1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallingConv.h" 73 #include "llvm/IR/Constant.h" 74 #include "llvm/IR/ConstantRange.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfoMetadata.h" 78 #include "llvm/IR/DebugLoc.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GetElementPtrTypeIterator.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstrTypes.h" 84 #include "llvm/IR/Instruction.h" 85 #include "llvm/IR/Instructions.h" 86 #include "llvm/IR/IntrinsicInst.h" 87 #include "llvm/IR/Intrinsics.h" 88 #include "llvm/IR/IntrinsicsAArch64.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PatternMatch.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/MC/MCContext.h" 100 #include "llvm/MC/MCSymbol.h" 101 #include "llvm/Support/AtomicOrdering.h" 102 #include "llvm/Support/BranchProbability.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CodeGen.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/Debug.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/MachineValueType.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Target/TargetIntrinsicInfo.h" 113 #include "llvm/Target/TargetMachine.h" 114 #include "llvm/Target/TargetOptions.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cstddef> 119 #include <cstdint> 120 #include <cstring> 121 #include <iterator> 122 #include <limits> 123 #include <numeric> 124 #include <tuple> 125 #include <utility> 126 #include <vector> 127 128 using namespace llvm; 129 using namespace PatternMatch; 130 using namespace SwitchCG; 131 132 #define DEBUG_TYPE "isel" 133 134 /// LimitFloatPrecision - Generate low-precision inline sequences for 135 /// some float libcalls (6, 8 or 12 bits). 136 static unsigned LimitFloatPrecision; 137 138 static cl::opt<unsigned, true> 139 LimitFPPrecision("limit-float-precision", 140 cl::desc("Generate low-precision inline sequences " 141 "for some float libcalls"), 142 cl::location(LimitFloatPrecision), cl::Hidden, 143 cl::init(0)); 144 145 static cl::opt<unsigned> SwitchPeelThreshold( 146 "switch-peel-threshold", cl::Hidden, cl::init(66), 147 cl::desc("Set the case probability threshold for peeling the case from a " 148 "switch statement. A value greater than 100 will void this " 149 "optimization")); 150 151 // Limit the width of DAG chains. This is important in general to prevent 152 // DAG-based analysis from blowing up. For example, alias analysis and 153 // load clustering may not complete in reasonable time. It is difficult to 154 // recognize and avoid this situation within each individual analysis, and 155 // future analyses are likely to have the same behavior. Limiting DAG width is 156 // the safe approach and will be especially important with global DAGs. 157 // 158 // MaxParallelChains default is arbitrarily high to avoid affecting 159 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 160 // sequence over this should have been converted to llvm.memcpy by the 161 // frontend. It is easy to induce this behavior with .ll code such as: 162 // %buffer = alloca [4096 x i8] 163 // %data = load [4096 x i8]* %argPtr 164 // store [4096 x i8] %data, [4096 x i8]* %buffer 165 static const unsigned MaxParallelChains = 64; 166 167 // Return the calling convention if the Value passed requires ABI mangling as it 168 // is a parameter to a function or a return value from a function which is not 169 // an intrinsic. 170 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 171 if (auto *R = dyn_cast<ReturnInst>(V)) 172 return R->getParent()->getParent()->getCallingConv(); 173 174 if (auto *CI = dyn_cast<CallInst>(V)) { 175 const bool IsInlineAsm = CI->isInlineAsm(); 176 const bool IsIndirectFunctionCall = 177 !IsInlineAsm && !CI->getCalledFunction(); 178 179 // It is possible that the call instruction is an inline asm statement or an 180 // indirect function call in which case the return value of 181 // getCalledFunction() would be nullptr. 182 const bool IsInstrinsicCall = 183 !IsInlineAsm && !IsIndirectFunctionCall && 184 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 185 186 if (!IsInlineAsm && !IsInstrinsicCall) 187 return CI->getCallingConv(); 188 } 189 190 return None; 191 } 192 193 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 194 const SDValue *Parts, unsigned NumParts, 195 MVT PartVT, EVT ValueVT, const Value *V, 196 Optional<CallingConv::ID> CC); 197 198 /// getCopyFromParts - Create a value that contains the specified legal parts 199 /// combined into the value they represent. If the parts combine to a type 200 /// larger than ValueVT then AssertOp can be used to specify whether the extra 201 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 202 /// (ISD::AssertSext). 203 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 204 const SDValue *Parts, unsigned NumParts, 205 MVT PartVT, EVT ValueVT, const Value *V, 206 Optional<CallingConv::ID> CC = None, 207 Optional<ISD::NodeType> AssertOp = None) { 208 if (ValueVT.isVector()) 209 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 210 CC); 211 212 assert(NumParts > 0 && "No parts to assemble!"); 213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 214 SDValue Val = Parts[0]; 215 216 if (NumParts > 1) { 217 // Assemble the value from multiple parts. 218 if (ValueVT.isInteger()) { 219 unsigned PartBits = PartVT.getSizeInBits(); 220 unsigned ValueBits = ValueVT.getSizeInBits(); 221 222 // Assemble the power of 2 part. 223 unsigned RoundParts = 224 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 225 unsigned RoundBits = PartBits * RoundParts; 226 EVT RoundVT = RoundBits == ValueBits ? 227 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 228 SDValue Lo, Hi; 229 230 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 231 232 if (RoundParts > 2) { 233 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 234 PartVT, HalfVT, V); 235 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 236 RoundParts / 2, PartVT, HalfVT, V); 237 } else { 238 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 240 } 241 242 if (DAG.getDataLayout().isBigEndian()) 243 std::swap(Lo, Hi); 244 245 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 246 247 if (RoundParts < NumParts) { 248 // Assemble the trailing non-power-of-2 part. 249 unsigned OddParts = NumParts - RoundParts; 250 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 251 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 252 OddVT, V, CC); 253 254 // Combine the round and odd parts. 255 Lo = Val; 256 if (DAG.getDataLayout().isBigEndian()) 257 std::swap(Lo, Hi); 258 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 259 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 260 Hi = 261 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 262 DAG.getConstant(Lo.getValueSizeInBits(), DL, 263 TLI.getPointerTy(DAG.getDataLayout()))); 264 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 265 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 266 } 267 } else if (PartVT.isFloatingPoint()) { 268 // FP split into multiple FP parts (for ppcf128) 269 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 270 "Unexpected split"); 271 SDValue Lo, Hi; 272 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 273 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 274 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 275 std::swap(Lo, Hi); 276 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 277 } else { 278 // FP split into integer parts (soft fp) 279 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 280 !PartVT.isVector() && "Unexpected split"); 281 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 282 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 283 } 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 // PartEVT is the type of the register class that holds the value. 288 // ValueVT is the type of the inline asm operation. 289 EVT PartEVT = Val.getValueType(); 290 291 if (PartEVT == ValueVT) 292 return Val; 293 294 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 295 ValueVT.bitsLT(PartEVT)) { 296 // For an FP value in an integer part, we need to truncate to the right 297 // width first. 298 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 299 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 300 } 301 302 // Handle types that have the same size. 303 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 304 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 305 306 // Handle types with different sizes. 307 if (PartEVT.isInteger() && ValueVT.isInteger()) { 308 if (ValueVT.bitsLT(PartEVT)) { 309 // For a truncate, see if we have any information to 310 // indicate whether the truncated bits will always be 311 // zero or sign-extension. 312 if (AssertOp.hasValue()) 313 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 314 DAG.getValueType(ValueVT)); 315 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 316 } 317 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 318 } 319 320 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 321 // FP_ROUND's are always exact here. 322 if (ValueVT.bitsLT(Val.getValueType())) 323 return DAG.getNode( 324 ISD::FP_ROUND, DL, ValueVT, Val, 325 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 326 327 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 328 } 329 330 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 331 // then truncating. 332 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 333 ValueVT.bitsLT(PartEVT)) { 334 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 335 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 336 } 337 338 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 339 } 340 341 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 342 const Twine &ErrMsg) { 343 const Instruction *I = dyn_cast_or_null<Instruction>(V); 344 if (!V) 345 return Ctx.emitError(ErrMsg); 346 347 const char *AsmError = ", possible invalid constraint for vector type"; 348 if (const CallInst *CI = dyn_cast<CallInst>(I)) 349 if (CI->isInlineAsm()) 350 return Ctx.emitError(I, ErrMsg + AsmError); 351 352 return Ctx.emitError(I, ErrMsg); 353 } 354 355 /// getCopyFromPartsVector - Create a value that contains the specified legal 356 /// parts combined into the value they represent. If the parts combine to a 357 /// type larger than ValueVT then AssertOp can be used to specify whether the 358 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 359 /// ValueVT (ISD::AssertSext). 360 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 361 const SDValue *Parts, unsigned NumParts, 362 MVT PartVT, EVT ValueVT, const Value *V, 363 Optional<CallingConv::ID> CallConv) { 364 assert(ValueVT.isVector() && "Not a vector value"); 365 assert(NumParts > 0 && "No parts to assemble!"); 366 const bool IsABIRegCopy = CallConv.hasValue(); 367 368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 369 SDValue Val = Parts[0]; 370 371 // Handle a multi-element vector. 372 if (NumParts > 1) { 373 EVT IntermediateVT; 374 MVT RegisterVT; 375 unsigned NumIntermediates; 376 unsigned NumRegs; 377 378 if (IsABIRegCopy) { 379 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 380 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 381 NumIntermediates, RegisterVT); 382 } else { 383 NumRegs = 384 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 385 NumIntermediates, RegisterVT); 386 } 387 388 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 389 NumParts = NumRegs; // Silence a compiler warning. 390 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 391 assert(RegisterVT.getSizeInBits() == 392 Parts[0].getSimpleValueType().getSizeInBits() && 393 "Part type sizes don't match!"); 394 395 // Assemble the parts into intermediate operands. 396 SmallVector<SDValue, 8> Ops(NumIntermediates); 397 if (NumIntermediates == NumParts) { 398 // If the register was not expanded, truncate or copy the value, 399 // as appropriate. 400 for (unsigned i = 0; i != NumParts; ++i) 401 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 402 PartVT, IntermediateVT, V); 403 } else if (NumParts > 0) { 404 // If the intermediate type was expanded, build the intermediate 405 // operands from the parts. 406 assert(NumParts % NumIntermediates == 0 && 407 "Must expand into a divisible number of parts!"); 408 unsigned Factor = NumParts / NumIntermediates; 409 for (unsigned i = 0; i != NumIntermediates; ++i) 410 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 411 PartVT, IntermediateVT, V); 412 } 413 414 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 415 // intermediate operands. 416 EVT BuiltVectorTy = 417 IntermediateVT.isVector() 418 ? EVT::getVectorVT( 419 *DAG.getContext(), IntermediateVT.getScalarType(), 420 IntermediateVT.getVectorElementCount() * NumParts) 421 : EVT::getVectorVT(*DAG.getContext(), 422 IntermediateVT.getScalarType(), 423 NumIntermediates); 424 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 425 : ISD::BUILD_VECTOR, 426 DL, BuiltVectorTy, Ops); 427 } 428 429 // There is now one part, held in Val. Correct it to match ValueVT. 430 EVT PartEVT = Val.getValueType(); 431 432 if (PartEVT == ValueVT) 433 return Val; 434 435 if (PartEVT.isVector()) { 436 // If the element type of the source/dest vectors are the same, but the 437 // parts vector has more elements than the value vector, then we have a 438 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 439 // elements we want. 440 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 441 assert((PartEVT.getVectorElementCount().Min > 442 ValueVT.getVectorElementCount().Min) && 443 (PartEVT.getVectorElementCount().Scalable == 444 ValueVT.getVectorElementCount().Scalable) && 445 "Cannot narrow, it would be a lossy transformation"); 446 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 447 DAG.getVectorIdxConstant(0, DL)); 448 } 449 450 // Vector/Vector bitcast. 451 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 452 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 453 454 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 455 "Cannot handle this kind of promotion"); 456 // Promoted vector extract 457 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 458 459 } 460 461 // Trivial bitcast if the types are the same size and the destination 462 // vector type is legal. 463 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 464 TLI.isTypeLegal(ValueVT)) 465 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 466 467 if (ValueVT.getVectorNumElements() != 1) { 468 // Certain ABIs require that vectors are passed as integers. For vectors 469 // are the same size, this is an obvious bitcast. 470 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 471 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 472 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 473 // Bitcast Val back the original type and extract the corresponding 474 // vector we want. 475 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 476 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 477 ValueVT.getVectorElementType(), Elts); 478 Val = DAG.getBitcast(WiderVecType, Val); 479 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 480 DAG.getVectorIdxConstant(0, DL)); 481 } 482 483 diagnosePossiblyInvalidConstraint( 484 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 485 return DAG.getUNDEF(ValueVT); 486 } 487 488 // Handle cases such as i8 -> <1 x i1> 489 EVT ValueSVT = ValueVT.getVectorElementType(); 490 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 491 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 492 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 493 else 494 Val = ValueVT.isFloatingPoint() 495 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 496 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 497 } 498 499 return DAG.getBuildVector(ValueVT, DL, Val); 500 } 501 502 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 503 SDValue Val, SDValue *Parts, unsigned NumParts, 504 MVT PartVT, const Value *V, 505 Optional<CallingConv::ID> CallConv); 506 507 /// getCopyToParts - Create a series of nodes that contain the specified value 508 /// split into legal parts. If the parts contain more bits than Val, then, for 509 /// integers, ExtendKind can be used to specify how to generate the extra bits. 510 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 511 SDValue *Parts, unsigned NumParts, MVT PartVT, 512 const Value *V, 513 Optional<CallingConv::ID> CallConv = None, 514 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 515 EVT ValueVT = Val.getValueType(); 516 517 // Handle the vector case separately. 518 if (ValueVT.isVector()) 519 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 520 CallConv); 521 522 unsigned PartBits = PartVT.getSizeInBits(); 523 unsigned OrigNumParts = NumParts; 524 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 525 "Copying to an illegal type!"); 526 527 if (NumParts == 0) 528 return; 529 530 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 531 EVT PartEVT = PartVT; 532 if (PartEVT == ValueVT) { 533 assert(NumParts == 1 && "No-op copy with multiple parts!"); 534 Parts[0] = Val; 535 return; 536 } 537 538 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 539 // If the parts cover more bits than the value has, promote the value. 540 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 541 assert(NumParts == 1 && "Do not know what to promote to!"); 542 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 543 } else { 544 if (ValueVT.isFloatingPoint()) { 545 // FP values need to be bitcast, then extended if they are being put 546 // into a larger container. 547 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 548 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 549 } 550 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 551 ValueVT.isInteger() && 552 "Unknown mismatch!"); 553 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 554 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 555 if (PartVT == MVT::x86mmx) 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } 558 } else if (PartBits == ValueVT.getSizeInBits()) { 559 // Different types of the same size. 560 assert(NumParts == 1 && PartEVT != ValueVT); 561 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 562 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 563 // If the parts cover less bits than value has, truncate the value. 564 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 565 ValueVT.isInteger() && 566 "Unknown mismatch!"); 567 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 568 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 569 if (PartVT == MVT::x86mmx) 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 // The value may have changed - recompute ValueVT. 574 ValueVT = Val.getValueType(); 575 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 576 "Failed to tile the value with PartVT!"); 577 578 if (NumParts == 1) { 579 if (PartEVT != ValueVT) { 580 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 581 "scalar-to-vector conversion failed"); 582 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 583 } 584 585 Parts[0] = Val; 586 return; 587 } 588 589 // Expand the value into multiple parts. 590 if (NumParts & (NumParts - 1)) { 591 // The number of parts is not a power of 2. Split off and copy the tail. 592 assert(PartVT.isInteger() && ValueVT.isInteger() && 593 "Do not know what to expand to!"); 594 unsigned RoundParts = 1 << Log2_32(NumParts); 595 unsigned RoundBits = RoundParts * PartBits; 596 unsigned OddParts = NumParts - RoundParts; 597 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 598 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 599 600 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 601 CallConv); 602 603 if (DAG.getDataLayout().isBigEndian()) 604 // The odd parts were reversed by getCopyToParts - unreverse them. 605 std::reverse(Parts + RoundParts, Parts + NumParts); 606 607 NumParts = RoundParts; 608 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 609 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 610 } 611 612 // The number of parts is a power of 2. Repeatedly bisect the value using 613 // EXTRACT_ELEMENT. 614 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 615 EVT::getIntegerVT(*DAG.getContext(), 616 ValueVT.getSizeInBits()), 617 Val); 618 619 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 620 for (unsigned i = 0; i < NumParts; i += StepSize) { 621 unsigned ThisBits = StepSize * PartBits / 2; 622 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 623 SDValue &Part0 = Parts[i]; 624 SDValue &Part1 = Parts[i+StepSize/2]; 625 626 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 628 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 629 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 630 631 if (ThisBits == PartBits && ThisVT != PartVT) { 632 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 633 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 634 } 635 } 636 } 637 638 if (DAG.getDataLayout().isBigEndian()) 639 std::reverse(Parts, Parts + OrigNumParts); 640 } 641 642 static SDValue widenVectorToPartType(SelectionDAG &DAG, 643 SDValue Val, const SDLoc &DL, EVT PartVT) { 644 if (!PartVT.isVector()) 645 return SDValue(); 646 647 EVT ValueVT = Val.getValueType(); 648 unsigned PartNumElts = PartVT.getVectorNumElements(); 649 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 650 if (PartNumElts > ValueNumElts && 651 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 652 EVT ElementVT = PartVT.getVectorElementType(); 653 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 654 // undef elements. 655 SmallVector<SDValue, 16> Ops; 656 DAG.ExtractVectorElements(Val, Ops); 657 SDValue EltUndef = DAG.getUNDEF(ElementVT); 658 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 659 Ops.push_back(EltUndef); 660 661 // FIXME: Use CONCAT for 2x -> 4x. 662 return DAG.getBuildVector(PartVT, DL, Ops); 663 } 664 665 return SDValue(); 666 } 667 668 /// getCopyToPartsVector - Create a series of nodes that contain the specified 669 /// value split into legal parts. 670 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 671 SDValue Val, SDValue *Parts, unsigned NumParts, 672 MVT PartVT, const Value *V, 673 Optional<CallingConv::ID> CallConv) { 674 EVT ValueVT = Val.getValueType(); 675 assert(ValueVT.isVector() && "Not a vector"); 676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 677 const bool IsABIRegCopy = CallConv.hasValue(); 678 679 if (NumParts == 1) { 680 EVT PartEVT = PartVT; 681 if (PartEVT == ValueVT) { 682 // Nothing to do. 683 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 684 // Bitconvert vector->vector case. 685 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 686 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 687 Val = Widened; 688 } else if (PartVT.isVector() && 689 PartEVT.getVectorElementType().bitsGE( 690 ValueVT.getVectorElementType()) && 691 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 692 693 // Promoted vector extract 694 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 695 } else { 696 if (ValueVT.getVectorNumElements() == 1) { 697 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 698 DAG.getVectorIdxConstant(0, DL)); 699 } else { 700 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 701 "lossy conversion of vector to scalar type"); 702 EVT IntermediateType = 703 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 704 Val = DAG.getBitcast(IntermediateType, Val); 705 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 706 } 707 } 708 709 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 710 Parts[0] = Val; 711 return; 712 } 713 714 // Handle a multi-element vector. 715 EVT IntermediateVT; 716 MVT RegisterVT; 717 unsigned NumIntermediates; 718 unsigned NumRegs; 719 if (IsABIRegCopy) { 720 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 721 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 722 NumIntermediates, RegisterVT); 723 } else { 724 NumRegs = 725 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 726 NumIntermediates, RegisterVT); 727 } 728 729 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 730 NumParts = NumRegs; // Silence a compiler warning. 731 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 732 733 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 734 IntermediateVT.getVectorNumElements() : 1; 735 736 // Convert the vector to the appropriate type if necessary. 737 auto DestEltCnt = ElementCount(NumIntermediates * IntermediateNumElts, 738 ValueVT.isScalableVector()); 739 EVT BuiltVectorTy = EVT::getVectorVT( 740 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt); 741 if (ValueVT != BuiltVectorTy) { 742 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 743 Val = Widened; 744 745 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 746 } 747 748 // Split the vector into intermediate operands. 749 SmallVector<SDValue, 8> Ops(NumIntermediates); 750 for (unsigned i = 0; i != NumIntermediates; ++i) { 751 if (IntermediateVT.isVector()) { 752 Ops[i] = 753 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 754 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 755 } else { 756 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 757 DAG.getVectorIdxConstant(i, DL)); 758 } 759 } 760 761 // Split the intermediate operands into legal parts. 762 if (NumParts == NumIntermediates) { 763 // If the register was not expanded, promote or copy the value, 764 // as appropriate. 765 for (unsigned i = 0; i != NumParts; ++i) 766 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 767 } else if (NumParts > 0) { 768 // If the intermediate type was expanded, split each the value into 769 // legal parts. 770 assert(NumIntermediates != 0 && "division by zero"); 771 assert(NumParts % NumIntermediates == 0 && 772 "Must expand into a divisible number of parts!"); 773 unsigned Factor = NumParts / NumIntermediates; 774 for (unsigned i = 0; i != NumIntermediates; ++i) 775 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 776 CallConv); 777 } 778 } 779 780 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 781 EVT valuevt, Optional<CallingConv::ID> CC) 782 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 783 RegCount(1, regs.size()), CallConv(CC) {} 784 785 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 786 const DataLayout &DL, unsigned Reg, Type *Ty, 787 Optional<CallingConv::ID> CC) { 788 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 789 790 CallConv = CC; 791 792 for (EVT ValueVT : ValueVTs) { 793 unsigned NumRegs = 794 isABIMangled() 795 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 796 : TLI.getNumRegisters(Context, ValueVT); 797 MVT RegisterVT = 798 isABIMangled() 799 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 800 : TLI.getRegisterType(Context, ValueVT); 801 for (unsigned i = 0; i != NumRegs; ++i) 802 Regs.push_back(Reg + i); 803 RegVTs.push_back(RegisterVT); 804 RegCount.push_back(NumRegs); 805 Reg += NumRegs; 806 } 807 } 808 809 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 810 FunctionLoweringInfo &FuncInfo, 811 const SDLoc &dl, SDValue &Chain, 812 SDValue *Flag, const Value *V) const { 813 // A Value with type {} or [0 x %t] needs no registers. 814 if (ValueVTs.empty()) 815 return SDValue(); 816 817 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 818 819 // Assemble the legal parts into the final values. 820 SmallVector<SDValue, 4> Values(ValueVTs.size()); 821 SmallVector<SDValue, 8> Parts; 822 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 823 // Copy the legal parts from the registers. 824 EVT ValueVT = ValueVTs[Value]; 825 unsigned NumRegs = RegCount[Value]; 826 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 827 *DAG.getContext(), 828 CallConv.getValue(), RegVTs[Value]) 829 : RegVTs[Value]; 830 831 Parts.resize(NumRegs); 832 for (unsigned i = 0; i != NumRegs; ++i) { 833 SDValue P; 834 if (!Flag) { 835 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 836 } else { 837 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 838 *Flag = P.getValue(2); 839 } 840 841 Chain = P.getValue(1); 842 Parts[i] = P; 843 844 // If the source register was virtual and if we know something about it, 845 // add an assert node. 846 if (!Register::isVirtualRegister(Regs[Part + i]) || 847 !RegisterVT.isInteger()) 848 continue; 849 850 const FunctionLoweringInfo::LiveOutInfo *LOI = 851 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 852 if (!LOI) 853 continue; 854 855 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 856 unsigned NumSignBits = LOI->NumSignBits; 857 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 858 859 if (NumZeroBits == RegSize) { 860 // The current value is a zero. 861 // Explicitly express that as it would be easier for 862 // optimizations to kick in. 863 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 864 continue; 865 } 866 867 // FIXME: We capture more information than the dag can represent. For 868 // now, just use the tightest assertzext/assertsext possible. 869 bool isSExt; 870 EVT FromVT(MVT::Other); 871 if (NumZeroBits) { 872 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 873 isSExt = false; 874 } else if (NumSignBits > 1) { 875 FromVT = 876 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 877 isSExt = true; 878 } else { 879 continue; 880 } 881 // Add an assertion node. 882 assert(FromVT != MVT::Other); 883 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 884 RegisterVT, P, DAG.getValueType(FromVT)); 885 } 886 887 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 888 RegisterVT, ValueVT, V, CallConv); 889 Part += NumRegs; 890 Parts.clear(); 891 } 892 893 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 894 } 895 896 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 897 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 898 const Value *V, 899 ISD::NodeType PreferredExtendType) const { 900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 901 ISD::NodeType ExtendKind = PreferredExtendType; 902 903 // Get the list of the values's legal parts. 904 unsigned NumRegs = Regs.size(); 905 SmallVector<SDValue, 8> Parts(NumRegs); 906 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 907 unsigned NumParts = RegCount[Value]; 908 909 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 910 *DAG.getContext(), 911 CallConv.getValue(), RegVTs[Value]) 912 : RegVTs[Value]; 913 914 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 915 ExtendKind = ISD::ZERO_EXTEND; 916 917 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 918 NumParts, RegisterVT, V, CallConv, ExtendKind); 919 Part += NumParts; 920 } 921 922 // Copy the parts into the registers. 923 SmallVector<SDValue, 8> Chains(NumRegs); 924 for (unsigned i = 0; i != NumRegs; ++i) { 925 SDValue Part; 926 if (!Flag) { 927 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 928 } else { 929 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 930 *Flag = Part.getValue(1); 931 } 932 933 Chains[i] = Part.getValue(0); 934 } 935 936 if (NumRegs == 1 || Flag) 937 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 938 // flagged to it. That is the CopyToReg nodes and the user are considered 939 // a single scheduling unit. If we create a TokenFactor and return it as 940 // chain, then the TokenFactor is both a predecessor (operand) of the 941 // user as well as a successor (the TF operands are flagged to the user). 942 // c1, f1 = CopyToReg 943 // c2, f2 = CopyToReg 944 // c3 = TokenFactor c1, c2 945 // ... 946 // = op c3, ..., f2 947 Chain = Chains[NumRegs-1]; 948 else 949 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 950 } 951 952 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 953 unsigned MatchingIdx, const SDLoc &dl, 954 SelectionDAG &DAG, 955 std::vector<SDValue> &Ops) const { 956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 957 958 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 959 if (HasMatching) 960 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 961 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 962 // Put the register class of the virtual registers in the flag word. That 963 // way, later passes can recompute register class constraints for inline 964 // assembly as well as normal instructions. 965 // Don't do this for tied operands that can use the regclass information 966 // from the def. 967 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 968 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 969 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 970 } 971 972 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 973 Ops.push_back(Res); 974 975 if (Code == InlineAsm::Kind_Clobber) { 976 // Clobbers should always have a 1:1 mapping with registers, and may 977 // reference registers that have illegal (e.g. vector) types. Hence, we 978 // shouldn't try to apply any sort of splitting logic to them. 979 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 980 "No 1:1 mapping from clobbers to regs?"); 981 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 982 (void)SP; 983 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 984 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 985 assert( 986 (Regs[I] != SP || 987 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 988 "If we clobbered the stack pointer, MFI should know about it."); 989 } 990 return; 991 } 992 993 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 994 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 995 MVT RegisterVT = RegVTs[Value]; 996 for (unsigned i = 0; i != NumRegs; ++i) { 997 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 998 unsigned TheReg = Regs[Reg++]; 999 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1000 } 1001 } 1002 } 1003 1004 SmallVector<std::pair<unsigned, unsigned>, 4> 1005 RegsForValue::getRegsAndSizes() const { 1006 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1007 unsigned I = 0; 1008 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1009 unsigned RegCount = std::get<0>(CountAndVT); 1010 MVT RegisterVT = std::get<1>(CountAndVT); 1011 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1012 for (unsigned E = I + RegCount; I != E; ++I) 1013 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1014 } 1015 return OutVec; 1016 } 1017 1018 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1019 const TargetLibraryInfo *li) { 1020 AA = aa; 1021 GFI = gfi; 1022 LibInfo = li; 1023 DL = &DAG.getDataLayout(); 1024 Context = DAG.getContext(); 1025 LPadToCallSiteMap.clear(); 1026 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1027 } 1028 1029 void SelectionDAGBuilder::clear() { 1030 NodeMap.clear(); 1031 UnusedArgNodeMap.clear(); 1032 PendingLoads.clear(); 1033 PendingExports.clear(); 1034 PendingConstrainedFP.clear(); 1035 PendingConstrainedFPStrict.clear(); 1036 CurInst = nullptr; 1037 HasTailCall = false; 1038 SDNodeOrder = LowestSDNodeOrder; 1039 StatepointLowering.clear(); 1040 } 1041 1042 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1043 DanglingDebugInfoMap.clear(); 1044 } 1045 1046 // Update DAG root to include dependencies on Pending chains. 1047 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1048 SDValue Root = DAG.getRoot(); 1049 1050 if (Pending.empty()) 1051 return Root; 1052 1053 // Add current root to PendingChains, unless we already indirectly 1054 // depend on it. 1055 if (Root.getOpcode() != ISD::EntryToken) { 1056 unsigned i = 0, e = Pending.size(); 1057 for (; i != e; ++i) { 1058 assert(Pending[i].getNode()->getNumOperands() > 1); 1059 if (Pending[i].getNode()->getOperand(0) == Root) 1060 break; // Don't add the root if we already indirectly depend on it. 1061 } 1062 1063 if (i == e) 1064 Pending.push_back(Root); 1065 } 1066 1067 if (Pending.size() == 1) 1068 Root = Pending[0]; 1069 else 1070 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1071 1072 DAG.setRoot(Root); 1073 Pending.clear(); 1074 return Root; 1075 } 1076 1077 SDValue SelectionDAGBuilder::getMemoryRoot() { 1078 return updateRoot(PendingLoads); 1079 } 1080 1081 SDValue SelectionDAGBuilder::getRoot() { 1082 // Chain up all pending constrained intrinsics together with all 1083 // pending loads, by simply appending them to PendingLoads and 1084 // then calling getMemoryRoot(). 1085 PendingLoads.reserve(PendingLoads.size() + 1086 PendingConstrainedFP.size() + 1087 PendingConstrainedFPStrict.size()); 1088 PendingLoads.append(PendingConstrainedFP.begin(), 1089 PendingConstrainedFP.end()); 1090 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1091 PendingConstrainedFPStrict.end()); 1092 PendingConstrainedFP.clear(); 1093 PendingConstrainedFPStrict.clear(); 1094 return getMemoryRoot(); 1095 } 1096 1097 SDValue SelectionDAGBuilder::getControlRoot() { 1098 // We need to emit pending fpexcept.strict constrained intrinsics, 1099 // so append them to the PendingExports list. 1100 PendingExports.append(PendingConstrainedFPStrict.begin(), 1101 PendingConstrainedFPStrict.end()); 1102 PendingConstrainedFPStrict.clear(); 1103 return updateRoot(PendingExports); 1104 } 1105 1106 void SelectionDAGBuilder::visit(const Instruction &I) { 1107 // Set up outgoing PHI node register values before emitting the terminator. 1108 if (I.isTerminator()) { 1109 HandlePHINodesInSuccessorBlocks(I.getParent()); 1110 } 1111 1112 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1113 if (!isa<DbgInfoIntrinsic>(I)) 1114 ++SDNodeOrder; 1115 1116 CurInst = &I; 1117 1118 visit(I.getOpcode(), I); 1119 1120 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1121 // ConstrainedFPIntrinsics handle their own FMF. 1122 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1123 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1124 // maps to this instruction. 1125 // TODO: We could handle all flags (nsw, etc) here. 1126 // TODO: If an IR instruction maps to >1 node, only the final node will have 1127 // flags set. 1128 if (SDNode *Node = getNodeForIRValue(&I)) { 1129 SDNodeFlags IncomingFlags; 1130 IncomingFlags.copyFMF(*FPMO); 1131 if (!Node->getFlags().isDefined()) 1132 Node->setFlags(IncomingFlags); 1133 else 1134 Node->intersectFlagsWith(IncomingFlags); 1135 } 1136 } 1137 } 1138 1139 if (!I.isTerminator() && !HasTailCall && 1140 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1141 CopyToExportRegsIfNeeded(&I); 1142 1143 CurInst = nullptr; 1144 } 1145 1146 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1147 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1148 } 1149 1150 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1151 // Note: this doesn't use InstVisitor, because it has to work with 1152 // ConstantExpr's in addition to instructions. 1153 switch (Opcode) { 1154 default: llvm_unreachable("Unknown instruction type encountered!"); 1155 // Build the switch statement using the Instruction.def file. 1156 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1157 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1158 #include "llvm/IR/Instruction.def" 1159 } 1160 } 1161 1162 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1163 const DIExpression *Expr) { 1164 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1165 const DbgValueInst *DI = DDI.getDI(); 1166 DIVariable *DanglingVariable = DI->getVariable(); 1167 DIExpression *DanglingExpr = DI->getExpression(); 1168 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1169 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1170 return true; 1171 } 1172 return false; 1173 }; 1174 1175 for (auto &DDIMI : DanglingDebugInfoMap) { 1176 DanglingDebugInfoVector &DDIV = DDIMI.second; 1177 1178 // If debug info is to be dropped, run it through final checks to see 1179 // whether it can be salvaged. 1180 for (auto &DDI : DDIV) 1181 if (isMatchingDbgValue(DDI)) 1182 salvageUnresolvedDbgValue(DDI); 1183 1184 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1185 } 1186 } 1187 1188 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1189 // generate the debug data structures now that we've seen its definition. 1190 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1191 SDValue Val) { 1192 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1193 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1194 return; 1195 1196 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1197 for (auto &DDI : DDIV) { 1198 const DbgValueInst *DI = DDI.getDI(); 1199 assert(DI && "Ill-formed DanglingDebugInfo"); 1200 DebugLoc dl = DDI.getdl(); 1201 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1202 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1203 DILocalVariable *Variable = DI->getVariable(); 1204 DIExpression *Expr = DI->getExpression(); 1205 assert(Variable->isValidLocationForIntrinsic(dl) && 1206 "Expected inlined-at fields to agree"); 1207 SDDbgValue *SDV; 1208 if (Val.getNode()) { 1209 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1210 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1211 // we couldn't resolve it directly when examining the DbgValue intrinsic 1212 // in the first place we should not be more successful here). Unless we 1213 // have some test case that prove this to be correct we should avoid 1214 // calling EmitFuncArgumentDbgValue here. 1215 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1216 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1217 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1218 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1219 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1220 // inserted after the definition of Val when emitting the instructions 1221 // after ISel. An alternative could be to teach 1222 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1223 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1224 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1225 << ValSDNodeOrder << "\n"); 1226 SDV = getDbgValue(Val, Variable, Expr, dl, 1227 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1228 DAG.AddDbgValue(SDV, Val.getNode(), false); 1229 } else 1230 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1231 << "in EmitFuncArgumentDbgValue\n"); 1232 } else { 1233 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1234 auto Undef = 1235 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1236 auto SDV = 1237 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1238 DAG.AddDbgValue(SDV, nullptr, false); 1239 } 1240 } 1241 DDIV.clear(); 1242 } 1243 1244 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1245 Value *V = DDI.getDI()->getValue(); 1246 DILocalVariable *Var = DDI.getDI()->getVariable(); 1247 DIExpression *Expr = DDI.getDI()->getExpression(); 1248 DebugLoc DL = DDI.getdl(); 1249 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1250 unsigned SDOrder = DDI.getSDNodeOrder(); 1251 1252 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1253 // that DW_OP_stack_value is desired. 1254 assert(isa<DbgValueInst>(DDI.getDI())); 1255 bool StackValue = true; 1256 1257 // Can this Value can be encoded without any further work? 1258 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1259 return; 1260 1261 // Attempt to salvage back through as many instructions as possible. Bail if 1262 // a non-instruction is seen, such as a constant expression or global 1263 // variable. FIXME: Further work could recover those too. 1264 while (isa<Instruction>(V)) { 1265 Instruction &VAsInst = *cast<Instruction>(V); 1266 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1267 1268 // If we cannot salvage any further, and haven't yet found a suitable debug 1269 // expression, bail out. 1270 if (!NewExpr) 1271 break; 1272 1273 // New value and expr now represent this debuginfo. 1274 V = VAsInst.getOperand(0); 1275 Expr = NewExpr; 1276 1277 // Some kind of simplification occurred: check whether the operand of the 1278 // salvaged debug expression can be encoded in this DAG. 1279 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1280 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1281 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1282 return; 1283 } 1284 } 1285 1286 // This was the final opportunity to salvage this debug information, and it 1287 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1288 // any earlier variable location. 1289 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1290 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1291 DAG.AddDbgValue(SDV, nullptr, false); 1292 1293 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1294 << "\n"); 1295 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1296 << "\n"); 1297 } 1298 1299 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1300 DIExpression *Expr, DebugLoc dl, 1301 DebugLoc InstDL, unsigned Order) { 1302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1303 SDDbgValue *SDV; 1304 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1305 isa<ConstantPointerNull>(V)) { 1306 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1307 DAG.AddDbgValue(SDV, nullptr, false); 1308 return true; 1309 } 1310 1311 // If the Value is a frame index, we can create a FrameIndex debug value 1312 // without relying on the DAG at all. 1313 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1314 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1315 if (SI != FuncInfo.StaticAllocaMap.end()) { 1316 auto SDV = 1317 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1318 /*IsIndirect*/ false, dl, SDNodeOrder); 1319 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1320 // is still available even if the SDNode gets optimized out. 1321 DAG.AddDbgValue(SDV, nullptr, false); 1322 return true; 1323 } 1324 } 1325 1326 // Do not use getValue() in here; we don't want to generate code at 1327 // this point if it hasn't been done yet. 1328 SDValue N = NodeMap[V]; 1329 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1330 N = UnusedArgNodeMap[V]; 1331 if (N.getNode()) { 1332 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1333 return true; 1334 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1335 DAG.AddDbgValue(SDV, N.getNode(), false); 1336 return true; 1337 } 1338 1339 // Special rules apply for the first dbg.values of parameter variables in a 1340 // function. Identify them by the fact they reference Argument Values, that 1341 // they're parameters, and they are parameters of the current function. We 1342 // need to let them dangle until they get an SDNode. 1343 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1344 !InstDL.getInlinedAt(); 1345 if (!IsParamOfFunc) { 1346 // The value is not used in this block yet (or it would have an SDNode). 1347 // We still want the value to appear for the user if possible -- if it has 1348 // an associated VReg, we can refer to that instead. 1349 auto VMI = FuncInfo.ValueMap.find(V); 1350 if (VMI != FuncInfo.ValueMap.end()) { 1351 unsigned Reg = VMI->second; 1352 // If this is a PHI node, it may be split up into several MI PHI nodes 1353 // (in FunctionLoweringInfo::set). 1354 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1355 V->getType(), None); 1356 if (RFV.occupiesMultipleRegs()) { 1357 unsigned Offset = 0; 1358 unsigned BitsToDescribe = 0; 1359 if (auto VarSize = Var->getSizeInBits()) 1360 BitsToDescribe = *VarSize; 1361 if (auto Fragment = Expr->getFragmentInfo()) 1362 BitsToDescribe = Fragment->SizeInBits; 1363 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1364 unsigned RegisterSize = RegAndSize.second; 1365 // Bail out if all bits are described already. 1366 if (Offset >= BitsToDescribe) 1367 break; 1368 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1369 ? BitsToDescribe - Offset 1370 : RegisterSize; 1371 auto FragmentExpr = DIExpression::createFragmentExpression( 1372 Expr, Offset, FragmentSize); 1373 if (!FragmentExpr) 1374 continue; 1375 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1376 false, dl, SDNodeOrder); 1377 DAG.AddDbgValue(SDV, nullptr, false); 1378 Offset += RegisterSize; 1379 } 1380 } else { 1381 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1382 DAG.AddDbgValue(SDV, nullptr, false); 1383 } 1384 return true; 1385 } 1386 } 1387 1388 return false; 1389 } 1390 1391 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1392 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1393 for (auto &Pair : DanglingDebugInfoMap) 1394 for (auto &DDI : Pair.second) 1395 salvageUnresolvedDbgValue(DDI); 1396 clearDanglingDebugInfo(); 1397 } 1398 1399 /// getCopyFromRegs - If there was virtual register allocated for the value V 1400 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1401 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1402 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1403 SDValue Result; 1404 1405 if (It != FuncInfo.ValueMap.end()) { 1406 Register InReg = It->second; 1407 1408 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1409 DAG.getDataLayout(), InReg, Ty, 1410 None); // This is not an ABI copy. 1411 SDValue Chain = DAG.getEntryNode(); 1412 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1413 V); 1414 resolveDanglingDebugInfo(V, Result); 1415 } 1416 1417 return Result; 1418 } 1419 1420 /// getValue - Return an SDValue for the given Value. 