xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision c471bb2e673a916e5daa5ba643eabbd30a20fc4a)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts = NumParts & (NumParts - 1) ?
219         1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   llvm_unreachable("Unknown mismatch!");
326 }
327 
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329                                               const Twine &ErrMsg) {
330   const Instruction *I = dyn_cast_or_null<Instruction>(V);
331   if (!V)
332     return Ctx.emitError(ErrMsg);
333 
334   const char *AsmError = ", possible invalid constraint for vector type";
335   if (const CallInst *CI = dyn_cast<CallInst>(I))
336     if (isa<InlineAsm>(CI->getCalledValue()))
337       return Ctx.emitError(I, ErrMsg + AsmError);
338 
339   return Ctx.emitError(I, ErrMsg);
340 }
341 
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent.  If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348                                       const SDValue *Parts, unsigned NumParts,
349                                       MVT PartVT, EVT ValueVT, const Value *V,
350                                       Optional<CallingConv::ID> CallConv) {
351   assert(ValueVT.isVector() && "Not a vector value");
352   assert(NumParts > 0 && "No parts to assemble!");
353   const bool IsABIRegCopy = CallConv.hasValue();
354 
355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356   SDValue Val = Parts[0];
357 
358   // Handle a multi-element vector.
359   if (NumParts > 1) {
360     EVT IntermediateVT;
361     MVT RegisterVT;
362     unsigned NumIntermediates;
363     unsigned NumRegs;
364 
365     if (IsABIRegCopy) {
366       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368           NumIntermediates, RegisterVT);
369     } else {
370       NumRegs =
371           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372                                      NumIntermediates, RegisterVT);
373     }
374 
375     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376     NumParts = NumRegs; // Silence a compiler warning.
377     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378     assert(RegisterVT.getSizeInBits() ==
379            Parts[0].getSimpleValueType().getSizeInBits() &&
380            "Part type sizes don't match!");
381 
382     // Assemble the parts into intermediate operands.
383     SmallVector<SDValue, 8> Ops(NumIntermediates);
384     if (NumIntermediates == NumParts) {
385       // If the register was not expanded, truncate or copy the value,
386       // as appropriate.
387       for (unsigned i = 0; i != NumParts; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389                                   PartVT, IntermediateVT, V);
390     } else if (NumParts > 0) {
391       // If the intermediate type was expanded, build the intermediate
392       // operands from the parts.
393       assert(NumParts % NumIntermediates == 0 &&
394              "Must expand into a divisible number of parts!");
395       unsigned Factor = NumParts / NumIntermediates;
396       for (unsigned i = 0; i != NumIntermediates; ++i)
397         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398                                   PartVT, IntermediateVT, V);
399     }
400 
401     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402     // intermediate operands.
403     EVT BuiltVectorTy =
404         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405                          (IntermediateVT.isVector()
406                               ? IntermediateVT.getVectorNumElements() * NumParts
407                               : NumIntermediates));
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426              "Cannot narrow, it would be a lossy transformation");
427       return DAG.getNode(
428           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430     }
431 
432     // Vector/Vector bitcast.
433     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437       "Cannot handle this kind of promotion");
438     // Promoted vector extract
439     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440 
441   }
442 
443   // Trivial bitcast if the types are the same size and the destination
444   // vector type is legal.
445   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446       TLI.isTypeLegal(ValueVT))
447     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449   if (ValueVT.getVectorNumElements() != 1) {
450      // Certain ABIs require that vectors are passed as integers. For vectors
451      // are the same size, this is an obvious bitcast.
452      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455        // Bitcast Val back the original type and extract the corresponding
456        // vector we want.
457        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459                                            ValueVT.getVectorElementType(), Elts);
460        Val = DAG.getBitcast(WiderVecType, Val);
461        return DAG.getNode(
462            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  Optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489                            SDValue *Parts, unsigned NumParts, MVT PartVT,
490                            const Value *V,
491                            Optional<CallingConv::ID> CallConv = None,
492                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   EVT ValueVT = Val.getValueType();
494 
495   // Handle the vector case separately.
496   if (ValueVT.isVector())
497     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498                                 CallConv);
499 
500   unsigned PartBits = PartVT.getSizeInBits();
501   unsigned OrigNumParts = NumParts;
502   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503          "Copying to an illegal type!");
504 
505   if (NumParts == 0)
506     return;
507 
508   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509   EVT PartEVT = PartVT;
510   if (PartEVT == ValueVT) {
511     assert(NumParts == 1 && "No-op copy with multiple parts!");
512     Parts[0] = Val;
513     return;
514   }
515 
516   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517     // If the parts cover more bits than the value has, promote the value.
518     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519       assert(NumParts == 1 && "Do not know what to promote to!");
520       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521     } else {
522       if (ValueVT.isFloatingPoint()) {
523         // FP values need to be bitcast, then extended if they are being put
524         // into a larger container.
525         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
526         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527       }
528       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529              ValueVT.isInteger() &&
530              "Unknown mismatch!");
531       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533       if (PartVT == MVT::x86mmx)
534         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535     }
536   } else if (PartBits == ValueVT.getSizeInBits()) {
537     // Different types of the same size.
538     assert(NumParts == 1 && PartEVT != ValueVT);
539     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541     // If the parts cover less bits than value has, truncate the value.
542     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543            ValueVT.isInteger() &&
544            "Unknown mismatch!");
545     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547     if (PartVT == MVT::x86mmx)
548       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549   }
550 
551   // The value may have changed - recompute ValueVT.
552   ValueVT = Val.getValueType();
553   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554          "Failed to tile the value with PartVT!");
555 
556   if (NumParts == 1) {
557     if (PartEVT != ValueVT) {
558       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559                                         "scalar-to-vector conversion failed");
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561     }
562 
563     Parts[0] = Val;
564     return;
565   }
566 
567   // Expand the value into multiple parts.
568   if (NumParts & (NumParts - 1)) {
569     // The number of parts is not a power of 2.  Split off and copy the tail.
570     assert(PartVT.isInteger() && ValueVT.isInteger() &&
571            "Do not know what to expand to!");
572     unsigned RoundParts = 1 << Log2_32(NumParts);
573     unsigned RoundBits = RoundParts * PartBits;
574     unsigned OddParts = NumParts - RoundParts;
575     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576                                  DAG.getIntPtrConstant(RoundBits, DL));
577     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
578                    CallConv);
579 
580     if (DAG.getDataLayout().isBigEndian())
581       // The odd parts were reversed by getCopyToParts - unreverse them.
582       std::reverse(Parts + RoundParts, Parts + NumParts);
583 
584     NumParts = RoundParts;
585     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
586     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
587   }
588 
589   // The number of parts is a power of 2.  Repeatedly bisect the value using
590   // EXTRACT_ELEMENT.
591   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
592                          EVT::getIntegerVT(*DAG.getContext(),
593                                            ValueVT.getSizeInBits()),
594                          Val);
595 
596   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
597     for (unsigned i = 0; i < NumParts; i += StepSize) {
598       unsigned ThisBits = StepSize * PartBits / 2;
599       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
600       SDValue &Part0 = Parts[i];
601       SDValue &Part1 = Parts[i+StepSize/2];
602 
603       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
605       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
606                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
607 
608       if (ThisBits == PartBits && ThisVT != PartVT) {
609         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
610         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
611       }
612     }
613   }
614 
615   if (DAG.getDataLayout().isBigEndian())
616     std::reverse(Parts, Parts + OrigNumParts);
617 }
618 
619 static SDValue widenVectorToPartType(SelectionDAG &DAG,
620                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
621   if (!PartVT.isVector())
622     return SDValue();
623 
624   EVT ValueVT = Val.getValueType();
625   unsigned PartNumElts = PartVT.getVectorNumElements();
626   unsigned ValueNumElts = ValueVT.getVectorNumElements();
627   if (PartNumElts > ValueNumElts &&
628       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
629     EVT ElementVT = PartVT.getVectorElementType();
630     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631     // undef elements.
632     SmallVector<SDValue, 16> Ops;
633     DAG.ExtractVectorElements(Val, Ops);
634     SDValue EltUndef = DAG.getUNDEF(ElementVT);
635     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
636       Ops.push_back(EltUndef);
637 
638     // FIXME: Use CONCAT for 2x -> 4x.
639     return DAG.getBuildVector(PartVT, DL, Ops);
640   }
641 
642   return SDValue();
643 }
644 
645 /// getCopyToPartsVector - Create a series of nodes that contain the specified
646 /// value split into legal parts.
647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
648                                  SDValue Val, SDValue *Parts, unsigned NumParts,
649                                  MVT PartVT, const Value *V,
650                                  Optional<CallingConv::ID> CallConv) {
651   EVT ValueVT = Val.getValueType();
652   assert(ValueVT.isVector() && "Not a vector");
653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
654   const bool IsABIRegCopy = CallConv.hasValue();
655 
656   if (NumParts == 1) {
657     EVT PartEVT = PartVT;
658     if (PartEVT == ValueVT) {
659       // Nothing to do.
660     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
661       // Bitconvert vector->vector case.
662       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
663     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
664       Val = Widened;
665     } else if (PartVT.isVector() &&
666                PartEVT.getVectorElementType().bitsGE(
667                  ValueVT.getVectorElementType()) &&
668                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
669 
670       // Promoted vector extract
671       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
672     } else {
673       if (ValueVT.getVectorNumElements() == 1) {
674         Val = DAG.getNode(
675             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
676             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
677       } else {
678         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
679                "lossy conversion of vector to scalar type");
680         EVT IntermediateType =
681             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
682         Val = DAG.getBitcast(IntermediateType, Val);
683         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
684       }
685     }
686 
687     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
688     Parts[0] = Val;
689     return;
690   }
691 
692   // Handle a multi-element vector.
693   EVT IntermediateVT;
694   MVT RegisterVT;
695   unsigned NumIntermediates;
696   unsigned NumRegs;
697   if (IsABIRegCopy) {
698     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
699         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
700         NumIntermediates, RegisterVT);
701   } else {
702     NumRegs =
703         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
704                                    NumIntermediates, RegisterVT);
705   }
706 
707   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
708   NumParts = NumRegs; // Silence a compiler warning.
709   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
710 
711   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
712     IntermediateVT.getVectorNumElements() : 1;
713 
714   // Convert the vector to the appropiate type if necessary.
715   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
716 
717   EVT BuiltVectorTy = EVT::getVectorVT(
718       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
719   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
720   if (ValueVT != BuiltVectorTy) {
721     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
722       Val = Widened;
723 
724     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
725   }
726 
727   // Split the vector into intermediate operands.
728   SmallVector<SDValue, 8> Ops(NumIntermediates);
729   for (unsigned i = 0; i != NumIntermediates; ++i) {
730     if (IntermediateVT.isVector()) {
731       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
732                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
733     } else {
734       Ops[i] = DAG.getNode(
735           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736           DAG.getConstant(i, DL, IdxVT));
737     }
738   }
739 
740   // Split the intermediate operands into legal parts.
741   if (NumParts == NumIntermediates) {
742     // If the register was not expanded, promote or copy the value,
743     // as appropriate.
744     for (unsigned i = 0; i != NumParts; ++i)
745       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746   } else if (NumParts > 0) {
747     // If the intermediate type was expanded, split each the value into
748     // legal parts.
749     assert(NumIntermediates != 0 && "division by zero");
750     assert(NumParts % NumIntermediates == 0 &&
751            "Must expand into a divisible number of parts!");
752     unsigned Factor = NumParts / NumIntermediates;
753     for (unsigned i = 0; i != NumIntermediates; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755                      CallConv);
756   }
757 }
758 
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760                            EVT valuevt, Optional<CallingConv::ID> CC)
761     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762       RegCount(1, regs.size()), CallConv(CC) {}
763 
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765                            const DataLayout &DL, unsigned Reg, Type *Ty,
766                            Optional<CallingConv::ID> CC) {
767   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
768 
769   CallConv = CC;
770 
771   for (EVT ValueVT : ValueVTs) {
772     unsigned NumRegs =
773         isABIMangled()
774             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775             : TLI.getNumRegisters(Context, ValueVT);
776     MVT RegisterVT =
777         isABIMangled()
778             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779             : TLI.getRegisterType(Context, ValueVT);
780     for (unsigned i = 0; i != NumRegs; ++i)
781       Regs.push_back(Reg + i);
782     RegVTs.push_back(RegisterVT);
783     RegCount.push_back(NumRegs);
784     Reg += NumRegs;
785   }
786 }
787 
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789                                       FunctionLoweringInfo &FuncInfo,
790                                       const SDLoc &dl, SDValue &Chain,
791                                       SDValue *Flag, const Value *V) const {
792   // A Value with type {} or [0 x %t] needs no registers.
793   if (ValueVTs.empty())
794     return SDValue();
795 
796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
797 
798   // Assemble the legal parts into the final values.
799   SmallVector<SDValue, 4> Values(ValueVTs.size());
800   SmallVector<SDValue, 8> Parts;
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     // Copy the legal parts from the registers.
803     EVT ValueVT = ValueVTs[Value];
804     unsigned NumRegs = RegCount[Value];
805     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806                                           *DAG.getContext(),
807                                           CallConv.getValue(), RegVTs[Value])
808                                     : RegVTs[Value];
809 
810     Parts.resize(NumRegs);
811     for (unsigned i = 0; i != NumRegs; ++i) {
812       SDValue P;
813       if (!Flag) {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815       } else {
816         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817         *Flag = P.getValue(2);
818       }
819 
820       Chain = P.getValue(1);
821       Parts[i] = P;
822 
823       // If the source register was virtual and if we know something about it,
824       // add an assert node.
825       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
826           !RegisterVT.isInteger())
827         continue;
828 
829       const FunctionLoweringInfo::LiveOutInfo *LOI =
830         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831       if (!LOI)
832         continue;
833 
834       unsigned RegSize = RegisterVT.getScalarSizeInBits();
835       unsigned NumSignBits = LOI->NumSignBits;
836       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
837 
838       if (NumZeroBits == RegSize) {
839         // The current value is a zero.
840         // Explicitly express that as it would be easier for
841         // optimizations to kick in.
842         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843         continue;
844       }
845 
846       // FIXME: We capture more information than the dag can represent.  For
847       // now, just use the tightest assertzext/assertsext possible.
848       bool isSExt;
849       EVT FromVT(MVT::Other);
850       if (NumZeroBits) {
851         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852         isSExt = false;
853       } else if (NumSignBits > 1) {
854         FromVT =
855             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856         isSExt = true;
857       } else {
858         continue;
859       }
860       // Add an assertion node.
861       assert(FromVT != MVT::Other);
862       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863                              RegisterVT, P, DAG.getValueType(FromVT));
864     }
865 
866     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867                                      RegisterVT, ValueVT, V, CallConv);
868     Part += NumRegs;
869     Parts.clear();
870   }
871 
872   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873 }
874 
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877                                  const Value *V,
878                                  ISD::NodeType PreferredExtendType) const {
879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880   ISD::NodeType ExtendKind = PreferredExtendType;
881 
882   // Get the list of the values's legal parts.
883   unsigned NumRegs = Regs.size();
884   SmallVector<SDValue, 8> Parts(NumRegs);
885   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886     unsigned NumParts = RegCount[Value];
887 
888     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889                                           *DAG.getContext(),
890                                           CallConv.getValue(), RegVTs[Value])
891                                     : RegVTs[Value];
892 
893     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894       ExtendKind = ISD::ZERO_EXTEND;
895 
896     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897                    NumParts, RegisterVT, V, CallConv, ExtendKind);
898     Part += NumParts;
899   }
900 
901   // Copy the parts into the registers.
902   SmallVector<SDValue, 8> Chains(NumRegs);
903   for (unsigned i = 0; i != NumRegs; ++i) {
904     SDValue Part;
905     if (!Flag) {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907     } else {
908       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909       *Flag = Part.getValue(1);
910     }
911 
912     Chains[i] = Part.getValue(0);
913   }
914 
915   if (NumRegs == 1 || Flag)
916     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917     // flagged to it. That is the CopyToReg nodes and the user are considered
918     // a single scheduling unit. If we create a TokenFactor and return it as
919     // chain, then the TokenFactor is both a predecessor (operand) of the
920     // user as well as a successor (the TF operands are flagged to the user).
921     // c1, f1 = CopyToReg
922     // c2, f2 = CopyToReg
923     // c3     = TokenFactor c1, c2
924     // ...
925     //        = op c3, ..., f2
926     Chain = Chains[NumRegs-1];
927   else
928     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929 }
930 
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932                                         unsigned MatchingIdx, const SDLoc &dl,
933                                         SelectionDAG &DAG,
934                                         std::vector<SDValue> &Ops) const {
935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936 
937   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938   if (HasMatching)
939     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940   else if (!Regs.empty() &&
941            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
942     // Put the register class of the virtual registers in the flag word.  That
943     // way, later passes can recompute register class constraints for inline
944     // assembly as well as normal instructions.
945     // Don't do this for tied operands that can use the regclass information
946     // from the def.
947     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
948     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
949     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
950   }
951 
952   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
953   Ops.push_back(Res);
954 
955   if (Code == InlineAsm::Kind_Clobber) {
956     // Clobbers should always have a 1:1 mapping with registers, and may
957     // reference registers that have illegal (e.g. vector) types. Hence, we
958     // shouldn't try to apply any sort of splitting logic to them.
959     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
960            "No 1:1 mapping from clobbers to regs?");
961     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
962     (void)SP;
963     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
964       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
965       assert(
966           (Regs[I] != SP ||
967            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
968           "If we clobbered the stack pointer, MFI should know about it.");
969     }
970     return;
971   }
972 
973   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
974     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
975     MVT RegisterVT = RegVTs[Value];
976     for (unsigned i = 0; i != NumRegs; ++i) {
977       assert(Reg < Regs.size() && "Mismatch in # registers expected");
978       unsigned TheReg = Regs[Reg++];
979       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
980     }
981   }
982 }
983 
984 SmallVector<std::pair<unsigned, unsigned>, 4>
985 RegsForValue::getRegsAndSizes() const {
986   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
987   unsigned I = 0;
988   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
989     unsigned RegCount = std::get<0>(CountAndVT);
990     MVT RegisterVT = std::get<1>(CountAndVT);
991     unsigned RegisterSize = RegisterVT.getSizeInBits();
992     for (unsigned E = I + RegCount; I != E; ++I)
993       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
994   }
995   return OutVec;
996 }
997 
998 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
999                                const TargetLibraryInfo *li) {
1000   AA = aa;
1001   GFI = gfi;
1002   LibInfo = li;
1003   DL = &DAG.getDataLayout();
1004   Context = DAG.getContext();
1005   LPadToCallSiteMap.clear();
1006 }
1007 
1008 void SelectionDAGBuilder::clear() {
1009   NodeMap.clear();
1010   UnusedArgNodeMap.clear();
1011   PendingLoads.clear();
1012   PendingExports.clear();
1013   CurInst = nullptr;
1014   HasTailCall = false;
1015   SDNodeOrder = LowestSDNodeOrder;
1016   StatepointLowering.clear();
1017 }
1018 
1019 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1020   DanglingDebugInfoMap.clear();
1021 }
1022 
1023 SDValue SelectionDAGBuilder::getRoot() {
1024   if (PendingLoads.empty())
1025     return DAG.getRoot();
1026 
1027   if (PendingLoads.size() == 1) {
1028     SDValue Root = PendingLoads[0];
1029     DAG.setRoot(Root);
1030     PendingLoads.clear();
1031     return Root;
1032   }
1033 
1034   // Otherwise, we have to make a token factor node.
1035   // If we have >= 2^16 loads then split across multiple token factors as
1036   // there's a 64k limit on the number of SDNode operands.
1037   SDValue Root;
1038   size_t Limit = (1 << 16) - 1;
1039   while (PendingLoads.size() > Limit) {
1040     unsigned SliceIdx = PendingLoads.size() - Limit;
1041     auto ExtractedTFs = ArrayRef<SDValue>(PendingLoads).slice(SliceIdx, Limit);
1042     SDValue NewTF =
1043         DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, ExtractedTFs);
1044     PendingLoads.erase(PendingLoads.begin() + SliceIdx, PendingLoads.end());
1045     PendingLoads.emplace_back(NewTF);
1046   }
1047   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, PendingLoads);
1048   PendingLoads.clear();
1049   DAG.setRoot(Root);
1050   return Root;
1051 }
1052 
1053 SDValue SelectionDAGBuilder::getControlRoot() {
1054   SDValue Root = DAG.getRoot();
1055 
1056   if (PendingExports.empty())
1057     return Root;
1058 
1059   // Turn all of the CopyToReg chains into one factored node.
1060   if (Root.getOpcode() != ISD::EntryToken) {
1061     unsigned i = 0, e = PendingExports.size();
1062     for (; i != e; ++i) {
1063       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1064       if (PendingExports[i].getNode()->getOperand(0) == Root)
1065         break;  // Don't add the root if we already indirectly depend on it.
1066     }
1067 
1068     if (i == e)
1069       PendingExports.push_back(Root);
1070   }
1071 
1072   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1073                      PendingExports);
1074   PendingExports.clear();
1075   DAG.setRoot(Root);
1076   return Root;
1077 }
1078 
1079 void SelectionDAGBuilder::visit(const Instruction &I) {
1080   // Set up outgoing PHI node register values before emitting the terminator.
1081   if (I.isTerminator()) {
1082     HandlePHINodesInSuccessorBlocks(I.getParent());
1083   }
1084 
1085   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1086   if (!isa<DbgInfoIntrinsic>(I))
1087     ++SDNodeOrder;
1088 
1089   CurInst = &I;
1090 
1091   visit(I.getOpcode(), I);
1092 
1093   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1094     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1095     // maps to this instruction.
1096     // TODO: We could handle all flags (nsw, etc) here.
1097     // TODO: If an IR instruction maps to >1 node, only the final node will have
1098     //       flags set.
1099     if (SDNode *Node = getNodeForIRValue(&I)) {
1100       SDNodeFlags IncomingFlags;
1101       IncomingFlags.copyFMF(*FPMO);
1102       if (!Node->getFlags().isDefined())
1103         Node->setFlags(IncomingFlags);
1104       else
1105         Node->intersectFlagsWith(IncomingFlags);
1106     }
1107   }
1108 
1109   if (!I.isTerminator() && !HasTailCall &&
1110       !isStatepoint(&I)) // statepoints handle their exports internally
1111     CopyToExportRegsIfNeeded(&I);
1112 
1113   CurInst = nullptr;
1114 }
1115 
1116 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1117   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1118 }
1119 
1120 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1121   // Note: this doesn't use InstVisitor, because it has to work with
1122   // ConstantExpr's in addition to instructions.
1123   switch (Opcode) {
1124   default: llvm_unreachable("Unknown instruction type encountered!");
1125     // Build the switch statement using the Instruction.def file.
1126 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1127     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1128 #include "llvm/IR/Instruction.def"
1129   }
1130 }
1131 
1132 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1133                                                 const DIExpression *Expr) {
1134   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1135     const DbgValueInst *DI = DDI.getDI();
1136     DIVariable *DanglingVariable = DI->getVariable();
1137     DIExpression *DanglingExpr = DI->getExpression();
1138     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1139       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1140       return true;
1141     }
1142     return false;
1143   };
1144 
1145   for (auto &DDIMI : DanglingDebugInfoMap) {
1146     DanglingDebugInfoVector &DDIV = DDIMI.second;
1147     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1148   }
1149 }
1150 
1151 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1152 // generate the debug data structures now that we've seen its definition.
1153 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1154                                                    SDValue Val) {
1155   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1156   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1157     return;
1158 
1159   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1160   for (auto &DDI : DDIV) {
1161     const DbgValueInst *DI = DDI.getDI();
1162     assert(DI && "Ill-formed DanglingDebugInfo");
1163     DebugLoc dl = DDI.getdl();
1164     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1165     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1166     DILocalVariable *Variable = DI->getVariable();
1167     DIExpression *Expr = DI->getExpression();
1168     assert(Variable->isValidLocationForIntrinsic(dl) &&
1169            "Expected inlined-at fields to agree");
1170     SDDbgValue *SDV;
1171     if (Val.getNode()) {
1172       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1173         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1174                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1175         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1176         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1177         // inserted after the definition of Val when emitting the instructions
1178         // after ISel. An alternative could be to teach
1179         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1180         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1181                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1182                    << ValSDNodeOrder << "\n");
1183         SDV = getDbgValue(Val, Variable, Expr, dl,
1184                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1185         DAG.AddDbgValue(SDV, Val.getNode(), false);
1186       } else
1187         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1188                           << "in EmitFuncArgumentDbgValue\n");
1189     } else
1190       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1191   }
1192   DDIV.clear();
1193 }
1194 
1195 /// getCopyFromRegs - If there was virtual register allocated for the value V
1196 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1197 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1198   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1199   SDValue Result;
1200 
1201   if (It != FuncInfo.ValueMap.end()) {
1202     unsigned InReg = It->second;
1203 
1204     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1205                      DAG.getDataLayout(), InReg, Ty,
1206                      None); // This is not an ABI copy.
1207     SDValue Chain = DAG.getEntryNode();
1208     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1209                                  V);
1210     resolveDanglingDebugInfo(V, Result);
1211   }
1212 
1213   return Result;
1214 }
1215 
1216 /// getValue - Return an SDValue for the given Value.
1217 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1218   // If we already have an SDValue for this value, use it. It's important
1219   // to do this first, so that we don't create a CopyFromReg if we already
1220   // have a regular SDValue.
1221   SDValue &N = NodeMap[V];
1222   if (N.getNode()) return N;
1223 
1224   // If there's a virtual register allocated and initialized for this
1225   // value, use it.
1226   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1227     return copyFromReg;
1228 
1229   // Otherwise create a new SDValue and remember it.
1230   SDValue Val = getValueImpl(V);
1231   NodeMap[V] = Val;
1232   resolveDanglingDebugInfo(V, Val);
1233   return Val;
1234 }
1235 
1236 // Return true if SDValue exists for the given Value
1237 bool SelectionDAGBuilder::findValue(const Value *V) const {
1238   return (NodeMap.find(V) != NodeMap.end()) ||
1239     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1240 }
1241 
1242 /// getNonRegisterValue - Return an SDValue for the given Value, but
1243 /// don't look in FuncInfo.ValueMap for a virtual register.
1244 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1245   // If we already have an SDValue for this value, use it.
1246   SDValue &N = NodeMap[V];
1247   if (N.getNode()) {
1248     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1249       // Remove the debug location from the node as the node is about to be used
1250       // in a location which may differ from the original debug location.  This
1251       // is relevant to Constant and ConstantFP nodes because they can appear
1252       // as constant expressions inside PHI nodes.
1253       N->setDebugLoc(DebugLoc());
1254     }
1255     return N;
1256   }
1257 
1258   // Otherwise create a new SDValue and remember it.
1259   SDValue Val = getValueImpl(V);
1260   NodeMap[V] = Val;
1261   resolveDanglingDebugInfo(V, Val);
1262   return Val;
1263 }
1264 
1265 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1266 /// Create an SDValue for the given value.
1267 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1269 
1270   if (const Constant *C = dyn_cast<Constant>(V)) {
1271     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1272 
1273     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1274       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1275 
1276     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1277       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1278 
1279     if (isa<ConstantPointerNull>(C)) {
1280       unsigned AS = V->getType()->getPointerAddressSpace();
1281       return DAG.getConstant(0, getCurSDLoc(),
1282                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1283     }
1284 
1285     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1286       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1287 
1288     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1289       return DAG.getUNDEF(VT);
1290 
1291     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1292       visit(CE->getOpcode(), *CE);
1293       SDValue N1 = NodeMap[V];
1294       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1295       return N1;
1296     }
1297 
1298     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1299       SmallVector<SDValue, 4> Constants;
1300       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1301            OI != OE; ++OI) {
1302         SDNode *Val = getValue(*OI).getNode();
1303         // If the operand is an empty aggregate, there are no values.
1304         if (!Val) continue;
1305         // Add each leaf value from the operand to the Constants list
1306         // to form a flattened list of all the values.
1307         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1308           Constants.push_back(SDValue(Val, i));
1309       }
1310 
1311       return DAG.getMergeValues(Constants, getCurSDLoc());
1312     }
1313 
1314     if (const ConstantDataSequential *CDS =
1315           dyn_cast<ConstantDataSequential>(C)) {
1316       SmallVector<SDValue, 4> Ops;
1317       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1318         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1319         // Add each leaf value from the operand to the Constants list
1320         // to form a flattened list of all the values.
1321         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1322           Ops.push_back(SDValue(Val, i));
1323       }
1324 
1325       if (isa<ArrayType>(CDS->getType()))
1326         return DAG.getMergeValues(Ops, getCurSDLoc());
1327       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1328     }
1329 
1330     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1331       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1332              "Unknown struct or array constant!");
1333 
1334       SmallVector<EVT, 4> ValueVTs;
1335       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1336       unsigned NumElts = ValueVTs.size();
1337       if (NumElts == 0)
1338         return SDValue(); // empty struct
1339       SmallVector<SDValue, 4> Constants(NumElts);
1340       for (unsigned i = 0; i != NumElts; ++i) {
1341         EVT EltVT = ValueVTs[i];
1342         if (isa<UndefValue>(C))
1343           Constants[i] = DAG.getUNDEF(EltVT);
1344         else if (EltVT.isFloatingPoint())
1345           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1346         else
1347           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1348       }
1349 
1350       return DAG.getMergeValues(Constants, getCurSDLoc());
1351     }
1352 
1353     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1354       return DAG.getBlockAddress(BA, VT);
1355 
1356     VectorType *VecTy = cast<VectorType>(V->getType());
1357     unsigned NumElements = VecTy->getNumElements();
1358 
1359     // Now that we know the number and type of the elements, get that number of
1360     // elements into the Ops array based on what kind of constant it is.
1361     SmallVector<SDValue, 16> Ops;
1362     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1363       for (unsigned i = 0; i != NumElements; ++i)
1364         Ops.push_back(getValue(CV->getOperand(i)));
1365     } else {
1366       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1367       EVT EltVT =
1368           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1369 
1370       SDValue Op;
1371       if (EltVT.isFloatingPoint())
1372         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1373       else
1374         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1375       Ops.assign(NumElements, Op);
1376     }
1377 
1378     // Create a BUILD_VECTOR node.
1379     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1380   }
1381 
1382   // If this is a static alloca, generate it as the frameindex instead of
1383   // computation.
1384   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1385     DenseMap<const AllocaInst*, int>::iterator SI =
1386       FuncInfo.StaticAllocaMap.find(AI);
1387     if (SI != FuncInfo.StaticAllocaMap.end())
1388       return DAG.getFrameIndex(SI->second,
1389                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1390   }
1391 
1392   // If this is an instruction which fast-isel has deferred, select it now.
1393   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1394     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1395 
1396     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1397                      Inst->getType(), getABIRegCopyCC(V));
1398     SDValue Chain = DAG.getEntryNode();
1399     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1400   }
1401 
1402   llvm_unreachable("Can't get register for value!");
1403 }
1404 
1405 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1406   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1407   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1408   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1409   bool IsSEH = isAsynchronousEHPersonality(Pers);
1410   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1411   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1412   if (!IsSEH)
1413     CatchPadMBB->setIsEHScopeEntry();
1414   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1415   if (IsMSVCCXX || IsCoreCLR)
1416     CatchPadMBB->setIsEHFuncletEntry();
1417   // Wasm does not need catchpads anymore
1418   if (!IsWasmCXX)
1419     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1420                             getControlRoot()));
1421 }
1422 
1423 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1424   // Update machine-CFG edge.
1425   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1426   FuncInfo.MBB->addSuccessor(TargetMBB);
1427 
1428   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1429   bool IsSEH = isAsynchronousEHPersonality(Pers);
1430   if (IsSEH) {
1431     // If this is not a fall-through branch or optimizations are switched off,
1432     // emit the branch.
1433     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1434         TM.getOptLevel() == CodeGenOpt::None)
1435       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1436                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1437     return;
1438   }
1439 
1440   // Figure out the funclet membership for the catchret's successor.
1441   // This will be used by the FuncletLayout pass to determine how to order the
1442   // BB's.
1443   // A 'catchret' returns to the outer scope's color.
1444   Value *ParentPad = I.getCatchSwitchParentPad();
1445   const BasicBlock *SuccessorColor;
1446   if (isa<ConstantTokenNone>(ParentPad))
1447     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1448   else
1449     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1450   assert(SuccessorColor && "No parent funclet for catchret!");
1451   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1452   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1453 
1454   // Create the terminator node.
1455   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1456                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1457                             DAG.getBasicBlock(SuccessorColorMBB));
1458   DAG.setRoot(Ret);
1459 }
1460 
1461 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1462   // Don't emit any special code for the cleanuppad instruction. It just marks
1463   // the start of an EH scope/funclet.
1464   FuncInfo.MBB->setIsEHScopeEntry();
1465   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1466   if (Pers != EHPersonality::Wasm_CXX) {
1467     FuncInfo.MBB->setIsEHFuncletEntry();
1468     FuncInfo.MBB->setIsCleanupFuncletEntry();
1469   }
1470 }
1471 
1472 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1473 /// many places it could ultimately go. In the IR, we have a single unwind
1474 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1475 /// This function skips over imaginary basic blocks that hold catchswitch
1476 /// instructions, and finds all the "real" machine
1477 /// basic block destinations. As those destinations may not be successors of
1478 /// EHPadBB, here we also calculate the edge probability to those destinations.
1479 /// The passed-in Prob is the edge probability to EHPadBB.
1480 static void findUnwindDestinations(
1481     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1482     BranchProbability Prob,
1483     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1484         &UnwindDests) {
1485   EHPersonality Personality =
1486     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1487   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1488   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1489   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1490   bool IsSEH = isAsynchronousEHPersonality(Personality);
1491 
1492   while (EHPadBB) {
1493     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1494     BasicBlock *NewEHPadBB = nullptr;
1495     if (isa<LandingPadInst>(Pad)) {
1496       // Stop on landingpads. They are not funclets.
1497       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1498       break;
1499     } else if (isa<CleanupPadInst>(Pad)) {
1500       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1501       // personalities.
1502       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1503       UnwindDests.back().first->setIsEHScopeEntry();
1504       if (!IsWasmCXX)
1505         UnwindDests.back().first->setIsEHFuncletEntry();
1506       break;
1507     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1508       // Add the catchpad handlers to the possible destinations.
1509       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1510         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1511         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1512         if (IsMSVCCXX || IsCoreCLR)
1513           UnwindDests.back().first->setIsEHFuncletEntry();
1514         if (!IsSEH)
1515           UnwindDests.back().first->setIsEHScopeEntry();
1516       }
1517       NewEHPadBB = CatchSwitch->getUnwindDest();
1518     } else {
1519       continue;
1520     }
1521 
1522     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1523     if (BPI && NewEHPadBB)
1524       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1525     EHPadBB = NewEHPadBB;
1526   }
1527 }
1528 
1529 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1530   // Update successor info.
1531   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1532   auto UnwindDest = I.getUnwindDest();
1533   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1534   BranchProbability UnwindDestProb =
1535       (BPI && UnwindDest)
1536           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1537           : BranchProbability::getZero();
1538   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1539   for (auto &UnwindDest : UnwindDests) {
1540     UnwindDest.first->setIsEHPad();
1541     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1542   }
1543   FuncInfo.MBB->normalizeSuccProbs();
1544 
1545   // Create the terminator node.
1546   SDValue Ret =
1547       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1548   DAG.setRoot(Ret);
1549 }
1550 
1551 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1552   report_fatal_error("visitCatchSwitch not yet implemented!");
1553 }
1554 
1555 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1556   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1557   auto &DL = DAG.getDataLayout();
1558   SDValue Chain = getControlRoot();
1559   SmallVector<ISD::OutputArg, 8> Outs;
1560   SmallVector<SDValue, 8> OutVals;
1561 
1562   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1563   // lower
1564   //
1565   //   %val = call <ty> @llvm.experimental.deoptimize()
1566   //   ret <ty> %val
1567   //
1568   // differently.
1569   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1570     LowerDeoptimizingReturn();
1571     return;
1572   }
1573 
1574   if (!FuncInfo.CanLowerReturn) {
1575     unsigned DemoteReg = FuncInfo.DemoteRegister;
1576     const Function *F = I.getParent()->getParent();
1577 
1578     // Emit a store of the return value through the virtual register.
1579     // Leave Outs empty so that LowerReturn won't try to load return
1580     // registers the usual way.
1581     SmallVector<EVT, 1> PtrValueVTs;
1582     ComputeValueVTs(TLI, DL,
1583                     F->getReturnType()->getPointerTo(
1584                         DAG.getDataLayout().getAllocaAddrSpace()),
1585                     PtrValueVTs);
1586 
1587     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1588                                         DemoteReg, PtrValueVTs[0]);
1589     SDValue RetOp = getValue(I.getOperand(0));
1590 
1591     SmallVector<EVT, 4> ValueVTs;
1592     SmallVector<uint64_t, 4> Offsets;
1593     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1594     unsigned NumValues = ValueVTs.size();
1595 
1596     SmallVector<SDValue, 4> Chains(NumValues);
1597     for (unsigned i = 0; i != NumValues; ++i) {
1598       // An aggregate return value cannot wrap around the address space, so
1599       // offsets to its parts don't wrap either.
1600       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1601       Chains[i] = DAG.getStore(
1602           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1603           // FIXME: better loc info would be nice.
1604           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1605     }
1606 
1607     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1608                         MVT::Other, Chains);
1609   } else if (I.getNumOperands() != 0) {
1610     SmallVector<EVT, 4> ValueVTs;
1611     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1612     unsigned NumValues = ValueVTs.size();
1613     if (NumValues) {
1614       SDValue RetOp = getValue(I.getOperand(0));
1615 
1616       const Function *F = I.getParent()->getParent();
1617 
1618       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1619       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1620                                           Attribute::SExt))
1621         ExtendKind = ISD::SIGN_EXTEND;
1622       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1623                                                Attribute::ZExt))
1624         ExtendKind = ISD::ZERO_EXTEND;
1625 
1626       LLVMContext &Context = F->getContext();
1627       bool RetInReg = F->getAttributes().hasAttribute(
1628           AttributeList::ReturnIndex, Attribute::InReg);
1629 
1630       for (unsigned j = 0; j != NumValues; ++j) {
1631         EVT VT = ValueVTs[j];
1632 
1633         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1634           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1635 
1636         CallingConv::ID CC = F->getCallingConv();
1637 
1638         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1639         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1640         SmallVector<SDValue, 4> Parts(NumParts);
1641         getCopyToParts(DAG, getCurSDLoc(),
1642                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1643                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1644 
1645         // 'inreg' on function refers to return value
1646         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1647         if (RetInReg)
1648           Flags.setInReg();
1649 
1650         // Propagate extension type if any
1651         if (ExtendKind == ISD::SIGN_EXTEND)
1652           Flags.setSExt();
1653         else if (ExtendKind == ISD::ZERO_EXTEND)
1654           Flags.setZExt();
1655 
1656         for (unsigned i = 0; i < NumParts; ++i) {
1657           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1658                                         VT, /*isfixed=*/true, 0, 0));
1659           OutVals.push_back(Parts[i]);
1660         }
1661       }
1662     }
1663   }
1664 
1665   // Push in swifterror virtual register as the last element of Outs. This makes
1666   // sure swifterror virtual register will be returned in the swifterror
1667   // physical register.
1668   const Function *F = I.getParent()->getParent();
1669   if (TLI.supportSwiftError() &&
1670       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1671     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1672     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1673     Flags.setSwiftError();
1674     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1675                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1676                                   true /*isfixed*/, 1 /*origidx*/,
1677                                   0 /*partOffs*/));
1678     // Create SDNode for the swifterror virtual register.
1679     OutVals.push_back(
1680         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1681                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1682                         EVT(TLI.getPointerTy(DL))));
1683   }
1684 
1685   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1686   CallingConv::ID CallConv =
1687     DAG.getMachineFunction().getFunction().getCallingConv();
1688   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1689       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1690 
1691   // Verify that the target's LowerReturn behaved as expected.
