = visitIntrinsicCall(I, IID); 4556 if (!RenameFn) 4557 return; 4558 } 4559 } 4560 4561 // Check for well-known libc/libm calls. If the function is internal, it 4562 // can't be a library call. 4563 if (!F->hasLocalLinkage() && F->hasName()) { 4564 StringRef Name = F->getName(); 4565 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4566 if (I.getNumOperands() == 3 && // Basic sanity checks. 4567 I.getOperand(1)->getType()->isFloatingPointTy() && 4568 I.getType() == I.getOperand(1)->getType() && 4569 I.getType() == I.getOperand(2)->getType()) { 4570 SDValue LHS = getValue(I.getOperand(1)); 4571 SDValue RHS = getValue(I.getOperand(2)); 4572 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4573 LHS.getValueType(), LHS, RHS)); 4574 return; 4575 } 4576 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4577 if (I.getNumOperands() == 2 && // Basic sanity checks. 4578 I.getOperand(1)->getType()->isFloatingPointTy() && 4579 I.getType() == I.getOperand(1)->getType()) { 4580 SDValue Tmp = getValue(I.getOperand(1)); 4581 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4582 Tmp.getValueType(), Tmp)); 4583 return; 4584 } 4585 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4586 if (I.getNumOperands() == 2 && // Basic sanity checks. 4587 I.getOperand(1)->getType()->isFloatingPointTy() && 4588 I.getType() == I.getOperand(1)->getType() && 4589 I.onlyReadsMemory()) { 4590 SDValue Tmp = getValue(I.getOperand(1)); 4591 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4592 Tmp.getValueType(), Tmp)); 4593 return; 4594 } 4595 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4596 if (I.getNumOperands() == 2 && // Basic sanity checks. 4597 I.getOperand(1)->getType()->isFloatingPointTy() && 4598 I.getType() == I.getOperand(1)->getType() && 4599 I.onlyReadsMemory()) { 4600 SDValue Tmp = getValue(I.getOperand(1)); 4601 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4602 Tmp.getValueType(), Tmp)); 4603 return; 4604 } 4605 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4606 if (I.getNumOperands() == 2 && // Basic sanity checks. 4607 I.getOperand(1)->getType()->isFloatingPointTy() && 4608 I.getType() == I.getOperand(1)->getType() && 4609 I.onlyReadsMemory()) { 4610 SDValue Tmp = getValue(I.getOperand(1)); 4611 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4612 Tmp.getValueType(), Tmp)); 4613 return; 4614 } 4615 } else if (Name == "memcmp") { 4616 if (visitMemCmpCall(I)) 4617 return; 4618 } 4619 } 4620 } else if (isa<InlineAsm>(I.getOperand(0))) { 4621 visitInlineAsm(&I); 4622 return; 4623 } 4624 4625 SDValue Callee; 4626 if (!RenameFn) 4627 Callee = getValue(I.getOperand(0)); 4628 else 4629 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4630 4631 // Check if we can potentially perform a tail call. More detailed checking is 4632 // be done within LowerCallTo, after more information about the call is known. 4633 LowerCallTo(&I, Callee, I.isTailCall()); 4634 } 4635 4636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 4637 /// this value and returns the result as a ValueVT value. This uses 4638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4639 /// If the Flag pointer is NULL, no flag is used. 4640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 4641 SDValue &Chain, SDValue *Flag) const { 4642 // Assemble the legal parts into the final values. 4643 SmallVector<SDValue, 4> Values(ValueVTs.size()); 4644 SmallVector<SDValue, 8> Parts; 4645 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4646 // Copy the legal parts from the registers. 4647 EVT ValueVT = ValueVTs[Value]; 4648 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4649 EVT RegisterVT = RegVTs[Value]; 4650 4651 Parts.resize(NumRegs); 4652 for (unsigned i = 0; i != NumRegs; ++i) { 4653 SDValue P; 4654 if (Flag == 0) { 4655 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 4656 } else { 4657 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 4658 *Flag = P.getValue(2); 4659 } 4660 4661 Chain = P.getValue(1); 4662 4663 // If the source register was virtual and if we know something about it, 4664 // add an assert node. 4665 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 4666 RegisterVT.isInteger() && !RegisterVT.isVector()) { 4667 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 4668 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 4669 if (FLI.LiveOutRegInfo.size() > SlotNo) { 4670 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 4671 4672 unsigned RegSize = RegisterVT.getSizeInBits(); 4673 unsigned NumSignBits = LOI.NumSignBits; 4674 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 4675 4676 // FIXME: We capture more information than the dag can represent. For 4677 // now, just use the tightest assertzext/assertsext possible. 4678 bool isSExt = true; 4679 EVT FromVT(MVT::Other); 4680 if (NumSignBits == RegSize) 4681 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 4682 else if (NumZeroBits >= RegSize-1) 4683 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 4684 else if (NumSignBits > RegSize-8) 4685 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 4686 else if (NumZeroBits >= RegSize-8) 4687 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 4688 else if (NumSignBits > RegSize-16) 4689 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 4690 else if (NumZeroBits >= RegSize-16) 4691 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 4692 else if (NumSignBits > RegSize-32) 4693 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 4694 else if (NumZeroBits >= RegSize-32) 4695 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 4696 4697 if (FromVT != MVT::Other) 4698 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 4699 RegisterVT, P, DAG.getValueType(FromVT)); 4700 } 4701 } 4702 4703 Parts[i] = P; 4704 } 4705 4706 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 4707 NumRegs, RegisterVT, ValueVT); 4708 Part += NumRegs; 4709 Parts.clear(); 4710 } 4711 4712 return DAG.getNode(ISD::MERGE_VALUES, dl, 4713 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 4714 &Values[0], ValueVTs.size()); 4715 } 4716 4717 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 4718 /// specified value into the registers specified by this object. This uses 4719 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4720 /// If the Flag pointer is NULL, no flag is used. 4721 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 4722 SDValue &Chain, SDValue *Flag) const { 4723 // Get the list of the values's legal parts. 4724 unsigned NumRegs = Regs.size(); 4725 SmallVector<SDValue, 8> Parts(NumRegs); 4726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4727 EVT ValueVT = ValueVTs[Value]; 4728 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4729 EVT RegisterVT = RegVTs[Value]; 4730 4731 getCopyToParts(DAG, dl, 4732 Val.getValue(Val.getResNo() + Value), 4733 &Parts[Part], NumParts, RegisterVT); 4734 Part += NumParts; 4735 } 4736 4737 // Copy the parts into the registers. 