1421 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1422 // If we already have an SDValue for this value, use it. It's important 1423 // to do this first, so that we don't create a CopyFromReg if we already 1424 // have a regular SDValue. 1425 SDValue &N = NodeMap[V]; 1426 if (N.getNode()) return N; 1427 1428 // If there's a virtual register allocated and initialized for this 1429 // value, use it. 1430 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1431 return copyFromReg; 1432 1433 // Otherwise create a new SDValue and remember it. 1434 SDValue Val = getValueImpl(V); 1435 NodeMap[V] = Val; 1436 resolveDanglingDebugInfo(V, Val); 1437 return Val; 1438 } 1439 1440 /// getNonRegisterValue - Return an SDValue for the given Value, but 1441 /// don't look in FuncInfo.ValueMap for a virtual register. 1442 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1443 // If we already have an SDValue for this value, use it. 1444 SDValue &N = NodeMap[V]; 1445 if (N.getNode()) { 1446 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1447 // Remove the debug location from the node as the node is about to be used 1448 // in a location which may differ from the original debug location. This 1449 // is relevant to Constant and ConstantFP nodes because they can appear 1450 // as constant expressions inside PHI nodes. 1451 N->setDebugLoc(DebugLoc()); 1452 } 1453 return N; 1454 } 1455 1456 // Otherwise create a new SDValue and remember it. 1457 SDValue Val = getValueImpl(V); 1458 NodeMap[V] = Val; 1459 resolveDanglingDebugInfo(V, Val); 1460 return Val; 1461 } 1462 1463 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1464 /// Create an SDValue for the given value. 1465 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1467 1468 if (const Constant *C = dyn_cast<Constant>(V)) { 1469 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1470 1471 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1472 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1473 1474 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1475 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1476 1477 if (isa<ConstantPointerNull>(C)) { 1478 unsigned AS = V->getType()->getPointerAddressSpace(); 1479 return DAG.getConstant(0, getCurSDLoc(), 1480 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1481 } 1482 1483 if (match(C, m_VScale(DAG.getDataLayout()))) 1484 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1485 1486 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1487 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1488 1489 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1490 return DAG.getUNDEF(VT); 1491 1492 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1493 visit(CE->getOpcode(), *CE); 1494 SDValue N1 = NodeMap[V]; 1495 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1496 return N1; 1497 } 1498 1499 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1500 SmallVector<SDValue, 4> Constants; 1501 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1502 OI != OE; ++OI) { 1503 SDNode *Val = getValue(*OI).getNode(); 1504 // If the operand is an empty aggregate, there are no values. 1505 if (!Val) continue; 1506 // Add each leaf value from the operand to the Constants list 1507 // to form a flattened list of all the values. 1508 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1509 Constants.push_back(SDValue(Val, i)); 1510 } 1511 1512 return DAG.getMergeValues(Constants, getCurSDLoc()); 1513 } 1514 1515 if (const ConstantDataSequential *CDS = 1516 dyn_cast<ConstantDataSequential>(C)) { 1517 SmallVector<SDValue, 4> Ops; 1518 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1519 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1520 // Add each leaf value from the operand to the Constants list 1521 // to form a flattened list of all the values. 1522 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1523 Ops.push_back(SDValue(Val, i)); 1524 } 1525 1526 if (isa<ArrayType>(CDS->getType())) 1527 return DAG.getMergeValues(Ops, getCurSDLoc()); 1528 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1529 } 1530 1531 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1532 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1533 "Unknown struct or array constant!"); 1534 1535 SmallVector<EVT, 4> ValueVTs; 1536 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1537 unsigned NumElts = ValueVTs.size(); 1538 if (NumElts == 0) 1539 return SDValue(); // empty struct 1540 SmallVector<SDValue, 4> Constants(NumElts); 1541 for (unsigned i = 0; i != NumElts; ++i) { 1542 EVT EltVT = ValueVTs[i]; 1543 if (isa<UndefValue>(C)) 1544 Constants[i] = DAG.getUNDEF(EltVT); 1545 else if (EltVT.isFloatingPoint()) 1546 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1547 else 1548 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1549 } 1550 1551 return DAG.getMergeValues(Constants, getCurSDLoc()); 1552 } 1553 1554 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1555 return DAG.getBlockAddress(BA, VT); 1556 1557 VectorType *VecTy = cast<VectorType>(V->getType()); 1558 1559 // Now that we know the number and type of the elements, get that number of 1560 // elements into the Ops array based on what kind of constant it is. 1561 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1562 SmallVector<SDValue, 16> Ops; 1563 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1564 for (unsigned i = 0; i != NumElements; ++i) 1565 Ops.push_back(getValue(CV->getOperand(i))); 1566 1567 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1568 } else if (isa<ConstantAggregateZero>(C)) { 1569 EVT EltVT = 1570 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1571 1572 SDValue Op; 1573 if (EltVT.isFloatingPoint()) 1574 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1575 else 1576 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1577 1578 if (isa<ScalableVectorType>(VecTy)) 1579 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1580 else { 1581 SmallVector<SDValue, 16> Ops; 1582 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1583 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1584 } 1585 } 1586 llvm_unreachable("Unknown vector constant"); 1587 } 1588 1589 // If this is a static alloca, generate it as the frameindex instead of 1590 // computation. 1591 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1592 DenseMap<const AllocaInst*, int>::iterator SI = 1593 FuncInfo.StaticAllocaMap.find(AI); 1594 if (SI != FuncInfo.StaticAllocaMap.end()) 1595 return DAG.getFrameIndex(SI->second, 1596 TLI.getFrameIndexTy(DAG.getDataLayout())); 1597 } 1598 1599 // If this is an instruction which fast-isel has deferred, select it now. 1600 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1601 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1602 1603 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1604 Inst->getType(), getABIRegCopyCC(V)); 1605 SDValue Chain = DAG.getEntryNode(); 1606 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1607 } 1608 1609 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1610 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1611 } 1612 llvm_unreachable("Can't get register for value!"); 1613 } 1614 1615 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1616 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1617 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1618 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1619 bool IsSEH = isAsynchronousEHPersonality(Pers); 1620 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1621 if (!IsSEH) 1622 CatchPadMBB->setIsEHScopeEntry(); 1623 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1624 if (IsMSVCCXX || IsCoreCLR) 1625 CatchPadMBB->setIsEHFuncletEntry(); 1626 } 1627 1628 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1629 // Update machine-CFG edge. 1630 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1631 FuncInfo.MBB->addSuccessor(TargetMBB); 1632 1633 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1634 bool IsSEH = isAsynchronousEHPersonality(Pers); 1635 if (IsSEH) { 1636 // If this is not a fall-through branch or optimizations are switched off, 1637 // emit the branch. 1638 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1639 TM.getOptLevel() == CodeGenOpt::None) 1640 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1641 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1642 return; 1643 } 1644 1645 // Figure out the funclet membership for the catchret's successor. 1646 // This will be used by the FuncletLayout pass to determine how to order the 1647 // BB's. 1648 // A 'catchret' returns to the outer scope's color. 1649 Value *ParentPad = I.getCatchSwitchParentPad(); 1650 const BasicBlock *SuccessorColor; 1651 if (isa<ConstantTokenNone>(ParentPad)) 1652 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1653 else 1654 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1655 assert(SuccessorColor && "No parent funclet for catchret!"); 1656 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1657 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1658 1659 // Create the terminator node. 1660 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1661 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1662 DAG.getBasicBlock(SuccessorColorMBB)); 1663 DAG.setRoot(Ret); 1664 } 1665 1666 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1667 // Don't emit any special code for the cleanuppad instruction. It just marks 1668 // the start of an EH scope/funclet. 1669 FuncInfo.MBB->setIsEHScopeEntry(); 1670 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1671 if (Pers != EHPersonality::Wasm_CXX) { 1672 FuncInfo.MBB->setIsEHFuncletEntry(); 1673 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1674 } 1675 } 1676 1677 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1678 // the control flow always stops at the single catch pad, as it does for a 1679 // cleanup pad. In case the exception caught is not of the types the catch pad 1680 // catches, it will be rethrown by a rethrow. 1681 static void findWasmUnwindDestinations( 1682 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1683 BranchProbability Prob, 1684 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1685 &UnwindDests) { 1686 while (EHPadBB) { 1687 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1688 if (isa<CleanupPadInst>(Pad)) { 1689 // Stop on cleanup pads. 1690 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1691 UnwindDests.back().first->setIsEHScopeEntry(); 1692 break; 1693 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1694 // Add the catchpad handlers to the possible destinations. We don't 1695 // continue to the unwind destination of the catchswitch for wasm. 1696 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1697 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1698 UnwindDests.back().first->setIsEHScopeEntry(); 1699 } 1700 break; 1701 } else { 1702 continue; 1703 } 1704 } 1705 } 1706 1707 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1708 /// many places it could ultimately go. In the IR, we have a single unwind 1709 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1710 /// This function skips over imaginary basic blocks that hold catchswitch 1711 /// instructions, and finds all the "real" machine 1712 /// basic block destinations. As those destinations may not be successors of 1713 /// EHPadBB, here we also calculate the edge probability to those destinations. 1714 /// The passed-in Prob is the edge probability to EHPadBB. 1715 static void findUnwindDestinations( 1716 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1717 BranchProbability Prob, 1718 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1719 &UnwindDests) { 1720 EHPersonality Personality = 1721 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1722 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1723 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1724 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1725 bool IsSEH = isAsynchronousEHPersonality(Personality); 1726 1727 if (IsWasmCXX) { 1728 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1729 assert(UnwindDests.size() <= 1 && 1730 "There should be at most one unwind destination for wasm"); 1731 return; 1732 } 1733 1734 while (EHPadBB) { 1735 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1736 BasicBlock *NewEHPadBB = nullptr; 1737 if (isa<LandingPadInst>(Pad)) { 1738 // Stop on landingpads. They are not funclets. 1739 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1740 break; 1741 } else if (isa<CleanupPadInst>(Pad)) { 1742 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1743 // personalities. 1744 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1745 UnwindDests.back().first->setIsEHScopeEntry(); 1746 UnwindDests.back().first->setIsEHFuncletEntry(); 1747 break; 1748 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1749 // Add the catchpad handlers to the possible destinations. 1750 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1751 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1752 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1753 if (IsMSVCCXX || IsCoreCLR) 1754 UnwindDests.back().first->setIsEHFuncletEntry(); 1755 if (!IsSEH) 1756 UnwindDests.back().first->setIsEHScopeEntry(); 1757 } 1758 NewEHPadBB = CatchSwitch->getUnwindDest(); 1759 } else { 1760 continue; 1761 } 1762 1763 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1764 if (BPI && NewEHPadBB) 1765 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1766 EHPadBB = NewEHPadBB; 1767 } 1768 } 1769 1770 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1771 // Update successor info. 1772 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1773 auto UnwindDest = I.getUnwindDest(); 1774 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1775 BranchProbability UnwindDestProb = 1776 (BPI && UnwindDest) 1777 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1778 : BranchProbability::getZero(); 1779 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1780 for (auto &UnwindDest : UnwindDests) { 1781 UnwindDest.first->setIsEHPad(); 1782 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1783 } 1784 FuncInfo.MBB->normalizeSuccProbs(); 1785 1786 // Create the terminator node. 1787 SDValue Ret = 1788 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1789 DAG.setRoot(Ret); 1790 } 1791 1792 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1793 report_fatal_error("visitCatchSwitch not yet implemented!"); 1794 } 1795 1796 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1798 auto &DL = DAG.getDataLayout(); 1799 SDValue Chain = getControlRoot(); 1800 SmallVector<ISD::OutputArg, 8> Outs; 1801 SmallVector<SDValue, 8> OutVals; 1802 1803 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1804 // lower 1805 // 1806 // %val = call <ty> @llvm.experimental.deoptimize() 1807 // ret <ty> %val 1808 // 1809 // differently. 1810 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1811 LowerDeoptimizingReturn(); 1812 return; 1813 } 1814 1815 if (!FuncInfo.CanLowerReturn) { 1816 unsigned DemoteReg = FuncInfo.DemoteRegister; 1817 const Function *F = I.getParent()->getParent(); 1818 1819 // Emit a store of the return value through the virtual register. 1820 // Leave Outs empty so that LowerReturn won't try to load return 1821 // registers the usual way. 1822 SmallVector<EVT, 1> PtrValueVTs; 1823 ComputeValueVTs(TLI, DL, 1824 F->getReturnType()->getPointerTo( 1825 DAG.getDataLayout().getAllocaAddrSpace()), 1826 PtrValueVTs); 1827 1828 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1829 DemoteReg, PtrValueVTs[0]); 1830 SDValue RetOp = getValue(I.getOperand(0)); 1831 1832 SmallVector<EVT, 4> ValueVTs, MemVTs; 1833 SmallVector<uint64_t, 4> Offsets; 1834 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1835 &Offsets); 1836 unsigned NumValues = ValueVTs.size(); 1837 1838 SmallVector<SDValue, 4> Chains(NumValues); 1839 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1840 for (unsigned i = 0; i != NumValues; ++i) { 1841 // An aggregate return value cannot wrap around the address space, so 1842 // offsets to its parts don't wrap either. 1843 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1844 1845 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1846 if (MemVTs[i] != ValueVTs[i]) 1847 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1848 Chains[i] = DAG.getStore( 1849 Chain, getCurSDLoc(), Val, 1850 // FIXME: better loc info would be nice. 1851 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1852 commonAlignment(BaseAlign, Offsets[i])); 1853 } 1854 1855 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1856 MVT::Other, Chains); 1857 } else if (I.getNumOperands() != 0) { 1858 SmallVector<EVT, 4> ValueVTs; 1859 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1860 unsigned NumValues = ValueVTs.size(); 1861 if (NumValues) { 1862 SDValue RetOp = getValue(I.getOperand(0)); 1863 1864 const Function *F = I.getParent()->getParent(); 1865 1866 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1867 I.getOperand(0)->getType(), F->getCallingConv(), 1868 /*IsVarArg*/ false); 1869 1870 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1871 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1872 Attribute::SExt)) 1873 ExtendKind = ISD::SIGN_EXTEND; 1874 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1875 Attribute::ZExt)) 1876 ExtendKind = ISD::ZERO_EXTEND; 1877 1878 LLVMContext &Context = F->getContext(); 1879 bool RetInReg = F->getAttributes().hasAttribute( 1880 AttributeList::ReturnIndex, Attribute::InReg); 1881 1882 for (unsigned j = 0; j != NumValues; ++j) { 1883 EVT VT = ValueVTs[j]; 1884 1885 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1886 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1887 1888 CallingConv::ID CC = F->getCallingConv(); 1889 1890 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1891 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1892 SmallVector<SDValue, 4> Parts(NumParts); 1893 getCopyToParts(DAG, getCurSDLoc(), 1894 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1895 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1896 1897 // 'inreg' on function refers to return value 1898 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1899 if (RetInReg) 1900 Flags.setInReg(); 1901 1902 if (I.getOperand(0)->getType()->isPointerTy()) { 1903 Flags.setPointer(); 1904 Flags.setPointerAddrSpace( 1905 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1906 } 1907 1908 if (NeedsRegBlock) { 1909 Flags.setInConsecutiveRegs(); 1910 if (j == NumValues - 1) 1911 Flags.setInConsecutiveRegsLast(); 1912 } 1913 1914 // Propagate extension type if any 1915 if (ExtendKind == ISD::SIGN_EXTEND) 1916 Flags.setSExt(); 1917 else if (ExtendKind == ISD::ZERO_EXTEND) 1918 Flags.setZExt(); 1919 1920 for (unsigned i = 0; i < NumParts; ++i) { 1921 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1922 VT, /*isfixed=*/true, 0, 0)); 1923 OutVals.push_back(Parts[i]); 1924 } 1925 } 1926 } 1927 } 1928 1929 // Push in swifterror virtual register as the last element of Outs. This makes 1930 // sure swifterror virtual register will be returned in the swifterror 1931 // physical register. 1932 const Function *F = I.getParent()->getParent(); 1933 if (TLI.supportSwiftError() && 1934 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1935 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1936 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1937 Flags.setSwiftError(); 1938 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1939 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1940 true /*isfixed*/, 1 /*origidx*/, 1941 0 /*partOffs*/)); 1942 // Create SDNode for the swifterror virtual register. 1943 OutVals.push_back( 1944 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1945 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1946 EVT(TLI.getPointerTy(DL)))); 1947 } 1948 1949 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1950 CallingConv::ID CallConv = 1951 DAG.getMachineFunction().getFunction().getCallingConv(); 1952 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1953 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1954 1955 // Verify that the target's LowerReturn behaved as expected. 1956 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1957 "LowerReturn didn't return a valid chain!"); 1958 1959 // Update the DAG with the new chain value resulting from return lowering. 1960 DAG.setRoot(Chain); 1961 } 1962 1963 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1964 /// created for it, emit nodes to copy the value into the virtual 1965 /// registers. 1966 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1967 // Skip empty types 1968 if (V->getType()->isEmptyTy()) 1969 return; 1970 1971 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1972 if (VMI != FuncInfo.ValueMap.end()) { 1973 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1974 CopyValueToVirtualRegister(V, VMI->second); 1975 } 1976 } 1977 1978 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1979 /// the current basic block, add it to ValueMap now so that we'll get a 1980 /// CopyTo/FromReg. 1981 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1982 // No need to export constants. 1983 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1984 1985 // Already exported? 1986 if (FuncInfo.isExportedInst(V)) return; 1987 1988 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1989 CopyValueToVirtualRegister(V, Reg); 1990 } 1991 1992 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1993 const BasicBlock *FromBB) { 1994 // The operands of the setcc have to be in this block. We don't know 1995 // how to export them from some other block. 1996 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1997 // Can export from current BB. 1998 if (VI->getParent() == FromBB) 1999 return true; 2000 2001 // Is already exported, noop. 2002 return FuncInfo.isExportedInst(V); 2003 } 2004 2005 // If this is an argument, we can export it if the BB is the entry block or 2006 // if it is already exported. 2007 if (isa<Argument>(V)) { 2008 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2009 return true; 2010 2011 // Otherwise, can only export this if it is already exported. 2012 return FuncInfo.isExportedInst(V); 2013 } 2014 2015 // Otherwise, constants can always be exported. 2016 return true; 2017 } 2018 2019 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2020 BranchProbability 2021 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2022 const MachineBasicBlock *Dst) const { 2023 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2024 const BasicBlock *SrcBB = Src->getBasicBlock(); 2025 const BasicBlock *DstBB = Dst->getBasicBlock(); 2026 if (!BPI) { 2027 // If BPI is not available, set the default probability as 1 / N, where N is 2028 // the number of successors. 2029 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2030 return BranchProbability(1, SuccSize); 2031 } 2032 return BPI->getEdgeProbability(SrcBB, DstBB); 2033 } 2034 2035 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2036 MachineBasicBlock *Dst, 2037 BranchProbability Prob) { 2038 if (!FuncInfo.BPI) 2039 Src->addSuccessorWithoutProb(Dst); 2040 else { 2041 if (Prob.isUnknown()) 2042 Prob = getEdgeProbability(Src, Dst); 2043 Src->addSuccessor(Dst, Prob); 2044 } 2045 } 2046 2047 static bool InBlock(const Value *V, const BasicBlock *BB) { 2048 if (const Instruction *I = dyn_cast<Instruction>(V)) 2049 return I->getParent() == BB; 2050 return true; 2051 } 2052 2053 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2054 /// This function emits a branch and is used at the leaves of an OR or an 2055 /// AND operator tree. 2056 void 2057 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2058 MachineBasicBlock *TBB, 2059 MachineBasicBlock *FBB, 2060 MachineBasicBlock *CurBB, 2061 MachineBasicBlock *SwitchBB, 2062 BranchProbability TProb, 2063 BranchProbability FProb, 2064 bool InvertCond) { 2065 const BasicBlock *BB = CurBB->getBasicBlock(); 2066 2067 // If the leaf of the tree is a comparison, merge the condition into 2068 // the caseblock. 2069 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2070 // The operands of the cmp have to be in this block. We don't know 2071 // how to export them from some other block. If this is the first block 2072 // of the sequence, no exporting is needed. 2073 if (CurBB == SwitchBB || 2074 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2075 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2076 ISD::CondCode Condition; 2077 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2078 ICmpInst::Predicate Pred = 2079 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2080 Condition = getICmpCondCode(Pred); 2081 } else { 2082 const FCmpInst *FC = cast<FCmpInst>(Cond); 2083 FCmpInst::Predicate Pred = 2084 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2085 Condition = getFCmpCondCode(Pred); 2086 if (TM.Options.NoNaNsFPMath) 2087 Condition = getFCmpCodeWithoutNaN(Condition); 2088 } 2089 2090 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2091 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2092 SL->SwitchCases.push_back(CB); 2093 return; 2094 } 2095 } 2096 2097 // Create a CaseBlock record representing this branch. 2098 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2099 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2100 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2101 SL->SwitchCases.push_back(CB); 2102 } 2103 2104 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2105 MachineBasicBlock *TBB, 2106 MachineBasicBlock *FBB, 2107 MachineBasicBlock *CurBB, 2108 MachineBasicBlock *SwitchBB, 2109 Instruction::BinaryOps Opc, 2110 BranchProbability TProb, 2111 BranchProbability FProb, 2112 bool InvertCond) { 2113 // Skip over not part of the tree and remember to invert op and operands at 2114 // next level. 2115 Value *NotCond; 2116 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2117 InBlock(NotCond, CurBB->getBasicBlock())) { 2118 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2119 !InvertCond); 2120 return; 2121 } 2122 2123 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2124 // Compute the effective opcode for Cond, taking into account whether it needs 2125 // to be inverted, e.g. 2126 // and (not (or A, B)), C 2127 // gets lowered as 2128 // and (and (not A, not B), C) 2129 unsigned BOpc = 0; 2130 if (BOp) { 2131 BOpc = BOp->getOpcode(); 2132 if (InvertCond) { 2133 if (BOpc == Instruction::And) 2134 BOpc = Instruction::Or; 2135 else if (BOpc == Instruction::Or) 2136 BOpc = Instruction::And; 2137 } 2138 } 2139 2140 // If this node is not part of the or/and tree, emit it as a branch. 2141 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2142 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2143 BOp->getParent() != CurBB->getBasicBlock() || 2144 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2145 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2146 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2147 TProb, FProb, InvertCond); 2148 return; 2149 } 2150 2151 // Create TmpBB after CurBB. 2152 MachineFunction::iterator BBI(CurBB); 2153 MachineFunction &MF = DAG.getMachineFunction(); 2154 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2155 CurBB->getParent()->insert(++BBI, TmpBB); 2156 2157 if (Opc == Instruction::Or) { 2158 // Codegen X | Y as: 2159 // BB1: 2160 // jmp_if_X TBB 2161 // jmp TmpBB 2162 // TmpBB: 2163 // jmp_if_Y TBB 2164 // jmp FBB 2165 // 2166 2167 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2168 // The requirement is that 2169 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2170 // = TrueProb for original BB. 2171 // Assuming the original probabilities are A and B, one choice is to set 2172 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2173 // A/(1+B) and 2B/(1+B). This choice assumes that 2174 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2175 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2176 // TmpBB, but the math is more complicated. 2177 2178 auto NewTrueProb = TProb / 2; 2179 auto NewFalseProb = TProb / 2 + FProb; 2180 // Emit the LHS condition. 2181 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2182 NewTrueProb, NewFalseProb, InvertCond); 2183 2184 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2185 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2186 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2187 // Emit the RHS condition into TmpBB. 2188 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2189 Probs[0], Probs[1], InvertCond); 2190 } else { 2191 assert(Opc == Instruction::And && "Unknown merge op!"); 2192 // Codegen X & Y as: 2193 // BB1: 2194 // jmp_if_X TmpBB 2195 // jmp FBB 2196 // TmpBB: 2197 // jmp_if_Y TBB 2198 // jmp FBB 2199 // 2200 // This requires creation of TmpBB after CurBB. 2201 2202 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2203 // The requirement is that 2204 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2205 // = FalseProb for original BB. 2206 // Assuming the original probabilities are A and B, one choice is to set 2207 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2208 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2209 // TrueProb for BB1 * FalseProb for TmpBB. 2210 2211 auto NewTrueProb = TProb + FProb / 2; 2212 auto NewFalseProb = FProb / 2; 2213 // Emit the LHS condition. 2214 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2215 NewTrueProb, NewFalseProb, InvertCond); 2216 2217 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2218 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2219 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2220 // Emit the RHS condition into TmpBB. 2221 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2222 Probs[0], Probs[1], InvertCond); 2223 } 2224 } 2225 2226 /// If the set of cases should be emitted as a series of branches, return true. 2227 /// If we should emit this as a bunch of and/or'd together conditions, return 2228 /// false. 2229 bool 2230 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2231 if (Cases.size() != 2) return true; 2232 2233 // If this is two comparisons of the same values or'd or and'd together, they 2234 // will get folded into a single comparison, so don't emit two blocks. 2235 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2236 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2237 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2238 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2239 return false; 2240 } 2241 2242 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2243 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2244 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2245 Cases[0].CC == Cases[1].CC && 2246 isa<Constant>(Cases[0].CmpRHS) && 2247 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2248 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2249 return false; 2250 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2251 return false; 2252 } 2253 2254 return true; 2255 } 2256 2257 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2258 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2259 2260 // Update machine-CFG edges. 2261 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2262 2263 if (I.isUnconditional()) { 2264 // Update machine-CFG edges. 2265 BrMBB->addSuccessor(Succ0MBB); 2266 2267 // If this is not a fall-through branch or optimizations are switched off, 2268 // emit the branch. 2269 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2270 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2271 MVT::Other, getControlRoot(), 2272 DAG.getBasicBlock(Succ0MBB))); 2273 2274 return; 2275 } 2276 2277 // If this condition is one of the special cases we handle, do special stuff 2278 // now. 2279 const Value *CondVal = I.getCondition(); 2280 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2281 2282 // If this is a series of conditions that are or'd or and'd together, emit 2283 // this as a sequence of branches instead of setcc's with and/or operations. 2284 // As long as jumps are not expensive, this should improve performance. 2285 // For example, instead of something like: 2286 // cmp A, B 2287 // C = seteq 2288 // cmp D, E 2289 // F = setle 2290 // or C, F 2291 // jnz foo 2292 // Emit: 2293 // cmp A, B 2294 // je foo 2295 // cmp D, E 2296 // jle foo 2297 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2298 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2299 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2300 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2301 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2302 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2303 Opcode, 2304 getEdgeProbability(BrMBB, Succ0MBB), 2305 getEdgeProbability(BrMBB, Succ1MBB), 2306 /*InvertCond=*/false); 2307 // If the compares in later blocks need to use values not currently 2308 // exported from this block, export them now. This block should always 2309 // be the first entry. 2310 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2311 2312 // Allow some cases to be rejected. 2313 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2314 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2315 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2316 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2317 } 2318 2319 // Emit the branch for this block. 2320 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2321 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2322 return; 2323 } 2324 2325 // Okay, we decided not to do this, remove any inserted MBB's and clear 2326 // SwitchCases. 2327 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2328 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2329 2330 SL->SwitchCases.clear(); 2331 } 2332 } 2333 2334 // Create a CaseBlock record representing this branch. 2335 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2336 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2337 2338 // Use visitSwitchCase to actually insert the fast branch sequence for this 2339 // cond branch. 2340 visitSwitchCase(CB, BrMBB); 2341 } 2342 2343 /// visitSwitchCase - Emits the necessary code to represent a single node in 2344 /// the binary search tree resulting from lowering a switch instruction. 2345 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2346 MachineBasicBlock *SwitchBB) { 2347 SDValue Cond; 2348 SDValue CondLHS = getValue(CB.CmpLHS); 2349 SDLoc dl = CB.DL; 2350 2351 if (CB.CC == ISD::SETTRUE) { 2352 // Branch or fall through to TrueBB. 2353 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2354 SwitchBB->normalizeSuccProbs(); 2355 if (CB.TrueBB != NextBlock(SwitchBB)) { 2356 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2357 DAG.getBasicBlock(CB.TrueBB))); 2358 } 2359 return; 2360 } 2361 2362 auto &TLI = DAG.getTargetLoweringInfo(); 2363 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2364 2365 // Build the setcc now. 2366 if (!CB.CmpMHS) { 2367 // Fold "(X == true)" to X and "(X == false)" to !X to 2368 // handle common cases produced by branch lowering. 2369 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2370 CB.CC == ISD::SETEQ) 2371 Cond = CondLHS; 2372 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2373 CB.CC == ISD::SETEQ) { 2374 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2375 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2376 } else { 2377 SDValue CondRHS = getValue(CB.CmpRHS); 2378 2379 // If a pointer's DAG type is larger than its memory type then the DAG 2380 // values are zero-extended. This breaks signed comparisons so truncate 2381 // back to the underlying type before doing the compare. 2382 if (CondLHS.getValueType() != MemVT) { 2383 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2384 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2385 } 2386 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2387 } 2388 } else { 2389 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2390 2391 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2392 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2393 2394 SDValue CmpOp = getValue(CB.CmpMHS); 2395 EVT VT = CmpOp.getValueType(); 2396 2397 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2398 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2399 ISD::SETLE); 2400 } else { 2401 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2402 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2403 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2404 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2405 } 2406 } 2407 2408 // Update successor info 2409 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2410 // TrueBB and FalseBB are always different unless the incoming IR is 2411 // degenerate. This only happens when running llc on weird IR. 2412 if (CB.TrueBB != CB.FalseBB) 2413 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2414 SwitchBB->normalizeSuccProbs(); 2415 2416 // If the lhs block is the next block, invert the condition so that we can 2417 // fall through to the lhs instead of the rhs block. 2418 if (CB.TrueBB == NextBlock(SwitchBB)) { 2419 std::swap(CB.TrueBB, CB.FalseBB); 2420 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2421 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2422 } 2423 2424 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2425 MVT::Other, getControlRoot(), Cond, 2426 DAG.getBasicBlock(CB.TrueBB)); 2427 2428 // Insert the false branch. Do this even if it's a fall through branch, 2429 // this makes it easier to do DAG optimizations which require inverting 2430 // the branch condition. 2431 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2432 DAG.getBasicBlock(CB.FalseBB)); 2433 2434 DAG.setRoot(BrCond); 2435 } 2436 2437 /// visitJumpTable - Emit JumpTable node in the current MBB 2438 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2439 // Emit the code for the jump table 2440 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2441 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2442 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2443 JT.Reg, PTy); 2444 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2445 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2446 MVT::Other, Index.getValue(1), 2447 Table, Index); 2448 DAG.setRoot(BrJumpTable); 2449 } 2450 2451 /// visitJumpTableHeader - This function emits necessary code to produce index 2452 /// in the JumpTable from switch case. 2453 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2454 JumpTableHeader &JTH, 2455 MachineBasicBlock *SwitchBB) { 2456 SDLoc dl = getCurSDLoc(); 2457 2458 // Subtract the lowest switch case value from the value being switched on. 2459 SDValue SwitchOp = getValue(JTH.SValue); 2460 EVT VT = SwitchOp.getValueType(); 2461 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2462 DAG.getConstant(JTH.First, dl, VT)); 2463 2464 // The SDNode we just created, which holds the value being switched on minus 2465 // the smallest case value, needs to be copied to a virtual register so it 2466 // can be used as an index into the jump table in a subsequent basic block. 2467 // This value may be smaller or larger than the target's pointer type, and 2468 // therefore require extension or truncating. 2469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2470 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2471 2472 unsigned JumpTableReg = 2473 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2474 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2475 JumpTableReg, SwitchOp); 2476 JT.Reg = JumpTableReg; 2477 2478 if (!JTH.OmitRangeCheck) { 2479 // Emit the range check for the jump table, and branch to the default block 2480 // for the switch statement if the value being switched on exceeds the 2481 // largest case in the switch. 2482 SDValue CMP = DAG.getSetCC( 2483 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2484 Sub.getValueType()), 2485 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2486 2487 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2488 MVT::Other, CopyTo, CMP, 2489 DAG.getBasicBlock(JT.Default)); 2490 2491 // Avoid emitting unnecessary branches to the next block. 2492 if (JT.MBB != NextBlock(SwitchBB)) 2493 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2494 DAG.getBasicBlock(JT.MBB)); 2495 2496 DAG.setRoot(BrCond); 2497 } else { 2498 // Avoid emitting unnecessary branches to the next block. 2499 if (JT.MBB != NextBlock(SwitchBB)) 2500 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2501 DAG.getBasicBlock(JT.MBB))); 2502 else 2503 DAG.setRoot(CopyTo); 2504 } 2505 } 2506 2507 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2508 /// variable if there exists one. 2509 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2510 SDValue &Chain) { 2511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2512 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2513 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2514 MachineFunction &MF = DAG.getMachineFunction(); 2515 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2516 MachineSDNode *Node = 2517 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2518 if (Global) { 2519 MachinePointerInfo MPInfo(Global); 2520 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2521 MachineMemOperand::MODereferenceable; 2522 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2523 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2524 DAG.setNodeMemRefs(Node, {MemRef}); 2525 } 2526 if (PtrTy != PtrMemTy) 2527 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2528 return SDValue(Node, 0); 2529 } 2530 2531 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2532 /// tail spliced into a stack protector check success bb. 2533 /// 2534 /// For a high level explanation of how this fits into the stack protector 2535 /// generation see the comment on the declaration of class 2536 /// StackProtectorDescriptor. 2537 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2538 MachineBasicBlock *ParentBB) { 2539 2540 // First create the loads to the guard/stack slot for the comparison. 2541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2542 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2543 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2544 2545 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2546 int FI = MFI.getStackProtectorIndex(); 2547 2548 SDValue Guard; 2549 SDLoc dl = getCurSDLoc(); 2550 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2551 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2552 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2553 2554 // Generate code to load the content of the guard slot. 2555 SDValue GuardVal = DAG.getLoad( 2556 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2557 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2558 MachineMemOperand::MOVolatile); 2559 2560 if (TLI.useStackGuardXorFP()) 2561 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2562 2563 // Retrieve guard check function, nullptr if instrumentation is inlined. 2564 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2565 // The target provides a guard check function to validate the guard value. 2566 // Generate a call to that function with the content of the guard slot as 2567 // argument. 2568 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2569 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2570 2571 TargetLowering::ArgListTy Args; 2572 TargetLowering::ArgListEntry Entry; 2573 Entry.Node = GuardVal; 2574 Entry.Ty = FnTy->getParamType(0); 2575 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2576 Entry.IsInReg = true; 2577 Args.push_back(Entry); 2578 2579 TargetLowering::CallLoweringInfo CLI(DAG); 2580 CLI.setDebugLoc(getCurSDLoc()) 2581 .setChain(DAG.getEntryNode()) 2582 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2583 getValue(GuardCheckFn), std::move(Args)); 2584 2585 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2586 DAG.setRoot(Result.second); 2587 return; 2588 } 2589 2590 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2591 // Otherwise, emit a volatile load to retrieve the stack guard value. 2592 SDValue Chain = DAG.getEntryNode(); 2593 if (TLI.useLoadStackGuardNode()) { 2594 Guard = getLoadStackGuard(DAG, dl, Chain); 2595 } else { 2596 const Value *IRGuard = TLI.getSDagStackGuard(M); 2597 SDValue GuardPtr = getValue(IRGuard); 2598 2599 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2600 MachinePointerInfo(IRGuard, 0), Align, 2601 MachineMemOperand::MOVolatile); 2602 } 2603 2604 // Perform the comparison via a getsetcc. 2605 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2606 *DAG.getContext(), 2607 Guard.getValueType()), 2608 Guard, GuardVal, ISD::SETNE); 2609 2610 // If the guard/stackslot do not equal, branch to failure MBB. 2611 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2612 MVT::Other, GuardVal.getOperand(0), 2613 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2614 // Otherwise branch to success MBB. 2615 SDValue Br = DAG.getNode(ISD::BR, dl, 2616 MVT::Other, BrCond, 2617 DAG.getBasicBlock(SPD.getSuccessMBB())); 2618 2619 DAG.setRoot(Br); 2620 } 2621 2622 /// Codegen the failure basic block for a stack protector check. 2623 /// 2624 /// A failure stack protector machine basic block consists simply of a call to 2625 /// __stack_chk_fail(). 2626 /// 2627 /// For a high level explanation of how this fits into the stack protector 2628 /// generation see the comment on the declaration of class 2629 /// StackProtectorDescriptor. 2630 void 2631 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2633 TargetLowering::MakeLibCallOptions CallOptions; 2634 CallOptions.setDiscardResult(true); 2635 SDValue Chain = 2636 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2637 None, CallOptions, getCurSDLoc()).second; 2638 // On PS4, the "return address" must still be within the calling function, 2639 // even if it's at the very end, so emit an explicit TRAP here. 2640 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2641 if (TM.getTargetTriple().isPS4CPU()) 2642 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2643 2644 DAG.setRoot(Chain); 2645 } 2646 2647 /// visitBitTestHeader - This function emits necessary code to produce value 2648 /// suitable for "bit tests" 2649 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2650 MachineBasicBlock *SwitchBB) { 2651 SDLoc dl = getCurSDLoc(); 2652 2653 // Subtract the minimum value. 2654 SDValue SwitchOp = getValue(B.SValue); 2655 EVT VT = SwitchOp.getValueType(); 2656 SDValue RangeSub = 2657 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2658 2659 // Determine the type of the test operands. 2660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2661 bool UsePtrType = false; 2662 if (!TLI.isTypeLegal(VT)) { 2663 UsePtrType = true; 2664 } else { 2665 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2666 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2667 // Switch table case range are encoded into series of masks. 2668 // Just use pointer type, it's guaranteed to fit. 2669 UsePtrType = true; 2670 break; 2671 } 2672 } 2673 SDValue Sub = RangeSub; 2674 if (UsePtrType) { 2675 VT = TLI.getPointerTy(DAG.getDataLayout()); 2676 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2677 } 2678 2679 B.RegVT = VT.getSimpleVT(); 2680 B.Reg = FuncInfo.CreateReg(B.RegVT); 2681 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2682 2683 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2684 2685 if (!B.OmitRangeCheck) 2686 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2687 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2688 SwitchBB->normalizeSuccProbs(); 2689 2690 SDValue Root = CopyTo; 2691 if (!B.OmitRangeCheck) { 2692 // Conditional branch to the default block. 2693 SDValue RangeCmp = DAG.getSetCC(dl, 2694 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2695 RangeSub.getValueType()), 2696 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2697 ISD::SETUGT); 2698 2699 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2700 DAG.getBasicBlock(B.Default)); 2701 } 2702 2703 // Avoid emitting unnecessary branches to the next block. 2704 if (MBB != NextBlock(SwitchBB)) 2705 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2706 2707 DAG.setRoot(Root); 2708 } 2709 2710 /// visitBitTestCase - this function produces one "bit test" 2711 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2712 MachineBasicBlock* NextMBB, 2713 BranchProbability BranchProbToNext, 2714 unsigned Reg, 2715 BitTestCase &B, 2716 MachineBasicBlock *SwitchBB) { 2717 SDLoc dl = getCurSDLoc(); 2718 MVT VT = BB.RegVT; 2719 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2720 SDValue Cmp; 2721 unsigned PopCount = countPopulation(B.Mask); 2722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2723 if (PopCount == 1) { 2724 // Testing for a single bit; just compare the shift count with what it 2725 // would need to be to shift a 1 bit in that position. 2726 Cmp = DAG.getSetCC( 2727 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2728 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2729 ISD::SETEQ); 2730 } else if (PopCount == BB.Range) { 2731 // There is only one zero bit in the range, test for it directly. 