1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <deque> 108 #include <iterator> 109 #include <limits> 110 #include <optional> 111 #include <tuple> 112 113 using namespace llvm; 114 using namespace PatternMatch; 115 using namespace SwitchCG; 116 117 #define DEBUG_TYPE "isel" 118 119 /// LimitFloatPrecision - Generate low-precision inline sequences for 120 /// some float libcalls (6, 8 or 12 bits). 121 static unsigned LimitFloatPrecision; 122 123 static cl::opt<bool> 124 InsertAssertAlign("insert-assert-align", cl::init(true), 125 cl::desc("Insert the experimental `assertalign` node."), 126 cl::ReallyHidden); 127 128 static cl::opt<unsigned, true> 129 LimitFPPrecision("limit-float-precision", 130 cl::desc("Generate low-precision inline sequences " 131 "for some float libcalls"), 132 cl::location(LimitFloatPrecision), cl::Hidden, 133 cl::init(0)); 134 135 static cl::opt<unsigned> SwitchPeelThreshold( 136 "switch-peel-threshold", cl::Hidden, cl::init(66), 137 cl::desc("Set the case probability threshold for peeling the case from a " 138 "switch statement. A value greater than 100 will void this " 139 "optimization")); 140 141 // Limit the width of DAG chains. This is important in general to prevent 142 // DAG-based analysis from blowing up. For example, alias analysis and 143 // load clustering may not complete in reasonable time. It is difficult to 144 // recognize and avoid this situation within each individual analysis, and 145 // future analyses are likely to have the same behavior. Limiting DAG width is 146 // the safe approach and will be especially important with global DAGs. 147 // 148 // MaxParallelChains default is arbitrarily high to avoid affecting 149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 150 // sequence over this should have been converted to llvm.memcpy by the 151 // frontend. It is easy to induce this behavior with .ll code such as: 152 // %buffer = alloca [4096 x i8] 153 // %data = load [4096 x i8]* %argPtr 154 // store [4096 x i8] %data, [4096 x i8]* %buffer 155 static const unsigned MaxParallelChains = 64; 156 157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 158 const SDValue *Parts, unsigned NumParts, 159 MVT PartVT, EVT ValueVT, const Value *V, 160 SDValue InChain, 161 std::optional<CallingConv::ID> CC); 162 163 /// getCopyFromParts - Create a value that contains the specified legal parts 164 /// combined into the value they represent. If the parts combine to a type 165 /// larger than ValueVT then AssertOp can be used to specify whether the extra 166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 167 /// (ISD::AssertSext). 168 static SDValue 169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 170 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 171 SDValue InChain, 172 std::optional<CallingConv::ID> CC = std::nullopt, 173 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 174 // Let the target assemble the parts if it wants to 175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 176 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 177 PartVT, ValueVT, CC)) 178 return Val; 179 180 if (ValueVT.isVector()) 181 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 182 InChain, CC); 183 184 assert(NumParts > 0 && "No parts to assemble!"); 185 SDValue Val = Parts[0]; 186 187 if (NumParts > 1) { 188 // Assemble the value from multiple parts. 189 if (ValueVT.isInteger()) { 190 unsigned PartBits = PartVT.getSizeInBits(); 191 unsigned ValueBits = ValueVT.getSizeInBits(); 192 193 // Assemble the power of 2 part. 194 unsigned RoundParts = llvm::bit_floor(NumParts); 195 unsigned RoundBits = PartBits * RoundParts; 196 EVT RoundVT = RoundBits == ValueBits ? 197 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 198 SDValue Lo, Hi; 199 200 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 201 202 if (RoundParts > 2) { 203 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 204 InChain); 205 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 206 PartVT, HalfVT, V, InChain); 207 } else { 208 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 209 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 210 } 211 212 if (DAG.getDataLayout().isBigEndian()) 213 std::swap(Lo, Hi); 214 215 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 216 217 if (RoundParts < NumParts) { 218 // Assemble the trailing non-power-of-2 part. 219 unsigned OddParts = NumParts - RoundParts; 220 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 221 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 222 OddVT, V, InChain, CC); 223 224 // Combine the round and odd parts. 