4738 SmallVector<SDValue, 8> Chains(NumRegs); 4739 for (unsigned i = 0; i != NumRegs; ++i) { 4740 SDValue Part; 4741 if (Flag == 0) { 4742 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 4743 } else { 4744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 4745 *Flag = Part.getValue(1); 4746 } 4747 4748 Chains[i] = Part.getValue(0); 4749 } 4750 4751 if (NumRegs == 1 || Flag) 4752 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 4753 // flagged to it. That is the CopyToReg nodes and the user are considered 4754 // a single scheduling unit. If we create a TokenFactor and return it as 4755 // chain, then the TokenFactor is both a predecessor (operand) of the 4756 // user as well as a successor (the TF operands are flagged to the user). 4757 // c1, f1 = CopyToReg 4758 // c2, f2 = CopyToReg 4759 // c3 = TokenFactor c1, c2 4760 // ... 4761 // = op c3, ..., f2 4762 Chain = Chains[NumRegs-1]; 4763 else 4764 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 4765 } 4766 4767 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 4768 /// operand list. This adds the code marker and includes the number of 4769 /// values added into it. 4770 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 4771 unsigned MatchingIdx, 4772 SelectionDAG &DAG, 4773 std::vector<SDValue> &Ops) const { 4774 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 4775 if (HasMatching) 4776 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 4777 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 4778 Ops.push_back(Res); 4779 4780 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 4781 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 4782 EVT RegisterVT = RegVTs[Value]; 4783 for (unsigned i = 0; i != NumRegs; ++i) { 4784 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 4785 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 4786 } 4787 } 4788 } 4789 4790 /// isAllocatableRegister - If the specified register is safe to allocate, 4791 /// i.e. it isn't a stack pointer or some other special register, return the 4792 /// register class for the register. Otherwise, return null. 4793 static const TargetRegisterClass * 4794 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 4795 const TargetLowering &TLI, 4796 const TargetRegisterInfo *TRI) { 4797 EVT FoundVT = MVT::Other; 4798 const TargetRegisterClass *FoundRC = 0; 4799 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 4800 E = TRI->regclass_end(); RCI != E; ++RCI) { 4801 EVT ThisVT = MVT::Other; 4802 4803 const TargetRegisterClass *RC = *RCI; 4804 // If none of the value types for this register class are valid, we 4805 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4806 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 4807 I != E; ++I) { 4808 if (TLI.isTypeLegal(*I)) { 4809 // If we have already found this register in a different register class, 4810 // choose the one with the largest VT specified. For example, on 4811 // PowerPC, we favor f64 register classes over f32. 4812 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 4813 ThisVT = *I; 4814 break; 4815 } 4816 } 4817 } 4818 4819 if (ThisVT == MVT::Other) continue; 4820 4821 // NOTE: This isn't ideal. In particular, this might allocate the 4822 // frame pointer in functions that need it (due to them not being taken 4823 // out of allocation, because a variable sized allocation hasn't been seen 4824 // yet). This is a slight code pessimization, but should still work. 4825 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 4826 E = RC->allocation_order_end(MF); I != E; ++I) 4827 if (*I == Reg) { 4828 // We found a matching register class. Keep looking at others in case 4829 // we find one with larger registers that this physreg is also in. 4830 FoundRC = RC; 4831 FoundVT = ThisVT; 4832 break; 4833 } 4834 } 4835 return FoundRC; 4836 } 4837 4838 4839 namespace llvm { 4840 /// AsmOperandInfo - This contains information for each constraint that we are 4841 /// lowering. 4842 class VISIBILITY_HIDDEN SDISelAsmOperandInfo : 4843 public TargetLowering::AsmOperandInfo { 4844 public: 4845 /// CallOperand - If this is the result output operand or a clobber 4846 /// this is null, otherwise it is the incoming operand to the CallInst. 4847 /// This gets modified as the asm is processed. 4848 SDValue CallOperand; 4849 4850 /// AssignedRegs - If this is a register or register class operand, this 4851 /// contains the set of register corresponding to the operand. 4852 RegsForValue AssignedRegs; 4853 4854 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4855 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4856 } 4857 4858 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4859 /// busy in OutputRegs/InputRegs. 4860 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4861 std::set<unsigned> &OutputRegs, 4862 std::set<unsigned> &InputRegs, 4863 const TargetRegisterInfo &TRI) const { 4864 if (isOutReg) { 4865 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4866 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 4867 } 4868 if (isInReg) { 4869 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4870 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 4871 } 4872 } 4873 4874 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 4875 /// corresponds to. If there is no Value* for this operand, it returns 4876 /// MVT::Other. 4877 EVT getCallOperandValEVT(LLVMContext &Context, 4878 const TargetLowering &TLI, 4879 const TargetData *TD) const { 4880 if (CallOperandVal == 0) return MVT::Other; 4881 4882 if (isa<BasicBlock>(CallOperandVal)) 4883 return TLI.getPointerTy(); 4884 4885 const llvm::Type *OpTy = CallOperandVal->getType(); 4886 4887 // If this is an indirect operand, the operand is a pointer to the 4888 // accessed type. 4889 if (isIndirect) { 4890 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4891 if (!PtrTy) 4892 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4893 OpTy = PtrTy->getElementType(); 4894 } 4895 4896 // If OpTy is not a single value, it may be a struct/union that we 4897 // can tile with integers. 4898 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4899 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 4900 switch (BitSize) { 4901 default: break; 4902 case 1: 4903 case 8: 4904 case 16: 4905 case 32: 4906 case 64: 4907 case 128: 4908 OpTy = IntegerType::get(Context, BitSize); 4909 break; 4910 } 4911 } 4912 4913 return TLI.getValueType(OpTy, true); 4914 } 4915 4916 private: 4917 /// MarkRegAndAliases - Mark the specified register and all aliases in the 4918 /// specified set. 4919 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 4920 const TargetRegisterInfo &TRI) { 4921 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 4922 Regs.insert(Reg); 4923 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 4924 for (; *Aliases; ++Aliases) 4925 Regs.insert(*Aliases); 4926 } 4927 }; 4928 } // end llvm namespace. 