2732 Cmp = DAG.getSetCC( 2733 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2734 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2735 ISD::SETNE); 2736 } else { 2737 // Make desired shift 2738 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2739 DAG.getConstant(1, dl, VT), ShiftOp); 2740 2741 // Emit bit tests and jumps 2742 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2743 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2744 Cmp = DAG.getSetCC( 2745 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2746 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2747 } 2748 2749 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2750 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2751 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2752 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2753 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2754 // one as they are relative probabilities (and thus work more like weights), 2755 // and hence we need to normalize them to let the sum of them become one. 2756 SwitchBB->normalizeSuccProbs(); 2757 2758 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2759 MVT::Other, getControlRoot(), 2760 Cmp, DAG.getBasicBlock(B.TargetBB)); 2761 2762 // Avoid emitting unnecessary branches to the next block. 2763 if (NextMBB != NextBlock(SwitchBB)) 2764 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2765 DAG.getBasicBlock(NextMBB)); 2766 2767 DAG.setRoot(BrAnd); 2768 } 2769 2770 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2771 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2772 2773 // Retrieve successors. Look through artificial IR level blocks like 2774 // catchswitch for successors. 2775 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2776 const BasicBlock *EHPadBB = I.getSuccessor(1); 2777 2778 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2779 // have to do anything here to lower funclet bundles. 2780 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2781 LLVMContext::OB_gc_transition, 2782 LLVMContext::OB_funclet, 2783 LLVMContext::OB_cfguardtarget}) && 2784 "Cannot lower invokes with arbitrary operand bundles yet!"); 2785 2786 const Value *Callee(I.getCalledOperand()); 2787 const Function *Fn = dyn_cast<Function>(Callee); 2788 if (isa<InlineAsm>(Callee)) 2789 visitInlineAsm(I); 2790 else if (Fn && Fn->isIntrinsic()) { 2791 switch (Fn->getIntrinsicID()) { 2792 default: 2793 llvm_unreachable("Cannot invoke this intrinsic"); 2794 case Intrinsic::donothing: 2795 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2796 break; 2797 case Intrinsic::experimental_patchpoint_void: 2798 case Intrinsic::experimental_patchpoint_i64: 2799 visitPatchpoint(I, EHPadBB); 2800 break; 2801 case Intrinsic::experimental_gc_statepoint: 2802 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2803 break; 2804 case Intrinsic::wasm_rethrow_in_catch: { 2805 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2806 // special because it can be invoked, so we manually lower it to a DAG 2807 // node here. 2808 SmallVector<SDValue, 8> Ops; 2809 Ops.push_back(getRoot()); // inchain 2810 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2811 Ops.push_back( 2812 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2813 TLI.getPointerTy(DAG.getDataLayout()))); 2814 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2815 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2816 break; 2817 } 2818 } 2819 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2820 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2821 // Eventually we will support lowering the @llvm.experimental.deoptimize 2822 // intrinsic, and right now there are no plans to support other intrinsics 2823 // with deopt state. 2824 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2825 } else { 2826 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2827 } 2828 2829 // If the value of the invoke is used outside of its defining block, make it 2830 // available as a virtual register. 2831 // We already took care of the exported value for the statepoint instruction 2832 // during call to the LowerStatepoint. 2833 if (!isa<GCStatepointInst>(I)) { 2834 CopyToExportRegsIfNeeded(&I); 2835 } 2836 2837 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2838 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2839 BranchProbability EHPadBBProb = 2840 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2841 : BranchProbability::getZero(); 2842 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2843 2844 // Update successor info. 2845 addSuccessorWithProb(InvokeMBB, Return); 2846 for (auto &UnwindDest : UnwindDests) { 2847 UnwindDest.first->setIsEHPad(); 2848 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2849 } 2850 InvokeMBB->normalizeSuccProbs(); 2851 2852 // Drop into normal successor. 2853 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2854 DAG.getBasicBlock(Return))); 2855 } 2856 2857 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2858 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2859 2860 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2861 // have to do anything here to lower funclet bundles. 2862 assert(!I.hasOperandBundlesOtherThan( 2863 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2864 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2865 2866 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2867 visitInlineAsm(I); 2868 CopyToExportRegsIfNeeded(&I); 2869 2870 // Retrieve successors. 2871 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2872 Return->setInlineAsmBrDefaultTarget(); 2873 2874 // Update successor info. 2875 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2876 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2877 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2878 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2879 CallBrMBB->addInlineAsmBrIndirectTarget(Target); 2880 } 2881 CallBrMBB->normalizeSuccProbs(); 2882 2883 // Drop into default successor. 2884 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2885 MVT::Other, getControlRoot(), 2886 DAG.getBasicBlock(Return))); 2887 } 2888 2889 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2890 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2891 } 2892 2893 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2894 assert(FuncInfo.MBB->isEHPad() && 2895 "Call to landingpad not in landing pad!"); 2896 2897 // If there aren't registers to copy the values into (e.g., during SjLj 2898 // exceptions), then don't bother to create these DAG nodes. 2899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2900 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2901 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2902 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2903 return; 2904 2905 // If landingpad's return type is token type, we don't create DAG nodes 2906 // for its exception pointer and selector value. The extraction of exception 2907 // pointer or selector value from token type landingpads is not currently 2908 // supported. 2909 if (LP.getType()->isTokenTy()) 2910 return; 2911 2912 SmallVector<EVT, 2> ValueVTs; 2913 SDLoc dl = getCurSDLoc(); 2914 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2915 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2916 2917 // Get the two live-in registers as SDValues. The physregs have already been 2918 // copied into virtual registers. 2919 SDValue Ops[2]; 2920 if (FuncInfo.ExceptionPointerVirtReg) { 2921 Ops[0] = DAG.getZExtOrTrunc( 2922 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2923 FuncInfo.ExceptionPointerVirtReg, 2924 TLI.getPointerTy(DAG.getDataLayout())), 2925 dl, ValueVTs[0]); 2926 } else { 2927 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2928 } 2929 Ops[1] = DAG.getZExtOrTrunc( 2930 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2931 FuncInfo.ExceptionSelectorVirtReg, 2932 TLI.getPointerTy(DAG.getDataLayout())), 2933 dl, ValueVTs[1]); 2934 2935 // Merge into one. 2936 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2937 DAG.getVTList(ValueVTs), Ops); 2938 setValue(&LP, Res); 2939 } 2940 2941 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2942 MachineBasicBlock *Last) { 2943 // Update JTCases. 2944 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2945 if (SL->JTCases[i].first.HeaderBB == First) 2946 SL->JTCases[i].first.HeaderBB = Last; 2947 2948 // Update BitTestCases. 2949 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2950 if (SL->BitTestCases[i].Parent == First) 2951 SL->BitTestCases[i].Parent = Last; 2952 2953 // SelectionDAGISel::FinishBasicBlock will add PHI operands for the 2954 // successors of the fallthrough block. Here, we add PHI operands for the 2955 // successors of the INLINEASM_BR block itself. 2956 if (First->getFirstTerminator()->getOpcode() == TargetOpcode::INLINEASM_BR) 2957 for (std::pair<MachineInstr *, unsigned> &pair : FuncInfo.PHINodesToUpdate) 2958 if (First->isSuccessor(pair.first->getParent())) 2959 MachineInstrBuilder(*First->getParent(), pair.first) 2960 .addReg(pair.second) 2961 .addMBB(First); 2962 } 2963 2964 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2965 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2966 2967 // Update machine-CFG edges with unique successors. 2968 SmallSet<BasicBlock*, 32> Done; 2969 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2970 BasicBlock *BB = I.getSuccessor(i); 2971 bool Inserted = Done.insert(BB).second; 2972 if (!Inserted) 2973 continue; 2974 2975 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2976 addSuccessorWithProb(IndirectBrMBB, Succ); 2977 } 2978 IndirectBrMBB->normalizeSuccProbs(); 2979 2980 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2981 MVT::Other, getControlRoot(), 2982 getValue(I.getAddress()))); 2983 } 2984 2985 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2986 if (!DAG.getTarget().Options.TrapUnreachable) 2987 return; 2988 2989 // We may be able to ignore unreachable behind a noreturn call. 2990 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2991 const BasicBlock &BB = *I.getParent(); 2992 if (&I != &BB.front()) { 2993 BasicBlock::const_iterator PredI = 2994 std::prev(BasicBlock::const_iterator(&I)); 2995 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2996 if (Call->doesNotReturn()) 2997 return; 2998 } 2999 } 3000 } 3001 3002 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3003 } 3004 3005 void SelectionDAGBuilder::visitFSub(const User &I) { 3006 // -0.0 - X --> fneg 3007 Type *Ty = I.getType(); 3008 if (isa<Constant>(I.getOperand(0)) && 3009 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 3010 SDValue Op2 = getValue(I.getOperand(1)); 3011 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3012 Op2.getValueType(), Op2)); 3013 return; 3014 } 3015 3016 visitBinary(I, ISD::FSUB); 3017 } 3018 3019 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3020 SDNodeFlags Flags; 3021 3022 SDValue Op = getValue(I.getOperand(0)); 3023 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3024 Op, Flags); 3025 setValue(&I, UnNodeValue); 3026 } 3027 3028 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3029 SDNodeFlags Flags; 3030 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3031 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3032 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3033 } 3034 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3035 Flags.setExact(ExactOp->isExact()); 3036 } 3037 3038 SDValue Op1 = getValue(I.getOperand(0)); 3039 SDValue Op2 = getValue(I.getOperand(1)); 3040 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3041 Op1, Op2, Flags); 3042 setValue(&I, BinNodeValue); 3043 } 3044 3045 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3046 SDValue Op1 = getValue(I.getOperand(0)); 3047 SDValue Op2 = getValue(I.getOperand(1)); 3048 3049 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3050 Op1.getValueType(), DAG.getDataLayout()); 3051 3052 // Coerce the shift amount to the right type if we can. 3053 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3054 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3055 unsigned Op2Size = Op2.getValueSizeInBits(); 3056 SDLoc DL = getCurSDLoc(); 3057 3058 // If the operand is smaller than the shift count type, promote it. 3059 if (ShiftSize > Op2Size) 3060 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3061 3062 // If the operand is larger than the shift count type but the shift 3063 // count type has enough bits to represent any shift value, truncate 3064 // it now. This is a common case and it exposes the truncate to 3065 // optimization early. 3066 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3067 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3068 // Otherwise we'll need to temporarily settle for some other convenient 3069 // type. Type legalization will make adjustments once the shiftee is split. 3070 else 3071 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3072 } 3073 3074 bool nuw = false; 3075 bool nsw = false; 3076 bool exact = false; 3077 3078 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3079 3080 if (const OverflowingBinaryOperator *OFBinOp = 3081 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3082 nuw = OFBinOp->hasNoUnsignedWrap(); 3083 nsw = OFBinOp->hasNoSignedWrap(); 3084 } 3085 if (const PossiblyExactOperator *ExactOp = 3086 dyn_cast<const PossiblyExactOperator>(&I)) 3087 exact = ExactOp->isExact(); 3088 } 3089 SDNodeFlags Flags; 3090 Flags.setExact(exact); 3091 Flags.setNoSignedWrap(nsw); 3092 Flags.setNoUnsignedWrap(nuw); 3093 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3094 Flags); 3095 setValue(&I, Res); 3096 } 3097 3098 void SelectionDAGBuilder::visitSDiv(const User &I) { 3099 SDValue Op1 = getValue(I.getOperand(0)); 3100 SDValue Op2 = getValue(I.getOperand(1)); 3101 3102 SDNodeFlags Flags; 3103 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3104 cast<PossiblyExactOperator>(&I)->isExact()); 3105 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3106 Op2, Flags)); 3107 } 3108 3109 void SelectionDAGBuilder::visitICmp(const User &I) { 3110 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3111 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3112 predicate = IC->getPredicate(); 3113 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3114 predicate = ICmpInst::Predicate(IC->getPredicate()); 3115 SDValue Op1 = getValue(I.getOperand(0)); 3116 SDValue Op2 = getValue(I.getOperand(1)); 3117 ISD::CondCode Opcode = getICmpCondCode(predicate); 3118 3119 auto &TLI = DAG.getTargetLoweringInfo(); 3120 EVT MemVT = 3121 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3122 3123 // If a pointer's DAG type is larger than its memory type then the DAG values 3124 // are zero-extended. This breaks signed comparisons so truncate back to the 3125 // underlying type before doing the compare. 3126 if (Op1.getValueType() != MemVT) { 3127 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3128 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3129 } 3130 3131 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3132 I.getType()); 3133 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3134 } 3135 3136 void SelectionDAGBuilder::visitFCmp(const User &I) { 3137 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3138 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3139 predicate = FC->getPredicate(); 3140 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3141 predicate = FCmpInst::Predicate(FC->getPredicate()); 3142 SDValue Op1 = getValue(I.getOperand(0)); 3143 SDValue Op2 = getValue(I.getOperand(1)); 3144 3145 ISD::CondCode Condition = getFCmpCondCode(predicate); 3146 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3147 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3148 Condition = getFCmpCodeWithoutNaN(Condition); 3149 3150 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3151 I.getType()); 3152 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3153 } 3154 3155 // Check if the condition of the select has one use or two users that are both 3156 // selects with the same condition. 3157 static bool hasOnlySelectUsers(const Value *Cond) { 3158 return llvm::all_of(Cond->users(), [](const Value *V) { 3159 return isa<SelectInst>(V); 3160 }); 3161 } 3162 3163 void SelectionDAGBuilder::visitSelect(const User &I) { 3164 SmallVector<EVT, 4> ValueVTs; 3165 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3166 ValueVTs); 3167 unsigned NumValues = ValueVTs.size(); 3168 if (NumValues == 0) return; 3169 3170 SmallVector<SDValue, 4> Values(NumValues); 3171 SDValue Cond = getValue(I.getOperand(0)); 3172 SDValue LHSVal = getValue(I.getOperand(1)); 3173 SDValue RHSVal = getValue(I.getOperand(2)); 3174 SmallVector<SDValue, 1> BaseOps(1, Cond); 3175 ISD::NodeType OpCode = 3176 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3177 3178 bool IsUnaryAbs = false; 3179 3180 // Min/max matching is only viable if all output VTs are the same. 3181 if (is_splat(ValueVTs)) { 3182 EVT VT = ValueVTs[0]; 3183 LLVMContext &Ctx = *DAG.getContext(); 3184 auto &TLI = DAG.getTargetLoweringInfo(); 3185 3186 // We care about the legality of the operation after it has been type 3187 // legalized. 3188 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3189 VT = TLI.getTypeToTransformTo(Ctx, VT); 3190 3191 // If the vselect is legal, assume we want to leave this as a vector setcc + 3192 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3193 // min/max is legal on the scalar type. 3194 bool UseScalarMinMax = VT.isVector() && 3195 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3196 3197 Value *LHS, *RHS; 3198 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3199 ISD::NodeType Opc = ISD::DELETED_NODE; 3200 switch (SPR.Flavor) { 3201 case SPF_UMAX: Opc = ISD::UMAX; break; 3202 case SPF_UMIN: Opc = ISD::UMIN; break; 3203 case SPF_SMAX: Opc = ISD::SMAX; break; 3204 case SPF_SMIN: Opc = ISD::SMIN; break; 3205 case SPF_FMINNUM: 3206 switch (SPR.NaNBehavior) { 3207 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3208 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3209 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3210 case SPNB_RETURNS_ANY: { 3211 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3212 Opc = ISD::FMINNUM; 3213 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3214 Opc = ISD::FMINIMUM; 3215 else if (UseScalarMinMax) 3216 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3217 ISD::FMINNUM : ISD::FMINIMUM; 3218 break; 3219 } 3220 } 3221 break; 3222 case SPF_FMAXNUM: 3223 switch (SPR.NaNBehavior) { 3224 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3225 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3226 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3227 case SPNB_RETURNS_ANY: 3228 3229 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3230 Opc = ISD::FMAXNUM; 3231 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3232 Opc = ISD::FMAXIMUM; 3233 else if (UseScalarMinMax) 3234 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3235 ISD::FMAXNUM : ISD::FMAXIMUM; 3236 break; 3237 } 3238 break; 3239 case SPF_ABS: 3240 IsUnaryAbs = true; 3241 Opc = ISD::ABS; 3242 break; 3243 case SPF_NABS: 3244 // TODO: we need to produce sub(0, abs(X)). 3245 default: break; 3246 } 3247 3248 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3249 (TLI.isOperationLegalOrCustom(Opc, VT) || 3250 (UseScalarMinMax && 3251 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3252 // If the underlying comparison instruction is used by any other 3253 // instruction, the consumed instructions won't be destroyed, so it is 3254 // not profitable to convert to a min/max. 3255 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3256 OpCode = Opc; 3257 LHSVal = getValue(LHS); 3258 RHSVal = getValue(RHS); 3259 BaseOps.clear(); 3260 } 3261 3262 if (IsUnaryAbs) { 3263 OpCode = Opc; 3264 LHSVal = getValue(LHS); 3265 BaseOps.clear(); 3266 } 3267 } 3268 3269 if (IsUnaryAbs) { 3270 for (unsigned i = 0; i != NumValues; ++i) { 3271 Values[i] = 3272 DAG.getNode(OpCode, getCurSDLoc(), 3273 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3274 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3275 } 3276 } else { 3277 for (unsigned i = 0; i != NumValues; ++i) { 3278 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3279 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3280 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3281 Values[i] = DAG.getNode( 3282 OpCode, getCurSDLoc(), 3283 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3284 } 3285 } 3286 3287 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3288 DAG.getVTList(ValueVTs), Values)); 3289 } 3290 3291 void SelectionDAGBuilder::visitTrunc(const User &I) { 3292 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3293 SDValue N = getValue(I.getOperand(0)); 3294 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3295 I.getType()); 3296 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3297 } 3298 3299 void SelectionDAGBuilder::visitZExt(const User &I) { 3300 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3301 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3302 SDValue N = getValue(I.getOperand(0)); 3303 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3304 I.getType()); 3305 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3306 } 3307 3308 void SelectionDAGBuilder::visitSExt(const User &I) { 3309 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3310 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3311 SDValue N = getValue(I.getOperand(0)); 3312 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3313 I.getType()); 3314 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3315 } 3316 3317 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3318 // FPTrunc is never a no-op cast, no need to check 3319 SDValue N = getValue(I.getOperand(0)); 3320 SDLoc dl = getCurSDLoc(); 3321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3322 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3323 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3324 DAG.getTargetConstant( 3325 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3326 } 3327 3328 void SelectionDAGBuilder::visitFPExt(const User &I) { 3329 // FPExt is never a no-op cast, no need to check 3330 SDValue N = getValue(I.getOperand(0)); 3331 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3332 I.getType()); 3333 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3334 } 3335 3336 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3337 // FPToUI is never a no-op cast, no need to check 3338 SDValue N = getValue(I.getOperand(0)); 3339 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3340 I.getType()); 3341 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3342 } 3343 3344 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3345 // FPToSI is never a no-op cast, no need to check 3346 SDValue N = getValue(I.getOperand(0)); 3347 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3348 I.getType()); 3349 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3350 } 3351 3352 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3353 // UIToFP is never a no-op cast, no need to check 3354 SDValue N = getValue(I.getOperand(0)); 3355 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3356 I.getType()); 3357 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3358 } 3359 3360 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3361 // SIToFP is never a no-op cast, no need to check 3362 SDValue N = getValue(I.getOperand(0)); 3363 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3364 I.getType()); 3365 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3366 } 3367 3368 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3369 // What to do depends on the size of the integer and the size of the pointer. 3370 // We can either truncate, zero extend, or no-op, accordingly. 3371 SDValue N = getValue(I.getOperand(0)); 3372 auto &TLI = DAG.getTargetLoweringInfo(); 3373 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3374 I.getType()); 3375 EVT PtrMemVT = 3376 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3377 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3378 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3379 setValue(&I, N); 3380 } 3381 3382 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3383 // What to do depends on the size of the integer and the size of the pointer. 3384 // We can either truncate, zero extend, or no-op, accordingly. 3385 SDValue N = getValue(I.getOperand(0)); 3386 auto &TLI = DAG.getTargetLoweringInfo(); 3387 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3388 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3389 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3390 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3391 setValue(&I, N); 3392 } 3393 3394 void SelectionDAGBuilder::visitBitCast(const User &I) { 3395 SDValue N = getValue(I.getOperand(0)); 3396 SDLoc dl = getCurSDLoc(); 3397 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3398 I.getType()); 3399 3400 // BitCast assures us that source and destination are the same size so this is 3401 // either a BITCAST or a no-op. 3402 if (DestVT != N.getValueType()) 3403 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3404 DestVT, N)); // convert types. 3405 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3406 // might fold any kind of constant expression to an integer constant and that 3407 // is not what we are looking for. Only recognize a bitcast of a genuine 3408 // constant integer as an opaque constant. 3409 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3410 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3411 /*isOpaque*/true)); 3412 else 3413 setValue(&I, N); // noop cast. 3414 } 3415 3416 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3418 const Value *SV = I.getOperand(0); 3419 SDValue N = getValue(SV); 3420 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3421 3422 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3423 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3424 3425 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3426 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3427 3428 setValue(&I, N); 3429 } 3430 3431 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3433 SDValue InVec = getValue(I.getOperand(0)); 3434 SDValue InVal = getValue(I.getOperand(1)); 3435 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3436 TLI.getVectorIdxTy(DAG.getDataLayout())); 3437 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3438 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3439 InVec, InVal, InIdx)); 3440 } 3441 3442 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3444 SDValue InVec = getValue(I.getOperand(0)); 3445 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3446 TLI.getVectorIdxTy(DAG.getDataLayout())); 3447 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3448 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3449 InVec, InIdx)); 3450 } 3451 3452 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3453 SDValue Src1 = getValue(I.getOperand(0)); 3454 SDValue Src2 = getValue(I.getOperand(1)); 3455 ArrayRef<int> Mask; 3456 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3457 Mask = SVI->getShuffleMask(); 3458 else 3459 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3460 SDLoc DL = getCurSDLoc(); 3461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3462 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3463 EVT SrcVT = Src1.getValueType(); 3464 3465 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3466 VT.isScalableVector()) { 3467 // Canonical splat form of first element of first input vector. 3468 SDValue FirstElt = 3469 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3470 DAG.getVectorIdxConstant(0, DL)); 3471 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3472 return; 3473 } 3474 3475 // For now, we only handle splats for scalable vectors. 3476 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3477 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3478 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3479 3480 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3481 unsigned MaskNumElts = Mask.size(); 3482 3483 if (SrcNumElts == MaskNumElts) { 3484 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3485 return; 3486 } 3487 3488 // Normalize the shuffle vector since mask and vector length don't match. 3489 if (SrcNumElts < MaskNumElts) { 3490 // Mask is longer than the source vectors. We can use concatenate vector to 3491 // make the mask and vectors lengths match. 3492 3493 if (MaskNumElts % SrcNumElts == 0) { 3494 // Mask length is a multiple of the source vector length. 3495 // Check if the shuffle is some kind of concatenation of the input 3496 // vectors. 3497 unsigned NumConcat = MaskNumElts / SrcNumElts; 3498 bool IsConcat = true; 3499 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3500 for (unsigned i = 0; i != MaskNumElts; ++i) { 3501 int Idx = Mask[i]; 3502 if (Idx < 0) 3503 continue; 3504 // Ensure the indices in each SrcVT sized piece are sequential and that 3505 // the same source is used for the whole piece. 3506 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3507 (ConcatSrcs[i / SrcNumElts] >= 0 && 3508 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3509 IsConcat = false; 3510 break; 3511 } 3512 // Remember which source this index came from. 3513 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3514 } 3515 3516 // The shuffle is concatenating multiple vectors together. Just emit 3517 // a CONCAT_VECTORS operation. 3518 if (IsConcat) { 3519 SmallVector<SDValue, 8> ConcatOps; 3520 for (auto Src : ConcatSrcs) { 3521 if (Src < 0) 3522 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3523 else if (Src == 0) 3524 ConcatOps.push_back(Src1); 3525 else 3526 ConcatOps.push_back(Src2); 3527 } 3528 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3529 return; 3530 } 3531 } 3532 3533 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3534 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3535 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3536 PaddedMaskNumElts); 3537 3538 // Pad both vectors with undefs to make them the same length as the mask. 3539 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3540 3541 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3542 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3543 MOps1[0] = Src1; 3544 MOps2[0] = Src2; 3545 3546 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3547 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3548 3549 // Readjust mask for new input vector length. 3550 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3551 for (unsigned i = 0; i != MaskNumElts; ++i) { 3552 int Idx = Mask[i]; 3553 if (Idx >= (int)SrcNumElts) 3554 Idx -= SrcNumElts - PaddedMaskNumElts; 3555 MappedOps[i] = Idx; 3556 } 3557 3558 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3559 3560 // If the concatenated vector was padded, extract a subvector with the 3561 // correct number of elements. 3562 if (MaskNumElts != PaddedMaskNumElts) 3563 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3564 DAG.getVectorIdxConstant(0, DL)); 3565 3566 setValue(&I, Result); 3567 return; 3568 } 3569 3570 if (SrcNumElts > MaskNumElts) { 3571 // Analyze the access pattern of the vector to see if we can extract 3572 // two subvectors and do the shuffle. 3573 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3574 bool CanExtract = true; 3575 for (int Idx : Mask) { 3576 unsigned Input = 0; 3577 if (Idx < 0) 3578 continue; 3579 3580 if (Idx >= (int)SrcNumElts) { 3581 Input = 1; 3582 Idx -= SrcNumElts; 3583 } 3584 3585 // If all the indices come from the same MaskNumElts sized portion of 3586 // the sources we can use extract. Also make sure the extract wouldn't 3587 // extract past the end of the source. 3588 int NewStartIdx = alignDown(Idx, MaskNumElts); 3589 if (NewStartIdx + MaskNumElts > SrcNumElts || 3590 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3591 CanExtract = false; 3592 // Make sure we always update StartIdx as we use it to track if all 3593 // elements are undef. 3594 StartIdx[Input] = NewStartIdx; 3595 } 3596 3597 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3598 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3599 return; 3600 } 3601 if (CanExtract) { 3602 // Extract appropriate subvector and generate a vector shuffle 3603 for (unsigned Input = 0; Input < 2; ++Input) { 3604 SDValue &Src = Input == 0 ? Src1 : Src2; 3605 if (StartIdx[Input] < 0) 3606 Src = DAG.getUNDEF(VT); 3607 else { 3608 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3609 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3610 } 3611 } 3612 3613 // Calculate new mask. 3614 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3615 for (int &Idx : MappedOps) { 3616 if (Idx >= (int)SrcNumElts) 3617 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3618 else if (Idx >= 0) 3619 Idx -= StartIdx[0]; 3620 } 3621 3622 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3623 return; 3624 } 3625 } 3626 3627 // We can't use either concat vectors or extract subvectors so fall back to 3628 // replacing the shuffle with extract and build vector. 3629 // to insert and build vector. 3630 EVT EltVT = VT.getVectorElementType(); 3631 SmallVector<SDValue,8> Ops; 3632 for (int Idx : Mask) { 3633 SDValue Res; 3634 3635 if (Idx < 0) { 3636 Res = DAG.getUNDEF(EltVT); 3637 } else { 3638 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3639 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3640 3641 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3642 DAG.getVectorIdxConstant(Idx, DL)); 3643 } 3644 3645 Ops.push_back(Res); 3646 } 3647 3648 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3649 } 3650 3651 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3652 ArrayRef<unsigned> Indices; 3653 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3654 Indices = IV->getIndices(); 3655 else 3656 Indices = cast<ConstantExpr>(&I)->getIndices(); 3657 3658 const Value *Op0 = I.getOperand(0); 3659 const Value *Op1 = I.getOperand(1); 3660 Type *AggTy = I.getType(); 3661 Type *ValTy = Op1->getType(); 3662 bool IntoUndef = isa<UndefValue>(Op0); 3663 bool FromUndef = isa<UndefValue>(Op1); 3664 3665 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3666 3667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3668 SmallVector<EVT, 4> AggValueVTs; 3669 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3670 SmallVector<EVT, 4> ValValueVTs; 3671 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3672 3673 unsigned NumAggValues = AggValueVTs.size(); 3674 unsigned NumValValues = ValValueVTs.size(); 3675 SmallVector<SDValue, 4> Values(NumAggValues); 3676 3677 // Ignore an insertvalue that produces an empty object 3678 if (!NumAggValues) { 3679 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3680 return; 3681 } 3682 3683 SDValue Agg = getValue(Op0); 3684 unsigned i = 0; 3685 // Copy the beginning value(s) from the original aggregate. 3686 for (; i != LinearIndex; ++i) 3687 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3688 SDValue(Agg.getNode(), Agg.getResNo() + i); 3689 // Copy values from the inserted value(s). 3690 if (NumValValues) { 3691 SDValue Val = getValue(Op1); 3692 for (; i != LinearIndex + NumValValues; ++i) 3693 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3694 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3695 } 3696 // Copy remaining value(s) from the original aggregate. 3697 for (; i != NumAggValues; ++i) 3698 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3699 SDValue(Agg.getNode(), Agg.getResNo() + i); 3700 3701 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3702 DAG.getVTList(AggValueVTs), Values)); 3703 } 3704 3705 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3706 ArrayRef<unsigned> Indices; 3707 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3708 Indices = EV->getIndices(); 3709 else 3710 Indices = cast<ConstantExpr>(&I)->getIndices(); 3711 3712 const Value *Op0 = I.getOperand(0); 3713 Type *AggTy = Op0->getType(); 3714 Type *ValTy = I.getType(); 3715 bool OutOfUndef = isa<UndefValue>(Op0); 3716 3717 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3718 3719 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3720 SmallVector<EVT, 4> ValValueVTs; 3721 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3722 3723 unsigned NumValValues = ValValueVTs.size(); 3724 3725 // Ignore a extractvalue that produces an empty object 3726 if (!NumValValues) { 3727 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3728 return; 3729 } 3730 3731 SmallVector<SDValue, 4> Values(NumValValues); 3732 3733 SDValue Agg = getValue(Op0); 3734 // Copy out the selected value(s). 3735 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3736 Values[i - LinearIndex] = 3737 OutOfUndef ? 3738 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3739 SDValue(Agg.getNode(), Agg.getResNo() + i); 3740 3741 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3742 DAG.getVTList(ValValueVTs), Values)); 3743 } 3744 3745 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3746 Value *Op0 = I.getOperand(0); 3747 // Note that the pointer operand may be a vector of pointers. Take the scalar 3748 // element which holds a pointer. 3749 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3750 SDValue N = getValue(Op0); 3751 SDLoc dl = getCurSDLoc(); 3752 auto &TLI = DAG.getTargetLoweringInfo(); 3753 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3754 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3755 3756 // Normalize Vector GEP - all scalar operands should be converted to the 3757 // splat vector. 3758 bool IsVectorGEP = I.getType()->isVectorTy(); 3759 ElementCount VectorElementCount = 3760 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3761 : ElementCount(0, false); 3762 3763 if (IsVectorGEP && !N.getValueType().isVector()) { 3764 LLVMContext &Context = *DAG.getContext(); 3765 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3766 if (VectorElementCount.Scalable) 3767 N = DAG.getSplatVector(VT, dl, N); 3768 else 3769 N = DAG.getSplatBuildVector(VT, dl, N); 3770 } 3771 3772 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3773 GTI != E; ++GTI) { 3774 const Value *Idx = GTI.getOperand(); 3775 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3776 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3777 if (Field) { 3778 // N = N + Offset 3779 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3780 3781 // In an inbounds GEP with an offset that is nonnegative even when 3782 // interpreted as signed, assume there is no unsigned overflow. 3783 SDNodeFlags Flags; 3784 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3785 Flags.setNoUnsignedWrap(true); 3786 3787 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3788 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3789 } 3790 } else { 3791 // IdxSize is the width of the arithmetic according to IR semantics. 3792 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3793 // (and fix up the result later). 3794 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3795 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3796 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3797 // We intentionally mask away the high bits here; ElementSize may not 3798 // fit in IdxTy. 3799 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3800 bool ElementScalable = ElementSize.isScalable(); 3801 3802 // If this is a scalar constant or a splat vector of constants, 3803 // handle it quickly. 3804 const auto *C = dyn_cast<Constant>(Idx); 3805 if (C && isa<VectorType>(C->getType())) 3806 C = C->getSplatValue(); 3807 3808 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3809 if (CI && CI->isZero()) 3810 continue; 3811 if (CI && !ElementScalable) { 3812 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3813 LLVMContext &Context = *DAG.getContext(); 3814 SDValue OffsVal; 3815 if (IsVectorGEP) 3816 OffsVal = DAG.getConstant( 3817 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3818 else 3819 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3820 3821 // In an inbounds GEP with an offset that is nonnegative even when 3822 // interpreted as signed, assume there is no unsigned overflow. 3823 SDNodeFlags Flags; 3824 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3825 Flags.setNoUnsignedWrap(true); 3826 3827 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3828 3829 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3830 continue; 3831 } 3832 3833 // N = N + Idx * ElementMul; 3834 SDValue IdxN = getValue(Idx); 3835 3836 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3837 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3838 VectorElementCount); 3839 if (VectorElementCount.Scalable) 3840 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3841 else 3842 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3843 } 3844 3845 // If the index is smaller or larger than intptr_t, truncate or extend 3846 // it. 3847 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3848 3849 if (ElementScalable) { 3850 EVT VScaleTy = N.getValueType().getScalarType(); 3851 SDValue VScale = DAG.getNode( 3852 ISD::VSCALE, dl, VScaleTy, 3853 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3854 if (IsVectorGEP) 3855 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3856 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3857 } else { 3858 // If this is a multiply by a power of two, turn it into a shl 3859 // immediately. This is a very common case. 3860 if (ElementMul != 1) { 3861 if (ElementMul.isPowerOf2()) { 3862 unsigned Amt = ElementMul.logBase2(); 3863 IdxN = DAG.getNode(ISD::SHL, dl, 3864 N.getValueType(), IdxN, 3865 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3866 } else { 3867 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3868 IdxN.getValueType()); 3869 IdxN = DAG.getNode(ISD::MUL, dl, 3870 N.getValueType(), IdxN, Scale); 3871 } 3872 } 3873 } 3874 3875 N = DAG.getNode(ISD::ADD, dl, 3876 N.getValueType(), N, IdxN); 3877 } 3878 } 3879 3880 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3881 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3882 3883 setValue(&I, N); 3884 } 3885 3886 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3887 // If this is a fixed sized alloca in the entry block of the function, 3888 // allocate it statically on the stack. 3889 if (FuncInfo.StaticAllocaMap.count(&I)) 3890 return; // getValue will auto-populate this. 3891 3892 SDLoc dl = getCurSDLoc(); 3893 Type *Ty = I.getAllocatedType(); 3894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3895 auto &DL = DAG.getDataLayout(); 3896 uint64_t TySize = DL.getTypeAllocSize(Ty); 3897 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3898 3899 SDValue AllocSize = getValue(I.getArraySize()); 3900 3901 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3902 if (AllocSize.getValueType() != IntPtr) 3903 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3904 3905 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3906 AllocSize, 3907 DAG.getConstant(TySize, dl, IntPtr)); 3908 3909 // Handle alignment. If the requested alignment is less than or equal to 3910 // the stack alignment, ignore it. If the size is greater than or equal to 3911 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3912 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3913 if (*Alignment <= StackAlign) 3914 Alignment = None; 3915 3916 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3917 // Round the size of the allocation up to the stack alignment size 3918 // by add SA-1 to the size. This doesn't overflow because we're computing 3919 // an address inside an alloca. 3920 SDNodeFlags Flags; 3921 Flags.setNoUnsignedWrap(true); 3922 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3923 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3924 3925 // Mask out the low bits for alignment purposes. 3926 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3927 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3928 3929 SDValue Ops[] = { 3930 getRoot(), AllocSize, 3931 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3932 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3933 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3934 setValue(&I, DSA); 3935 DAG.setRoot(DSA.getValue(1)); 3936 3937 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3938 } 3939 3940 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3941 if (I.isAtomic()) 3942 return visitAtomicLoad(I); 3943 3944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3945 const Value *SV = I.getOperand(0); 3946 if (TLI.supportSwiftError()) { 3947 // Swifterror values can come from either a function parameter with 3948 // swifterror attribute or an alloca with swifterror attribute. 3949 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3950 if (Arg->hasSwiftErrorAttr()) 3951 return visitLoadFromSwiftError(I); 3952 } 3953 3954 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3955 if (Alloca->isSwiftError()) 3956 return visitLoadFromSwiftError(I); 3957 } 3958 } 3959 3960 SDValue Ptr = getValue(SV); 3961 3962 Type *Ty = I.getType(); 3963 Align Alignment = I.getAlign(); 3964 3965 AAMDNodes AAInfo; 3966 I.getAAMetadata(AAInfo); 3967 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3968 3969 SmallVector<EVT, 4> ValueVTs, MemVTs; 3970 SmallVector<uint64_t, 4> Offsets; 3971 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3972 unsigned NumValues = ValueVTs.size(); 3973 if (NumValues == 0) 3974 return; 3975 3976 bool isVolatile = I.isVolatile(); 3977 3978 SDValue Root; 3979 bool ConstantMemory = false; 3980 if (isVolatile) 3981 // Serialize volatile loads with other side effects. 3982 Root = getRoot(); 3983 else if (NumValues > MaxParallelChains) 3984 Root = getMemoryRoot(); 3985 else if (AA && 3986 AA->pointsToConstantMemory(MemoryLocation( 3987 SV, 3988 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3989 AAInfo))) { 3990 // Do not serialize (non-volatile) loads of constant memory with anything. 3991 Root = DAG.getEntryNode(); 3992 ConstantMemory = true; 3993 } else { 3994 // Do not serialize non-volatile loads against each other. 3995 Root = DAG.getRoot(); 3996 } 3997 3998 SDLoc dl = getCurSDLoc(); 3999 4000 if (isVolatile) 4001 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4002 4003 // An aggregate load cannot wrap around the address space, so offsets to its 4004 // parts don't wrap either. 4005 SDNodeFlags Flags; 4006 Flags.setNoUnsignedWrap(true); 4007 4008 SmallVector<SDValue, 4> Values(NumValues); 4009 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4010 EVT PtrVT = Ptr.getValueType(); 4011 4012 MachineMemOperand::Flags MMOFlags 4013 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4014 4015 unsigned ChainI = 0; 4016 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4017 // Serializing loads here may result in excessive register pressure, and 4018 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4019 // could recover a bit by hoisting nodes upward in the chain by recognizing 4020 // they are side-effect free or do not alias. The optimizer should really 4021 // avoid this case by converting large object/array copies to llvm.memcpy 4022 // (MaxParallelChains should always remain as failsafe). 4023 if (ChainI == MaxParallelChains) { 4024 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4025 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4026 makeArrayRef(Chains.data(), ChainI)); 4027 Root = Chain; 4028 ChainI = 0; 4029 } 4030 SDValue A = DAG.getNode(ISD::ADD, dl, 4031 PtrVT, Ptr, 4032 DAG.getConstant(Offsets[i], dl, PtrVT), 4033 Flags); 4034 4035 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4036 MachinePointerInfo(SV, Offsets[i]), Alignment, 4037 MMOFlags, AAInfo, Ranges); 4038 Chains[ChainI] = L.getValue(1); 4039 4040 if (MemVTs[i] != ValueVTs[i]) 4041 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4042 4043 Values[i] = L; 4044 } 4045 4046 if (!ConstantMemory) { 4047 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4048 makeArrayRef(Chains.data(), ChainI)); 4049 if (isVolatile) 4050 DAG.setRoot(Chain); 4051 else 4052 PendingLoads.push_back(Chain); 4053 } 4054 4055 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4056 DAG.getVTList(ValueVTs), Values)); 4057 } 4058 4059 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4060 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4061 "call visitStoreToSwiftError when backend supports swifterror"); 4062 4063 SmallVector<EVT, 4> ValueVTs; 4064 SmallVector<uint64_t, 4> Offsets; 4065 const Value *SrcV = I.getOperand(0); 4066 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4067 SrcV->getType(), ValueVTs, &Offsets); 4068 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4069 "expect a single EVT for swifterror"); 4070 4071 SDValue Src = getValue(SrcV); 4072 // Create a virtual register, then update the virtual register. 