225 Lo = Val; 226 if (DAG.getDataLayout().isBigEndian()) 227 std::swap(Lo, Hi); 228 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 229 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 230 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 231 DAG.getConstant(Lo.getValueSizeInBits(), DL, 232 TLI.getShiftAmountTy( 233 TotalVT, DAG.getDataLayout()))); 234 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 235 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 236 } 237 } else if (PartVT.isFloatingPoint()) { 238 // FP split into multiple FP parts (for ppcf128) 239 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 240 "Unexpected split"); 241 SDValue Lo, Hi; 242 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 243 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 244 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 245 std::swap(Lo, Hi); 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 247 } else { 248 // FP split into integer parts (soft fp) 249 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 250 !PartVT.isVector() && "Unexpected split"); 251 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 252 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 253 InChain, CC); 254 } 255 } 256 257 // There is now one part, held in Val. Correct it to match ValueVT. 258 // PartEVT is the type of the register class that holds the value. 259 // ValueVT is the type of the inline asm operation. 260 EVT PartEVT = Val.getValueType(); 261 262 if (PartEVT == ValueVT) 263 return Val; 264 265 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 266 ValueVT.bitsLT(PartEVT)) { 267 // For an FP value in an integer part, we need to truncate to the right 268 // width first. 269 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 271 } 272 273 // Handle types that have the same size. 274 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 275 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 276 277 // Handle types with different sizes. 278 if (PartEVT.isInteger() && ValueVT.isInteger()) { 279 if (ValueVT.bitsLT(PartEVT)) { 280 // For a truncate, see if we have any information to 281 // indicate whether the truncated bits will always be 282 // zero or sign-extension. 283 if (AssertOp) 284 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 285 DAG.getValueType(ValueVT)); 286 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 287 } 288 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 289 } 290 291 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 292 // FP_ROUND's are always exact here. 293 if (ValueVT.bitsLT(Val.getValueType())) { 294 295 SDValue NoChange = 296 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 297 298 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 299 llvm::Attribute::StrictFP)) { 300 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 301 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 302 NoChange); 303 } 304 305 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 306 } 307 308 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 309 } 310 311 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 312 // then truncating. 313 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 314 ValueVT.bitsLT(PartEVT)) { 315 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 319 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 320 } 321 322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 323 const Twine &ErrMsg) { 324 const Instruction *I = dyn_cast_or_null<Instruction>(V); 325 if (!V) 326 return Ctx.emitError(ErrMsg); 327 328 const char *AsmError = ", possible invalid constraint for vector type"; 329 if (const CallInst *CI = dyn_cast<CallInst>(I)) 330 if (CI->isInlineAsm()) 331 return Ctx.emitError(I, ErrMsg + AsmError); 332 333 return Ctx.emitError(I, ErrMsg); 334 } 335 336 /// getCopyFromPartsVector - Create a value that contains the specified legal 337 /// parts combined into the value they represent. If the parts combine to a 338 /// type larger than ValueVT then AssertOp can be used to specify whether the 339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 340 /// ValueVT (ISD::AssertSext). 341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 342 const SDValue *Parts, unsigned NumParts, 343 MVT PartVT, EVT ValueVT, const Value *V, 344 SDValue InChain, 345 std::optional<CallingConv::ID> CallConv) { 346 assert(ValueVT.isVector() && "Not a vector value"); 347 assert(NumParts > 0 && "No parts to assemble!"); 348 const bool IsABIRegCopy = CallConv.has_value(); 349 350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 351 SDValue Val = Parts[0]; 352 353 // Handle a multi-element vector. 354 if (NumParts > 1) { 355 EVT IntermediateVT; 356 MVT RegisterVT; 357 unsigned NumIntermediates; 358 unsigned NumRegs; 359 360 if (IsABIRegCopy) { 361 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 362 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } else { 365 NumRegs = 366 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 367 NumIntermediates, RegisterVT); 368 } 369 370 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 371 NumParts = NumRegs; // Silence a compiler warning. 372 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 373 assert(RegisterVT.getSizeInBits() == 374 Parts[0].getSimpleValueType().getSizeInBits() && 375 "Part type sizes don't match!"); 376 377 // Assemble the parts into intermediate operands. 378 SmallVector<SDValue, 8> Ops(NumIntermediates); 379 if (NumIntermediates == NumParts) { 380 // If the register was not expanded, truncate or copy the value, 381 // as appropriate. 