1692   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1693          "LowerReturn didn't return a valid chain!");
1694 
1695   // Update the DAG with the new chain value resulting from return lowering.
1696   DAG.setRoot(Chain);
1697 }
1698 
1699 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1700 /// created for it, emit nodes to copy the value into the virtual
1701 /// registers.
1702 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1703   // Skip empty types
1704   if (V->getType()->isEmptyTy())
1705     return;
1706 
1707   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1708   if (VMI != FuncInfo.ValueMap.end()) {
1709     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1710     CopyValueToVirtualRegister(V, VMI->second);
1711   }
1712 }
1713 
1714 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1715 /// the current basic block, add it to ValueMap now so that we'll get a
1716 /// CopyTo/FromReg.
1717 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1718   // No need to export constants.
1719   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1720 
1721   // Already exported?
1722   if (FuncInfo.isExportedInst(V)) return;
1723 
1724   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1725   CopyValueToVirtualRegister(V, Reg);
1726 }
1727 
1728 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1729                                                      const BasicBlock *FromBB) {
1730   // The operands of the setcc have to be in this block.  We don't know
1731   // how to export them from some other block.
1732   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1733     // Can export from current BB.
1734     if (VI->getParent() == FromBB)
1735       return true;
1736 
1737     // Is already exported, noop.
1738     return FuncInfo.isExportedInst(V);
1739   }
1740 
1741   // If this is an argument, we can export it if the BB is the entry block or
1742   // if it is already exported.
1743   if (isa<Argument>(V)) {
1744     if (FromBB == &FromBB->getParent()->getEntryBlock())
1745       return true;
1746 
1747     // Otherwise, can only export this if it is already exported.
1748     return FuncInfo.isExportedInst(V);
1749   }
1750 
1751   // Otherwise, constants can always be exported.
1752   return true;
1753 }
1754 
1755 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1756 BranchProbability
1757 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1758                                         const MachineBasicBlock *Dst) const {
1759   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1760   const BasicBlock *SrcBB = Src->getBasicBlock();
1761   const BasicBlock *DstBB = Dst->getBasicBlock();
1762   if (!BPI) {
1763     // If BPI is not available, set the default probability as 1 / N, where N is
1764     // the number of successors.
1765     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1766     return BranchProbability(1, SuccSize);
1767   }
1768   return BPI->getEdgeProbability(SrcBB, DstBB);
1769 }
1770 
1771 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1772                                                MachineBasicBlock *Dst,
1773                                                BranchProbability Prob) {
1774   if (!FuncInfo.BPI)
1775     Src->addSuccessorWithoutProb(Dst);
1776   else {
1777     if (Prob.isUnknown())
1778       Prob = getEdgeProbability(Src, Dst);
1779     Src->addSuccessor(Dst, Prob);
1780   }
1781 }
1782 
1783 static bool InBlock(const Value *V, const BasicBlock *BB) {
1784   if (const Instruction *I = dyn_cast<Instruction>(V))
1785     return I->getParent() == BB;
1786   return true;
1787 }
1788 
1789 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1790 /// This function emits a branch and is used at the leaves of an OR or an
1791 /// AND operator tree.
1792 void
1793 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1794                                                   MachineBasicBlock *TBB,
1795                                                   MachineBasicBlock *FBB,
1796                                                   MachineBasicBlock *CurBB,
1797                                                   MachineBasicBlock *SwitchBB,
1798                                                   BranchProbability TProb,
1799                                                   BranchProbability FProb,
1800                                                   bool InvertCond) {
1801   const BasicBlock *BB = CurBB->getBasicBlock();
1802 
1803   // If the leaf of the tree is a comparison, merge the condition into
1804   // the caseblock.
1805   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1806     // The operands of the cmp have to be in this block.  We don't know
1807     // how to export them from some other block.  If this is the first block
1808     // of the sequence, no exporting is needed.
1809     if (CurBB == SwitchBB ||
1810         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1811          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1812       ISD::CondCode Condition;
1813       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1814         ICmpInst::Predicate Pred =
1815             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1816         Condition = getICmpCondCode(Pred);
1817       } else {
1818         const FCmpInst *FC = cast<FCmpInst>(Cond);
1819         FCmpInst::Predicate Pred =
1820             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1821         Condition = getFCmpCondCode(Pred);
1822         if (TM.Options.NoNaNsFPMath)
1823           Condition = getFCmpCodeWithoutNaN(Condition);
1824       }
1825 
1826       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1827                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1828       SwitchCases.push_back(CB);
1829       return;
1830     }
1831   }
1832 
1833   // Create a CaseBlock record representing this branch.
1834   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1835   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1836                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1837   SwitchCases.push_back(CB);
1838 }
1839 
1840 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1841                                                MachineBasicBlock *TBB,
1842                                                MachineBasicBlock *FBB,
1843                                                MachineBasicBlock *CurBB,
1844                                                MachineBasicBlock *SwitchBB,
1845                                                Instruction::BinaryOps Opc,
1846                                                BranchProbability TProb,
1847                                                BranchProbability FProb,
1848                                                bool InvertCond) {
1849   // Skip over not part of the tree and remember to invert op and operands at
1850   // next level.
1851   Value *NotCond;
1852   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
1853       InBlock(NotCond, CurBB->getBasicBlock())) {
1854     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1855                          !InvertCond);
1856     return;
1857   }
1858 
1859   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1860   // Compute the effective opcode for Cond, taking into account whether it needs
1861   // to be inverted, e.g.
1862   //   and (not (or A, B)), C
1863   // gets lowered as
1864   //   and (and (not A, not B), C)
1865   unsigned BOpc = 0;
1866   if (BOp) {
1867     BOpc = BOp->getOpcode();
1868     if (InvertCond) {
1869       if (BOpc == Instruction::And)
1870         BOpc = Instruction::Or;
1871       else if (BOpc == Instruction::Or)
1872         BOpc = Instruction::And;
1873     }
1874   }
1875 
1876   // If this node is not part of the or/and tree, emit it as a branch.
1877   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1878       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1879       BOp->getParent() != CurBB->getBasicBlock() ||
1880       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1881       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1882     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1883                                  TProb, FProb, InvertCond);
1884     return;
1885   }
1886 
1887   //  Create TmpBB after CurBB.
1888   MachineFunction::iterator BBI(CurBB);
1889   MachineFunction &MF = DAG.getMachineFunction();
1890   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1891   CurBB->getParent()->insert(++BBI, TmpBB);
1892 
1893   if (Opc == Instruction::Or) {
1894     // Codegen X | Y as:
1895     // BB1:
1896     //   jmp_if_X TBB
1897     //   jmp TmpBB
1898     // TmpBB:
1899     //   jmp_if_Y TBB
1900     //   jmp FBB
1901     //
1902 
1903     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1904     // The requirement is that
1905     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1906     //     = TrueProb for original BB.
1907     // Assuming the original probabilities are A and B, one choice is to set
1908     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1909     // A/(1+B) and 2B/(1+B). This choice assumes that
1910     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1911     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1912     // TmpBB, but the math is more complicated.
1913 
1914     auto NewTrueProb = TProb / 2;
1915     auto NewFalseProb = TProb / 2 + FProb;
1916     // Emit the LHS condition.
1917     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1918                          NewTrueProb, NewFalseProb, InvertCond);
1919 
1920     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1921     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1922     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1923     // Emit the RHS condition into TmpBB.
1924     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1925                          Probs[0], Probs[1], InvertCond);
1926   } else {
1927     assert(Opc == Instruction::And && "Unknown merge op!");
1928     // Codegen X & Y as:
1929     // BB1:
1930     //   jmp_if_X TmpBB
1931     //   jmp FBB
1932     // TmpBB:
1933     //   jmp_if_Y TBB
1934     //   jmp FBB
1935     //
1936     //  This requires creation of TmpBB after CurBB.
1937 
1938     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1939     // The requirement is that
1940     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1941     //     = FalseProb for original BB.
1942     // Assuming the original probabilities are A and B, one choice is to set
1943     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1944     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1945     // TrueProb for BB1 * FalseProb for TmpBB.
1946 
1947     auto NewTrueProb = TProb + FProb / 2;
1948     auto NewFalseProb = FProb / 2;
1949     // Emit the LHS condition.
1950     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1951                          NewTrueProb, NewFalseProb, InvertCond);
1952 
1953     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1954     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1955     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1956     // Emit the RHS condition into TmpBB.
1957     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1958                          Probs[0], Probs[1], InvertCond);
1959   }
1960 }
1961 
1962 /// If the set of cases should be emitted as a series of branches, return true.
1963 /// If we should emit this as a bunch of and/or'd together conditions, return
1964 /// false.
1965 bool
1966 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1967   if (Cases.size() != 2) return true;
1968 
1969   // If this is two comparisons of the same values or'd or and'd together, they
1970   // will get folded into a single comparison, so don't emit two blocks.
1971   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1972        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1973       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1974        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1975     return false;
1976   }
1977 
1978   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1979   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1980   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1981       Cases[0].CC == Cases[1].CC &&
1982       isa<Constant>(Cases[0].CmpRHS) &&
1983       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1984     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1985       return false;
1986     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1987       return false;
1988   }
1989 
1990   return true;
1991 }
1992 
1993 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1994   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1995 
1996   // Update machine-CFG edges.
1997   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1998 
1999   if (I.isUnconditional()) {
2000     // Update machine-CFG edges.
2001     BrMBB->addSuccessor(Succ0MBB);
2002 
2003     // If this is not a fall-through branch or optimizations are switched off,
2004     // emit the branch.
2005     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2006       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2007                               MVT::Other, getControlRoot(),
2008                               DAG.getBasicBlock(Succ0MBB)));
2009 
2010     return;
2011   }
2012 
2013   // If this condition is one of the special cases we handle, do special stuff
2014   // now.
2015   const Value *CondVal = I.getCondition();
2016   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2017 
2018   // If this is a series of conditions that are or'd or and'd together, emit
2019   // this as a sequence of branches instead of setcc's with and/or operations.
2020   // As long as jumps are not expensive, this should improve performance.
2021   // For example, instead of something like:
2022   //     cmp A, B
2023   //     C = seteq
2024   //     cmp D, E
2025   //     F = setle
2026   //     or C, F
2027   //     jnz foo
2028   // Emit:
2029   //     cmp A, B
2030   //     je foo
2031   //     cmp D, E
2032   //     jle foo
2033   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2034     Instruction::BinaryOps Opcode = BOp->getOpcode();
2035     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2036         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2037         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2038       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2039                            Opcode,
2040                            getEdgeProbability(BrMBB, Succ0MBB),
2041                            getEdgeProbability(BrMBB, Succ1MBB),
2042                            /*InvertCond=*/false);
2043       // If the compares in later blocks need to use values not currently
2044       // exported from this block, export them now.  This block should always
2045       // be the first entry.
2046       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2047 
2048       // Allow some cases to be rejected.
2049       if (ShouldEmitAsBranches(SwitchCases)) {
2050         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2051           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2052           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2053         }
2054 
2055         // Emit the branch for this block.
2056         visitSwitchCase(SwitchCases[0], BrMBB);
2057         SwitchCases.erase(SwitchCases.begin());
2058         return;
2059       }
2060 
2061       // Okay, we decided not to do this, remove any inserted MBB's and clear
2062       // SwitchCases.
2063       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2064         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2065 
2066       SwitchCases.clear();
2067     }
2068   }
2069 
2070   // Create a CaseBlock record representing this branch.
2071   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2072                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2073 
2074   // Use visitSwitchCase to actually insert the fast branch sequence for this
2075   // cond branch.
2076   visitSwitchCase(CB, BrMBB);
2077 }
2078 
2079 /// visitSwitchCase - Emits the necessary code to represent a single node in
2080 /// the binary search tree resulting from lowering a switch instruction.
2081 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2082                                           MachineBasicBlock *SwitchBB) {
2083   SDValue Cond;
2084   SDValue CondLHS = getValue(CB.CmpLHS);
2085   SDLoc dl = CB.DL;
2086 
2087   // Build the setcc now.
2088   if (!CB.CmpMHS) {
2089     // Fold "(X == true)" to X and "(X == false)" to !X to
2090     // handle common cases produced by branch lowering.
2091     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2092         CB.CC == ISD::SETEQ)
2093       Cond = CondLHS;
2094     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2095              CB.CC == ISD::SETEQ) {
2096       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2097       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2098     } else
2099       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2100   } else {
2101     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2102 
2103     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2104     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2105 
2106     SDValue CmpOp = getValue(CB.CmpMHS);
2107     EVT VT = CmpOp.getValueType();
2108 
2109     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2110       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2111                           ISD::SETLE);
2112     } else {
2113       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2114                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2115       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2116                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2117     }
2118   }
2119 
2120   // Update successor info
2121   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2122   // TrueBB and FalseBB are always different unless the incoming IR is
2123   // degenerate. This only happens when running llc on weird IR.
2124   if (CB.TrueBB != CB.FalseBB)
2125     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2126   SwitchBB->normalizeSuccProbs();
2127 
2128   // If the lhs block is the next block, invert the condition so that we can
2129   // fall through to the lhs instead of the rhs block.
2130   if (CB.TrueBB == NextBlock(SwitchBB)) {
2131     std::swap(CB.TrueBB, CB.FalseBB);
2132     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2133     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2134   }
2135 
2136   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2137                                MVT::Other, getControlRoot(), Cond,
2138                                DAG.getBasicBlock(CB.TrueBB));
2139 
2140   // Insert the false branch. Do this even if it's a fall through branch,
2141   // this makes it easier to do DAG optimizations which require inverting
2142   // the branch condition.
2143   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2144                        DAG.getBasicBlock(CB.FalseBB));
2145 
2146   DAG.setRoot(BrCond);
2147 }
2148 
2149 /// visitJumpTable - Emit JumpTable node in the current MBB
2150 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2151   // Emit the code for the jump table
2152   assert(JT.Reg != -1U && "Should lower JT Header first!");
2153   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2154   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2155                                      JT.Reg, PTy);
2156   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2157   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2158                                     MVT::Other, Index.getValue(1),
2159                                     Table, Index);
2160   DAG.setRoot(BrJumpTable);
2161 }
2162 
2163 /// visitJumpTableHeader - This function emits necessary code to produce index
2164 /// in the JumpTable from switch case.
2165 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2166                                                JumpTableHeader &JTH,
2167                                                MachineBasicBlock *SwitchBB) {
2168   SDLoc dl = getCurSDLoc();
2169 
2170   // Subtract the lowest switch case value from the value being switched on and
2171   // conditional branch to default mbb if the result is greater than the
2172   // difference between smallest and largest cases.
2173   SDValue SwitchOp = getValue(JTH.SValue);
2174   EVT VT = SwitchOp.getValueType();
2175   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2176                             DAG.getConstant(JTH.First, dl, VT));
2177 
2178   // The SDNode we just created, which holds the value being switched on minus
2179   // the smallest case value, needs to be copied to a virtual register so it
2180   // can be used as an index into the jump table in a subsequent basic block.
2181   // This value may be smaller or larger than the target's pointer type, and
2182   // therefore require extension or truncating.
2183   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2184   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2185 
2186   unsigned JumpTableReg =
2187       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2188   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2189                                     JumpTableReg, SwitchOp);
2190   JT.Reg = JumpTableReg;
2191 
2192   if (!JTH.OmitRangeCheck) {
2193     // Emit the range check for the jump table, and branch to the default block
2194     // for the switch statement if the value being switched on exceeds the
2195     // largest case in the switch.
2196     SDValue CMP = DAG.getSetCC(
2197         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2198                                    Sub.getValueType()),
2199         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2200 
2201     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2202                                  MVT::Other, CopyTo, CMP,
2203                                  DAG.getBasicBlock(JT.Default));
2204 
2205     // Avoid emitting unnecessary branches to the next block.
2206     if (JT.MBB != NextBlock(SwitchBB))
2207       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2208                            DAG.getBasicBlock(JT.MBB));
2209 
2210     DAG.setRoot(BrCond);
2211   } else {
2212     SDValue BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2213                                  DAG.getBasicBlock(JT.MBB));
2214     DAG.setRoot(BrCond);
2215   }
2216 }
2217 
2218 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2219 /// variable if there exists one.
2220 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2221                                  SDValue &Chain) {
2222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2223   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2224   MachineFunction &MF = DAG.getMachineFunction();
2225   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2226   MachineSDNode *Node =
2227       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2228   if (Global) {
2229     MachinePointerInfo MPInfo(Global);
2230     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2231                  MachineMemOperand::MODereferenceable;
2232     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2233         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2234     DAG.setNodeMemRefs(Node, {MemRef});
2235   }
2236   return SDValue(Node, 0);
2237 }
2238 
2239 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2240 /// tail spliced into a stack protector check success bb.
2241 ///
2242 /// For a high level explanation of how this fits into the stack protector
2243 /// generation see the comment on the declaration of class
2244 /// StackProtectorDescriptor.
2245 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2246                                                   MachineBasicBlock *ParentBB) {
2247 
2248   // First create the loads to the guard/stack slot for the comparison.
2249   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2250   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2251 
2252   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2253   int FI = MFI.getStackProtectorIndex();
2254 
2255   SDValue Guard;
2256   SDLoc dl = getCurSDLoc();
2257   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2258   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2259   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2260 
2261   // Generate code to load the content of the guard slot.
2262   SDValue GuardVal = DAG.getLoad(
2263       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2264       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2265       MachineMemOperand::MOVolatile);
2266 
2267   if (TLI.useStackGuardXorFP())
2268     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2269 
2270   // Retrieve guard check function, nullptr if instrumentation is inlined.
2271   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2272     // The target provides a guard check function to validate the guard value.
2273     // Generate a call to that function with the content of the guard slot as
2274     // argument.
2275     auto *Fn = cast<Function>(GuardCheck);
2276     FunctionType *FnTy = Fn->getFunctionType();
2277     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2278 
2279     TargetLowering::ArgListTy Args;
2280     TargetLowering::ArgListEntry Entry;
2281     Entry.Node = GuardVal;
2282     Entry.Ty = FnTy->getParamType(0);
2283     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2284       Entry.IsInReg = true;
2285     Args.push_back(Entry);
2286 
2287     TargetLowering::CallLoweringInfo CLI(DAG);
2288     CLI.setDebugLoc(getCurSDLoc())
2289       .setChain(DAG.getEntryNode())
2290       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2291                  getValue(GuardCheck), std::move(Args));
2292 
2293     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2294     DAG.setRoot(Result.second);
2295     return;
2296   }
2297 
2298   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2299   // Otherwise, emit a volatile load to retrieve the stack guard value.
2300   SDValue Chain = DAG.getEntryNode();
2301   if (TLI.useLoadStackGuardNode()) {
2302     Guard = getLoadStackGuard(DAG, dl, Chain);
2303   } else {
2304     const Value *IRGuard = TLI.getSDagStackGuard(M);
2305     SDValue GuardPtr = getValue(IRGuard);
2306 
2307     Guard =
2308         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2309                     Align, MachineMemOperand::MOVolatile);
2310   }
2311 
2312   // Perform the comparison via a subtract/getsetcc.
2313   EVT VT = Guard.getValueType();
2314   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2315 
2316   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2317                                                         *DAG.getContext(),
2318                                                         Sub.getValueType()),
2319                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2320 
2321   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2322   // branch to failure MBB.
2323   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2324                                MVT::Other, GuardVal.getOperand(0),
2325                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2326   // Otherwise branch to success MBB.
2327   SDValue Br = DAG.getNode(ISD::BR, dl,
2328                            MVT::Other, BrCond,
2329                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2330 
2331   DAG.setRoot(Br);
2332 }
2333 
2334 /// Codegen the failure basic block for a stack protector check.
2335 ///
2336 /// A failure stack protector machine basic block consists simply of a call to
2337 /// __stack_chk_fail().
2338 ///
2339 /// For a high level explanation of how this fits into the stack protector
2340 /// generation see the comment on the declaration of class
2341 /// StackProtectorDescriptor.
2342 void
2343 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2345   SDValue Chain =
2346       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2347                       None, false, getCurSDLoc(), false, false).second;
2348   DAG.setRoot(Chain);
2349 }
2350 
2351 /// visitBitTestHeader - This function emits necessary code to produce value
2352 /// suitable for "bit tests"
2353 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2354                                              MachineBasicBlock *SwitchBB) {
2355   SDLoc dl = getCurSDLoc();
2356 
2357   // Subtract the minimum value
2358   SDValue SwitchOp = getValue(B.SValue);
2359   EVT VT = SwitchOp.getValueType();
2360   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2361                             DAG.getConstant(B.First, dl, VT));
2362 
2363   // Check range
2364   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2365   SDValue RangeCmp = DAG.getSetCC(
2366       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2367                                  Sub.getValueType()),
2368       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2369 
2370   // Determine the type of the test operands.
2371   bool UsePtrType = false;
2372   if (!TLI.isTypeLegal(VT))
2373     UsePtrType = true;
2374   else {
2375     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2376       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2377         // Switch table case range are encoded into series of masks.
2378         // Just use pointer type, it's guaranteed to fit.
2379         UsePtrType = true;
2380         break;
2381       }
2382   }
2383   if (UsePtrType) {
2384     VT = TLI.getPointerTy(DAG.getDataLayout());
2385     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2386   }
2387 
2388   B.RegVT = VT.getSimpleVT();
2389   B.Reg = FuncInfo.CreateReg(B.RegVT);
2390   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2391 
2392   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2393 
2394   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2395   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2396   SwitchBB->normalizeSuccProbs();
2397 
2398   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2399                                 MVT::Other, CopyTo, RangeCmp,
2400                                 DAG.getBasicBlock(B.Default));
2401 
2402   // Avoid emitting unnecessary branches to the next block.
2403   if (MBB != NextBlock(SwitchBB))
2404     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2405                           DAG.getBasicBlock(MBB));
2406 
2407   DAG.setRoot(BrRange);
2408 }
2409 
2410 /// visitBitTestCase - this function produces one "bit test"
2411 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2412                                            MachineBasicBlock* NextMBB,
2413                                            BranchProbability BranchProbToNext,
2414                                            unsigned Reg,
2415                                            BitTestCase &B,
2416                                            MachineBasicBlock *SwitchBB) {
2417   SDLoc dl = getCurSDLoc();
2418   MVT VT = BB.RegVT;
2419   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2420   SDValue Cmp;
2421   unsigned PopCount = countPopulation(B.Mask);
2422   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2423   if (PopCount == 1) {
2424     // Testing for a single bit; just compare the shift count with what it
2425     // would need to be to shift a 1 bit in that position.
2426     Cmp = DAG.getSetCC(
2427         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2428         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2429         ISD::SETEQ);
2430   } else if (PopCount == BB.Range) {
2431     // There is only one zero bit in the range, test for it directly.
2432     Cmp = DAG.getSetCC(
2433         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2434         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2435         ISD::SETNE);
2436   } else {
2437     // Make desired shift
2438     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2439                                     DAG.getConstant(1, dl, VT), ShiftOp);
2440 
2441     // Emit bit tests and jumps
2442     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2443                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2444     Cmp = DAG.getSetCC(
2445         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2446         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2447   }
2448 
2449   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2450   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2451   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2452   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2453   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2454   // one as they are relative probabilities (and thus work more like weights),
2455   // and hence we need to normalize them to let the sum of them become one.
2456   SwitchBB->normalizeSuccProbs();
2457 
2458   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2459                               MVT::Other, getControlRoot(),
2460                               Cmp, DAG.getBasicBlock(B.TargetBB));
2461 
2462   // Avoid emitting unnecessary branches to the next block.
2463   if (NextMBB != NextBlock(SwitchBB))
2464     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2465                         DAG.getBasicBlock(NextMBB));
2466 
2467   DAG.setRoot(BrAnd);
2468 }
2469 
2470 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2471   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2472 
2473   // Retrieve successors. Look through artificial IR level blocks like
2474   // catchswitch for successors.
2475   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2476   const BasicBlock *EHPadBB = I.getSuccessor(1);
2477 
2478   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2479   // have to do anything here to lower funclet bundles.
2480   assert(!I.hasOperandBundlesOtherThan(
2481              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2482          "Cannot lower invokes with arbitrary operand bundles yet!");
2483 
2484   const Value *Callee(I.getCalledValue());
2485   const Function *Fn = dyn_cast<Function>(Callee);
2486   if (isa<InlineAsm>(Callee))
2487     visitInlineAsm(&I);
2488   else if (Fn && Fn->isIntrinsic()) {
2489     switch (Fn->getIntrinsicID()) {
2490     default:
2491       llvm_unreachable("Cannot invoke this intrinsic");
2492     case Intrinsic::donothing:
2493       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2494       break;
2495     case Intrinsic::experimental_patchpoint_void:
2496     case Intrinsic::experimental_patchpoint_i64:
2497       visitPatchpoint(&I, EHPadBB);
2498       break;
2499     case Intrinsic::experimental_gc_statepoint:
2500       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2501       break;
2502     }
2503   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2504     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2505     // Eventually we will support lowering the @llvm.experimental.deoptimize
2506     // intrinsic, and right now there are no plans to support other intrinsics
2507     // with deopt state.
2508     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2509   } else {
2510     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2511   }
2512 
2513   // If the value of the invoke is used outside of its defining block, make it
2514   // available as a virtual register.
2515   // We already took care of the exported value for the statepoint instruction
2516   // during call to the LowerStatepoint.
2517   if (!isStatepoint(I)) {
2518     CopyToExportRegsIfNeeded(&I);
2519   }
2520 
2521   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2522   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2523   BranchProbability EHPadBBProb =
2524       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2525           : BranchProbability::getZero();
2526   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2527 
2528   // Update successor info.
2529   addSuccessorWithProb(InvokeMBB, Return);
2530   for (auto &UnwindDest : UnwindDests) {
2531     UnwindDest.first->setIsEHPad();
2532     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2533   }
2534   InvokeMBB->normalizeSuccProbs();
2535 
2536   // Drop into normal successor.
2537   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2538                           MVT::Other, getControlRoot(),
2539                           DAG.getBasicBlock(Return)));
2540 }
2541 
2542 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2543   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2544 }
2545 
2546 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2547   assert(FuncInfo.MBB->isEHPad() &&
2548          "Call to landingpad not in landing pad!");
2549 
2550   // If there aren't registers to copy the values into (e.g., during SjLj
2551   // exceptions), then don't bother to create these DAG nodes.
2552   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2553   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2554   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2555       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2556     return;
2557 
2558   // If landingpad's return type is token type, we don't create DAG nodes
2559   // for its exception pointer and selector value. The extraction of exception
2560   // pointer or selector value from token type landingpads is not currently
2561   // supported.
2562   if (LP.getType()->isTokenTy())
2563     return;
2564 
2565   SmallVector<EVT, 2> ValueVTs;
2566   SDLoc dl = getCurSDLoc();
2567   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2568   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2569 
2570   // Get the two live-in registers as SDValues. The physregs have already been
2571   // copied into virtual registers.
2572   SDValue Ops[2];
2573   if (FuncInfo.ExceptionPointerVirtReg) {
2574     Ops[0] = DAG.getZExtOrTrunc(
2575         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2576                            FuncInfo.ExceptionPointerVirtReg,
2577                            TLI.getPointerTy(DAG.getDataLayout())),
2578         dl, ValueVTs[0]);
2579   } else {
2580     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2581   }
2582   Ops[1] = DAG.getZExtOrTrunc(
2583       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2584                          FuncInfo.ExceptionSelectorVirtReg,
2585                          TLI.getPointerTy(DAG.getDataLayout())),
2586       dl, ValueVTs[1]);
2587 
2588   // Merge into one.
2589   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2590                             DAG.getVTList(ValueVTs), Ops);
2591   setValue(&LP, Res);
2592 }
2593 
2594 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2595 #ifndef NDEBUG
2596   for (const CaseCluster &CC : Clusters)
2597     assert(CC.Low == CC.High && "Input clusters must be single-case");
2598 #endif
2599 
2600   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2601     return a.Low->getValue().slt(b.Low->getValue());
2602   });
2603 
2604   // Merge adjacent clusters with the same destination.
2605   const unsigned N = Clusters.size();
2606   unsigned DstIndex = 0;
2607   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2608     CaseCluster &CC = Clusters[SrcIndex];
2609     const ConstantInt *CaseVal = CC.Low;
2610     MachineBasicBlock *Succ = CC.MBB;
2611 
2612     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2613         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2614       // If this case has the same successor and is a neighbour, merge it into
2615       // the previous cluster.
2616       Clusters[DstIndex - 1].High = CaseVal;
2617       Clusters[DstIndex - 1].Prob += CC.Prob;
2618     } else {
2619       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2620                    sizeof(Clusters[SrcIndex]));
2621     }
2622   }
2623   Clusters.resize(DstIndex);
2624 }
2625 
2626 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2627                                            MachineBasicBlock *Last) {
2628   // Update JTCases.
2629   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2630     if (JTCases[i].first.HeaderBB == First)
2631       JTCases[i].first.HeaderBB = Last;
2632 
2633   // Update BitTestCases.
2634   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2635     if (BitTestCases[i].Parent == First)
2636       BitTestCases[i].Parent = Last;
2637 }
2638 
2639 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2640   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2641 
2642   // Update machine-CFG edges with unique successors.
2643   SmallSet<BasicBlock*, 32> Done;
2644   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2645     BasicBlock *BB = I.getSuccessor(i);
2646     bool Inserted = Done.insert(BB).second;
2647     if (!Inserted)
2648         continue;
2649 
2650     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2651     addSuccessorWithProb(IndirectBrMBB, Succ);
2652   }
2653   IndirectBrMBB->normalizeSuccProbs();
2654 
2655   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2656                           MVT::Other, getControlRoot(),
2657                           getValue(I.getAddress())));
2658 }
2659 
2660 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2661   if (!DAG.getTarget().Options.TrapUnreachable)
2662     return;
2663 
2664   // We may be able to ignore unreachable behind a noreturn call.
2665   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2666     const BasicBlock &BB = *I.getParent();
2667     if (&I != &BB.front()) {
2668       BasicBlock::const_iterator PredI =
2669         std::prev(BasicBlock::const_iterator(&I));
2670       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2671         if (Call->doesNotReturn())
2672           return;
2673       }
2674     }
2675   }
2676 
2677   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2678 }
2679 
2680 void SelectionDAGBuilder::visitFSub(const User &I) {
2681   // -0.0 - X --> fneg
2682   Type *Ty = I.getType();
2683   if (isa<Constant>(I.getOperand(0)) &&
2684       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2685     SDValue Op2 = getValue(I.getOperand(1));
2686     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2687                              Op2.getValueType(), Op2));
2688     return;
2689   }
2690 
2691   visitBinary(I, ISD::FSUB);
2692 }
2693 
2694 /// Checks if the given instruction performs a vector reduction, in which case
2695 /// we have the freedom to alter the elements in the result as long as the
2696 /// reduction of them stays unchanged.
2697 static bool isVectorReductionOp(const User *I) {
2698   const Instruction *Inst = dyn_cast<Instruction>(I);
2699   if (!Inst || !Inst->getType()->isVectorTy())
2700     return false;
2701 
2702   auto OpCode = Inst->getOpcode();
2703   switch (OpCode) {
2704   case Instruction::Add:
2705   case Instruction::Mul:
2706   case Instruction::And:
2707   case Instruction::Or:
2708   case Instruction::Xor:
2709     break;
2710   case Instruction::FAdd:
2711   case Instruction::FMul:
2712     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2713       if (FPOp->getFastMathFlags().isFast())
2714         break;
2715     LLVM_FALLTHROUGH;
2716   default:
2717     return false;
2718   }
2719 
2720   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2721   // Ensure the reduction size is a power of 2.
2722   if (!isPowerOf2_32(ElemNum))
2723     return false;
2724 
2725   unsigned ElemNumToReduce = ElemNum;
2726 
2727   // Do DFS search on the def-use chain from the given instruction. We only
2728   // allow four kinds of operations during the search until we reach the
2729   // instruction that extracts the first element from the vector:
2730   //
2731   //   1. The reduction operation of the same opcode as the given instruction.
2732   //
2733   //   2. PHI node.
2734   //
2735   //   3. ShuffleVector instruction together with a reduction operation that
2736   //      does a partial reduction.
2737   //
2738   //   4. ExtractElement that extracts the first element from the vector, and we
2739   //      stop searching the def-use chain here.
2740   //
2741   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2742   // from 1-3 to the stack to continue the DFS. The given instruction is not
2743   // a reduction operation if we meet any other instructions other than those
2744   // listed above.
2745 
2746   SmallVector<const User *, 16> UsersToVisit{Inst};
2747   SmallPtrSet<const User *, 16> Visited;
2748   bool ReduxExtracted = false;
2749 
2750   while (!UsersToVisit.empty()) {
2751     auto User = UsersToVisit.back();
2752     UsersToVisit.pop_back();
2753     if (!Visited.insert(User).second)
2754       continue;
2755 
2756     for (const auto &U : User->users()) {
2757       auto Inst = dyn_cast<Instruction>(U);
2758       if (!Inst)
2759         return false;
2760 
2761       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2762         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2763           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2764             return false;
2765         UsersToVisit.push_back(U);
2766       } else if (const ShuffleVectorInst *ShufInst =
2767                      dyn_cast<ShuffleVectorInst>(U)) {
2768         // Detect the following pattern: A ShuffleVector instruction together
2769         // with a reduction that do partial reduction on the first and second
2770         // ElemNumToReduce / 2 elements, and store the result in
2771         // ElemNumToReduce / 2 elements in another vector.
2772 
2773         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2774         if (ResultElements < ElemNum)
2775           return false;
2776 
2777         if (ElemNumToReduce == 1)
2778           return false;
2779         if (!isa<UndefValue>(U->getOperand(1)))
2780           return false;
2781         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2782           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2783             return false;
2784         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2785           if (ShufInst->getMaskValue(i) != -1)
2786             return false;
2787 
2788         // There is only one user of this ShuffleVector instruction, which
2789         // must be a reduction operation.
2790         if (!U->hasOneUse())
2791           return false;
2792 
2793         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2794         if (!U2 || U2->getOpcode() != OpCode)
2795           return false;
2796 
2797         // Check operands of the reduction operation.
2798         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2799             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2800           UsersToVisit.push_back(U2);
2801           ElemNumToReduce /= 2;
2802         } else
2803           return false;
2804       } else if (isa<ExtractElementInst>(U)) {
2805         // At this moment we should have reduced all elements in the vector.
2806         if (ElemNumToReduce != 1)
2807           return false;
2808 
2809         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2810         if (!Val || !Val->isZero())
2811           return false;
2812 
2813         ReduxExtracted = true;
2814       } else
2815         return false;
2816     }
2817   }
2818   return ReduxExtracted;
2819 }
2820 
2821 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
2822   SDNodeFlags Flags;
2823 
2824   SDValue Op = getValue(I.getOperand(0));
2825   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
2826                                     Op, Flags);
2827   setValue(&I, UnNodeValue);
2828 }
2829 
2830 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2831   SDNodeFlags Flags;
2832   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2833     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2834     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2835   }
2836   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2837     Flags.setExact(ExactOp->isExact());
2838   }
2839   if (isVectorReductionOp(&I)) {
2840     Flags.setVectorReduction(true);
2841     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2842   }
2843 
2844   SDValue Op1 = getValue(I.getOperand(0));
2845   SDValue Op2 = getValue(I.getOperand(1));
2846   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2847                                      Op1, Op2, Flags);
2848   setValue(&I, BinNodeValue);
2849 }
2850 
2851 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2852   SDValue Op1 = getValue(I.getOperand(0));
2853   SDValue Op2 = getValue(I.getOperand(1));
2854 
2855   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2856       Op1.getValueType(), DAG.getDataLayout());
2857 
2858   // Coerce the shift amount to the right type if we can.
2859   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2860     unsigned ShiftSize = ShiftTy.getSizeInBits();
2861     unsigned Op2Size = Op2.getValueSizeInBits();
2862     SDLoc DL = getCurSDLoc();
2863 
2864     // If the operand is smaller than the shift count type, promote it.
2865     if (ShiftSize > Op2Size)
2866       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2867 
2868     // If the operand is larger than the shift count type but the shift
2869     // count type has enough bits to represent any shift value, truncate
2870     // it now. This is a common case and it exposes the truncate to
2871     // optimization early.
2872     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2873       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2874     // Otherwise we'll need to temporarily settle for some other convenient
2875     // type.  Type legalization will make adjustments once the shiftee is split.
2876     else
2877       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2878   }
2879 
2880   bool nuw = false;
2881   bool nsw = false;
2882   bool exact = false;
2883 
2884   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2885 
2886     if (const OverflowingBinaryOperator *OFBinOp =
2887             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2888       nuw = OFBinOp->hasNoUnsignedWrap();
2889       nsw = OFBinOp->hasNoSignedWrap();
2890     }
2891     if (const PossiblyExactOperator *ExactOp =
2892             dyn_cast<const PossiblyExactOperator>(&I))
2893       exact = ExactOp->isExact();
2894   }
2895   SDNodeFlags Flags;
2896   Flags.setExact(exact);
2897   Flags.setNoSignedWrap(nsw);
2898   Flags.setNoUnsignedWrap(nuw);
2899   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2900                             Flags);
2901   setValue(&I, Res);
2902 }
2903 
2904 void SelectionDAGBuilder::visitSDiv(const User &I) {
2905   SDValue Op1 = getValue(I.getOperand(0));
2906   SDValue Op2 = getValue(I.getOperand(1));
2907 
2908   SDNodeFlags Flags;
2909   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2910                  cast<PossiblyExactOperator>(&I)->isExact());
2911   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2912                            Op2, Flags));
2913 }
2914 
2915 void SelectionDAGBuilder::visitICmp(const User &I) {
2916   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2917   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2918     predicate = IC->getPredicate();
2919   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2920     predicate = ICmpInst::Predicate(IC->getPredicate());
2921   SDValue Op1 = getValue(I.getOperand(0));
2922   SDValue Op2 = getValue(I.getOperand(1));
2923   ISD::CondCode Opcode = getICmpCondCode(predicate);
2924 
2925   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2926                                                         I.getType());
2927   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2928 }
2929 
2930 void SelectionDAGBuilder::visitFCmp(const User &I) {
2931   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2932   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2933     predicate = FC->getPredicate();
2934   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2935     predicate = FCmpInst::Predicate(FC->getPredicate());
2936   SDValue Op1 = getValue(I.getOperand(0));
2937   SDValue Op2 = getValue(I.getOperand(1));
2938 
2939   ISD::CondCode Condition = getFCmpCondCode(predicate);
2940   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2941   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2942     Condition = getFCmpCodeWithoutNaN(Condition);
2943 
2944   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2945                                                         I.getType());
2946   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2947 }
2948 
2949 // Check if the condition of the select has one use or two users that are both
2950 // selects with the same condition.
2951 static bool hasOnlySelectUsers(const Value *Cond) {
2952   return llvm::all_of(Cond->users(), [](const Value *V) {
2953     return isa<SelectInst>(V);
2954   });
2955 }
2956 
2957 void SelectionDAGBuilder::visitSelect(const User &I) {
2958   SmallVector<EVT, 4> ValueVTs;
2959   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2960                   ValueVTs);
2961   unsigned NumValues = ValueVTs.size();
2962   if (NumValues == 0) return;
2963 
2964   SmallVector<SDValue, 4> Values(NumValues);
2965   SDValue Cond     = getValue(I.getOperand(0));
2966   SDValue LHSVal   = getValue(I.getOperand(1));
2967   SDValue RHSVal   = getValue(I.getOperand(2));
2968   auto BaseOps = {Cond};
2969   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2970     ISD::VSELECT : ISD::SELECT;
2971 
2972   // Min/max matching is only viable if all output VTs are the same.
2973   if (is_splat(ValueVTs)) {
2974     EVT VT = ValueVTs[0];
2975     LLVMContext &Ctx = *DAG.getContext();
2976     auto &TLI = DAG.getTargetLoweringInfo();
2977 
2978     // We care about the legality of the operation after it has been type
2979     // legalized.