4073 Register VReg = 4074 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4075 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4076 // Chain can be getRoot or getControlRoot. 4077 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4078 SDValue(Src.getNode(), Src.getResNo())); 4079 DAG.setRoot(CopyNode); 4080 } 4081 4082 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4083 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4084 "call visitLoadFromSwiftError when backend supports swifterror"); 4085 4086 assert(!I.isVolatile() && 4087 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4088 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4089 "Support volatile, non temporal, invariant for load_from_swift_error"); 4090 4091 const Value *SV = I.getOperand(0); 4092 Type *Ty = I.getType(); 4093 AAMDNodes AAInfo; 4094 I.getAAMetadata(AAInfo); 4095 assert( 4096 (!AA || 4097 !AA->pointsToConstantMemory(MemoryLocation( 4098 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4099 AAInfo))) && 4100 "load_from_swift_error should not be constant memory"); 4101 4102 SmallVector<EVT, 4> ValueVTs; 4103 SmallVector<uint64_t, 4> Offsets; 4104 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4105 ValueVTs, &Offsets); 4106 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4107 "expect a single EVT for swifterror"); 4108 4109 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4110 SDValue L = DAG.getCopyFromReg( 4111 getRoot(), getCurSDLoc(), 4112 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4113 4114 setValue(&I, L); 4115 } 4116 4117 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4118 if (I.isAtomic()) 4119 return visitAtomicStore(I); 4120 4121 const Value *SrcV = I.getOperand(0); 4122 const Value *PtrV = I.getOperand(1); 4123 4124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4125 if (TLI.supportSwiftError()) { 4126 // Swifterror values can come from either a function parameter with 4127 // swifterror attribute or an alloca with swifterror attribute. 4128 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4129 if (Arg->hasSwiftErrorAttr()) 4130 return visitStoreToSwiftError(I); 4131 } 4132 4133 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4134 if (Alloca->isSwiftError()) 4135 return visitStoreToSwiftError(I); 4136 } 4137 } 4138 4139 SmallVector<EVT, 4> ValueVTs, MemVTs; 4140 SmallVector<uint64_t, 4> Offsets; 4141 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4142 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4143 unsigned NumValues = ValueVTs.size(); 4144 if (NumValues == 0) 4145 return; 4146 4147 // Get the lowered operands. Note that we do this after 4148 // checking if NumResults is zero, because with zero results 4149 // the operands won't have values in the map. 4150 SDValue Src = getValue(SrcV); 4151 SDValue Ptr = getValue(PtrV); 4152 4153 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4154 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4155 SDLoc dl = getCurSDLoc(); 4156 Align Alignment = I.getAlign(); 4157 AAMDNodes AAInfo; 4158 I.getAAMetadata(AAInfo); 4159 4160 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4161 4162 // An aggregate load cannot wrap around the address space, so offsets to its 4163 // parts don't wrap either. 4164 SDNodeFlags Flags; 4165 Flags.setNoUnsignedWrap(true); 4166 4167 unsigned ChainI = 0; 4168 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4169 // See visitLoad comments. 4170 if (ChainI == MaxParallelChains) { 4171 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4172 makeArrayRef(Chains.data(), ChainI)); 4173 Root = Chain; 4174 ChainI = 0; 4175 } 4176 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4177 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4178 if (MemVTs[i] != ValueVTs[i]) 4179 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4180 SDValue St = 4181 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4182 Alignment, MMOFlags, AAInfo); 4183 Chains[ChainI] = St; 4184 } 4185 4186 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4187 makeArrayRef(Chains.data(), ChainI)); 4188 DAG.setRoot(StoreNode); 4189 } 4190 4191 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4192 bool IsCompressing) { 4193 SDLoc sdl = getCurSDLoc(); 4194 4195 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4196 MaybeAlign &Alignment) { 4197 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4198 Src0 = I.getArgOperand(0); 4199 Ptr = I.getArgOperand(1); 4200 Alignment = 4201 MaybeAlign(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4202 Mask = I.getArgOperand(3); 4203 }; 4204 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4205 MaybeAlign &Alignment) { 4206 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4207 Src0 = I.getArgOperand(0); 4208 Ptr = I.getArgOperand(1); 4209 Mask = I.getArgOperand(2); 4210 Alignment = None; 4211 }; 4212 4213 Value *PtrOperand, *MaskOperand, *Src0Operand; 4214 MaybeAlign Alignment; 4215 if (IsCompressing) 4216 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4217 else 4218 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4219 4220 SDValue Ptr = getValue(PtrOperand); 4221 SDValue Src0 = getValue(Src0Operand); 4222 SDValue Mask = getValue(MaskOperand); 4223 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4224 4225 EVT VT = Src0.getValueType(); 4226 if (!Alignment) 4227 Alignment = DAG.getEVTAlign(VT); 4228 4229 AAMDNodes AAInfo; 4230 I.getAAMetadata(AAInfo); 4231 4232 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4233 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4234 // TODO: Make MachineMemOperands aware of scalable 4235 // vectors. 4236 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4237 SDValue StoreNode = 4238 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4239 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4240 DAG.setRoot(StoreNode); 4241 setValue(&I, StoreNode); 4242 } 4243 4244 // Get a uniform base for the Gather/Scatter intrinsic. 4245 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4246 // We try to represent it as a base pointer + vector of indices. 4247 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4248 // The first operand of the GEP may be a single pointer or a vector of pointers 4249 // Example: 4250 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4251 // or 4252 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4253 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4254 // 4255 // When the first GEP operand is a single pointer - it is the uniform base we 4256 // are looking for. If first operand of the GEP is a splat vector - we 4257 // extract the splat value and use it as a uniform base. 4258 // In all other cases the function returns 'false'. 4259 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4260 ISD::MemIndexType &IndexType, SDValue &Scale, 4261 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4262 SelectionDAG& DAG = SDB->DAG; 4263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4264 const DataLayout &DL = DAG.getDataLayout(); 4265 4266 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4267 4268 // Handle splat constant pointer. 4269 if (auto *C = dyn_cast<Constant>(Ptr)) { 4270 C = C->getSplatValue(); 4271 if (!C) 4272 return false; 4273 4274 Base = SDB->getValue(C); 4275 4276 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 4277 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4278 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4279 IndexType = ISD::SIGNED_SCALED; 4280 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4281 return true; 4282 } 4283 4284 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4285 if (!GEP || GEP->getParent() != CurBB) 4286 return false; 4287 4288 if (GEP->getNumOperands() != 2) 4289 return false; 4290 4291 const Value *BasePtr = GEP->getPointerOperand(); 4292 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4293 4294 // Make sure the base is scalar and the index is a vector. 4295 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4296 return false; 4297 4298 Base = SDB->getValue(BasePtr); 4299 Index = SDB->getValue(IndexVal); 4300 IndexType = ISD::SIGNED_SCALED; 4301 Scale = DAG.getTargetConstant( 4302 DL.getTypeAllocSize(GEP->getResultElementType()), 4303 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4304 return true; 4305 } 4306 4307 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4308 SDLoc sdl = getCurSDLoc(); 4309 4310 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4311 const Value *Ptr = I.getArgOperand(1); 4312 SDValue Src0 = getValue(I.getArgOperand(0)); 4313 SDValue Mask = getValue(I.getArgOperand(3)); 4314 EVT VT = Src0.getValueType(); 4315 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); 4316 if (!Alignment) 4317 Alignment = DAG.getEVTAlign(VT); 4318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4319 4320 AAMDNodes AAInfo; 4321 I.getAAMetadata(AAInfo); 4322 4323 SDValue Base; 4324 SDValue Index; 4325 ISD::MemIndexType IndexType; 4326 SDValue Scale; 4327 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4328 I.getParent()); 4329 4330 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4331 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4332 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4333 // TODO: Make MachineMemOperands aware of scalable 4334 // vectors. 4335 MemoryLocation::UnknownSize, *Alignment, AAInfo); 4336 if (!UniformBase) { 4337 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4338 Index = getValue(Ptr); 4339 IndexType = ISD::SIGNED_SCALED; 4340 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4341 } 4342 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4343 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4344 Ops, MMO, IndexType); 4345 DAG.setRoot(Scatter); 4346 setValue(&I, Scatter); 4347 } 4348 4349 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4350 SDLoc sdl = getCurSDLoc(); 4351 4352 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4353 MaybeAlign &Alignment) { 4354 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4355 Ptr = I.getArgOperand(0); 4356 Alignment = 4357 MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4358 Mask = I.getArgOperand(2); 4359 Src0 = I.getArgOperand(3); 4360 }; 4361 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4362 MaybeAlign &Alignment) { 4363 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4364 Ptr = I.getArgOperand(0); 4365 Alignment = None; 4366 Mask = I.getArgOperand(1); 4367 Src0 = I.getArgOperand(2); 4368 }; 4369 4370 Value *PtrOperand, *MaskOperand, *Src0Operand; 4371 MaybeAlign Alignment; 4372 if (IsExpanding) 4373 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4374 else 4375 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4376 4377 SDValue Ptr = getValue(PtrOperand); 4378 SDValue Src0 = getValue(Src0Operand); 4379 SDValue Mask = getValue(MaskOperand); 4380 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4381 4382 EVT VT = Src0.getValueType(); 4383 if (!Alignment) 4384 Alignment = DAG.getEVTAlign(VT); 4385 4386 AAMDNodes AAInfo; 4387 I.getAAMetadata(AAInfo); 4388 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4389 4390 // Do not serialize masked loads of constant memory with anything. 4391 MemoryLocation ML; 4392 if (VT.isScalableVector()) 4393 ML = MemoryLocation(PtrOperand); 4394 else 4395 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4396 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4397 AAInfo); 4398 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4399 4400 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4401 4402 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4403 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4404 // TODO: Make MachineMemOperands aware of scalable 4405 // vectors. 4406 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4407 4408 SDValue Load = 4409 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4410 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4411 if (AddToChain) 4412 PendingLoads.push_back(Load.getValue(1)); 4413 setValue(&I, Load); 4414 } 4415 4416 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4417 SDLoc sdl = getCurSDLoc(); 4418 4419 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4420 const Value *Ptr = I.getArgOperand(0); 4421 SDValue Src0 = getValue(I.getArgOperand(3)); 4422 SDValue Mask = getValue(I.getArgOperand(2)); 4423 4424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4425 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4426 MaybeAlign Alignment(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 4427 if (!Alignment) 4428 Alignment = DAG.getEVTAlign(VT); 4429 4430 AAMDNodes AAInfo; 4431 I.getAAMetadata(AAInfo); 4432 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4433 4434 SDValue Root = DAG.getRoot(); 4435 SDValue Base; 4436 SDValue Index; 4437 ISD::MemIndexType IndexType; 4438 SDValue Scale; 4439 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4440 I.getParent()); 4441 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4442 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4443 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4444 // TODO: Make MachineMemOperands aware of scalable 4445 // vectors. 4446 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4447 4448 if (!UniformBase) { 4449 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4450 Index = getValue(Ptr); 4451 IndexType = ISD::SIGNED_SCALED; 4452 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4453 } 4454 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4455 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4456 Ops, MMO, IndexType); 4457 4458 PendingLoads.push_back(Gather.getValue(1)); 4459 setValue(&I, Gather); 4460 } 4461 4462 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4463 SDLoc dl = getCurSDLoc(); 4464 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4465 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4466 SyncScope::ID SSID = I.getSyncScopeID(); 4467 4468 SDValue InChain = getRoot(); 4469 4470 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4471 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4472 4473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4474 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4475 4476 MachineFunction &MF = DAG.getMachineFunction(); 4477 MachineMemOperand *MMO = MF.getMachineMemOperand( 4478 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4479 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4480 FailureOrdering); 4481 4482 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4483 dl, MemVT, VTs, InChain, 4484 getValue(I.getPointerOperand()), 4485 getValue(I.getCompareOperand()), 4486 getValue(I.getNewValOperand()), MMO); 4487 4488 SDValue OutChain = L.getValue(2); 4489 4490 setValue(&I, L); 4491 DAG.setRoot(OutChain); 4492 } 4493 4494 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4495 SDLoc dl = getCurSDLoc(); 4496 ISD::NodeType NT; 4497 switch (I.getOperation()) { 4498 default: llvm_unreachable("Unknown atomicrmw operation"); 4499 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4500 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4501 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4502 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4503 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4504 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4505 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4506 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4507 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4508 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4509 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4510 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4511 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4512 } 4513 AtomicOrdering Ordering = I.getOrdering(); 4514 SyncScope::ID SSID = I.getSyncScopeID(); 4515 4516 SDValue InChain = getRoot(); 4517 4518 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4520 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4521 4522 MachineFunction &MF = DAG.getMachineFunction(); 4523 MachineMemOperand *MMO = MF.getMachineMemOperand( 4524 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4525 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4526 4527 SDValue L = 4528 DAG.getAtomic(NT, dl, MemVT, InChain, 4529 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4530 MMO); 4531 4532 SDValue OutChain = L.getValue(1); 4533 4534 setValue(&I, L); 4535 DAG.setRoot(OutChain); 4536 } 4537 4538 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4539 SDLoc dl = getCurSDLoc(); 4540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4541 SDValue Ops[3]; 4542 Ops[0] = getRoot(); 4543 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4544 TLI.getFenceOperandTy(DAG.getDataLayout())); 4545 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4546 TLI.getFenceOperandTy(DAG.getDataLayout())); 4547 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4548 } 4549 4550 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4551 SDLoc dl = getCurSDLoc(); 4552 AtomicOrdering Order = I.getOrdering(); 4553 SyncScope::ID SSID = I.getSyncScopeID(); 4554 4555 SDValue InChain = getRoot(); 4556 4557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4558 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4559 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4560 4561 if (!TLI.supportsUnalignedAtomics() && 4562 I.getAlignment() < MemVT.getSizeInBits() / 8) 4563 report_fatal_error("Cannot generate unaligned atomic load"); 4564 4565 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4566 4567 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4568 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4569 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4570 4571 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4572 4573 SDValue Ptr = getValue(I.getPointerOperand()); 4574 4575 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4576 // TODO: Once this is better exercised by tests, it should be merged with 4577 // the normal path for loads to prevent future divergence. 4578 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4579 if (MemVT != VT) 4580 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4581 4582 setValue(&I, L); 4583 SDValue OutChain = L.getValue(1); 4584 if (!I.isUnordered()) 4585 DAG.setRoot(OutChain); 4586 else 4587 PendingLoads.push_back(OutChain); 4588 return; 4589 } 4590 4591 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4592 Ptr, MMO); 4593 4594 SDValue OutChain = L.getValue(1); 4595 if (MemVT != VT) 4596 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4597 4598 setValue(&I, L); 4599 DAG.setRoot(OutChain); 4600 } 4601 4602 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4603 SDLoc dl = getCurSDLoc(); 4604 4605 AtomicOrdering Ordering = I.getOrdering(); 4606 SyncScope::ID SSID = I.getSyncScopeID(); 4607 4608 SDValue InChain = getRoot(); 4609 4610 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4611 EVT MemVT = 4612 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4613 4614 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4615 report_fatal_error("Cannot generate unaligned atomic store"); 4616 4617 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4618 4619 MachineFunction &MF = DAG.getMachineFunction(); 4620 MachineMemOperand *MMO = MF.getMachineMemOperand( 4621 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4622 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4623 4624 SDValue Val = getValue(I.getValueOperand()); 4625 if (Val.getValueType() != MemVT) 4626 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4627 SDValue Ptr = getValue(I.getPointerOperand()); 4628 4629 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4630 // TODO: Once this is better exercised by tests, it should be merged with 4631 // the normal path for stores to prevent future divergence. 4632 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4633 DAG.setRoot(S); 4634 return; 4635 } 4636 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4637 Ptr, Val, MMO); 4638 4639 4640 DAG.setRoot(OutChain); 4641 } 4642 4643 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4644 /// node. 4645 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4646 unsigned Intrinsic) { 4647 // Ignore the callsite's attributes. A specific call site may be marked with 4648 // readnone, but the lowering code will expect the chain based on the 4649 // definition. 4650 const Function *F = I.getCalledFunction(); 4651 bool HasChain = !F->doesNotAccessMemory(); 4652 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4653 4654 // Build the operand list. 4655 SmallVector<SDValue, 8> Ops; 4656 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4657 if (OnlyLoad) { 4658 // We don't need to serialize loads against other loads. 4659 Ops.push_back(DAG.getRoot()); 4660 } else { 4661 Ops.push_back(getRoot()); 4662 } 4663 } 4664 4665 // Info is set by getTgtMemInstrinsic 4666 TargetLowering::IntrinsicInfo Info; 4667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4668 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4669 DAG.getMachineFunction(), 4670 Intrinsic); 4671 4672 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4673 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4674 Info.opc == ISD::INTRINSIC_W_CHAIN) 4675 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4676 TLI.getPointerTy(DAG.getDataLayout()))); 4677 4678 // Add all operands of the call to the operand list. 4679 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4680 const Value *Arg = I.getArgOperand(i); 4681 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4682 Ops.push_back(getValue(Arg)); 4683 continue; 4684 } 4685 4686 // Use TargetConstant instead of a regular constant for immarg. 4687 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4688 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4689 assert(CI->getBitWidth() <= 64 && 4690 "large intrinsic immediates not handled"); 4691 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4692 } else { 4693 Ops.push_back( 4694 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4695 } 4696 } 4697 4698 SmallVector<EVT, 4> ValueVTs; 4699 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4700 4701 if (HasChain) 4702 ValueVTs.push_back(MVT::Other); 4703 4704 SDVTList VTs = DAG.getVTList(ValueVTs); 4705 4706 // Create the node. 4707 SDValue Result; 4708 if (IsTgtIntrinsic) { 4709 // This is target intrinsic that touches memory 4710 AAMDNodes AAInfo; 4711 I.getAAMetadata(AAInfo); 4712 Result = 4713 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4714 MachinePointerInfo(Info.ptrVal, Info.offset), 4715 Info.align, Info.flags, Info.size, AAInfo); 4716 } else if (!HasChain) { 4717 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4718 } else if (!I.getType()->isVoidTy()) { 4719 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4720 } else { 4721 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4722 } 4723 4724 if (HasChain) { 4725 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4726 if (OnlyLoad) 4727 PendingLoads.push_back(Chain); 4728 else 4729 DAG.setRoot(Chain); 4730 } 4731 4732 if (!I.getType()->isVoidTy()) { 4733 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4734 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4735 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4736 } else 4737 Result = lowerRangeToAssertZExt(DAG, I, Result); 4738 4739 setValue(&I, Result); 4740 } 4741 } 4742 4743 /// GetSignificand - Get the significand and build it into a floating-point 4744 /// number with exponent of 1: 4745 /// 4746 /// Op = (Op & 0x007fffff) | 0x3f800000; 4747 /// 4748 /// where Op is the hexadecimal representation of floating point value. 4749 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4750 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4751 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4752 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4753 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4754 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4755 } 4756 4757 /// GetExponent - Get the exponent: 4758 /// 4759 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4760 /// 4761 /// where Op is the hexadecimal representation of floating point value. 4762 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4763 const TargetLowering &TLI, const SDLoc &dl) { 4764 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4765 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4766 SDValue t1 = DAG.getNode( 4767 ISD::SRL, dl, MVT::i32, t0, 4768 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4769 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4770 DAG.getConstant(127, dl, MVT::i32)); 4771 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4772 } 4773 4774 /// getF32Constant - Get 32-bit floating point constant. 4775 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4776 const SDLoc &dl) { 4777 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4778 MVT::f32); 4779 } 4780 4781 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4782 SelectionDAG &DAG) { 4783 // TODO: What fast-math-flags should be set on the floating-point nodes? 4784 4785 // IntegerPartOfX = ((int32_t)(t0); 4786 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4787 4788 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4789 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4790 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4791 4792 // IntegerPartOfX <<= 23; 4793 IntegerPartOfX = DAG.getNode( 4794 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4795 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4796 DAG.getDataLayout()))); 4797 4798 SDValue TwoToFractionalPartOfX; 4799 if (LimitFloatPrecision <= 6) { 4800 // For floating-point precision of 6: 4801 // 4802 // TwoToFractionalPartOfX = 4803 // 0.997535578f + 4804 // (0.735607626f + 0.252464424f * x) * x; 4805 // 4806 // error 0.0144103317, which is 6 bits 4807 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4808 getF32Constant(DAG, 0x3e814304, dl)); 4809 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4810 getF32Constant(DAG, 0x3f3c50c8, dl)); 4811 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4812 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4813 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4814 } else if (LimitFloatPrecision <= 12) { 4815 // For floating-point precision of 12: 4816 // 4817 // TwoToFractionalPartOfX = 4818 // 0.999892986f + 4819 // (0.696457318f + 4820 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4821 // 4822 // error 0.000107046256, which is 13 to 14 bits 4823 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4824 getF32Constant(DAG, 0x3da235e3, dl)); 4825 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4826 getF32Constant(DAG, 0x3e65b8f3, dl)); 4827 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4828 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4829 getF32Constant(DAG, 0x3f324b07, dl)); 4830 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4831 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4832 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4833 } else { // LimitFloatPrecision <= 18 4834 // For floating-point precision of 18: 4835 // 4836 // TwoToFractionalPartOfX = 4837 // 0.999999982f + 4838 // (0.693148872f + 4839 // (0.240227044f + 4840 // (0.554906021e-1f + 4841 // (0.961591928e-2f + 4842 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4843 // error 2.47208000*10^(-7), which is better than 18 bits 4844 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4845 getF32Constant(DAG, 0x3924b03e, dl)); 4846 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4847 getF32Constant(DAG, 0x3ab24b87, dl)); 4848 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4849 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4850 getF32Constant(DAG, 0x3c1d8c17, dl)); 4851 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4852 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4853 getF32Constant(DAG, 0x3d634a1d, dl)); 4854 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4855 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4856 getF32Constant(DAG, 0x3e75fe14, dl)); 4857 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4858 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4859 getF32Constant(DAG, 0x3f317234, dl)); 4860 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4861 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4862 getF32Constant(DAG, 0x3f800000, dl)); 4863 } 4864 4865 // Add the exponent into the result in integer domain. 4866 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4867 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4868 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4869 } 4870 4871 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4872 /// limited-precision mode. 4873 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4874 const TargetLowering &TLI) { 4875 if (Op.getValueType() == MVT::f32 && 4876 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4877 4878 // Put the exponent in the right bit position for later addition to the 4879 // final result: 4880 // 4881 // t0 = Op * log2(e) 4882 4883 // TODO: What fast-math-flags should be set here? 4884 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4885 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4886 return getLimitedPrecisionExp2(t0, dl, DAG); 4887 } 4888 4889 // No special expansion. 4890 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4891 } 4892 4893 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4894 /// limited-precision mode. 4895 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4896 const TargetLowering &TLI) { 4897 // TODO: What fast-math-flags should be set on the floating-point nodes? 4898 4899 if (Op.getValueType() == MVT::f32 && 4900 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4901 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4902 4903 // Scale the exponent by log(2). 4904 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4905 SDValue LogOfExponent = 4906 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4907 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4908 4909 // Get the significand and build it into a floating-point number with 4910 // exponent of 1. 4911 SDValue X = GetSignificand(DAG, Op1, dl); 4912 4913 SDValue LogOfMantissa; 4914 if (LimitFloatPrecision <= 6) { 4915 // For floating-point precision of 6: 4916 // 4917 // LogofMantissa = 4918 // -1.1609546f + 4919 // (1.4034025f - 0.23903021f * x) * x; 4920 // 4921 // error 0.0034276066, which is better than 8 bits 4922 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4923 getF32Constant(DAG, 0xbe74c456, dl)); 4924 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4925 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4926 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4927 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4928 getF32Constant(DAG, 0x3f949a29, dl)); 4929 } else if (LimitFloatPrecision <= 12) { 4930 // For floating-point precision of 12: 4931 // 4932 // LogOfMantissa = 4933 // -1.7417939f + 4934 // (2.8212026f + 4935 // (-1.4699568f + 4936 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4937 // 4938 // error 0.000061011436, which is 14 bits 4939 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4940 getF32Constant(DAG, 0xbd67b6d6, dl)); 4941 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4942 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4943 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4944 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4945 getF32Constant(DAG, 0x3fbc278b, dl)); 4946 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4947 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4948 getF32Constant(DAG, 0x40348e95, dl)); 4949 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4950 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4951 getF32Constant(DAG, 0x3fdef31a, dl)); 4952 } else { // LimitFloatPrecision <= 18 4953 // For floating-point precision of 18: 4954 // 4955 // LogOfMantissa = 4956 // -2.1072184f + 4957 // (4.2372794f + 4958 // (-3.7029485f + 4959 // (2.2781945f + 4960 // (-0.87823314f + 4961 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4962 // 4963 // error 0.0000023660568, which is better than 18 bits 4964 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4965 getF32Constant(DAG, 0xbc91e5ac, dl)); 4966 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4967 getF32Constant(DAG, 0x3e4350aa, dl)); 4968 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4969 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4970 getF32Constant(DAG, 0x3f60d3e3, dl)); 4971 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4972 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4973 getF32Constant(DAG, 0x4011cdf0, dl)); 4974 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4975 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4976 getF32Constant(DAG, 0x406cfd1c, dl)); 4977 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4978 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4979 getF32Constant(DAG, 0x408797cb, dl)); 4980 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4981 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4982 getF32Constant(DAG, 0x4006dcab, dl)); 4983 } 4984 4985 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4986 } 4987 4988 // No special expansion. 4989 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4990 } 4991 4992 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4993 /// limited-precision mode. 4994 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4995 const TargetLowering &TLI) { 4996 // TODO: What fast-math-flags should be set on the floating-point nodes? 4997 4998 if (Op.getValueType() == MVT::f32 && 4999 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5000 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5001 5002 // Get the exponent. 5003 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5004 5005 // Get the significand and build it into a floating-point number with 5006 // exponent of 1. 5007 SDValue X = GetSignificand(DAG, Op1, dl); 5008 5009 // Different possible minimax approximations of significand in 5010 // floating-point for various degrees of accuracy over [1,2]. 5011 SDValue Log2ofMantissa; 5012 if (LimitFloatPrecision <= 6) { 5013 // For floating-point precision of 6: 5014 // 5015 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5016 // 5017 // error 0.0049451742, which is more than 7 bits 5018 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5019 getF32Constant(DAG, 0xbeb08fe0, dl)); 5020 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5021 getF32Constant(DAG, 0x40019463, dl)); 5022 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5023 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5024 getF32Constant(DAG, 0x3fd6633d, dl)); 5025 } else if (LimitFloatPrecision <= 12) { 5026 // For floating-point precision of 12: 5027 // 5028 // Log2ofMantissa = 5029 // -2.51285454f + 5030 // (4.07009056f + 5031 // (-2.12067489f + 5032 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5033 // 5034 // error 0.0000876136000, which is better than 13 bits 5035 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5036 getF32Constant(DAG, 0xbda7262e, dl)); 5037 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5038 getF32Constant(DAG, 0x3f25280b, dl)); 5039 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5040 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5041 getF32Constant(DAG, 0x4007b923, dl)); 5042 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5043 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5044 getF32Constant(DAG, 0x40823e2f, dl)); 5045 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5046 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5047 getF32Constant(DAG, 0x4020d29c, dl)); 5048 } else { // LimitFloatPrecision <= 18 5049 // For floating-point precision of 18: 5050 // 5051 // Log2ofMantissa = 5052 // -3.0400495f + 5053 // (6.1129976f + 5054 // (-5.3420409f + 5055 // (3.2865683f + 5056 // (-1.2669343f + 5057 // (0.27515199f - 5058 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5059 // 5060 // error 0.0000018516, which is better than 18 bits 5061 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5062 getF32Constant(DAG, 0xbcd2769e, dl)); 5063 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5064 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5065 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5066 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5067 getF32Constant(DAG, 0x3fa22ae7, dl)); 5068 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5069 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5070 getF32Constant(DAG, 0x40525723, dl)); 5071 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5072 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5073 getF32Constant(DAG, 0x40aaf200, dl)); 5074 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5075 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5076 getF32Constant(DAG, 0x40c39dad, dl)); 5077 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5078 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5079 getF32Constant(DAG, 0x4042902c, dl)); 5080 } 5081 5082 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5083 } 5084 5085 // No special expansion. 5086 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5087 } 5088 5089 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5090 /// limited-precision mode. 5091 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5092 const TargetLowering &TLI) { 5093 // TODO: What fast-math-flags should be set on the floating-point nodes? 5094 5095 if (Op.getValueType() == MVT::f32 && 5096 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5097 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5098 5099 // Scale the exponent by log10(2) [0.30102999f]. 5100 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5101 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5102 getF32Constant(DAG, 0x3e9a209a, dl)); 5103 5104 // Get the significand and build it into a floating-point number with 5105 // exponent of 1. 5106 SDValue X = GetSignificand(DAG, Op1, dl); 5107 5108 SDValue Log10ofMantissa; 5109 if (LimitFloatPrecision <= 6) { 5110 // For floating-point precision of 6: 5111 // 5112 // Log10ofMantissa = 5113 // -0.50419619f + 5114 // (0.60948995f - 0.10380950f * x) * x; 5115 // 5116 // error 0.0014886165, which is 6 bits 5117 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5118 getF32Constant(DAG, 0xbdd49a13, dl)); 5119 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5120 getF32Constant(DAG, 0x3f1c0789, dl)); 5121 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5122 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5123 getF32Constant(DAG, 0x3f011300, dl)); 5124 } else if (LimitFloatPrecision <= 12) { 5125 // For floating-point precision of 12: 5126 // 5127 // Log10ofMantissa = 5128 // -0.64831180f + 5129 // (0.91751397f + 5130 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5131 // 5132 // error 0.00019228036, which is better than 12 bits 5133 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5134 getF32Constant(DAG, 0x3d431f31, dl)); 5135 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5136 getF32Constant(DAG, 0x3ea21fb2, dl)); 5137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5138 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5139 getF32Constant(DAG, 0x3f6ae232, dl)); 5140 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5141 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5142 getF32Constant(DAG, 0x3f25f7c3, dl)); 5143 } else { // LimitFloatPrecision <= 18 5144 // For floating-point precision of 18: 5145 // 5146 // Log10ofMantissa = 5147 // -0.84299375f + 5148 // (1.5327582f + 5149 // (-1.0688956f + 5150 // (0.49102474f + 5151 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5152 // 5153 // error 0.0000037995730, which is better than 18 bits 5154 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5155 getF32Constant(DAG, 0x3c5d51ce, dl)); 5156 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5157 getF32Constant(DAG, 0x3e00685a, dl)); 5158 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5159 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5160 getF32Constant(DAG, 0x3efb6798, dl)); 5161 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5162 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5163 getF32Constant(DAG, 0x3f88d192, dl)); 5164 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5165 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5166 getF32Constant(DAG, 0x3fc4316c, dl)); 5167 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5168 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5169 getF32Constant(DAG, 0x3f57ce70, dl)); 5170 } 5171 5172 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5173 } 5174 5175 // No special expansion. 5176 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5177 } 5178 5179 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5180 /// limited-precision mode. 5181 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5182 const TargetLowering &TLI) { 5183 if (Op.getValueType() == MVT::f32 && 5184 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5185 return getLimitedPrecisionExp2(Op, dl, DAG); 5186 5187 // No special expansion. 5188 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5189 } 5190 5191 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5192 /// limited-precision mode with x == 10.0f. 5193 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5194 SelectionDAG &DAG, const TargetLowering &TLI) { 5195 bool IsExp10 = false; 5196 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5197 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5198 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5199 APFloat Ten(10.0f); 5200 IsExp10 = LHSC->isExactlyValue(Ten); 5201 } 5202 } 5203 5204 // TODO: What fast-math-flags should be set on the FMUL node? 5205 if (IsExp10) { 5206 // Put the exponent in the right bit position for later addition to the 5207 // final result: 5208 // 5209 // #define LOG2OF10 3.3219281f 5210 // t0 = Op * LOG2OF10; 5211 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5212 getF32Constant(DAG, 0x40549a78, dl)); 5213 return getLimitedPrecisionExp2(t0, dl, DAG); 5214 } 5215 5216 // No special expansion. 5217 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5218 } 5219 5220 /// ExpandPowI - Expand a llvm.powi intrinsic. 5221 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5222 SelectionDAG &DAG) { 5223 // If RHS is a constant, we can expand this out to a multiplication tree, 5224 // otherwise we end up lowering to a call to __powidf2 (for example). When 5225 // optimizing for size, we only want to do this if the expansion would produce 5226 // a small number of multiplies, otherwise we do the full expansion. 5227 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5228 // Get the exponent as a positive value. 5229 unsigned Val = RHSC->getSExtValue(); 5230 if ((int)Val < 0) Val = -Val; 5231 5232 // powi(x, 0) -> 1.0 5233 if (Val == 0) 5234 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5235 5236 bool OptForSize = DAG.shouldOptForSize(); 5237 if (!OptForSize || 5238 // If optimizing for size, don't insert too many multiplies. 5239 // This inserts up to 5 multiplies. 5240 countPopulation(Val) + Log2_32(Val) < 7) { 5241 // We use the simple binary decomposition method to generate the multiply 5242 // sequence. There are more optimal ways to do this (for example, 5243 // powi(x,15) generates one more multiply than it should), but this has 5244 // the benefit of being both really simple and much better than a libcall. 5245 SDValue Res; // Logically starts equal to 1.0 5246 SDValue CurSquare = LHS; 5247 // TODO: Intrinsics should have fast-math-flags that propagate to these 5248 // nodes. 5249 while (Val) { 5250 if (Val & 1) { 5251 if (Res.getNode()) 5252 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5253 else 5254 Res = CurSquare; // 1.0*CurSquare. 5255 } 5256 5257 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5258 CurSquare, CurSquare); 5259 Val >>= 1; 5260 } 5261 5262 // If the original was negative, invert the result, producing 1/(x*x*x). 5263 if (RHSC->getSExtValue() < 0) 5264 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5265 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5266 return Res; 5267 } 5268 } 5269 5270 // Otherwise, expand to a libcall. 5271 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5272 } 5273 5274 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5275 SDValue LHS, SDValue RHS, SDValue Scale, 5276 SelectionDAG &DAG, const TargetLowering &TLI) { 5277 EVT VT = LHS.getValueType(); 5278 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5279 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5280 LLVMContext &Ctx = *DAG.getContext(); 5281 5282 // If the type is legal but the operation isn't, this node might survive all 5283 // the way to operation legalization. If we end up there and we do not have 5284 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5285 // node. 5286 5287 // Coax the legalizer into expanding the node during type legalization instead 5288 // by bumping the size by one bit. This will force it to Promote, enabling the 5289 // early expansion and avoiding the need to expand later. 5290 5291 // We don't have to do this if Scale is 0; that can always be expanded, unless 5292 // it's a saturating signed operation. Those can experience true integer 5293 // division overflow, a case which we must avoid. 5294 5295 // FIXME: We wouldn't have to do this (or any of the early 5296 // expansion/promotion) if it was possible to expand a libcall of an 5297 // illegal type during operation legalization. But it's not, so things 5298 // get a bit hacky. 5299 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5300 if ((ScaleInt > 0 || (Saturating && Signed)) && 5301 (TLI.isTypeLegal(VT) || 5302 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5303 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5304 Opcode, VT, ScaleInt); 5305 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5306 EVT PromVT; 5307 if (VT.isScalarInteger()) 5308 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5309 else if (VT.isVector()) { 5310 PromVT = VT.getVectorElementType(); 5311 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5312 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5313 } else 5314 llvm_unreachable("Wrong VT for DIVFIX?"); 5315 if (Signed) { 5316 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5317 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5318 } else { 5319 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5320 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5321 } 5322 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5323 // For saturating operations, we need to shift up the LHS to get the 5324 // proper saturation width, and then shift down again afterwards. 5325 if (Saturating) 5326 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5327 DAG.getConstant(1, DL, ShiftTy)); 5328 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5329 if (Saturating) 5330 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5331 DAG.getConstant(1, DL, ShiftTy)); 5332 return DAG.getZExtOrTrunc(Res, DL, VT); 5333 } 5334 } 5335 5336 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5337 } 5338 5339 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5340 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5341 static void 5342 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5343 const SDValue &N) { 5344 switch (N.getOpcode()) { 5345 case ISD::CopyFromReg: { 5346 SDValue Op = N.getOperand(1); 5347 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5348 Op.getValueType().getSizeInBits()); 5349 return; 5350 } 5351 case ISD::BITCAST: 5352 case ISD::AssertZext: 5353 case ISD::AssertSext: 5354 case ISD::TRUNCATE: 5355 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5356 return; 5357 case ISD::BUILD_PAIR: 5358 case ISD::BUILD_VECTOR: 5359 case ISD::CONCAT_VECTORS: 5360 for (SDValue Op : N->op_values()) 5361 getUnderlyingArgRegs(Regs, Op); 5362 return; 5363 default: 5364 return; 5365 } 5366 } 5367 5368 /// If the DbgValueInst is a dbg_value of a function argument, create the 5369 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5370 /// instruction selection, they will be inserted to the entry BB. 5371 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5372 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5373 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5374 const Argument *Arg = dyn_cast<Argument>(V); 5375 if (!Arg) 5376 return false; 5377 5378 if (!IsDbgDeclare) { 5379 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5380 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5381 // the entry block. 