4929 4930 4931 /// GetRegistersForValue - Assign registers (virtual or physical) for the 4932 /// specified operand. We prefer to assign virtual registers, to allow the 4933 /// register allocator to handle the assignment process. However, if the asm 4934 /// uses features that we can't model on machineinstrs, we have SDISel do the 4935 /// allocation. This produces generally horrible, but correct, code. 4936 /// 4937 /// OpInfo describes the operand. 4938 /// Input and OutputRegs are the set of already allocated physical registers. 4939 /// 4940 void SelectionDAGBuilder:: 4941 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 4942 std::set<unsigned> &OutputRegs, 4943 std::set<unsigned> &InputRegs) { 4944 LLVMContext &Context = FuncInfo.Fn->getContext(); 4945 4946 // Compute whether this value requires an input register, an output register, 4947 // or both. 4948 bool isOutReg = false; 4949 bool isInReg = false; 4950 switch (OpInfo.Type) { 4951 case InlineAsm::isOutput: 4952 isOutReg = true; 4953 4954 // If there is an input constraint that matches this, we need to reserve 4955 // the input register so no other inputs allocate to it. 4956 isInReg = OpInfo.hasMatchingInput(); 4957 break; 4958 case InlineAsm::isInput: 4959 isInReg = true; 4960 isOutReg = false; 4961 break; 4962 case InlineAsm::isClobber: 4963 isOutReg = true; 4964 isInReg = true; 4965 break; 4966 } 4967 4968 4969 MachineFunction &MF = DAG.getMachineFunction(); 4970 SmallVector<unsigned, 4> Regs; 4971 4972 // If this is a constraint for a single physreg, or a constraint for a 4973 // register class, find it. 4974 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 4975 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 4976 OpInfo.ConstraintVT); 4977 4978 unsigned NumRegs = 1; 4979 if (OpInfo.ConstraintVT != MVT::Other) { 4980 // If this is a FP input in an integer register (or visa versa) insert a bit 4981 // cast of the input value. More generally, handle any case where the input 4982 // value disagrees with the register class we plan to stick this in. 4983 if (OpInfo.Type == InlineAsm::isInput && 4984 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 4985 // Try to convert to the first EVT that the reg class contains. If the 4986 // types are identical size, use a bitcast to convert (e.g. two differing 4987 // vector types). 4988 EVT RegVT = *PhysReg.second->vt_begin(); 4989 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 4990 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 4991 RegVT, OpInfo.CallOperand); 4992 OpInfo.ConstraintVT = RegVT; 4993 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 4994 // If the input is a FP value and we want it in FP registers, do a 4995 // bitcast to the corresponding integer type. This turns an f64 value 4996 // into i64, which can be passed with two i32 values on a 32-bit 4997 // machine. 4998 RegVT = EVT::getIntegerVT(Context, 4999 OpInfo.ConstraintVT.getSizeInBits()); 5000 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5001 RegVT, OpInfo.CallOperand); 5002 OpInfo.ConstraintVT = RegVT; 5003 } 5004 } 5005 5006 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5007 } 5008 5009 EVT RegVT; 5010 EVT ValueVT = OpInfo.ConstraintVT; 5011 5012 // If this is a constraint for a specific physical register, like {r17}, 5013 // assign it now. 5014 if (unsigned AssignedReg = PhysReg.first) { 5015 const TargetRegisterClass *RC = PhysReg.second; 5016 if (OpInfo.ConstraintVT == MVT::Other) 5017 ValueVT = *RC->vt_begin(); 5018 5019 // Get the actual register value type. This is important, because the user 5020 // may have asked for (e.g.) the AX register in i32 type. We need to 5021 // remember that AX is actually i16 to get the right extension. 5022 RegVT = *RC->vt_begin(); 5023 5024 // This is a explicit reference to a physical register. 5025 Regs.push_back(AssignedReg); 5026 5027 // If this is an expanded reference, add the rest of the regs to Regs. 5028 if (NumRegs != 1) { 5029 TargetRegisterClass::iterator I = RC->begin(); 5030 for (; *I != AssignedReg; ++I) 5031 assert(I != RC->end() && "Didn't find reg!"); 5032 5033 // Already added the first reg. 5034 --NumRegs; ++I; 5035 for (; NumRegs; --NumRegs, ++I) { 5036 assert(I != RC->end() && "Ran out of registers to allocate!"); 5037 Regs.push_back(*I); 5038 } 5039 } 5040 5041 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5042 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5043 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5044 return; 5045 } 5046 5047 // Otherwise, if this was a reference to an LLVM register class, create vregs 5048 // for this reference. 5049 if (const TargetRegisterClass *RC = PhysReg.second) { 5050 RegVT = *RC->vt_begin(); 5051 if (OpInfo.ConstraintVT == MVT::Other) 5052 ValueVT = RegVT; 5053 5054 // Create the appropriate number of virtual registers. 5055 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5056 for (; NumRegs; --NumRegs) 5057 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5058 5059 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5060 return; 5061 } 5062 5063 // This is a reference to a register class that doesn't directly correspond 5064 // to an LLVM register class. Allocate NumRegs consecutive, available, 5065 // registers from the class. 5066 std::vector<unsigned> RegClassRegs 5067 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5068 OpInfo.ConstraintVT); 5069 5070 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5071 unsigned NumAllocated = 0; 5072 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5073 unsigned Reg = RegClassRegs[i]; 5074 // See if this register is available. 5075 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5076 (isInReg && InputRegs.count(Reg))) { // Already used. 5077 // Make sure we find consecutive registers. 5078 NumAllocated = 0; 5079 continue; 5080 } 5081 5082 // Check to see if this register is allocatable (i.e. don't give out the 5083 // stack pointer). 5084 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5085 if (!RC) { // Couldn't allocate this register. 5086 // Reset NumAllocated to make sure we return consecutive registers. 5087 NumAllocated = 0; 5088 continue; 5089 } 5090 5091 // Okay, this register is good, we can use it. 5092 ++NumAllocated; 5093 5094 // If we allocated enough consecutive registers, succeed. 5095 if (NumAllocated == NumRegs) { 5096 unsigned RegStart = (i-NumAllocated)+1; 5097 unsigned RegEnd = i+1; 5098 // Mark all of the allocated registers used. 5099 for (unsigned i = RegStart; i != RegEnd; ++i) 5100 Regs.push_back(RegClassRegs[i]); 5101 5102 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 5103 OpInfo.ConstraintVT); 5104 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5105 return; 5106 } 5107 } 5108 5109 // Otherwise, we couldn't allocate enough registers for this. 5110 } 5111 5112 /// visitInlineAsm - Handle a call to an InlineAsm object. 