382 for (unsigned i = 0; i != NumParts; ++i) 383 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 384 V, InChain, CallConv); 385 } else if (NumParts > 0) { 386 // If the intermediate type was expanded, build the intermediate 387 // operands from the parts. 388 assert(NumParts % NumIntermediates == 0 && 389 "Must expand into a divisible number of parts!"); 390 unsigned Factor = NumParts / NumIntermediates; 391 for (unsigned i = 0; i != NumIntermediates; ++i) 392 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 393 IntermediateVT, V, InChain, CallConv); 394 } 395 396 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 397 // intermediate operands. 398 EVT BuiltVectorTy = 399 IntermediateVT.isVector() 400 ? EVT::getVectorVT( 401 *DAG.getContext(), IntermediateVT.getScalarType(), 402 IntermediateVT.getVectorElementCount() * NumParts) 403 : EVT::getVectorVT(*DAG.getContext(), 404 IntermediateVT.getScalarType(), 405 NumIntermediates); 406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 407 : ISD::BUILD_VECTOR, 408 DL, BuiltVectorTy, Ops); 409 } 410 411 // There is now one part, held in Val. Correct it to match ValueVT. 412 EVT PartEVT = Val.getValueType(); 413 414 if (PartEVT == ValueVT) 415 return Val; 416 417 if (PartEVT.isVector()) { 418 // Vector/Vector bitcast. 419 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // If the parts vector has more elements than the value vector, then we 423 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 424 // Extract the elements we want. 425 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 426 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 427 ValueVT.getVectorElementCount().getKnownMinValue()) && 428 (PartEVT.getVectorElementCount().isScalable() == 429 ValueVT.getVectorElementCount().isScalable()) && 430 "Cannot narrow, it would be a lossy transformation"); 431 PartEVT = 432 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 433 ValueVT.getVectorElementCount()); 434 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 435 DAG.getVectorIdxConstant(0, DL)); 436 if (PartEVT == ValueVT) 437 return Val; 438 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 441 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 } 445 446 // Promoted vector extract 447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 448 } 449 450 // Trivial bitcast if the types are the same size and the destination 451 // vector type is legal. 452 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 453 TLI.isTypeLegal(ValueVT)) 454 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 455 456 if (ValueVT.getVectorNumElements() != 1) { 457 // Certain ABIs require that vectors are passed as integers. For vectors 458 // are the same size, this is an obvious bitcast. 459 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 461 } else if (ValueVT.bitsLT(PartEVT)) { 462 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 463 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 464 // Drop the extra bits. 465 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 466 return DAG.getBitcast(ValueVT, Val); 467 } 468 469 diagnosePossiblyInvalidConstraint( 470 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 471 return DAG.getUNDEF(ValueVT); 472 } 473 474 // Handle cases such as i8 -> <1 x i1> 475 EVT ValueSVT = ValueVT.getVectorElementType(); 476 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 477 unsigned ValueSize = ValueSVT.getSizeInBits(); 478 if (ValueSize == PartEVT.getSizeInBits()) { 479 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 480 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 481 // It's possible a scalar floating point type gets softened to integer and 482 // then promoted to a larger integer. If PartEVT is the larger integer 483 // we need to truncate it and then bitcast to the FP type. 484 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 485 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 486 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 487 Val = DAG.getBitcast(ValueSVT, Val); 488 } else { 489 Val = ValueVT.isFloatingPoint() 490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 492 } 493 } 494 495 return DAG.getBuildVector(ValueVT, DL, Val); 496 } 497 498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 499 SDValue Val, SDValue *Parts, unsigned NumParts, 500 MVT PartVT, const Value *V, 501 std::optional<CallingConv::ID> CallConv); 502 503 /// getCopyToParts - Create a series of nodes that contain the specified value 504 /// split into legal parts. If the parts contain more bits than Val, then, for 505 /// integers, ExtendKind can be used to specify how to generate the extra bits. 506 static void 507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 508 unsigned NumParts, MVT PartVT, const Value *V, 509 std::optional<CallingConv::ID> CallConv = std::nullopt, 510 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 511 // Let the target split the parts if it wants to 512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 513 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 514 CallConv)) 515 return; 516 EVT ValueVT = Val.getValueType(); 517 518 // Handle the vector case separately. 