5382 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5383 if (!IsInEntryBlock) 5384 return false; 5385 5386 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5387 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5388 // variable that also is a param. 5389 // 5390 // Although, if we are at the top of the entry block already, we can still 5391 // emit using ArgDbgValue. This might catch some situations when the 5392 // dbg.value refers to an argument that isn't used in the entry block, so 5393 // any CopyToReg node would be optimized out and the only way to express 5394 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5395 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5396 // we should only emit as ArgDbgValue if the Variable is an argument to the 5397 // current function, and the dbg.value intrinsic is found in the entry 5398 // block. 5399 bool VariableIsFunctionInputArg = Variable->isParameter() && 5400 !DL->getInlinedAt(); 5401 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5402 if (!IsInPrologue && !VariableIsFunctionInputArg) 5403 return false; 5404 5405 // Here we assume that a function argument on IR level only can be used to 5406 // describe one input parameter on source level. If we for example have 5407 // source code like this 5408 // 5409 // struct A { long x, y; }; 5410 // void foo(struct A a, long b) { 5411 // ... 5412 // b = a.x; 5413 // ... 5414 // } 5415 // 5416 // and IR like this 5417 // 5418 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5419 // entry: 5420 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5421 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5422 // call void @llvm.dbg.value(metadata i32 %b, "b", 5423 // ... 5424 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5425 // ... 5426 // 5427 // then the last dbg.value is describing a parameter "b" using a value that 5428 // is an argument. But since we already has used %a1 to describe a parameter 5429 // we should not handle that last dbg.value here (that would result in an 5430 // incorrect hoisting of the DBG_VALUE to the function entry). 5431 // Notice that we allow one dbg.value per IR level argument, to accommodate 5432 // for the situation with fragments above. 5433 if (VariableIsFunctionInputArg) { 5434 unsigned ArgNo = Arg->getArgNo(); 5435 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5436 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5437 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5438 return false; 5439 FuncInfo.DescribedArgs.set(ArgNo); 5440 } 5441 } 5442 5443 MachineFunction &MF = DAG.getMachineFunction(); 5444 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5445 5446 bool IsIndirect = false; 5447 Optional<MachineOperand> Op; 5448 // Some arguments' frame index is recorded during argument lowering. 5449 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5450 if (FI != std::numeric_limits<int>::max()) 5451 Op = MachineOperand::CreateFI(FI); 5452 5453 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5454 if (!Op && N.getNode()) { 5455 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5456 Register Reg; 5457 if (ArgRegsAndSizes.size() == 1) 5458 Reg = ArgRegsAndSizes.front().first; 5459 5460 if (Reg && Reg.isVirtual()) { 5461 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5462 Register PR = RegInfo.getLiveInPhysReg(Reg); 5463 if (PR) 5464 Reg = PR; 5465 } 5466 if (Reg) { 5467 Op = MachineOperand::CreateReg(Reg, false); 5468 IsIndirect = IsDbgDeclare; 5469 } 5470 } 5471 5472 if (!Op && N.getNode()) { 5473 // Check if frame index is available. 5474 SDValue LCandidate = peekThroughBitcasts(N); 5475 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5476 if (FrameIndexSDNode *FINode = 5477 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5478 Op = MachineOperand::CreateFI(FINode->getIndex()); 5479 } 5480 5481 if (!Op) { 5482 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5483 auto splitMultiRegDbgValue 5484 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5485 unsigned Offset = 0; 5486 for (auto RegAndSize : SplitRegs) { 5487 // If the expression is already a fragment, the current register 5488 // offset+size might extend beyond the fragment. In this case, only 5489 // the register bits that are inside the fragment are relevant. 5490 int RegFragmentSizeInBits = RegAndSize.second; 5491 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5492 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5493 // The register is entirely outside the expression fragment, 5494 // so is irrelevant for debug info. 5495 if (Offset >= ExprFragmentSizeInBits) 5496 break; 5497 // The register is partially outside the expression fragment, only 5498 // the low bits within the fragment are relevant for debug info. 5499 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5500 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5501 } 5502 } 5503 5504 auto FragmentExpr = DIExpression::createFragmentExpression( 5505 Expr, Offset, RegFragmentSizeInBits); 5506 Offset += RegAndSize.second; 5507 // If a valid fragment expression cannot be created, the variable's 5508 // correct value cannot be determined and so it is set as Undef. 5509 if (!FragmentExpr) { 5510 SDDbgValue *SDV = DAG.getConstantDbgValue( 5511 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5512 DAG.AddDbgValue(SDV, nullptr, false); 5513 continue; 5514 } 5515 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5516 FuncInfo.ArgDbgValues.push_back( 5517 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5518 RegAndSize.first, Variable, *FragmentExpr)); 5519 } 5520 }; 5521 5522 // Check if ValueMap has reg number. 5523 DenseMap<const Value *, Register>::const_iterator 5524 VMI = FuncInfo.ValueMap.find(V); 5525 if (VMI != FuncInfo.ValueMap.end()) { 5526 const auto &TLI = DAG.getTargetLoweringInfo(); 5527 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5528 V->getType(), getABIRegCopyCC(V)); 5529 if (RFV.occupiesMultipleRegs()) { 5530 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5531 return true; 5532 } 5533 5534 Op = MachineOperand::CreateReg(VMI->second, false); 5535 IsIndirect = IsDbgDeclare; 5536 } else if (ArgRegsAndSizes.size() > 1) { 5537 // This was split due to the calling convention, and no virtual register 5538 // mapping exists for the value. 5539 splitMultiRegDbgValue(ArgRegsAndSizes); 5540 return true; 5541 } 5542 } 5543 5544 if (!Op) 5545 return false; 5546 5547 assert(Variable->isValidLocationForIntrinsic(DL) && 5548 "Expected inlined-at fields to agree"); 5549 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5550 FuncInfo.ArgDbgValues.push_back( 5551 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5552 *Op, Variable, Expr)); 5553 5554 return true; 5555 } 5556 5557 /// Return the appropriate SDDbgValue based on N. 5558 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5559 DILocalVariable *Variable, 5560 DIExpression *Expr, 5561 const DebugLoc &dl, 5562 unsigned DbgSDNodeOrder) { 5563 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5564 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5565 // stack slot locations. 5566 // 5567 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5568 // debug values here after optimization: 5569 // 5570 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5571 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5572 // 5573 // Both describe the direct values of their associated variables. 5574 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5575 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5576 } 5577 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5578 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5579 } 5580 5581 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5582 switch (Intrinsic) { 5583 case Intrinsic::smul_fix: 5584 return ISD::SMULFIX; 5585 case Intrinsic::umul_fix: 5586 return ISD::UMULFIX; 5587 case Intrinsic::smul_fix_sat: 5588 return ISD::SMULFIXSAT; 5589 case Intrinsic::umul_fix_sat: 5590 return ISD::UMULFIXSAT; 5591 case Intrinsic::sdiv_fix: 5592 return ISD::SDIVFIX; 5593 case Intrinsic::udiv_fix: 5594 return ISD::UDIVFIX; 5595 case Intrinsic::sdiv_fix_sat: 5596 return ISD::SDIVFIXSAT; 5597 case Intrinsic::udiv_fix_sat: 5598 return ISD::UDIVFIXSAT; 5599 default: 5600 llvm_unreachable("Unhandled fixed point intrinsic"); 5601 } 5602 } 5603 5604 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5605 const char *FunctionName) { 5606 assert(FunctionName && "FunctionName must not be nullptr"); 5607 SDValue Callee = DAG.getExternalSymbol( 5608 FunctionName, 5609 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5610 LowerCallTo(I, Callee, I.isTailCall()); 5611 } 5612 5613 /// Given a @llvm.call.preallocated.setup, return the corresponding 5614 /// preallocated call. 5615 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5616 assert(cast<CallBase>(PreallocatedSetup) 5617 ->getCalledFunction() 5618 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5619 "expected call_preallocated_setup Value"); 5620 for (auto *U : PreallocatedSetup->users()) { 5621 auto *UseCall = cast<CallBase>(U); 5622 const Function *Fn = UseCall->getCalledFunction(); 5623 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5624 return UseCall; 5625 } 5626 } 5627 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5628 } 5629 5630 /// Lower the call to the specified intrinsic function. 5631 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5632 unsigned Intrinsic) { 5633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5634 SDLoc sdl = getCurSDLoc(); 5635 DebugLoc dl = getCurDebugLoc(); 5636 SDValue Res; 5637 5638 switch (Intrinsic) { 5639 default: 5640 // By default, turn this into a target intrinsic node. 5641 visitTargetIntrinsic(I, Intrinsic); 5642 return; 5643 case Intrinsic::vscale: { 5644 match(&I, m_VScale(DAG.getDataLayout())); 5645 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5646 setValue(&I, 5647 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5648 return; 5649 } 5650 case Intrinsic::vastart: visitVAStart(I); return; 5651 case Intrinsic::vaend: visitVAEnd(I); return; 5652 case Intrinsic::vacopy: visitVACopy(I); return; 5653 case Intrinsic::returnaddress: 5654 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5655 TLI.getPointerTy(DAG.getDataLayout()), 5656 getValue(I.getArgOperand(0)))); 5657 return; 5658 case Intrinsic::addressofreturnaddress: 5659 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5660 TLI.getPointerTy(DAG.getDataLayout()))); 5661 return; 5662 case Intrinsic::sponentry: 5663 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5664 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5665 return; 5666 case Intrinsic::frameaddress: 5667 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5668 TLI.getFrameIndexTy(DAG.getDataLayout()), 5669 getValue(I.getArgOperand(0)))); 5670 return; 5671 case Intrinsic::read_register: { 5672 Value *Reg = I.getArgOperand(0); 5673 SDValue Chain = getRoot(); 5674 SDValue RegName = 5675 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5676 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5677 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5678 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5679 setValue(&I, Res); 5680 DAG.setRoot(Res.getValue(1)); 5681 return; 5682 } 5683 case Intrinsic::write_register: { 5684 Value *Reg = I.getArgOperand(0); 5685 Value *RegValue = I.getArgOperand(1); 5686 SDValue Chain = getRoot(); 5687 SDValue RegName = 5688 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5689 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5690 RegName, getValue(RegValue))); 5691 return; 5692 } 5693 case Intrinsic::memcpy: { 5694 const auto &MCI = cast<MemCpyInst>(I); 5695 SDValue Op1 = getValue(I.getArgOperand(0)); 5696 SDValue Op2 = getValue(I.getArgOperand(1)); 5697 SDValue Op3 = getValue(I.getArgOperand(2)); 5698 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5699 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5700 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5701 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5702 bool isVol = MCI.isVolatile(); 5703 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5704 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5705 // node. 5706 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5707 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5708 /* AlwaysInline */ false, isTC, 5709 MachinePointerInfo(I.getArgOperand(0)), 5710 MachinePointerInfo(I.getArgOperand(1))); 5711 updateDAGForMaybeTailCall(MC); 5712 return; 5713 } 5714 case Intrinsic::memcpy_inline: { 5715 const auto &MCI = cast<MemCpyInlineInst>(I); 5716 SDValue Dst = getValue(I.getArgOperand(0)); 5717 SDValue Src = getValue(I.getArgOperand(1)); 5718 SDValue Size = getValue(I.getArgOperand(2)); 5719 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5720 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5721 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5722 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5723 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5724 bool isVol = MCI.isVolatile(); 5725 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5726 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5727 // node. 5728 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5729 /* AlwaysInline */ true, isTC, 5730 MachinePointerInfo(I.getArgOperand(0)), 5731 MachinePointerInfo(I.getArgOperand(1))); 5732 updateDAGForMaybeTailCall(MC); 5733 return; 5734 } 5735 case Intrinsic::memset: { 5736 const auto &MSI = cast<MemSetInst>(I); 5737 SDValue Op1 = getValue(I.getArgOperand(0)); 5738 SDValue Op2 = getValue(I.getArgOperand(1)); 5739 SDValue Op3 = getValue(I.getArgOperand(2)); 5740 // @llvm.memset defines 0 and 1 to both mean no alignment. 5741 Align Alignment = MSI.getDestAlign().valueOrOne(); 5742 bool isVol = MSI.isVolatile(); 5743 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5744 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5745 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5746 MachinePointerInfo(I.getArgOperand(0))); 5747 updateDAGForMaybeTailCall(MS); 5748 return; 5749 } 5750 case Intrinsic::memmove: { 5751 const auto &MMI = cast<MemMoveInst>(I); 5752 SDValue Op1 = getValue(I.getArgOperand(0)); 5753 SDValue Op2 = getValue(I.getArgOperand(1)); 5754 SDValue Op3 = getValue(I.getArgOperand(2)); 5755 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5756 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5757 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5758 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5759 bool isVol = MMI.isVolatile(); 5760 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5761 // FIXME: Support passing different dest/src alignments to the memmove DAG 5762 // node. 5763 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5764 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5765 isTC, MachinePointerInfo(I.getArgOperand(0)), 5766 MachinePointerInfo(I.getArgOperand(1))); 5767 updateDAGForMaybeTailCall(MM); 5768 return; 5769 } 5770 case Intrinsic::memcpy_element_unordered_atomic: { 5771 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5772 SDValue Dst = getValue(MI.getRawDest()); 5773 SDValue Src = getValue(MI.getRawSource()); 5774 SDValue Length = getValue(MI.getLength()); 5775 5776 unsigned DstAlign = MI.getDestAlignment(); 5777 unsigned SrcAlign = MI.getSourceAlignment(); 5778 Type *LengthTy = MI.getLength()->getType(); 5779 unsigned ElemSz = MI.getElementSizeInBytes(); 5780 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5781 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5782 SrcAlign, Length, LengthTy, ElemSz, isTC, 5783 MachinePointerInfo(MI.getRawDest()), 5784 MachinePointerInfo(MI.getRawSource())); 5785 updateDAGForMaybeTailCall(MC); 5786 return; 5787 } 5788 case Intrinsic::memmove_element_unordered_atomic: { 5789 auto &MI = cast<AtomicMemMoveInst>(I); 5790 SDValue Dst = getValue(MI.getRawDest()); 5791 SDValue Src = getValue(MI.getRawSource()); 5792 SDValue Length = getValue(MI.getLength()); 5793 5794 unsigned DstAlign = MI.getDestAlignment(); 5795 unsigned SrcAlign = MI.getSourceAlignment(); 5796 Type *LengthTy = MI.getLength()->getType(); 5797 unsigned ElemSz = MI.getElementSizeInBytes(); 5798 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5799 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5800 SrcAlign, Length, LengthTy, ElemSz, isTC, 5801 MachinePointerInfo(MI.getRawDest()), 5802 MachinePointerInfo(MI.getRawSource())); 5803 updateDAGForMaybeTailCall(MC); 5804 return; 5805 } 5806 case Intrinsic::memset_element_unordered_atomic: { 5807 auto &MI = cast<AtomicMemSetInst>(I); 5808 SDValue Dst = getValue(MI.getRawDest()); 5809 SDValue Val = getValue(MI.getValue()); 5810 SDValue Length = getValue(MI.getLength()); 5811 5812 unsigned DstAlign = MI.getDestAlignment(); 5813 Type *LengthTy = MI.getLength()->getType(); 5814 unsigned ElemSz = MI.getElementSizeInBytes(); 5815 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5816 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5817 LengthTy, ElemSz, isTC, 5818 MachinePointerInfo(MI.getRawDest())); 5819 updateDAGForMaybeTailCall(MC); 5820 return; 5821 } 5822 case Intrinsic::call_preallocated_setup: { 5823 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5824 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5825 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5826 getRoot(), SrcValue); 5827 setValue(&I, Res); 5828 DAG.setRoot(Res); 5829 return; 5830 } 5831 case Intrinsic::call_preallocated_arg: { 5832 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5833 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5834 SDValue Ops[3]; 5835 Ops[0] = getRoot(); 5836 Ops[1] = SrcValue; 5837 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5838 MVT::i32); // arg index 5839 SDValue Res = DAG.getNode( 5840 ISD::PREALLOCATED_ARG, sdl, 5841 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5842 setValue(&I, Res); 5843 DAG.setRoot(Res.getValue(1)); 5844 return; 5845 } 5846 case Intrinsic::dbg_addr: 5847 case Intrinsic::dbg_declare: { 5848 const auto &DI = cast<DbgVariableIntrinsic>(I); 5849 DILocalVariable *Variable = DI.getVariable(); 5850 DIExpression *Expression = DI.getExpression(); 5851 dropDanglingDebugInfo(Variable, Expression); 5852 assert(Variable && "Missing variable"); 5853 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5854 << "\n"); 5855 // Check if address has undef value. 5856 const Value *Address = DI.getVariableLocation(); 5857 if (!Address || isa<UndefValue>(Address) || 5858 (Address->use_empty() && !isa<Argument>(Address))) { 5859 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5860 << " (bad/undef/unused-arg address)\n"); 5861 return; 5862 } 5863 5864 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5865 5866 // Check if this variable can be described by a frame index, typically 5867 // either as a static alloca or a byval parameter. 5868 int FI = std::numeric_limits<int>::max(); 5869 if (const auto *AI = 5870 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5871 if (AI->isStaticAlloca()) { 5872 auto I = FuncInfo.StaticAllocaMap.find(AI); 5873 if (I != FuncInfo.StaticAllocaMap.end()) 5874 FI = I->second; 5875 } 5876 } else if (const auto *Arg = dyn_cast<Argument>( 5877 Address->stripInBoundsConstantOffsets())) { 5878 FI = FuncInfo.getArgumentFrameIndex(Arg); 5879 } 5880 5881 // llvm.dbg.addr is control dependent and always generates indirect 5882 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5883 // the MachineFunction variable table. 5884 if (FI != std::numeric_limits<int>::max()) { 5885 if (Intrinsic == Intrinsic::dbg_addr) { 5886 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5887 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5888 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5889 } else { 5890 LLVM_DEBUG(dbgs() << "Skipping " << DI 5891 << " (variable info stashed in MF side table)\n"); 5892 } 5893 return; 5894 } 5895 5896 SDValue &N = NodeMap[Address]; 5897 if (!N.getNode() && isa<Argument>(Address)) 5898 // Check unused arguments map. 5899 N = UnusedArgNodeMap[Address]; 5900 SDDbgValue *SDV; 5901 if (N.getNode()) { 5902 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5903 Address = BCI->getOperand(0); 5904 // Parameters are handled specially. 5905 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5906 if (isParameter && FINode) { 5907 // Byval parameter. We have a frame index at this point. 5908 SDV = 5909 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5910 /*IsIndirect*/ true, dl, SDNodeOrder); 5911 } else if (isa<Argument>(Address)) { 5912 // Address is an argument, so try to emit its dbg value using 5913 // virtual register info from the FuncInfo.ValueMap. 5914 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5915 return; 5916 } else { 5917 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5918 true, dl, SDNodeOrder); 5919 } 5920 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5921 } else { 5922 // If Address is an argument then try to emit its dbg value using 5923 // virtual register info from the FuncInfo.ValueMap. 5924 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5925 N)) { 5926 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5927 << " (could not emit func-arg dbg_value)\n"); 5928 } 5929 } 5930 return; 5931 } 5932 case Intrinsic::dbg_label: { 5933 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5934 DILabel *Label = DI.getLabel(); 5935 assert(Label && "Missing label"); 5936 5937 SDDbgLabel *SDV; 5938 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5939 DAG.AddDbgLabel(SDV); 5940 return; 5941 } 5942 case Intrinsic::dbg_value: { 5943 const DbgValueInst &DI = cast<DbgValueInst>(I); 5944 assert(DI.getVariable() && "Missing variable"); 5945 5946 DILocalVariable *Variable = DI.getVariable(); 5947 DIExpression *Expression = DI.getExpression(); 5948 dropDanglingDebugInfo(Variable, Expression); 5949 const Value *V = DI.getValue(); 5950 if (!V) 5951 return; 5952 5953 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5954 SDNodeOrder)) 5955 return; 5956 5957 // TODO: Dangling debug info will eventually either be resolved or produce 5958 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5959 // between the original dbg.value location and its resolved DBG_VALUE, which 5960 // we should ideally fill with an extra Undef DBG_VALUE. 5961 5962 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5963 return; 5964 } 5965 5966 case Intrinsic::eh_typeid_for: { 5967 // Find the type id for the given typeinfo. 5968 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5969 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5970 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5971 setValue(&I, Res); 5972 return; 5973 } 5974 5975 case Intrinsic::eh_return_i32: 5976 case Intrinsic::eh_return_i64: 5977 DAG.getMachineFunction().setCallsEHReturn(true); 5978 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5979 MVT::Other, 5980 getControlRoot(), 5981 getValue(I.getArgOperand(0)), 5982 getValue(I.getArgOperand(1)))); 5983 return; 5984 case Intrinsic::eh_unwind_init: 5985 DAG.getMachineFunction().setCallsUnwindInit(true); 5986 return; 5987 case Intrinsic::eh_dwarf_cfa: 5988 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5989 TLI.getPointerTy(DAG.getDataLayout()), 5990 getValue(I.getArgOperand(0)))); 5991 return; 5992 case Intrinsic::eh_sjlj_callsite: { 5993 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5994 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5995 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5996 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5997 5998 MMI.setCurrentCallSite(CI->getZExtValue()); 5999 return; 6000 } 6001 case Intrinsic::eh_sjlj_functioncontext: { 6002 // Get and store the index of the function context. 6003 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6004 AllocaInst *FnCtx = 6005 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6006 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6007 MFI.setFunctionContextIndex(FI); 6008 return; 6009 } 6010 case Intrinsic::eh_sjlj_setjmp: { 6011 SDValue Ops[2]; 6012 Ops[0] = getRoot(); 6013 Ops[1] = getValue(I.getArgOperand(0)); 6014 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6015 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6016 setValue(&I, Op.getValue(0)); 6017 DAG.setRoot(Op.getValue(1)); 6018 return; 6019 } 6020 case Intrinsic::eh_sjlj_longjmp: 6021 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6022 getRoot(), getValue(I.getArgOperand(0)))); 6023 return; 6024 case Intrinsic::eh_sjlj_setup_dispatch: 6025 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6026 getRoot())); 6027 return; 6028 case Intrinsic::masked_gather: 6029 visitMaskedGather(I); 6030 return; 6031 case Intrinsic::masked_load: 6032 visitMaskedLoad(I); 6033 return; 6034 case Intrinsic::masked_scatter: 6035 visitMaskedScatter(I); 6036 return; 6037 case Intrinsic::masked_store: 6038 visitMaskedStore(I); 6039 return; 6040 case Intrinsic::masked_expandload: 6041 visitMaskedLoad(I, true /* IsExpanding */); 6042 return; 6043 case Intrinsic::masked_compressstore: 6044 visitMaskedStore(I, true /* IsCompressing */); 6045 return; 6046 case Intrinsic::powi: 6047 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6048 getValue(I.getArgOperand(1)), DAG)); 6049 return; 6050 case Intrinsic::log: 6051 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6052 return; 6053 case Intrinsic::log2: 6054 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6055 return; 6056 case Intrinsic::log10: 6057 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6058 return; 6059 case Intrinsic::exp: 6060 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6061 return; 6062 case Intrinsic::exp2: 6063 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6064 return; 6065 case Intrinsic::pow: 6066 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6067 getValue(I.getArgOperand(1)), DAG, TLI)); 6068 return; 6069 case Intrinsic::sqrt: 6070 case Intrinsic::fabs: 6071 case Intrinsic::sin: 6072 case Intrinsic::cos: 6073 case Intrinsic::floor: 6074 case Intrinsic::ceil: 6075 case Intrinsic::trunc: 6076 case Intrinsic::rint: 6077 case Intrinsic::nearbyint: 6078 case Intrinsic::round: 6079 case Intrinsic::roundeven: 6080 case Intrinsic::canonicalize: { 6081 unsigned Opcode; 6082 switch (Intrinsic) { 6083 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6084 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6085 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6086 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6087 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6088 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6089 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6090 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6091 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6092 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6093 case Intrinsic::round: Opcode = ISD::FROUND; break; 6094 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6095 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6096 } 6097 6098 setValue(&I, DAG.getNode(Opcode, sdl, 6099 getValue(I.getArgOperand(0)).getValueType(), 6100 getValue(I.getArgOperand(0)))); 6101 return; 6102 } 6103 case Intrinsic::lround: 6104 case Intrinsic::llround: 6105 case Intrinsic::lrint: 6106 case Intrinsic::llrint: { 6107 unsigned Opcode; 6108 switch (Intrinsic) { 6109 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6110 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6111 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6112 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6113 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6114 } 6115 6116 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6117 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6118 getValue(I.getArgOperand(0)))); 6119 return; 6120 } 6121 case Intrinsic::minnum: 6122 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6123 getValue(I.getArgOperand(0)).getValueType(), 6124 getValue(I.getArgOperand(0)), 6125 getValue(I.getArgOperand(1)))); 6126 return; 6127 case Intrinsic::maxnum: 6128 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6129 getValue(I.getArgOperand(0)).getValueType(), 6130 getValue(I.getArgOperand(0)), 6131 getValue(I.getArgOperand(1)))); 6132 return; 6133 case Intrinsic::minimum: 6134 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6135 getValue(I.getArgOperand(0)).getValueType(), 6136 getValue(I.getArgOperand(0)), 6137 getValue(I.getArgOperand(1)))); 6138 return; 6139 case Intrinsic::maximum: 6140 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6141 getValue(I.getArgOperand(0)).getValueType(), 6142 getValue(I.getArgOperand(0)), 6143 getValue(I.getArgOperand(1)))); 6144 return; 6145 case Intrinsic::copysign: 6146 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6147 getValue(I.getArgOperand(0)).getValueType(), 6148 getValue(I.getArgOperand(0)), 6149 getValue(I.getArgOperand(1)))); 6150 return; 6151 case Intrinsic::fma: 6152 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6153 getValue(I.getArgOperand(0)).getValueType(), 6154 getValue(I.getArgOperand(0)), 6155 getValue(I.getArgOperand(1)), 6156 getValue(I.getArgOperand(2)))); 6157 return; 6158 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6159 case Intrinsic::INTRINSIC: 6160 #include "llvm/IR/ConstrainedOps.def" 6161 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6162 return; 6163 case Intrinsic::fmuladd: { 6164 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6165 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6166 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6167 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6168 getValue(I.getArgOperand(0)).getValueType(), 6169 getValue(I.getArgOperand(0)), 6170 getValue(I.getArgOperand(1)), 6171 getValue(I.getArgOperand(2)))); 6172 } else { 6173 // TODO: Intrinsic calls should have fast-math-flags. 6174 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6175 getValue(I.getArgOperand(0)).getValueType(), 6176 getValue(I.getArgOperand(0)), 6177 getValue(I.getArgOperand(1))); 6178 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6179 getValue(I.getArgOperand(0)).getValueType(), 6180 Mul, 6181 getValue(I.getArgOperand(2))); 6182 setValue(&I, Add); 6183 } 6184 return; 6185 } 6186 case Intrinsic::convert_to_fp16: 6187 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6188 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6189 getValue(I.getArgOperand(0)), 6190 DAG.getTargetConstant(0, sdl, 6191 MVT::i32)))); 6192 return; 6193 case Intrinsic::convert_from_fp16: 6194 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6195 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6196 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6197 getValue(I.getArgOperand(0))))); 6198 return; 6199 case Intrinsic::pcmarker: { 6200 SDValue Tmp = getValue(I.getArgOperand(0)); 6201 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6202 return; 6203 } 6204 case Intrinsic::readcyclecounter: { 6205 SDValue Op = getRoot(); 6206 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6207 DAG.getVTList(MVT::i64, MVT::Other), Op); 6208 setValue(&I, Res); 6209 DAG.setRoot(Res.getValue(1)); 6210 return; 6211 } 6212 case Intrinsic::bitreverse: 6213 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6214 getValue(I.getArgOperand(0)).getValueType(), 6215 getValue(I.getArgOperand(0)))); 6216 return; 6217 case Intrinsic::bswap: 6218 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6219 getValue(I.getArgOperand(0)).getValueType(), 6220 getValue(I.getArgOperand(0)))); 6221 return; 6222 case Intrinsic::cttz: { 6223 SDValue Arg = getValue(I.getArgOperand(0)); 6224 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6225 EVT Ty = Arg.getValueType(); 6226 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6227 sdl, Ty, Arg)); 6228 return; 6229 } 6230 case Intrinsic::ctlz: { 6231 SDValue Arg = getValue(I.getArgOperand(0)); 6232 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6233 EVT Ty = Arg.getValueType(); 6234 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6235 sdl, Ty, Arg)); 6236 return; 6237 } 6238 case Intrinsic::ctpop: { 6239 SDValue Arg = getValue(I.getArgOperand(0)); 6240 EVT Ty = Arg.getValueType(); 6241 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6242 return; 6243 } 6244 case Intrinsic::fshl: 6245 case Intrinsic::fshr: { 6246 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6247 SDValue X = getValue(I.getArgOperand(0)); 6248 SDValue Y = getValue(I.getArgOperand(1)); 6249 SDValue Z = getValue(I.getArgOperand(2)); 6250 EVT VT = X.getValueType(); 6251 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6252 SDValue Zero = DAG.getConstant(0, sdl, VT); 6253 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6254 6255 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6256 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6257 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6258 return; 6259 } 6260 6261 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6262 // avoid the select that is necessary in the general case to filter out 6263 // the 0-shift possibility that leads to UB. 6264 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6265 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6266 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6267 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6268 return; 6269 } 6270 6271 // Some targets only rotate one way. Try the opposite direction. 6272 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6273 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6274 // Negate the shift amount because it is safe to ignore the high bits. 6275 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6276 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6277 return; 6278 } 6279 6280 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6281 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6282 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6283 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6284 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6285 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6286 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6287 return; 6288 } 6289 6290 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6291 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6292 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6293 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6294 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6295 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6296 6297 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6298 // and that is undefined. We must compare and select to avoid UB. 6299 EVT CCVT = MVT::i1; 6300 if (VT.isVector()) 6301 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6302 6303 // For fshl, 0-shift returns the 1st arg (X). 6304 // For fshr, 0-shift returns the 2nd arg (Y). 6305 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6306 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6307 return; 6308 } 6309 case Intrinsic::sadd_sat: { 6310 SDValue Op1 = getValue(I.getArgOperand(0)); 6311 SDValue Op2 = getValue(I.getArgOperand(1)); 6312 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6313 return; 6314 } 6315 case Intrinsic::uadd_sat: { 6316 SDValue Op1 = getValue(I.getArgOperand(0)); 6317 SDValue Op2 = getValue(I.getArgOperand(1)); 6318 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6319 return; 6320 } 6321 case Intrinsic::ssub_sat: { 6322 SDValue Op1 = getValue(I.getArgOperand(0)); 6323 SDValue Op2 = getValue(I.getArgOperand(1)); 6324 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6325 return; 6326 } 6327 case Intrinsic::usub_sat: { 6328 SDValue Op1 = getValue(I.getArgOperand(0)); 6329 SDValue Op2 = getValue(I.getArgOperand(1)); 6330 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6331 return; 6332 } 6333 case Intrinsic::smul_fix: 6334 case Intrinsic::umul_fix: 6335 case Intrinsic::smul_fix_sat: 6336 case Intrinsic::umul_fix_sat: { 6337 SDValue Op1 = getValue(I.getArgOperand(0)); 6338 SDValue Op2 = getValue(I.getArgOperand(1)); 6339 SDValue Op3 = getValue(I.getArgOperand(2)); 6340 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6341 Op1.getValueType(), Op1, Op2, Op3)); 6342 return; 6343 } 6344 case Intrinsic::sdiv_fix: 6345 case Intrinsic::udiv_fix: 6346 case Intrinsic::sdiv_fix_sat: 6347 case Intrinsic::udiv_fix_sat: { 6348 SDValue Op1 = getValue(I.getArgOperand(0)); 6349 SDValue Op2 = getValue(I.getArgOperand(1)); 6350 SDValue Op3 = getValue(I.getArgOperand(2)); 6351 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6352 Op1, Op2, Op3, DAG, TLI)); 6353 return; 6354 } 6355 case Intrinsic::stacksave: { 6356 SDValue Op = getRoot(); 6357 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6358 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6359 setValue(&I, Res); 6360 DAG.setRoot(Res.getValue(1)); 6361 return; 6362 } 6363 case Intrinsic::stackrestore: 6364 Res = getValue(I.getArgOperand(0)); 6365 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6366 return; 6367 case Intrinsic::get_dynamic_area_offset: { 6368 SDValue Op = getRoot(); 6369 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6370 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6371 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6372 // target. 6373 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6374 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6375 " intrinsic!"); 6376 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6377 Op); 6378 DAG.setRoot(Op); 6379 setValue(&I, Res); 6380 return; 6381 } 6382 case Intrinsic::stackguard: { 6383 MachineFunction &MF = DAG.getMachineFunction(); 6384 const Module &M = *MF.getFunction().getParent(); 6385 SDValue Chain = getRoot(); 6386 if (TLI.useLoadStackGuardNode()) { 6387 Res = getLoadStackGuard(DAG, sdl, Chain); 6388 } else { 6389 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6390 const Value *Global = TLI.getSDagStackGuard(M); 6391 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6392 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6393 MachinePointerInfo(Global, 0), Align, 6394 MachineMemOperand::MOVolatile); 6395 } 6396 if (TLI.useStackGuardXorFP()) 6397 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6398 DAG.setRoot(Chain); 6399 setValue(&I, Res); 6400 return; 6401 } 6402 case Intrinsic::stackprotector: { 6403 // Emit code into the DAG to store the stack guard onto the stack. 6404 MachineFunction &MF = DAG.getMachineFunction(); 6405 MachineFrameInfo &MFI = MF.getFrameInfo(); 6406 SDValue Src, Chain = getRoot(); 6407 6408 if (TLI.useLoadStackGuardNode()) 6409 Src = getLoadStackGuard(DAG, sdl, Chain); 6410 else 6411 Src = getValue(I.getArgOperand(0)); // The guard's value. 6412 6413 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6414 6415 int FI = FuncInfo.StaticAllocaMap[Slot]; 6416 MFI.setStackProtectorIndex(FI); 6417 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6418 6419 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6420 6421 // Store the stack protector onto the stack. 6422 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6423 DAG.getMachineFunction(), FI), 6424 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6425 setValue(&I, Res); 6426 DAG.setRoot(Res); 6427 return; 6428 } 6429 case Intrinsic::objectsize: 6430 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6431 6432 case Intrinsic::is_constant: 6433 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6434 6435 case Intrinsic::annotation: 6436 case Intrinsic::ptr_annotation: 6437 case Intrinsic::launder_invariant_group: 6438 case Intrinsic::strip_invariant_group: 6439 // Drop the intrinsic, but forward the value 6440 setValue(&I, getValue(I.getOperand(0))); 6441 return; 6442 case Intrinsic::assume: 6443 case Intrinsic::var_annotation: 6444 case Intrinsic::sideeffect: 6445 // Discard annotate attributes, assumptions, and artificial side-effects. 6446 return; 6447 6448 case Intrinsic::codeview_annotation: { 6449 // Emit a label associated with this metadata. 6450 MachineFunction &MF = DAG.getMachineFunction(); 6451 MCSymbol *Label = 6452 MF.getMMI().getContext().createTempSymbol("annotation", true); 6453 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6454 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6455 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6456 DAG.setRoot(Res); 6457 return; 6458 } 6459 6460 case Intrinsic::init_trampoline: { 6461 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6462 6463 SDValue Ops[6]; 6464 Ops[0] = getRoot(); 6465 Ops[1] = getValue(I.getArgOperand(0)); 6466 Ops[2] = getValue(I.getArgOperand(1)); 6467 Ops[3] = getValue(I.getArgOperand(2)); 6468 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6469 Ops[5] = DAG.getSrcValue(F); 6470 6471 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6472 6473 DAG.setRoot(Res); 6474 return; 6475 } 6476 case Intrinsic::adjust_trampoline: 6477 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6478 TLI.getPointerTy(DAG.getDataLayout()), 6479 getValue(I.getArgOperand(0)))); 6480 return; 6481 case Intrinsic::gcroot: { 6482 assert(DAG.getMachineFunction().getFunction().hasGC() && 6483 "only valid in functions with gc specified, enforced by Verifier"); 6484 assert(GFI && "implied by previous"); 6485 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6486 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6487 6488 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6489 GFI->addStackRoot(FI->getIndex(), TypeMap); 6490 return; 6491 } 6492 case Intrinsic::gcread: 6493 case Intrinsic::gcwrite: 6494 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6495 case Intrinsic::flt_rounds: 6496 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6497 setValue(&I, Res); 6498 DAG.setRoot(Res.getValue(1)); 6499 return; 6500 6501 case Intrinsic::expect: 6502 // Just replace __builtin_expect(exp, c) with EXP. 6503 setValue(&I, getValue(I.getArgOperand(0))); 6504 return; 6505 6506 case Intrinsic::debugtrap: 6507 case Intrinsic::trap: { 6508 StringRef TrapFuncName = 6509 I.getAttributes() 6510 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6511 .getValueAsString(); 6512 if (TrapFuncName.empty()) { 6513 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6514 ISD::TRAP : ISD::DEBUGTRAP; 6515 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6516 return; 6517 } 6518 TargetLowering::ArgListTy Args; 6519 6520 TargetLowering::CallLoweringInfo CLI(DAG); 6521 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6522 CallingConv::C, I.getType(), 6523 DAG.getExternalSymbol(TrapFuncName.data(), 6524 TLI.getPointerTy(DAG.getDataLayout())), 6525 std::move(Args)); 6526 6527 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6528 DAG.setRoot(Result.second); 6529 return; 6530 } 6531 6532 case Intrinsic::uadd_with_overflow: 6533 case Intrinsic::sadd_with_overflow: 6534 case Intrinsic::usub_with_overflow: 6535 case Intrinsic::ssub_with_overflow: 6536 case Intrinsic::umul_with_overflow: 6537 case Intrinsic::smul_with_overflow: { 6538 ISD::NodeType Op; 6539 switch (Intrinsic) { 6540 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6541 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6542 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6543 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6544 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6545 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6546 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6547 } 6548 SDValue Op1 = getValue(I.getArgOperand(0)); 6549 SDValue Op2 = getValue(I.getArgOperand(1)); 6550 6551 EVT ResultVT = Op1.getValueType(); 6552 EVT OverflowVT = MVT::i1; 6553 if (ResultVT.isVector()) 6554 OverflowVT = EVT::getVectorVT( 6555 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6556 6557 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6558 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6559 return; 6560 } 6561 case Intrinsic::prefetch: { 6562 SDValue Ops[5]; 6563 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6564 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6565 Ops[0] = DAG.getRoot(); 6566 Ops[1] = getValue(I.getArgOperand(0)); 6567 Ops[2] = getValue(I.getArgOperand(1)); 6568 Ops[3] = getValue(I.getArgOperand(2)); 6569 Ops[4] = getValue(I.getArgOperand(3)); 6570 SDValue Result = DAG.getMemIntrinsicNode( 6571 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6572 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6573 /* align */ None, Flags); 6574 6575 // Chain the prefetch in parallell with any pending loads, to stay out of 6576 // the way of later optimizations. 6577 PendingLoads.push_back(Result); 6578 Result = getRoot(); 6579 DAG.setRoot(Result); 6580 return; 6581 } 6582 case Intrinsic::lifetime_start: 6583 case Intrinsic::lifetime_end: { 6584 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6585 // Stack coloring is not enabled in O0, discard region information. 6586 if (TM.getOptLevel() == CodeGenOpt::None) 6587 return; 6588 6589 const int64_t ObjectSize = 6590 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6591 Value *const ObjectPtr = I.getArgOperand(1); 6592 SmallVector<const Value *, 4> Allocas; 6593 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6594 6595 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6596 E = Allocas.end(); Object != E; ++Object) { 6597 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6598 6599 // Could not find an Alloca. 6600 if (!LifetimeObject) 6601 continue; 6602 6603 // First check that the Alloca is static, otherwise it won't have a 6604 // valid frame index. 6605 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6606 if (SI == FuncInfo.StaticAllocaMap.end()) 6607 return; 6608 6609 const int FrameIndex = SI->second; 6610 int64_t Offset; 6611 if (GetPointerBaseWithConstantOffset( 6612 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6613 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6614 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6615 Offset); 6616 DAG.setRoot(Res); 6617 } 6618 return; 6619 } 6620 case Intrinsic::invariant_start: 6621 // Discard region information. 6622 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6623 return; 6624 case Intrinsic::invariant_end: 6625 // Discard region information. 6626 return; 6627 case Intrinsic::clear_cache: 6628 /// FunctionName may be null. 6629 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6630 lowerCallToExternalSymbol(I, FunctionName); 6631 return; 6632 case Intrinsic::donothing: 6633 // ignore 6634 return; 6635 case Intrinsic::experimental_stackmap: 6636 visitStackmap(I); 6637 return; 6638 case Intrinsic::experimental_patchpoint_void: 6639 case Intrinsic::experimental_patchpoint_i64: 6640 visitPatchpoint(I); 6641 return; 6642 case Intrinsic::experimental_gc_statepoint: 6643 LowerStatepoint(cast<GCStatepointInst>(I)); 6644 return; 6645 case Intrinsic::experimental_gc_result: 6646 visitGCResult(cast<GCResultInst>(I)); 6647 return; 6648 case Intrinsic::experimental_gc_relocate: 6649 visitGCRelocate(cast<GCRelocateInst>(I)); 6650 return; 6651 case Intrinsic::instrprof_increment: 6652 llvm_unreachable("instrprof failed to lower an increment"); 6653 case Intrinsic::instrprof_value_profile: 6654 llvm_unreachable("instrprof failed to lower a value profiling call"); 6655 case Intrinsic::localescape: { 6656 MachineFunction &MF = DAG.getMachineFunction(); 6657 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6658 6659 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6660 // is the same on all targets. 6661 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6662 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6663 if (isa<ConstantPointerNull>(Arg)) 6664 continue; // Skip null pointers. They represent a hole in index space. 6665 AllocaInst *Slot = cast<AllocaInst>(Arg); 6666 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6667 "can only escape static allocas"); 6668 int FI = FuncInfo.StaticAllocaMap[Slot]; 6669 MCSymbol *FrameAllocSym = 6670 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6671 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6672 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6673 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6674 .addSym(FrameAllocSym) 6675 .addFrameIndex(FI); 6676 } 6677 6678 return; 6679 } 6680 6681 case Intrinsic::localrecover: { 6682 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6683 MachineFunction &MF = DAG.getMachineFunction(); 6684 6685 // Get the symbol that defines the frame offset. 6686 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6687 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6688 unsigned IdxVal = 6689 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6690 MCSymbol *FrameAllocSym = 6691 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6692 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6693 6694 Value *FP = I.getArgOperand(1); 6695 SDValue FPVal = getValue(FP); 6696 EVT PtrVT = FPVal.getValueType(); 6697 6698 // Create a MCSymbol for the label to avoid any target lowering 6699 // that would make this PC relative. 