2980     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2981            VT != TLI.getTypeToTransformTo(Ctx, VT))
2982       VT = TLI.getTypeToTransformTo(Ctx, VT);
2983 
2984     // If the vselect is legal, assume we want to leave this as a vector setcc +
2985     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2986     // min/max is legal on the scalar type.
2987     bool UseScalarMinMax = VT.isVector() &&
2988       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2989 
2990     Value *LHS, *RHS;
2991     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2992     ISD::NodeType Opc = ISD::DELETED_NODE;
2993     switch (SPR.Flavor) {
2994     case SPF_UMAX:    Opc = ISD::UMAX; break;
2995     case SPF_UMIN:    Opc = ISD::UMIN; break;
2996     case SPF_SMAX:    Opc = ISD::SMAX; break;
2997     case SPF_SMIN:    Opc = ISD::SMIN; break;
2998     case SPF_FMINNUM:
2999       switch (SPR.NaNBehavior) {
3000       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3001       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3002       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3003       case SPNB_RETURNS_ANY: {
3004         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3005           Opc = ISD::FMINNUM;
3006         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3007           Opc = ISD::FMINIMUM;
3008         else if (UseScalarMinMax)
3009           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3010             ISD::FMINNUM : ISD::FMINIMUM;
3011         break;
3012       }
3013       }
3014       break;
3015     case SPF_FMAXNUM:
3016       switch (SPR.NaNBehavior) {
3017       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3018       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3019       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3020       case SPNB_RETURNS_ANY:
3021 
3022         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3023           Opc = ISD::FMAXNUM;
3024         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3025           Opc = ISD::FMAXIMUM;
3026         else if (UseScalarMinMax)
3027           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3028             ISD::FMAXNUM : ISD::FMAXIMUM;
3029         break;
3030       }
3031       break;
3032     default: break;
3033     }
3034 
3035     if (Opc != ISD::DELETED_NODE &&
3036         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3037          (UseScalarMinMax &&
3038           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3039         // If the underlying comparison instruction is used by any other
3040         // instruction, the consumed instructions won't be destroyed, so it is
3041         // not profitable to convert to a min/max.
3042         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3043       OpCode = Opc;
3044       LHSVal = getValue(LHS);
3045       RHSVal = getValue(RHS);
3046       BaseOps = {};
3047     }
3048   }
3049 
3050   for (unsigned i = 0; i != NumValues; ++i) {
3051     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3052     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3053     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3054     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3055                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3056                             Ops);
3057   }
3058 
3059   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3060                            DAG.getVTList(ValueVTs), Values));
3061 }
3062 
3063 void SelectionDAGBuilder::visitTrunc(const User &I) {
3064   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3065   SDValue N = getValue(I.getOperand(0));
3066   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3067                                                         I.getType());
3068   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3069 }
3070 
3071 void SelectionDAGBuilder::visitZExt(const User &I) {
3072   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3073   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3074   SDValue N = getValue(I.getOperand(0));
3075   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3076                                                         I.getType());
3077   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3078 }
3079 
3080 void SelectionDAGBuilder::visitSExt(const User &I) {
3081   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3082   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3083   SDValue N = getValue(I.getOperand(0));
3084   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3085                                                         I.getType());
3086   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3087 }
3088 
3089 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3090   // FPTrunc is never a no-op cast, no need to check
3091   SDValue N = getValue(I.getOperand(0));
3092   SDLoc dl = getCurSDLoc();
3093   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3094   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3095   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3096                            DAG.getTargetConstant(
3097                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3098 }
3099 
3100 void SelectionDAGBuilder::visitFPExt(const User &I) {
3101   // FPExt is never a no-op cast, no need to check
3102   SDValue N = getValue(I.getOperand(0));
3103   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3104                                                         I.getType());
3105   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3106 }
3107 
3108 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3109   // FPToUI is never a no-op cast, no need to check
3110   SDValue N = getValue(I.getOperand(0));
3111   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3112                                                         I.getType());
3113   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3114 }
3115 
3116 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3117   // FPToSI is never a no-op cast, no need to check
3118   SDValue N = getValue(I.getOperand(0));
3119   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3120                                                         I.getType());
3121   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3122 }
3123 
3124 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3125   // UIToFP is never a no-op cast, no need to check
3126   SDValue N = getValue(I.getOperand(0));
3127   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3128                                                         I.getType());
3129   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3130 }
3131 
3132 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3133   // SIToFP is never a no-op cast, no need to check
3134   SDValue N = getValue(I.getOperand(0));
3135   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3136                                                         I.getType());
3137   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3138 }
3139 
3140 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3141   // What to do depends on the size of the integer and the size of the pointer.
3142   // We can either truncate, zero extend, or no-op, accordingly.
3143   SDValue N = getValue(I.getOperand(0));
3144   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3145                                                         I.getType());
3146   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3147 }
3148 
3149 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3150   // What to do depends on the size of the integer and the size of the pointer.
3151   // We can either truncate, zero extend, or no-op, accordingly.
3152   SDValue N = getValue(I.getOperand(0));
3153   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3154                                                         I.getType());
3155   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3156 }
3157 
3158 void SelectionDAGBuilder::visitBitCast(const User &I) {
3159   SDValue N = getValue(I.getOperand(0));
3160   SDLoc dl = getCurSDLoc();
3161   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3162                                                         I.getType());
3163 
3164   // BitCast assures us that source and destination are the same size so this is
3165   // either a BITCAST or a no-op.
3166   if (DestVT != N.getValueType())
3167     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3168                              DestVT, N)); // convert types.
3169   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3170   // might fold any kind of constant expression to an integer constant and that
3171   // is not what we are looking for. Only recognize a bitcast of a genuine
3172   // constant integer as an opaque constant.
3173   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3174     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3175                                  /*isOpaque*/true));
3176   else
3177     setValue(&I, N);            // noop cast.
3178 }
3179 
3180 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3181   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3182   const Value *SV = I.getOperand(0);
3183   SDValue N = getValue(SV);
3184   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3185 
3186   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3187   unsigned DestAS = I.getType()->getPointerAddressSpace();
3188 
3189   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3190     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3191 
3192   setValue(&I, N);
3193 }
3194 
3195 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3196   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3197   SDValue InVec = getValue(I.getOperand(0));
3198   SDValue InVal = getValue(I.getOperand(1));
3199   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3200                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3201   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3202                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3203                            InVec, InVal, InIdx));
3204 }
3205 
3206 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3207   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3208   SDValue InVec = getValue(I.getOperand(0));
3209   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3210                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3211   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3212                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3213                            InVec, InIdx));
3214 }
3215 
3216 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3217   SDValue Src1 = getValue(I.getOperand(0));
3218   SDValue Src2 = getValue(I.getOperand(1));
3219   SDLoc DL = getCurSDLoc();
3220 
3221   SmallVector<int, 8> Mask;
3222   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3223   unsigned MaskNumElts = Mask.size();
3224 
3225   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3226   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3227   EVT SrcVT = Src1.getValueType();
3228   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3229 
3230   if (SrcNumElts == MaskNumElts) {
3231     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3232     return;
3233   }
3234 
3235   // Normalize the shuffle vector since mask and vector length don't match.
3236   if (SrcNumElts < MaskNumElts) {
3237     // Mask is longer than the source vectors. We can use concatenate vector to
3238     // make the mask and vectors lengths match.
3239 
3240     if (MaskNumElts % SrcNumElts == 0) {
3241       // Mask length is a multiple of the source vector length.
3242       // Check if the shuffle is some kind of concatenation of the input
3243       // vectors.
3244       unsigned NumConcat = MaskNumElts / SrcNumElts;
3245       bool IsConcat = true;
3246       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3247       for (unsigned i = 0; i != MaskNumElts; ++i) {
3248         int Idx = Mask[i];
3249         if (Idx < 0)
3250           continue;
3251         // Ensure the indices in each SrcVT sized piece are sequential and that
3252         // the same source is used for the whole piece.
3253         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3254             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3255              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3256           IsConcat = false;
3257           break;
3258         }
3259         // Remember which source this index came from.
3260         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3261       }
3262 
3263       // The shuffle is concatenating multiple vectors together. Just emit
3264       // a CONCAT_VECTORS operation.
3265       if (IsConcat) {
3266         SmallVector<SDValue, 8> ConcatOps;
3267         for (auto Src : ConcatSrcs) {
3268           if (Src < 0)
3269             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3270           else if (Src == 0)
3271             ConcatOps.push_back(Src1);
3272           else
3273             ConcatOps.push_back(Src2);
3274         }
3275         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3276         return;
3277       }
3278     }
3279 
3280     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3281     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3282     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3283                                     PaddedMaskNumElts);
3284 
3285     // Pad both vectors with undefs to make them the same length as the mask.
3286     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3287 
3288     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3289     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3290     MOps1[0] = Src1;
3291     MOps2[0] = Src2;
3292 
3293     Src1 = Src1.isUndef()
3294                ? DAG.getUNDEF(PaddedVT)
3295                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3296     Src2 = Src2.isUndef()
3297                ? DAG.getUNDEF(PaddedVT)
3298                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3299 
3300     // Readjust mask for new input vector length.
3301     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3302     for (unsigned i = 0; i != MaskNumElts; ++i) {
3303       int Idx = Mask[i];
3304       if (Idx >= (int)SrcNumElts)
3305         Idx -= SrcNumElts - PaddedMaskNumElts;
3306       MappedOps[i] = Idx;
3307     }
3308 
3309     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3310 
3311     // If the concatenated vector was padded, extract a subvector with the
3312     // correct number of elements.
3313     if (MaskNumElts != PaddedMaskNumElts)
3314       Result = DAG.getNode(
3315           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3316           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3317 
3318     setValue(&I, Result);
3319     return;
3320   }
3321 
3322   if (SrcNumElts > MaskNumElts) {
3323     // Analyze the access pattern of the vector to see if we can extract
3324     // two subvectors and do the shuffle.
3325     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3326     bool CanExtract = true;
3327     for (int Idx : Mask) {
3328       unsigned Input = 0;
3329       if (Idx < 0)
3330         continue;
3331 
3332       if (Idx >= (int)SrcNumElts) {
3333         Input = 1;
3334         Idx -= SrcNumElts;
3335       }
3336 
3337       // If all the indices come from the same MaskNumElts sized portion of
3338       // the sources we can use extract. Also make sure the extract wouldn't
3339       // extract past the end of the source.
3340       int NewStartIdx = alignDown(Idx, MaskNumElts);
3341       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3342           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3343         CanExtract = false;
3344       // Make sure we always update StartIdx as we use it to track if all
3345       // elements are undef.
3346       StartIdx[Input] = NewStartIdx;
3347     }
3348 
3349     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3350       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3351       return;
3352     }
3353     if (CanExtract) {
3354       // Extract appropriate subvector and generate a vector shuffle
3355       for (unsigned Input = 0; Input < 2; ++Input) {
3356         SDValue &Src = Input == 0 ? Src1 : Src2;
3357         if (StartIdx[Input] < 0)
3358           Src = DAG.getUNDEF(VT);
3359         else {
3360           Src = DAG.getNode(
3361               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3362               DAG.getConstant(StartIdx[Input], DL,
3363                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3364         }
3365       }
3366 
3367       // Calculate new mask.
3368       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3369       for (int &Idx : MappedOps) {
3370         if (Idx >= (int)SrcNumElts)
3371           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3372         else if (Idx >= 0)
3373           Idx -= StartIdx[0];
3374       }
3375 
3376       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3377       return;
3378     }
3379   }
3380 
3381   // We can't use either concat vectors or extract subvectors so fall back to
3382   // replacing the shuffle with extract and build vector.
3383   // to insert and build vector.
3384   EVT EltVT = VT.getVectorElementType();
3385   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3386   SmallVector<SDValue,8> Ops;
3387   for (int Idx : Mask) {
3388     SDValue Res;
3389 
3390     if (Idx < 0) {
3391       Res = DAG.getUNDEF(EltVT);
3392     } else {
3393       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3394       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3395 
3396       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3397                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3398     }
3399 
3400     Ops.push_back(Res);
3401   }
3402 
3403   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3404 }
3405 
3406 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3407   ArrayRef<unsigned> Indices;
3408   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3409     Indices = IV->getIndices();
3410   else
3411     Indices = cast<ConstantExpr>(&I)->getIndices();
3412 
3413   const Value *Op0 = I.getOperand(0);
3414   const Value *Op1 = I.getOperand(1);
3415   Type *AggTy = I.getType();
3416   Type *ValTy = Op1->getType();
3417   bool IntoUndef = isa<UndefValue>(Op0);
3418   bool FromUndef = isa<UndefValue>(Op1);
3419 
3420   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3421 
3422   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3423   SmallVector<EVT, 4> AggValueVTs;
3424   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3425   SmallVector<EVT, 4> ValValueVTs;
3426   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3427 
3428   unsigned NumAggValues = AggValueVTs.size();
3429   unsigned NumValValues = ValValueVTs.size();
3430   SmallVector<SDValue, 4> Values(NumAggValues);
3431 
3432   // Ignore an insertvalue that produces an empty object
3433   if (!NumAggValues) {
3434     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3435     return;
3436   }
3437 
3438   SDValue Agg = getValue(Op0);
3439   unsigned i = 0;
3440   // Copy the beginning value(s) from the original aggregate.
3441   for (; i != LinearIndex; ++i)
3442     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3443                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3444   // Copy values from the inserted value(s).
3445   if (NumValValues) {
3446     SDValue Val = getValue(Op1);
3447     for (; i != LinearIndex + NumValValues; ++i)
3448       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3449                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3450   }
3451   // Copy remaining value(s) from the original aggregate.
3452   for (; i != NumAggValues; ++i)
3453     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3454                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3455 
3456   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3457                            DAG.getVTList(AggValueVTs), Values));
3458 }
3459 
3460 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3461   ArrayRef<unsigned> Indices;
3462   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3463     Indices = EV->getIndices();
3464   else
3465     Indices = cast<ConstantExpr>(&I)->getIndices();
3466 
3467   const Value *Op0 = I.getOperand(0);
3468   Type *AggTy = Op0->getType();
3469   Type *ValTy = I.getType();
3470   bool OutOfUndef = isa<UndefValue>(Op0);
3471 
3472   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3473 
3474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3475   SmallVector<EVT, 4> ValValueVTs;
3476   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3477 
3478   unsigned NumValValues = ValValueVTs.size();
3479 
3480   // Ignore a extractvalue that produces an empty object
3481   if (!NumValValues) {
3482     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3483     return;
3484   }
3485 
3486   SmallVector<SDValue, 4> Values(NumValValues);
3487 
3488   SDValue Agg = getValue(Op0);
3489   // Copy out the selected value(s).
3490   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3491     Values[i - LinearIndex] =
3492       OutOfUndef ?
3493         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3494         SDValue(Agg.getNode(), Agg.getResNo() + i);
3495 
3496   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3497                            DAG.getVTList(ValValueVTs), Values));
3498 }
3499 
3500 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3501   Value *Op0 = I.getOperand(0);
3502   // Note that the pointer operand may be a vector of pointers. Take the scalar
3503   // element which holds a pointer.
3504   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3505   SDValue N = getValue(Op0);
3506   SDLoc dl = getCurSDLoc();
3507 
3508   // Normalize Vector GEP - all scalar operands should be converted to the
3509   // splat vector.
3510   unsigned VectorWidth = I.getType()->isVectorTy() ?
3511     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3512 
3513   if (VectorWidth && !N.getValueType().isVector()) {
3514     LLVMContext &Context = *DAG.getContext();
3515     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3516     N = DAG.getSplatBuildVector(VT, dl, N);
3517   }
3518 
3519   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3520        GTI != E; ++GTI) {
3521     const Value *Idx = GTI.getOperand();
3522     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3523       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3524       if (Field) {
3525         // N = N + Offset
3526         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3527 
3528         // In an inbounds GEP with an offset that is nonnegative even when
3529         // interpreted as signed, assume there is no unsigned overflow.
3530         SDNodeFlags Flags;
3531         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3532           Flags.setNoUnsignedWrap(true);
3533 
3534         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3535                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3536       }
3537     } else {
3538       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3539       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3540       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3541 
3542       // If this is a scalar constant or a splat vector of constants,
3543       // handle it quickly.
3544       const auto *CI = dyn_cast<ConstantInt>(Idx);
3545       if (!CI && isa<ConstantDataVector>(Idx) &&
3546           cast<ConstantDataVector>(Idx)->getSplatValue())
3547         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3548 
3549       if (CI) {
3550         if (CI->isZero())
3551           continue;
3552         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3553         LLVMContext &Context = *DAG.getContext();
3554         SDValue OffsVal = VectorWidth ?
3555           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3556           DAG.getConstant(Offs, dl, IdxTy);
3557 
3558         // In an inbouds GEP with an offset that is nonnegative even when
3559         // interpreted as signed, assume there is no unsigned overflow.
3560         SDNodeFlags Flags;
3561         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3562           Flags.setNoUnsignedWrap(true);
3563 
3564         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3565         continue;
3566       }
3567 
3568       // N = N + Idx * ElementSize;
3569       SDValue IdxN = getValue(Idx);
3570 
3571       if (!IdxN.getValueType().isVector() && VectorWidth) {
3572         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3573         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3574       }
3575 
3576       // If the index is smaller or larger than intptr_t, truncate or extend
3577       // it.
3578       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3579 
3580       // If this is a multiply by a power of two, turn it into a shl
3581       // immediately.  This is a very common case.
3582       if (ElementSize != 1) {
3583         if (ElementSize.isPowerOf2()) {
3584           unsigned Amt = ElementSize.logBase2();
3585           IdxN = DAG.getNode(ISD::SHL, dl,
3586                              N.getValueType(), IdxN,
3587                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3588         } else {
3589           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3590           IdxN = DAG.getNode(ISD::MUL, dl,
3591                              N.getValueType(), IdxN, Scale);
3592         }
3593       }
3594 
3595       N = DAG.getNode(ISD::ADD, dl,
3596                       N.getValueType(), N, IdxN);
3597     }
3598   }
3599 
3600   setValue(&I, N);
3601 }
3602 
3603 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3604   // If this is a fixed sized alloca in the entry block of the function,
3605   // allocate it statically on the stack.
3606   if (FuncInfo.StaticAllocaMap.count(&I))
3607     return;   // getValue will auto-populate this.
3608 
3609   SDLoc dl = getCurSDLoc();
3610   Type *Ty = I.getAllocatedType();
3611   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3612   auto &DL = DAG.getDataLayout();
3613   uint64_t TySize = DL.getTypeAllocSize(Ty);
3614   unsigned Align =
3615       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3616 
3617   SDValue AllocSize = getValue(I.getArraySize());
3618 
3619   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3620   if (AllocSize.getValueType() != IntPtr)
3621     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3622 
3623   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3624                           AllocSize,
3625                           DAG.getConstant(TySize, dl, IntPtr));
3626 
3627   // Handle alignment.  If the requested alignment is less than or equal to
3628   // the stack alignment, ignore it.  If the size is greater than or equal to
3629   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3630   unsigned StackAlign =
3631       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3632   if (Align <= StackAlign)
3633     Align = 0;
3634 
3635   // Round the size of the allocation up to the stack alignment size
3636   // by add SA-1 to the size. This doesn't overflow because we're computing
3637   // an address inside an alloca.
3638   SDNodeFlags Flags;
3639   Flags.setNoUnsignedWrap(true);
3640   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3641                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3642 
3643   // Mask out the low bits for alignment purposes.
3644   AllocSize =
3645       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3646                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3647 
3648   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3649   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3650   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3651   setValue(&I, DSA);
3652   DAG.setRoot(DSA.getValue(1));
3653 
3654   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3655 }
3656 
3657 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3658   if (I.isAtomic())
3659     return visitAtomicLoad(I);
3660 
3661   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3662   const Value *SV = I.getOperand(0);
3663   if (TLI.supportSwiftError()) {
3664     // Swifterror values can come from either a function parameter with
3665     // swifterror attribute or an alloca with swifterror attribute.
3666     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3667       if (Arg->hasSwiftErrorAttr())
3668         return visitLoadFromSwiftError(I);
3669     }
3670 
3671     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3672       if (Alloca->isSwiftError())
3673         return visitLoadFromSwiftError(I);
3674     }
3675   }
3676 
3677   SDValue Ptr = getValue(SV);
3678 
3679   Type *Ty = I.getType();
3680 
3681   bool isVolatile = I.isVolatile();
3682   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3683   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3684   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3685   unsigned Alignment = I.getAlignment();
3686 
3687   AAMDNodes AAInfo;
3688   I.getAAMetadata(AAInfo);
3689   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3690 
3691   SmallVector<EVT, 4> ValueVTs;
3692   SmallVector<uint64_t, 4> Offsets;
3693   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3694   unsigned NumValues = ValueVTs.size();
3695   if (NumValues == 0)
3696     return;
3697 
3698   SDValue Root;
3699   bool ConstantMemory = false;
3700   if (isVolatile || NumValues > MaxParallelChains)
3701     // Serialize volatile loads with other side effects.
3702     Root = getRoot();
3703   else if (AA &&
3704            AA->pointsToConstantMemory(MemoryLocation(
3705                SV,
3706                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3707                AAInfo))) {
3708     // Do not serialize (non-volatile) loads of constant memory with anything.
3709     Root = DAG.getEntryNode();
3710     ConstantMemory = true;
3711   } else {
3712     // Do not serialize non-volatile loads against each other.
3713     Root = DAG.getRoot();
3714   }
3715 
3716   SDLoc dl = getCurSDLoc();
3717 
3718   if (isVolatile)
3719     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3720 
3721   // An aggregate load cannot wrap around the address space, so offsets to its
3722   // parts don't wrap either.
3723   SDNodeFlags Flags;
3724   Flags.setNoUnsignedWrap(true);
3725 
3726   SmallVector<SDValue, 4> Values(NumValues);
3727   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3728   EVT PtrVT = Ptr.getValueType();
3729   unsigned ChainI = 0;
3730   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3731     // Serializing loads here may result in excessive register pressure, and
3732     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3733     // could recover a bit by hoisting nodes upward in the chain by recognizing
3734     // they are side-effect free or do not alias. The optimizer should really
3735     // avoid this case by converting large object/array copies to llvm.memcpy
3736     // (MaxParallelChains should always remain as failsafe).
3737     if (ChainI == MaxParallelChains) {
3738       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3739       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3740                                   makeArrayRef(Chains.data(), ChainI));
3741       Root = Chain;
3742       ChainI = 0;
3743     }
3744     SDValue A = DAG.getNode(ISD::ADD, dl,
3745                             PtrVT, Ptr,
3746                             DAG.getConstant(Offsets[i], dl, PtrVT),
3747                             Flags);
3748     auto MMOFlags = MachineMemOperand::MONone;
3749     if (isVolatile)
3750       MMOFlags |= MachineMemOperand::MOVolatile;
3751     if (isNonTemporal)
3752       MMOFlags |= MachineMemOperand::MONonTemporal;
3753     if (isInvariant)
3754       MMOFlags |= MachineMemOperand::MOInvariant;
3755     if (isDereferenceable)
3756       MMOFlags |= MachineMemOperand::MODereferenceable;
3757     MMOFlags |= TLI.getMMOFlags(I);
3758 
3759     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3760                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3761                             MMOFlags, AAInfo, Ranges);
3762 
3763     Values[i] = L;
3764     Chains[ChainI] = L.getValue(1);
3765   }
3766 
3767   if (!ConstantMemory) {
3768     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3769                                 makeArrayRef(Chains.data(), ChainI));
3770     if (isVolatile)
3771       DAG.setRoot(Chain);
3772     else
3773       PendingLoads.push_back(Chain);
3774   }
3775 
3776   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3777                            DAG.getVTList(ValueVTs), Values));
3778 }
3779 
3780 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3781   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3782          "call visitStoreToSwiftError when backend supports swifterror");
3783 
3784   SmallVector<EVT, 4> ValueVTs;
3785   SmallVector<uint64_t, 4> Offsets;
3786   const Value *SrcV = I.getOperand(0);
3787   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3788                   SrcV->getType(), ValueVTs, &Offsets);
3789   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3790          "expect a single EVT for swifterror");
3791 
3792   SDValue Src = getValue(SrcV);
3793   // Create a virtual register, then update the virtual register.
3794   unsigned VReg; bool CreatedVReg;
3795   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3796   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3797   // Chain can be getRoot or getControlRoot.
3798   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3799                                       SDValue(Src.getNode(), Src.getResNo()));
3800   DAG.setRoot(CopyNode);
3801   if (CreatedVReg)
3802     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3803 }
3804 
3805 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3806   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3807          "call visitLoadFromSwiftError when backend supports swifterror");
3808 
3809   assert(!I.isVolatile() &&
3810          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3811          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3812          "Support volatile, non temporal, invariant for load_from_swift_error");
3813 
3814   const Value *SV = I.getOperand(0);
3815   Type *Ty = I.getType();
3816   AAMDNodes AAInfo;
3817   I.getAAMetadata(AAInfo);
3818   assert(
3819       (!AA ||
3820        !AA->pointsToConstantMemory(MemoryLocation(
3821            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3822            AAInfo))) &&
3823       "load_from_swift_error should not be constant memory");
3824 
3825   SmallVector<EVT, 4> ValueVTs;
3826   SmallVector<uint64_t, 4> Offsets;
3827   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3828                   ValueVTs, &Offsets);
3829   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3830          "expect a single EVT for swifterror");
3831 
3832   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3833   SDValue L = DAG.getCopyFromReg(
3834       getRoot(), getCurSDLoc(),
3835       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3836       ValueVTs[0]);
3837 
3838   setValue(&I, L);
3839 }
3840 
3841 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3842   if (I.isAtomic())
3843     return visitAtomicStore(I);
3844 
3845   const Value *SrcV = I.getOperand(0);
3846   const Value *PtrV = I.getOperand(1);
3847 
3848   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3849   if (TLI.supportSwiftError()) {
3850     // Swifterror values can come from either a function parameter with
3851     // swifterror attribute or an alloca with swifterror attribute.
3852     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3853       if (Arg->hasSwiftErrorAttr())
3854         return visitStoreToSwiftError(I);
3855     }
3856 
3857     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3858       if (Alloca->isSwiftError())
3859         return visitStoreToSwiftError(I);
3860     }
3861   }
3862 
3863   SmallVector<EVT, 4> ValueVTs;
3864   SmallVector<uint64_t, 4> Offsets;
3865   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3866                   SrcV->getType(), ValueVTs, &Offsets);
3867   unsigned NumValues = ValueVTs.size();
3868   if (NumValues == 0)
3869     return;
3870 
3871   // Get the lowered operands. Note that we do this after
3872   // checking if NumResults is zero, because with zero results
3873   // the operands won't have values in the map.
3874   SDValue Src = getValue(SrcV);
3875   SDValue Ptr = getValue(PtrV);
3876 
3877   SDValue Root = getRoot();
3878   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3879   SDLoc dl = getCurSDLoc();
3880   EVT PtrVT = Ptr.getValueType();
3881   unsigned Alignment = I.getAlignment();
3882   AAMDNodes AAInfo;
3883   I.getAAMetadata(AAInfo);
3884 
3885   auto MMOFlags = MachineMemOperand::MONone;
3886   if (I.isVolatile())
3887     MMOFlags |= MachineMemOperand::MOVolatile;
3888   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3889     MMOFlags |= MachineMemOperand::MONonTemporal;
3890   MMOFlags |= TLI.getMMOFlags(I);
3891 
3892   // An aggregate load cannot wrap around the address space, so offsets to its
3893   // parts don't wrap either.
3894   SDNodeFlags Flags;
3895   Flags.setNoUnsignedWrap(true);
3896 
3897   unsigned ChainI = 0;
3898   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3899     // See visitLoad comments.
3900     if (ChainI == MaxParallelChains) {
3901       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3902                                   makeArrayRef(Chains.data(), ChainI));
3903       Root = Chain;
3904       ChainI = 0;
3905     }
3906     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3907                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3908     SDValue St = DAG.getStore(
3909         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3910         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3911     Chains[ChainI] = St;
3912   }
3913 
3914   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3915                                   makeArrayRef(Chains.data(), ChainI));
3916   DAG.setRoot(StoreNode);
3917 }
3918 
3919 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3920                                            bool IsCompressing) {
3921   SDLoc sdl = getCurSDLoc();
3922 
3923   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3924                            unsigned& Alignment) {
3925     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3926     Src0 = I.getArgOperand(0);
3927     Ptr = I.getArgOperand(1);
3928     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3929     Mask = I.getArgOperand(3);
3930   };
3931   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3932                            unsigned& Alignment) {
3933     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3934     Src0 = I.getArgOperand(0);
3935     Ptr = I.getArgOperand(1);
3936     Mask = I.getArgOperand(2);
3937     Alignment = 0;
3938   };
3939 
3940   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3941   unsigned Alignment;
3942   if (IsCompressing)
3943     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3944   else
3945     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3946 
3947   SDValue Ptr = getValue(PtrOperand);
3948   SDValue Src0 = getValue(Src0Operand);
3949   SDValue Mask = getValue(MaskOperand);
3950 
3951   EVT VT = Src0.getValueType();
3952   if (!Alignment)
3953     Alignment = DAG.getEVTAlignment(VT);
3954 
3955   AAMDNodes AAInfo;
3956   I.getAAMetadata(AAInfo);
3957 
3958   MachineMemOperand *MMO =
3959     DAG.getMachineFunction().
3960     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3961                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3962                           Alignment, AAInfo);
3963   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3964                                          MMO, false /* Truncating */,
3965                                          IsCompressing);
3966   DAG.setRoot(StoreNode);
3967   setValue(&I, StoreNode);
3968 }
3969 
3970 // Get a uniform base for the Gather/Scatter intrinsic.
3971 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3972 // We try to represent it as a base pointer + vector of indices.
3973 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3974 // The first operand of the GEP may be a single pointer or a vector of pointers
3975 // Example:
3976 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3977 //  or
3978 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3979 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3980 //
3981 // When the first GEP operand is a single pointer - it is the uniform base we
3982 // are looking for. If first operand of the GEP is a splat vector - we
3983 // extract the splat value and use it as a uniform base.
3984 // In all other cases the function returns 'false'.
3985 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3986                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3987   SelectionDAG& DAG = SDB->DAG;
3988   LLVMContext &Context = *DAG.getContext();
3989 
3990   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3991   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3992   if (!GEP)
3993     return false;
3994 
3995   const Value *GEPPtr = GEP->getPointerOperand();
3996   if (!GEPPtr->getType()->isVectorTy())
3997     Ptr = GEPPtr;
3998   else if (!(Ptr = getSplatValue(GEPPtr)))
3999     return false;
4000 
4001   unsigned FinalIndex = GEP->getNumOperands() - 1;
4002   Value *IndexVal = GEP->getOperand(FinalIndex);
4003 
4004   // Ensure all the other indices are 0.
4005   for (unsigned i = 1; i < FinalIndex; ++i) {
4006     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4007     if (!C || !C->isZero())
4008       return false;
4009   }
4010 
4011   // The operands of the GEP may be defined in another basic block.
4012   // In this case we'll not find nodes for the operands.
4013   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4014     return false;
4015 
4016   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4017   const DataLayout &DL = DAG.getDataLayout();
4018   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4019                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4020   Base = SDB->getValue(Ptr);
4021   Index = SDB->getValue(IndexVal);
4022 
4023   if (!Index.getValueType().isVector()) {
4024     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4025     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4026     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4027   }
4028   return true;
4029 }
4030 
4031 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4032   SDLoc sdl = getCurSDLoc();
4033 
4034   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4035   const Value *Ptr = I.getArgOperand(1);
4036   SDValue Src0 = getValue(I.getArgOperand(0));
4037   SDValue Mask = getValue(I.getArgOperand(3));
4038   EVT VT = Src0.getValueType();
4039   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4040   if (!Alignment)
4041     Alignment = DAG.getEVTAlignment(VT);
4042   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4043 
4044   AAMDNodes AAInfo;
4045   I.getAAMetadata(AAInfo);
4046 
4047   SDValue Base;
4048   SDValue Index;
4049   SDValue Scale;
4050   const Value *BasePtr = Ptr;
4051   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4052 
4053   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4054   MachineMemOperand *MMO = DAG.getMachineFunction().
4055     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4056                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4057                          Alignment, AAInfo);
4058   if (!UniformBase) {
4059     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4060     Index = getValue(Ptr);
4061     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4062   }
4063   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4064   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4065                                          Ops, MMO);
4066   DAG.setRoot(Scatter);
4067   setValue(&I, Scatter);
4068 }
4069 
4070 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4071   SDLoc sdl = getCurSDLoc();
4072 
4073   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4074                            unsigned& Alignment) {
4075     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4076     Ptr = I.getArgOperand(0);
4077     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4078     Mask = I.getArgOperand(2);
4079     Src0 = I.getArgOperand(3);
4080   };
4081   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4082                            unsigned& Alignment) {
4083     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4084     Ptr = I.getArgOperand(0);
4085     Alignment = 0;
4086     Mask = I.getArgOperand(1);
4087     Src0 = I.getArgOperand(2);
4088   };
4089 
4090   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4091   unsigned Alignment;
4092   if (IsExpanding)
4093     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4094   else
4095     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4096 
4097   SDValue Ptr = getValue(PtrOperand);
4098   SDValue Src0 = getValue(Src0Operand);
4099   SDValue Mask = getValue(MaskOperand);
4100 
4101   EVT VT = Src0.getValueType();
4102   if (!Alignment)
4103     Alignment = DAG.getEVTAlignment(VT);
4104 
4105   AAMDNodes AAInfo;
4106   I.getAAMetadata(AAInfo);
4107   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4108 
4109   // Do not serialize masked loads of constant memory with anything.
4110   bool AddToChain =
4111       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4112                  PtrOperand,
4113                  LocationSize::precise(
4114                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4115                  AAInfo));
4116   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4117 
4118   MachineMemOperand *MMO =
4119     DAG.getMachineFunction().
4120     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4121                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4122                           Alignment, AAInfo, Ranges);
4123 
4124   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4125                                    ISD::NON_EXTLOAD, IsExpanding);
4126   if (AddToChain)
4127     PendingLoads.push_back(Load.getValue(1));
4128   setValue(&I, Load);
4129 }
4130 
4131 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4132   SDLoc sdl = getCurSDLoc();
4133 
4134   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4135   const Value *Ptr = I.getArgOperand(0);
4136   SDValue Src0 = getValue(I.getArgOperand(3));
4137   SDValue Mask = getValue(I.getArgOperand(2));
4138 
4139   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4140   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4141   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4142   if (!Alignment)
4143     Alignment = DAG.getEVTAlignment(VT);
4144 
4145   AAMDNodes AAInfo;
4146   I.getAAMetadata(AAInfo);
4147   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4148 
4149   SDValue Root = DAG.getRoot();
4150   SDValue Base;
4151   SDValue Index;
4152   SDValue Scale;
4153   const Value *BasePtr = Ptr;
4154   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4155   bool ConstantMemory = false;
4156   if (UniformBase && AA &&
4157       AA->pointsToConstantMemory(
4158           MemoryLocation(BasePtr,
4159                          LocationSize::precise(
4160                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4161                          AAInfo))) {
4162     // Do not serialize (non-volatile) loads of constant memory with anything.
4163     Root = DAG.getEntryNode();
4164     ConstantMemory = true;
4165   }
4166 
4167   MachineMemOperand *MMO =
4168     DAG.getMachineFunction().
4169     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4170                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4171                          Alignment, AAInfo, Ranges);
4172 
4173   if (!UniformBase) {
4174     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4175     Index = getValue(Ptr);
4176     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4177   }
4178   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4179   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4180                                        Ops, MMO);
4181 
4182   SDValue OutChain = Gather.getValue(1);
4183   if (!ConstantMemory)
4184     PendingLoads.push_back(OutChain);
4185   setValue(&I, Gather);
4186 }
4187 
4188 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4189   SDLoc dl = getCurSDLoc();
4190   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4191   AtomicOrdering FailureOrder = I.getFailureOrdering();
4192   SyncScope::ID SSID = I.getSyncScopeID();
4193 
4194   SDValue InChain = getRoot();
4195 
4196   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4197   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4198   SDValue L = DAG.getAtomicCmpSwap(
4199       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4200       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4201       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4202       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4203 
4204   SDValue OutChain = L.getValue(2);
4205 
4206   setValue(&I, L);
4207   DAG.setRoot(OutChain);
4208 }
4209 
4210 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4211   SDLoc dl = getCurSDLoc();
4212   ISD::NodeType NT;
4213   switch (I.getOperation()) {
4214   default: llvm_unreachable("Unknown atomicrmw operation");
4215   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4216   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4217   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4218   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4219   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4220   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4221   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4222   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4223   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4224   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4225   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4226   }
4227   AtomicOrdering Order = I.getOrdering();
4228   SyncScope::ID SSID = I.getSyncScopeID();
4229 
4230   SDValue InChain = getRoot();
4231 
4232   SDValue L =
4233     DAG.getAtomic(NT, dl,
4234                   getValue(I.getValOperand()).getSimpleValueType(),
4235                   InChain,
4236                   getValue(I.getPointerOperand()),
4237                   getValue(I.getValOperand()),
4238                   I.getPointerOperand(),
4239                   /* Alignment=*/ 0, Order, SSID);
4240 
4241   SDValue OutChain = L.getValue(1);
4242 
4243   setValue(&I, L);
4244   DAG.setRoot(OutChain);
4245 }
4246 
4247 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4248   SDLoc dl = getCurSDLoc();
4249   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4250   SDValue Ops[3];
4251   Ops[0] = getRoot();
4252   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4253                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4254   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4255                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4256   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4257 }
4258 
4259 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4260   SDLoc dl = getCurSDLoc();
4261   AtomicOrdering Order = I.getOrdering();
4262   SyncScope::ID SSID = I.getSyncScopeID();
4263 
4264   SDValue InChain = getRoot();
4265 
4266   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4267   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4268 
4269   if (!TLI.supportsUnalignedAtomics() &&
4270       I.getAlignment() < VT.getStoreSize())
4271     report_fatal_error("Cannot generate unaligned atomic load");
4272 
4273   MachineMemOperand *MMO =
4274       DAG.getMachineFunction().
4275       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4276                            MachineMemOperand::MOVolatile |
4277                            MachineMemOperand::MOLoad,
4278                            VT.getStoreSize(),
4279                            I.getAlignment() ? I.getAlignment() :
4280                                               DAG.getEVTAlignment(VT),
4281                            AAMDNodes(), nullptr, SSID, Order);
4282 
4283   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4284   SDValue L =
4285       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4286                     getValue(I.getPointerOperand()), MMO);
4287 
4288   SDValue OutChain = L.getValue(1);
4289 
4290   setValue(&I, L);
4291   DAG.setRoot(OutChain);
4292 }
4293 
4294 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4295   SDLoc dl = getCurSDLoc();
4296 
4297   AtomicOrdering Order = I.getOrdering();
4298   SyncScope::ID SSID = I.getSyncScopeID();
4299 
4300   SDValue InChain = getRoot();
4301 
4302   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4303   EVT VT =
4304       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4305 
4306   if (I.getAlignment() < VT.getStoreSize())
4307     report_fatal_error("Cannot generate unaligned atomic store");
4308 
4309   SDValue OutChain =
4310     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4311                   InChain,
4312                   getValue(I.getPointerOperand()),
4313                   getValue(I.getValueOperand()),
4314                   I.getPointerOperand(), I.getAlignment(),
4315                   Order, SSID);
4316 
4317   DAG.setRoot(OutChain);
4318 }
4319 
4320 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4321 /// node.
4322 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4323                                                unsigned Intrinsic) {
4324   // Ignore the callsite's attributes. A specific call site may be marked with
4325   // readnone, but the lowering code will expect the chain based on the
4326   // definition.
4327   const Function *F = I.getCalledFunction();
4328   bool HasChain = !F->doesNotAccessMemory();
4329   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4330 
4331   // Build the operand list.
4332   SmallVector<SDValue, 8> Ops;
4333   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4334     if (OnlyLoad) {
4335       // We don't need to serialize loads against other loads.