519 if (ValueVT.isVector()) 520 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 521 CallConv); 522 523 unsigned OrigNumParts = NumParts; 524 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 525 "Copying to an illegal type!"); 526 527 if (NumParts == 0) 528 return; 529 530 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 531 EVT PartEVT = PartVT; 532 if (PartEVT == ValueVT) { 533 assert(NumParts == 1 && "No-op copy with multiple parts!"); 534 Parts[0] = Val; 535 return; 536 } 537 538 unsigned PartBits = PartVT.getSizeInBits(); 539 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 540 // If the parts cover more bits than the value has, promote the value. 541 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 542 assert(NumParts == 1 && "Do not know what to promote to!"); 543 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 544 } else { 545 if (ValueVT.isFloatingPoint()) { 546 // FP values need to be bitcast, then extended if they are being put 547 // into a larger container. 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 549 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 550 } 551 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 552 ValueVT.isInteger() && 553 "Unknown mismatch!"); 554 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 555 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 556 if (PartVT == MVT::x86mmx) 557 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 558 } 559 } else if (PartBits == ValueVT.getSizeInBits()) { 560 // Different types of the same size. 561 assert(NumParts == 1 && PartEVT != ValueVT); 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 564 // If the parts cover less bits than value has, truncate the value. 565 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 566 ValueVT.isInteger() && 567 "Unknown mismatch!"); 568 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 569 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 570 if (PartVT == MVT::x86mmx) 571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 572 } 573 574 // The value may have changed - recompute ValueVT. 575 ValueVT = Val.getValueType(); 576 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 577 "Failed to tile the value with PartVT!"); 578 579 if (NumParts == 1) { 580 if (PartEVT != ValueVT) { 581 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 582 "scalar-to-vector conversion failed"); 583 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 584 } 585 586 Parts[0] = Val; 587 return; 588 } 589 590 // Expand the value into multiple parts. 591 if (NumParts & (NumParts - 1)) { 592 // The number of parts is not a power of 2. Split off and copy the tail. 593 assert(PartVT.isInteger() && ValueVT.isInteger() && 594 "Do not know what to expand to!"); 595 unsigned RoundParts = llvm::bit_floor(NumParts); 596 unsigned RoundBits = RoundParts * PartBits; 597 unsigned OddParts = NumParts - RoundParts; 598 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 599 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 600 601 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 602 CallConv); 603 604 if (DAG.getDataLayout().isBigEndian()) 605 // The odd parts were reversed by getCopyToParts - unreverse them. 606 std::reverse(Parts + RoundParts, Parts + NumParts); 607 608 NumParts = RoundParts; 609 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 610 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 611 } 612 613 // The number of parts is a power of 2. Repeatedly bisect the value using 614 // EXTRACT_ELEMENT. 615 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 616 EVT::getIntegerVT(*DAG.getContext(), 617 ValueVT.getSizeInBits()), 618 Val); 619 620 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 621 for (unsigned i = 0; i < NumParts; i += StepSize) { 622 unsigned ThisBits = StepSize * PartBits / 2; 623 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 624 SDValue &Part0 = Parts[i]; 625 SDValue &Part1 = Parts[i+StepSize/2]; 626 627 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 628 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 629 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 630 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 631 632 if (ThisBits == PartBits && ThisVT != PartVT) { 633 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 634 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 635 } 636 } 637 } 638 639 if (DAG.getDataLayout().isBigEndian()) 640 std::reverse(Parts, Parts + OrigNumParts); 641 } 642 643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 644 const SDLoc &DL, EVT PartVT) { 645 if (!PartVT.isVector()) 646 return SDValue(); 647 648 EVT ValueVT = Val.getValueType(); 649 EVT PartEVT = PartVT.getVectorElementType(); 650 EVT ValueEVT = ValueVT.getVectorElementType(); 651 ElementCount PartNumElts = PartVT.getVectorElementCount(); 652 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 653 654 // We only support widening vectors with equivalent element types and 655 // fixed/scalable properties. If a target needs to widen a fixed-length type 656 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 657 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 658 PartNumElts.isScalable() != ValueNumElts.isScalable()) 659 return SDValue(); 660 661 // Have a try for bf16 because some targets share its ABI with fp16. 