5113 /// 5114 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5115 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5116 5117 /// ConstraintOperands - Information about all of the constraints. 5118 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5119 5120 std::set<unsigned> OutputRegs, InputRegs; 5121 5122 // Do a prepass over the constraints, canonicalizing them, and building up the 5123 // ConstraintOperands list. 5124 std::vector<InlineAsm::ConstraintInfo> 5125 ConstraintInfos = IA->ParseConstraints(); 5126 5127 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5128 5129 SDValue Chain, Flag; 5130 5131 // We won't need to flush pending loads if this asm doesn't touch 5132 // memory and is nonvolatile. 5133 if (hasMemory || IA->hasSideEffects()) 5134 Chain = getRoot(); 5135 else 5136 Chain = DAG.getRoot(); 5137 5138 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5139 unsigned ResNo = 0; // ResNo - The result number of the next output. 5140 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5141 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5142 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5143 5144 EVT OpVT = MVT::Other; 5145 5146 // Compute the value type for each operand. 5147 switch (OpInfo.Type) { 5148 case InlineAsm::isOutput: 5149 // Indirect outputs just consume an argument. 5150 if (OpInfo.isIndirect) { 5151 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5152 break; 5153 } 5154 5155 // The return value of the call is this value. As such, there is no 5156 // corresponding argument. 5157 assert(!CS.getType()->isVoidTy() && 5158 "Bad inline asm!"); 5159 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5160 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5161 } else { 5162 assert(ResNo == 0 && "Asm only has one result!"); 5163 OpVT = TLI.getValueType(CS.getType()); 5164 } 5165 ++ResNo; 5166 break; 5167 case InlineAsm::isInput: 5168 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5169 break; 5170 case InlineAsm::isClobber: 5171 // Nothing to do. 5172 break; 5173 } 5174 5175 // If this is an input or an indirect output, process the call argument. 5176 // BasicBlocks are labels, currently appearing only in asm's. 5177 if (OpInfo.CallOperandVal) { 5178 // Strip bitcasts, if any. This mostly comes up for functions. 5179 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5180 5181 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5182 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5183 } else { 5184 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5185 } 5186 5187 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5188 } 5189 5190 OpInfo.ConstraintVT = OpVT; 5191 } 5192 5193 // Second pass over the constraints: compute which constraint option to use 5194 // and assign registers to constraints that want a specific physreg. 5195 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5196 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5197 5198 // If this is an output operand with a matching input operand, look up the 5199 // matching input. If their types mismatch, e.g. one is an integer, the 5200 // other is floating point, or their sizes are different, flag it as an 5201 // error. 5202 if (OpInfo.hasMatchingInput()) { 5203 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5204 5205 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5206 if ((OpInfo.ConstraintVT.isInteger() != 5207 Input.ConstraintVT.isInteger()) || 5208 (OpInfo.ConstraintVT.getSizeInBits() != 5209 Input.ConstraintVT.getSizeInBits())) { 5210 report_fatal_error("Unsupported asm: input constraint" 5211 " with a matching output constraint of" 5212 " incompatible type!"); 5213 } 5214 Input.ConstraintVT = OpInfo.ConstraintVT; 5215 } 5216 } 5217 5218 // Compute the constraint code and ConstraintType to use. 5219 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); 5220 5221 // If this is a memory input, and if the operand is not indirect, do what we 5222 // need to to provide an address for the memory input. 5223 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5224 !OpInfo.isIndirect) { 5225 assert(OpInfo.Type == InlineAsm::isInput && 5226 "Can only indirectify direct input operands!"); 5227 5228 // Memory operands really want the address of the value. If we don't have 5229 // an indirect input, put it in the constpool if we can, otherwise spill 5230 // it to a stack slot. 5231 5232 // If the operand is a float, integer, or vector constant, spill to a 5233 // constant pool entry to get its address. 5234 const Value *OpVal = OpInfo.CallOperandVal; 5235 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5236 isa<ConstantVector>(OpVal)) { 5237 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5238 TLI.getPointerTy()); 5239 } else { 5240 // Otherwise, create a stack slot and emit a store to it before the 5241 // asm. 5242 const Type *Ty = OpVal->getType(); 5243 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5244 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5245 MachineFunction &MF = DAG.getMachineFunction(); 5246 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5247 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5248 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5249 OpInfo.CallOperand, StackSlot, NULL, 0, 5250 false, false, 0); 5251 OpInfo.CallOperand = StackSlot; 5252 } 5253 5254 // There is no longer a Value* corresponding to this operand. 5255 OpInfo.CallOperandVal = 0; 5256 5257 // It is now an indirect operand. 5258 OpInfo.isIndirect = true; 5259 } 5260 5261 // If this constraint is for a specific register, allocate it before 5262 // anything else. 5263 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5264 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5265 } 5266 5267 ConstraintInfos.clear(); 5268 5269 // Second pass - Loop over all of the operands, assigning virtual or physregs 5270 // to register class operands. 5271 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5272 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5273 5274 // C_Register operands have already been allocated, Other/Memory don't need 5275 // to be. 5276 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5277 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5278 } 5279 5280 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5281 std::vector<SDValue> AsmNodeOperands; 5282 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5283 AsmNodeOperands.push_back( 5284 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5285 TLI.getPointerTy())); 5286 5287 // If we have a !srcloc metadata node associated with it, we want to attach 5288 // this to the ultimately generated inline asm machineinstr. To do this, we 5289 // pass in the third operand as this (potentially null) inline asm MDNode. 