4336       Ops.push_back(DAG.getRoot());
4337     } else {
4338       Ops.push_back(getRoot());
4339     }
4340   }
4341 
4342   // Info is set by getTgtMemInstrinsic
4343   TargetLowering::IntrinsicInfo Info;
4344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4345   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4346                                                DAG.getMachineFunction(),
4347                                                Intrinsic);
4348 
4349   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4350   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4351       Info.opc == ISD::INTRINSIC_W_CHAIN)
4352     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4353                                         TLI.getPointerTy(DAG.getDataLayout())));
4354 
4355   // Add all operands of the call to the operand list.
4356   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4357     SDValue Op = getValue(I.getArgOperand(i));
4358     Ops.push_back(Op);
4359   }
4360 
4361   SmallVector<EVT, 4> ValueVTs;
4362   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4363 
4364   if (HasChain)
4365     ValueVTs.push_back(MVT::Other);
4366 
4367   SDVTList VTs = DAG.getVTList(ValueVTs);
4368 
4369   // Create the node.
4370   SDValue Result;
4371   if (IsTgtIntrinsic) {
4372     // This is target intrinsic that touches memory
4373     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4374       Ops, Info.memVT,
4375       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4376       Info.flags, Info.size);
4377   } else if (!HasChain) {
4378     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4379   } else if (!I.getType()->isVoidTy()) {
4380     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4381   } else {
4382     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4383   }
4384 
4385   if (HasChain) {
4386     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4387     if (OnlyLoad)
4388       PendingLoads.push_back(Chain);
4389     else
4390       DAG.setRoot(Chain);
4391   }
4392 
4393   if (!I.getType()->isVoidTy()) {
4394     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4395       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4396       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4397     } else
4398       Result = lowerRangeToAssertZExt(DAG, I, Result);
4399 
4400     setValue(&I, Result);
4401   }
4402 }
4403 
4404 /// GetSignificand - Get the significand and build it into a floating-point
4405 /// number with exponent of 1:
4406 ///
4407 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4408 ///
4409 /// where Op is the hexadecimal representation of floating point value.
4410 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4411   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4412                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4413   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4414                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4415   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4416 }
4417 
4418 /// GetExponent - Get the exponent:
4419 ///
4420 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4421 ///
4422 /// where Op is the hexadecimal representation of floating point value.
4423 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4424                            const TargetLowering &TLI, const SDLoc &dl) {
4425   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4426                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4427   SDValue t1 = DAG.getNode(
4428       ISD::SRL, dl, MVT::i32, t0,
4429       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4430   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4431                            DAG.getConstant(127, dl, MVT::i32));
4432   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4433 }
4434 
4435 /// getF32Constant - Get 32-bit floating point constant.
4436 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4437                               const SDLoc &dl) {
4438   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4439                            MVT::f32);
4440 }
4441 
4442 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4443                                        SelectionDAG &DAG) {
4444   // TODO: What fast-math-flags should be set on the floating-point nodes?
4445 
4446   //   IntegerPartOfX = ((int32_t)(t0);
4447   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4448 
4449   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4450   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4451   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4452 
4453   //   IntegerPartOfX <<= 23;
4454   IntegerPartOfX = DAG.getNode(
4455       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4456       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4457                                   DAG.getDataLayout())));
4458 
4459   SDValue TwoToFractionalPartOfX;
4460   if (LimitFloatPrecision <= 6) {
4461     // For floating-point precision of 6:
4462     //
4463     //   TwoToFractionalPartOfX =
4464     //     0.997535578f +
4465     //       (0.735607626f + 0.252464424f * x) * x;
4466     //
4467     // error 0.0144103317, which is 6 bits
4468     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4469                              getF32Constant(DAG, 0x3e814304, dl));
4470     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4471                              getF32Constant(DAG, 0x3f3c50c8, dl));
4472     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4473     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4474                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4475   } else if (LimitFloatPrecision <= 12) {
4476     // For floating-point precision of 12:
4477     //
4478     //   TwoToFractionalPartOfX =
4479     //     0.999892986f +
4480     //       (0.696457318f +
4481     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4482     //
4483     // error 0.000107046256, which is 13 to 14 bits
4484     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4485                              getF32Constant(DAG, 0x3da235e3, dl));
4486     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4487                              getF32Constant(DAG, 0x3e65b8f3, dl));
4488     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4489     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4490                              getF32Constant(DAG, 0x3f324b07, dl));
4491     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4492     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4493                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4494   } else { // LimitFloatPrecision <= 18
4495     // For floating-point precision of 18:
4496     //
4497     //   TwoToFractionalPartOfX =
4498     //     0.999999982f +
4499     //       (0.693148872f +
4500     //         (0.240227044f +
4501     //           (0.554906021e-1f +
4502     //             (0.961591928e-2f +
4503     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4504     // error 2.47208000*10^(-7), which is better than 18 bits
4505     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4506                              getF32Constant(DAG, 0x3924b03e, dl));
4507     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4508                              getF32Constant(DAG, 0x3ab24b87, dl));
4509     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4510     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4511                              getF32Constant(DAG, 0x3c1d8c17, dl));
4512     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4513     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4514                              getF32Constant(DAG, 0x3d634a1d, dl));
4515     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4516     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4517                              getF32Constant(DAG, 0x3e75fe14, dl));
4518     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4519     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4520                               getF32Constant(DAG, 0x3f317234, dl));
4521     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4522     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4523                                          getF32Constant(DAG, 0x3f800000, dl));
4524   }
4525 
4526   // Add the exponent into the result in integer domain.
4527   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4528   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4529                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4530 }
4531 
4532 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4533 /// limited-precision mode.
4534 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4535                          const TargetLowering &TLI) {
4536   if (Op.getValueType() == MVT::f32 &&
4537       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4538 
4539     // Put the exponent in the right bit position for later addition to the
4540     // final result:
4541     //
4542     //   #define LOG2OFe 1.4426950f
4543     //   t0 = Op * LOG2OFe
4544 
4545     // TODO: What fast-math-flags should be set here?
4546     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4547                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4548     return getLimitedPrecisionExp2(t0, dl, DAG);
4549   }
4550 
4551   // No special expansion.
4552   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4553 }
4554 
4555 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4556 /// limited-precision mode.
4557 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4558                          const TargetLowering &TLI) {
4559   // TODO: What fast-math-flags should be set on the floating-point nodes?
4560 
4561   if (Op.getValueType() == MVT::f32 &&
4562       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4563     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4564 
4565     // Scale the exponent by log(2) [0.69314718f].
4566     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4567     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4568                                         getF32Constant(DAG, 0x3f317218, dl));
4569 
4570     // Get the significand and build it into a floating-point number with
4571     // exponent of 1.
4572     SDValue X = GetSignificand(DAG, Op1, dl);
4573 
4574     SDValue LogOfMantissa;
4575     if (LimitFloatPrecision <= 6) {
4576       // For floating-point precision of 6:
4577       //
4578       //   LogofMantissa =
4579       //     -1.1609546f +
4580       //       (1.4034025f - 0.23903021f * x) * x;
4581       //
4582       // error 0.0034276066, which is better than 8 bits
4583       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4584                                getF32Constant(DAG, 0xbe74c456, dl));
4585       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4586                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4587       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4588       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4589                                   getF32Constant(DAG, 0x3f949a29, dl));
4590     } else if (LimitFloatPrecision <= 12) {
4591       // For floating-point precision of 12:
4592       //
4593       //   LogOfMantissa =
4594       //     -1.7417939f +
4595       //       (2.8212026f +
4596       //         (-1.4699568f +
4597       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4598       //
4599       // error 0.000061011436, which is 14 bits
4600       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4601                                getF32Constant(DAG, 0xbd67b6d6, dl));
4602       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4603                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4604       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4605       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4606                                getF32Constant(DAG, 0x3fbc278b, dl));
4607       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4608       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4609                                getF32Constant(DAG, 0x40348e95, dl));
4610       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4611       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4612                                   getF32Constant(DAG, 0x3fdef31a, dl));
4613     } else { // LimitFloatPrecision <= 18
4614       // For floating-point precision of 18:
4615       //
4616       //   LogOfMantissa =
4617       //     -2.1072184f +
4618       //       (4.2372794f +
4619       //         (-3.7029485f +
4620       //           (2.2781945f +
4621       //             (-0.87823314f +
4622       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4623       //
4624       // error 0.0000023660568, which is better than 18 bits
4625       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4626                                getF32Constant(DAG, 0xbc91e5ac, dl));
4627       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4628                                getF32Constant(DAG, 0x3e4350aa, dl));
4629       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4630       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4631                                getF32Constant(DAG, 0x3f60d3e3, dl));
4632       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4633       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4634                                getF32Constant(DAG, 0x4011cdf0, dl));
4635       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4636       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4637                                getF32Constant(DAG, 0x406cfd1c, dl));
4638       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4639       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4640                                getF32Constant(DAG, 0x408797cb, dl));
4641       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4642       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4643                                   getF32Constant(DAG, 0x4006dcab, dl));
4644     }
4645 
4646     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4647   }
4648 
4649   // No special expansion.
4650   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4651 }
4652 
4653 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4654 /// limited-precision mode.
4655 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4656                           const TargetLowering &TLI) {
4657   // TODO: What fast-math-flags should be set on the floating-point nodes?
4658 
4659   if (Op.getValueType() == MVT::f32 &&
4660       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4661     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4662 
4663     // Get the exponent.
4664     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4665 
4666     // Get the significand and build it into a floating-point number with
4667     // exponent of 1.
4668     SDValue X = GetSignificand(DAG, Op1, dl);
4669 
4670     // Different possible minimax approximations of significand in
4671     // floating-point for various degrees of accuracy over [1,2].
4672     SDValue Log2ofMantissa;
4673     if (LimitFloatPrecision <= 6) {
4674       // For floating-point precision of 6:
4675       //
4676       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4677       //
4678       // error 0.0049451742, which is more than 7 bits
4679       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4680                                getF32Constant(DAG, 0xbeb08fe0, dl));
4681       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4682                                getF32Constant(DAG, 0x40019463, dl));
4683       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4684       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4685                                    getF32Constant(DAG, 0x3fd6633d, dl));
4686     } else if (LimitFloatPrecision <= 12) {
4687       // For floating-point precision of 12:
4688       //
4689       //   Log2ofMantissa =
4690       //     -2.51285454f +
4691       //       (4.07009056f +
4692       //         (-2.12067489f +
4693       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4694       //
4695       // error 0.0000876136000, which is better than 13 bits
4696       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4697                                getF32Constant(DAG, 0xbda7262e, dl));
4698       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4699                                getF32Constant(DAG, 0x3f25280b, dl));
4700       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4701       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4702                                getF32Constant(DAG, 0x4007b923, dl));
4703       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4704       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4705                                getF32Constant(DAG, 0x40823e2f, dl));
4706       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4707       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4708                                    getF32Constant(DAG, 0x4020d29c, dl));
4709     } else { // LimitFloatPrecision <= 18
4710       // For floating-point precision of 18:
4711       //
4712       //   Log2ofMantissa =
4713       //     -3.0400495f +
4714       //       (6.1129976f +
4715       //         (-5.3420409f +
4716       //           (3.2865683f +
4717       //             (-1.2669343f +
4718       //               (0.27515199f -
4719       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4720       //
4721       // error 0.0000018516, which is better than 18 bits
4722       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4723                                getF32Constant(DAG, 0xbcd2769e, dl));
4724       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4725                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4726       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4727       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4728                                getF32Constant(DAG, 0x3fa22ae7, dl));
4729       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4730       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4731                                getF32Constant(DAG, 0x40525723, dl));
4732       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4733       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4734                                getF32Constant(DAG, 0x40aaf200, dl));
4735       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4736       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4737                                getF32Constant(DAG, 0x40c39dad, dl));
4738       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4739       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4740                                    getF32Constant(DAG, 0x4042902c, dl));
4741     }
4742 
4743     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4744   }
4745 
4746   // No special expansion.
4747   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4748 }
4749 
4750 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4751 /// limited-precision mode.
4752 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4753                            const TargetLowering &TLI) {
4754   // TODO: What fast-math-flags should be set on the floating-point nodes?
4755 
4756   if (Op.getValueType() == MVT::f32 &&
4757       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4758     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4759 
4760     // Scale the exponent by log10(2) [0.30102999f].
4761     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4762     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4763                                         getF32Constant(DAG, 0x3e9a209a, dl));
4764 
4765     // Get the significand and build it into a floating-point number with
4766     // exponent of 1.
4767     SDValue X = GetSignificand(DAG, Op1, dl);
4768 
4769     SDValue Log10ofMantissa;
4770     if (LimitFloatPrecision <= 6) {
4771       // For floating-point precision of 6:
4772       //
4773       //   Log10ofMantissa =
4774       //     -0.50419619f +
4775       //       (0.60948995f - 0.10380950f * x) * x;
4776       //
4777       // error 0.0014886165, which is 6 bits
4778       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4779                                getF32Constant(DAG, 0xbdd49a13, dl));
4780       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4781                                getF32Constant(DAG, 0x3f1c0789, dl));
4782       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4783       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4784                                     getF32Constant(DAG, 0x3f011300, dl));
4785     } else if (LimitFloatPrecision <= 12) {
4786       // For floating-point precision of 12:
4787       //
4788       //   Log10ofMantissa =
4789       //     -0.64831180f +
4790       //       (0.91751397f +
4791       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4792       //
4793       // error 0.00019228036, which is better than 12 bits
4794       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4795                                getF32Constant(DAG, 0x3d431f31, dl));
4796       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4797                                getF32Constant(DAG, 0x3ea21fb2, dl));
4798       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4799       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4800                                getF32Constant(DAG, 0x3f6ae232, dl));
4801       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4802       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4803                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4804     } else { // LimitFloatPrecision <= 18
4805       // For floating-point precision of 18:
4806       //
4807       //   Log10ofMantissa =
4808       //     -0.84299375f +
4809       //       (1.5327582f +
4810       //         (-1.0688956f +
4811       //           (0.49102474f +
4812       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4813       //
4814       // error 0.0000037995730, which is better than 18 bits
4815       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4816                                getF32Constant(DAG, 0x3c5d51ce, dl));
4817       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4818                                getF32Constant(DAG, 0x3e00685a, dl));
4819       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4820       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4821                                getF32Constant(DAG, 0x3efb6798, dl));
4822       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4823       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4824                                getF32Constant(DAG, 0x3f88d192, dl));
4825       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4826       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4827                                getF32Constant(DAG, 0x3fc4316c, dl));
4828       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4829       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4830                                     getF32Constant(DAG, 0x3f57ce70, dl));
4831     }
4832 
4833     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4834   }
4835 
4836   // No special expansion.
4837   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4838 }
4839 
4840 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4841 /// limited-precision mode.
4842 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4843                           const TargetLowering &TLI) {
4844   if (Op.getValueType() == MVT::f32 &&
4845       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4846     return getLimitedPrecisionExp2(Op, dl, DAG);
4847 
4848   // No special expansion.
4849   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4850 }
4851 
4852 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4853 /// limited-precision mode with x == 10.0f.
4854 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4855                          SelectionDAG &DAG, const TargetLowering &TLI) {
4856   bool IsExp10 = false;
4857   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4858       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4859     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4860       APFloat Ten(10.0f);
4861       IsExp10 = LHSC->isExactlyValue(Ten);
4862     }
4863   }
4864 
4865   // TODO: What fast-math-flags should be set on the FMUL node?
4866   if (IsExp10) {
4867     // Put the exponent in the right bit position for later addition to the
4868     // final result:
4869     //
4870     //   #define LOG2OF10 3.3219281f
4871     //   t0 = Op * LOG2OF10;
4872     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4873                              getF32Constant(DAG, 0x40549a78, dl));
4874     return getLimitedPrecisionExp2(t0, dl, DAG);
4875   }
4876 
4877   // No special expansion.
4878   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4879 }
4880 
4881 /// ExpandPowI - Expand a llvm.powi intrinsic.
4882 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4883                           SelectionDAG &DAG) {
4884   // If RHS is a constant, we can expand this out to a multiplication tree,
4885   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4886   // optimizing for size, we only want to do this if the expansion would produce
4887   // a small number of multiplies, otherwise we do the full expansion.
4888   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4889     // Get the exponent as a positive value.
4890     unsigned Val = RHSC->getSExtValue();
4891     if ((int)Val < 0) Val = -Val;
4892 
4893     // powi(x, 0) -> 1.0
4894     if (Val == 0)
4895       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4896 
4897     const Function &F = DAG.getMachineFunction().getFunction();
4898     if (!F.optForSize() ||
4899         // If optimizing for size, don't insert too many multiplies.
4900         // This inserts up to 5 multiplies.
4901         countPopulation(Val) + Log2_32(Val) < 7) {
4902       // We use the simple binary decomposition method to generate the multiply
4903       // sequence.  There are more optimal ways to do this (for example,
4904       // powi(x,15) generates one more multiply than it should), but this has
4905       // the benefit of being both really simple and much better than a libcall.
4906       SDValue Res;  // Logically starts equal to 1.0
4907       SDValue CurSquare = LHS;
4908       // TODO: Intrinsics should have fast-math-flags that propagate to these
4909       // nodes.
4910       while (Val) {
4911         if (Val & 1) {
4912           if (Res.getNode())
4913             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4914           else
4915             Res = CurSquare;  // 1.0*CurSquare.
4916         }
4917 
4918         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4919                                 CurSquare, CurSquare);
4920         Val >>= 1;
4921       }
4922 
4923       // If the original was negative, invert the result, producing 1/(x*x*x).
4924       if (RHSC->getSExtValue() < 0)
4925         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4926                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4927       return Res;
4928     }
4929   }
4930 
4931   // Otherwise, expand to a libcall.
4932   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4933 }
4934 
4935 // getUnderlyingArgReg - Find underlying register used for a truncated or
4936 // bitcasted argument.
4937 static unsigned getUnderlyingArgReg(const SDValue &N) {
4938   switch (N.getOpcode()) {
4939   case ISD::CopyFromReg:
4940     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4941   case ISD::BITCAST:
4942   case ISD::AssertZext:
4943   case ISD::AssertSext:
4944   case ISD::TRUNCATE:
4945     return getUnderlyingArgReg(N.getOperand(0));
4946   default:
4947     return 0;
4948   }
4949 }
4950 
4951 /// If the DbgValueInst is a dbg_value of a function argument, create the
4952 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4953 /// instruction selection, they will be inserted to the entry BB.
4954 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4955     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4956     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4957   const Argument *Arg = dyn_cast<Argument>(V);
4958   if (!Arg)
4959     return false;
4960 
4961   MachineFunction &MF = DAG.getMachineFunction();
4962   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4963 
4964   bool IsIndirect = false;
4965   Optional<MachineOperand> Op;
4966   // Some arguments' frame index is recorded during argument lowering.
4967   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4968   if (FI != std::numeric_limits<int>::max())
4969     Op = MachineOperand::CreateFI(FI);
4970 
4971   if (!Op && N.getNode()) {
4972     unsigned Reg = getUnderlyingArgReg(N);
4973     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4974       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4975       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4976       if (PR)
4977         Reg = PR;
4978     }
4979     if (Reg) {
4980       Op = MachineOperand::CreateReg(Reg, false);
4981       IsIndirect = IsDbgDeclare;
4982     }
4983   }
4984 
4985   if (!Op && N.getNode())
4986     // Check if frame index is available.
4987     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4988       if (FrameIndexSDNode *FINode =
4989           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4990         Op = MachineOperand::CreateFI(FINode->getIndex());
4991 
4992   if (!Op) {
4993     // Check if ValueMap has reg number.
4994     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4995     if (VMI != FuncInfo.ValueMap.end()) {
4996       const auto &TLI = DAG.getTargetLoweringInfo();
4997       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4998                        V->getType(), getABIRegCopyCC(V));
4999       if (RFV.occupiesMultipleRegs()) {
5000         unsigned Offset = 0;
5001         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5002           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5003           auto FragmentExpr = DIExpression::createFragmentExpression(
5004               Expr, Offset, RegAndSize.second);
5005           if (!FragmentExpr)
5006             continue;
5007           FuncInfo.ArgDbgValues.push_back(
5008               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5009                       Op->getReg(), Variable, *FragmentExpr));
5010           Offset += RegAndSize.second;
5011         }
5012         return true;
5013       }
5014       Op = MachineOperand::CreateReg(VMI->second, false);
5015       IsIndirect = IsDbgDeclare;
5016     }
5017   }
5018 
5019   if (!Op)
5020     return false;
5021 
5022   assert(Variable->isValidLocationForIntrinsic(DL) &&
5023          "Expected inlined-at fields to agree");
5024   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5025   FuncInfo.ArgDbgValues.push_back(
5026       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5027               *Op, Variable, Expr));
5028 
5029   return true;
5030 }
5031 
5032 /// Return the appropriate SDDbgValue based on N.
5033 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5034                                              DILocalVariable *Variable,
5035                                              DIExpression *Expr,
5036                                              const DebugLoc &dl,
5037                                              unsigned DbgSDNodeOrder) {
5038   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5039     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5040     // stack slot locations.
5041     //
5042     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5043     // debug values here after optimization:
5044     //
5045     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5046     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5047     //
5048     // Both describe the direct values of their associated variables.
5049     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5050                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5051   }
5052   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5053                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5054 }
5055 
5056 // VisualStudio defines setjmp as _setjmp
5057 #if defined(_MSC_VER) && defined(setjmp) && \
5058                          !defined(setjmp_undefined_for_msvc)
5059 #  pragma push_macro("setjmp")
5060 #  undef setjmp
5061 #  define setjmp_undefined_for_msvc
5062 #endif
5063 
5064 /// Lower the call to the specified intrinsic function. If we want to emit this
5065 /// as a call to a named external function, return the name. Otherwise, lower it
5066 /// and return null.
5067 const char *
5068 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5069   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5070   SDLoc sdl = getCurSDLoc();
5071   DebugLoc dl = getCurDebugLoc();
5072   SDValue Res;
5073 
5074   switch (Intrinsic) {
5075   default:
5076     // By default, turn this into a target intrinsic node.
5077     visitTargetIntrinsic(I, Intrinsic);
5078     return nullptr;
5079   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5080   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5081   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5082   case Intrinsic::returnaddress:
5083     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5084                              TLI.getPointerTy(DAG.getDataLayout()),
5085                              getValue(I.getArgOperand(0))));
5086     return nullptr;
5087   case Intrinsic::addressofreturnaddress:
5088     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5089                              TLI.getPointerTy(DAG.getDataLayout())));
5090     return nullptr;
5091   case Intrinsic::sponentry:
5092     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5093                              TLI.getPointerTy(DAG.getDataLayout())));
5094     return nullptr;
5095   case Intrinsic::frameaddress:
5096     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5097                              TLI.getPointerTy(DAG.getDataLayout()),
5098                              getValue(I.getArgOperand(0))));
5099     return nullptr;
5100   case Intrinsic::read_register: {
5101     Value *Reg = I.getArgOperand(0);
5102     SDValue Chain = getRoot();
5103     SDValue RegName =
5104         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5105     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5106     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5107       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5108     setValue(&I, Res);
5109     DAG.setRoot(Res.getValue(1));
5110     return nullptr;
5111   }
5112   case Intrinsic::write_register: {
5113     Value *Reg = I.getArgOperand(0);
5114     Value *RegValue = I.getArgOperand(1);
5115     SDValue Chain = getRoot();
5116     SDValue RegName =
5117         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5118     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5119                             RegName, getValue(RegValue)));
5120     return nullptr;
5121   }
5122   case Intrinsic::setjmp:
5123     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5124   case Intrinsic::longjmp:
5125     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5126   case Intrinsic::memcpy: {
5127     const auto &MCI = cast<MemCpyInst>(I);
5128     SDValue Op1 = getValue(I.getArgOperand(0));
5129     SDValue Op2 = getValue(I.getArgOperand(1));
5130     SDValue Op3 = getValue(I.getArgOperand(2));
5131     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5132     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5133     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5134     unsigned Align = MinAlign(DstAlign, SrcAlign);
5135     bool isVol = MCI.isVolatile();
5136     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5137     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5138     // node.
5139     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5140                                false, isTC,
5141                                MachinePointerInfo(I.getArgOperand(0)),
5142                                MachinePointerInfo(I.getArgOperand(1)));
5143     updateDAGForMaybeTailCall(MC);
5144     return nullptr;
5145   }
5146   case Intrinsic::memset: {
5147     const auto &MSI = cast<MemSetInst>(I);
5148     SDValue Op1 = getValue(I.getArgOperand(0));
5149     SDValue Op2 = getValue(I.getArgOperand(1));
5150     SDValue Op3 = getValue(I.getArgOperand(2));
5151     // @llvm.memset defines 0 and 1 to both mean no alignment.
5152     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5153     bool isVol = MSI.isVolatile();
5154     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5155     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5156                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5157     updateDAGForMaybeTailCall(MS);
5158     return nullptr;
5159   }
5160   case Intrinsic::memmove: {
5161     const auto &MMI = cast<MemMoveInst>(I);
5162     SDValue Op1 = getValue(I.getArgOperand(0));
5163     SDValue Op2 = getValue(I.getArgOperand(1));
5164     SDValue Op3 = getValue(I.getArgOperand(2));
5165     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5166     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5167     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5168     unsigned Align = MinAlign(DstAlign, SrcAlign);
5169     bool isVol = MMI.isVolatile();
5170     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5171     // FIXME: Support passing different dest/src alignments to the memmove DAG
5172     // node.
5173     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5174                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5175                                 MachinePointerInfo(I.getArgOperand(1)));
5176     updateDAGForMaybeTailCall(MM);
5177     return nullptr;
5178   }
5179   case Intrinsic::memcpy_element_unordered_atomic: {
5180     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5181     SDValue Dst = getValue(MI.getRawDest());
5182     SDValue Src = getValue(MI.getRawSource());
5183     SDValue Length = getValue(MI.getLength());
5184 
5185     unsigned DstAlign = MI.getDestAlignment();
5186     unsigned SrcAlign = MI.getSourceAlignment();
5187     Type *LengthTy = MI.getLength()->getType();
5188     unsigned ElemSz = MI.getElementSizeInBytes();
5189     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5190     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5191                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5192                                      MachinePointerInfo(MI.getRawDest()),
5193                                      MachinePointerInfo(MI.getRawSource()));
5194     updateDAGForMaybeTailCall(MC);
5195     return nullptr;
5196   }
5197   case Intrinsic::memmove_element_unordered_atomic: {
5198     auto &MI = cast<AtomicMemMoveInst>(I);
5199     SDValue Dst = getValue(MI.getRawDest());
5200     SDValue Src = getValue(MI.getRawSource());
5201     SDValue Length = getValue(MI.getLength());
5202 
5203     unsigned DstAlign = MI.getDestAlignment();
5204     unsigned SrcAlign = MI.getSourceAlignment();
5205     Type *LengthTy = MI.getLength()->getType();
5206     unsigned ElemSz = MI.getElementSizeInBytes();
5207     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5208     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5209                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5210                                       MachinePointerInfo(MI.getRawDest()),
5211                                       MachinePointerInfo(MI.getRawSource()));
5212     updateDAGForMaybeTailCall(MC);
5213     return nullptr;
5214   }
5215   case Intrinsic::memset_element_unordered_atomic: {
5216     auto &MI = cast<AtomicMemSetInst>(I);
5217     SDValue Dst = getValue(MI.getRawDest());
5218     SDValue Val = getValue(MI.getValue());
5219     SDValue Length = getValue(MI.getLength());
5220 
5221     unsigned DstAlign = MI.getDestAlignment();
5222     Type *LengthTy = MI.getLength()->getType();
5223     unsigned ElemSz = MI.getElementSizeInBytes();
5224     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5225     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5226                                      LengthTy, ElemSz, isTC,
5227                                      MachinePointerInfo(MI.getRawDest()));
5228     updateDAGForMaybeTailCall(MC);
5229     return nullptr;
5230   }
5231   case Intrinsic::dbg_addr:
5232   case Intrinsic::dbg_declare: {
5233     const auto &DI = cast<DbgVariableIntrinsic>(I);
5234     DILocalVariable *Variable = DI.getVariable();
5235     DIExpression *Expression = DI.getExpression();
5236     dropDanglingDebugInfo(Variable, Expression);
5237     assert(Variable && "Missing variable");
5238 
5239     // Check if address has undef value.
5240     const Value *Address = DI.getVariableLocation();
5241     if (!Address || isa<UndefValue>(Address) ||
5242         (Address->use_empty() && !isa<Argument>(Address))) {
5243       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5244       return nullptr;
5245     }
5246 
5247     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5248 
5249     // Check if this variable can be described by a frame index, typically
5250     // either as a static alloca or a byval parameter.
5251     int FI = std::numeric_limits<int>::max();
5252     if (const auto *AI =
5253             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5254       if (AI->isStaticAlloca()) {
5255         auto I = FuncInfo.StaticAllocaMap.find(AI);
5256         if (I != FuncInfo.StaticAllocaMap.end())
5257           FI = I->second;
5258       }
5259     } else if (const auto *Arg = dyn_cast<Argument>(
5260                    Address->stripInBoundsConstantOffsets())) {
5261       FI = FuncInfo.getArgumentFrameIndex(Arg);
5262     }
5263 
5264     // llvm.dbg.addr is control dependent and always generates indirect
5265     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5266     // the MachineFunction variable table.
5267     if (FI != std::numeric_limits<int>::max()) {
5268       if (Intrinsic == Intrinsic::dbg_addr) {
5269         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5270             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5271         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5272       }
5273       return nullptr;
5274     }
5275 
5276     SDValue &N = NodeMap[Address];
5277     if (!N.getNode() && isa<Argument>(Address))
5278       // Check unused arguments map.
5279       N = UnusedArgNodeMap[Address];
5280     SDDbgValue *SDV;
5281     if (N.getNode()) {
5282       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5283         Address = BCI->getOperand(0);
5284       // Parameters are handled specially.
5285       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5286       if (isParameter && FINode) {
5287         // Byval parameter. We have a frame index at this point.
5288         SDV =
5289             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5290                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5291       } else if (isa<Argument>(Address)) {
5292         // Address is an argument, so try to emit its dbg value using
5293         // virtual register info from the FuncInfo.ValueMap.
5294         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5295         return nullptr;
5296       } else {
5297         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5298                               true, dl, SDNodeOrder);
5299       }
5300       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5301     } else {
5302       // If Address is an argument then try to emit its dbg value using
5303       // virtual register info from the FuncInfo.ValueMap.
5304       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5305                                     N)) {
5306         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5307       }
5308     }
5309     return nullptr;
5310   }
5311   case Intrinsic::dbg_label: {
5312     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5313     DILabel *Label = DI.getLabel();
5314     assert(Label && "Missing label");
5315 
5316     SDDbgLabel *SDV;
5317     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5318     DAG.AddDbgLabel(SDV);
5319     return nullptr;
5320   }
5321   case Intrinsic::dbg_value: {
5322     const DbgValueInst &DI = cast<DbgValueInst>(I);
5323     assert(DI.getVariable() && "Missing variable");
5324 
5325     DILocalVariable *Variable = DI.getVariable();
5326     DIExpression *Expression = DI.getExpression();
5327     dropDanglingDebugInfo(Variable, Expression);
5328     const Value *V = DI.getValue();
5329     if (!V)
5330       return nullptr;
5331 
5332     SDDbgValue *SDV;
5333     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
5334         isa<ConstantPointerNull>(V)) {
5335       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5336       DAG.AddDbgValue(SDV, nullptr, false);
5337       return nullptr;
5338     }
5339 
5340     // Do not use getValue() in here; we don't want to generate code at
5341     // this point if it hasn't been done yet.
5342     SDValue N = NodeMap[V];
5343     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5344       N = UnusedArgNodeMap[V];
5345     if (N.getNode()) {
5346       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5347         return nullptr;
5348       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5349       DAG.AddDbgValue(SDV, N.getNode(), false);
5350       return nullptr;
5351     }
5352 
5353     // PHI nodes have already been selected, so we should know which VReg that
5354     // is assigns to already.
5355     if (isa<PHINode>(V)) {
5356       auto VMI = FuncInfo.ValueMap.find(V);
5357       if (VMI != FuncInfo.ValueMap.end()) {
5358         unsigned Reg = VMI->second;
5359         // The PHI node may be split up into several MI PHI nodes (in
5360         // FunctionLoweringInfo::set).
5361         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5362                          V->getType(), None);
5363         if (RFV.occupiesMultipleRegs()) {
5364           unsigned Offset = 0;
5365           unsigned BitsToDescribe = 0;
5366           if (auto VarSize = Variable->getSizeInBits())
5367             BitsToDescribe = *VarSize;
5368           if (auto Fragment = Expression->getFragmentInfo())
5369             BitsToDescribe = Fragment->SizeInBits;
5370           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5371             unsigned RegisterSize = RegAndSize.second;
5372             // Bail out if all bits are described already.
5373             if (Offset >= BitsToDescribe)
5374               break;
5375             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5376                 ? BitsToDescribe - Offset
5377                 : RegisterSize;
5378             auto FragmentExpr = DIExpression::createFragmentExpression(
5379                 Expression, Offset, FragmentSize);
5380             if (!FragmentExpr)
5381                 continue;
5382             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5383                                       false, dl, SDNodeOrder);
5384             DAG.AddDbgValue(SDV, nullptr, false);
5385             Offset += RegisterSize;
5386           }
5387         } else {
5388           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5389                                     SDNodeOrder);
5390           DAG.AddDbgValue(SDV, nullptr, false);
5391         }
5392         return nullptr;
5393       }
5394     }
5395 
5396     // TODO: When we get here we will either drop the dbg.value completely, or
5397     // we try to move it forward by letting it dangle for awhile. So we should
5398     // probably add an extra DbgValue to the DAG here, with a reference to
5399     // "noreg", to indicate that we have lost the debug location for the
5400     // variable.
5401 
5402     if (!V->use_empty() ) {
5403       // Do not call getValue(V) yet, as we don't want to generate code.
5404       // Remember it for later.
5405       DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5406       return nullptr;
5407     }
5408 
5409     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5410     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5411     return nullptr;
5412   }
5413 
5414   case Intrinsic::eh_typeid_for: {
5415     // Find the type id for the given typeinfo.
5416     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5417     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5418     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5419     setValue(&I, Res);
5420     return nullptr;
5421   }
5422 
5423   case Intrinsic::eh_return_i32:
5424   case Intrinsic::eh_return_i64:
5425     DAG.getMachineFunction().setCallsEHReturn(true);
5426     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5427                             MVT::Other,
5428                             getControlRoot(),
5429                             getValue(I.getArgOperand(0)),
5430                             getValue(I.getArgOperand(1))));
5431     return nullptr;
5432   case Intrinsic::eh_unwind_init:
5433     DAG.getMachineFunction().setCallsUnwindInit(true);
5434     return nullptr;
5435   case Intrinsic::eh_dwarf_cfa:
5436     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5437                              TLI.getPointerTy(DAG.getDataLayout()),
5438                              getValue(I.getArgOperand(0))));
5439     return nullptr;
5440   case Intrinsic::eh_sjlj_callsite: {
5441     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5442     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5443     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5444     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5445 
5446     MMI.setCurrentCallSite(CI->getZExtValue());
5447     return nullptr;
5448   }
5449   case Intrinsic::eh_sjlj_functioncontext: {
5450     // Get and store the index of the function context.
5451     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5452     AllocaInst *FnCtx =
5453       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5454     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5455     MFI.setFunctionContextIndex(FI);
5456     return nullptr;
5457   }
5458   case Intrinsic::eh_sjlj_setjmp: {
5459     SDValue Ops[2];
5460     Ops[0] = getRoot();
5461     Ops[1] = getValue(I.getArgOperand(0));
5462     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5463                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5464     setValue(&I, Op.getValue(0));
5465     DAG.setRoot(Op.getValue(1));
5466     return nullptr;
5467   }
5468   case Intrinsic::eh_sjlj_longjmp:
5469     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5470                             getRoot(), getValue(I.getArgOperand(0))));
5471     return nullptr;
5472   case Intrinsic::eh_sjlj_setup_dispatch:
5473     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5474                             getRoot()));
5475     return nullptr;
5476   case Intrinsic::masked_gather:
5477     visitMaskedGather(I);
5478     return nullptr;
5479   case Intrinsic::masked_load:
5480     visitMaskedLoad(I);
5481     return nullptr;
5482   case Intrinsic::masked_scatter:
5483     visitMaskedScatter(I);
5484     return nullptr;
5485   case Intrinsic::masked_store:
5486     visitMaskedStore(I);
5487     return nullptr;
5488   case Intrinsic::masked_expandload:
5489     visitMaskedLoad(I, true /* IsExpanding */);
5490     return nullptr;
5491   case Intrinsic::masked_compressstore:
5492     visitMaskedStore(I, true /* IsCompressing */);
5493     return nullptr;
5494   case Intrinsic::x86_mmx_pslli_w:
5495   case Intrinsic::x86_mmx_pslli_d:
5496   case Intrinsic::x86_mmx_pslli_q:
5497   case Intrinsic::x86_mmx_psrli_w:
5498   case Intrinsic::x86_mmx_psrli_d:
5499   case Intrinsic::x86_mmx_psrli_q:
5500   case Intrinsic::x86_mmx_psrai_w:
5501   case Intrinsic::x86_mmx_psrai_d: {
5502     SDValue ShAmt = getValue(I.getArgOperand(1));
5503     if (isa<ConstantSDNode>(ShAmt)) {
5504       visitTargetIntrinsic(I, Intrinsic);
5505       return nullptr;
5506     }
5507     unsigned NewIntrinsic = 0;
5508     EVT ShAmtVT = MVT::v2i32;
5509     switch (Intrinsic) {
5510     case Intrinsic::x86_mmx_pslli_w:
5511       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5512       break;
5513     case Intrinsic::x86_mmx_pslli_d:
5514       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5515       break;
5516     case Intrinsic::x86_mmx_pslli_q:
5517       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5518       break;
5519     case Intrinsic::x86_mmx_psrli_w:
5520       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5521       break;
5522     case Intrinsic::x86_mmx_psrli_d:
5523       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5524       break;
5525     case Intrinsic::x86_mmx_psrli_q:
5526       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5527       break;
5528     case Intrinsic::x86_mmx_psrai_w:
5529       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5530       break;
5531     case Intrinsic::x86_mmx_psrai_d:
5532       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5533       break;
5534     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5535     }
5536 
5537     // The vector shift intrinsics with scalars uses 32b shift amounts but
5538     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5539     // to be zero.
5540     // We must do this early because v2i32 is not a legal type.