662 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 663 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 664 "Cannot widen to illegal type"); 665 Val = DAG.getNode(ISD::BITCAST, DL, 666 ValueVT.changeVectorElementType(MVT::f16), Val); 667 } else if (PartEVT != ValueEVT) { 668 return SDValue(); 669 } 670 671 // Widening a scalable vector to another scalable vector is done by inserting 672 // the vector into a larger undef one. 673 if (PartNumElts.isScalable()) 674 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 675 Val, DAG.getVectorIdxConstant(0, DL)); 676 677 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 678 // undef elements. 679 SmallVector<SDValue, 16> Ops; 680 DAG.ExtractVectorElements(Val, Ops); 681 SDValue EltUndef = DAG.getUNDEF(PartEVT); 682 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 683 684 // FIXME: Use CONCAT for 2x -> 4x. 685 return DAG.getBuildVector(PartVT, DL, Ops); 686 } 687 688 /// getCopyToPartsVector - Create a series of nodes that contain the specified 689 /// value split into legal parts. 690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 691 SDValue Val, SDValue *Parts, unsigned NumParts, 692 MVT PartVT, const Value *V, 693 std::optional<CallingConv::ID> CallConv) { 694 EVT ValueVT = Val.getValueType(); 695 assert(ValueVT.isVector() && "Not a vector"); 696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 697 const bool IsABIRegCopy = CallConv.has_value(); 698 699 if (NumParts == 1) { 700 EVT PartEVT = PartVT; 701 if (PartEVT == ValueVT) { 702 // Nothing to do. 703 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 704 // Bitconvert vector->vector case. 705 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 706 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 707 Val = Widened; 708 } else if (PartVT.isVector() && 709 PartEVT.getVectorElementType().bitsGE( 710 ValueVT.getVectorElementType()) && 711 PartEVT.getVectorElementCount() == 712 ValueVT.getVectorElementCount()) { 713 714 // Promoted vector extract 715 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 716 } else if (PartEVT.isVector() && 717 PartEVT.getVectorElementType() != 718 ValueVT.getVectorElementType() && 719 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 720 TargetLowering::TypeWidenVector) { 721 // Combination of widening and promotion. 722 EVT WidenVT = 723 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 724 PartVT.getVectorElementCount()); 725 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 726 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 727 } else { 728 // Don't extract an integer from a float vector. This can happen if the 729 // FP type gets softened to integer and then promoted. The promotion 730 // prevents it from being picked up by the earlier bitcast case. 731 if (ValueVT.getVectorElementCount().isScalar() && 732 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 733 // If we reach this condition and PartVT is FP, this means that 734 // ValueVT is also FP and both have a different size, otherwise we 735 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 736 // would be invalid since that would mean the smaller FP type has to 737 // be extended to the larger one. 738 if (PartVT.isFloatingPoint()) { 739 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 740 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 741 } else 742 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 743 DAG.getVectorIdxConstant(0, DL)); 744 } else { 745 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 746 assert(PartVT.getFixedSizeInBits() > ValueSize && 747 "lossy conversion of vector to scalar type"); 748 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 749 Val = DAG.getBitcast(IntermediateType, Val); 750 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 751 } 752 } 753 754 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 755 Parts[0] = Val; 756 return; 757 } 758 759 // Handle a multi-element vector. 760 EVT IntermediateVT; 761 MVT RegisterVT; 762 unsigned NumIntermediates; 763 unsigned NumRegs; 764 if (IsABIRegCopy) { 765 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 766 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 767 RegisterVT); 768 } else { 769 NumRegs = 770 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 771 NumIntermediates, RegisterVT); 772 } 773 774 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 775 NumParts = NumRegs; // Silence a compiler warning. 