6700 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6701 SDValue OffsetVal = 6702 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6703 6704 // Add the offset to the FP. 6705 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6706 setValue(&I, Add); 6707 6708 return; 6709 } 6710 6711 case Intrinsic::eh_exceptionpointer: 6712 case Intrinsic::eh_exceptioncode: { 6713 // Get the exception pointer vreg, copy from it, and resize it to fit. 6714 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6715 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6716 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6717 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6718 SDValue N = 6719 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6720 if (Intrinsic == Intrinsic::eh_exceptioncode) 6721 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6722 setValue(&I, N); 6723 return; 6724 } 6725 case Intrinsic::xray_customevent: { 6726 // Here we want to make sure that the intrinsic behaves as if it has a 6727 // specific calling convention, and only for x86_64. 6728 // FIXME: Support other platforms later. 6729 const auto &Triple = DAG.getTarget().getTargetTriple(); 6730 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6731 return; 6732 6733 SDLoc DL = getCurSDLoc(); 6734 SmallVector<SDValue, 8> Ops; 6735 6736 // We want to say that we always want the arguments in registers. 6737 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6738 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6739 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6740 SDValue Chain = getRoot(); 6741 Ops.push_back(LogEntryVal); 6742 Ops.push_back(StrSizeVal); 6743 Ops.push_back(Chain); 6744 6745 // We need to enforce the calling convention for the callsite, so that 6746 // argument ordering is enforced correctly, and that register allocation can 6747 // see that some registers may be assumed clobbered and have to preserve 6748 // them across calls to the intrinsic. 6749 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6750 DL, NodeTys, Ops); 6751 SDValue patchableNode = SDValue(MN, 0); 6752 DAG.setRoot(patchableNode); 6753 setValue(&I, patchableNode); 6754 return; 6755 } 6756 case Intrinsic::xray_typedevent: { 6757 // Here we want to make sure that the intrinsic behaves as if it has a 6758 // specific calling convention, and only for x86_64. 6759 // FIXME: Support other platforms later. 6760 const auto &Triple = DAG.getTarget().getTargetTriple(); 6761 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6762 return; 6763 6764 SDLoc DL = getCurSDLoc(); 6765 SmallVector<SDValue, 8> Ops; 6766 6767 // We want to say that we always want the arguments in registers. 6768 // It's unclear to me how manipulating the selection DAG here forces callers 6769 // to provide arguments in registers instead of on the stack. 6770 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6771 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6772 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6773 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6774 SDValue Chain = getRoot(); 6775 Ops.push_back(LogTypeId); 6776 Ops.push_back(LogEntryVal); 6777 Ops.push_back(StrSizeVal); 6778 Ops.push_back(Chain); 6779 6780 // We need to enforce the calling convention for the callsite, so that 6781 // argument ordering is enforced correctly, and that register allocation can 6782 // see that some registers may be assumed clobbered and have to preserve 6783 // them across calls to the intrinsic. 6784 MachineSDNode *MN = DAG.getMachineNode( 6785 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6786 SDValue patchableNode = SDValue(MN, 0); 6787 DAG.setRoot(patchableNode); 6788 setValue(&I, patchableNode); 6789 return; 6790 } 6791 case Intrinsic::experimental_deoptimize: 6792 LowerDeoptimizeCall(&I); 6793 return; 6794 6795 case Intrinsic::experimental_vector_reduce_v2_fadd: 6796 case Intrinsic::experimental_vector_reduce_v2_fmul: 6797 case Intrinsic::experimental_vector_reduce_add: 6798 case Intrinsic::experimental_vector_reduce_mul: 6799 case Intrinsic::experimental_vector_reduce_and: 6800 case Intrinsic::experimental_vector_reduce_or: 6801 case Intrinsic::experimental_vector_reduce_xor: 6802 case Intrinsic::experimental_vector_reduce_smax: 6803 case Intrinsic::experimental_vector_reduce_smin: 6804 case Intrinsic::experimental_vector_reduce_umax: 6805 case Intrinsic::experimental_vector_reduce_umin: 6806 case Intrinsic::experimental_vector_reduce_fmax: 6807 case Intrinsic::experimental_vector_reduce_fmin: 6808 visitVectorReduce(I, Intrinsic); 6809 return; 6810 6811 case Intrinsic::icall_branch_funnel: { 6812 SmallVector<SDValue, 16> Ops; 6813 Ops.push_back(getValue(I.getArgOperand(0))); 6814 6815 int64_t Offset; 6816 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6817 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6818 if (!Base) 6819 report_fatal_error( 6820 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6821 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6822 6823 struct BranchFunnelTarget { 6824 int64_t Offset; 6825 SDValue Target; 6826 }; 6827 SmallVector<BranchFunnelTarget, 8> Targets; 6828 6829 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6830 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6831 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6832 if (ElemBase != Base) 6833 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6834 "to the same GlobalValue"); 6835 6836 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6837 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6838 if (!GA) 6839 report_fatal_error( 6840 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6841 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6842 GA->getGlobal(), getCurSDLoc(), 6843 Val.getValueType(), GA->getOffset())}); 6844 } 6845 llvm::sort(Targets, 6846 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6847 return T1.Offset < T2.Offset; 6848 }); 6849 6850 for (auto &T : Targets) { 6851 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6852 Ops.push_back(T.Target); 6853 } 6854 6855 Ops.push_back(DAG.getRoot()); // Chain 6856 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6857 getCurSDLoc(), MVT::Other, Ops), 6858 0); 6859 DAG.setRoot(N); 6860 setValue(&I, N); 6861 HasTailCall = true; 6862 return; 6863 } 6864 6865 case Intrinsic::wasm_landingpad_index: 6866 // Information this intrinsic contained has been transferred to 6867 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6868 // delete it now. 6869 return; 6870 6871 case Intrinsic::aarch64_settag: 6872 case Intrinsic::aarch64_settag_zero: { 6873 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6874 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6875 SDValue Val = TSI.EmitTargetCodeForSetTag( 6876 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6877 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6878 ZeroMemory); 6879 DAG.setRoot(Val); 6880 setValue(&I, Val); 6881 return; 6882 } 6883 case Intrinsic::ptrmask: { 6884 SDValue Ptr = getValue(I.getOperand(0)); 6885 SDValue Const = getValue(I.getOperand(1)); 6886 6887 EVT PtrVT = Ptr.getValueType(); 6888 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6889 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6890 return; 6891 } 6892 } 6893 } 6894 6895 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6896 const ConstrainedFPIntrinsic &FPI) { 6897 SDLoc sdl = getCurSDLoc(); 6898 6899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6900 SmallVector<EVT, 4> ValueVTs; 6901 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6902 ValueVTs.push_back(MVT::Other); // Out chain 6903 6904 // We do not need to serialize constrained FP intrinsics against 6905 // each other or against (nonvolatile) loads, so they can be 6906 // chained like loads. 6907 SDValue Chain = DAG.getRoot(); 6908 SmallVector<SDValue, 4> Opers; 6909 Opers.push_back(Chain); 6910 if (FPI.isUnaryOp()) { 6911 Opers.push_back(getValue(FPI.getArgOperand(0))); 6912 } else if (FPI.isTernaryOp()) { 6913 Opers.push_back(getValue(FPI.getArgOperand(0))); 6914 Opers.push_back(getValue(FPI.getArgOperand(1))); 6915 Opers.push_back(getValue(FPI.getArgOperand(2))); 6916 } else { 6917 Opers.push_back(getValue(FPI.getArgOperand(0))); 6918 Opers.push_back(getValue(FPI.getArgOperand(1))); 6919 } 6920 6921 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6922 assert(Result.getNode()->getNumValues() == 2); 6923 6924 // Push node to the appropriate list so that future instructions can be 6925 // chained up correctly. 6926 SDValue OutChain = Result.getValue(1); 6927 switch (EB) { 6928 case fp::ExceptionBehavior::ebIgnore: 6929 // The only reason why ebIgnore nodes still need to be chained is that 6930 // they might depend on the current rounding mode, and therefore must 6931 // not be moved across instruction that may change that mode. 6932 LLVM_FALLTHROUGH; 6933 case fp::ExceptionBehavior::ebMayTrap: 6934 // These must not be moved across calls or instructions that may change 6935 // floating-point exception masks. 6936 PendingConstrainedFP.push_back(OutChain); 6937 break; 6938 case fp::ExceptionBehavior::ebStrict: 6939 // These must not be moved across calls or instructions that may change 6940 // floating-point exception masks or read floating-point exception flags. 6941 // In addition, they cannot be optimized out even if unused. 6942 PendingConstrainedFPStrict.push_back(OutChain); 6943 break; 6944 } 6945 }; 6946 6947 SDVTList VTs = DAG.getVTList(ValueVTs); 6948 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6949 6950 SDNodeFlags Flags; 6951 if (EB == fp::ExceptionBehavior::ebIgnore) 6952 Flags.setNoFPExcept(true); 6953 6954 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6955 Flags.copyFMF(*FPOp); 6956 6957 unsigned Opcode; 6958 switch (FPI.getIntrinsicID()) { 6959 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6960 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6961 case Intrinsic::INTRINSIC: \ 6962 Opcode = ISD::STRICT_##DAGN; \ 6963 break; 6964 #include "llvm/IR/ConstrainedOps.def" 6965 case Intrinsic::experimental_constrained_fmuladd: { 6966 Opcode = ISD::STRICT_FMA; 6967 // Break fmuladd into fmul and fadd. 6968 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6969 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6970 ValueVTs[0])) { 6971 Opers.pop_back(); 6972 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6973 pushOutChain(Mul, EB); 6974 Opcode = ISD::STRICT_FADD; 6975 Opers.clear(); 6976 Opers.push_back(Mul.getValue(1)); 6977 Opers.push_back(Mul.getValue(0)); 6978 Opers.push_back(getValue(FPI.getArgOperand(2))); 6979 } 6980 break; 6981 } 6982 } 6983 6984 // A few strict DAG nodes carry additional operands that are not 6985 // set up by the default code above. 6986 switch (Opcode) { 6987 default: break; 6988 case ISD::STRICT_FP_ROUND: 6989 Opers.push_back( 6990 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6991 break; 6992 case ISD::STRICT_FSETCC: 6993 case ISD::STRICT_FSETCCS: { 6994 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6995 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6996 break; 6997 } 6998 } 6999 7000 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7001 pushOutChain(Result, EB); 7002 7003 SDValue FPResult = Result.getValue(0); 7004 setValue(&FPI, FPResult); 7005 } 7006 7007 std::pair<SDValue, SDValue> 7008 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7009 const BasicBlock *EHPadBB) { 7010 MachineFunction &MF = DAG.getMachineFunction(); 7011 MachineModuleInfo &MMI = MF.getMMI(); 7012 MCSymbol *BeginLabel = nullptr; 7013 7014 if (EHPadBB) { 7015 // Insert a label before the invoke call to mark the try range. This can be 7016 // used to detect deletion of the invoke via the MachineModuleInfo. 7017 BeginLabel = MMI.getContext().createTempSymbol(); 7018 7019 // For SjLj, keep track of which landing pads go with which invokes 7020 // so as to maintain the ordering of pads in the LSDA. 7021 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7022 if (CallSiteIndex) { 7023 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7024 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7025 7026 // Now that the call site is handled, stop tracking it. 7027 MMI.setCurrentCallSite(0); 7028 } 7029 7030 // Both PendingLoads and PendingExports must be flushed here; 7031 // this call might not return. 7032 (void)getRoot(); 7033 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7034 7035 CLI.setChain(getRoot()); 7036 } 7037 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7038 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7039 7040 assert((CLI.IsTailCall || Result.second.getNode()) && 7041 "Non-null chain expected with non-tail call!"); 7042 assert((Result.second.getNode() || !Result.first.getNode()) && 7043 "Null value expected with tail call!"); 7044 7045 if (!Result.second.getNode()) { 7046 // As a special case, a null chain means that a tail call has been emitted 7047 // and the DAG root is already updated. 7048 HasTailCall = true; 7049 7050 // Since there's no actual continuation from this block, nothing can be 7051 // relying on us setting vregs for them. 7052 PendingExports.clear(); 7053 } else { 7054 DAG.setRoot(Result.second); 7055 } 7056 7057 if (EHPadBB) { 7058 // Insert a label at the end of the invoke call to mark the try range. This 7059 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7060 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7061 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7062 7063 // Inform MachineModuleInfo of range. 7064 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7065 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7066 // actually use outlined funclets and their LSDA info style. 7067 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7068 assert(CLI.CB); 7069 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7070 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7071 } else if (!isScopedEHPersonality(Pers)) { 7072 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7073 } 7074 } 7075 7076 return Result; 7077 } 7078 7079 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7080 bool isTailCall, 7081 const BasicBlock *EHPadBB) { 7082 auto &DL = DAG.getDataLayout(); 7083 FunctionType *FTy = CB.getFunctionType(); 7084 Type *RetTy = CB.getType(); 7085 7086 TargetLowering::ArgListTy Args; 7087 Args.reserve(CB.arg_size()); 7088 7089 const Value *SwiftErrorVal = nullptr; 7090 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7091 7092 if (isTailCall) { 7093 // Avoid emitting tail calls in functions with the disable-tail-calls 7094 // attribute. 7095 auto *Caller = CB.getParent()->getParent(); 7096 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7097 "true") 7098 isTailCall = false; 7099 7100 // We can't tail call inside a function with a swifterror argument. Lowering 7101 // does not support this yet. It would have to move into the swifterror 7102 // register before the call. 7103 if (TLI.supportSwiftError() && 7104 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7105 isTailCall = false; 7106 } 7107 7108 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7109 TargetLowering::ArgListEntry Entry; 7110 const Value *V = *I; 7111 7112 // Skip empty types 7113 if (V->getType()->isEmptyTy()) 7114 continue; 7115 7116 SDValue ArgNode = getValue(V); 7117 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7118 7119 Entry.setAttributes(&CB, I - CB.arg_begin()); 7120 7121 // Use swifterror virtual register as input to the call. 7122 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7123 SwiftErrorVal = V; 7124 // We find the virtual register for the actual swifterror argument. 7125 // Instead of using the Value, we use the virtual register instead. 7126 Entry.Node = 7127 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7128 EVT(TLI.getPointerTy(DL))); 7129 } 7130 7131 Args.push_back(Entry); 7132 7133 // If we have an explicit sret argument that is an Instruction, (i.e., it 7134 // might point to function-local memory), we can't meaningfully tail-call. 7135 if (Entry.IsSRet && isa<Instruction>(V)) 7136 isTailCall = false; 7137 } 7138 7139 // If call site has a cfguardtarget operand bundle, create and add an 7140 // additional ArgListEntry. 7141 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7142 TargetLowering::ArgListEntry Entry; 7143 Value *V = Bundle->Inputs[0]; 7144 SDValue ArgNode = getValue(V); 7145 Entry.Node = ArgNode; 7146 Entry.Ty = V->getType(); 7147 Entry.IsCFGuardTarget = true; 7148 Args.push_back(Entry); 7149 } 7150 7151 // Check if target-independent constraints permit a tail call here. 7152 // Target-dependent constraints are checked within TLI->LowerCallTo. 7153 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7154 isTailCall = false; 7155 7156 // Disable tail calls if there is an swifterror argument. Targets have not 7157 // been updated to support tail calls. 7158 if (TLI.supportSwiftError() && SwiftErrorVal) 7159 isTailCall = false; 7160 7161 TargetLowering::CallLoweringInfo CLI(DAG); 7162 CLI.setDebugLoc(getCurSDLoc()) 7163 .setChain(getRoot()) 7164 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7165 .setTailCall(isTailCall) 7166 .setConvergent(CB.isConvergent()) 7167 .setIsPreallocated( 7168 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7169 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7170 7171 if (Result.first.getNode()) { 7172 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7173 setValue(&CB, Result.first); 7174 } 7175 7176 // The last element of CLI.InVals has the SDValue for swifterror return. 7177 // Here we copy it to a virtual register and update SwiftErrorMap for 7178 // book-keeping. 7179 if (SwiftErrorVal && TLI.supportSwiftError()) { 7180 // Get the last element of InVals. 7181 SDValue Src = CLI.InVals.back(); 7182 Register VReg = 7183 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7184 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7185 DAG.setRoot(CopyNode); 7186 } 7187 } 7188 7189 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7190 SelectionDAGBuilder &Builder) { 7191 // Check to see if this load can be trivially constant folded, e.g. if the 7192 // input is from a string literal. 7193 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7194 // Cast pointer to the type we really want to load. 7195 Type *LoadTy = 7196 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7197 if (LoadVT.isVector()) 7198 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7199 7200 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7201 PointerType::getUnqual(LoadTy)); 7202 7203 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7204 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7205 return Builder.getValue(LoadCst); 7206 } 7207 7208 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7209 // still constant memory, the input chain can be the entry node. 7210 SDValue Root; 7211 bool ConstantMemory = false; 7212 7213 // Do not serialize (non-volatile) loads of constant memory with anything. 7214 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7215 Root = Builder.DAG.getEntryNode(); 7216 ConstantMemory = true; 7217 } else { 7218 // Do not serialize non-volatile loads against each other. 7219 Root = Builder.DAG.getRoot(); 7220 } 7221 7222 SDValue Ptr = Builder.getValue(PtrVal); 7223 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7224 Ptr, MachinePointerInfo(PtrVal), 7225 /* Alignment = */ 1); 7226 7227 if (!ConstantMemory) 7228 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7229 return LoadVal; 7230 } 7231 7232 /// Record the value for an instruction that produces an integer result, 7233 /// converting the type where necessary. 7234 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7235 SDValue Value, 7236 bool IsSigned) { 7237 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7238 I.getType(), true); 7239 if (IsSigned) 7240 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7241 else 7242 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7243 setValue(&I, Value); 7244 } 7245 7246 /// See if we can lower a memcmp call into an optimized form. If so, return 7247 /// true and lower it. Otherwise return false, and it will be lowered like a 7248 /// normal call. 7249 /// The caller already checked that \p I calls the appropriate LibFunc with a 7250 /// correct prototype. 7251 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7252 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7253 const Value *Size = I.getArgOperand(2); 7254 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7255 if (CSize && CSize->getZExtValue() == 0) { 7256 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7257 I.getType(), true); 7258 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7259 return true; 7260 } 7261 7262 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7263 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7264 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7265 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7266 if (Res.first.getNode()) { 7267 processIntegerCallValue(I, Res.first, true); 7268 PendingLoads.push_back(Res.second); 7269 return true; 7270 } 7271 7272 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7273 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7274 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7275 return false; 7276 7277 // If the target has a fast compare for the given size, it will return a 7278 // preferred load type for that size. Require that the load VT is legal and 7279 // that the target supports unaligned loads of that type. Otherwise, return 7280 // INVALID. 7281 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7283 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7284 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7285 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7286 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7287 // TODO: Check alignment of src and dest ptrs. 7288 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7289 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7290 if (!TLI.isTypeLegal(LVT) || 7291 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7292 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7293 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7294 } 7295 7296 return LVT; 7297 }; 7298 7299 // This turns into unaligned loads. We only do this if the target natively 7300 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7301 // we'll only produce a small number of byte loads. 7302 MVT LoadVT; 7303 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7304 switch (NumBitsToCompare) { 7305 default: 7306 return false; 7307 case 16: 7308 LoadVT = MVT::i16; 7309 break; 7310 case 32: 7311 LoadVT = MVT::i32; 7312 break; 7313 case 64: 7314 case 128: 7315 case 256: 7316 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7317 break; 7318 } 7319 7320 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7321 return false; 7322 7323 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7324 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7325 7326 // Bitcast to a wide integer type if the loads are vectors. 7327 if (LoadVT.isVector()) { 7328 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7329 LoadL = DAG.getBitcast(CmpVT, LoadL); 7330 LoadR = DAG.getBitcast(CmpVT, LoadR); 7331 } 7332 7333 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7334 processIntegerCallValue(I, Cmp, false); 7335 return true; 7336 } 7337 7338 /// See if we can lower a memchr call into an optimized form. If so, return 7339 /// true and lower it. Otherwise return false, and it will be lowered like a 7340 /// normal call. 7341 /// The caller already checked that \p I calls the appropriate LibFunc with a 7342 /// correct prototype. 7343 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7344 const Value *Src = I.getArgOperand(0); 7345 const Value *Char = I.getArgOperand(1); 7346 const Value *Length = I.getArgOperand(2); 7347 7348 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7349 std::pair<SDValue, SDValue> Res = 7350 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7351 getValue(Src), getValue(Char), getValue(Length), 7352 MachinePointerInfo(Src)); 7353 if (Res.first.getNode()) { 7354 setValue(&I, Res.first); 7355 PendingLoads.push_back(Res.second); 7356 return true; 7357 } 7358 7359 return false; 7360 } 7361 7362 /// See if we can lower a mempcpy call into an optimized form. If so, return 7363 /// true and lower it. Otherwise return false, and it will be lowered like a 7364 /// normal call. 7365 /// The caller already checked that \p I calls the appropriate LibFunc with a 7366 /// correct prototype. 7367 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7368 SDValue Dst = getValue(I.getArgOperand(0)); 7369 SDValue Src = getValue(I.getArgOperand(1)); 7370 SDValue Size = getValue(I.getArgOperand(2)); 7371 7372 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7373 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7374 // DAG::getMemcpy needs Alignment to be defined. 7375 Align Alignment = std::min(DstAlign, SrcAlign); 7376 7377 bool isVol = false; 7378 SDLoc sdl = getCurSDLoc(); 7379 7380 // In the mempcpy context we need to pass in a false value for isTailCall 7381 // because the return pointer needs to be adjusted by the size of 7382 // the copied memory. 7383 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7384 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7385 /*isTailCall=*/false, 7386 MachinePointerInfo(I.getArgOperand(0)), 7387 MachinePointerInfo(I.getArgOperand(1))); 7388 assert(MC.getNode() != nullptr && 7389 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7390 DAG.setRoot(MC); 7391 7392 // Check if Size needs to be truncated or extended. 7393 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7394 7395 // Adjust return pointer to point just past the last dst byte. 7396 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7397 Dst, Size); 7398 setValue(&I, DstPlusSize); 7399 return true; 7400 } 7401 7402 /// See if we can lower a strcpy call into an optimized form. If so, return 7403 /// true and lower it, otherwise return false and it will be lowered like a 7404 /// normal call. 7405 /// The caller already checked that \p I calls the appropriate LibFunc with a 7406 /// correct prototype. 7407 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7408 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7409 7410 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7411 std::pair<SDValue, SDValue> Res = 7412 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7413 getValue(Arg0), getValue(Arg1), 7414 MachinePointerInfo(Arg0), 7415 MachinePointerInfo(Arg1), isStpcpy); 7416 if (Res.first.getNode()) { 7417 setValue(&I, Res.first); 7418 DAG.setRoot(Res.second); 7419 return true; 7420 } 7421 7422 return false; 7423 } 7424 7425 /// See if we can lower a strcmp call into an optimized form. If so, return 7426 /// true and lower it, otherwise return false and it will be lowered like a 7427 /// normal call. 7428 /// The caller already checked that \p I calls the appropriate LibFunc with a 7429 /// correct prototype. 7430 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7431 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7432 7433 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7434 std::pair<SDValue, SDValue> Res = 7435 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7436 getValue(Arg0), getValue(Arg1), 7437 MachinePointerInfo(Arg0), 7438 MachinePointerInfo(Arg1)); 7439 if (Res.first.getNode()) { 7440 processIntegerCallValue(I, Res.first, true); 7441 PendingLoads.push_back(Res.second); 7442 return true; 7443 } 7444 7445 return false; 7446 } 7447 7448 /// See if we can lower a strlen call into an optimized form. If so, return 7449 /// true and lower it, otherwise return false and it will be lowered like a 7450 /// normal call. 7451 /// The caller already checked that \p I calls the appropriate LibFunc with a 7452 /// correct prototype. 7453 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7454 const Value *Arg0 = I.getArgOperand(0); 7455 7456 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7457 std::pair<SDValue, SDValue> Res = 7458 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7459 getValue(Arg0), MachinePointerInfo(Arg0)); 7460 if (Res.first.getNode()) { 7461 processIntegerCallValue(I, Res.first, false); 7462 PendingLoads.push_back(Res.second); 7463 return true; 7464 } 7465 7466 return false; 7467 } 7468 7469 /// See if we can lower a strnlen call into an optimized form. If so, return 7470 /// true and lower it, otherwise return false and it will be lowered like a 7471 /// normal call. 7472 /// The caller already checked that \p I calls the appropriate LibFunc with a 7473 /// correct prototype. 7474 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7475 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7476 7477 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7478 std::pair<SDValue, SDValue> Res = 7479 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7480 getValue(Arg0), getValue(Arg1), 7481 MachinePointerInfo(Arg0)); 7482 if (Res.first.getNode()) { 7483 processIntegerCallValue(I, Res.first, false); 7484 PendingLoads.push_back(Res.second); 7485 return true; 7486 } 7487 7488 return false; 7489 } 7490 7491 /// See if we can lower a unary floating-point operation into an SDNode with 7492 /// the specified Opcode. If so, return true and lower it, otherwise return 7493 /// false and it will be lowered like a normal call. 7494 /// The caller already checked that \p I calls the appropriate LibFunc with a 7495 /// correct prototype. 7496 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7497 unsigned Opcode) { 7498 // We already checked this call's prototype; verify it doesn't modify errno. 7499 if (!I.onlyReadsMemory()) 7500 return false; 7501 7502 SDValue Tmp = getValue(I.getArgOperand(0)); 7503 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7504 return true; 7505 } 7506 7507 /// See if we can lower a binary floating-point operation into an SDNode with 7508 /// the specified Opcode. If so, return true and lower it. Otherwise return 7509 /// false, and it will be lowered like a normal call. 7510 /// The caller already checked that \p I calls the appropriate LibFunc with a 7511 /// correct prototype. 7512 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7513 unsigned Opcode) { 7514 // We already checked this call's prototype; verify it doesn't modify errno. 7515 if (!I.onlyReadsMemory()) 7516 return false; 7517 7518 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7519 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7520 EVT VT = Tmp0.getValueType(); 7521 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7522 return true; 7523 } 7524 7525 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7526 // Handle inline assembly differently. 7527 if (I.isInlineAsm()) { 7528 visitInlineAsm(I); 7529 return; 7530 } 7531 7532 if (Function *F = I.getCalledFunction()) { 7533 if (F->isDeclaration()) { 7534 // Is this an LLVM intrinsic or a target-specific intrinsic? 7535 unsigned IID = F->getIntrinsicID(); 7536 if (!IID) 7537 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7538 IID = II->getIntrinsicID(F); 7539 7540 if (IID) { 7541 visitIntrinsicCall(I, IID); 7542 return; 7543 } 7544 } 7545 7546 // Check for well-known libc/libm calls. If the function is internal, it 7547 // can't be a library call. Don't do the check if marked as nobuiltin for 7548 // some reason or the call site requires strict floating point semantics. 7549 LibFunc Func; 7550 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7551 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7552 LibInfo->hasOptimizedCodeGen(Func)) { 7553 switch (Func) { 7554 default: break; 7555 case LibFunc_copysign: 7556 case LibFunc_copysignf: 7557 case LibFunc_copysignl: 7558 // We already checked this call's prototype; verify it doesn't modify 7559 // errno. 7560 if (I.onlyReadsMemory()) { 7561 SDValue LHS = getValue(I.getArgOperand(0)); 7562 SDValue RHS = getValue(I.getArgOperand(1)); 7563 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7564 LHS.getValueType(), LHS, RHS)); 7565 return; 7566 } 7567 break; 7568 case LibFunc_fabs: 7569 case LibFunc_fabsf: 7570 case LibFunc_fabsl: 7571 if (visitUnaryFloatCall(I, ISD::FABS)) 7572 return; 7573 break; 7574 case LibFunc_fmin: 7575 case LibFunc_fminf: 7576 case LibFunc_fminl: 7577 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7578 return; 7579 break; 7580 case LibFunc_fmax: 7581 case LibFunc_fmaxf: 7582 case LibFunc_fmaxl: 7583 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7584 return; 7585 break; 7586 case LibFunc_sin: 7587 case LibFunc_sinf: 7588 case LibFunc_sinl: 7589 if (visitUnaryFloatCall(I, ISD::FSIN)) 7590 return; 7591 break; 7592 case LibFunc_cos: 7593 case LibFunc_cosf: 7594 case LibFunc_cosl: 7595 if (visitUnaryFloatCall(I, ISD::FCOS)) 7596 return; 7597 break; 7598 case LibFunc_sqrt: 7599 case LibFunc_sqrtf: 7600 case LibFunc_sqrtl: 7601 case LibFunc_sqrt_finite: 7602 case LibFunc_sqrtf_finite: 7603 case LibFunc_sqrtl_finite: 7604 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7605 return; 7606 break; 7607 case LibFunc_floor: 7608 case LibFunc_floorf: 7609 case LibFunc_floorl: 7610 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7611 return; 7612 break; 7613 case LibFunc_nearbyint: 7614 case LibFunc_nearbyintf: 7615 case LibFunc_nearbyintl: 7616 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7617 return; 7618 break; 7619 case LibFunc_ceil: 7620 case LibFunc_ceilf: 7621 case LibFunc_ceill: 7622 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7623 return; 7624 break; 7625 case LibFunc_rint: 7626 case LibFunc_rintf: 7627 case LibFunc_rintl: 7628 if (visitUnaryFloatCall(I, ISD::FRINT)) 7629 return; 7630 break; 7631 case LibFunc_round: 7632 case LibFunc_roundf: 7633 case LibFunc_roundl: 7634 if (visitUnaryFloatCall(I, ISD::FROUND)) 7635 return; 7636 break; 7637 case LibFunc_trunc: 7638 case LibFunc_truncf: 7639 case LibFunc_truncl: 7640 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7641 return; 7642 break; 7643 case LibFunc_log2: 7644 case LibFunc_log2f: 7645 case LibFunc_log2l: 7646 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7647 return; 7648 break; 7649 case LibFunc_exp2: 7650 case LibFunc_exp2f: 7651 case LibFunc_exp2l: 7652 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7653 return; 7654 break; 7655 case LibFunc_memcmp: 7656 if (visitMemCmpCall(I)) 7657 return; 7658 break; 7659 case LibFunc_mempcpy: 7660 if (visitMemPCpyCall(I)) 7661 return; 7662 break; 7663 case LibFunc_memchr: 7664 if (visitMemChrCall(I)) 7665 return; 7666 break; 7667 case LibFunc_strcpy: 7668 if (visitStrCpyCall(I, false)) 7669 return; 7670 break; 7671 case LibFunc_stpcpy: 7672 if (visitStrCpyCall(I, true)) 7673 return; 7674 break; 7675 case LibFunc_strcmp: 7676 if (visitStrCmpCall(I)) 7677 return; 7678 break; 7679 case LibFunc_strlen: 7680 if (visitStrLenCall(I)) 7681 return; 7682 break; 7683 case LibFunc_strnlen: 7684 if (visitStrNLenCall(I)) 7685 return; 7686 break; 7687 } 7688 } 7689 } 7690 7691 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7692 // have to do anything here to lower funclet bundles. 7693 // CFGuardTarget bundles are lowered in LowerCallTo. 7694 assert(!I.hasOperandBundlesOtherThan( 7695 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7696 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7697 "Cannot lower calls with arbitrary operand bundles!"); 7698 7699 SDValue Callee = getValue(I.getCalledOperand()); 7700 7701 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7702 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7703 else 7704 // Check if we can potentially perform a tail call. More detailed checking 7705 // is be done within LowerCallTo, after more information about the call is 7706 // known. 7707 LowerCallTo(I, Callee, I.isTailCall()); 7708 } 7709 7710 namespace { 7711 7712 /// AsmOperandInfo - This contains information for each constraint that we are 7713 /// lowering. 7714 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7715 public: 7716 /// CallOperand - If this is the result output operand or a clobber 7717 /// this is null, otherwise it is the incoming operand to the CallInst. 7718 /// This gets modified as the asm is processed. 7719 SDValue CallOperand; 7720 7721 /// AssignedRegs - If this is a register or register class operand, this 7722 /// contains the set of register corresponding to the operand. 7723 RegsForValue AssignedRegs; 7724 7725 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7726 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7727 } 7728 7729 /// Whether or not this operand accesses memory 7730 bool hasMemory(const TargetLowering &TLI) const { 7731 // Indirect operand accesses access memory. 7732 if (isIndirect) 7733 return true; 7734 7735 for (const auto &Code : Codes) 7736 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7737 return true; 7738 7739 return false; 7740 } 7741 7742 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7743 /// corresponds to. If there is no Value* for this operand, it returns 7744 /// MVT::Other. 7745 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7746 const DataLayout &DL) const { 7747 if (!CallOperandVal) return MVT::Other; 7748 7749 if (isa<BasicBlock>(CallOperandVal)) 7750 return TLI.getProgramPointerTy(DL); 7751 7752 llvm::Type *OpTy = CallOperandVal->getType(); 7753 7754 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7755 // If this is an indirect operand, the operand is a pointer to the 7756 // accessed type. 7757 if (isIndirect) { 7758 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7759 if (!PtrTy) 7760 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7761 OpTy = PtrTy->getElementType(); 7762 } 7763 7764 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7765 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7766 if (STy->getNumElements() == 1) 7767 OpTy = STy->getElementType(0); 7768 7769 // If OpTy is not a single value, it may be a struct/union that we 7770 // can tile with integers. 7771 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7772 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7773 switch (BitSize) { 7774 default: break; 7775 case 1: 7776 case 8: 7777 case 16: 7778 case 32: 7779 case 64: 7780 case 128: 7781 OpTy = IntegerType::get(Context, BitSize); 7782 break; 7783 } 7784 } 7785 7786 return TLI.getValueType(DL, OpTy, true); 7787 } 7788 }; 7789 7790 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7791 7792 } // end anonymous namespace 7793 7794 /// Make sure that the output operand \p OpInfo and its corresponding input 7795 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7796 /// out). 7797 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7798 SDISelAsmOperandInfo &MatchingOpInfo, 7799 SelectionDAG &DAG) { 7800 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7801 return; 7802 7803 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7804 const auto &TLI = DAG.getTargetLoweringInfo(); 7805 7806 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7807 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7808 OpInfo.ConstraintVT); 7809 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7810 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7811 MatchingOpInfo.ConstraintVT); 7812 if ((OpInfo.ConstraintVT.isInteger() != 7813 MatchingOpInfo.ConstraintVT.isInteger()) || 7814 (MatchRC.second != InputRC.second)) { 7815 // FIXME: error out in a more elegant fashion 7816 report_fatal_error("Unsupported asm: input constraint" 7817 " with a matching output constraint of" 7818 " incompatible type!"); 7819 } 7820 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7821 } 7822 7823 /// Get a direct memory input to behave well as an indirect operand. 7824 /// This may introduce stores, hence the need for a \p Chain. 7825 /// \return The (possibly updated) chain. 7826 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7827 SDISelAsmOperandInfo &OpInfo, 7828 SelectionDAG &DAG) { 7829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7830 7831 // If we don't have an indirect input, put it in the constpool if we can, 7832 // otherwise spill it to a stack slot. 7833 // TODO: This isn't quite right. We need to handle these according to 7834 // the addressing mode that the constraint wants. Also, this may take 7835 // an additional register for the computation and we don't want that 7836 // either. 7837 7838 // If the operand is a float, integer, or vector constant, spill to a 7839 // constant pool entry to get its address. 7840 const Value *OpVal = OpInfo.CallOperandVal; 7841 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7842 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7843 OpInfo.CallOperand = DAG.getConstantPool( 7844 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7845 return Chain; 7846 } 7847 7848 // Otherwise, create a stack slot and emit a store to it before the asm. 7849 Type *Ty = OpVal->getType(); 7850 auto &DL = DAG.getDataLayout(); 7851 uint64_t TySize = DL.getTypeAllocSize(Ty); 7852 unsigned Align = DL.getPrefTypeAlignment(Ty); 7853 MachineFunction &MF = DAG.getMachineFunction(); 7854 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7855 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7856 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7857 MachinePointerInfo::getFixedStack(MF, SSFI), 7858 TLI.getMemValueType(DL, Ty)); 7859 OpInfo.CallOperand = StackSlot; 7860 7861 return Chain; 7862 } 7863 7864 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7865 /// specified operand. We prefer to assign virtual registers, to allow the 7866 /// register allocator to handle the assignment process. However, if the asm 7867 /// uses features that we can't model on machineinstrs, we have SDISel do the 7868 /// allocation. This produces generally horrible, but correct, code. 7869 /// 7870 /// OpInfo describes the operand 7871 /// RefOpInfo describes the matching operand if any, the operand otherwise 7872 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7873 SDISelAsmOperandInfo &OpInfo, 7874 SDISelAsmOperandInfo &RefOpInfo) { 7875 LLVMContext &Context = *DAG.getContext(); 7876 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7877 7878 MachineFunction &MF = DAG.getMachineFunction(); 7879 SmallVector<unsigned, 4> Regs; 7880 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7881 7882 // No work to do for memory operations. 7883 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7884 return; 7885 7886 // If this is a constraint for a single physreg, or a constraint for a 7887 // register class, find it. 7888 unsigned AssignedReg; 7889 const TargetRegisterClass *RC; 7890 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7891 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7892 // RC is unset only on failure. Return immediately. 7893 if (!RC) 7894 return; 7895 7896 // Get the actual register value type. This is important, because the user 7897 // may have asked for (e.g.) the AX register in i32 type. We need to 7898 // remember that AX is actually i16 to get the right extension. 7899 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7900 7901 if (OpInfo.ConstraintVT != MVT::Other) { 7902 // If this is an FP operand in an integer register (or visa versa), or more 7903 // generally if the operand value disagrees with the register class we plan 7904 // to stick it in, fix the operand type. 7905 // 7906 // If this is an input value, the bitcast to the new type is done now. 7907 // Bitcast for output value is done at the end of visitInlineAsm(). 7908 if ((OpInfo.Type == InlineAsm::isOutput || 7909 OpInfo.Type == InlineAsm::isInput) && 7910 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7911 // Try to convert to the first EVT that the reg class contains. If the 7912 // types are identical size, use a bitcast to convert (e.g. two differing 7913 // vector types). Note: output bitcast is done at the end of 7914 // visitInlineAsm(). 7915 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7916 // Exclude indirect inputs while they are unsupported because the code 7917 // to perform the load is missing and thus OpInfo.CallOperand still 7918 // refers to the input address rather than the pointed-to value. 7919 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7920 OpInfo.CallOperand = 7921 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7922 OpInfo.ConstraintVT = RegVT; 7923 // If the operand is an FP value and we want it in integer registers, 7924 // use the corresponding integer type. This turns an f64 value into 7925 // i64, which can be passed with two i32 values on a 32-bit machine. 7926 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7927 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7928 if (OpInfo.Type == InlineAsm::isInput) 7929 OpInfo.CallOperand = 7930 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7931 OpInfo.ConstraintVT = VT; 7932 } 7933 } 7934 } 7935 7936 // No need to allocate a matching input constraint since the constraint it's 7937 // matching to has already been allocated. 7938 if (OpInfo.isMatchingInputConstraint()) 7939 return; 7940 7941 EVT ValueVT = OpInfo.ConstraintVT; 7942 if (OpInfo.ConstraintVT == MVT::Other) 7943 ValueVT = RegVT; 7944 7945 // Initialize NumRegs. 7946 unsigned NumRegs = 1; 7947 if (OpInfo.ConstraintVT != MVT::Other) 7948 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7949 7950 // If this is a constraint for a specific physical register, like {r17}, 7951 // assign it now. 7952 7953 // If this associated to a specific register, initialize iterator to correct 7954 // place. If virtual, make sure we have enough registers 7955 7956 // Initialize iterator if necessary 7957 TargetRegisterClass::iterator I = RC->begin(); 7958 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7959 7960 // Do not check for single registers. 7961 if (AssignedReg) { 7962 for (; *I != AssignedReg; ++I) 7963 assert(I != RC->end() && "AssignedReg should be member of RC"); 7964 } 7965 7966 for (; NumRegs; --NumRegs, ++I) { 7967 assert(I != RC->end() && "Ran out of registers to allocate!"); 7968 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7969 Regs.push_back(R); 7970 } 7971 7972 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7973 } 7974 7975 static unsigned 7976 findMatchingInlineAsmOperand(unsigned OperandNo, 7977 const std::vector<SDValue> &AsmNodeOperands) { 7978 // Scan until we find the definition we already emitted of this operand. 7979 unsigned CurOp = InlineAsm::Op_FirstOperand; 7980 for (; OperandNo; --OperandNo) { 7981 // Advance to the next operand. 7982 unsigned OpFlag = 7983 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7984 assert((InlineAsm::isRegDefKind(OpFlag) || 7985 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7986 InlineAsm::isMemKind(OpFlag)) && 7987 "Skipped past definitions?"); 7988 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7989 } 7990 return CurOp; 7991 } 7992 7993 namespace { 7994 7995 class ExtraFlags { 7996 unsigned Flags = 0; 7997 7998 public: 7999 explicit ExtraFlags(const CallBase &Call) { 8000 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8001 if (IA->hasSideEffects()) 8002 Flags |= InlineAsm::Extra_HasSideEffects; 8003 if (IA->isAlignStack()) 8004 Flags |= InlineAsm::Extra_IsAlignStack; 8005 if (Call.isConvergent()) 8006 Flags |= InlineAsm::Extra_IsConvergent; 8007 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8008 } 8009 8010 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8011 // Ideally, we would only check against memory constraints. However, the 8012 // meaning of an Other constraint can be target-specific and we can't easily 8013 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8014 // for Other constraints as well. 8015 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8016 OpInfo.ConstraintType == TargetLowering::C_Other) { 8017 if (OpInfo.Type == InlineAsm::isInput) 8018 Flags |= InlineAsm::Extra_MayLoad; 8019 else if (OpInfo.Type == InlineAsm::isOutput) 8020 Flags |= InlineAsm::Extra_MayStore; 8021 else if (OpInfo.Type == InlineAsm::isClobber) 8022 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8023 } 8024 } 8025 8026 unsigned get() const { return Flags; } 8027 }; 8028 8029 } // end anonymous namespace 8030 8031 /// visitInlineAsm - Handle a call to an InlineAsm object. 8032 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8033 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8034 8035 /// ConstraintOperands - Information about all of the constraints. 