5541     SDValue ShOps[2];
5542     ShOps[0] = ShAmt;
5543     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5544     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5545     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5546     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5547     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5548                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5549                        getValue(I.getArgOperand(0)), ShAmt);
5550     setValue(&I, Res);
5551     return nullptr;
5552   }
5553   case Intrinsic::powi:
5554     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5555                             getValue(I.getArgOperand(1)), DAG));
5556     return nullptr;
5557   case Intrinsic::log:
5558     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5559     return nullptr;
5560   case Intrinsic::log2:
5561     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5562     return nullptr;
5563   case Intrinsic::log10:
5564     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5565     return nullptr;
5566   case Intrinsic::exp:
5567     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5568     return nullptr;
5569   case Intrinsic::exp2:
5570     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5571     return nullptr;
5572   case Intrinsic::pow:
5573     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5574                            getValue(I.getArgOperand(1)), DAG, TLI));
5575     return nullptr;
5576   case Intrinsic::sqrt:
5577   case Intrinsic::fabs:
5578   case Intrinsic::sin:
5579   case Intrinsic::cos:
5580   case Intrinsic::floor:
5581   case Intrinsic::ceil:
5582   case Intrinsic::trunc:
5583   case Intrinsic::rint:
5584   case Intrinsic::nearbyint:
5585   case Intrinsic::round:
5586   case Intrinsic::canonicalize: {
5587     unsigned Opcode;
5588     switch (Intrinsic) {
5589     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5590     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5591     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5592     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5593     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5594     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5595     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5596     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5597     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5598     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5599     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5600     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5601     }
5602 
5603     setValue(&I, DAG.getNode(Opcode, sdl,
5604                              getValue(I.getArgOperand(0)).getValueType(),
5605                              getValue(I.getArgOperand(0))));
5606     return nullptr;
5607   }
5608   case Intrinsic::minnum: {
5609     auto VT = getValue(I.getArgOperand(0)).getValueType();
5610     unsigned Opc =
5611         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5612             ? ISD::FMINIMUM
5613             : ISD::FMINNUM;
5614     setValue(&I, DAG.getNode(Opc, sdl, VT,
5615                              getValue(I.getArgOperand(0)),
5616                              getValue(I.getArgOperand(1))));
5617     return nullptr;
5618   }
5619   case Intrinsic::maxnum: {
5620     auto VT = getValue(I.getArgOperand(0)).getValueType();
5621     unsigned Opc =
5622         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5623             ? ISD::FMAXIMUM
5624             : ISD::FMAXNUM;
5625     setValue(&I, DAG.getNode(Opc, sdl, VT,
5626                              getValue(I.getArgOperand(0)),
5627                              getValue(I.getArgOperand(1))));
5628     return nullptr;
5629   }
5630   case Intrinsic::minimum:
5631     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5632                              getValue(I.getArgOperand(0)).getValueType(),
5633                              getValue(I.getArgOperand(0)),
5634                              getValue(I.getArgOperand(1))));
5635     return nullptr;
5636   case Intrinsic::maximum:
5637     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5638                              getValue(I.getArgOperand(0)).getValueType(),
5639                              getValue(I.getArgOperand(0)),
5640                              getValue(I.getArgOperand(1))));
5641     return nullptr;
5642   case Intrinsic::copysign:
5643     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5644                              getValue(I.getArgOperand(0)).getValueType(),
5645                              getValue(I.getArgOperand(0)),
5646                              getValue(I.getArgOperand(1))));
5647     return nullptr;
5648   case Intrinsic::fma:
5649     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5650                              getValue(I.getArgOperand(0)).getValueType(),
5651                              getValue(I.getArgOperand(0)),
5652                              getValue(I.getArgOperand(1)),
5653                              getValue(I.getArgOperand(2))));
5654     return nullptr;
5655   case Intrinsic::experimental_constrained_fadd:
5656   case Intrinsic::experimental_constrained_fsub:
5657   case Intrinsic::experimental_constrained_fmul:
5658   case Intrinsic::experimental_constrained_fdiv:
5659   case Intrinsic::experimental_constrained_frem:
5660   case Intrinsic::experimental_constrained_fma:
5661   case Intrinsic::experimental_constrained_sqrt:
5662   case Intrinsic::experimental_constrained_pow:
5663   case Intrinsic::experimental_constrained_powi:
5664   case Intrinsic::experimental_constrained_sin:
5665   case Intrinsic::experimental_constrained_cos:
5666   case Intrinsic::experimental_constrained_exp:
5667   case Intrinsic::experimental_constrained_exp2:
5668   case Intrinsic::experimental_constrained_log:
5669   case Intrinsic::experimental_constrained_log10:
5670   case Intrinsic::experimental_constrained_log2:
5671   case Intrinsic::experimental_constrained_rint:
5672   case Intrinsic::experimental_constrained_nearbyint:
5673   case Intrinsic::experimental_constrained_maxnum:
5674   case Intrinsic::experimental_constrained_minnum:
5675   case Intrinsic::experimental_constrained_ceil:
5676   case Intrinsic::experimental_constrained_floor:
5677   case Intrinsic::experimental_constrained_round:
5678   case Intrinsic::experimental_constrained_trunc:
5679     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5680     return nullptr;
5681   case Intrinsic::fmuladd: {
5682     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5683     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5684         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5685       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5686                                getValue(I.getArgOperand(0)).getValueType(),
5687                                getValue(I.getArgOperand(0)),
5688                                getValue(I.getArgOperand(1)),
5689                                getValue(I.getArgOperand(2))));
5690     } else {
5691       // TODO: Intrinsic calls should have fast-math-flags.
5692       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5693                                 getValue(I.getArgOperand(0)).getValueType(),
5694                                 getValue(I.getArgOperand(0)),
5695                                 getValue(I.getArgOperand(1)));
5696       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5697                                 getValue(I.getArgOperand(0)).getValueType(),
5698                                 Mul,
5699                                 getValue(I.getArgOperand(2)));
5700       setValue(&I, Add);
5701     }
5702     return nullptr;
5703   }
5704   case Intrinsic::convert_to_fp16:
5705     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5706                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5707                                          getValue(I.getArgOperand(0)),
5708                                          DAG.getTargetConstant(0, sdl,
5709                                                                MVT::i32))));
5710     return nullptr;
5711   case Intrinsic::convert_from_fp16:
5712     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5713                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5714                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5715                                          getValue(I.getArgOperand(0)))));
5716     return nullptr;
5717   case Intrinsic::pcmarker: {
5718     SDValue Tmp = getValue(I.getArgOperand(0));
5719     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5720     return nullptr;
5721   }
5722   case Intrinsic::readcyclecounter: {
5723     SDValue Op = getRoot();
5724     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5725                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5726     setValue(&I, Res);
5727     DAG.setRoot(Res.getValue(1));
5728     return nullptr;
5729   }
5730   case Intrinsic::bitreverse:
5731     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5732                              getValue(I.getArgOperand(0)).getValueType(),
5733                              getValue(I.getArgOperand(0))));
5734     return nullptr;
5735   case Intrinsic::bswap:
5736     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5737                              getValue(I.getArgOperand(0)).getValueType(),
5738                              getValue(I.getArgOperand(0))));
5739     return nullptr;
5740   case Intrinsic::cttz: {
5741     SDValue Arg = getValue(I.getArgOperand(0));
5742     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5743     EVT Ty = Arg.getValueType();
5744     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5745                              sdl, Ty, Arg));
5746     return nullptr;
5747   }
5748   case Intrinsic::ctlz: {
5749     SDValue Arg = getValue(I.getArgOperand(0));
5750     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5751     EVT Ty = Arg.getValueType();
5752     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5753                              sdl, Ty, Arg));
5754     return nullptr;
5755   }
5756   case Intrinsic::ctpop: {
5757     SDValue Arg = getValue(I.getArgOperand(0));
5758     EVT Ty = Arg.getValueType();
5759     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5760     return nullptr;
5761   }
5762   case Intrinsic::fshl:
5763   case Intrinsic::fshr: {
5764     bool IsFSHL = Intrinsic == Intrinsic::fshl;
5765     SDValue X = getValue(I.getArgOperand(0));
5766     SDValue Y = getValue(I.getArgOperand(1));
5767     SDValue Z = getValue(I.getArgOperand(2));
5768     EVT VT = X.getValueType();
5769     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5770     SDValue Zero = DAG.getConstant(0, sdl, VT);
5771     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5772 
5773     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
5774     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
5775       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
5776       return nullptr;
5777     }
5778 
5779     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
5780     // avoid the select that is necessary in the general case to filter out
5781     // the 0-shift possibility that leads to UB.
5782     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
5783       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5784       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5785         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5786         return nullptr;
5787       }
5788 
5789       // Some targets only rotate one way. Try the opposite direction.
5790       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
5791       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5792         // Negate the shift amount because it is safe to ignore the high bits.
5793         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5794         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
5795         return nullptr;
5796       }
5797 
5798       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
5799       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
5800       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5801       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5802       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
5803       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
5804       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
5805       return nullptr;
5806     }
5807 
5808     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5809     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5810     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
5811     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5812     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5813     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5814 
5815     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5816     // and that is undefined. We must compare and select to avoid UB.
5817     EVT CCVT = MVT::i1;
5818     if (VT.isVector())
5819       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5820 
5821     // For fshl, 0-shift returns the 1st arg (X).
5822     // For fshr, 0-shift returns the 2nd arg (Y).
5823     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5824     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
5825     return nullptr;
5826   }
5827   case Intrinsic::sadd_sat: {
5828     SDValue Op1 = getValue(I.getArgOperand(0));
5829     SDValue Op2 = getValue(I.getArgOperand(1));
5830     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5831     return nullptr;
5832   }
5833   case Intrinsic::uadd_sat: {
5834     SDValue Op1 = getValue(I.getArgOperand(0));
5835     SDValue Op2 = getValue(I.getArgOperand(1));
5836     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5837     return nullptr;
5838   }
5839   case Intrinsic::ssub_sat: {
5840     SDValue Op1 = getValue(I.getArgOperand(0));
5841     SDValue Op2 = getValue(I.getArgOperand(1));
5842     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5843     return nullptr;
5844   }
5845   case Intrinsic::usub_sat: {
5846     SDValue Op1 = getValue(I.getArgOperand(0));
5847     SDValue Op2 = getValue(I.getArgOperand(1));
5848     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5849     return nullptr;
5850   }
5851   case Intrinsic::smul_fix: {
5852     SDValue Op1 = getValue(I.getArgOperand(0));
5853     SDValue Op2 = getValue(I.getArgOperand(1));
5854     SDValue Op3 = getValue(I.getArgOperand(2));
5855     setValue(&I,
5856              DAG.getNode(ISD::SMULFIX, sdl, Op1.getValueType(), Op1, Op2, Op3));
5857     return nullptr;
5858   }
5859   case Intrinsic::stacksave: {
5860     SDValue Op = getRoot();
5861     Res = DAG.getNode(
5862         ISD::STACKSAVE, sdl,
5863         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5864     setValue(&I, Res);
5865     DAG.setRoot(Res.getValue(1));
5866     return nullptr;
5867   }
5868   case Intrinsic::stackrestore:
5869     Res = getValue(I.getArgOperand(0));
5870     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5871     return nullptr;
5872   case Intrinsic::get_dynamic_area_offset: {
5873     SDValue Op = getRoot();
5874     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5875     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5876     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5877     // target.
5878     if (PtrTy != ResTy)
5879       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5880                          " intrinsic!");
5881     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5882                       Op);
5883     DAG.setRoot(Op);
5884     setValue(&I, Res);
5885     return nullptr;
5886   }
5887   case Intrinsic::stackguard: {
5888     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5889     MachineFunction &MF = DAG.getMachineFunction();
5890     const Module &M = *MF.getFunction().getParent();
5891     SDValue Chain = getRoot();
5892     if (TLI.useLoadStackGuardNode()) {
5893       Res = getLoadStackGuard(DAG, sdl, Chain);
5894     } else {
5895       const Value *Global = TLI.getSDagStackGuard(M);
5896       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5897       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5898                         MachinePointerInfo(Global, 0), Align,
5899                         MachineMemOperand::MOVolatile);
5900     }
5901     if (TLI.useStackGuardXorFP())
5902       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5903     DAG.setRoot(Chain);
5904     setValue(&I, Res);
5905     return nullptr;
5906   }
5907   case Intrinsic::stackprotector: {
5908     // Emit code into the DAG to store the stack guard onto the stack.
5909     MachineFunction &MF = DAG.getMachineFunction();
5910     MachineFrameInfo &MFI = MF.getFrameInfo();
5911     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5912     SDValue Src, Chain = getRoot();
5913 
5914     if (TLI.useLoadStackGuardNode())
5915       Src = getLoadStackGuard(DAG, sdl, Chain);
5916     else
5917       Src = getValue(I.getArgOperand(0));   // The guard's value.
5918 
5919     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5920 
5921     int FI = FuncInfo.StaticAllocaMap[Slot];
5922     MFI.setStackProtectorIndex(FI);
5923 
5924     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5925 
5926     // Store the stack protector onto the stack.
5927     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5928                                                  DAG.getMachineFunction(), FI),
5929                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5930     setValue(&I, Res);
5931     DAG.setRoot(Res);
5932     return nullptr;
5933   }
5934   case Intrinsic::objectsize: {
5935     // If we don't know by now, we're never going to know.
5936     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5937 
5938     assert(CI && "Non-constant type in __builtin_object_size?");
5939 
5940     SDValue Arg = getValue(I.getCalledValue());
5941     EVT Ty = Arg.getValueType();
5942 
5943     if (CI->isZero())
5944       Res = DAG.getConstant(-1ULL, sdl, Ty);
5945     else
5946       Res = DAG.getConstant(0, sdl, Ty);
5947 
5948     setValue(&I, Res);
5949     return nullptr;
5950   }
5951 
5952   case Intrinsic::is_constant:
5953     // If this wasn't constant-folded away by now, then it's not a
5954     // constant.
5955     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
5956     return nullptr;
5957 
5958   case Intrinsic::annotation:
5959   case Intrinsic::ptr_annotation:
5960   case Intrinsic::launder_invariant_group:
5961   case Intrinsic::strip_invariant_group:
5962     // Drop the intrinsic, but forward the value
5963     setValue(&I, getValue(I.getOperand(0)));
5964     return nullptr;
5965   case Intrinsic::assume:
5966   case Intrinsic::var_annotation:
5967   case Intrinsic::sideeffect:
5968     // Discard annotate attributes, assumptions, and artificial side-effects.
5969     return nullptr;
5970 
5971   case Intrinsic::codeview_annotation: {
5972     // Emit a label associated with this metadata.
5973     MachineFunction &MF = DAG.getMachineFunction();
5974     MCSymbol *Label =
5975         MF.getMMI().getContext().createTempSymbol("annotation", true);
5976     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5977     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5978     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5979     DAG.setRoot(Res);
5980     return nullptr;
5981   }
5982 
5983   case Intrinsic::init_trampoline: {
5984     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5985 
5986     SDValue Ops[6];
5987     Ops[0] = getRoot();
5988     Ops[1] = getValue(I.getArgOperand(0));
5989     Ops[2] = getValue(I.getArgOperand(1));
5990     Ops[3] = getValue(I.getArgOperand(2));
5991     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5992     Ops[5] = DAG.getSrcValue(F);
5993 
5994     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5995 
5996     DAG.setRoot(Res);
5997     return nullptr;
5998   }
5999   case Intrinsic::adjust_trampoline:
6000     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6001                              TLI.getPointerTy(DAG.getDataLayout()),
6002                              getValue(I.getArgOperand(0))));
6003     return nullptr;
6004   case Intrinsic::gcroot: {
6005     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6006            "only valid in functions with gc specified, enforced by Verifier");
6007     assert(GFI && "implied by previous");
6008     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6009     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6010 
6011     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6012     GFI->addStackRoot(FI->getIndex(), TypeMap);
6013     return nullptr;
6014   }
6015   case Intrinsic::gcread:
6016   case Intrinsic::gcwrite:
6017     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6018   case Intrinsic::flt_rounds:
6019     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6020     return nullptr;
6021 
6022   case Intrinsic::expect:
6023     // Just replace __builtin_expect(exp, c) with EXP.
6024     setValue(&I, getValue(I.getArgOperand(0)));
6025     return nullptr;
6026 
6027   case Intrinsic::debugtrap:
6028   case Intrinsic::trap: {
6029     StringRef TrapFuncName =
6030         I.getAttributes()
6031             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6032             .getValueAsString();
6033     if (TrapFuncName.empty()) {
6034       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6035         ISD::TRAP : ISD::DEBUGTRAP;
6036       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6037       return nullptr;
6038     }
6039     TargetLowering::ArgListTy Args;
6040 
6041     TargetLowering::CallLoweringInfo CLI(DAG);
6042     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6043         CallingConv::C, I.getType(),
6044         DAG.getExternalSymbol(TrapFuncName.data(),
6045                               TLI.getPointerTy(DAG.getDataLayout())),
6046         std::move(Args));
6047 
6048     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6049     DAG.setRoot(Result.second);
6050     return nullptr;
6051   }
6052 
6053   case Intrinsic::uadd_with_overflow:
6054   case Intrinsic::sadd_with_overflow:
6055   case Intrinsic::usub_with_overflow:
6056   case Intrinsic::ssub_with_overflow:
6057   case Intrinsic::umul_with_overflow:
6058   case Intrinsic::smul_with_overflow: {
6059     ISD::NodeType Op;
6060     switch (Intrinsic) {
6061     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6062     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6063     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6064     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6065     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6066     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6067     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6068     }
6069     SDValue Op1 = getValue(I.getArgOperand(0));
6070     SDValue Op2 = getValue(I.getArgOperand(1));
6071 
6072     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
6073     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6074     return nullptr;
6075   }
6076   case Intrinsic::prefetch: {
6077     SDValue Ops[5];
6078     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6079     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6080     Ops[0] = DAG.getRoot();
6081     Ops[1] = getValue(I.getArgOperand(0));
6082     Ops[2] = getValue(I.getArgOperand(1));
6083     Ops[3] = getValue(I.getArgOperand(2));
6084     Ops[4] = getValue(I.getArgOperand(3));
6085     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6086                                              DAG.getVTList(MVT::Other), Ops,
6087                                              EVT::getIntegerVT(*Context, 8),
6088                                              MachinePointerInfo(I.getArgOperand(0)),
6089                                              0, /* align */
6090                                              Flags);
6091 
6092     // Chain the prefetch in parallell with any pending loads, to stay out of
6093     // the way of later optimizations.
6094     PendingLoads.push_back(Result);
6095     Result = getRoot();
6096     DAG.setRoot(Result);
6097     return nullptr;
6098   }
6099   case Intrinsic::lifetime_start:
6100   case Intrinsic::lifetime_end: {
6101     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6102     // Stack coloring is not enabled in O0, discard region information.
6103     if (TM.getOptLevel() == CodeGenOpt::None)
6104       return nullptr;
6105 
6106     SmallVector<Value *, 4> Allocas;
6107     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
6108 
6109     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6110            E = Allocas.end(); Object != E; ++Object) {
6111       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6112 
6113       // Could not find an Alloca.
6114       if (!LifetimeObject)
6115         continue;
6116 
6117       // First check that the Alloca is static, otherwise it won't have a
6118       // valid frame index.
6119       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6120       if (SI == FuncInfo.StaticAllocaMap.end())
6121         return nullptr;
6122 
6123       int FI = SI->second;
6124 
6125       SDValue Ops[2];
6126       Ops[0] = getRoot();
6127       Ops[1] =
6128           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
6129       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
6130 
6131       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
6132       DAG.setRoot(Res);
6133     }
6134     return nullptr;
6135   }
6136   case Intrinsic::invariant_start:
6137     // Discard region information.
6138     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6139     return nullptr;
6140   case Intrinsic::invariant_end:
6141     // Discard region information.
6142     return nullptr;
6143   case Intrinsic::clear_cache:
6144     return TLI.getClearCacheBuiltinName();
6145   case Intrinsic::donothing:
6146     // ignore
6147     return nullptr;
6148   case Intrinsic::experimental_stackmap:
6149     visitStackmap(I);
6150     return nullptr;
6151   case Intrinsic::experimental_patchpoint_void:
6152   case Intrinsic::experimental_patchpoint_i64:
6153     visitPatchpoint(&I);
6154     return nullptr;
6155   case Intrinsic::experimental_gc_statepoint:
6156     LowerStatepoint(ImmutableStatepoint(&I));
6157     return nullptr;
6158   case Intrinsic::experimental_gc_result:
6159     visitGCResult(cast<GCResultInst>(I));
6160     return nullptr;
6161   case Intrinsic::experimental_gc_relocate:
6162     visitGCRelocate(cast<GCRelocateInst>(I));
6163     return nullptr;
6164   case Intrinsic::instrprof_increment:
6165     llvm_unreachable("instrprof failed to lower an increment");
6166   case Intrinsic::instrprof_value_profile:
6167     llvm_unreachable("instrprof failed to lower a value profiling call");
6168   case Intrinsic::localescape: {
6169     MachineFunction &MF = DAG.getMachineFunction();
6170     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6171 
6172     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6173     // is the same on all targets.
6174     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6175       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6176       if (isa<ConstantPointerNull>(Arg))
6177         continue; // Skip null pointers. They represent a hole in index space.
6178       AllocaInst *Slot = cast<AllocaInst>(Arg);
6179       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6180              "can only escape static allocas");
6181       int FI = FuncInfo.StaticAllocaMap[Slot];
6182       MCSymbol *FrameAllocSym =
6183           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6184               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6185       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6186               TII->get(TargetOpcode::LOCAL_ESCAPE))
6187           .addSym(FrameAllocSym)
6188           .addFrameIndex(FI);
6189     }
6190 
6191     return nullptr;
6192   }
6193 
6194   case Intrinsic::localrecover: {
6195     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6196     MachineFunction &MF = DAG.getMachineFunction();
6197     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6198 
6199     // Get the symbol that defines the frame offset.
6200     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6201     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6202     unsigned IdxVal =
6203         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6204     MCSymbol *FrameAllocSym =
6205         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6206             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6207 
6208     // Create a MCSymbol for the label to avoid any target lowering
6209     // that would make this PC relative.
6210     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6211     SDValue OffsetVal =
6212         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6213 
6214     // Add the offset to the FP.
6215     Value *FP = I.getArgOperand(1);
6216     SDValue FPVal = getValue(FP);
6217     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6218     setValue(&I, Add);
6219 
6220     return nullptr;
6221   }
6222 
6223   case Intrinsic::eh_exceptionpointer:
6224   case Intrinsic::eh_exceptioncode: {
6225     // Get the exception pointer vreg, copy from it, and resize it to fit.
6226     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6227     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6228     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6229     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6230     SDValue N =
6231         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6232     if (Intrinsic == Intrinsic::eh_exceptioncode)
6233       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6234     setValue(&I, N);
6235     return nullptr;
6236   }
6237   case Intrinsic::xray_customevent: {
6238     // Here we want to make sure that the intrinsic behaves as if it has a
6239     // specific calling convention, and only for x86_64.
6240     // FIXME: Support other platforms later.
6241     const auto &Triple = DAG.getTarget().getTargetTriple();
6242     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6243       return nullptr;
6244 
6245     SDLoc DL = getCurSDLoc();
6246     SmallVector<SDValue, 8> Ops;
6247 
6248     // We want to say that we always want the arguments in registers.
6249     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6250     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6251     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6252     SDValue Chain = getRoot();
6253     Ops.push_back(LogEntryVal);
6254     Ops.push_back(StrSizeVal);
6255     Ops.push_back(Chain);
6256 
6257     // We need to enforce the calling convention for the callsite, so that
6258     // argument ordering is enforced correctly, and that register allocation can
6259     // see that some registers may be assumed clobbered and have to preserve
6260     // them across calls to the intrinsic.
6261     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6262                                            DL, NodeTys, Ops);
6263     SDValue patchableNode = SDValue(MN, 0);
6264     DAG.setRoot(patchableNode);
6265     setValue(&I, patchableNode);
6266     return nullptr;
6267   }
6268   case Intrinsic::xray_typedevent: {
6269     // Here we want to make sure that the intrinsic behaves as if it has a
6270     // specific calling convention, and only for x86_64.
6271     // FIXME: Support other platforms later.
6272     const auto &Triple = DAG.getTarget().getTargetTriple();
6273     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6274       return nullptr;
6275 
6276     SDLoc DL = getCurSDLoc();
6277     SmallVector<SDValue, 8> Ops;
6278 
6279     // We want to say that we always want the arguments in registers.
6280     // It's unclear to me how manipulating the selection DAG here forces callers
6281     // to provide arguments in registers instead of on the stack.
6282     SDValue LogTypeId = getValue(I.getArgOperand(0));
6283     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6284     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6285     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6286     SDValue Chain = getRoot();
6287     Ops.push_back(LogTypeId);
6288     Ops.push_back(LogEntryVal);
6289     Ops.push_back(StrSizeVal);
6290     Ops.push_back(Chain);
6291 
6292     // We need to enforce the calling convention for the callsite, so that
6293     // argument ordering is enforced correctly, and that register allocation can
6294     // see that some registers may be assumed clobbered and have to preserve
6295     // them across calls to the intrinsic.
6296     MachineSDNode *MN = DAG.getMachineNode(
6297         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6298     SDValue patchableNode = SDValue(MN, 0);
6299     DAG.setRoot(patchableNode);
6300     setValue(&I, patchableNode);
6301     return nullptr;
6302   }
6303   case Intrinsic::experimental_deoptimize:
6304     LowerDeoptimizeCall(&I);
6305     return nullptr;
6306 
6307   case Intrinsic::experimental_vector_reduce_fadd:
6308   case Intrinsic::experimental_vector_reduce_fmul:
6309   case Intrinsic::experimental_vector_reduce_add:
6310   case Intrinsic::experimental_vector_reduce_mul:
6311   case Intrinsic::experimental_vector_reduce_and:
6312   case Intrinsic::experimental_vector_reduce_or:
6313   case Intrinsic::experimental_vector_reduce_xor:
6314   case Intrinsic::experimental_vector_reduce_smax:
6315   case Intrinsic::experimental_vector_reduce_smin:
6316   case Intrinsic::experimental_vector_reduce_umax:
6317   case Intrinsic::experimental_vector_reduce_umin:
6318   case Intrinsic::experimental_vector_reduce_fmax:
6319   case Intrinsic::experimental_vector_reduce_fmin:
6320     visitVectorReduce(I, Intrinsic);
6321     return nullptr;
6322 
6323   case Intrinsic::icall_branch_funnel: {
6324     SmallVector<SDValue, 16> Ops;
6325     Ops.push_back(DAG.getRoot());
6326     Ops.push_back(getValue(I.getArgOperand(0)));
6327 
6328     int64_t Offset;
6329     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6330         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6331     if (!Base)
6332       report_fatal_error(
6333           "llvm.icall.branch.funnel operand must be a GlobalValue");
6334     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6335 
6336     struct BranchFunnelTarget {
6337       int64_t Offset;
6338       SDValue Target;
6339     };
6340     SmallVector<BranchFunnelTarget, 8> Targets;
6341 
6342     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6343       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6344           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6345       if (ElemBase != Base)
6346         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6347                            "to the same GlobalValue");
6348 
6349       SDValue Val = getValue(I.getArgOperand(Op + 1));
6350       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6351       if (!GA)
6352         report_fatal_error(
6353             "llvm.icall.branch.funnel operand must be a GlobalValue");
6354       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6355                                      GA->getGlobal(), getCurSDLoc(),
6356                                      Val.getValueType(), GA->getOffset())});
6357     }
6358     llvm::sort(Targets,
6359                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6360                  return T1.Offset < T2.Offset;
6361                });
6362 
6363     for (auto &T : Targets) {
6364       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6365       Ops.push_back(T.Target);
6366     }
6367 
6368     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6369                                  getCurSDLoc(), MVT::Other, Ops),
6370               0);
6371     DAG.setRoot(N);
6372     setValue(&I, N);
6373     HasTailCall = true;
6374     return nullptr;
6375   }
6376 
6377   case Intrinsic::wasm_landingpad_index:
6378     // Information this intrinsic contained has been transferred to
6379     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6380     // delete it now.
6381     return nullptr;
6382   }
6383 }
6384 
6385 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6386     const ConstrainedFPIntrinsic &FPI) {
6387   SDLoc sdl = getCurSDLoc();
6388   unsigned Opcode;
6389   switch (FPI.getIntrinsicID()) {
6390   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6391   case Intrinsic::experimental_constrained_fadd:
6392     Opcode = ISD::STRICT_FADD;
6393     break;
6394   case Intrinsic::experimental_constrained_fsub:
6395     Opcode = ISD::STRICT_FSUB;
6396     break;
6397   case Intrinsic::experimental_constrained_fmul:
6398     Opcode = ISD::STRICT_FMUL;
6399     break;
6400   case Intrinsic::experimental_constrained_fdiv:
6401     Opcode = ISD::STRICT_FDIV;
6402     break;
6403   case Intrinsic::experimental_constrained_frem:
6404     Opcode = ISD::STRICT_FREM;
6405     break;
6406   case Intrinsic::experimental_constrained_fma:
6407     Opcode = ISD::STRICT_FMA;
6408     break;
6409   case Intrinsic::experimental_constrained_sqrt:
6410     Opcode = ISD::STRICT_FSQRT;
6411     break;
6412   case Intrinsic::experimental_constrained_pow:
6413     Opcode = ISD::STRICT_FPOW;
6414     break;
6415   case Intrinsic::experimental_constrained_powi:
6416     Opcode = ISD::STRICT_FPOWI;
6417     break;
6418   case Intrinsic::experimental_constrained_sin:
6419     Opcode = ISD::STRICT_FSIN;
6420     break;
6421   case Intrinsic::experimental_constrained_cos:
6422     Opcode = ISD::STRICT_FCOS;
6423     break;
6424   case Intrinsic::experimental_constrained_exp:
6425     Opcode = ISD::STRICT_FEXP;
6426     break;
6427   case Intrinsic::experimental_constrained_exp2:
6428     Opcode = ISD::STRICT_FEXP2;
6429     break;
6430   case Intrinsic::experimental_constrained_log:
6431     Opcode = ISD::STRICT_FLOG;
6432     break;
6433   case Intrinsic::experimental_constrained_log10:
6434     Opcode = ISD::STRICT_FLOG10;
6435     break;
6436   case Intrinsic::experimental_constrained_log2:
6437     Opcode = ISD::STRICT_FLOG2;
6438     break;
6439   case Intrinsic::experimental_constrained_rint:
6440     Opcode = ISD::STRICT_FRINT;
6441     break;
6442   case Intrinsic::experimental_constrained_nearbyint:
6443     Opcode = ISD::STRICT_FNEARBYINT;
6444     break;
6445   case Intrinsic::experimental_constrained_maxnum:
6446     Opcode = ISD::STRICT_FMAXNUM;
6447     break;
6448   case Intrinsic::experimental_constrained_minnum:
6449     Opcode = ISD::STRICT_FMINNUM;
6450     break;
6451   case Intrinsic::experimental_constrained_ceil:
6452     Opcode = ISD::STRICT_FCEIL;
6453     break;
6454   case Intrinsic::experimental_constrained_floor:
6455     Opcode = ISD::STRICT_FFLOOR;
6456     break;
6457   case Intrinsic::experimental_constrained_round:
6458     Opcode = ISD::STRICT_FROUND;
6459     break;
6460   case Intrinsic::experimental_constrained_trunc:
6461     Opcode = ISD::STRICT_FTRUNC;
6462     break;
6463   }
6464   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6465   SDValue Chain = getRoot();
6466   SmallVector<EVT, 4> ValueVTs;
6467   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6468   ValueVTs.push_back(MVT::Other); // Out chain
6469 
6470   SDVTList VTs = DAG.getVTList(ValueVTs);
6471   SDValue Result;
6472   if (FPI.isUnaryOp())
6473     Result = DAG.getNode(Opcode, sdl, VTs,
6474                          { Chain, getValue(FPI.getArgOperand(0)) });
6475   else if (FPI.isTernaryOp())
6476     Result = DAG.getNode(Opcode, sdl, VTs,
6477                          { Chain, getValue(FPI.getArgOperand(0)),
6478                                   getValue(FPI.getArgOperand(1)),
6479                                   getValue(FPI.getArgOperand(2)) });
6480   else
6481     Result = DAG.getNode(Opcode, sdl, VTs,
6482                          { Chain, getValue(FPI.getArgOperand(0)),
6483                            getValue(FPI.getArgOperand(1))  });
6484 
6485   assert(Result.getNode()->getNumValues() == 2);
6486   SDValue OutChain = Result.getValue(1);
6487   DAG.setRoot(OutChain);
6488   SDValue FPResult = Result.getValue(0);
6489   setValue(&FPI, FPResult);
6490 }
6491 
6492 std::pair<SDValue, SDValue>
6493 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6494                                     const BasicBlock *EHPadBB) {
6495   MachineFunction &MF = DAG.getMachineFunction();
6496   MachineModuleInfo &MMI = MF.getMMI();
6497   MCSymbol *BeginLabel = nullptr;
6498 
6499   if (EHPadBB) {
6500     // Insert a label before the invoke call to mark the try range.  This can be
6501     // used to detect deletion of the invoke via the MachineModuleInfo.
6502     BeginLabel = MMI.getContext().createTempSymbol();
6503 
6504     // For SjLj, keep track of which landing pads go with which invokes
6505     // so as to maintain the ordering of pads in the LSDA.
6506     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6507     if (CallSiteIndex) {
6508       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6509       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6510 
6511       // Now that the call site is handled, stop tracking it.
6512       MMI.setCurrentCallSite(0);
6513     }
6514 
6515     // Both PendingLoads and PendingExports must be flushed here;
6516     // this call might not return.
6517     (void)getRoot();
6518     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6519 
6520     CLI.setChain(getRoot());
6521   }
6522   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6523   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6524 
6525   assert((CLI.IsTailCall || Result.second.getNode()) &&
6526          "Non-null chain expected with non-tail call!");
6527   assert((Result.second.getNode() || !Result.first.getNode()) &&
6528          "Null value expected with tail call!");
6529 
6530   if (!Result.second.getNode()) {
6531     // As a special case, a null chain means that a tail call has been emitted
6532     // and the DAG root is already updated.
6533     HasTailCall = true;
6534 
6535     // Since there's no actual continuation from this block, nothing can be
6536     // relying on us setting vregs for them.
6537     PendingExports.clear();
6538   } else {
6539     DAG.setRoot(Result.second);
6540   }
6541 
6542   if (EHPadBB) {
6543     // Insert a label at the end of the invoke call to mark the try range.  This
6544     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6545     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6546     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6547 
6548     // Inform MachineModuleInfo of range.
6549     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6550     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6551     // actually use outlined funclets and their LSDA info style.
6552     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6553       assert(CLI.CS);
6554       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6555       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6556                                 BeginLabel, EndLabel);
6557     } else if (!isScopedEHPersonality(Pers)) {
6558       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6559     }
6560   }
6561 
6562   return Result;
6563 }
6564 
6565 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6566                                       bool isTailCall,
6567                                       const BasicBlock *EHPadBB) {
6568   auto &DL = DAG.getDataLayout();
6569   FunctionType *FTy = CS.getFunctionType();
6570   Type *RetTy = CS.getType();
6571 
6572   TargetLowering::ArgListTy Args;
6573   Args.reserve(CS.arg_size());
6574 
6575   const Value *SwiftErrorVal = nullptr;
6576   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6577 
6578   // We can't tail call inside a function with a swifterror argument. Lowering
6579   // does not support this yet. It would have to move into the swifterror
6580   // register before the call.
6581   auto *Caller = CS.getInstruction()->getParent()->getParent();
6582   if (TLI.supportSwiftError() &&
6583       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6584     isTailCall = false;
6585 
6586   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6587        i != e; ++i) {
6588     TargetLowering::ArgListEntry Entry;
6589     const Value *V = *i;
6590 
6591     // Skip empty types
6592     if (V->getType()->isEmptyTy())
6593       continue;
6594 
6595     SDValue ArgNode = getValue(V);
6596     Entry.Node = ArgNode; Entry.Ty = V->getType();
6597 
6598     Entry.setAttributes(&CS, i - CS.arg_begin());
6599 
6600     // Use swifterror virtual register as input to the call.
6601     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6602       SwiftErrorVal = V;
6603       // We find the virtual register for the actual swifterror argument.
6604       // Instead of using the Value, we use the virtual register instead.
6605       Entry.Node = DAG.getRegister(FuncInfo
6606                                        .getOrCreateSwiftErrorVRegUseAt(
6607                                            CS.getInstruction(), FuncInfo.MBB, V)
6608                                        .first,
6609                                    EVT(TLI.getPointerTy(DL)));
6610     }
6611 
6612     Args.push_back(Entry);
6613 
6614     // If we have an explicit sret argument that is an Instruction, (i.e., it
6615     // might point to function-local memory), we can't meaningfully tail-call.
6616     if (Entry.IsSRet && isa<Instruction>(V))
6617       isTailCall = false;
6618   }
6619 
6620   // Check if target-independent constraints permit a tail call here.
6621   // Target-dependent constraints are checked within TLI->LowerCallTo.
6622   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6623     isTailCall = false;
6624 
6625   // Disable tail calls if there is an swifterror argument. Targets have not
6626   // been updated to support tail calls.
6627   if (TLI.supportSwiftError() && SwiftErrorVal)
6628     isTailCall = false;
6629 
6630   TargetLowering::CallLoweringInfo CLI(DAG);
6631   CLI.setDebugLoc(getCurSDLoc())
6632       .setChain(getRoot())
6633       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6634       .setTailCall(isTailCall)
6635       .setConvergent(CS.isConvergent());
6636   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6637 
6638   if (Result.first.getNode()) {
6639     const Instruction *Inst = CS.getInstruction();
6640     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6641     setValue(Inst, Result.first);
6642   }
6643 
6644   // The last element of CLI.InVals has the SDValue for swifterror return.
6645   // Here we copy it to a virtual register and update SwiftErrorMap for
6646   // book-keeping.
6647   if (SwiftErrorVal && TLI.supportSwiftError()) {
6648     // Get the last element of InVals.
6649     SDValue Src = CLI.InVals.back();
6650     unsigned VReg; bool CreatedVReg;
6651     std::tie(VReg, CreatedVReg) =
6652         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6653     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6654     // We update the virtual register for the actual swifterror argument.
6655     if (CreatedVReg)
6656       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6657     DAG.setRoot(CopyNode);
6658   }
6659 }
6660 
6661 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6662                              SelectionDAGBuilder &Builder) {
6663   // Check to see if this load can be trivially constant folded, e.g. if the
6664   // input is from a string literal.
6665   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6666     // Cast pointer to the type we really want to load.
6667     Type *LoadTy =
6668         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6669     if (LoadVT.isVector())
6670       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6671 
6672     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6673                                          PointerType::getUnqual(LoadTy));
6674 
6675     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6676             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6677       return Builder.getValue(LoadCst);
6678   }
6679 
6680   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6681   // still constant memory, the input chain can be the entry node.
6682   SDValue Root;
6683   bool ConstantMemory = false;
6684 
6685   // Do not serialize (non-volatile) loads of constant memory with anything.
6686   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6687     Root = Builder.DAG.getEntryNode();
6688     ConstantMemory = true;
6689   } else {
6690     // Do not serialize non-volatile loads against each other.
6691     Root = Builder.DAG.getRoot();
6692   }
6693 
6694   SDValue Ptr = Builder.getValue(PtrVal);
6695   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6696                                         Ptr, MachinePointerInfo(PtrVal),
6697                                         /* Alignment = */ 1);
6698 
6699   if (!ConstantMemory)
6700     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6701   return LoadVal;
6702 }
6703 
6704 /// Record the value for an instruction that produces an integer result,
6705 /// converting the type where necessary.
6706 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6707                                                   SDValue Value,
6708                                                   bool IsSigned) {
6709   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6710                                                     I.getType(), true);
6711   if (IsSigned)
6712     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6713   else
6714     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6715   setValue(&I, Value);
6716 }
6717 
6718 /// See if we can lower a memcmp call into an optimized form. If so, return
6719 /// true and lower it. Otherwise return false, and it will be lowered like a
6720 /// normal call.
6721 /// The caller already checked that \p I calls the appropriate LibFunc with a
6722 /// correct prototype.
6723 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6724   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6725   const Value *Size = I.getArgOperand(2);
6726   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6727   if (CSize && CSize->getZExtValue() == 0) {
6728     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6729                                                           I.getType(), true);
6730     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6731     return true;
6732   }
6733 
6734   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6735   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6736       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6737       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6738   if (Res.first.getNode()) {
6739     processIntegerCallValue(I, Res.first, true);
6740     PendingLoads.push_back(Res.second);
6741     return true;
6742   }
6743 
6744   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6745   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6746   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6747     return false;
6748 
6749   // If the target has a fast compare for the given size, it will return a
6750   // preferred load type for that size. Require that the load VT is legal and
6751   // that the target supports unaligned loads of that type. Otherwise, return
6752   // INVALID.
6753   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6754     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6755     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6756     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6757       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6758       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6759       // TODO: Check alignment of src and dest ptrs.
6760       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6761       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6762       if (!TLI.isTypeLegal(LVT) ||
6763           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6764           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6765         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6766     }
6767 
6768     return LVT;
6769   };
6770 
6771   // This turns into unaligned loads. We only do this if the target natively
6772   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6773   // we'll only produce a small number of byte loads.