5290 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5291 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5292 5293 // Loop over all of the inputs, copying the operand values into the 5294 // appropriate registers and processing the output regs. 5295 RegsForValue RetValRegs; 5296 5297 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5298 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5299 5300 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5301 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5302 5303 switch (OpInfo.Type) { 5304 case InlineAsm::isOutput: { 5305 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5306 OpInfo.ConstraintType != TargetLowering::C_Register) { 5307 // Memory output, or 'other' output (e.g. 'X' constraint). 5308 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5309 5310 // Add information to the INLINEASM node to know about this output. 5311 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5312 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5313 TLI.getPointerTy())); 5314 AsmNodeOperands.push_back(OpInfo.CallOperand); 5315 break; 5316 } 5317 5318 // Otherwise, this is a register or register class output. 5319 5320 // Copy the output from the appropriate register. Find a register that 5321 // we can use. 5322 if (OpInfo.AssignedRegs.Regs.empty()) 5323 report_fatal_error("Couldn't allocate output reg for constraint '" + 5324 Twine(OpInfo.ConstraintCode) + "'!"); 5325 5326 // If this is an indirect operand, store through the pointer after the 5327 // asm. 5328 if (OpInfo.isIndirect) { 5329 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5330 OpInfo.CallOperandVal)); 5331 } else { 5332 // This is the result value of the call. 5333 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5334 // Concatenate this output onto the outputs list. 5335 RetValRegs.append(OpInfo.AssignedRegs); 5336 } 5337 5338 // Add information to the INLINEASM node to know that this register is 5339 // set. 5340 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5341 InlineAsm::Kind_RegDefEarlyClobber : 5342 InlineAsm::Kind_RegDef, 5343 false, 5344 0, 5345 DAG, 5346 AsmNodeOperands); 5347 break; 5348 } 5349 case InlineAsm::isInput: { 5350 SDValue InOperandVal = OpInfo.CallOperand; 5351 5352 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5353 // If this is required to match an output register we have already set, 5354 // just use its register. 5355 unsigned OperandNo = OpInfo.getMatchedOperand(); 5356 5357 // Scan until we find the definition we already emitted of this operand. 5358 // When we find it, create a RegsForValue operand. 5359 unsigned CurOp = InlineAsm::Op_FirstOperand; 5360 for (; OperandNo; --OperandNo) { 5361 // Advance to the next operand. 5362 unsigned OpFlag = 5363 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5364 assert((InlineAsm::isRegDefKind(OpFlag) || 5365 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5366 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5367 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5368 } 5369 5370 unsigned OpFlag = 5371 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5372 if (InlineAsm::isRegDefKind(OpFlag) || 5373 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5374 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5375 if (OpInfo.isIndirect) { 5376 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5377 LLVMContext &Ctx = *DAG.getContext(); 5378 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5379 " don't know how to handle tied " 5380 "indirect register inputs"); 5381 } 5382 5383 RegsForValue MatchedRegs; 5384 MatchedRegs.TLI = &TLI; 5385 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5386 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5387 MatchedRegs.RegVTs.push_back(RegVT); 5388 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5389 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5390 i != e; ++i) 5391 MatchedRegs.Regs.push_back 5392 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5393 5394 // Use the produced MatchedRegs object to 5395 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5396 Chain, &Flag); 5397 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5398 true, OpInfo.getMatchedOperand(), 5399 DAG, AsmNodeOperands); 5400 break; 5401 } 5402 5403 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5404 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5405 "Unexpected number of operands"); 5406 // Add information to the INLINEASM node to know about this input. 5407 // See InlineAsm.h isUseOperandTiedToDef. 5408 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5409 OpInfo.getMatchedOperand()); 5410 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5411 TLI.getPointerTy())); 5412 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5413 break; 5414 } 5415 5416 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5417 assert(!OpInfo.isIndirect && 5418 "Don't know how to handle indirect other inputs yet!"); 5419 5420 std::vector<SDValue> Ops; 5421 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5422 hasMemory, Ops, DAG); 5423 if (Ops.empty()) 5424 report_fatal_error("Invalid operand for inline asm constraint '" + 5425 Twine(OpInfo.ConstraintCode) + "'!"); 5426 5427 // Add information to the INLINEASM node to know about this input. 5428 unsigned ResOpType = 5429 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5430 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5431 TLI.getPointerTy())); 5432 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5433 break; 5434 } 5435 5436 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5437 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5438 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5439 "Memory operands expect pointer values"); 5440 5441 // Add information to the INLINEASM node to know about this input. 5442 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5443 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5444 TLI.getPointerTy())); 5445 AsmNodeOperands.push_back(InOperandVal); 5446 break; 5447 } 5448 5449 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5450 OpInfo.ConstraintType == TargetLowering::C_Register) && 5451 "Unknown constraint type!"); 5452 assert(!OpInfo.isIndirect && 5453 "Don't know how to handle indirect register inputs yet!"); 5454 5455 // Copy the input into the appropriate registers. 5456 if (OpInfo.AssignedRegs.Regs.empty() || 5457 !OpInfo.AssignedRegs.areValueTypesLegal()) 5458 report_fatal_error("Couldn't allocate input reg for constraint '" + 5459 Twine(OpInfo.ConstraintCode) + "'!"); 5460 5461 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5462 Chain, &Flag); 5463 5464 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5465 DAG, AsmNodeOperands); 5466 break; 5467 } 5468 case InlineAsm::isClobber: { 5469 // Add the clobbered value to the operand list, so that the register 5470 // allocator is aware that the physreg got clobbered. 