8036 SDISelAsmOperandInfoVector ConstraintOperands; 8037 8038 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8039 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8040 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8041 8042 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8043 // AsmDialect, MayLoad, MayStore). 8044 bool HasSideEffect = IA->hasSideEffects(); 8045 ExtraFlags ExtraInfo(Call); 8046 8047 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8048 unsigned ResNo = 0; // ResNo - The result number of the next output. 8049 unsigned NumMatchingOps = 0; 8050 for (auto &T : TargetConstraints) { 8051 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8052 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8053 8054 // Compute the value type for each operand. 8055 if (OpInfo.Type == InlineAsm::isInput || 8056 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8057 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8058 8059 // Process the call argument. BasicBlocks are labels, currently appearing 8060 // only in asm's. 8061 if (isa<CallBrInst>(Call) && 8062 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8063 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8064 NumMatchingOps) && 8065 (NumMatchingOps == 0 || 8066 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8067 NumMatchingOps))) { 8068 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8069 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8070 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8071 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8072 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8073 } else { 8074 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8075 } 8076 8077 OpInfo.ConstraintVT = 8078 OpInfo 8079 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8080 .getSimpleVT(); 8081 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8082 // The return value of the call is this value. As such, there is no 8083 // corresponding argument. 8084 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8085 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8086 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8087 DAG.getDataLayout(), STy->getElementType(ResNo)); 8088 } else { 8089 assert(ResNo == 0 && "Asm only has one result!"); 8090 OpInfo.ConstraintVT = 8091 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8092 } 8093 ++ResNo; 8094 } else { 8095 OpInfo.ConstraintVT = MVT::Other; 8096 } 8097 8098 if (OpInfo.hasMatchingInput()) 8099 ++NumMatchingOps; 8100 8101 if (!HasSideEffect) 8102 HasSideEffect = OpInfo.hasMemory(TLI); 8103 8104 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8105 // FIXME: Could we compute this on OpInfo rather than T? 8106 8107 // Compute the constraint code and ConstraintType to use. 8108 TLI.ComputeConstraintToUse(T, SDValue()); 8109 8110 if (T.ConstraintType == TargetLowering::C_Immediate && 8111 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8112 // We've delayed emitting a diagnostic like the "n" constraint because 8113 // inlining could cause an integer showing up. 8114 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8115 "' expects an integer constant " 8116 "expression"); 8117 8118 ExtraInfo.update(T); 8119 } 8120 8121 8122 // We won't need to flush pending loads if this asm doesn't touch 8123 // memory and is nonvolatile. 8124 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8125 8126 bool IsCallBr = isa<CallBrInst>(Call); 8127 if (IsCallBr) { 8128 // If this is a callbr we need to flush pending exports since inlineasm_br 8129 // is a terminator. We need to do this before nodes are glued to 8130 // the inlineasm_br node. 8131 Chain = getControlRoot(); 8132 } 8133 8134 // Second pass over the constraints: compute which constraint option to use. 8135 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8136 // If this is an output operand with a matching input operand, look up the 8137 // matching input. If their types mismatch, e.g. one is an integer, the 8138 // other is floating point, or their sizes are different, flag it as an 8139 // error. 8140 if (OpInfo.hasMatchingInput()) { 8141 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8142 patchMatchingInput(OpInfo, Input, DAG); 8143 } 8144 8145 // Compute the constraint code and ConstraintType to use. 8146 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8147 8148 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8149 OpInfo.Type == InlineAsm::isClobber) 8150 continue; 8151 8152 // If this is a memory input, and if the operand is not indirect, do what we 8153 // need to provide an address for the memory input. 8154 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8155 !OpInfo.isIndirect) { 8156 assert((OpInfo.isMultipleAlternative || 8157 (OpInfo.Type == InlineAsm::isInput)) && 8158 "Can only indirectify direct input operands!"); 8159 8160 // Memory operands really want the address of the value. 8161 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8162 8163 // There is no longer a Value* corresponding to this operand. 8164 OpInfo.CallOperandVal = nullptr; 8165 8166 // It is now an indirect operand. 8167 OpInfo.isIndirect = true; 8168 } 8169 8170 } 8171 8172 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8173 std::vector<SDValue> AsmNodeOperands; 8174 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8175 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8176 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8177 8178 // If we have a !srcloc metadata node associated with it, we want to attach 8179 // this to the ultimately generated inline asm machineinstr. To do this, we 8180 // pass in the third operand as this (potentially null) inline asm MDNode. 8181 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8182 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8183 8184 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8185 // bits as operand 3. 8186 AsmNodeOperands.push_back(DAG.getTargetConstant( 8187 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8188 8189 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8190 // this, assign virtual and physical registers for inputs and otput. 8191 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8192 // Assign Registers. 8193 SDISelAsmOperandInfo &RefOpInfo = 8194 OpInfo.isMatchingInputConstraint() 8195 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8196 : OpInfo; 8197 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8198 8199 auto DetectWriteToReservedRegister = [&]() { 8200 const MachineFunction &MF = DAG.getMachineFunction(); 8201 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8202 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8203 if (Register::isPhysicalRegister(Reg) && 8204 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8205 const char *RegName = TRI.getName(Reg); 8206 emitInlineAsmError(Call, "write to reserved register '" + 8207 Twine(RegName) + "'"); 8208 return true; 8209 } 8210 } 8211 return false; 8212 }; 8213 8214 switch (OpInfo.Type) { 8215 case InlineAsm::isOutput: 8216 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8217 unsigned ConstraintID = 8218 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8219 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8220 "Failed to convert memory constraint code to constraint id."); 8221 8222 // Add information to the INLINEASM node to know about this output. 8223 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8224 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8225 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8226 MVT::i32)); 8227 AsmNodeOperands.push_back(OpInfo.CallOperand); 8228 } else { 8229 // Otherwise, this outputs to a register (directly for C_Register / 8230 // C_RegisterClass, and a target-defined fashion for 8231 // C_Immediate/C_Other). Find a register that we can use. 8232 if (OpInfo.AssignedRegs.Regs.empty()) { 8233 emitInlineAsmError( 8234 Call, "couldn't allocate output register for constraint '" + 8235 Twine(OpInfo.ConstraintCode) + "'"); 8236 return; 8237 } 8238 8239 if (DetectWriteToReservedRegister()) 8240 return; 8241 8242 // Add information to the INLINEASM node to know that this register is 8243 // set. 8244 OpInfo.AssignedRegs.AddInlineAsmOperands( 8245 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8246 : InlineAsm::Kind_RegDef, 8247 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8248 } 8249 break; 8250 8251 case InlineAsm::isInput: { 8252 SDValue InOperandVal = OpInfo.CallOperand; 8253 8254 if (OpInfo.isMatchingInputConstraint()) { 8255 // If this is required to match an output register we have already set, 8256 // just use its register. 8257 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8258 AsmNodeOperands); 8259 unsigned OpFlag = 8260 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8261 if (InlineAsm::isRegDefKind(OpFlag) || 8262 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8263 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8264 if (OpInfo.isIndirect) { 8265 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8266 emitInlineAsmError(Call, "inline asm not supported yet: " 8267 "don't know how to handle tied " 8268 "indirect register inputs"); 8269 return; 8270 } 8271 8272 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8273 SmallVector<unsigned, 4> Regs; 8274 8275 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8276 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8277 MachineRegisterInfo &RegInfo = 8278 DAG.getMachineFunction().getRegInfo(); 8279 for (unsigned i = 0; i != NumRegs; ++i) 8280 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8281 } else { 8282 emitInlineAsmError(Call, 8283 "inline asm error: This value type register " 8284 "class is not natively supported!"); 8285 return; 8286 } 8287 8288 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8289 8290 SDLoc dl = getCurSDLoc(); 8291 // Use the produced MatchedRegs object to 8292 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8293 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8294 true, OpInfo.getMatchedOperand(), dl, 8295 DAG, AsmNodeOperands); 8296 break; 8297 } 8298 8299 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8300 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8301 "Unexpected number of operands"); 8302 // Add information to the INLINEASM node to know about this input. 8303 // See InlineAsm.h isUseOperandTiedToDef. 8304 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8305 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8306 OpInfo.getMatchedOperand()); 8307 AsmNodeOperands.push_back(DAG.getTargetConstant( 8308 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8309 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8310 break; 8311 } 8312 8313 // Treat indirect 'X' constraint as memory. 8314 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8315 OpInfo.isIndirect) 8316 OpInfo.ConstraintType = TargetLowering::C_Memory; 8317 8318 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8319 OpInfo.ConstraintType == TargetLowering::C_Other) { 8320 std::vector<SDValue> Ops; 8321 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8322 Ops, DAG); 8323 if (Ops.empty()) { 8324 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8325 if (isa<ConstantSDNode>(InOperandVal)) { 8326 emitInlineAsmError(Call, "value out of range for constraint '" + 8327 Twine(OpInfo.ConstraintCode) + "'"); 8328 return; 8329 } 8330 8331 emitInlineAsmError(Call, 8332 "invalid operand for inline asm constraint '" + 8333 Twine(OpInfo.ConstraintCode) + "'"); 8334 return; 8335 } 8336 8337 // Add information to the INLINEASM node to know about this input. 8338 unsigned ResOpType = 8339 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8340 AsmNodeOperands.push_back(DAG.getTargetConstant( 8341 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8342 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8343 break; 8344 } 8345 8346 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8347 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8348 assert(InOperandVal.getValueType() == 8349 TLI.getPointerTy(DAG.getDataLayout()) && 8350 "Memory operands expect pointer values"); 8351 8352 unsigned ConstraintID = 8353 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8354 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8355 "Failed to convert memory constraint code to constraint id."); 8356 8357 // Add information to the INLINEASM node to know about this input. 8358 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8359 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8360 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8361 getCurSDLoc(), 8362 MVT::i32)); 8363 AsmNodeOperands.push_back(InOperandVal); 8364 break; 8365 } 8366 8367 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8368 OpInfo.ConstraintType == TargetLowering::C_Register) && 8369 "Unknown constraint type!"); 8370 8371 // TODO: Support this. 8372 if (OpInfo.isIndirect) { 8373 emitInlineAsmError( 8374 Call, "Don't know how to handle indirect register inputs yet " 8375 "for constraint '" + 8376 Twine(OpInfo.ConstraintCode) + "'"); 8377 return; 8378 } 8379 8380 // Copy the input into the appropriate registers. 8381 if (OpInfo.AssignedRegs.Regs.empty()) { 8382 emitInlineAsmError(Call, 8383 "couldn't allocate input reg for constraint '" + 8384 Twine(OpInfo.ConstraintCode) + "'"); 8385 return; 8386 } 8387 8388 if (DetectWriteToReservedRegister()) 8389 return; 8390 8391 SDLoc dl = getCurSDLoc(); 8392 8393 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8394 &Call); 8395 8396 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8397 dl, DAG, AsmNodeOperands); 8398 break; 8399 } 8400 case InlineAsm::isClobber: 8401 // Add the clobbered value to the operand list, so that the register 8402 // allocator is aware that the physreg got clobbered. 8403 if (!OpInfo.AssignedRegs.Regs.empty()) 8404 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8405 false, 0, getCurSDLoc(), DAG, 8406 AsmNodeOperands); 8407 break; 8408 } 8409 } 8410 8411 // Finish up input operands. Set the input chain and add the flag last. 8412 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8413 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8414 8415 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8416 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8417 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8418 Flag = Chain.getValue(1); 8419 8420 // Do additional work to generate outputs. 8421 8422 SmallVector<EVT, 1> ResultVTs; 8423 SmallVector<SDValue, 1> ResultValues; 8424 SmallVector<SDValue, 8> OutChains; 8425 8426 llvm::Type *CallResultType = Call.getType(); 8427 ArrayRef<Type *> ResultTypes; 8428 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8429 ResultTypes = StructResult->elements(); 8430 else if (!CallResultType->isVoidTy()) 8431 ResultTypes = makeArrayRef(CallResultType); 8432 8433 auto CurResultType = ResultTypes.begin(); 8434 auto handleRegAssign = [&](SDValue V) { 8435 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8436 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8437 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8438 ++CurResultType; 8439 // If the type of the inline asm call site return value is different but has 8440 // same size as the type of the asm output bitcast it. One example of this 8441 // is for vectors with different width / number of elements. This can 8442 // happen for register classes that can contain multiple different value 8443 // types. The preg or vreg allocated may not have the same VT as was 8444 // expected. 8445 // 8446 // This can also happen for a return value that disagrees with the register 8447 // class it is put in, eg. a double in a general-purpose register on a 8448 // 32-bit machine. 8449 if (ResultVT != V.getValueType() && 8450 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8451 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8452 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8453 V.getValueType().isInteger()) { 8454 // If a result value was tied to an input value, the computed result 8455 // may have a wider width than the expected result. Extract the 8456 // relevant portion. 8457 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8458 } 8459 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8460 ResultVTs.push_back(ResultVT); 8461 ResultValues.push_back(V); 8462 }; 8463 8464 // Deal with output operands. 8465 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8466 if (OpInfo.Type == InlineAsm::isOutput) { 8467 SDValue Val; 8468 // Skip trivial output operands. 8469 if (OpInfo.AssignedRegs.Regs.empty()) 8470 continue; 8471 8472 switch (OpInfo.ConstraintType) { 8473 case TargetLowering::C_Register: 8474 case TargetLowering::C_RegisterClass: 8475 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8476 Chain, &Flag, &Call); 8477 break; 8478 case TargetLowering::C_Immediate: 8479 case TargetLowering::C_Other: 8480 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8481 OpInfo, DAG); 8482 break; 8483 case TargetLowering::C_Memory: 8484 break; // Already handled. 8485 case TargetLowering::C_Unknown: 8486 assert(false && "Unexpected unknown constraint"); 8487 } 8488 8489 // Indirect output manifest as stores. Record output chains. 8490 if (OpInfo.isIndirect) { 8491 const Value *Ptr = OpInfo.CallOperandVal; 8492 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8493 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8494 MachinePointerInfo(Ptr)); 8495 OutChains.push_back(Store); 8496 } else { 8497 // generate CopyFromRegs to associated registers. 8498 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8499 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8500 for (const SDValue &V : Val->op_values()) 8501 handleRegAssign(V); 8502 } else 8503 handleRegAssign(Val); 8504 } 8505 } 8506 } 8507 8508 // Set results. 8509 if (!ResultValues.empty()) { 8510 assert(CurResultType == ResultTypes.end() && 8511 "Mismatch in number of ResultTypes"); 8512 assert(ResultValues.size() == ResultTypes.size() && 8513 "Mismatch in number of output operands in asm result"); 8514 8515 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8516 DAG.getVTList(ResultVTs), ResultValues); 8517 setValue(&Call, V); 8518 } 8519 8520 // Collect store chains. 8521 if (!OutChains.empty()) 8522 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8523 8524 // Only Update Root if inline assembly has a memory effect. 8525 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8526 DAG.setRoot(Chain); 8527 } 8528 8529 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8530 const Twine &Message) { 8531 LLVMContext &Ctx = *DAG.getContext(); 8532 Ctx.emitError(&Call, Message); 8533 8534 // Make sure we leave the DAG in a valid state 8535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8536 SmallVector<EVT, 1> ValueVTs; 8537 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8538 8539 if (ValueVTs.empty()) 8540 return; 8541 8542 SmallVector<SDValue, 1> Ops; 8543 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8544 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8545 8546 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8547 } 8548 8549 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8550 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8551 MVT::Other, getRoot(), 8552 getValue(I.getArgOperand(0)), 8553 DAG.getSrcValue(I.getArgOperand(0)))); 8554 } 8555 8556 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8558 const DataLayout &DL = DAG.getDataLayout(); 8559 SDValue V = DAG.getVAArg( 8560 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8561 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8562 DL.getABITypeAlignment(I.getType())); 8563 DAG.setRoot(V.getValue(1)); 8564 8565 if (I.getType()->isPointerTy()) 8566 V = DAG.getPtrExtOrTrunc( 8567 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8568 setValue(&I, V); 8569 } 8570 8571 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8572 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8573 MVT::Other, getRoot(), 8574 getValue(I.getArgOperand(0)), 8575 DAG.getSrcValue(I.getArgOperand(0)))); 8576 } 8577 8578 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8579 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8580 MVT::Other, getRoot(), 8581 getValue(I.getArgOperand(0)), 8582 getValue(I.getArgOperand(1)), 8583 DAG.getSrcValue(I.getArgOperand(0)), 8584 DAG.getSrcValue(I.getArgOperand(1)))); 8585 } 8586 8587 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8588 const Instruction &I, 8589 SDValue Op) { 8590 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8591 if (!Range) 8592 return Op; 8593 8594 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8595 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8596 return Op; 8597 8598 APInt Lo = CR.getUnsignedMin(); 8599 if (!Lo.isMinValue()) 8600 return Op; 8601 8602 APInt Hi = CR.getUnsignedMax(); 8603 unsigned Bits = std::max(Hi.getActiveBits(), 8604 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8605 8606 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8607 8608 SDLoc SL = getCurSDLoc(); 8609 8610 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8611 DAG.getValueType(SmallVT)); 8612 unsigned NumVals = Op.getNode()->getNumValues(); 8613 if (NumVals == 1) 8614 return ZExt; 8615 8616 SmallVector<SDValue, 4> Ops; 8617 8618 Ops.push_back(ZExt); 8619 for (unsigned I = 1; I != NumVals; ++I) 8620 Ops.push_back(Op.getValue(I)); 8621 8622 return DAG.getMergeValues(Ops, SL); 8623 } 8624 8625 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8626 /// the call being lowered. 8627 /// 8628 /// This is a helper for lowering intrinsics that follow a target calling 8629 /// convention or require stack pointer adjustment. Only a subset of the 8630 /// intrinsic's operands need to participate in the calling convention. 8631 void SelectionDAGBuilder::populateCallLoweringInfo( 8632 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8633 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8634 bool IsPatchPoint) { 8635 TargetLowering::ArgListTy Args; 8636 Args.reserve(NumArgs); 8637 8638 // Populate the argument list. 8639 // Attributes for args start at offset 1, after the return attribute. 8640 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8641 ArgI != ArgE; ++ArgI) { 8642 const Value *V = Call->getOperand(ArgI); 8643 8644 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8645 8646 TargetLowering::ArgListEntry Entry; 8647 Entry.Node = getValue(V); 8648 Entry.Ty = V->getType(); 8649 Entry.setAttributes(Call, ArgI); 8650 Args.push_back(Entry); 8651 } 8652 8653 CLI.setDebugLoc(getCurSDLoc()) 8654 .setChain(getRoot()) 8655 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8656 .setDiscardResult(Call->use_empty()) 8657 .setIsPatchPoint(IsPatchPoint) 8658 .setIsPreallocated( 8659 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8660 } 8661 8662 /// Add a stack map intrinsic call's live variable operands to a stackmap 8663 /// or patchpoint target node's operand list. 8664 /// 8665 /// Constants are converted to TargetConstants purely as an optimization to 8666 /// avoid constant materialization and register allocation. 8667 /// 8668 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8669 /// generate addess computation nodes, and so FinalizeISel can convert the 8670 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8671 /// address materialization and register allocation, but may also be required 8672 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8673 /// alloca in the entry block, then the runtime may assume that the alloca's 8674 /// StackMap location can be read immediately after compilation and that the 8675 /// location is valid at any point during execution (this is similar to the 8676 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8677 /// only available in a register, then the runtime would need to trap when 8678 /// execution reaches the StackMap in order to read the alloca's location. 8679 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8680 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8681 SelectionDAGBuilder &Builder) { 8682 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8683 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8684 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8685 Ops.push_back( 8686 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8687 Ops.push_back( 8688 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8689 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8690 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8691 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8692 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8693 } else 8694 Ops.push_back(OpVal); 8695 } 8696 } 8697 8698 /// Lower llvm.experimental.stackmap directly to its target opcode. 8699 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8700 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8701 // [live variables...]) 8702 8703 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8704 8705 SDValue Chain, InFlag, Callee, NullPtr; 8706 SmallVector<SDValue, 32> Ops; 8707 8708 SDLoc DL = getCurSDLoc(); 8709 Callee = getValue(CI.getCalledOperand()); 8710 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8711 8712 // The stackmap intrinsic only records the live variables (the arguments 8713 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8714 // intrinsic, this won't be lowered to a function call. This means we don't 8715 // have to worry about calling conventions and target specific lowering code. 8716 // Instead we perform the call lowering right here. 8717 // 8718 // chain, flag = CALLSEQ_START(chain, 0, 0) 8719 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8720 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8721 // 8722 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8723 InFlag = Chain.getValue(1); 8724 8725 // Add the <id> and <numBytes> constants. 8726 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8727 Ops.push_back(DAG.getTargetConstant( 8728 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8729 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8730 Ops.push_back(DAG.getTargetConstant( 8731 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8732 MVT::i32)); 8733 8734 // Push live variables for the stack map. 8735 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8736 8737 // We are not pushing any register mask info here on the operands list, 8738 // because the stackmap doesn't clobber anything. 8739 8740 // Push the chain and the glue flag. 8741 Ops.push_back(Chain); 8742 Ops.push_back(InFlag); 8743 8744 // Create the STACKMAP node. 8745 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8746 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8747 Chain = SDValue(SM, 0); 8748 InFlag = Chain.getValue(1); 8749 8750 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8751 8752 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8753 8754 // Set the root to the target-lowered call chain. 8755 DAG.setRoot(Chain); 8756 8757 // Inform the Frame Information that we have a stackmap in this function. 8758 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8759 } 8760 8761 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8762 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8763 const BasicBlock *EHPadBB) { 8764 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8765 // i32 <numBytes>, 8766 // i8* <target>, 8767 // i32 <numArgs>, 8768 // [Args...], 8769 // [live variables...]) 8770 8771 CallingConv::ID CC = CB.getCallingConv(); 8772 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8773 bool HasDef = !CB.getType()->isVoidTy(); 8774 SDLoc dl = getCurSDLoc(); 8775 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8776 8777 // Handle immediate and symbolic callees. 8778 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8779 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8780 /*isTarget=*/true); 8781 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8782 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8783 SDLoc(SymbolicCallee), 8784 SymbolicCallee->getValueType(0)); 8785 8786 // Get the real number of arguments participating in the call <numArgs> 8787 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8788 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8789 8790 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8791 // Intrinsics include all meta-operands up to but not including CC. 8792 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8793 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8794 "Not enough arguments provided to the patchpoint intrinsic"); 8795 8796 // For AnyRegCC the arguments are lowered later on manually. 8797 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8798 Type *ReturnTy = 8799 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8800 8801 TargetLowering::CallLoweringInfo CLI(DAG); 8802 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8803 ReturnTy, true); 8804 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8805 8806 SDNode *CallEnd = Result.second.getNode(); 8807 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8808 CallEnd = CallEnd->getOperand(0).getNode(); 8809 8810 /// Get a call instruction from the call sequence chain. 8811 /// Tail calls are not allowed. 8812 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8813 "Expected a callseq node."); 8814 SDNode *Call = CallEnd->getOperand(0).getNode(); 8815 bool HasGlue = Call->getGluedNode(); 8816 8817 // Replace the target specific call node with the patchable intrinsic. 8818 SmallVector<SDValue, 8> Ops; 8819 8820 // Add the <id> and <numBytes> constants. 8821 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8822 Ops.push_back(DAG.getTargetConstant( 8823 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8824 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8825 Ops.push_back(DAG.getTargetConstant( 8826 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8827 MVT::i32)); 8828 8829 // Add the callee. 8830 Ops.push_back(Callee); 8831 8832 // Adjust <numArgs> to account for any arguments that have been passed on the 8833 // stack instead. 8834 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8835 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8836 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8837 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8838 8839 // Add the calling convention 8840 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8841 8842 // Add the arguments we omitted previously. The register allocator should 8843 // place these in any free register. 8844 if (IsAnyRegCC) 8845 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8846 Ops.push_back(getValue(CB.getArgOperand(i))); 8847 8848 // Push the arguments from the call instruction up to the register mask. 8849 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8850 Ops.append(Call->op_begin() + 2, e); 8851 8852 // Push live variables for the stack map. 8853 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8854 8855 // Push the register mask info. 8856 if (HasGlue) 8857 Ops.push_back(*(Call->op_end()-2)); 8858 else 8859 Ops.push_back(*(Call->op_end()-1)); 8860 8861 // Push the chain (this is originally the first operand of the call, but 8862 // becomes now the last or second to last operand). 8863 Ops.push_back(*(Call->op_begin())); 8864 8865 // Push the glue flag (last operand). 8866 if (HasGlue) 8867 Ops.push_back(*(Call->op_end()-1)); 8868 8869 SDVTList NodeTys; 8870 if (IsAnyRegCC && HasDef) { 8871 // Create the return types based on the intrinsic definition 8872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8873 SmallVector<EVT, 3> ValueVTs; 8874 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8875 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8876 8877 // There is always a chain and a glue type at the end 8878 ValueVTs.push_back(MVT::Other); 8879 ValueVTs.push_back(MVT::Glue); 8880 NodeTys = DAG.getVTList(ValueVTs); 8881 } else 8882 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8883 8884 // Replace the target specific call node with a PATCHPOINT node. 8885 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8886 dl, NodeTys, Ops); 8887 8888 // Update the NodeMap. 8889 if (HasDef) { 8890 if (IsAnyRegCC) 8891 setValue(&CB, SDValue(MN, 0)); 8892 else 8893 setValue(&CB, Result.first); 8894 } 8895 8896 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8897 // call sequence. Furthermore the location of the chain and glue can change 8898 // when the AnyReg calling convention is used and the intrinsic returns a 8899 // value. 8900 if (IsAnyRegCC && HasDef) { 8901 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8902 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8903 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8904 } else 8905 DAG.ReplaceAllUsesWith(Call, MN); 8906 DAG.DeleteNode(Call); 8907 8908 // Inform the Frame Information that we have a patchpoint in this function. 8909 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8910 } 8911 8912 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8913 unsigned Intrinsic) { 8914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8915 SDValue Op1 = getValue(I.getArgOperand(0)); 8916 SDValue Op2; 8917 if (I.getNumArgOperands() > 1) 8918 Op2 = getValue(I.getArgOperand(1)); 8919 SDLoc dl = getCurSDLoc(); 8920 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8921 SDValue Res; 8922 FastMathFlags FMF; 8923 if (isa<FPMathOperator>(I)) 8924 FMF = I.getFastMathFlags(); 8925 8926 switch (Intrinsic) { 8927 case Intrinsic::experimental_vector_reduce_v2_fadd: 8928 if (FMF.allowReassoc()) 8929 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8930 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8931 else 8932 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8933 break; 8934 case Intrinsic::experimental_vector_reduce_v2_fmul: 8935 if (FMF.allowReassoc()) 8936 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8937 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8938 else 8939 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8940 break; 8941 case Intrinsic::experimental_vector_reduce_add: 8942 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8943 break; 8944 case Intrinsic::experimental_vector_reduce_mul: 8945 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8946 break; 8947 case Intrinsic::experimental_vector_reduce_and: 8948 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8949 break; 8950 case Intrinsic::experimental_vector_reduce_or: 8951 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8952 break; 8953 case Intrinsic::experimental_vector_reduce_xor: 8954 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8955 break; 8956 case Intrinsic::experimental_vector_reduce_smax: 8957 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8958 break; 8959 case Intrinsic::experimental_vector_reduce_smin: 8960 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8961 break; 8962 case Intrinsic::experimental_vector_reduce_umax: 8963 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8964 break; 8965 case Intrinsic::experimental_vector_reduce_umin: 8966 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8967 break; 8968 case Intrinsic::experimental_vector_reduce_fmax: 8969 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8970 break; 8971 case Intrinsic::experimental_vector_reduce_fmin: 8972 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8973 break; 8974 default: 8975 llvm_unreachable("Unhandled vector reduce intrinsic"); 8976 } 8977 setValue(&I, Res); 8978 } 8979 8980 /// Returns an AttributeList representing the attributes applied to the return 8981 /// value of the given call. 8982 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8983 SmallVector<Attribute::AttrKind, 2> Attrs; 8984 if (CLI.RetSExt) 8985 Attrs.push_back(Attribute::SExt); 8986 if (CLI.RetZExt) 8987 Attrs.push_back(Attribute::ZExt); 8988 if (CLI.IsInReg) 8989 Attrs.push_back(Attribute::InReg); 8990 8991 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8992 Attrs); 8993 } 8994 8995 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8996 /// implementation, which just calls LowerCall. 8997 /// FIXME: When all targets are 8998 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8999 std::pair<SDValue, SDValue> 9000 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9001 // Handle the incoming return values from the call. 9002 CLI.Ins.clear(); 9003 Type *OrigRetTy = CLI.RetTy; 9004 SmallVector<EVT, 4> RetTys; 9005 SmallVector<uint64_t, 4> Offsets; 9006 auto &DL = CLI.DAG.getDataLayout(); 9007 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9008 9009 if (CLI.IsPostTypeLegalization) { 9010 // If we are lowering a libcall after legalization, split the return type. 9011 SmallVector<EVT, 4> OldRetTys; 9012 SmallVector<uint64_t, 4> OldOffsets; 9013 RetTys.swap(OldRetTys); 9014 Offsets.swap(OldOffsets); 9015 9016 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9017 EVT RetVT = OldRetTys[i]; 9018 uint64_t Offset = OldOffsets[i]; 9019 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9020 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9021 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9022 RetTys.append(NumRegs, RegisterVT); 9023 for (unsigned j = 0; j != NumRegs; ++j) 9024 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9025 } 9026 } 9027 9028 SmallVector<ISD::OutputArg, 4> Outs; 9029 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9030 9031 bool CanLowerReturn = 9032 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9033 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9034 9035 SDValue DemoteStackSlot; 9036 int DemoteStackIdx = -100; 9037 if (!CanLowerReturn) { 9038 // FIXME: equivalent assert? 9039 // assert(!CS.hasInAllocaArgument() && 9040 // "sret demotion is incompatible with inalloca"); 9041 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9042 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9043 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9044 DemoteStackIdx = 9045 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9046 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9047 DL.getAllocaAddrSpace()); 9048 9049 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9050 ArgListEntry Entry; 9051 Entry.Node = DemoteStackSlot; 9052 Entry.Ty = StackSlotPtrType; 9053 Entry.IsSExt = false; 9054 Entry.IsZExt = false; 9055 Entry.IsInReg = false; 9056 Entry.IsSRet = true; 9057 Entry.IsNest = false; 9058 Entry.IsByVal = false; 9059 Entry.IsReturned = false; 9060 Entry.IsSwiftSelf = false; 9061 Entry.IsSwiftError = false; 9062 Entry.IsCFGuardTarget = false; 9063 Entry.Alignment = Alignment; 9064 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9065 CLI.NumFixedArgs += 1; 9066 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9067 9068 // sret demotion isn't compatible with tail-calls, since the sret argument 9069 // points into the callers stack frame. 9070 CLI.IsTailCall = false; 9071 } else { 9072 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9073 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9074 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9075 ISD::ArgFlagsTy Flags; 9076 if (NeedsRegBlock) { 9077 Flags.setInConsecutiveRegs(); 9078 if (I == RetTys.size() - 1) 9079 Flags.setInConsecutiveRegsLast(); 9080 } 9081 EVT VT = RetTys[I]; 9082 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9083 CLI.CallConv, VT); 9084 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9085 CLI.CallConv, VT); 9086 for (unsigned i = 0; i != NumRegs; ++i) { 9087 ISD::InputArg MyFlags; 9088 MyFlags.Flags = Flags; 9089 MyFlags.VT = RegisterVT; 9090 MyFlags.ArgVT = VT; 9091 MyFlags.Used = CLI.IsReturnValueUsed; 9092 if (CLI.RetTy->isPointerTy()) { 9093 MyFlags.Flags.setPointer(); 9094 MyFlags.Flags.setPointerAddrSpace( 9095 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9096 } 9097 if (CLI.RetSExt) 9098 MyFlags.Flags.setSExt(); 9099 if (CLI.RetZExt) 9100 MyFlags.Flags.setZExt(); 9101 if (CLI.IsInReg) 9102 MyFlags.Flags.setInReg(); 9103 CLI.Ins.push_back(MyFlags); 9104 } 9105 } 9106 } 9107 9108 // We push in swifterror return as the last element of CLI.Ins. 9109 ArgListTy &Args = CLI.getArgs(); 9110 if (supportSwiftError()) { 9111 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9112 if (Args[i].IsSwiftError) { 9113 ISD::InputArg MyFlags; 9114 MyFlags.VT = getPointerTy(DL); 9115 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9116 MyFlags.Flags.setSwiftError(); 9117 CLI.Ins.push_back(MyFlags); 9118 } 9119 } 9120 } 9121 9122 // Handle all of the outgoing arguments. 9123 CLI.Outs.clear(); 9124 CLI.OutVals.clear(); 9125 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9126 SmallVector<EVT, 4> ValueVTs; 9127 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9128 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9129 Type *FinalType = Args[i].Ty; 9130 if (Args[i].IsByVal) 9131 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9132 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9133 FinalType, CLI.CallConv, CLI.IsVarArg); 9134 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9135 ++Value) { 9136 EVT VT = ValueVTs[Value]; 9137 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9138 SDValue Op = SDValue(Args[i].Node.getNode(), 9139 Args[i].Node.getResNo() + Value); 9140 ISD::ArgFlagsTy Flags; 9141 9142 // Certain targets (such as MIPS), may have a different ABI alignment 9143 // for a type depending on the context. Give the target a chance to 9144 // specify the alignment it wants. 9145 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9146 9147 if (Args[i].Ty->isPointerTy()) { 9148 Flags.setPointer(); 9149 Flags.setPointerAddrSpace( 9150 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9151 } 9152 if (Args[i].IsZExt) 9153 Flags.setZExt(); 9154 if (Args[i].IsSExt) 9155 Flags.setSExt(); 9156 if (Args[i].IsInReg) { 9157 // If we are using vectorcall calling convention, a structure that is 9158 // passed InReg - is surely an HVA 9159 if (CLI.CallConv == CallingConv::X86_VectorCall && 9160 isa<StructType>(FinalType)) { 9161 // The first value of a structure is marked 9162 if (0 == Value) 9163 Flags.setHvaStart(); 9164 Flags.setHva(); 9165 } 9166 // Set InReg Flag 9167 Flags.setInReg(); 9168 } 9169 if (Args[i].IsSRet) 9170 Flags.setSRet(); 9171 if (Args[i].IsSwiftSelf) 9172 Flags.setSwiftSelf(); 9173 if (Args[i].IsSwiftError) 9174 Flags.setSwiftError(); 9175 if (Args[i].IsCFGuardTarget) 9176 Flags.setCFGuardTarget(); 9177 if (Args[i].IsByVal) 9178 Flags.setByVal(); 9179 if (Args[i].IsPreallocated) { 9180 Flags.setPreallocated(); 9181 // Set the byval flag for CCAssignFn callbacks that don't know about 9182 // preallocated. This way we can know how many bytes we should've 9183 // allocated and how many bytes a callee cleanup function will pop. If 9184 // we port preallocated to more targets, we'll have to add custom 9185 // preallocated handling in the various CC lowering callbacks. 9186 Flags.setByVal(); 9187 } 9188 if (Args[i].IsInAlloca) { 9189 Flags.setInAlloca(); 9190 // Set the byval flag for CCAssignFn callbacks that don't know about 9191 // inalloca. This way we can know how many bytes we should've allocated 9192 // and how many bytes a callee cleanup function will pop. If we port 9193 // inalloca to more targets, we'll have to add custom inalloca handling 9194 // in the various CC lowering callbacks. 9195 Flags.setByVal(); 9196 } 9197 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9198 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9199 Type *ElementTy = Ty->getElementType(); 9200 9201 unsigned FrameSize = DL.getTypeAllocSize( 9202 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9203 Flags.setByValSize(FrameSize); 9204 9205 // info is not there but there are cases it cannot get right. 9206 Align FrameAlign; 9207 if (auto MA = Args[i].Alignment) 9208 FrameAlign = *MA; 9209 else 9210 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9211 Flags.setByValAlign(FrameAlign); 9212 } 9213 if (Args[i].IsNest) 9214 Flags.setNest(); 9215 if (NeedsRegBlock) 9216 Flags.setInConsecutiveRegs(); 9217 Flags.setOrigAlign(OriginalAlignment); 9218 9219 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9220 CLI.CallConv, VT); 9221 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9222 CLI.CallConv, VT); 9223 SmallVector<SDValue, 4> Parts(NumParts); 9224 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9225 9226 if (Args[i].IsSExt) 9227 ExtendKind = ISD::SIGN_EXTEND; 9228 else if (Args[i].IsZExt) 9229 ExtendKind = ISD::ZERO_EXTEND; 9230 9231 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9232 // for now. 9233 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9234 CanLowerReturn) { 9235 assert((CLI.RetTy == Args[i].Ty || 9236 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9237 CLI.RetTy->getPointerAddressSpace() == 9238 Args[i].Ty->getPointerAddressSpace())) && 9239 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9240 // Before passing 'returned' to the target lowering code, ensure that 9241 // either the register MVT and the actual EVT are the same size or that 9242 // the return value and argument are extended in the same way; in these 9243 // cases it's safe to pass the argument register value unchanged as the 9244 // return register value (although it's at the target's option whether 9245 // to do so) 9246 // TODO: allow code generation to take advantage of partially preserved 9247 // registers rather than clobbering the entire register when the 9248 // parameter extension method is not compatible with the return 9249 // extension method 9250 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9251 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9252 CLI.RetZExt == Args[i].IsZExt)) 9253 Flags.setReturned(); 9254 } 9255 9256 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9257 CLI.CallConv, ExtendKind); 9258 9259 for (unsigned j = 0; j != NumParts; ++j) { 9260 // if it isn't first piece, alignment must be 1 9261 // For scalable vectors the scalable part is currently handled 9262 // by individual targets, so we just use the known minimum size here. 9263 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9264 i < CLI.NumFixedArgs, i, 9265 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9266 if (NumParts > 1 && j == 0) 9267 MyFlags.Flags.setSplit(); 9268 else if (j != 0) { 9269 MyFlags.Flags.setOrigAlign(Align(1)); 9270 if (j == NumParts - 1) 9271 MyFlags.Flags.setSplitEnd(); 9272 } 9273 9274 CLI.Outs.push_back(MyFlags); 9275 CLI.OutVals.push_back(Parts[j]); 9276 } 9277 9278 if (NeedsRegBlock && Value == NumValues - 1) 9279 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9280 } 9281 } 9282 9283 SmallVector<SDValue, 4> InVals; 9284 CLI.Chain = LowerCall(CLI, InVals); 9285 9286 // Update CLI.InVals to use outside of this function. 9287 CLI.InVals = InVals; 9288 9289 // Verify that the target's LowerCall behaved as expected. 9290 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9291 "LowerCall didn't return a valid chain!"); 9292 assert((!CLI.IsTailCall || InVals.empty()) && 9293 "LowerCall emitted a return value for a tail call!"); 9294 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9295 "LowerCall didn't emit the correct number of values!"); 9296 9297 // For a tail call, the return value is merely live-out and there aren't 9298 // any nodes in the DAG representing it. Return a special value to 9299 // indicate that a tail call has been emitted and no more Instructions 9300 // should be processed in the current block. 9301 if (CLI.IsTailCall) { 9302 CLI.DAG.setRoot(CLI.Chain); 9303 return std::make_pair(SDValue(), SDValue()); 9304 } 9305 9306 #ifndef NDEBUG 9307 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9308 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9309 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9310 "LowerCall emitted a value with the wrong type!"); 9311 } 9312 #endif 9313 9314 SmallVector<SDValue, 4> ReturnValues; 9315 if (!CanLowerReturn) { 9316 // The instruction result is the result of loading from the 9317 // hidden sret parameter. 9318 SmallVector<EVT, 1> PVTs; 9319 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9320 9321 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9322 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9323 EVT PtrVT = PVTs[0]; 9324 9325 unsigned NumValues = RetTys.size(); 9326 ReturnValues.resize(NumValues); 9327 SmallVector<SDValue, 4> Chains(NumValues); 9328 9329 // An aggregate return value cannot wrap around the address space, so 9330 // offsets to its parts don't wrap either. 9331 SDNodeFlags Flags; 9332 Flags.setNoUnsignedWrap(true); 9333 9334 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9335 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9336 for (unsigned i = 0; i < NumValues; ++i) { 9337 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9338 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9339 PtrVT), Flags); 9340 SDValue L = CLI.DAG.getLoad( 9341 RetTys[i], CLI.DL, CLI.Chain, Add, 9342 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9343 DemoteStackIdx, Offsets[i]), 9344 HiddenSRetAlign); 9345 ReturnValues[i] = L; 9346 Chains[i] = L.getValue(1); 9347 } 9348 9349 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9350 } else { 9351 // Collect the legal value parts into potentially illegal values 9352 // that correspond to the original function's return values. 