6774   MVT LoadVT;
6775   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6776   switch (NumBitsToCompare) {
6777   default:
6778     return false;
6779   case 16:
6780     LoadVT = MVT::i16;
6781     break;
6782   case 32:
6783     LoadVT = MVT::i32;
6784     break;
6785   case 64:
6786   case 128:
6787   case 256:
6788     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6789     break;
6790   }
6791 
6792   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6793     return false;
6794 
6795   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6796   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6797 
6798   // Bitcast to a wide integer type if the loads are vectors.
6799   if (LoadVT.isVector()) {
6800     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6801     LoadL = DAG.getBitcast(CmpVT, LoadL);
6802     LoadR = DAG.getBitcast(CmpVT, LoadR);
6803   }
6804 
6805   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6806   processIntegerCallValue(I, Cmp, false);
6807   return true;
6808 }
6809 
6810 /// See if we can lower a memchr call into an optimized form. If so, return
6811 /// true and lower it. Otherwise return false, and it will be lowered like a
6812 /// normal call.
6813 /// The caller already checked that \p I calls the appropriate LibFunc with a
6814 /// correct prototype.
6815 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6816   const Value *Src = I.getArgOperand(0);
6817   const Value *Char = I.getArgOperand(1);
6818   const Value *Length = I.getArgOperand(2);
6819 
6820   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6821   std::pair<SDValue, SDValue> Res =
6822     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6823                                 getValue(Src), getValue(Char), getValue(Length),
6824                                 MachinePointerInfo(Src));
6825   if (Res.first.getNode()) {
6826     setValue(&I, Res.first);
6827     PendingLoads.push_back(Res.second);
6828     return true;
6829   }
6830 
6831   return false;
6832 }
6833 
6834 /// See if we can lower a mempcpy call into an optimized form. If so, return
6835 /// true and lower it. Otherwise return false, and it will be lowered like a
6836 /// normal call.
6837 /// The caller already checked that \p I calls the appropriate LibFunc with a
6838 /// correct prototype.
6839 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6840   SDValue Dst = getValue(I.getArgOperand(0));
6841   SDValue Src = getValue(I.getArgOperand(1));
6842   SDValue Size = getValue(I.getArgOperand(2));
6843 
6844   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6845   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6846   unsigned Align = std::min(DstAlign, SrcAlign);
6847   if (Align == 0) // Alignment of one or both could not be inferred.
6848     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6849 
6850   bool isVol = false;
6851   SDLoc sdl = getCurSDLoc();
6852 
6853   // In the mempcpy context we need to pass in a false value for isTailCall
6854   // because the return pointer needs to be adjusted by the size of
6855   // the copied memory.
6856   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6857                              false, /*isTailCall=*/false,
6858                              MachinePointerInfo(I.getArgOperand(0)),
6859                              MachinePointerInfo(I.getArgOperand(1)));
6860   assert(MC.getNode() != nullptr &&
6861          "** memcpy should not be lowered as TailCall in mempcpy context **");
6862   DAG.setRoot(MC);
6863 
6864   // Check if Size needs to be truncated or extended.
6865   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6866 
6867   // Adjust return pointer to point just past the last dst byte.
6868   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6869                                     Dst, Size);
6870   setValue(&I, DstPlusSize);
6871   return true;
6872 }
6873 
6874 /// See if we can lower a strcpy call into an optimized form.  If so, return
6875 /// true and lower it, otherwise return false and it will be lowered like a
6876 /// normal call.
6877 /// The caller already checked that \p I calls the appropriate LibFunc with a
6878 /// correct prototype.
6879 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6880   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6881 
6882   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6883   std::pair<SDValue, SDValue> Res =
6884     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6885                                 getValue(Arg0), getValue(Arg1),
6886                                 MachinePointerInfo(Arg0),
6887                                 MachinePointerInfo(Arg1), isStpcpy);
6888   if (Res.first.getNode()) {
6889     setValue(&I, Res.first);
6890     DAG.setRoot(Res.second);
6891     return true;
6892   }
6893 
6894   return false;
6895 }
6896 
6897 /// See if we can lower a strcmp call into an optimized form.  If so, return
6898 /// true and lower it, otherwise return false and it will be lowered like a
6899 /// normal call.
6900 /// The caller already checked that \p I calls the appropriate LibFunc with a
6901 /// correct prototype.
6902 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6903   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6904 
6905   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6906   std::pair<SDValue, SDValue> Res =
6907     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6908                                 getValue(Arg0), getValue(Arg1),
6909                                 MachinePointerInfo(Arg0),
6910                                 MachinePointerInfo(Arg1));
6911   if (Res.first.getNode()) {
6912     processIntegerCallValue(I, Res.first, true);
6913     PendingLoads.push_back(Res.second);
6914     return true;
6915   }
6916 
6917   return false;
6918 }
6919 
6920 /// See if we can lower a strlen call into an optimized form.  If so, return
6921 /// true and lower it, otherwise return false and it will be lowered like a
6922 /// normal call.
6923 /// The caller already checked that \p I calls the appropriate LibFunc with a
6924 /// correct prototype.
6925 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6926   const Value *Arg0 = I.getArgOperand(0);
6927 
6928   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6929   std::pair<SDValue, SDValue> Res =
6930     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6931                                 getValue(Arg0), MachinePointerInfo(Arg0));
6932   if (Res.first.getNode()) {
6933     processIntegerCallValue(I, Res.first, false);
6934     PendingLoads.push_back(Res.second);
6935     return true;
6936   }
6937 
6938   return false;
6939 }
6940 
6941 /// See if we can lower a strnlen call into an optimized form.  If so, return
6942 /// true and lower it, otherwise return false and it will be lowered like a
6943 /// normal call.
6944 /// The caller already checked that \p I calls the appropriate LibFunc with a
6945 /// correct prototype.
6946 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6947   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6948 
6949   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6950   std::pair<SDValue, SDValue> Res =
6951     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6952                                  getValue(Arg0), getValue(Arg1),
6953                                  MachinePointerInfo(Arg0));
6954   if (Res.first.getNode()) {
6955     processIntegerCallValue(I, Res.first, false);
6956     PendingLoads.push_back(Res.second);
6957     return true;
6958   }
6959 
6960   return false;
6961 }
6962 
6963 /// See if we can lower a unary floating-point operation into an SDNode with
6964 /// the specified Opcode.  If so, return true and lower it, otherwise return
6965 /// false and it will be lowered like a normal call.
6966 /// The caller already checked that \p I calls the appropriate LibFunc with a
6967 /// correct prototype.
6968 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6969                                               unsigned Opcode) {
6970   // We already checked this call's prototype; verify it doesn't modify errno.
6971   if (!I.onlyReadsMemory())
6972     return false;
6973 
6974   SDValue Tmp = getValue(I.getArgOperand(0));
6975   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6976   return true;
6977 }
6978 
6979 /// See if we can lower a binary floating-point operation into an SDNode with
6980 /// the specified Opcode. If so, return true and lower it. Otherwise return
6981 /// false, and it will be lowered like a normal call.
6982 /// The caller already checked that \p I calls the appropriate LibFunc with a
6983 /// correct prototype.
6984 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6985                                                unsigned Opcode) {
6986   // We already checked this call's prototype; verify it doesn't modify errno.
6987   if (!I.onlyReadsMemory())
6988     return false;
6989 
6990   SDValue Tmp0 = getValue(I.getArgOperand(0));
6991   SDValue Tmp1 = getValue(I.getArgOperand(1));
6992   EVT VT = Tmp0.getValueType();
6993   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6994   return true;
6995 }
6996 
6997 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6998   // Handle inline assembly differently.
6999   if (isa<InlineAsm>(I.getCalledValue())) {
7000     visitInlineAsm(&I);
7001     return;
7002   }
7003 
7004   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
7005   computeUsesVAFloatArgument(I, MMI);
7006 
7007   const char *RenameFn = nullptr;
7008   if (Function *F = I.getCalledFunction()) {
7009     if (F->isDeclaration()) {
7010       // Is this an LLVM intrinsic or a target-specific intrinsic?
7011       unsigned IID = F->getIntrinsicID();
7012       if (!IID)
7013         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7014           IID = II->getIntrinsicID(F);
7015 
7016       if (IID) {
7017         RenameFn = visitIntrinsicCall(I, IID);
7018         if (!RenameFn)
7019           return;
7020       }
7021     }
7022 
7023     // Check for well-known libc/libm calls.  If the function is internal, it
7024     // can't be a library call.  Don't do the check if marked as nobuiltin for
7025     // some reason or the call site requires strict floating point semantics.
7026     LibFunc Func;
7027     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7028         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7029         LibInfo->hasOptimizedCodeGen(Func)) {
7030       switch (Func) {
7031       default: break;
7032       case LibFunc_copysign:
7033       case LibFunc_copysignf:
7034       case LibFunc_copysignl:
7035         // We already checked this call's prototype; verify it doesn't modify
7036         // errno.
7037         if (I.onlyReadsMemory()) {
7038           SDValue LHS = getValue(I.getArgOperand(0));
7039           SDValue RHS = getValue(I.getArgOperand(1));
7040           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7041                                    LHS.getValueType(), LHS, RHS));
7042           return;
7043         }
7044         break;
7045       case LibFunc_fabs:
7046       case LibFunc_fabsf:
7047       case LibFunc_fabsl:
7048         if (visitUnaryFloatCall(I, ISD::FABS))
7049           return;
7050         break;
7051       case LibFunc_fmin:
7052       case LibFunc_fminf:
7053       case LibFunc_fminl:
7054         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7055           return;
7056         break;
7057       case LibFunc_fmax:
7058       case LibFunc_fmaxf:
7059       case LibFunc_fmaxl:
7060         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7061           return;
7062         break;
7063       case LibFunc_sin:
7064       case LibFunc_sinf:
7065       case LibFunc_sinl:
7066         if (visitUnaryFloatCall(I, ISD::FSIN))
7067           return;
7068         break;
7069       case LibFunc_cos:
7070       case LibFunc_cosf:
7071       case LibFunc_cosl:
7072         if (visitUnaryFloatCall(I, ISD::FCOS))
7073           return;
7074         break;
7075       case LibFunc_sqrt:
7076       case LibFunc_sqrtf:
7077       case LibFunc_sqrtl:
7078       case LibFunc_sqrt_finite:
7079       case LibFunc_sqrtf_finite:
7080       case LibFunc_sqrtl_finite:
7081         if (visitUnaryFloatCall(I, ISD::FSQRT))
7082           return;
7083         break;
7084       case LibFunc_floor:
7085       case LibFunc_floorf:
7086       case LibFunc_floorl:
7087         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7088           return;
7089         break;
7090       case LibFunc_nearbyint:
7091       case LibFunc_nearbyintf:
7092       case LibFunc_nearbyintl:
7093         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7094           return;
7095         break;
7096       case LibFunc_ceil:
7097       case LibFunc_ceilf:
7098       case LibFunc_ceill:
7099         if (visitUnaryFloatCall(I, ISD::FCEIL))
7100           return;
7101         break;
7102       case LibFunc_rint:
7103       case LibFunc_rintf:
7104       case LibFunc_rintl:
7105         if (visitUnaryFloatCall(I, ISD::FRINT))
7106           return;
7107         break;
7108       case LibFunc_round:
7109       case LibFunc_roundf:
7110       case LibFunc_roundl:
7111         if (visitUnaryFloatCall(I, ISD::FROUND))
7112           return;
7113         break;
7114       case LibFunc_trunc:
7115       case LibFunc_truncf:
7116       case LibFunc_truncl:
7117         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7118           return;
7119         break;
7120       case LibFunc_log2:
7121       case LibFunc_log2f:
7122       case LibFunc_log2l:
7123         if (visitUnaryFloatCall(I, ISD::FLOG2))
7124           return;
7125         break;
7126       case LibFunc_exp2:
7127       case LibFunc_exp2f:
7128       case LibFunc_exp2l:
7129         if (visitUnaryFloatCall(I, ISD::FEXP2))
7130           return;
7131         break;
7132       case LibFunc_memcmp:
7133         if (visitMemCmpCall(I))
7134           return;
7135         break;
7136       case LibFunc_mempcpy:
7137         if (visitMemPCpyCall(I))
7138           return;
7139         break;
7140       case LibFunc_memchr:
7141         if (visitMemChrCall(I))
7142           return;
7143         break;
7144       case LibFunc_strcpy:
7145         if (visitStrCpyCall(I, false))
7146           return;
7147         break;
7148       case LibFunc_stpcpy:
7149         if (visitStrCpyCall(I, true))
7150           return;
7151         break;
7152       case LibFunc_strcmp:
7153         if (visitStrCmpCall(I))
7154           return;
7155         break;
7156       case LibFunc_strlen:
7157         if (visitStrLenCall(I))
7158           return;
7159         break;
7160       case LibFunc_strnlen:
7161         if (visitStrNLenCall(I))
7162           return;
7163         break;
7164       }
7165     }
7166   }
7167 
7168   SDValue Callee;
7169   if (!RenameFn)
7170     Callee = getValue(I.getCalledValue());
7171   else
7172     Callee = DAG.getExternalSymbol(
7173         RenameFn,
7174         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7175 
7176   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7177   // have to do anything here to lower funclet bundles.
7178   assert(!I.hasOperandBundlesOtherThan(
7179              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7180          "Cannot lower calls with arbitrary operand bundles!");
7181 
7182   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7183     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7184   else
7185     // Check if we can potentially perform a tail call. More detailed checking
7186     // is be done within LowerCallTo, after more information about the call is
7187     // known.
7188     LowerCallTo(&I, Callee, I.isTailCall());
7189 }
7190 
7191 namespace {
7192 
7193 /// AsmOperandInfo - This contains information for each constraint that we are
7194 /// lowering.
7195 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7196 public:
7197   /// CallOperand - If this is the result output operand or a clobber
7198   /// this is null, otherwise it is the incoming operand to the CallInst.
7199   /// This gets modified as the asm is processed.
7200   SDValue CallOperand;
7201 
7202   /// AssignedRegs - If this is a register or register class operand, this
7203   /// contains the set of register corresponding to the operand.
7204   RegsForValue AssignedRegs;
7205 
7206   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7207     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7208   }
7209 
7210   /// Whether or not this operand accesses memory
7211   bool hasMemory(const TargetLowering &TLI) const {
7212     // Indirect operand accesses access memory.
7213     if (isIndirect)
7214       return true;
7215 
7216     for (const auto &Code : Codes)
7217       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7218         return true;
7219 
7220     return false;
7221   }
7222 
7223   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7224   /// corresponds to.  If there is no Value* for this operand, it returns
7225   /// MVT::Other.
7226   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7227                            const DataLayout &DL) const {
7228     if (!CallOperandVal) return MVT::Other;
7229 
7230     if (isa<BasicBlock>(CallOperandVal))
7231       return TLI.getPointerTy(DL);
7232 
7233     llvm::Type *OpTy = CallOperandVal->getType();
7234 
7235     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7236     // If this is an indirect operand, the operand is a pointer to the
7237     // accessed type.
7238     if (isIndirect) {
7239       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7240       if (!PtrTy)
7241         report_fatal_error("Indirect operand for inline asm not a pointer!");
7242       OpTy = PtrTy->getElementType();
7243     }
7244 
7245     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7246     if (StructType *STy = dyn_cast<StructType>(OpTy))
7247       if (STy->getNumElements() == 1)
7248         OpTy = STy->getElementType(0);
7249 
7250     // If OpTy is not a single value, it may be a struct/union that we
7251     // can tile with integers.
7252     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7253       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7254       switch (BitSize) {
7255       default: break;
7256       case 1:
7257       case 8:
7258       case 16:
7259       case 32:
7260       case 64:
7261       case 128:
7262         OpTy = IntegerType::get(Context, BitSize);
7263         break;
7264       }
7265     }
7266 
7267     return TLI.getValueType(DL, OpTy, true);
7268   }
7269 };
7270 
7271 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7272 
7273 } // end anonymous namespace
7274 
7275 /// Make sure that the output operand \p OpInfo and its corresponding input
7276 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7277 /// out).
7278 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7279                                SDISelAsmOperandInfo &MatchingOpInfo,
7280                                SelectionDAG &DAG) {
7281   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7282     return;
7283 
7284   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7285   const auto &TLI = DAG.getTargetLoweringInfo();
7286 
7287   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7288       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7289                                        OpInfo.ConstraintVT);
7290   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7291       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7292                                        MatchingOpInfo.ConstraintVT);
7293   if ((OpInfo.ConstraintVT.isInteger() !=
7294        MatchingOpInfo.ConstraintVT.isInteger()) ||
7295       (MatchRC.second != InputRC.second)) {
7296     // FIXME: error out in a more elegant fashion
7297     report_fatal_error("Unsupported asm: input constraint"
7298                        " with a matching output constraint of"
7299                        " incompatible type!");
7300   }
7301   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7302 }
7303 
7304 /// Get a direct memory input to behave well as an indirect operand.
7305 /// This may introduce stores, hence the need for a \p Chain.
7306 /// \return The (possibly updated) chain.
7307 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7308                                         SDISelAsmOperandInfo &OpInfo,
7309                                         SelectionDAG &DAG) {
7310   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7311 
7312   // If we don't have an indirect input, put it in the constpool if we can,
7313   // otherwise spill it to a stack slot.
7314   // TODO: This isn't quite right. We need to handle these according to
7315   // the addressing mode that the constraint wants. Also, this may take
7316   // an additional register for the computation and we don't want that
7317   // either.
7318 
7319   // If the operand is a float, integer, or vector constant, spill to a
7320   // constant pool entry to get its address.
7321   const Value *OpVal = OpInfo.CallOperandVal;
7322   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7323       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7324     OpInfo.CallOperand = DAG.getConstantPool(
7325         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7326     return Chain;
7327   }
7328 
7329   // Otherwise, create a stack slot and emit a store to it before the asm.
7330   Type *Ty = OpVal->getType();
7331   auto &DL = DAG.getDataLayout();
7332   uint64_t TySize = DL.getTypeAllocSize(Ty);
7333   unsigned Align = DL.getPrefTypeAlignment(Ty);
7334   MachineFunction &MF = DAG.getMachineFunction();
7335   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7336   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7337   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7338                        MachinePointerInfo::getFixedStack(MF, SSFI));
7339   OpInfo.CallOperand = StackSlot;
7340 
7341   return Chain;
7342 }
7343 
7344 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7345 /// specified operand.  We prefer to assign virtual registers, to allow the
7346 /// register allocator to handle the assignment process.  However, if the asm
7347 /// uses features that we can't model on machineinstrs, we have SDISel do the
7348 /// allocation.  This produces generally horrible, but correct, code.
7349 ///
7350 ///   OpInfo describes the operand
7351 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7352 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7353                                  const SDLoc &DL, SDISelAsmOperandInfo &OpInfo,
7354                                  SDISelAsmOperandInfo &RefOpInfo) {
7355   LLVMContext &Context = *DAG.getContext();
7356 
7357   MachineFunction &MF = DAG.getMachineFunction();
7358   SmallVector<unsigned, 4> Regs;
7359   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7360 
7361   // If this is a constraint for a single physreg, or a constraint for a
7362   // register class, find it.
7363   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7364       TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode,
7365                                        RefOpInfo.ConstraintVT);
7366 
7367   unsigned NumRegs = 1;
7368   if (OpInfo.ConstraintVT != MVT::Other) {
7369     // If this is an FP operand in an integer register (or visa versa), or more
7370     // generally if the operand value disagrees with the register class we plan
7371     // to stick it in, fix the operand type.
7372     //
7373     // If this is an input value, the bitcast to the new type is done now.
7374     // Bitcast for output value is done at the end of visitInlineAsm().
7375     if ((OpInfo.Type == InlineAsm::isOutput ||
7376          OpInfo.Type == InlineAsm::isInput) &&
7377         PhysReg.second &&
7378         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7379       // Try to convert to the first EVT that the reg class contains.  If the
7380       // types are identical size, use a bitcast to convert (e.g. two differing
7381       // vector types).  Note: output bitcast is done at the end of
7382       // visitInlineAsm().
7383       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7384       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7385         // Exclude indirect inputs while they are unsupported because the code
7386         // to perform the load is missing and thus OpInfo.CallOperand still
7387         // refers to the input address rather than the pointed-to value.
7388         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7389           OpInfo.CallOperand =
7390               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7391         OpInfo.ConstraintVT = RegVT;
7392         // If the operand is an FP value and we want it in integer registers,
7393         // use the corresponding integer type. This turns an f64 value into
7394         // i64, which can be passed with two i32 values on a 32-bit machine.
7395       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7396         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7397         if (OpInfo.Type == InlineAsm::isInput)
7398           OpInfo.CallOperand =
7399               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7400         OpInfo.ConstraintVT = RegVT;
7401       }
7402     }
7403 
7404     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7405   }
7406 
7407   // No need to allocate a matching input constraint since the constraint it's
7408   // matching to has already been allocated.
7409   if (OpInfo.isMatchingInputConstraint())
7410     return;
7411 
7412   MVT RegVT;
7413   EVT ValueVT = OpInfo.ConstraintVT;
7414 
7415   // If this is a constraint for a specific physical register, like {r17},
7416   // assign it now.
7417   if (unsigned AssignedReg = PhysReg.first) {
7418     const TargetRegisterClass *RC = PhysReg.second;
7419     if (OpInfo.ConstraintVT == MVT::Other)
7420       ValueVT = *TRI.legalclasstypes_begin(*RC);
7421 
7422     // Get the actual register value type.  This is important, because the user
7423     // may have asked for (e.g.) the AX register in i32 type.  We need to
7424     // remember that AX is actually i16 to get the right extension.
7425     RegVT = *TRI.legalclasstypes_begin(*RC);
7426 
7427     // This is an explicit reference to a physical register.
7428     Regs.push_back(AssignedReg);
7429 
7430     // If this is an expanded reference, add the rest of the regs to Regs.
7431     if (NumRegs != 1) {
7432       TargetRegisterClass::iterator I = RC->begin();
7433       for (; *I != AssignedReg; ++I)
7434         assert(I != RC->end() && "Didn't find reg!");
7435 
7436       // Already added the first reg.
7437       --NumRegs; ++I;
7438       for (; NumRegs; --NumRegs, ++I) {
7439         assert(I != RC->end() && "Ran out of registers to allocate!");
7440         Regs.push_back(*I);
7441       }
7442     }
7443 
7444     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7445     return;
7446   }
7447 
7448   // Otherwise, if this was a reference to an LLVM register class, create vregs
7449   // for this reference.
7450   if (const TargetRegisterClass *RC = PhysReg.second) {
7451     RegVT = *TRI.legalclasstypes_begin(*RC);
7452     if (OpInfo.ConstraintVT == MVT::Other)
7453       ValueVT = RegVT;
7454 
7455     // Create the appropriate number of virtual registers.
7456     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7457     for (; NumRegs; --NumRegs)
7458       Regs.push_back(RegInfo.createVirtualRegister(RC));
7459 
7460     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7461     return;
7462   }
7463 
7464   // Otherwise, we couldn't allocate enough registers for this.
7465 }
7466 
7467 static unsigned
7468 findMatchingInlineAsmOperand(unsigned OperandNo,
7469                              const std::vector<SDValue> &AsmNodeOperands) {
7470   // Scan until we find the definition we already emitted of this operand.
7471   unsigned CurOp = InlineAsm::Op_FirstOperand;
7472   for (; OperandNo; --OperandNo) {
7473     // Advance to the next operand.
7474     unsigned OpFlag =
7475         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7476     assert((InlineAsm::isRegDefKind(OpFlag) ||
7477             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7478             InlineAsm::isMemKind(OpFlag)) &&
7479            "Skipped past definitions?");
7480     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7481   }
7482   return CurOp;
7483 }
7484 
7485 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7486 /// \return true if it has succeeded, false otherwise
7487 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7488                               MVT RegVT, SelectionDAG &DAG) {
7489   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7490   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7491   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7492     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7493       Regs.push_back(RegInfo.createVirtualRegister(RC));
7494     else
7495       return false;
7496   }
7497   return true;
7498 }
7499 
7500 namespace {
7501 
7502 class ExtraFlags {
7503   unsigned Flags = 0;
7504 
7505 public:
7506   explicit ExtraFlags(ImmutableCallSite CS) {
7507     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7508     if (IA->hasSideEffects())
7509       Flags |= InlineAsm::Extra_HasSideEffects;
7510     if (IA->isAlignStack())
7511       Flags |= InlineAsm::Extra_IsAlignStack;
7512     if (CS.isConvergent())
7513       Flags |= InlineAsm::Extra_IsConvergent;
7514     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7515   }
7516 
7517   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7518     // Ideally, we would only check against memory constraints.  However, the
7519     // meaning of an Other constraint can be target-specific and we can't easily
7520     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7521     // for Other constraints as well.
7522     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7523         OpInfo.ConstraintType == TargetLowering::C_Other) {
7524       if (OpInfo.Type == InlineAsm::isInput)
7525         Flags |= InlineAsm::Extra_MayLoad;
7526       else if (OpInfo.Type == InlineAsm::isOutput)
7527         Flags |= InlineAsm::Extra_MayStore;
7528       else if (OpInfo.Type == InlineAsm::isClobber)
7529         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7530     }
7531   }
7532 
7533   unsigned get() const { return Flags; }
7534 };
7535 
7536 } // end anonymous namespace
7537 
7538 /// visitInlineAsm - Handle a call to an InlineAsm object.
7539 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7540   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7541 
7542   /// ConstraintOperands - Information about all of the constraints.
7543   SDISelAsmOperandInfoVector ConstraintOperands;
7544 
7545   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7546   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7547       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7548 
7549   bool hasMemory = false;
7550 
7551   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7552   ExtraFlags ExtraInfo(CS);
7553 
7554   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7555   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7556   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7557     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7558     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7559 
7560     MVT OpVT = MVT::Other;
7561 
7562     // Compute the value type for each operand.
7563     if (OpInfo.Type == InlineAsm::isInput ||
7564         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7565       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7566 
7567       // Process the call argument. BasicBlocks are labels, currently appearing
7568       // only in asm's.
7569       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7570         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7571       } else {
7572         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7573       }
7574 
7575       OpVT =
7576           OpInfo
7577               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7578               .getSimpleVT();
7579     }
7580 
7581     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7582       // The return value of the call is this value.  As such, there is no
7583       // corresponding argument.
7584       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7585       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7586         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7587                                       STy->getElementType(ResNo));
7588       } else {
7589         assert(ResNo == 0 && "Asm only has one result!");
7590         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7591       }
7592       ++ResNo;
7593     }
7594 
7595     OpInfo.ConstraintVT = OpVT;
7596 
7597     if (!hasMemory)
7598       hasMemory = OpInfo.hasMemory(TLI);
7599 
7600     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7601     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7602     auto TargetConstraint = TargetConstraints[i];
7603 
7604     // Compute the constraint code and ConstraintType to use.
7605     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7606 
7607     ExtraInfo.update(TargetConstraint);
7608   }
7609 
7610   SDValue Chain, Flag;
7611 
7612   // We won't need to flush pending loads if this asm doesn't touch
7613   // memory and is nonvolatile.
7614   if (hasMemory || IA->hasSideEffects())
7615     Chain = getRoot();
7616   else
7617     Chain = DAG.getRoot();
7618 
7619   // Second pass over the constraints: compute which constraint option to use
7620   // and assign registers to constraints that want a specific physreg.
7621   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7622     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7623 
7624     // If this is an output operand with a matching input operand, look up the
7625     // matching input. If their types mismatch, e.g. one is an integer, the
7626     // other is floating point, or their sizes are different, flag it as an
7627     // error.
7628     if (OpInfo.hasMatchingInput()) {
7629       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7630       patchMatchingInput(OpInfo, Input, DAG);
7631     }
7632 
7633     // Compute the constraint code and ConstraintType to use.
7634     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7635 
7636     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7637         OpInfo.Type == InlineAsm::isClobber)
7638       continue;
7639 
7640     // If this is a memory input, and if the operand is not indirect, do what we
7641     // need to provide an address for the memory input.
7642     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7643         !OpInfo.isIndirect) {
7644       assert((OpInfo.isMultipleAlternative ||
7645               (OpInfo.Type == InlineAsm::isInput)) &&
7646              "Can only indirectify direct input operands!");
7647 
7648       // Memory operands really want the address of the value.
7649       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7650 
7651       // There is no longer a Value* corresponding to this operand.
7652       OpInfo.CallOperandVal = nullptr;
7653 
7654       // It is now an indirect operand.
7655       OpInfo.isIndirect = true;
7656     }
7657 
7658     // If this constraint is for a specific register, allocate it before
7659     // anything else.
7660     SDISelAsmOperandInfo &RefOpInfo =
7661         OpInfo.isMatchingInputConstraint()
7662             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7663             : ConstraintOperands[i];
7664     if (RefOpInfo.ConstraintType == TargetLowering::C_Register)
7665       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7666   }
7667 
7668   // Third pass - Loop over all of the operands, assigning virtual or physregs
7669   // to register class operands.
7670   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7671     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7672     SDISelAsmOperandInfo &RefOpInfo =
7673         OpInfo.isMatchingInputConstraint()
7674             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7675             : ConstraintOperands[i];
7676 
7677     // C_Register operands have already been allocated, Other/Memory don't need
7678     // to be.
7679     if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7680       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7681   }
7682 
7683   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7684   std::vector<SDValue> AsmNodeOperands;
7685   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7686   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7687       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7688 
7689   // If we have a !srcloc metadata node associated with it, we want to attach
7690   // this to the ultimately generated inline asm machineinstr.  To do this, we
7691   // pass in the third operand as this (potentially null) inline asm MDNode.
7692   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7693   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7694 
7695   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7696   // bits as operand 3.
7697   AsmNodeOperands.push_back(DAG.getTargetConstant(
7698       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7699 
7700   // Loop over all of the inputs, copying the operand values into the
7701   // appropriate registers and processing the output regs.
7702   RegsForValue RetValRegs;
7703 
7704   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7705   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7706 
7707   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7708     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7709 
7710     switch (OpInfo.Type) {
7711     case InlineAsm::isOutput:
7712       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7713           OpInfo.ConstraintType != TargetLowering::C_Register) {
7714         // Memory output, or 'other' output (e.g. 'X' constraint).
7715         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7716 
7717         unsigned ConstraintID =
7718             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7719         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7720                "Failed to convert memory constraint code to constraint id.");
7721 
7722         // Add information to the INLINEASM node to know about this output.
7723         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7724         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7725         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7726                                                         MVT::i32));
7727         AsmNodeOperands.push_back(OpInfo.CallOperand);
7728         break;
7729       }
7730 
7731       // Otherwise, this is a register or register class output.
7732 
7733       // Copy the output from the appropriate register.  Find a register that
7734       // we can use.
7735       if (OpInfo.AssignedRegs.Regs.empty()) {
7736         emitInlineAsmError(
7737             CS, "couldn't allocate output register for constraint '" +
7738                     Twine(OpInfo.ConstraintCode) + "'");
7739         return;
7740       }
7741 
7742       // If this is an indirect operand, store through the pointer after the
7743       // asm.
7744       if (OpInfo.isIndirect) {
7745         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7746                                                       OpInfo.CallOperandVal));
7747       } else {
7748         // This is the result value of the call.
7749         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7750         // Concatenate this output onto the outputs list.
7751         RetValRegs.append(OpInfo.AssignedRegs);
7752       }
7753 
7754       // Add information to the INLINEASM node to know that this register is
7755       // set.
7756       OpInfo.AssignedRegs
7757           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7758                                     ? InlineAsm::Kind_RegDefEarlyClobber
7759                                     : InlineAsm::Kind_RegDef,
7760                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7761       break;
7762 
7763     case InlineAsm::isInput: {
7764       SDValue InOperandVal = OpInfo.CallOperand;
7765 
7766       if (OpInfo.isMatchingInputConstraint()) {
7767         // If this is required to match an output register we have already set,
7768         // just use its register.
7769         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7770                                                   AsmNodeOperands);
7771         unsigned OpFlag =
7772           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7773         if (InlineAsm::isRegDefKind(OpFlag) ||
7774             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7775           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7776           if (OpInfo.isIndirect) {
7777             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7778             emitInlineAsmError(CS, "inline asm not supported yet:"
7779                                    " don't know how to handle tied "
7780                                    "indirect register inputs");
7781             return;
7782           }
7783 
7784           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7785           SmallVector<unsigned, 4> Regs;
7786 
7787           if (!createVirtualRegs(Regs,
7788                                  InlineAsm::getNumOperandRegisters(OpFlag),
7789                                  RegVT, DAG)) {
7790             emitInlineAsmError(CS, "inline asm error: This value type register "
7791                                    "class is not natively supported!");
7792             return;
7793           }
7794 
7795           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7796 
7797           SDLoc dl = getCurSDLoc();
7798           // Use the produced MatchedRegs object to
7799           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7800                                     CS.getInstruction());
7801           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7802                                            true, OpInfo.getMatchedOperand(), dl,
7803                                            DAG, AsmNodeOperands);
7804           break;
7805         }
7806 
7807         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7808         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7809                "Unexpected number of operands");
7810         // Add information to the INLINEASM node to know about this input.
7811         // See InlineAsm.h isUseOperandTiedToDef.
7812         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7813         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7814                                                     OpInfo.getMatchedOperand());
7815         AsmNodeOperands.push_back(DAG.getTargetConstant(
7816             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7817         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7818         break;
7819       }
7820 
7821       // Treat indirect 'X' constraint as memory.
7822       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7823           OpInfo.isIndirect)
7824         OpInfo.ConstraintType = TargetLowering::C_Memory;
7825 
7826       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7827         std::vector<SDValue> Ops;
7828         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7829                                           Ops, DAG);
7830         if (Ops.empty()) {
7831           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7832                                      Twine(OpInfo.ConstraintCode) + "'");
7833           return;
7834         }
7835 
7836         // Add information to the INLINEASM node to know about this input.
7837         unsigned ResOpType =
7838           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7839         AsmNodeOperands.push_back(DAG.getTargetConstant(
7840             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7841         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7842         break;
7843       }
7844 
7845       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7846         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7847         assert(InOperandVal.getValueType() ==
7848                    TLI.getPointerTy(DAG.getDataLayout()) &&
7849                "Memory operands expect pointer values");
7850 
7851         unsigned ConstraintID =
7852             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7853         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7854                "Failed to convert memory constraint code to constraint id.");
7855 
7856         // Add information to the INLINEASM node to know about this input.
7857         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7858         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7859         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7860                                                         getCurSDLoc(),
7861                                                         MVT::i32));
7862         AsmNodeOperands.push_back(InOperandVal);
7863         break;
7864       }
7865 
7866       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7867               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7868              "Unknown constraint type!");
7869 
7870       // TODO: Support this.
7871       if (OpInfo.isIndirect) {
7872         emitInlineAsmError(
7873             CS, "Don't know how to handle indirect register inputs yet "
7874                 "for constraint '" +
7875                     Twine(OpInfo.ConstraintCode) + "'");
7876         return;
7877       }
7878 
7879       // Copy the input into the appropriate registers.
7880       if (OpInfo.AssignedRegs.Regs.empty()) {
7881         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7882                                    Twine(OpInfo.ConstraintCode) + "'");
7883         return;
7884       }
7885 
7886       SDLoc dl = getCurSDLoc();
7887 
7888       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7889                                         Chain, &Flag, CS.getInstruction());
7890 
7891       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7892                                                dl, DAG, AsmNodeOperands);
7893       break;
7894     }
7895     case InlineAsm::isClobber:
7896       // Add the clobbered value to the operand list, so that the register
7897       // allocator is aware that the physreg got clobbered.
7898       if (!OpInfo.AssignedRegs.Regs.empty())
7899         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7900                                                  false, 0, getCurSDLoc(), DAG,
7901                                                  AsmNodeOperands);
7902       break;
7903     }
7904   }
7905 
7906   // Finish up input operands.  Set the input chain and add the flag last.
7907   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7908   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7909 
7910   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7911                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7912   Flag = Chain.getValue(1);
7913 
7914   // If this asm returns a register value, copy the result from that register
7915   // and set it as the value of the call.
7916   if (!RetValRegs.Regs.empty()) {
7917     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7918                                              Chain, &Flag, CS.getInstruction());
7919 
7920     llvm::Type *CSResultType = CS.getType();
7921     unsigned numRet;
7922     ArrayRef<Type *> ResultTypes;
7923     SmallVector<SDValue, 1> ResultValues(1);
7924     if (CSResultType->isSingleValueType()) {
7925       numRet = 1;
7926       ResultValues[0] = Val;
7927       ResultTypes = makeArrayRef(CSResultType);
7928     } else {
7929       numRet = CSResultType->getNumContainedTypes();
7930       assert(Val->getNumOperands() == numRet &&
7931              "Mismatch in number of output operands in asm result");
7932       ResultTypes = CSResultType->subtypes();
7933       ArrayRef<SDUse> ValueUses = Val->ops();
7934       ResultValues.resize(numRet);
7935       std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(),
7936                      [](const SDUse &u) -> SDValue { return u.get(); });
7937     }
7938     SmallVector<EVT, 1> ResultVTs(numRet);
7939     for (unsigned i = 0; i < numRet; i++) {
7940       EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]);
7941       SDValue Val = ResultValues[i];
7942       assert(ResultTypes[i]->isSized() && "Unexpected unsized type");
7943       // If the type of the inline asm call site return value is different but
7944       // has same size as the type of the asm output bitcast it.  One example
7945       // of this is for vectors with different width / number of elements.
7946       // This can happen for register classes that can contain multiple
7947       // different value types.  The preg or vreg allocated may not have the
7948       // same VT as was expected.
7949       //
7950       // This can also happen for a return value that disagrees with the
7951       // register class it is put in, eg. a double in a general-purpose
7952       // register on a 32-bit machine.
7953       if (ResultVT != Val.getValueType() &&
7954           ResultVT.getSizeInBits() == Val.getValueSizeInBits())
7955         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val);
7956       else if (ResultVT != Val.getValueType() && ResultVT.isInteger() &&
7957                Val.getValueType().isInteger()) {
7958         // If a result value was tied to an input value, the computed result
7959         // may have a wider width than the expected result.  Extract the
7960         // relevant portion.
7961         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val);
7962       }
7963 
7964       assert(ResultVT == Val.getValueType() && "Asm result value mismatch!");
7965       ResultVTs[i] = ResultVT;
7966       ResultValues[i] = Val;
7967     }
7968 
7969     Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
7970                       DAG.getVTList(ResultVTs), ResultValues);
7971     setValue(CS.getInstruction(), Val);
7972     // Don't need to use this as a chain in this case.
7973     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7974       return;
7975   }
7976 
7977   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7978 
7979   // Process indirect outputs, first output all of the flagged copies out of
7980   // physregs.
7981   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7982     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7983     const Value *Ptr = IndirectStoresToEmit[i].second;
7984     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7985                                              Chain, &Flag, IA);
7986     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7987   }
7988 
7989   // Emit the non-flagged stores from the physregs.