5471 if (!OpInfo.AssignedRegs.Regs.empty()) 5472 OpInfo.AssignedRegs.AddInlineAsmOperands( 5473 InlineAsm::Kind_RegDefEarlyClobber, 5474 false, 0, DAG, 5475 AsmNodeOperands); 5476 break; 5477 } 5478 } 5479 } 5480 5481 // Finish up input operands. Set the input chain and add the flag last. 5482 AsmNodeOperands[0] = Chain; 5483 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5484 5485 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5486 DAG.getVTList(MVT::Other, MVT::Flag), 5487 &AsmNodeOperands[0], AsmNodeOperands.size()); 5488 Flag = Chain.getValue(1); 5489 5490 // If this asm returns a register value, copy the result from that register 5491 // and set it as the value of the call. 5492 if (!RetValRegs.Regs.empty()) { 5493 SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5494 Chain, &Flag); 5495 5496 // FIXME: Why don't we do this for inline asms with MRVs? 5497 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5498 EVT ResultType = TLI.getValueType(CS.getType()); 5499 5500 // If any of the results of the inline asm is a vector, it may have the 5501 // wrong width/num elts. This can happen for register classes that can 5502 // contain multiple different value types. The preg or vreg allocated may 5503 // not have the same VT as was expected. Convert it to the right type 5504 // with bit_convert. 5505 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5506 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5507 ResultType, Val); 5508 5509 } else if (ResultType != Val.getValueType() && 5510 ResultType.isInteger() && Val.getValueType().isInteger()) { 5511 // If a result value was tied to an input value, the computed result may 5512 // have a wider width than the expected result. Extract the relevant 5513 // portion. 5514 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5515 } 5516 5517 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5518 } 5519 5520 setValue(CS.getInstruction(), Val); 5521 // Don't need to use this as a chain in this case. 5522 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5523 return; 5524 } 5525 5526 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5527 5528 // Process indirect outputs, first output all of the flagged copies out of 5529 // physregs. 5530 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5531 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5532 const Value *Ptr = IndirectStoresToEmit[i].second; 5533 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5534 Chain, &Flag); 5535 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5536 } 5537 5538 // Emit the non-flagged stores from the physregs. 5539 SmallVector<SDValue, 8> OutChains; 5540 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5541 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5542 StoresToEmit[i].first, 5543 getValue(StoresToEmit[i].second), 5544 StoresToEmit[i].second, 0, 5545 false, false, 0); 5546 OutChains.push_back(Val); 5547 } 5548 5549 if (!OutChains.empty()) 5550 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5551 &OutChains[0], OutChains.size()); 5552 5553 DAG.setRoot(Chain); 5554 } 5555 5556 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5557 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5558 MVT::Other, getRoot(), 5559 getValue(I.getOperand(1)), 5560 DAG.getSrcValue(I.getOperand(1)))); 5561 } 5562 5563 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5564 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5565 getRoot(), getValue(I.getOperand(0)), 5566 DAG.getSrcValue(I.getOperand(0))); 5567 setValue(&I, V); 5568 DAG.setRoot(V.getValue(1)); 5569 } 5570 5571 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5572 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5573 MVT::Other, getRoot(), 5574 getValue(I.getOperand(1)), 5575 DAG.getSrcValue(I.getOperand(1)))); 5576 } 5577 5578 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5579 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5580 MVT::Other, getRoot(), 5581 getValue(I.getOperand(1)), 5582 getValue(I.getOperand(2)), 5583 DAG.getSrcValue(I.getOperand(1)), 5584 DAG.getSrcValue(I.getOperand(2)))); 5585 } 5586 5587 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5588 /// implementation, which just calls LowerCall. 5589 /// FIXME: When all targets are 5590 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5591 std::pair<SDValue, SDValue> 5592 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5593 bool RetSExt, bool RetZExt, bool isVarArg, 5594 bool isInreg, unsigned NumFixedArgs, 5595 CallingConv::ID CallConv, bool isTailCall, 5596 bool isReturnValueUsed, 5597 SDValue Callee, 5598 ArgListTy &Args, SelectionDAG &DAG, 5599 DebugLoc dl) const { 5600 // Handle all of the outgoing arguments. 5601 SmallVector<ISD::OutputArg, 32> Outs; 5602 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5603 SmallVector<EVT, 4> ValueVTs; 5604 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5605 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5606 Value != NumValues; ++Value) { 5607 EVT VT = ValueVTs[Value]; 5608 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5609 SDValue Op = SDValue(Args[i].Node.getNode(), 5610 Args[i].Node.getResNo() + Value); 5611 ISD::ArgFlagsTy Flags; 5612 unsigned OriginalAlignment = 5613 getTargetData()->getABITypeAlignment(ArgTy); 5614 5615 if (Args[i].isZExt) 5616 Flags.setZExt(); 5617 if (Args[i].isSExt) 5618 Flags.setSExt(); 5619 if (Args[i].isInReg) 5620 Flags.setInReg(); 5621 if (Args[i].isSRet) 5622 Flags.setSRet(); 5623 if (Args[i].isByVal) { 5624 Flags.setByVal(); 5625 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5626 const Type *ElementTy = Ty->getElementType(); 5627 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5628 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5629 // For ByVal, alignment should come from FE. BE will guess if this 5630 // info is not there but there are cases it cannot get right. 