9353 Optional<ISD::NodeType> AssertOp; 9354 if (CLI.RetSExt) 9355 AssertOp = ISD::AssertSext; 9356 else if (CLI.RetZExt) 9357 AssertOp = ISD::AssertZext; 9358 unsigned CurReg = 0; 9359 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9360 EVT VT = RetTys[I]; 9361 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9362 CLI.CallConv, VT); 9363 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9364 CLI.CallConv, VT); 9365 9366 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9367 NumRegs, RegisterVT, VT, nullptr, 9368 CLI.CallConv, AssertOp)); 9369 CurReg += NumRegs; 9370 } 9371 9372 // For a function returning void, there is no return value. We can't create 9373 // such a node, so we just return a null return value in that case. In 9374 // that case, nothing will actually look at the value. 9375 if (ReturnValues.empty()) 9376 return std::make_pair(SDValue(), CLI.Chain); 9377 } 9378 9379 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9380 CLI.DAG.getVTList(RetTys), ReturnValues); 9381 return std::make_pair(Res, CLI.Chain); 9382 } 9383 9384 void TargetLowering::LowerOperationWrapper(SDNode *N, 9385 SmallVectorImpl<SDValue> &Results, 9386 SelectionDAG &DAG) const { 9387 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9388 Results.push_back(Res); 9389 } 9390 9391 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9392 llvm_unreachable("LowerOperation not implemented for this target!"); 9393 } 9394 9395 void 9396 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9397 SDValue Op = getNonRegisterValue(V); 9398 assert((Op.getOpcode() != ISD::CopyFromReg || 9399 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9400 "Copy from a reg to the same reg!"); 9401 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9402 9403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9404 // If this is an InlineAsm we have to match the registers required, not the 9405 // notional registers required by the type. 9406 9407 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9408 None); // This is not an ABI copy. 9409 SDValue Chain = DAG.getEntryNode(); 9410 9411 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9412 FuncInfo.PreferredExtendType.end()) 9413 ? ISD::ANY_EXTEND 9414 : FuncInfo.PreferredExtendType[V]; 9415 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9416 PendingExports.push_back(Chain); 9417 } 9418 9419 #include "llvm/CodeGen/SelectionDAGISel.h" 9420 9421 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9422 /// entry block, return true. This includes arguments used by switches, since 9423 /// the switch may expand into multiple basic blocks. 9424 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9425 // With FastISel active, we may be splitting blocks, so force creation 9426 // of virtual registers for all non-dead arguments. 9427 if (FastISel) 9428 return A->use_empty(); 9429 9430 const BasicBlock &Entry = A->getParent()->front(); 9431 for (const User *U : A->users()) 9432 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9433 return false; // Use not in entry block. 9434 9435 return true; 9436 } 9437 9438 using ArgCopyElisionMapTy = 9439 DenseMap<const Argument *, 9440 std::pair<const AllocaInst *, const StoreInst *>>; 9441 9442 /// Scan the entry block of the function in FuncInfo for arguments that look 9443 /// like copies into a local alloca. Record any copied arguments in 9444 /// ArgCopyElisionCandidates. 9445 static void 9446 findArgumentCopyElisionCandidates(const DataLayout &DL, 9447 FunctionLoweringInfo *FuncInfo, 9448 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9449 // Record the state of every static alloca used in the entry block. Argument 9450 // allocas are all used in the entry block, so we need approximately as many 9451 // entries as we have arguments. 9452 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9453 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9454 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9455 StaticAllocas.reserve(NumArgs * 2); 9456 9457 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9458 if (!V) 9459 return nullptr; 9460 V = V->stripPointerCasts(); 9461 const auto *AI = dyn_cast<AllocaInst>(V); 9462 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9463 return nullptr; 9464 auto Iter = StaticAllocas.insert({AI, Unknown}); 9465 return &Iter.first->second; 9466 }; 9467 9468 // Look for stores of arguments to static allocas. Look through bitcasts and 9469 // GEPs to handle type coercions, as long as the alloca is fully initialized 9470 // by the store. Any non-store use of an alloca escapes it and any subsequent 9471 // unanalyzed store might write it. 9472 // FIXME: Handle structs initialized with multiple stores. 9473 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9474 // Look for stores, and handle non-store uses conservatively. 9475 const auto *SI = dyn_cast<StoreInst>(&I); 9476 if (!SI) { 9477 // We will look through cast uses, so ignore them completely. 9478 if (I.isCast()) 9479 continue; 9480 // Ignore debug info intrinsics, they don't escape or store to allocas. 9481 if (isa<DbgInfoIntrinsic>(I)) 9482 continue; 9483 // This is an unknown instruction. Assume it escapes or writes to all 9484 // static alloca operands. 9485 for (const Use &U : I.operands()) { 9486 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9487 *Info = StaticAllocaInfo::Clobbered; 9488 } 9489 continue; 9490 } 9491 9492 // If the stored value is a static alloca, mark it as escaped. 9493 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9494 *Info = StaticAllocaInfo::Clobbered; 9495 9496 // Check if the destination is a static alloca. 9497 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9498 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9499 if (!Info) 9500 continue; 9501 const AllocaInst *AI = cast<AllocaInst>(Dst); 9502 9503 // Skip allocas that have been initialized or clobbered. 9504 if (*Info != StaticAllocaInfo::Unknown) 9505 continue; 9506 9507 // Check if the stored value is an argument, and that this store fully 9508 // initializes the alloca. Don't elide copies from the same argument twice. 9509 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9510 const auto *Arg = dyn_cast<Argument>(Val); 9511 if (!Arg || Arg->hasPassPointeeByValueAttr() || 9512 Arg->getType()->isEmptyTy() || 9513 DL.getTypeStoreSize(Arg->getType()) != 9514 DL.getTypeAllocSize(AI->getAllocatedType()) || 9515 ArgCopyElisionCandidates.count(Arg)) { 9516 *Info = StaticAllocaInfo::Clobbered; 9517 continue; 9518 } 9519 9520 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9521 << '\n'); 9522 9523 // Mark this alloca and store for argument copy elision. 9524 *Info = StaticAllocaInfo::Elidable; 9525 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9526 9527 // Stop scanning if we've seen all arguments. This will happen early in -O0 9528 // builds, which is useful, because -O0 builds have large entry blocks and 9529 // many allocas. 9530 if (ArgCopyElisionCandidates.size() == NumArgs) 9531 break; 9532 } 9533 } 9534 9535 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9536 /// ArgVal is a load from a suitable fixed stack object. 9537 static void tryToElideArgumentCopy( 9538 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9539 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9540 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9541 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9542 SDValue ArgVal, bool &ArgHasUses) { 9543 // Check if this is a load from a fixed stack object. 9544 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9545 if (!LNode) 9546 return; 9547 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9548 if (!FINode) 9549 return; 9550 9551 // Check that the fixed stack object is the right size and alignment. 9552 // Look at the alignment that the user wrote on the alloca instead of looking 9553 // at the stack object. 9554 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9555 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9556 const AllocaInst *AI = ArgCopyIter->second.first; 9557 int FixedIndex = FINode->getIndex(); 9558 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9559 int OldIndex = AllocaIndex; 9560 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9561 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9562 LLVM_DEBUG( 9563 dbgs() << " argument copy elision failed due to bad fixed stack " 9564 "object size\n"); 9565 return; 9566 } 9567 Align RequiredAlignment = AI->getAlign(); 9568 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9569 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9570 "greater than stack argument alignment (" 9571 << DebugStr(RequiredAlignment) << " vs " 9572 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9573 return; 9574 } 9575 9576 // Perform the elision. Delete the old stack object and replace its only use 9577 // in the variable info map. Mark the stack object as mutable. 9578 LLVM_DEBUG({ 9579 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9580 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9581 << '\n'; 9582 }); 9583 MFI.RemoveStackObject(OldIndex); 9584 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9585 AllocaIndex = FixedIndex; 9586 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9587 Chains.push_back(ArgVal.getValue(1)); 9588 9589 // Avoid emitting code for the store implementing the copy. 9590 const StoreInst *SI = ArgCopyIter->second.second; 9591 ElidedArgCopyInstrs.insert(SI); 9592 9593 // Check for uses of the argument again so that we can avoid exporting ArgVal 9594 // if it is't used by anything other than the store. 9595 for (const Value *U : Arg.users()) { 9596 if (U != SI) { 9597 ArgHasUses = true; 9598 break; 9599 } 9600 } 9601 } 9602 9603 void SelectionDAGISel::LowerArguments(const Function &F) { 9604 SelectionDAG &DAG = SDB->DAG; 9605 SDLoc dl = SDB->getCurSDLoc(); 9606 const DataLayout &DL = DAG.getDataLayout(); 9607 SmallVector<ISD::InputArg, 16> Ins; 9608 9609 if (!FuncInfo->CanLowerReturn) { 9610 // Put in an sret pointer parameter before all the other parameters. 9611 SmallVector<EVT, 1> ValueVTs; 9612 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9613 F.getReturnType()->getPointerTo( 9614 DAG.getDataLayout().getAllocaAddrSpace()), 9615 ValueVTs); 9616 9617 // NOTE: Assuming that a pointer will never break down to more than one VT 9618 // or one register. 9619 ISD::ArgFlagsTy Flags; 9620 Flags.setSRet(); 9621 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9622 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9623 ISD::InputArg::NoArgIndex, 0); 9624 Ins.push_back(RetArg); 9625 } 9626 9627 // Look for stores of arguments to static allocas. Mark such arguments with a 9628 // flag to ask the target to give us the memory location of that argument if 9629 // available. 9630 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9631 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9632 ArgCopyElisionCandidates); 9633 9634 // Set up the incoming argument description vector. 9635 for (const Argument &Arg : F.args()) { 9636 unsigned ArgNo = Arg.getArgNo(); 9637 SmallVector<EVT, 4> ValueVTs; 9638 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9639 bool isArgValueUsed = !Arg.use_empty(); 9640 unsigned PartBase = 0; 9641 Type *FinalType = Arg.getType(); 9642 if (Arg.hasAttribute(Attribute::ByVal)) 9643 FinalType = Arg.getParamByValType(); 9644 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9645 FinalType, F.getCallingConv(), F.isVarArg()); 9646 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9647 Value != NumValues; ++Value) { 9648 EVT VT = ValueVTs[Value]; 9649 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9650 ISD::ArgFlagsTy Flags; 9651 9652 // Certain targets (such as MIPS), may have a different ABI alignment 9653 // for a type depending on the context. Give the target a chance to 9654 // specify the alignment it wants. 9655 const Align OriginalAlignment( 9656 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9657 9658 if (Arg.getType()->isPointerTy()) { 9659 Flags.setPointer(); 9660 Flags.setPointerAddrSpace( 9661 cast<PointerType>(Arg.getType())->getAddressSpace()); 9662 } 9663 if (Arg.hasAttribute(Attribute::ZExt)) 9664 Flags.setZExt(); 9665 if (Arg.hasAttribute(Attribute::SExt)) 9666 Flags.setSExt(); 9667 if (Arg.hasAttribute(Attribute::InReg)) { 9668 // If we are using vectorcall calling convention, a structure that is 9669 // passed InReg - is surely an HVA 9670 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9671 isa<StructType>(Arg.getType())) { 9672 // The first value of a structure is marked 9673 if (0 == Value) 9674 Flags.setHvaStart(); 9675 Flags.setHva(); 9676 } 9677 // Set InReg Flag 9678 Flags.setInReg(); 9679 } 9680 if (Arg.hasAttribute(Attribute::StructRet)) 9681 Flags.setSRet(); 9682 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9683 Flags.setSwiftSelf(); 9684 if (Arg.hasAttribute(Attribute::SwiftError)) 9685 Flags.setSwiftError(); 9686 if (Arg.hasAttribute(Attribute::ByVal)) 9687 Flags.setByVal(); 9688 if (Arg.hasAttribute(Attribute::InAlloca)) { 9689 Flags.setInAlloca(); 9690 // Set the byval flag for CCAssignFn callbacks that don't know about 9691 // inalloca. This way we can know how many bytes we should've allocated 9692 // and how many bytes a callee cleanup function will pop. If we port 9693 // inalloca to more targets, we'll have to add custom inalloca handling 9694 // in the various CC lowering callbacks. 9695 Flags.setByVal(); 9696 } 9697 if (Arg.hasAttribute(Attribute::Preallocated)) { 9698 Flags.setPreallocated(); 9699 // Set the byval flag for CCAssignFn callbacks that don't know about 9700 // preallocated. This way we can know how many bytes we should've 9701 // allocated and how many bytes a callee cleanup function will pop. If 9702 // we port preallocated to more targets, we'll have to add custom 9703 // preallocated handling in the various CC lowering callbacks. 9704 Flags.setByVal(); 9705 } 9706 if (F.getCallingConv() == CallingConv::X86_INTR) { 9707 // IA Interrupt passes frame (1st parameter) by value in the stack. 9708 if (ArgNo == 0) 9709 Flags.setByVal(); 9710 } 9711 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 9712 Type *ElementTy = Arg.getParamByValType(); 9713 9714 // For ByVal, size and alignment should be passed from FE. BE will 9715 // guess if this info is not there but there are cases it cannot get 9716 // right. 9717 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9718 Flags.setByValSize(FrameSize); 9719 9720 unsigned FrameAlign; 9721 if (Arg.getParamAlignment()) 9722 FrameAlign = Arg.getParamAlignment(); 9723 else 9724 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9725 Flags.setByValAlign(Align(FrameAlign)); 9726 } 9727 if (Arg.hasAttribute(Attribute::Nest)) 9728 Flags.setNest(); 9729 if (NeedsRegBlock) 9730 Flags.setInConsecutiveRegs(); 9731 Flags.setOrigAlign(OriginalAlignment); 9732 if (ArgCopyElisionCandidates.count(&Arg)) 9733 Flags.setCopyElisionCandidate(); 9734 if (Arg.hasAttribute(Attribute::Returned)) 9735 Flags.setReturned(); 9736 9737 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9738 *CurDAG->getContext(), F.getCallingConv(), VT); 9739 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9740 *CurDAG->getContext(), F.getCallingConv(), VT); 9741 for (unsigned i = 0; i != NumRegs; ++i) { 9742 // For scalable vectors, use the minimum size; individual targets 9743 // are responsible for handling scalable vector arguments and 9744 // return values. 9745 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9746 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9747 if (NumRegs > 1 && i == 0) 9748 MyFlags.Flags.setSplit(); 9749 // if it isn't first piece, alignment must be 1 9750 else if (i > 0) { 9751 MyFlags.Flags.setOrigAlign(Align(1)); 9752 if (i == NumRegs - 1) 9753 MyFlags.Flags.setSplitEnd(); 9754 } 9755 Ins.push_back(MyFlags); 9756 } 9757 if (NeedsRegBlock && Value == NumValues - 1) 9758 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9759 PartBase += VT.getStoreSize().getKnownMinSize(); 9760 } 9761 } 9762 9763 // Call the target to set up the argument values. 9764 SmallVector<SDValue, 8> InVals; 9765 SDValue NewRoot = TLI->LowerFormalArguments( 9766 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9767 9768 // Verify that the target's LowerFormalArguments behaved as expected. 9769 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9770 "LowerFormalArguments didn't return a valid chain!"); 9771 assert(InVals.size() == Ins.size() && 9772 "LowerFormalArguments didn't emit the correct number of values!"); 9773 LLVM_DEBUG({ 9774 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9775 assert(InVals[i].getNode() && 9776 "LowerFormalArguments emitted a null value!"); 9777 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9778 "LowerFormalArguments emitted a value with the wrong type!"); 9779 } 9780 }); 9781 9782 // Update the DAG with the new chain value resulting from argument lowering. 9783 DAG.setRoot(NewRoot); 9784 9785 // Set up the argument values. 9786 unsigned i = 0; 9787 if (!FuncInfo->CanLowerReturn) { 9788 // Create a virtual register for the sret pointer, and put in a copy 9789 // from the sret argument into it. 9790 SmallVector<EVT, 1> ValueVTs; 9791 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9792 F.getReturnType()->getPointerTo( 9793 DAG.getDataLayout().getAllocaAddrSpace()), 9794 ValueVTs); 9795 MVT VT = ValueVTs[0].getSimpleVT(); 9796 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9797 Optional<ISD::NodeType> AssertOp = None; 9798 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9799 nullptr, F.getCallingConv(), AssertOp); 9800 9801 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9802 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9803 Register SRetReg = 9804 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9805 FuncInfo->DemoteRegister = SRetReg; 9806 NewRoot = 9807 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9808 DAG.setRoot(NewRoot); 9809 9810 // i indexes lowered arguments. Bump it past the hidden sret argument. 9811 ++i; 9812 } 9813 9814 SmallVector<SDValue, 4> Chains; 9815 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9816 for (const Argument &Arg : F.args()) { 9817 SmallVector<SDValue, 4> ArgValues; 9818 SmallVector<EVT, 4> ValueVTs; 9819 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9820 unsigned NumValues = ValueVTs.size(); 9821 if (NumValues == 0) 9822 continue; 9823 9824 bool ArgHasUses = !Arg.use_empty(); 9825 9826 // Elide the copying store if the target loaded this argument from a 9827 // suitable fixed stack object. 9828 if (Ins[i].Flags.isCopyElisionCandidate()) { 9829 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9830 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9831 InVals[i], ArgHasUses); 9832 } 9833 9834 // If this argument is unused then remember its value. It is used to generate 9835 // debugging information. 9836 bool isSwiftErrorArg = 9837 TLI->supportSwiftError() && 9838 Arg.hasAttribute(Attribute::SwiftError); 9839 if (!ArgHasUses && !isSwiftErrorArg) { 9840 SDB->setUnusedArgValue(&Arg, InVals[i]); 9841 9842 // Also remember any frame index for use in FastISel. 9843 if (FrameIndexSDNode *FI = 9844 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9845 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9846 } 9847 9848 for (unsigned Val = 0; Val != NumValues; ++Val) { 9849 EVT VT = ValueVTs[Val]; 9850 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9851 F.getCallingConv(), VT); 9852 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9853 *CurDAG->getContext(), F.getCallingConv(), VT); 9854 9855 // Even an apparent 'unused' swifterror argument needs to be returned. So 9856 // we do generate a copy for it that can be used on return from the 9857 // function. 9858 if (ArgHasUses || isSwiftErrorArg) { 9859 Optional<ISD::NodeType> AssertOp; 9860 if (Arg.hasAttribute(Attribute::SExt)) 9861 AssertOp = ISD::AssertSext; 9862 else if (Arg.hasAttribute(Attribute::ZExt)) 9863 AssertOp = ISD::AssertZext; 9864 9865 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9866 PartVT, VT, nullptr, 9867 F.getCallingConv(), AssertOp)); 9868 } 9869 9870 i += NumParts; 9871 } 9872 9873 // We don't need to do anything else for unused arguments. 9874 if (ArgValues.empty()) 9875 continue; 9876 9877 // Note down frame index. 9878 if (FrameIndexSDNode *FI = 9879 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9880 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9881 9882 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9883 SDB->getCurSDLoc()); 9884 9885 SDB->setValue(&Arg, Res); 9886 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9887 // We want to associate the argument with the frame index, among 9888 // involved operands, that correspond to the lowest address. The 9889 // getCopyFromParts function, called earlier, is swapping the order of 9890 // the operands to BUILD_PAIR depending on endianness. The result of 9891 // that swapping is that the least significant bits of the argument will 9892 // be in the first operand of the BUILD_PAIR node, and the most 9893 // significant bits will be in the second operand. 9894 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9895 if (LoadSDNode *LNode = 9896 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9897 if (FrameIndexSDNode *FI = 9898 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9899 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9900 } 9901 9902 // Analyses past this point are naive and don't expect an assertion. 9903 if (Res.getOpcode() == ISD::AssertZext) 9904 Res = Res.getOperand(0); 9905 9906 // Update the SwiftErrorVRegDefMap. 9907 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9908 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9909 if (Register::isVirtualRegister(Reg)) 9910 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9911 Reg); 9912 } 9913 9914 // If this argument is live outside of the entry block, insert a copy from 9915 // wherever we got it to the vreg that other BB's will reference it as. 9916 if (Res.getOpcode() == ISD::CopyFromReg) { 9917 // If we can, though, try to skip creating an unnecessary vreg. 9918 // FIXME: This isn't very clean... it would be nice to make this more 9919 // general. 9920 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9921 if (Register::isVirtualRegister(Reg)) { 9922 FuncInfo->ValueMap[&Arg] = Reg; 9923 continue; 9924 } 9925 } 9926 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9927 FuncInfo->InitializeRegForValue(&Arg); 9928 SDB->CopyToExportRegsIfNeeded(&Arg); 9929 } 9930 } 9931 9932 if (!Chains.empty()) { 9933 Chains.push_back(NewRoot); 9934 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9935 } 9936 9937 DAG.setRoot(NewRoot); 9938 9939 assert(i == InVals.size() && "Argument register count mismatch!"); 9940 9941 // If any argument copy elisions occurred and we have debug info, update the 9942 // stale frame indices used in the dbg.declare variable info table. 9943 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9944 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9945 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9946 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9947 if (I != ArgCopyElisionFrameIndexMap.end()) 9948 VI.Slot = I->second; 9949 } 9950 } 9951 9952 // Finally, if the target has anything special to do, allow it to do so. 9953 emitFunctionEntryCode(); 9954 } 9955 9956 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9957 /// ensure constants are generated when needed. Remember the virtual registers 9958 /// that need to be added to the Machine PHI nodes as input. We cannot just 9959 /// directly add them, because expansion might result in multiple MBB's for one 9960 /// BB. As such, the start of the BB might correspond to a different MBB than 9961 /// the end. 9962 void 9963 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9964 const Instruction *TI = LLVMBB->getTerminator(); 9965 9966 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9967 9968 // Check PHI nodes in successors that expect a value to be available from this 9969 // block. 9970 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9971 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9972 if (!isa<PHINode>(SuccBB->begin())) continue; 9973 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9974 9975 // If this terminator has multiple identical successors (common for 9976 // switches), only handle each succ once. 9977 if (!SuccsHandled.insert(SuccMBB).second) 9978 continue; 9979 9980 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9981 9982 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9983 // nodes and Machine PHI nodes, but the incoming operands have not been 9984 // emitted yet. 9985 for (const PHINode &PN : SuccBB->phis()) { 9986 // Ignore dead phi's. 9987 if (PN.use_empty()) 9988 continue; 9989 9990 // Skip empty types 9991 if (PN.getType()->isEmptyTy()) 9992 continue; 9993 9994 unsigned Reg; 9995 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9996 9997 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9998 unsigned &RegOut = ConstantsOut[C]; 9999 if (RegOut == 0) { 10000 RegOut = FuncInfo.CreateRegs(C); 10001 CopyValueToVirtualRegister(C, RegOut); 10002 } 10003 Reg = RegOut; 10004 } else { 10005 DenseMap<const Value *, Register>::iterator I = 10006 FuncInfo.ValueMap.find(PHIOp); 10007 if (I != FuncInfo.ValueMap.end()) 10008 Reg = I->second; 10009 else { 10010 assert(isa<AllocaInst>(PHIOp) && 10011 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10012 "Didn't codegen value into a register!??"); 10013 Reg = FuncInfo.CreateRegs(PHIOp); 10014 CopyValueToVirtualRegister(PHIOp, Reg); 10015 } 10016 } 10017 10018 // Remember that this register needs to added to the machine PHI node as 10019 // the input for this MBB. 10020 SmallVector<EVT, 4> ValueVTs; 10021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10022 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10023 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10024 EVT VT = ValueVTs[vti]; 10025 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10026 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10027 FuncInfo.PHINodesToUpdate.push_back( 10028 std::make_pair(&*MBBI++, Reg + i)); 10029 Reg += NumRegisters; 10030 } 10031 } 10032 } 10033 10034 ConstantsOut.clear(); 10035 } 10036 10037 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10038 /// is 0. 10039 MachineBasicBlock * 10040 SelectionDAGBuilder::StackProtectorDescriptor:: 10041 AddSuccessorMBB(const BasicBlock *BB, 10042 MachineBasicBlock *ParentMBB, 10043 bool IsLikely, 10044 MachineBasicBlock *SuccMBB) { 10045 // If SuccBB has not been created yet, create it. 10046 if (!SuccMBB) { 10047 MachineFunction *MF = ParentMBB->getParent(); 10048 MachineFunction::iterator BBI(ParentMBB); 10049 SuccMBB = MF->CreateMachineBasicBlock(BB); 10050 MF->insert(++BBI, SuccMBB); 10051 } 10052 // Add it as a successor of ParentMBB. 10053 ParentMBB->addSuccessor( 10054 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10055 return SuccMBB; 10056 } 10057 10058 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10059 MachineFunction::iterator I(MBB); 10060 if (++I == FuncInfo.MF->end()) 10061 return nullptr; 10062 return &*I; 10063 } 10064 10065 /// During lowering new call nodes can be created (such as memset, etc.). 10066 /// Those will become new roots of the current DAG, but complications arise 10067 /// when they are tail calls. In such cases, the call lowering will update 10068 /// the root, but the builder still needs to know that a tail call has been 10069 /// lowered in order to avoid generating an additional return. 10070 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10071 // If the node is null, we do have a tail call. 10072 if (MaybeTC.getNode() != nullptr) 10073 DAG.setRoot(MaybeTC); 10074 else 10075 HasTailCall = true; 10076 } 10077 10078 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10079 MachineBasicBlock *SwitchMBB, 10080 MachineBasicBlock *DefaultMBB) { 10081 MachineFunction *CurMF = FuncInfo.MF; 10082 MachineBasicBlock *NextMBB = nullptr; 10083 MachineFunction::iterator BBI(W.MBB); 10084 if (++BBI != FuncInfo.MF->end()) 10085 NextMBB = &*BBI; 10086 10087 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10088 10089 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10090 10091 if (Size == 2 && W.MBB == SwitchMBB) { 10092 // If any two of the cases has the same destination, and if one value 10093 // is the same as the other, but has one bit unset that the other has set, 10094 // use bit manipulation to do two compares at once. For example: 10095 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10096 // TODO: This could be extended to merge any 2 cases in switches with 3 10097 // cases. 10098 // TODO: Handle cases where W.CaseBB != SwitchBB. 10099 CaseCluster &Small = *W.FirstCluster; 10100 CaseCluster &Big = *W.LastCluster; 10101 10102 if (Small.Low == Small.High && Big.Low == Big.High && 10103 Small.MBB == Big.MBB) { 10104 const APInt &SmallValue = Small.Low->getValue(); 10105 const APInt &BigValue = Big.Low->getValue(); 10106 10107 // Check that there is only one bit different. 10108 APInt CommonBit = BigValue ^ SmallValue; 10109 if (CommonBit.isPowerOf2()) { 10110 SDValue CondLHS = getValue(Cond); 10111 EVT VT = CondLHS.getValueType(); 10112 SDLoc DL = getCurSDLoc(); 10113 10114 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10115 DAG.getConstant(CommonBit, DL, VT)); 10116 SDValue Cond = DAG.getSetCC( 10117 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10118 ISD::SETEQ); 10119 10120 // Update successor info. 10121 // Both Small and Big will jump to Small.BB, so we sum up the 10122 // probabilities. 10123 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10124 if (BPI) 10125 addSuccessorWithProb( 10126 SwitchMBB, DefaultMBB, 10127 // The default destination is the first successor in IR. 10128 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10129 else 10130 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10131 10132 // Insert the true branch. 10133 SDValue BrCond = 10134 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10135 DAG.getBasicBlock(Small.MBB)); 10136 // Insert the false branch. 10137 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10138 DAG.getBasicBlock(DefaultMBB)); 10139 10140 DAG.setRoot(BrCond); 10141 return; 10142 } 10143 } 10144 } 10145 10146 if (TM.getOptLevel() != CodeGenOpt::None) { 10147 // Here, we order cases by probability so the most likely case will be 10148 // checked first. However, two clusters can have the same probability in 10149 // which case their relative ordering is non-deterministic. So we use Low 10150 // as a tie-breaker as clusters are guaranteed to never overlap. 10151 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10152 [](const CaseCluster &a, const CaseCluster &b) { 10153 return a.Prob != b.Prob ? 10154 a.Prob > b.Prob : 10155 a.Low->getValue().slt(b.Low->getValue()); 10156 }); 10157 10158 // Rearrange the case blocks so that the last one falls through if possible 10159 // without changing the order of probabilities. 10160 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10161 --I; 10162 if (I->Prob > W.LastCluster->Prob) 10163 break; 10164 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10165 std::swap(*I, *W.LastCluster); 10166 break; 10167 } 10168 } 10169 } 10170 10171 // Compute total probability. 10172 BranchProbability DefaultProb = W.DefaultProb; 10173 BranchProbability UnhandledProbs = DefaultProb; 10174 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10175 UnhandledProbs += I->Prob; 10176 10177 MachineBasicBlock *CurMBB = W.MBB; 10178 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10179 bool FallthroughUnreachable = false; 10180 MachineBasicBlock *Fallthrough; 10181 if (I == W.LastCluster) { 10182 // For the last cluster, fall through to the default destination. 10183 Fallthrough = DefaultMBB; 10184 FallthroughUnreachable = isa<UnreachableInst>( 10185 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10186 } else { 10187 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10188 CurMF->insert(BBI, Fallthrough); 10189 // Put Cond in a virtual register to make it available from the new blocks. 10190 ExportFromCurrentBlock(Cond); 10191 } 10192 UnhandledProbs -= I->Prob; 10193 10194 switch (I->Kind) { 10195 case CC_JumpTable: { 10196 // FIXME: Optimize away range check based on pivot comparisons. 10197 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10198 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10199 10200 // The jump block hasn't been inserted yet; insert it here. 10201 MachineBasicBlock *JumpMBB = JT->MBB; 10202 CurMF->insert(BBI, JumpMBB); 10203 10204 auto JumpProb = I->Prob; 10205 auto FallthroughProb = UnhandledProbs; 10206 10207 // If the default statement is a target of the jump table, we evenly 10208 // distribute the default probability to successors of CurMBB. Also 10209 // update the probability on the edge from JumpMBB to Fallthrough. 10210 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10211 SE = JumpMBB->succ_end(); 10212 SI != SE; ++SI) { 10213 if (*SI == DefaultMBB) { 10214 JumpProb += DefaultProb / 2; 10215 FallthroughProb -= DefaultProb / 2; 10216 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10217 JumpMBB->normalizeSuccProbs(); 10218 break; 10219 } 10220 } 10221 10222 if (FallthroughUnreachable) { 10223 // Skip the range check if the fallthrough block is unreachable. 10224 JTH->OmitRangeCheck = true; 10225 } 10226 10227 if (!JTH->OmitRangeCheck) 10228 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10229 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10230 CurMBB->normalizeSuccProbs(); 10231 10232 // The jump table header will be inserted in our current block, do the 10233 // range check, and fall through to our fallthrough block. 10234 JTH->HeaderBB = CurMBB; 10235 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10236 10237 // If we're in the right place, emit the jump table header right now. 10238 if (CurMBB == SwitchMBB) { 10239 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10240 JTH->Emitted = true; 10241 } 10242 break; 10243 } 10244 case CC_BitTests: { 10245 // FIXME: Optimize away range check based on pivot comparisons. 10246 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10247 10248 // The bit test blocks haven't been inserted yet; insert them here. 10249 for (BitTestCase &BTC : BTB->Cases) 10250 CurMF->insert(BBI, BTC.ThisBB); 10251 10252 // Fill in fields of the BitTestBlock. 10253 BTB->Parent = CurMBB; 10254 BTB->Default = Fallthrough; 10255 10256 BTB->DefaultProb = UnhandledProbs; 10257 // If the cases in bit test don't form a contiguous range, we evenly 10258 // distribute the probability on the edge to Fallthrough to two 10259 // successors of CurMBB. 10260 if (!BTB->ContiguousRange) { 10261 BTB->Prob += DefaultProb / 2; 10262 BTB->DefaultProb -= DefaultProb / 2; 10263 } 10264 10265 if (FallthroughUnreachable) { 10266 // Skip the range check if the fallthrough block is unreachable. 10267 BTB->OmitRangeCheck = true; 10268 } 10269 10270 // If we're in the right place, emit the bit test header right now. 10271 if (CurMBB == SwitchMBB) { 10272 visitBitTestHeader(*BTB, SwitchMBB); 10273 BTB->Emitted = true; 10274 } 10275 break; 10276 } 10277 case CC_Range: { 10278 const Value *RHS, *LHS, *MHS; 10279 ISD::CondCode CC; 10280 if (I->Low == I->High) { 10281 // Check Cond == I->Low. 10282 CC = ISD::SETEQ; 10283 LHS = Cond; 10284 RHS=I->Low; 10285 MHS = nullptr; 10286 } else { 10287 // Check I->Low <= Cond <= I->High. 10288 CC = ISD::SETLE; 10289 LHS = I->Low; 10290 MHS = Cond; 10291 RHS = I->High; 10292 } 10293 10294 // If Fallthrough is unreachable, fold away the comparison. 10295 if (FallthroughUnreachable) 10296 CC = ISD::SETTRUE; 10297 10298 // The false probability is the sum of all unhandled cases. 10299 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10300 getCurSDLoc(), I->Prob, UnhandledProbs); 10301 10302 if (CurMBB == SwitchMBB) 10303 visitSwitchCase(CB, SwitchMBB); 10304 else 10305 SL->SwitchCases.push_back(CB); 10306 10307 break; 10308 } 10309 } 10310 CurMBB = Fallthrough; 10311 } 10312 } 10313 10314 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10315 CaseClusterIt First, 10316 CaseClusterIt Last) { 10317 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10318 if (X.Prob != CC.Prob) 10319 return X.Prob > CC.Prob; 10320 10321 // Ties are broken by comparing the case value. 10322 return X.Low->getValue().slt(CC.Low->getValue()); 10323 }); 10324 } 10325 10326 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10327 const SwitchWorkListItem &W, 10328 Value *Cond, 10329 MachineBasicBlock *SwitchMBB) { 10330 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10331 "Clusters not sorted?"); 10332 10333 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10334 10335 // Balance the tree based on branch probabilities to create a near-optimal (in 10336 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10337 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10338 CaseClusterIt LastLeft = W.FirstCluster; 10339 CaseClusterIt FirstRight = W.LastCluster; 10340 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10341 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10342 10343 // Move LastLeft and FirstRight towards each other from opposite directions to 10344 // find a partitioning of the clusters which balances the probability on both 10345 // sides. If LeftProb and RightProb are equal, alternate which side is 10346 // taken to ensure 0-probability nodes are distributed evenly. 10347 unsigned I = 0; 10348 while (LastLeft + 1 < FirstRight) { 10349 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10350 LeftProb += (++LastLeft)->Prob; 10351 else 10352 RightProb += (--FirstRight)->Prob; 10353 I++; 10354 } 10355 10356 while (true) { 10357 // Our binary search tree differs from a typical BST in that ours can have up 10358 // to three values in each leaf. The pivot selection above doesn't take that 10359 // into account, which means the tree might require more nodes and be less 10360 // efficient. We compensate for this here. 10361 10362 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10363 unsigned NumRight = W.LastCluster - FirstRight + 1; 10364 10365 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10366 // If one side has less than 3 clusters, and the other has more than 3, 10367 // consider taking a cluster from the other side. 10368 10369 if (NumLeft < NumRight) { 10370 // Consider moving the first cluster on the right to the left side. 10371 CaseCluster &CC = *FirstRight; 10372 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10373 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10374 if (LeftSideRank <= RightSideRank) { 10375 // Moving the cluster to the left does not demote it. 10376 ++LastLeft; 10377 ++FirstRight; 10378 continue; 10379 } 10380 } else { 10381 assert(NumRight < NumLeft); 10382 // Consider moving the last element on the left to the right side. 10383 CaseCluster &CC = *LastLeft; 10384 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10385 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10386 if (RightSideRank <= LeftSideRank) { 10387 // Moving the cluster to the right does not demot it. 10388 --LastLeft; 10389 --FirstRight; 10390 continue; 10391 } 10392 } 10393 } 10394 break; 10395 } 10396 10397 assert(LastLeft + 1 == FirstRight); 10398 assert(LastLeft >= W.FirstCluster); 10399 assert(FirstRight <= W.LastCluster); 10400 10401 // Use the first element on the right as pivot since we will make less-than 10402 // comparisons against it. 10403 CaseClusterIt PivotCluster = FirstRight; 10404 assert(PivotCluster > W.FirstCluster); 10405 assert(PivotCluster <= W.LastCluster); 10406 10407 CaseClusterIt FirstLeft = W.FirstCluster; 10408 CaseClusterIt LastRight = W.LastCluster; 10409 10410 const ConstantInt *Pivot = PivotCluster->Low; 10411 10412 // New blocks will be inserted immediately after the current one. 10413 MachineFunction::iterator BBI(W.MBB); 10414 ++BBI; 10415 10416 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10417 // we can branch to its destination directly if it's squeezed exactly in 10418 // between the known lower bound and Pivot - 1. 10419 MachineBasicBlock *LeftMBB; 10420 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10421 FirstLeft->Low == W.GE && 10422 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10423 LeftMBB = FirstLeft->MBB; 10424 } else { 10425 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10426 FuncInfo.MF->insert(BBI, LeftMBB); 10427 WorkList.push_back( 10428 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10429 // Put Cond in a virtual register to make it available from the new blocks. 10430 ExportFromCurrentBlock(Cond); 10431 } 10432 10433 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10434 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10435 // directly if RHS.High equals the current upper bound. 10436 MachineBasicBlock *RightMBB; 10437 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10438 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10439 RightMBB = FirstRight->MBB; 10440 } else { 10441 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10442 FuncInfo.MF->insert(BBI, RightMBB); 10443 WorkList.push_back( 10444 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10445 // Put Cond in a virtual register to make it available from the new blocks. 10446 ExportFromCurrentBlock(Cond); 10447 } 10448 10449 // Create the CaseBlock record that will be used to lower the branch. 10450 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10451 getCurSDLoc(), LeftProb, RightProb); 10452 10453 if (W.MBB == SwitchMBB) 10454 visitSwitchCase(CB, SwitchMBB); 10455 else 10456 SL->SwitchCases.push_back(CB); 10457 } 10458 10459 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10460 // from the swith statement. 10461 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10462 BranchProbability PeeledCaseProb) { 10463 if (PeeledCaseProb == BranchProbability::getOne()) 10464 return BranchProbability::getZero(); 10465 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10466 10467 uint32_t Numerator = CaseProb.getNumerator(); 10468 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10469 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10470 } 10471 10472 // Try to peel the top probability case if it exceeds the threshold. 10473 // Return current MachineBasicBlock for the switch statement if the peeling 10474 // does not occur. 10475 // If the peeling is performed, return the newly created MachineBasicBlock 10476 // for the peeled switch statement. Also update Clusters to remove the peeled 10477 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10478 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10479 const SwitchInst &SI, CaseClusterVector &Clusters, 10480 BranchProbability &PeeledCaseProb) { 10481 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10482 // Don't perform if there is only one cluster or optimizing for size. 10483 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10484 TM.getOptLevel() == CodeGenOpt::None || 10485 SwitchMBB->getParent()->getFunction().hasMinSize()) 10486 return SwitchMBB; 10487 10488 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10489 unsigned PeeledCaseIndex = 0; 10490 bool SwitchPeeled = false; 10491 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10492 CaseCluster &CC = Clusters[Index]; 10493 if (CC.Prob < TopCaseProb) 10494 continue; 10495 TopCaseProb = CC.Prob; 10496 PeeledCaseIndex = Index; 10497 SwitchPeeled = true; 10498 } 10499 if (!SwitchPeeled) 10500 return SwitchMBB; 10501 10502 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10503 << TopCaseProb << "\n"); 10504 10505 // Record the MBB for the peeled switch statement. 10506 MachineFunction::iterator BBI(SwitchMBB); 10507 ++BBI; 10508 MachineBasicBlock *PeeledSwitchMBB = 10509 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10510 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10511 10512 ExportFromCurrentBlock(SI.getCondition()); 10513 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10514 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10515 nullptr, nullptr, TopCaseProb.getCompl()}; 10516 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10517 10518 Clusters.erase(PeeledCaseIt); 10519 for (CaseCluster &CC : Clusters) { 10520 LLVM_DEBUG( 10521 dbgs() << "Scale the probablity for one cluster, before scaling: " 10522 << CC.Prob << "\n"); 10523 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10524 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10525 } 10526 PeeledCaseProb = TopCaseProb; 10527 return PeeledSwitchMBB; 10528 } 10529 10530 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10531 // Extract cases from the switch. 10532 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10533 CaseClusterVector Clusters; 10534 Clusters.reserve(SI.getNumCases()); 10535 for (auto I : SI.cases()) { 10536 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10537 const ConstantInt *CaseVal = I.getCaseValue(); 10538 BranchProbability Prob = 10539 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10540 : BranchProbability(1, SI.getNumCases() + 1); 10541 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10542 } 10543 10544 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10545 10546 // Cluster adjacent cases with the same destination. We do this at all 10547 // optimization levels because it's cheap to do and will make codegen faster 10548 // if there are many clusters. 10549 sortAndRangeify(Clusters); 10550 10551 // The branch probablity of the peeled case. 10552 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10553 MachineBasicBlock *PeeledSwitchMBB = 10554 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10555 10556 // If there is only the default destination, jump there directly. 10557 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10558 if (Clusters.empty()) { 10559 assert(PeeledSwitchMBB == SwitchMBB); 10560 SwitchMBB->addSuccessor(DefaultMBB); 10561 if (DefaultMBB != NextBlock(SwitchMBB)) { 10562 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10563 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10564 } 10565 return; 10566 } 10567 10568 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10569 SL->findBitTestClusters(Clusters, &SI); 10570 10571 LLVM_DEBUG({ 10572 dbgs() << "Case clusters: "; 10573 for (const CaseCluster &C : Clusters) { 10574 if (C.Kind == CC_JumpTable) 10575 dbgs() << "JT:"; 10576 if (C.Kind == CC_BitTests) 10577 dbgs() << "BT:"; 10578 10579 C.Low->getValue().print(dbgs(), true); 10580 if (C.Low != C.High) { 10581 dbgs() << '-'; 10582 C.High->getValue().print(dbgs(), true); 10583 } 10584 dbgs() << ' '; 10585 } 10586 dbgs() << '\n'; 10587 }); 10588 10589 assert(!Clusters.empty()); 10590 SwitchWorkList WorkList; 10591 CaseClusterIt First = Clusters.begin(); 10592 CaseClusterIt Last = Clusters.end() - 1; 10593 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10594 // Scale the branchprobability for DefaultMBB if the peel occurs and 10595 // DefaultMBB is not replaced. 10596 if (PeeledCaseProb != BranchProbability::getZero() && 10597 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10598 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10599 WorkList.push_back( 10600 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10601 10602 while (!WorkList.empty()) { 10603 SwitchWorkListItem W = WorkList.back(); 10604 WorkList.pop_back(); 10605 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10606 10607 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10608 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10609 // For optimized builds, lower large range as a balanced binary tree. 10610 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10611 continue; 10612 } 10613 10614 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10615 } 10616 } 10617 10618 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10619 SmallVector<EVT, 4> ValueVTs; 10620 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10621 ValueVTs); 10622 unsigned NumValues = ValueVTs.size(); 10623 if (NumValues == 0) return; 10624 10625 SmallVector<SDValue, 4> Values(NumValues); 10626 SDValue Op = getValue(I.getOperand(0)); 10627 10628 for (unsigned i = 0; i != NumValues; ++i) 10629 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10630 SDValue(Op.getNode(), Op.getResNo() + i)); 10631 10632 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10633 DAG.getVTList(ValueVTs), Values)); 10634 } 10635