7990   SmallVector<SDValue, 8> OutChains;
7991   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7992     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7993                                getValue(StoresToEmit[i].second),
7994                                MachinePointerInfo(StoresToEmit[i].second));
7995     OutChains.push_back(Val);
7996   }
7997 
7998   if (!OutChains.empty())
7999     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8000 
8001   DAG.setRoot(Chain);
8002 }
8003 
8004 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8005                                              const Twine &Message) {
8006   LLVMContext &Ctx = *DAG.getContext();
8007   Ctx.emitError(CS.getInstruction(), Message);
8008 
8009   // Make sure we leave the DAG in a valid state
8010   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8011   SmallVector<EVT, 1> ValueVTs;
8012   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8013 
8014   if (ValueVTs.empty())
8015     return;
8016 
8017   SmallVector<SDValue, 1> Ops;
8018   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8019     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8020 
8021   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8022 }
8023 
8024 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8025   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8026                           MVT::Other, getRoot(),
8027                           getValue(I.getArgOperand(0)),
8028                           DAG.getSrcValue(I.getArgOperand(0))));
8029 }
8030 
8031 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8032   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8033   const DataLayout &DL = DAG.getDataLayout();
8034   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
8035                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
8036                            DAG.getSrcValue(I.getOperand(0)),
8037                            DL.getABITypeAlignment(I.getType()));
8038   setValue(&I, V);
8039   DAG.setRoot(V.getValue(1));
8040 }
8041 
8042 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8043   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8044                           MVT::Other, getRoot(),
8045                           getValue(I.getArgOperand(0)),
8046                           DAG.getSrcValue(I.getArgOperand(0))));
8047 }
8048 
8049 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8050   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8051                           MVT::Other, getRoot(),
8052                           getValue(I.getArgOperand(0)),
8053                           getValue(I.getArgOperand(1)),
8054                           DAG.getSrcValue(I.getArgOperand(0)),
8055                           DAG.getSrcValue(I.getArgOperand(1))));
8056 }
8057 
8058 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8059                                                     const Instruction &I,
8060                                                     SDValue Op) {
8061   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8062   if (!Range)
8063     return Op;
8064 
8065   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8066   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8067     return Op;
8068 
8069   APInt Lo = CR.getUnsignedMin();
8070   if (!Lo.isMinValue())
8071     return Op;
8072 
8073   APInt Hi = CR.getUnsignedMax();
8074   unsigned Bits = std::max(Hi.getActiveBits(),
8075                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8076 
8077   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8078 
8079   SDLoc SL = getCurSDLoc();
8080 
8081   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8082                              DAG.getValueType(SmallVT));
8083   unsigned NumVals = Op.getNode()->getNumValues();
8084   if (NumVals == 1)
8085     return ZExt;
8086 
8087   SmallVector<SDValue, 4> Ops;
8088 
8089   Ops.push_back(ZExt);
8090   for (unsigned I = 1; I != NumVals; ++I)
8091     Ops.push_back(Op.getValue(I));
8092 
8093   return DAG.getMergeValues(Ops, SL);
8094 }
8095 
8096 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8097 /// the call being lowered.
8098 ///
8099 /// This is a helper for lowering intrinsics that follow a target calling
8100 /// convention or require stack pointer adjustment. Only a subset of the
8101 /// intrinsic's operands need to participate in the calling convention.
8102 void SelectionDAGBuilder::populateCallLoweringInfo(
8103     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
8104     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8105     bool IsPatchPoint) {
8106   TargetLowering::ArgListTy Args;
8107   Args.reserve(NumArgs);
8108 
8109   // Populate the argument list.
8110   // Attributes for args start at offset 1, after the return attribute.
8111   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8112        ArgI != ArgE; ++ArgI) {
8113     const Value *V = CS->getOperand(ArgI);
8114 
8115     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8116 
8117     TargetLowering::ArgListEntry Entry;
8118     Entry.Node = getValue(V);
8119     Entry.Ty = V->getType();
8120     Entry.setAttributes(&CS, ArgI);
8121     Args.push_back(Entry);
8122   }
8123 
8124   CLI.setDebugLoc(getCurSDLoc())
8125       .setChain(getRoot())
8126       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
8127       .setDiscardResult(CS->use_empty())
8128       .setIsPatchPoint(IsPatchPoint);
8129 }
8130 
8131 /// Add a stack map intrinsic call's live variable operands to a stackmap
8132 /// or patchpoint target node's operand list.
8133 ///
8134 /// Constants are converted to TargetConstants purely as an optimization to
8135 /// avoid constant materialization and register allocation.
8136 ///
8137 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8138 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8139 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8140 /// address materialization and register allocation, but may also be required
8141 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8142 /// alloca in the entry block, then the runtime may assume that the alloca's
8143 /// StackMap location can be read immediately after compilation and that the
8144 /// location is valid at any point during execution (this is similar to the
8145 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8146 /// only available in a register, then the runtime would need to trap when
8147 /// execution reaches the StackMap in order to read the alloca's location.
8148 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8149                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8150                                 SelectionDAGBuilder &Builder) {
8151   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8152     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8153     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8154       Ops.push_back(
8155         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8156       Ops.push_back(
8157         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8158     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8159       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8160       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8161           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8162     } else
8163       Ops.push_back(OpVal);
8164   }
8165 }
8166 
8167 /// Lower llvm.experimental.stackmap directly to its target opcode.
8168 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8169   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8170   //                                  [live variables...])
8171 
8172   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8173 
8174   SDValue Chain, InFlag, Callee, NullPtr;
8175   SmallVector<SDValue, 32> Ops;
8176 
8177   SDLoc DL = getCurSDLoc();
8178   Callee = getValue(CI.getCalledValue());
8179   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8180 
8181   // The stackmap intrinsic only records the live variables (the arguemnts
8182   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8183   // intrinsic, this won't be lowered to a function call. This means we don't
8184   // have to worry about calling conventions and target specific lowering code.
8185   // Instead we perform the call lowering right here.
8186   //
8187   // chain, flag = CALLSEQ_START(chain, 0, 0)
8188   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8189   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8190   //
8191   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8192   InFlag = Chain.getValue(1);
8193 
8194   // Add the <id> and <numBytes> constants.
8195   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8196   Ops.push_back(DAG.getTargetConstant(
8197                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8198   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8199   Ops.push_back(DAG.getTargetConstant(
8200                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8201                   MVT::i32));
8202 
8203   // Push live variables for the stack map.
8204   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8205 
8206   // We are not pushing any register mask info here on the operands list,
8207   // because the stackmap doesn't clobber anything.
8208 
8209   // Push the chain and the glue flag.
8210   Ops.push_back(Chain);
8211   Ops.push_back(InFlag);
8212 
8213   // Create the STACKMAP node.
8214   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8215   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8216   Chain = SDValue(SM, 0);
8217   InFlag = Chain.getValue(1);
8218 
8219   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8220 
8221   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8222 
8223   // Set the root to the target-lowered call chain.
8224   DAG.setRoot(Chain);
8225 
8226   // Inform the Frame Information that we have a stackmap in this function.
8227   FuncInfo.MF->getFrameInfo().setHasStackMap();
8228 }
8229 
8230 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8231 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8232                                           const BasicBlock *EHPadBB) {
8233   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8234   //                                                 i32 <numBytes>,
8235   //                                                 i8* <target>,
8236   //                                                 i32 <numArgs>,
8237   //                                                 [Args...],
8238   //                                                 [live variables...])
8239 
8240   CallingConv::ID CC = CS.getCallingConv();
8241   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8242   bool HasDef = !CS->getType()->isVoidTy();
8243   SDLoc dl = getCurSDLoc();
8244   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8245 
8246   // Handle immediate and symbolic callees.
8247   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8248     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8249                                    /*isTarget=*/true);
8250   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8251     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8252                                          SDLoc(SymbolicCallee),
8253                                          SymbolicCallee->getValueType(0));
8254 
8255   // Get the real number of arguments participating in the call <numArgs>
8256   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8257   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8258 
8259   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8260   // Intrinsics include all meta-operands up to but not including CC.
8261   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8262   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8263          "Not enough arguments provided to the patchpoint intrinsic");
8264 
8265   // For AnyRegCC the arguments are lowered later on manually.
8266   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8267   Type *ReturnTy =
8268     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8269 
8270   TargetLowering::CallLoweringInfo CLI(DAG);
8271   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8272                            true);
8273   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8274 
8275   SDNode *CallEnd = Result.second.getNode();
8276   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8277     CallEnd = CallEnd->getOperand(0).getNode();
8278 
8279   /// Get a call instruction from the call sequence chain.
8280   /// Tail calls are not allowed.
8281   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8282          "Expected a callseq node.");
8283   SDNode *Call = CallEnd->getOperand(0).getNode();
8284   bool HasGlue = Call->getGluedNode();
8285 
8286   // Replace the target specific call node with the patchable intrinsic.
8287   SmallVector<SDValue, 8> Ops;
8288 
8289   // Add the <id> and <numBytes> constants.
8290   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8291   Ops.push_back(DAG.getTargetConstant(
8292                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8293   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8294   Ops.push_back(DAG.getTargetConstant(
8295                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8296                   MVT::i32));
8297 
8298   // Add the callee.
8299   Ops.push_back(Callee);
8300 
8301   // Adjust <numArgs> to account for any arguments that have been passed on the
8302   // stack instead.
8303   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8304   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8305   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8306   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8307 
8308   // Add the calling convention
8309   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8310 
8311   // Add the arguments we omitted previously. The register allocator should
8312   // place these in any free register.
8313   if (IsAnyRegCC)
8314     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8315       Ops.push_back(getValue(CS.getArgument(i)));
8316 
8317   // Push the arguments from the call instruction up to the register mask.
8318   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8319   Ops.append(Call->op_begin() + 2, e);
8320 
8321   // Push live variables for the stack map.
8322   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8323 
8324   // Push the register mask info.
8325   if (HasGlue)
8326     Ops.push_back(*(Call->op_end()-2));
8327   else
8328     Ops.push_back(*(Call->op_end()-1));
8329 
8330   // Push the chain (this is originally the first operand of the call, but
8331   // becomes now the last or second to last operand).
8332   Ops.push_back(*(Call->op_begin()));
8333 
8334   // Push the glue flag (last operand).
8335   if (HasGlue)
8336     Ops.push_back(*(Call->op_end()-1));
8337 
8338   SDVTList NodeTys;
8339   if (IsAnyRegCC && HasDef) {
8340     // Create the return types based on the intrinsic definition
8341     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8342     SmallVector<EVT, 3> ValueVTs;
8343     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8344     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8345 
8346     // There is always a chain and a glue type at the end
8347     ValueVTs.push_back(MVT::Other);
8348     ValueVTs.push_back(MVT::Glue);
8349     NodeTys = DAG.getVTList(ValueVTs);
8350   } else
8351     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8352 
8353   // Replace the target specific call node with a PATCHPOINT node.
8354   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8355                                          dl, NodeTys, Ops);
8356 
8357   // Update the NodeMap.
8358   if (HasDef) {
8359     if (IsAnyRegCC)
8360       setValue(CS.getInstruction(), SDValue(MN, 0));
8361     else
8362       setValue(CS.getInstruction(), Result.first);
8363   }
8364 
8365   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8366   // call sequence. Furthermore the location of the chain and glue can change
8367   // when the AnyReg calling convention is used and the intrinsic returns a
8368   // value.
8369   if (IsAnyRegCC && HasDef) {
8370     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8371     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8372     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8373   } else
8374     DAG.ReplaceAllUsesWith(Call, MN);
8375   DAG.DeleteNode(Call);
8376 
8377   // Inform the Frame Information that we have a patchpoint in this function.
8378   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8379 }
8380 
8381 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8382                                             unsigned Intrinsic) {
8383   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8384   SDValue Op1 = getValue(I.getArgOperand(0));
8385   SDValue Op2;
8386   if (I.getNumArgOperands() > 1)
8387     Op2 = getValue(I.getArgOperand(1));
8388   SDLoc dl = getCurSDLoc();
8389   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8390   SDValue Res;
8391   FastMathFlags FMF;
8392   if (isa<FPMathOperator>(I))
8393     FMF = I.getFastMathFlags();
8394 
8395   switch (Intrinsic) {
8396   case Intrinsic::experimental_vector_reduce_fadd:
8397     if (FMF.isFast())
8398       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8399     else
8400       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8401     break;
8402   case Intrinsic::experimental_vector_reduce_fmul:
8403     if (FMF.isFast())
8404       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8405     else
8406       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8407     break;
8408   case Intrinsic::experimental_vector_reduce_add:
8409     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8410     break;
8411   case Intrinsic::experimental_vector_reduce_mul:
8412     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8413     break;
8414   case Intrinsic::experimental_vector_reduce_and:
8415     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8416     break;
8417   case Intrinsic::experimental_vector_reduce_or:
8418     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8419     break;
8420   case Intrinsic::experimental_vector_reduce_xor:
8421     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8422     break;
8423   case Intrinsic::experimental_vector_reduce_smax:
8424     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8425     break;
8426   case Intrinsic::experimental_vector_reduce_smin:
8427     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8428     break;
8429   case Intrinsic::experimental_vector_reduce_umax:
8430     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8431     break;
8432   case Intrinsic::experimental_vector_reduce_umin:
8433     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8434     break;
8435   case Intrinsic::experimental_vector_reduce_fmax:
8436     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8437     break;
8438   case Intrinsic::experimental_vector_reduce_fmin:
8439     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8440     break;
8441   default:
8442     llvm_unreachable("Unhandled vector reduce intrinsic");
8443   }
8444   setValue(&I, Res);
8445 }
8446 
8447 /// Returns an AttributeList representing the attributes applied to the return
8448 /// value of the given call.
8449 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8450   SmallVector<Attribute::AttrKind, 2> Attrs;
8451   if (CLI.RetSExt)
8452     Attrs.push_back(Attribute::SExt);
8453   if (CLI.RetZExt)
8454     Attrs.push_back(Attribute::ZExt);
8455   if (CLI.IsInReg)
8456     Attrs.push_back(Attribute::InReg);
8457 
8458   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8459                             Attrs);
8460 }
8461 
8462 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8463 /// implementation, which just calls LowerCall.
8464 /// FIXME: When all targets are
8465 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8466 std::pair<SDValue, SDValue>
8467 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8468   // Handle the incoming return values from the call.
8469   CLI.Ins.clear();
8470   Type *OrigRetTy = CLI.RetTy;
8471   SmallVector<EVT, 4> RetTys;
8472   SmallVector<uint64_t, 4> Offsets;
8473   auto &DL = CLI.DAG.getDataLayout();
8474   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8475 
8476   if (CLI.IsPostTypeLegalization) {
8477     // If we are lowering a libcall after legalization, split the return type.
8478     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8479     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8480     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8481       EVT RetVT = OldRetTys[i];
8482       uint64_t Offset = OldOffsets[i];
8483       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8484       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8485       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8486       RetTys.append(NumRegs, RegisterVT);
8487       for (unsigned j = 0; j != NumRegs; ++j)
8488         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8489     }
8490   }
8491 
8492   SmallVector<ISD::OutputArg, 4> Outs;
8493   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8494 
8495   bool CanLowerReturn =
8496       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8497                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8498 
8499   SDValue DemoteStackSlot;
8500   int DemoteStackIdx = -100;
8501   if (!CanLowerReturn) {
8502     // FIXME: equivalent assert?
8503     // assert(!CS.hasInAllocaArgument() &&
8504     //        "sret demotion is incompatible with inalloca");
8505     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8506     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8507     MachineFunction &MF = CLI.DAG.getMachineFunction();
8508     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8509     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8510                                               DL.getAllocaAddrSpace());
8511 
8512     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8513     ArgListEntry Entry;
8514     Entry.Node = DemoteStackSlot;
8515     Entry.Ty = StackSlotPtrType;
8516     Entry.IsSExt = false;
8517     Entry.IsZExt = false;
8518     Entry.IsInReg = false;
8519     Entry.IsSRet = true;
8520     Entry.IsNest = false;
8521     Entry.IsByVal = false;
8522     Entry.IsReturned = false;
8523     Entry.IsSwiftSelf = false;
8524     Entry.IsSwiftError = false;
8525     Entry.Alignment = Align;
8526     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8527     CLI.NumFixedArgs += 1;
8528     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8529 
8530     // sret demotion isn't compatible with tail-calls, since the sret argument
8531     // points into the callers stack frame.
8532     CLI.IsTailCall = false;
8533   } else {
8534     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8535       EVT VT = RetTys[I];
8536       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8537                                                      CLI.CallConv, VT);
8538       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8539                                                        CLI.CallConv, VT);
8540       for (unsigned i = 0; i != NumRegs; ++i) {
8541         ISD::InputArg MyFlags;
8542         MyFlags.VT = RegisterVT;
8543         MyFlags.ArgVT = VT;
8544         MyFlags.Used = CLI.IsReturnValueUsed;
8545         if (CLI.RetSExt)
8546           MyFlags.Flags.setSExt();
8547         if (CLI.RetZExt)
8548           MyFlags.Flags.setZExt();
8549         if (CLI.IsInReg)
8550           MyFlags.Flags.setInReg();
8551         CLI.Ins.push_back(MyFlags);
8552       }
8553     }
8554   }
8555 
8556   // We push in swifterror return as the last element of CLI.Ins.
8557   ArgListTy &Args = CLI.getArgs();
8558   if (supportSwiftError()) {
8559     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8560       if (Args[i].IsSwiftError) {
8561         ISD::InputArg MyFlags;
8562         MyFlags.VT = getPointerTy(DL);
8563         MyFlags.ArgVT = EVT(getPointerTy(DL));
8564         MyFlags.Flags.setSwiftError();
8565         CLI.Ins.push_back(MyFlags);
8566       }
8567     }
8568   }
8569 
8570   // Handle all of the outgoing arguments.
8571   CLI.Outs.clear();
8572   CLI.OutVals.clear();
8573   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8574     SmallVector<EVT, 4> ValueVTs;
8575     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8576     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8577     Type *FinalType = Args[i].Ty;
8578     if (Args[i].IsByVal)
8579       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8580     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8581         FinalType, CLI.CallConv, CLI.IsVarArg);
8582     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8583          ++Value) {
8584       EVT VT = ValueVTs[Value];
8585       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8586       SDValue Op = SDValue(Args[i].Node.getNode(),
8587                            Args[i].Node.getResNo() + Value);
8588       ISD::ArgFlagsTy Flags;
8589 
8590       // Certain targets (such as MIPS), may have a different ABI alignment
8591       // for a type depending on the context. Give the target a chance to
8592       // specify the alignment it wants.
8593       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8594 
8595       if (Args[i].IsZExt)
8596         Flags.setZExt();
8597       if (Args[i].IsSExt)
8598         Flags.setSExt();
8599       if (Args[i].IsInReg) {
8600         // If we are using vectorcall calling convention, a structure that is
8601         // passed InReg - is surely an HVA
8602         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8603             isa<StructType>(FinalType)) {
8604           // The first value of a structure is marked
8605           if (0 == Value)
8606             Flags.setHvaStart();
8607           Flags.setHva();
8608         }
8609         // Set InReg Flag
8610         Flags.setInReg();
8611       }
8612       if (Args[i].IsSRet)
8613         Flags.setSRet();
8614       if (Args[i].IsSwiftSelf)
8615         Flags.setSwiftSelf();
8616       if (Args[i].IsSwiftError)
8617         Flags.setSwiftError();
8618       if (Args[i].IsByVal)
8619         Flags.setByVal();
8620       if (Args[i].IsInAlloca) {
8621         Flags.setInAlloca();
8622         // Set the byval flag for CCAssignFn callbacks that don't know about
8623         // inalloca.  This way we can know how many bytes we should've allocated
8624         // and how many bytes a callee cleanup function will pop.  If we port
8625         // inalloca to more targets, we'll have to add custom inalloca handling
8626         // in the various CC lowering callbacks.
8627         Flags.setByVal();
8628       }
8629       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8630         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8631         Type *ElementTy = Ty->getElementType();
8632         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8633         // For ByVal, alignment should come from FE.  BE will guess if this
8634         // info is not there but there are cases it cannot get right.
8635         unsigned FrameAlign;
8636         if (Args[i].Alignment)
8637           FrameAlign = Args[i].Alignment;
8638         else
8639           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8640         Flags.setByValAlign(FrameAlign);
8641       }
8642       if (Args[i].IsNest)
8643         Flags.setNest();
8644       if (NeedsRegBlock)
8645         Flags.setInConsecutiveRegs();
8646       Flags.setOrigAlign(OriginalAlignment);
8647 
8648       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8649                                                  CLI.CallConv, VT);
8650       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8651                                                         CLI.CallConv, VT);
8652       SmallVector<SDValue, 4> Parts(NumParts);
8653       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8654 
8655       if (Args[i].IsSExt)
8656         ExtendKind = ISD::SIGN_EXTEND;
8657       else if (Args[i].IsZExt)
8658         ExtendKind = ISD::ZERO_EXTEND;
8659 
8660       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8661       // for now.
8662       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8663           CanLowerReturn) {
8664         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8665                "unexpected use of 'returned'");
8666         // Before passing 'returned' to the target lowering code, ensure that
8667         // either the register MVT and the actual EVT are the same size or that
8668         // the return value and argument are extended in the same way; in these
8669         // cases it's safe to pass the argument register value unchanged as the
8670         // return register value (although it's at the target's option whether
8671         // to do so)
8672         // TODO: allow code generation to take advantage of partially preserved
8673         // registers rather than clobbering the entire register when the
8674         // parameter extension method is not compatible with the return
8675         // extension method
8676         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8677             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8678              CLI.RetZExt == Args[i].IsZExt))
8679           Flags.setReturned();
8680       }
8681 
8682       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8683                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8684 
8685       for (unsigned j = 0; j != NumParts; ++j) {
8686         // if it isn't first piece, alignment must be 1
8687         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8688                                i < CLI.NumFixedArgs,
8689                                i, j*Parts[j].getValueType().getStoreSize());
8690         if (NumParts > 1 && j == 0)
8691           MyFlags.Flags.setSplit();
8692         else if (j != 0) {
8693           MyFlags.Flags.setOrigAlign(1);
8694           if (j == NumParts - 1)
8695             MyFlags.Flags.setSplitEnd();
8696         }
8697 
8698         CLI.Outs.push_back(MyFlags);
8699         CLI.OutVals.push_back(Parts[j]);
8700       }
8701 
8702       if (NeedsRegBlock && Value == NumValues - 1)
8703         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8704     }
8705   }
8706 
8707   SmallVector<SDValue, 4> InVals;
8708   CLI.Chain = LowerCall(CLI, InVals);
8709 
8710   // Update CLI.InVals to use outside of this function.
8711   CLI.InVals = InVals;
8712 
8713   // Verify that the target's LowerCall behaved as expected.
8714   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8715          "LowerCall didn't return a valid chain!");
8716   assert((!CLI.IsTailCall || InVals.empty()) &&
8717          "LowerCall emitted a return value for a tail call!");
8718   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8719          "LowerCall didn't emit the correct number of values!");
8720 
8721   // For a tail call, the return value is merely live-out and there aren't
8722   // any nodes in the DAG representing it. Return a special value to
8723   // indicate that a tail call has been emitted and no more Instructions
8724   // should be processed in the current block.
8725   if (CLI.IsTailCall) {
8726     CLI.DAG.setRoot(CLI.Chain);
8727     return std::make_pair(SDValue(), SDValue());
8728   }
8729 
8730 #ifndef NDEBUG
8731   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8732     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8733     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8734            "LowerCall emitted a value with the wrong type!");
8735   }
8736 #endif
8737 
8738   SmallVector<SDValue, 4> ReturnValues;
8739   if (!CanLowerReturn) {
8740     // The instruction result is the result of loading from the
8741     // hidden sret parameter.
8742     SmallVector<EVT, 1> PVTs;
8743     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8744 
8745     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8746     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8747     EVT PtrVT = PVTs[0];
8748 
8749     unsigned NumValues = RetTys.size();
8750     ReturnValues.resize(NumValues);
8751     SmallVector<SDValue, 4> Chains(NumValues);
8752 
8753     // An aggregate return value cannot wrap around the address space, so
8754     // offsets to its parts don't wrap either.
8755     SDNodeFlags Flags;
8756     Flags.setNoUnsignedWrap(true);
8757 
8758     for (unsigned i = 0; i < NumValues; ++i) {
8759       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8760                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8761                                                         PtrVT), Flags);
8762       SDValue L = CLI.DAG.getLoad(
8763           RetTys[i], CLI.DL, CLI.Chain, Add,
8764           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8765                                             DemoteStackIdx, Offsets[i]),
8766           /* Alignment = */ 1);
8767       ReturnValues[i] = L;
8768       Chains[i] = L.getValue(1);
8769     }
8770 
8771     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8772   } else {
8773     // Collect the legal value parts into potentially illegal values
8774     // that correspond to the original function's return values.
8775     Optional<ISD::NodeType> AssertOp;
8776     if (CLI.RetSExt)
8777       AssertOp = ISD::AssertSext;
8778     else if (CLI.RetZExt)
8779       AssertOp = ISD::AssertZext;
8780     unsigned CurReg = 0;
8781     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8782       EVT VT = RetTys[I];
8783       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8784                                                      CLI.CallConv, VT);
8785       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8786                                                        CLI.CallConv, VT);
8787 
8788       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8789                                               NumRegs, RegisterVT, VT, nullptr,
8790                                               CLI.CallConv, AssertOp));
8791       CurReg += NumRegs;
8792     }
8793 
8794     // For a function returning void, there is no return value. We can't create
8795     // such a node, so we just return a null return value in that case. In
8796     // that case, nothing will actually look at the value.
8797     if (ReturnValues.empty())
8798       return std::make_pair(SDValue(), CLI.Chain);
8799   }
8800 
8801   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8802                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8803   return std::make_pair(Res, CLI.Chain);
8804 }
8805 
8806 void TargetLowering::LowerOperationWrapper(SDNode *N,
8807                                            SmallVectorImpl<SDValue> &Results,
8808                                            SelectionDAG &DAG) const {
8809   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8810     Results.push_back(Res);
8811 }
8812 
8813 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8814   llvm_unreachable("LowerOperation not implemented for this target!");
8815 }
8816 
8817 void
8818 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8819   SDValue Op = getNonRegisterValue(V);
8820   assert((Op.getOpcode() != ISD::CopyFromReg ||
8821           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8822          "Copy from a reg to the same reg!");
8823   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8824 
8825   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8826   // If this is an InlineAsm we have to match the registers required, not the
8827   // notional registers required by the type.
8828 
8829   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
8830                    None); // This is not an ABI copy.
8831   SDValue Chain = DAG.getEntryNode();
8832 
8833   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8834                               FuncInfo.PreferredExtendType.end())
8835                                  ? ISD::ANY_EXTEND
8836                                  : FuncInfo.PreferredExtendType[V];
8837   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8838   PendingExports.push_back(Chain);
8839 }
8840 
8841 #include "llvm/CodeGen/SelectionDAGISel.h"
8842 
8843 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8844 /// entry block, return true.  This includes arguments used by switches, since
8845 /// the switch may expand into multiple basic blocks.
8846 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8847   // With FastISel active, we may be splitting blocks, so force creation
8848   // of virtual registers for all non-dead arguments.
8849   if (FastISel)
8850     return A->use_empty();
8851 
8852   const BasicBlock &Entry = A->getParent()->front();
8853   for (const User *U : A->users())
8854     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8855       return false;  // Use not in entry block.
8856 
8857   return true;
8858 }
8859 
8860 using ArgCopyElisionMapTy =
8861     DenseMap<const Argument *,
8862              std::pair<const AllocaInst *, const StoreInst *>>;
8863 
8864 /// Scan the entry block of the function in FuncInfo for arguments that look
8865 /// like copies into a local alloca. Record any copied arguments in
8866 /// ArgCopyElisionCandidates.
8867 static void
8868 findArgumentCopyElisionCandidates(const DataLayout &DL,
8869                                   FunctionLoweringInfo *FuncInfo,
8870                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8871   // Record the state of every static alloca used in the entry block. Argument
8872   // allocas are all used in the entry block, so we need approximately as many
8873   // entries as we have arguments.
8874   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8875   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8876   unsigned NumArgs = FuncInfo->Fn->arg_size();
8877   StaticAllocas.reserve(NumArgs * 2);
8878 
8879   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8880     if (!V)
8881       return nullptr;
8882     V = V->stripPointerCasts();
8883     const auto *AI = dyn_cast<AllocaInst>(V);
8884     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8885       return nullptr;
8886     auto Iter = StaticAllocas.insert({AI, Unknown});
8887     return &Iter.first->second;
8888   };
8889 
8890   // Look for stores of arguments to static allocas. Look through bitcasts and
8891   // GEPs to handle type coercions, as long as the alloca is fully initialized
8892   // by the store. Any non-store use of an alloca escapes it and any subsequent
8893   // unanalyzed store might write it.
8894   // FIXME: Handle structs initialized with multiple stores.
8895   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8896     // Look for stores, and handle non-store uses conservatively.
8897     const auto *SI = dyn_cast<StoreInst>(&I);
8898     if (!SI) {
8899       // We will look through cast uses, so ignore them completely.
8900       if (I.isCast())
8901         continue;
8902       // Ignore debug info intrinsics, they don't escape or store to allocas.
8903       if (isa<DbgInfoIntrinsic>(I))
8904         continue;
8905       // This is an unknown instruction. Assume it escapes or writes to all
8906       // static alloca operands.
8907       for (const Use &U : I.operands()) {
8908         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8909           *Info = StaticAllocaInfo::Clobbered;
8910       }
8911       continue;
8912     }
8913 
8914     // If the stored value is a static alloca, mark it as escaped.
8915     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8916       *Info = StaticAllocaInfo::Clobbered;
8917 
8918     // Check if the destination is a static alloca.
8919     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8920     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8921     if (!Info)
8922       continue;
8923     const AllocaInst *AI = cast<AllocaInst>(Dst);
8924 
8925     // Skip allocas that have been initialized or clobbered.
8926     if (*Info != StaticAllocaInfo::Unknown)
8927       continue;
8928 
8929     // Check if the stored value is an argument, and that this store fully
8930     // initializes the alloca. Don't elide copies from the same argument twice.
8931     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8932     const auto *Arg = dyn_cast<Argument>(Val);
8933     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8934         Arg->getType()->isEmptyTy() ||
8935         DL.getTypeStoreSize(Arg->getType()) !=
8936             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8937         ArgCopyElisionCandidates.count(Arg)) {
8938       *Info = StaticAllocaInfo::Clobbered;
8939       continue;
8940     }
8941 
8942     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8943                       << '\n');
8944 
8945     // Mark this alloca and store for argument copy elision.
8946     *Info = StaticAllocaInfo::Elidable;
8947     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8948 
8949     // Stop scanning if we've seen all arguments. This will happen early in -O0
8950     // builds, which is useful, because -O0 builds have large entry blocks and
8951     // many allocas.
8952     if (ArgCopyElisionCandidates.size() == NumArgs)
8953       break;
8954   }
8955 }
8956 
8957 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8958 /// ArgVal is a load from a suitable fixed stack object.
8959 static void tryToElideArgumentCopy(
8960     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8961     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8962     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8963     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8964     SDValue ArgVal, bool &ArgHasUses) {
8965   // Check if this is a load from a fixed stack object.
8966   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8967   if (!LNode)
8968     return;
8969   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8970   if (!FINode)
8971     return;
8972 
8973   // Check that the fixed stack object is the right size and alignment.
8974   // Look at the alignment that the user wrote on the alloca instead of looking
8975   // at the stack object.
8976   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8977   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8978   const AllocaInst *AI = ArgCopyIter->second.first;
8979   int FixedIndex = FINode->getIndex();
8980   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8981   int OldIndex = AllocaIndex;
8982   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8983   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8984     LLVM_DEBUG(
8985         dbgs() << "  argument copy elision failed due to bad fixed stack "
8986                   "object size\n");
8987     return;
8988   }
8989   unsigned RequiredAlignment = AI->getAlignment();
8990   if (!RequiredAlignment) {
8991     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8992         AI->getAllocatedType());
8993   }
8994   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8995     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8996                          "greater than stack argument alignment ("
8997                       << RequiredAlignment << " vs "
8998                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8999     return;
9000   }
9001 
9002   // Perform the elision. Delete the old stack object and replace its only use
9003   // in the variable info map. Mark the stack object as mutable.
9004   LLVM_DEBUG({
9005     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9006            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9007            << '\n';
9008   });
9009   MFI.RemoveStackObject(OldIndex);
9010   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9011   AllocaIndex = FixedIndex;
9012   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9013   Chains.push_back(ArgVal.getValue(1));
9014 
9015   // Avoid emitting code for the store implementing the copy.
9016   const StoreInst *SI = ArgCopyIter->second.second;
9017   ElidedArgCopyInstrs.insert(SI);
9018 
9019   // Check for uses of the argument again so that we can avoid exporting ArgVal
9020   // if it is't used by anything other than the store.
9021   for (const Value *U : Arg.users()) {
9022     if (U != SI) {
9023       ArgHasUses = true;
9024       break;
9025     }
9026   }
9027 }
9028 
9029 void SelectionDAGISel::LowerArguments(const Function &F) {
9030   SelectionDAG &DAG = SDB->DAG;
9031   SDLoc dl = SDB->getCurSDLoc();
9032   const DataLayout &DL = DAG.getDataLayout();
9033   SmallVector<ISD::InputArg, 16> Ins;
9034 
9035   if (!FuncInfo->CanLowerReturn) {
9036     // Put in an sret pointer parameter before all the other parameters.
9037     SmallVector<EVT, 1> ValueVTs;
9038     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9039                     F.getReturnType()->getPointerTo(
9040                         DAG.getDataLayout().getAllocaAddrSpace()),
9041                     ValueVTs);
9042 
9043     // NOTE: Assuming that a pointer will never break down to more than one VT
9044     // or one register.
9045     ISD::ArgFlagsTy Flags;
9046     Flags.setSRet();
9047     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9048     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9049                          ISD::InputArg::NoArgIndex, 0);
9050     Ins.push_back(RetArg);
9051   }
9052 
9053   // Look for stores of arguments to static allocas. Mark such arguments with a
9054   // flag to ask the target to give us the memory location of that argument if
9055   // available.
9056   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9057   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9058 
9059   // Set up the incoming argument description vector.
9060   for (const Argument &Arg : F.args()) {
9061     unsigned ArgNo = Arg.getArgNo();
9062     SmallVector<EVT, 4> ValueVTs;
9063     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9064     bool isArgValueUsed = !Arg.use_empty();
9065     unsigned PartBase = 0;
9066     Type *FinalType = Arg.getType();
9067     if (Arg.hasAttribute(Attribute::ByVal))
9068       FinalType = cast<PointerType>(FinalType)->getElementType();
9069     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9070         FinalType, F.getCallingConv(), F.isVarArg());
9071     for (unsigned Value = 0, NumValues = ValueVTs.size();
9072          Value != NumValues; ++Value) {
9073       EVT VT = ValueVTs[Value];
9074       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9075       ISD::ArgFlagsTy Flags;
9076 
9077       // Certain targets (such as MIPS), may have a different ABI alignment
9078       // for a type depending on the context. Give the target a chance to
9079       // specify the alignment it wants.
9080       unsigned OriginalAlignment =
9081           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9082 
9083       if (Arg.hasAttribute(Attribute::ZExt))
9084         Flags.setZExt();
9085       if (Arg.hasAttribute(Attribute::SExt))
9086         Flags.setSExt();
9087       if (Arg.hasAttribute(Attribute::InReg)) {
9088         // If we are using vectorcall calling convention, a structure that is
9089         // passed InReg - is surely an HVA
9090         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9091             isa<StructType>(Arg.getType())) {
9092           // The first value of a structure is marked
9093           if (0 == Value)
9094             Flags.setHvaStart();
9095           Flags.setHva();
9096         }
9097         // Set InReg Flag
9098         Flags.setInReg();
9099       }
9100       if (Arg.hasAttribute(Attribute::StructRet))
9101         Flags.setSRet();
9102       if (Arg.hasAttribute(Attribute::SwiftSelf))
9103         Flags.setSwiftSelf();
9104       if (Arg.hasAttribute(Attribute::SwiftError))
9105         Flags.setSwiftError();
9106       if (Arg.hasAttribute(Attribute::ByVal))
9107         Flags.setByVal();
9108       if (Arg.hasAttribute(Attribute::InAlloca)) {
9109         Flags.setInAlloca();
9110         // Set the byval flag for CCAssignFn callbacks that don't know about
9111         // inalloca.  This way we can know how many bytes we should've allocated
9112         // and how many bytes a callee cleanup function will pop.  If we port
9113         // inalloca to more targets, we'll have to add custom inalloca handling
9114         // in the various CC lowering callbacks.
9115         Flags.setByVal();
9116       }
9117       if (F.getCallingConv() == CallingConv::X86_INTR) {
9118         // IA Interrupt passes frame (1st parameter) by value in the stack.
9119         if (ArgNo == 0)
9120           Flags.setByVal();
9121       }
9122       if (Flags.isByVal() || Flags.isInAlloca()) {
9123         PointerType *Ty = cast<PointerType>(Arg.getType());
9124         Type *ElementTy = Ty->getElementType();
9125         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9126         // For ByVal, alignment should be passed from FE.  BE will guess if
9127         // this info is not there but there are cases it cannot get right.
9128         unsigned FrameAlign;
9129         if (Arg.getParamAlignment())
9130           FrameAlign = Arg.getParamAlignment();
9131         else
9132           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9133         Flags.setByValAlign(FrameAlign);
9134       }
9135       if (Arg.hasAttribute(Attribute::Nest))
9136         Flags.setNest();
9137       if (NeedsRegBlock)
9138         Flags.setInConsecutiveRegs();
9139       Flags.setOrigAlign(OriginalAlignment);
9140       if (ArgCopyElisionCandidates.count(&Arg))
9141         Flags.setCopyElisionCandidate();
9142 
9143       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9144           *CurDAG->getContext(), F.getCallingConv(), VT);
9145       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9146           *CurDAG->getContext(), F.getCallingConv(), VT);
9147       for (unsigned i = 0; i != NumRegs; ++i) {
9148         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9149                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9150         if (NumRegs > 1 && i == 0)
9151           MyFlags.Flags.setSplit();
9152         // if it isn't first piece, alignment must be 1
9153         else if (i > 0) {
9154           MyFlags.Flags.setOrigAlign(1);
9155           if (i == NumRegs - 1)
9156             MyFlags.Flags.setSplitEnd();
9157         }
9158         Ins.push_back(MyFlags);
9159       }
9160       if (NeedsRegBlock && Value == NumValues - 1)
9161         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9162       PartBase += VT.getStoreSize();
9163     }
9164   }
9165 
9166   // Call the target to set up the argument values.
9167   SmallVector<SDValue, 8> InVals;
9168   SDValue NewRoot = TLI->LowerFormalArguments(
9169       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9170 
9171   // Verify that the target's LowerFormalArguments behaved as expected.
9172   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9173          "LowerFormalArguments didn't return a valid chain!");
9174   assert(InVals.size() == Ins.size() &&
9175          "LowerFormalArguments didn't emit the correct number of values!");
9176   LLVM_DEBUG({
9177     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9178       assert(InVals[i].getNode() &&
9179              "LowerFormalArguments emitted a null value!");
9180       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9181              "LowerFormalArguments emitted a value with the wrong type!");
9182     }
9183   });
9184 
9185   // Update the DAG with the new chain value resulting from argument lowering.
9186   DAG.setRoot(NewRoot);
9187 
9188   // Set up the argument values.
9189   unsigned i = 0;
9190   if (!FuncInfo->CanLowerReturn) {
9191     // Create a virtual register for the sret pointer, and put in a copy
9192     // from the sret argument into it.
9193     SmallVector<EVT, 1> ValueVTs;
9194     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9195                     F.getReturnType()->getPointerTo(
9196                         DAG.getDataLayout().getAllocaAddrSpace()),
9197                     ValueVTs);
9198     MVT VT = ValueVTs[0].getSimpleVT();
9199     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9200     Optional<ISD::NodeType> AssertOp = None;
9201     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9202                                         nullptr, F.getCallingConv(), AssertOp);
9203 
9204     MachineFunction& MF = SDB->DAG.getMachineFunction();
9205     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9206     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9207     FuncInfo->DemoteRegister = SRetReg;
9208     NewRoot =
9209         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9210     DAG.setRoot(NewRoot);
9211 
9212     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9213     ++i;
9214   }
9215 
9216   SmallVector<SDValue, 4> Chains;
9217   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9218   for (const Argument &Arg : F.args()) {
9219     SmallVector<SDValue, 4> ArgValues;
9220     SmallVector<EVT, 4> ValueVTs;
9221     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9222     unsigned NumValues = ValueVTs.size();
9223     if (NumValues == 0)
9224       continue;
9225 
9226     bool ArgHasUses = !Arg.use_empty();
9227 
9228     // Elide the copying store if the target loaded this argument from a
9229     // suitable fixed stack object.
9230     if (Ins[i].Flags.isCopyElisionCandidate()) {
9231       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9232                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9233                              InVals[i], ArgHasUses);
9234     }
9235 
9236     // If this argument is unused then remember its value. It is used to generate
9237     // debugging information.