5631 if (Args[i].Alignment) 5632 FrameAlign = Args[i].Alignment; 5633 Flags.setByValAlign(FrameAlign); 5634 Flags.setByValSize(FrameSize); 5635 } 5636 if (Args[i].isNest) 5637 Flags.setNest(); 5638 Flags.setOrigAlign(OriginalAlignment); 5639 5640 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5641 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5642 SmallVector<SDValue, 4> Parts(NumParts); 5643 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5644 5645 if (Args[i].isSExt) 5646 ExtendKind = ISD::SIGN_EXTEND; 5647 else if (Args[i].isZExt) 5648 ExtendKind = ISD::ZERO_EXTEND; 5649 5650 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5651 PartVT, ExtendKind); 5652 5653 for (unsigned j = 0; j != NumParts; ++j) { 5654 // if it isn't first piece, alignment must be 1 5655 ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); 5656 if (NumParts > 1 && j == 0) 5657 MyFlags.Flags.setSplit(); 5658 else if (j != 0) 5659 MyFlags.Flags.setOrigAlign(1); 5660 5661 Outs.push_back(MyFlags); 5662 } 5663 } 5664 } 5665 5666 // Handle the incoming return values from the call. 5667 SmallVector<ISD::InputArg, 32> Ins; 5668 SmallVector<EVT, 4> RetTys; 5669 ComputeValueVTs(*this, RetTy, RetTys); 5670 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5671 EVT VT = RetTys[I]; 5672 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5673 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5674 for (unsigned i = 0; i != NumRegs; ++i) { 5675 ISD::InputArg MyFlags; 5676 MyFlags.VT = RegisterVT; 5677 MyFlags.Used = isReturnValueUsed; 5678 if (RetSExt) 5679 MyFlags.Flags.setSExt(); 5680 if (RetZExt) 5681 MyFlags.Flags.setZExt(); 5682 if (isInreg) 5683 MyFlags.Flags.setInReg(); 5684 Ins.push_back(MyFlags); 5685 } 5686 } 5687 5688 SmallVector<SDValue, 4> InVals; 5689 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5690 Outs, Ins, dl, DAG, InVals); 5691 5692 // Verify that the target's LowerCall behaved as expected. 5693 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5694 "LowerCall didn't return a valid chain!"); 5695 assert((!isTailCall || InVals.empty()) && 5696 "LowerCall emitted a return value for a tail call!"); 5697 assert((isTailCall || InVals.size() == Ins.size()) && 5698 "LowerCall didn't emit the correct number of values!"); 5699 5700 // For a tail call, the return value is merely live-out and there aren't 5701 // any nodes in the DAG representing it. Return a special value to 5702 // indicate that a tail call has been emitted and no more Instructions 5703 // should be processed in the current block. 5704 if (isTailCall) { 5705 DAG.setRoot(Chain); 5706 return std::make_pair(SDValue(), SDValue()); 5707 } 5708 5709 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5710 assert(InVals[i].getNode() && 5711 "LowerCall emitted a null value!"); 5712 assert(Ins[i].VT == InVals[i].getValueType() && 5713 "LowerCall emitted a value with the wrong type!"); 5714 }); 5715 5716 // Collect the legal value parts into potentially illegal values 5717 // that correspond to the original function's return values. 5718 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5719 if (RetSExt) 5720 AssertOp = ISD::AssertSext; 5721 else if (RetZExt) 5722 AssertOp = ISD::AssertZext; 5723 SmallVector<SDValue, 4> ReturnValues; 5724 unsigned CurReg = 0; 5725 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5726 EVT VT = RetTys[I]; 5727 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5728 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5729 5730 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5731 NumRegs, RegisterVT, VT, 5732 AssertOp)); 5733 CurReg += NumRegs; 5734 } 5735 5736 // For a function returning void, there is no return value. We can't create 5737 // such a node, so we just return a null return value in that case. In 5738 // that case, nothing will actualy look at the value. 5739 if (ReturnValues.empty()) 5740 return std::make_pair(SDValue(), Chain); 5741 5742 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5743 DAG.getVTList(&RetTys[0], RetTys.size()), 5744 &ReturnValues[0], ReturnValues.size()); 5745 return std::make_pair(Res, Chain); 5746 } 5747 5748 void TargetLowering::LowerOperationWrapper(SDNode *N, 5749 SmallVectorImpl<SDValue> &Results, 5750 SelectionDAG &DAG) const { 5751 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5752 if (Res.getNode()) 5753 Results.push_back(Res); 5754 } 5755 5756 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5757 llvm_unreachable("LowerOperation not implemented for this target!"); 5758 return SDValue(); 5759 } 5760 5761 void 5762 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5763 SDValue Op = getValue(V); 5764 assert((Op.getOpcode() != ISD::CopyFromReg || 5765 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5766 "Copy from a reg to the same reg!"); 5767 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5768 5769 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5770 SDValue Chain = DAG.getEntryNode(); 5771 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5772 PendingExports.push_back(Chain); 5773 } 5774 5775 #include "llvm/CodeGen/SelectionDAGISel.h" 5776 5777 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 5778 // If this is the entry block, emit arguments. 5779 const Function &F = *LLVMBB->getParent(); 5780 SelectionDAG &DAG = SDB->DAG; 5781 SDValue OldRoot = DAG.getRoot(); 5782 DebugLoc dl = SDB->getCurDebugLoc(); 5783 const TargetData *TD = TLI.getTargetData(); 5784 SmallVector<ISD::InputArg, 16> Ins; 5785 5786 // Check whether the function can return without sret-demotion. 5787 SmallVector<EVT, 4> OutVTs; 5788 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 5789 getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5790 OutVTs, OutsFlags, TLI); 5791 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5792 5793 FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 5794 OutVTs, OutsFlags, DAG); 5795 if (!FLI.CanLowerReturn) { 5796 // Put in an sret pointer parameter before all the other parameters. 5797 SmallVector<EVT, 1> ValueVTs; 5798 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5799 5800 // NOTE: Assuming that a pointer will never break down to more than one VT 5801 // or one register. 5802 ISD::ArgFlagsTy Flags; 5803 Flags.setSRet(); 5804 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 5805 ISD::InputArg RetArg(Flags, RegisterVT, true); 5806 Ins.push_back(RetArg); 5807 } 5808 5809 // Set up the incoming argument description vector. 5810 unsigned Idx = 1; 5811 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 5812 I != E; ++I, ++Idx) { 5813 SmallVector<EVT, 4> ValueVTs; 5814 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5815 bool isArgValueUsed = !I->use_empty(); 5816 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5817 Value != NumValues; ++Value) { 5818 EVT VT = ValueVTs[Value]; 5819 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5820 ISD::ArgFlagsTy Flags; 5821 unsigned OriginalAlignment = 5822 TD->getABITypeAlignment(ArgTy); 5823 5824 if (F.paramHasAttr(Idx, Attribute::ZExt)) 5825 Flags.setZExt(); 5826 if (F.paramHasAttr(Idx, Attribute::SExt)) 5827 Flags.setSExt(); 5828 if (F.paramHasAttr(Idx, Attribute::InReg)) 5829 Flags.setInReg(); 5830 if (F.paramHasAttr(Idx, Attribute::StructRet)) 5831 Flags.setSRet(); 5832 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 5833 Flags.setByVal(); 5834 const PointerType *Ty = cast<PointerType>(I->getType()); 5835 const Type *ElementTy = Ty->getElementType(); 5836 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 5837 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 5838 // For ByVal, alignment should be passed from FE. BE will guess if 5839 // this info is not there but there are cases it cannot get right. 