9238     bool isSwiftErrorArg =
9239         TLI->supportSwiftError() &&
9240         Arg.hasAttribute(Attribute::SwiftError);
9241     if (!ArgHasUses && !isSwiftErrorArg) {
9242       SDB->setUnusedArgValue(&Arg, InVals[i]);
9243 
9244       // Also remember any frame index for use in FastISel.
9245       if (FrameIndexSDNode *FI =
9246           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9247         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9248     }
9249 
9250     for (unsigned Val = 0; Val != NumValues; ++Val) {
9251       EVT VT = ValueVTs[Val];
9252       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9253                                                       F.getCallingConv(), VT);
9254       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9255           *CurDAG->getContext(), F.getCallingConv(), VT);
9256 
9257       // Even an apparant 'unused' swifterror argument needs to be returned. So
9258       // we do generate a copy for it that can be used on return from the
9259       // function.
9260       if (ArgHasUses || isSwiftErrorArg) {
9261         Optional<ISD::NodeType> AssertOp;
9262         if (Arg.hasAttribute(Attribute::SExt))
9263           AssertOp = ISD::AssertSext;
9264         else if (Arg.hasAttribute(Attribute::ZExt))
9265           AssertOp = ISD::AssertZext;
9266 
9267         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9268                                              PartVT, VT, nullptr,
9269                                              F.getCallingConv(), AssertOp));
9270       }
9271 
9272       i += NumParts;
9273     }
9274 
9275     // We don't need to do anything else for unused arguments.
9276     if (ArgValues.empty())
9277       continue;
9278 
9279     // Note down frame index.
9280     if (FrameIndexSDNode *FI =
9281         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9282       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9283 
9284     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9285                                      SDB->getCurSDLoc());
9286 
9287     SDB->setValue(&Arg, Res);
9288     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9289       // We want to associate the argument with the frame index, among
9290       // involved operands, that correspond to the lowest address. The
9291       // getCopyFromParts function, called earlier, is swapping the order of
9292       // the operands to BUILD_PAIR depending on endianness. The result of
9293       // that swapping is that the least significant bits of the argument will
9294       // be in the first operand of the BUILD_PAIR node, and the most
9295       // significant bits will be in the second operand.
9296       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9297       if (LoadSDNode *LNode =
9298           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9299         if (FrameIndexSDNode *FI =
9300             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9301           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9302     }
9303 
9304     // Update the SwiftErrorVRegDefMap.
9305     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9306       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9307       if (TargetRegisterInfo::isVirtualRegister(Reg))
9308         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9309                                            FuncInfo->SwiftErrorArg, Reg);
9310     }
9311 
9312     // If this argument is live outside of the entry block, insert a copy from
9313     // wherever we got it to the vreg that other BB's will reference it as.
9314     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9315       // If we can, though, try to skip creating an unnecessary vreg.
9316       // FIXME: This isn't very clean... it would be nice to make this more
9317       // general.  It's also subtly incompatible with the hacks FastISel
9318       // uses with vregs.
9319       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9320       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9321         FuncInfo->ValueMap[&Arg] = Reg;
9322         continue;
9323       }
9324     }
9325     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9326       FuncInfo->InitializeRegForValue(&Arg);
9327       SDB->CopyToExportRegsIfNeeded(&Arg);
9328     }
9329   }
9330 
9331   if (!Chains.empty()) {
9332     Chains.push_back(NewRoot);
9333     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9334   }
9335 
9336   DAG.setRoot(NewRoot);
9337 
9338   assert(i == InVals.size() && "Argument register count mismatch!");
9339 
9340   // If any argument copy elisions occurred and we have debug info, update the
9341   // stale frame indices used in the dbg.declare variable info table.
9342   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9343   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9344     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9345       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9346       if (I != ArgCopyElisionFrameIndexMap.end())
9347         VI.Slot = I->second;
9348     }
9349   }
9350 
9351   // Finally, if the target has anything special to do, allow it to do so.
9352   EmitFunctionEntryCode();
9353 }
9354 
9355 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9356 /// ensure constants are generated when needed.  Remember the virtual registers
9357 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9358 /// directly add them, because expansion might result in multiple MBB's for one
9359 /// BB.  As such, the start of the BB might correspond to a different MBB than
9360 /// the end.
9361 void
9362 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9363   const Instruction *TI = LLVMBB->getTerminator();
9364 
9365   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9366 
9367   // Check PHI nodes in successors that expect a value to be available from this
9368   // block.
9369   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9370     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9371     if (!isa<PHINode>(SuccBB->begin())) continue;
9372     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9373 
9374     // If this terminator has multiple identical successors (common for
9375     // switches), only handle each succ once.
9376     if (!SuccsHandled.insert(SuccMBB).second)
9377       continue;
9378 
9379     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9380 
9381     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9382     // nodes and Machine PHI nodes, but the incoming operands have not been
9383     // emitted yet.
9384     for (const PHINode &PN : SuccBB->phis()) {
9385       // Ignore dead phi's.
9386       if (PN.use_empty())
9387         continue;
9388 
9389       // Skip empty types
9390       if (PN.getType()->isEmptyTy())
9391         continue;
9392 
9393       unsigned Reg;
9394       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9395 
9396       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9397         unsigned &RegOut = ConstantsOut[C];
9398         if (RegOut == 0) {
9399           RegOut = FuncInfo.CreateRegs(C->getType());
9400           CopyValueToVirtualRegister(C, RegOut);
9401         }
9402         Reg = RegOut;
9403       } else {
9404         DenseMap<const Value *, unsigned>::iterator I =
9405           FuncInfo.ValueMap.find(PHIOp);
9406         if (I != FuncInfo.ValueMap.end())
9407           Reg = I->second;
9408         else {
9409           assert(isa<AllocaInst>(PHIOp) &&
9410                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9411                  "Didn't codegen value into a register!??");
9412           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9413           CopyValueToVirtualRegister(PHIOp, Reg);
9414         }
9415       }
9416 
9417       // Remember that this register needs to added to the machine PHI node as
9418       // the input for this MBB.
9419       SmallVector<EVT, 4> ValueVTs;
9420       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9421       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9422       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9423         EVT VT = ValueVTs[vti];
9424         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9425         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9426           FuncInfo.PHINodesToUpdate.push_back(
9427               std::make_pair(&*MBBI++, Reg + i));
9428         Reg += NumRegisters;
9429       }
9430     }
9431   }
9432 
9433   ConstantsOut.clear();
9434 }
9435 
9436 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9437 /// is 0.
9438 MachineBasicBlock *
9439 SelectionDAGBuilder::StackProtectorDescriptor::
9440 AddSuccessorMBB(const BasicBlock *BB,
9441                 MachineBasicBlock *ParentMBB,
9442                 bool IsLikely,
9443                 MachineBasicBlock *SuccMBB) {
9444   // If SuccBB has not been created yet, create it.
9445   if (!SuccMBB) {
9446     MachineFunction *MF = ParentMBB->getParent();
9447     MachineFunction::iterator BBI(ParentMBB);
9448     SuccMBB = MF->CreateMachineBasicBlock(BB);
9449     MF->insert(++BBI, SuccMBB);
9450   }
9451   // Add it as a successor of ParentMBB.
9452   ParentMBB->addSuccessor(
9453       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9454   return SuccMBB;
9455 }
9456 
9457 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9458   MachineFunction::iterator I(MBB);
9459   if (++I == FuncInfo.MF->end())
9460     return nullptr;
9461   return &*I;
9462 }
9463 
9464 /// During lowering new call nodes can be created (such as memset, etc.).
9465 /// Those will become new roots of the current DAG, but complications arise
9466 /// when they are tail calls. In such cases, the call lowering will update
9467 /// the root, but the builder still needs to know that a tail call has been
9468 /// lowered in order to avoid generating an additional return.
9469 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9470   // If the node is null, we do have a tail call.
9471   if (MaybeTC.getNode() != nullptr)
9472     DAG.setRoot(MaybeTC);
9473   else
9474     HasTailCall = true;
9475 }
9476 
9477 uint64_t
9478 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9479                                        unsigned First, unsigned Last) const {
9480   assert(Last >= First);
9481   const APInt &LowCase = Clusters[First].Low->getValue();
9482   const APInt &HighCase = Clusters[Last].High->getValue();
9483   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9484 
9485   // FIXME: A range of consecutive cases has 100% density, but only requires one
9486   // comparison to lower. We should discriminate against such consecutive ranges
9487   // in jump tables.
9488 
9489   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9490 }
9491 
9492 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9493     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9494     unsigned Last) const {
9495   assert(Last >= First);
9496   assert(TotalCases[Last] >= TotalCases[First]);
9497   uint64_t NumCases =
9498       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9499   return NumCases;
9500 }
9501 
9502 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9503                                          unsigned First, unsigned Last,
9504                                          const SwitchInst *SI,
9505                                          MachineBasicBlock *DefaultMBB,
9506                                          CaseCluster &JTCluster) {
9507   assert(First <= Last);
9508 
9509   auto Prob = BranchProbability::getZero();
9510   unsigned NumCmps = 0;
9511   std::vector<MachineBasicBlock*> Table;
9512   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9513 
9514   // Initialize probabilities in JTProbs.
9515   for (unsigned I = First; I <= Last; ++I)
9516     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9517 
9518   for (unsigned I = First; I <= Last; ++I) {
9519     assert(Clusters[I].Kind == CC_Range);
9520     Prob += Clusters[I].Prob;
9521     const APInt &Low = Clusters[I].Low->getValue();
9522     const APInt &High = Clusters[I].High->getValue();
9523     NumCmps += (Low == High) ? 1 : 2;
9524     if (I != First) {
9525       // Fill the gap between this and the previous cluster.
9526       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9527       assert(PreviousHigh.slt(Low));
9528       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9529       for (uint64_t J = 0; J < Gap; J++)
9530         Table.push_back(DefaultMBB);
9531     }
9532     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9533     for (uint64_t J = 0; J < ClusterSize; ++J)
9534       Table.push_back(Clusters[I].MBB);
9535     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9536   }
9537 
9538   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9539   unsigned NumDests = JTProbs.size();
9540   if (TLI.isSuitableForBitTests(
9541           NumDests, NumCmps, Clusters[First].Low->getValue(),
9542           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9543     // Clusters[First..Last] should be lowered as bit tests instead.
9544     return false;
9545   }
9546 
9547   // Create the MBB that will load from and jump through the table.
9548   // Note: We create it here, but it's not inserted into the function yet.
9549   MachineFunction *CurMF = FuncInfo.MF;
9550   MachineBasicBlock *JumpTableMBB =
9551       CurMF->CreateMachineBasicBlock(SI->getParent());
9552 
9553   // Add successors. Note: use table order for determinism.
9554   SmallPtrSet<MachineBasicBlock *, 8> Done;
9555   for (MachineBasicBlock *Succ : Table) {
9556     if (Done.count(Succ))
9557       continue;
9558     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9559     Done.insert(Succ);
9560   }
9561   JumpTableMBB->normalizeSuccProbs();
9562 
9563   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9564                      ->createJumpTableIndex(Table);
9565 
9566   // Set up the jump table info.
9567   bool UnreachableDefault =
9568       isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
9569   bool OmitRangeCheck = UnreachableDefault;
9570   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9571   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9572                       Clusters[Last].High->getValue(), SI->getCondition(),
9573                       nullptr, false, OmitRangeCheck);
9574   JTCases.emplace_back(std::move(JTH), std::move(JT));
9575 
9576   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9577                                      JTCases.size() - 1, Prob);
9578   return true;
9579 }
9580 
9581 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9582                                          const SwitchInst *SI,
9583                                          MachineBasicBlock *DefaultMBB) {
9584 #ifndef NDEBUG
9585   // Clusters must be non-empty, sorted, and only contain Range clusters.
9586   assert(!Clusters.empty());
9587   for (CaseCluster &C : Clusters)
9588     assert(C.Kind == CC_Range);
9589   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9590     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9591 #endif
9592 
9593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9594   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9595     return;
9596 
9597   const int64_t N = Clusters.size();
9598   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9599   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9600 
9601   if (N < 2 || N < MinJumpTableEntries)
9602     return;
9603 
9604   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9605   SmallVector<unsigned, 8> TotalCases(N);
9606   for (unsigned i = 0; i < N; ++i) {
9607     const APInt &Hi = Clusters[i].High->getValue();
9608     const APInt &Lo = Clusters[i].Low->getValue();
9609     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9610     if (i != 0)
9611       TotalCases[i] += TotalCases[i - 1];
9612   }
9613 
9614   // Cheap case: the whole range may be suitable for jump table.
9615   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9616   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9617   assert(NumCases < UINT64_MAX / 100);
9618   assert(Range >= NumCases);
9619   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9620     CaseCluster JTCluster;
9621     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9622       Clusters[0] = JTCluster;
9623       Clusters.resize(1);
9624       return;
9625     }
9626   }
9627 
9628   // The algorithm below is not suitable for -O0.
9629   if (TM.getOptLevel() == CodeGenOpt::None)
9630     return;
9631 
9632   // Split Clusters into minimum number of dense partitions. The algorithm uses
9633   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9634   // for the Case Statement'" (1994), but builds the MinPartitions array in
9635   // reverse order to make it easier to reconstruct the partitions in ascending
9636   // order. In the choice between two optimal partitionings, it picks the one
9637   // which yields more jump tables.
9638 
9639   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9640   SmallVector<unsigned, 8> MinPartitions(N);
9641   // LastElement[i] is the last element of the partition starting at i.
9642   SmallVector<unsigned, 8> LastElement(N);
9643   // PartitionsScore[i] is used to break ties when choosing between two
9644   // partitionings resulting in the same number of partitions.
9645   SmallVector<unsigned, 8> PartitionsScore(N);
9646   // For PartitionsScore, a small number of comparisons is considered as good as
9647   // a jump table and a single comparison is considered better than a jump
9648   // table.
9649   enum PartitionScores : unsigned {
9650     NoTable = 0,
9651     Table = 1,
9652     FewCases = 1,
9653     SingleCase = 2
9654   };
9655 
9656   // Base case: There is only one way to partition Clusters[N-1].
9657   MinPartitions[N - 1] = 1;
9658   LastElement[N - 1] = N - 1;
9659   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9660 
9661   // Note: loop indexes are signed to avoid underflow.
9662   for (int64_t i = N - 2; i >= 0; i--) {
9663     // Find optimal partitioning of Clusters[i..N-1].
9664     // Baseline: Put Clusters[i] into a partition on its own.
9665     MinPartitions[i] = MinPartitions[i + 1] + 1;
9666     LastElement[i] = i;
9667     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9668 
9669     // Search for a solution that results in fewer partitions.
9670     for (int64_t j = N - 1; j > i; j--) {
9671       // Try building a partition from Clusters[i..j].
9672       uint64_t Range = getJumpTableRange(Clusters, i, j);
9673       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9674       assert(NumCases < UINT64_MAX / 100);
9675       assert(Range >= NumCases);
9676       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9677         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9678         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9679         int64_t NumEntries = j - i + 1;
9680 
9681         if (NumEntries == 1)
9682           Score += PartitionScores::SingleCase;
9683         else if (NumEntries <= SmallNumberOfEntries)
9684           Score += PartitionScores::FewCases;
9685         else if (NumEntries >= MinJumpTableEntries)
9686           Score += PartitionScores::Table;
9687 
9688         // If this leads to fewer partitions, or to the same number of
9689         // partitions with better score, it is a better partitioning.
9690         if (NumPartitions < MinPartitions[i] ||
9691             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9692           MinPartitions[i] = NumPartitions;
9693           LastElement[i] = j;
9694           PartitionsScore[i] = Score;
9695         }
9696       }
9697     }
9698   }
9699 
9700   // Iterate over the partitions, replacing some with jump tables in-place.
9701   unsigned DstIndex = 0;
9702   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9703     Last = LastElement[First];
9704     assert(Last >= First);
9705     assert(DstIndex <= First);
9706     unsigned NumClusters = Last - First + 1;
9707 
9708     CaseCluster JTCluster;
9709     if (NumClusters >= MinJumpTableEntries &&
9710         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9711       Clusters[DstIndex++] = JTCluster;
9712     } else {
9713       for (unsigned I = First; I <= Last; ++I)
9714         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9715     }
9716   }
9717   Clusters.resize(DstIndex);
9718 }
9719 
9720 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9721                                         unsigned First, unsigned Last,
9722                                         const SwitchInst *SI,
9723                                         CaseCluster &BTCluster) {
9724   assert(First <= Last);
9725   if (First == Last)
9726     return false;
9727 
9728   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9729   unsigned NumCmps = 0;
9730   for (int64_t I = First; I <= Last; ++I) {
9731     assert(Clusters[I].Kind == CC_Range);
9732     Dests.set(Clusters[I].MBB->getNumber());
9733     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9734   }
9735   unsigned NumDests = Dests.count();
9736 
9737   APInt Low = Clusters[First].Low->getValue();
9738   APInt High = Clusters[Last].High->getValue();
9739   assert(Low.slt(High));
9740 
9741   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9742   const DataLayout &DL = DAG.getDataLayout();
9743   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9744     return false;
9745 
9746   APInt LowBound;
9747   APInt CmpRange;
9748 
9749   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9750   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9751          "Case range must fit in bit mask!");
9752 
9753   // Check if the clusters cover a contiguous range such that no value in the
9754   // range will jump to the default statement.
9755   bool ContiguousRange = true;
9756   for (int64_t I = First + 1; I <= Last; ++I) {
9757     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9758       ContiguousRange = false;
9759       break;
9760     }
9761   }
9762 
9763   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9764     // Optimize the case where all the case values fit in a word without having
9765     // to subtract minValue. In this case, we can optimize away the subtraction.
9766     LowBound = APInt::getNullValue(Low.getBitWidth());
9767     CmpRange = High;
9768     ContiguousRange = false;
9769   } else {
9770     LowBound = Low;
9771     CmpRange = High - Low;
9772   }
9773 
9774   CaseBitsVector CBV;
9775   auto TotalProb = BranchProbability::getZero();
9776   for (unsigned i = First; i <= Last; ++i) {
9777     // Find the CaseBits for this destination.
9778     unsigned j;
9779     for (j = 0; j < CBV.size(); ++j)
9780       if (CBV[j].BB == Clusters[i].MBB)
9781         break;
9782     if (j == CBV.size())
9783       CBV.push_back(
9784           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9785     CaseBits *CB = &CBV[j];
9786 
9787     // Update Mask, Bits and ExtraProb.
9788     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9789     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9790     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9791     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9792     CB->Bits += Hi - Lo + 1;
9793     CB->ExtraProb += Clusters[i].Prob;
9794     TotalProb += Clusters[i].Prob;
9795   }
9796 
9797   BitTestInfo BTI;
9798   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
9799     // Sort by probability first, number of bits second, bit mask third.
9800     if (a.ExtraProb != b.ExtraProb)
9801       return a.ExtraProb > b.ExtraProb;
9802     if (a.Bits != b.Bits)
9803       return a.Bits > b.Bits;
9804     return a.Mask < b.Mask;
9805   });
9806 
9807   for (auto &CB : CBV) {
9808     MachineBasicBlock *BitTestBB =
9809         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9810     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9811   }
9812   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9813                             SI->getCondition(), -1U, MVT::Other, false,
9814                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9815                             TotalProb);
9816 
9817   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9818                                     BitTestCases.size() - 1, TotalProb);
9819   return true;
9820 }
9821 
9822 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9823                                               const SwitchInst *SI) {
9824 // Partition Clusters into as few subsets as possible, where each subset has a
9825 // range that fits in a machine word and has <= 3 unique destinations.
9826 
9827 #ifndef NDEBUG
9828   // Clusters must be sorted and contain Range or JumpTable clusters.
9829   assert(!Clusters.empty());
9830   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9831   for (const CaseCluster &C : Clusters)
9832     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9833   for (unsigned i = 1; i < Clusters.size(); ++i)
9834     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9835 #endif
9836 
9837   // The algorithm below is not suitable for -O0.
9838   if (TM.getOptLevel() == CodeGenOpt::None)
9839     return;
9840 
9841   // If target does not have legal shift left, do not emit bit tests at all.
9842   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9843   const DataLayout &DL = DAG.getDataLayout();
9844 
9845   EVT PTy = TLI.getPointerTy(DL);
9846   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9847     return;
9848 
9849   int BitWidth = PTy.getSizeInBits();
9850   const int64_t N = Clusters.size();
9851 
9852   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9853   SmallVector<unsigned, 8> MinPartitions(N);
9854   // LastElement[i] is the last element of the partition starting at i.
9855   SmallVector<unsigned, 8> LastElement(N);
9856 
9857   // FIXME: This might not be the best algorithm for finding bit test clusters.
9858 
9859   // Base case: There is only one way to partition Clusters[N-1].
9860   MinPartitions[N - 1] = 1;
9861   LastElement[N - 1] = N - 1;
9862 
9863   // Note: loop indexes are signed to avoid underflow.
9864   for (int64_t i = N - 2; i >= 0; --i) {
9865     // Find optimal partitioning of Clusters[i..N-1].
9866     // Baseline: Put Clusters[i] into a partition on its own.
9867     MinPartitions[i] = MinPartitions[i + 1] + 1;
9868     LastElement[i] = i;
9869 
9870     // Search for a solution that results in fewer partitions.
9871     // Note: the search is limited by BitWidth, reducing time complexity.
9872     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9873       // Try building a partition from Clusters[i..j].
9874 
9875       // Check the range.
9876       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9877                                Clusters[j].High->getValue(), DL))
9878         continue;
9879 
9880       // Check nbr of destinations and cluster types.
9881       // FIXME: This works, but doesn't seem very efficient.
9882       bool RangesOnly = true;
9883       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9884       for (int64_t k = i; k <= j; k++) {
9885         if (Clusters[k].Kind != CC_Range) {
9886           RangesOnly = false;
9887           break;
9888         }
9889         Dests.set(Clusters[k].MBB->getNumber());
9890       }
9891       if (!RangesOnly || Dests.count() > 3)
9892         break;
9893 
9894       // Check if it's a better partition.
9895       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9896       if (NumPartitions < MinPartitions[i]) {
9897         // Found a better partition.
9898         MinPartitions[i] = NumPartitions;
9899         LastElement[i] = j;
9900       }
9901     }
9902   }
9903 
9904   // Iterate over the partitions, replacing with bit-test clusters in-place.
9905   unsigned DstIndex = 0;
9906   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9907     Last = LastElement[First];
9908     assert(First <= Last);
9909     assert(DstIndex <= First);
9910 
9911     CaseCluster BitTestCluster;
9912     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9913       Clusters[DstIndex++] = BitTestCluster;
9914     } else {
9915       size_t NumClusters = Last - First + 1;
9916       std::memmove(&Clusters[DstIndex], &Clusters[First],
9917                    sizeof(Clusters[0]) * NumClusters);
9918       DstIndex += NumClusters;
9919     }
9920   }
9921   Clusters.resize(DstIndex);
9922 }
9923 
9924 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9925                                         MachineBasicBlock *SwitchMBB,
9926                                         MachineBasicBlock *DefaultMBB) {
9927   MachineFunction *CurMF = FuncInfo.MF;
9928   MachineBasicBlock *NextMBB = nullptr;
9929   MachineFunction::iterator BBI(W.MBB);
9930   if (++BBI != FuncInfo.MF->end())
9931     NextMBB = &*BBI;
9932 
9933   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9934 
9935   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9936 
9937   if (Size == 2 && W.MBB == SwitchMBB) {
9938     // If any two of the cases has the same destination, and if one value
9939     // is the same as the other, but has one bit unset that the other has set,
9940     // use bit manipulation to do two compares at once.  For example:
9941     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9942     // TODO: This could be extended to merge any 2 cases in switches with 3
9943     // cases.
9944     // TODO: Handle cases where W.CaseBB != SwitchBB.
9945     CaseCluster &Small = *W.FirstCluster;
9946     CaseCluster &Big = *W.LastCluster;
9947 
9948     if (Small.Low == Small.High && Big.Low == Big.High &&
9949         Small.MBB == Big.MBB) {
9950       const APInt &SmallValue = Small.Low->getValue();
9951       const APInt &BigValue = Big.Low->getValue();
9952 
9953       // Check that there is only one bit different.
9954       APInt CommonBit = BigValue ^ SmallValue;
9955       if (CommonBit.isPowerOf2()) {
9956         SDValue CondLHS = getValue(Cond);
9957         EVT VT = CondLHS.getValueType();
9958         SDLoc DL = getCurSDLoc();
9959 
9960         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9961                                  DAG.getConstant(CommonBit, DL, VT));
9962         SDValue Cond = DAG.getSetCC(
9963             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9964             ISD::SETEQ);
9965 
9966         // Update successor info.
9967         // Both Small and Big will jump to Small.BB, so we sum up the
9968         // probabilities.
9969         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9970         if (BPI)
9971           addSuccessorWithProb(
9972               SwitchMBB, DefaultMBB,
9973               // The default destination is the first successor in IR.
9974               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9975         else
9976           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9977 
9978         // Insert the true branch.
9979         SDValue BrCond =
9980             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9981                         DAG.getBasicBlock(Small.MBB));
9982         // Insert the false branch.
9983         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9984                              DAG.getBasicBlock(DefaultMBB));
9985 
9986         DAG.setRoot(BrCond);
9987         return;
9988       }
9989     }
9990   }
9991 
9992   if (TM.getOptLevel() != CodeGenOpt::None) {
9993     // Here, we order cases by probability so the most likely case will be
9994     // checked first. However, two clusters can have the same probability in
9995     // which case their relative ordering is non-deterministic. So we use Low
9996     // as a tie-breaker as clusters are guaranteed to never overlap.
9997     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9998                [](const CaseCluster &a, const CaseCluster &b) {
9999       return a.Prob != b.Prob ?
10000              a.Prob > b.Prob :
10001              a.Low->getValue().slt(b.Low->getValue());
10002     });
10003 
10004     // Rearrange the case blocks so that the last one falls through if possible
10005     // without changing the order of probabilities.
10006     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10007       --I;
10008       if (I->Prob > W.LastCluster->Prob)
10009         break;
10010       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10011         std::swap(*I, *W.LastCluster);
10012         break;
10013       }
10014     }
10015   }
10016 
10017   // Compute total probability.
10018   BranchProbability DefaultProb = W.DefaultProb;
10019   BranchProbability UnhandledProbs = DefaultProb;
10020   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10021     UnhandledProbs += I->Prob;
10022 
10023   MachineBasicBlock *CurMBB = W.MBB;
10024   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10025     MachineBasicBlock *Fallthrough;
10026     if (I == W.LastCluster) {
10027       // For the last cluster, fall through to the default destination.
10028       Fallthrough = DefaultMBB;
10029     } else {
10030       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10031       CurMF->insert(BBI, Fallthrough);
10032       // Put Cond in a virtual register to make it available from the new blocks.
10033       ExportFromCurrentBlock(Cond);
10034     }
10035     UnhandledProbs -= I->Prob;
10036 
10037     switch (I->Kind) {
10038       case CC_JumpTable: {
10039         // FIXME: Optimize away range check based on pivot comparisons.
10040         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10041         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10042 
10043         // The jump block hasn't been inserted yet; insert it here.
10044         MachineBasicBlock *JumpMBB = JT->MBB;
10045         CurMF->insert(BBI, JumpMBB);
10046 
10047         auto JumpProb = I->Prob;
10048         auto FallthroughProb = UnhandledProbs;
10049 
10050         // If the default statement is a target of the jump table, we evenly
10051         // distribute the default probability to successors of CurMBB. Also
10052         // update the probability on the edge from JumpMBB to Fallthrough.
10053         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10054                                               SE = JumpMBB->succ_end();
10055              SI != SE; ++SI) {
10056           if (*SI == DefaultMBB) {
10057             JumpProb += DefaultProb / 2;
10058             FallthroughProb -= DefaultProb / 2;
10059             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10060             JumpMBB->normalizeSuccProbs();
10061             break;
10062           }
10063         }
10064 
10065         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10066         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10067         CurMBB->normalizeSuccProbs();
10068 
10069         // The jump table header will be inserted in our current block, do the
10070         // range check, and fall through to our fallthrough block.
10071         JTH->HeaderBB = CurMBB;
10072         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10073 
10074         // If we're in the right place, emit the jump table header right now.
10075         if (CurMBB == SwitchMBB) {
10076           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10077           JTH->Emitted = true;
10078         }
10079         break;
10080       }
10081       case CC_BitTests: {
10082         // FIXME: Optimize away range check based on pivot comparisons.
10083         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10084 
10085         // The bit test blocks haven't been inserted yet; insert them here.
10086         for (BitTestCase &BTC : BTB->Cases)
10087           CurMF->insert(BBI, BTC.ThisBB);
10088 
10089         // Fill in fields of the BitTestBlock.
10090         BTB->Parent = CurMBB;
10091         BTB->Default = Fallthrough;
10092 
10093         BTB->DefaultProb = UnhandledProbs;
10094         // If the cases in bit test don't form a contiguous range, we evenly
10095         // distribute the probability on the edge to Fallthrough to two
10096         // successors of CurMBB.
10097         if (!BTB->ContiguousRange) {
10098           BTB->Prob += DefaultProb / 2;
10099           BTB->DefaultProb -= DefaultProb / 2;
10100         }
10101 
10102         // If we're in the right place, emit the bit test header right now.
10103         if (CurMBB == SwitchMBB) {
10104           visitBitTestHeader(*BTB, SwitchMBB);
10105           BTB->Emitted = true;
10106         }
10107         break;
10108       }
10109       case CC_Range: {
10110         const Value *RHS, *LHS, *MHS;
10111         ISD::CondCode CC;
10112         if (I->Low == I->High) {
10113           // Check Cond == I->Low.
10114           CC = ISD::SETEQ;
10115           LHS = Cond;
10116           RHS=I->Low;
10117           MHS = nullptr;
10118         } else {
10119           // Check I->Low <= Cond <= I->High.
10120           CC = ISD::SETLE;
10121           LHS = I->Low;
10122           MHS = Cond;
10123           RHS = I->High;
10124         }
10125 
10126         // The false probability is the sum of all unhandled cases.
10127         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10128                      getCurSDLoc(), I->Prob, UnhandledProbs);
10129 
10130         if (CurMBB == SwitchMBB)
10131           visitSwitchCase(CB, SwitchMBB);
10132         else
10133           SwitchCases.push_back(CB);
10134 
10135         break;
10136       }
10137     }
10138     CurMBB = Fallthrough;
10139   }
10140 }
10141 
10142 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10143                                               CaseClusterIt First,
10144                                               CaseClusterIt Last) {
10145   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10146     if (X.Prob != CC.Prob)
10147       return X.Prob > CC.Prob;
10148 
10149     // Ties are broken by comparing the case value.
10150     return X.Low->getValue().slt(CC.Low->getValue());
10151   });
10152 }
10153 
10154 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10155                                         const SwitchWorkListItem &W,
10156                                         Value *Cond,
10157                                         MachineBasicBlock *SwitchMBB) {
10158   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10159          "Clusters not sorted?");
10160 
10161   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10162 
10163   // Balance the tree based on branch probabilities to create a near-optimal (in
10164   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10165   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10166   CaseClusterIt LastLeft = W.FirstCluster;
10167   CaseClusterIt FirstRight = W.LastCluster;
10168   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10169   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10170 
10171   // Move LastLeft and FirstRight towards each other from opposite directions to
10172   // find a partitioning of the clusters which balances the probability on both
10173   // sides. If LeftProb and RightProb are equal, alternate which side is
10174   // taken to ensure 0-probability nodes are distributed evenly.
10175   unsigned I = 0;
10176   while (LastLeft + 1 < FirstRight) {
10177     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10178       LeftProb += (++LastLeft)->Prob;
10179     else
10180       RightProb += (--FirstRight)->Prob;
10181     I++;
10182   }
10183 
10184   while (true) {
10185     // Our binary search tree differs from a typical BST in that ours can have up
10186     // to three values in each leaf. The pivot selection above doesn't take that
10187     // into account, which means the tree might require more nodes and be less
10188     // efficient. We compensate for this here.
10189 
10190     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10191     unsigned NumRight = W.LastCluster - FirstRight + 1;
10192 
10193     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10194       // If one side has less than 3 clusters, and the other has more than 3,
10195       // consider taking a cluster from the other side.
10196 
10197       if (NumLeft < NumRight) {
10198         // Consider moving the first cluster on the right to the left side.
10199         CaseCluster &CC = *FirstRight;
10200         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10201         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10202         if (LeftSideRank <= RightSideRank) {
10203           // Moving the cluster to the left does not demote it.
10204           ++LastLeft;
10205           ++FirstRight;
10206           continue;
10207         }
10208       } else {
10209         assert(NumRight < NumLeft);
10210         // Consider moving the last element on the left to the right side.
10211         CaseCluster &CC = *LastLeft;
10212         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10213         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10214         if (RightSideRank <= LeftSideRank) {
10215           // Moving the cluster to the right does not demot it.
10216           --LastLeft;
10217           --FirstRight;
10218           continue;
10219         }
10220       }
10221     }
10222     break;
10223   }
10224 
10225   assert(LastLeft + 1 == FirstRight);
10226   assert(LastLeft >= W.FirstCluster);
10227   assert(FirstRight <= W.LastCluster);
10228 
10229   // Use the first element on the right as pivot since we will make less-than
10230   // comparisons against it.
10231   CaseClusterIt PivotCluster = FirstRight;
10232   assert(PivotCluster > W.FirstCluster);
10233   assert(PivotCluster <= W.LastCluster);
10234 
10235   CaseClusterIt FirstLeft = W.FirstCluster;
10236   CaseClusterIt LastRight = W.LastCluster;
10237 
10238   const ConstantInt *Pivot = PivotCluster->Low;
10239 
10240   // New blocks will be inserted immediately after the current one.
10241   MachineFunction::iterator BBI(W.MBB);
10242   ++BBI;
10243 
10244   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10245   // we can branch to its destination directly if it's squeezed exactly in
10246   // between the known lower bound and Pivot - 1.
10247   MachineBasicBlock *LeftMBB;
10248   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10249       FirstLeft->Low == W.GE &&
10250       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10251     LeftMBB = FirstLeft->MBB;
10252   } else {
10253     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10254     FuncInfo.MF->insert(BBI, LeftMBB);
10255     WorkList.push_back(
10256         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10257     // Put Cond in a virtual register to make it available from the new blocks.
10258     ExportFromCurrentBlock(Cond);
10259   }
10260 
10261   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10262   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10263   // directly if RHS.High equals the current upper bound.
10264   MachineBasicBlock *RightMBB;
10265   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10266       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10267     RightMBB = FirstRight->MBB;
10268   } else {
10269     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10270     FuncInfo.MF->insert(BBI, RightMBB);
10271     WorkList.push_back(
10272         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10273     // Put Cond in a virtual register to make it available from the new blocks.
10274     ExportFromCurrentBlock(Cond);
10275   }
10276 
10277   // Create the CaseBlock record that will be used to lower the branch.
10278   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10279                getCurSDLoc(), LeftProb, RightProb);
10280 
10281   if (W.MBB == SwitchMBB)
10282     visitSwitchCase(CB, SwitchMBB);
10283   else
10284     SwitchCases.push_back(CB);
10285 }
10286 
10287 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10288 // from the swith statement.
10289 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10290                                             BranchProbability PeeledCaseProb) {
10291   if (PeeledCaseProb == BranchProbability::getOne())
10292     return BranchProbability::getZero();
10293   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10294 
10295   uint32_t Numerator = CaseProb.getNumerator();
10296   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10297   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10298 }
10299 
10300 // Try to peel the top probability case if it exceeds the threshold.
10301 // Return current MachineBasicBlock for the switch statement if the peeling
10302 // does not occur.
10303 // If the peeling is performed, return the newly created MachineBasicBlock
10304 // for the peeled switch statement. Also update Clusters to remove the peeled
10305 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10306 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10307     const SwitchInst &SI, CaseClusterVector &Clusters,
10308     BranchProbability &PeeledCaseProb) {
10309   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10310 
10311   // Don't perform if there is only one cluster or optimizing for size.
10312   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10313       TM.getOptLevel() == CodeGenOpt::None ||
10314       SwitchMBB->getParent()->getFunction().optForMinSize())
10315     return SwitchMBB;
10316 
10317   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10318   unsigned PeeledCaseIndex = 0;
10319   bool SwitchPeeled = false;
10320   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10321     CaseCluster &CC = Clusters[Index];
10322     if (CC.Prob < TopCaseProb)
10323       continue;
10324     TopCaseProb = CC.Prob;
10325     PeeledCaseIndex = Index;
10326     SwitchPeeled = true;
10327   }
10328   if (!SwitchPeeled)
10329     return SwitchMBB;
10330 
10331   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10332                     << TopCaseProb << "\n");
10333 
10334   // Record the MBB for the peeled switch statement.
10335   MachineFunction::iterator BBI(SwitchMBB);
10336   ++BBI;
10337   MachineBasicBlock *PeeledSwitchMBB =
10338       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10339   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10340 
10341   ExportFromCurrentBlock(SI.getCondition());
10342   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10343   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10344                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10345   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10346 
10347   Clusters.erase(PeeledCaseIt);
10348   for (CaseCluster &CC : Clusters) {
10349     LLVM_DEBUG(
10350         dbgs() << "Scale the probablity for one cluster, before scaling: "
10351                << CC.Prob << "\n");
10352     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10353     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10354   }
10355   PeeledCaseProb = TopCaseProb;
10356   return PeeledSwitchMBB;
10357 }
10358 
10359 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10360   // Extract cases from the switch.
10361   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10362   CaseClusterVector Clusters;
10363 
10364   Clusters.reserve(SI.getNumCases());
10365   for (auto I : SI.cases()) {
10366     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10367     const ConstantInt *CaseVal = I.getCaseValue();
10368     BranchProbability Prob =
10369         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10370             : BranchProbability(1, SI.getNumCases() + 1);
10371     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10372   }
10373 
10374   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10375 
10376   // Cluster adjacent cases with the same destination. We do this at all
10377   // optimization levels because it's cheap to do and will make codegen faster
10378   // if there are many clusters.
10379   sortAndRangeify(Clusters);
10380 
10381   // The branch probablity of the peeled case.
10382   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10383   MachineBasicBlock *PeeledSwitchMBB =
10384       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10385 
10386   // If there is only the default destination, jump there directly.
10387   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10388   if (Clusters.empty()) {
10389     assert(PeeledSwitchMBB == SwitchMBB);
10390     SwitchMBB->addSuccessor(DefaultMBB);
10391     if (DefaultMBB != NextBlock(SwitchMBB)) {
10392       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10393                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10394     }
10395     return;
10396   }
10397 
10398   findJumpTables(Clusters, &SI, DefaultMBB);
10399   findBitTestClusters(Clusters, &SI);
10400 
10401   LLVM_DEBUG({
10402     dbgs() << "Case clusters: ";
10403     for (const CaseCluster &C : Clusters) {
10404       if (C.Kind == CC_JumpTable)
10405         dbgs() << "JT:";
10406       if (C.Kind == CC_BitTests)
10407         dbgs() << "BT:";
10408 
10409       C.Low->getValue().print(dbgs(), true);
10410       if (C.Low != C.High) {
10411         dbgs() << '-';
10412         C.High->getValue().print(dbgs(), true);
10413       }
10414       dbgs() << ' ';
10415     }
10416     dbgs() << '\n';
10417   });
10418 
10419   assert(!Clusters.empty());
10420   SwitchWorkList WorkList;
10421   CaseClusterIt First = Clusters.begin();
10422   CaseClusterIt Last = Clusters.end() - 1;
10423   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10424   // Scale the branchprobability for DefaultMBB if the peel occurs and
10425   // DefaultMBB is not replaced.
10426   if (PeeledCaseProb != BranchProbability::getZero() &&
10427       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10428     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10429   WorkList.push_back(
10430       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10431 
10432   while (!WorkList.empty()) {
10433     SwitchWorkListItem W = WorkList.back();
10434     WorkList.pop_back();
10435     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10436 
10437     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10438         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10439       // For optimized builds, lower large range as a balanced binary tree.
10440       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10441       continue;
10442     }
10443 
10444     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10445   }
10446 }
10447