5840 if (F.getParamAlignment(Idx)) 5841 FrameAlign = F.getParamAlignment(Idx); 5842 Flags.setByValAlign(FrameAlign); 5843 Flags.setByValSize(FrameSize); 5844 } 5845 if (F.paramHasAttr(Idx, Attribute::Nest)) 5846 Flags.setNest(); 5847 Flags.setOrigAlign(OriginalAlignment); 5848 5849 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5850 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5851 for (unsigned i = 0; i != NumRegs; ++i) { 5852 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 5853 if (NumRegs > 1 && i == 0) 5854 MyFlags.Flags.setSplit(); 5855 // if it isn't first piece, alignment must be 1 5856 else if (i > 0) 5857 MyFlags.Flags.setOrigAlign(1); 5858 Ins.push_back(MyFlags); 5859 } 5860 } 5861 } 5862 5863 // Call the target to set up the argument values. 5864 SmallVector<SDValue, 8> InVals; 5865 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 5866 F.isVarArg(), Ins, 5867 dl, DAG, InVals); 5868 5869 // Verify that the target's LowerFormalArguments behaved as expected. 5870 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 5871 "LowerFormalArguments didn't return a valid chain!"); 5872 assert(InVals.size() == Ins.size() && 5873 "LowerFormalArguments didn't emit the correct number of values!"); 5874 DEBUG({ 5875 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5876 assert(InVals[i].getNode() && 5877 "LowerFormalArguments emitted a null value!"); 5878 assert(Ins[i].VT == InVals[i].getValueType() && 5879 "LowerFormalArguments emitted a value with the wrong type!"); 5880 } 5881 }); 5882 5883 // Update the DAG with the new chain value resulting from argument lowering. 5884 DAG.setRoot(NewRoot); 5885 5886 // Set up the argument values. 5887 unsigned i = 0; 5888 Idx = 1; 5889 if (!FLI.CanLowerReturn) { 5890 // Create a virtual register for the sret pointer, and put in a copy 5891 // from the sret argument into it. 5892 SmallVector<EVT, 1> ValueVTs; 5893 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5894 EVT VT = ValueVTs[0]; 5895 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5896 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5897 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 5898 RegVT, VT, AssertOp); 5899 5900 MachineFunction& MF = SDB->DAG.getMachineFunction(); 5901 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 5902 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 5903 FLI.DemoteRegister = SRetReg; 5904 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 5905 SRetReg, ArgValue); 5906 DAG.setRoot(NewRoot); 5907 5908 // i indexes lowered arguments. Bump it past the hidden sret argument. 5909 // Idx indexes LLVM arguments. Don't touch it. 5910 ++i; 5911 } 5912 5913 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 5914 ++I, ++Idx) { 5915 SmallVector<SDValue, 4> ArgValues; 5916 SmallVector<EVT, 4> ValueVTs; 5917 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5918 unsigned NumValues = ValueVTs.size(); 5919 for (unsigned Value = 0; Value != NumValues; ++Value) { 5920 EVT VT = ValueVTs[Value]; 5921 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5922 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5923 5924 if (!I->use_empty()) { 5925 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5926 if (F.paramHasAttr(Idx, Attribute::SExt)) 5927 AssertOp = ISD::AssertSext; 5928 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 5929 AssertOp = ISD::AssertZext; 5930 5931 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 5932 NumParts, PartVT, VT, 5933 AssertOp)); 5934 } 5935 5936 i += NumParts; 5937 } 5938 5939 if (!I->use_empty()) { 5940 SDValue Res; 5941 if (!ArgValues.empty()) 5942 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 5943 SDB->getCurDebugLoc()); 5944 SDB->setValue(I, Res); 5945 5946 // If this argument is live outside of the entry block, insert a copy from 5947 // whereever we got it to the vreg that other BB's will reference it as. 5948 SDB->CopyToExportRegsIfNeeded(I); 5949 } 5950 } 5951 5952 assert(i == InVals.size() && "Argument register count mismatch!"); 5953 5954 // Finally, if the target has anything special to do, allow it to do so. 5955 // FIXME: this should insert code into the DAG! 5956 EmitFunctionEntryCode(); 5957 } 5958 5959 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 5960 /// ensure constants are generated when needed. Remember the virtual registers 5961 /// that need to be added to the Machine PHI nodes as input. We cannot just 5962 /// directly add them, because expansion might result in multiple MBB's for one 5963 /// BB. As such, the start of the BB might correspond to a different MBB than 5964 /// the end. 5965 /// 5966 void 5967 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 5968 const TerminatorInst *TI = LLVMBB->getTerminator(); 5969 5970 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 5971 5972 // Check successor nodes' PHI nodes that expect a constant to be available 5973 // from this block. 5974 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 5975 const BasicBlock *SuccBB = TI->getSuccessor(succ); 5976 if (!isa<PHINode>(SuccBB->begin())) continue; 5977 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 5978 5979 // If this terminator has multiple identical successors (common for 5980 // switches), only handle each succ once. 5981 if (!SuccsHandled.insert(SuccMBB)) continue; 5982 5983 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 5984 5985 // At this point we know that there is a 1-1 correspondence between LLVM PHI 5986 // nodes and Machine PHI nodes, but the incoming operands have not been 5987 // emitted yet. 5988 for (BasicBlock::const_iterator I = SuccBB->begin(); 5989 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 5990 // Ignore dead phi's. 5991 if (PN->use_empty()) continue; 5992 5993 unsigned Reg; 5994 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 5995 5996 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 5997 unsigned &RegOut = ConstantsOut[C]; 5998 if (RegOut == 0) { 5999 RegOut = FuncInfo.CreateRegForValue(C); 6000 CopyValueToVirtualRegister(C, RegOut); 6001 } 6002 Reg = RegOut; 6003 } else { 6004 Reg = FuncInfo.ValueMap[PHIOp]; 6005 if (Reg == 0) { 6006 assert(isa<AllocaInst>(PHIOp) && 6007 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6008 "Didn't codegen value into a register!??"); 6009 Reg = FuncInfo.CreateRegForValue(PHIOp); 6010 CopyValueToVirtualRegister(PHIOp, Reg); 6011 } 6012 } 6013 6014 // Remember that this register needs to added to the machine PHI node as 6015 // the input for this MBB. 6016 SmallVector<EVT, 4> ValueVTs; 6017 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6018 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6019 EVT VT = ValueVTs[vti]; 6020 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6021 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6022 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6023 Reg += NumRegisters; 6024 } 6025 } 6026 } 6027 ConstantsOut.clear(); 6028 } 6029