776 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 777 778 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 779 "Mixing scalable and fixed vectors when copying in parts"); 780 781 std::optional<ElementCount> DestEltCnt; 782 783 if (IntermediateVT.isVector()) 784 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 785 else 786 DestEltCnt = ElementCount::getFixed(NumIntermediates); 787 788 EVT BuiltVectorTy = EVT::getVectorVT( 789 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 790 791 if (ValueVT == BuiltVectorTy) { 792 // Nothing to do. 793 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 794 // Bitconvert vector->vector case. 795 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 796 } else { 797 if (BuiltVectorTy.getVectorElementType().bitsGT( 798 ValueVT.getVectorElementType())) { 799 // Integer promotion. 800 ValueVT = EVT::getVectorVT(*DAG.getContext(), 801 BuiltVectorTy.getVectorElementType(), 802 ValueVT.getVectorElementCount()); 803 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 804 } 805 806 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 807 Val = Widened; 808 } 809 } 810 811 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 812 813 // Split the vector into intermediate operands. 814 SmallVector<SDValue, 8> Ops(NumIntermediates); 815 for (unsigned i = 0; i != NumIntermediates; ++i) { 816 if (IntermediateVT.isVector()) { 817 // This does something sensible for scalable vectors - see the 818 // definition of EXTRACT_SUBVECTOR for further details. 819 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 820 Ops[i] = 821 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 822 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 823 } else { 824 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 825 DAG.getVectorIdxConstant(i, DL)); 826 } 827 } 828 829 // Split the intermediate operands into legal parts. 830 if (NumParts == NumIntermediates) { 831 // If the register was not expanded, promote or copy the value, 832 // as appropriate. 833 for (unsigned i = 0; i != NumParts; ++i) 834 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 835 } else if (NumParts > 0) { 836 // If the intermediate type was expanded, split each the value into 837 // legal parts. 838 assert(NumIntermediates != 0 && "division by zero"); 839 assert(NumParts % NumIntermediates == 0 && 840 "Must expand into a divisible number of parts!"); 841 unsigned Factor = NumParts / NumIntermediates; 842 for (unsigned i = 0; i != NumIntermediates; ++i) 843 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 844 CallConv); 845 } 846 } 847 848 RegsForValue::RegsForValue(const SmallVector<Register, 4> ®s, MVT regvt, 849 EVT valuevt, std::optional<CallingConv::ID> CC) 850 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 851 RegCount(1, regs.size()), CallConv(CC) {} 852 853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 854 const DataLayout &DL, Register Reg, Type *Ty, 855 std::optional<CallingConv::ID> CC) { 856 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 857 858 CallConv = CC; 859 860 for (EVT ValueVT : ValueVTs) { 861 unsigned NumRegs = 862 isABIMangled() 863 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 864 : TLI.getNumRegisters(Context, ValueVT); 865 MVT RegisterVT = 866 isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 868 : TLI.getRegisterType(Context, ValueVT); 869 for (unsigned i = 0; i != NumRegs; ++i) 870 Regs.push_back(Reg + i); 871 RegVTs.push_back(RegisterVT); 872 RegCount.push_back(NumRegs); 873 Reg = Reg.id() + NumRegs; 874 } 875 } 876 877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 878 FunctionLoweringInfo &FuncInfo, 879 const SDLoc &dl, SDValue &Chain, 880 SDValue *Glue, const Value *V) const { 881 // A Value with type {} or [0 x %t] needs no registers. 882 if (ValueVTs.empty()) 883 return SDValue(); 884 885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 886 887 // Assemble the legal parts into the final values. 888 SmallVector<SDValue, 4> Values(ValueVTs.size()); 889 SmallVector<SDValue, 8> Parts; 890 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 891 // Copy the legal parts from the registers. 892 EVT ValueVT = ValueVTs[Value]; 893 unsigned NumRegs = RegCount[Value]; 894 MVT RegisterVT = isABIMangled() 895 ? TLI.getRegisterTypeForCallingConv( 896 *DAG.getContext(), *CallConv, RegVTs[Value]) 897 : RegVTs[Value]; 898 899 Parts.resize(NumRegs); 900 for (unsigned i = 0; i != NumRegs; ++i) { 901 SDValue P; 902 if (!Glue) { 903 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 904 } else { 905 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 906 *Glue = P.getValue(2); 907 } 908 909 Chain = P.getValue(1); 910 Parts[i] = P; 911 912 // If the source register was virtual and if we know something about it, 913 // add an assert node. 914 if (!Register::isVirtualRegister(Regs[Part + i]) || 915 !RegisterVT.isInteger()) 916 continue; 917 918 const FunctionLoweringInfo::LiveOutInfo *LOI = 919 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 920 if (!LOI) 921 continue; 922 923 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 924 unsigned NumSignBits = LOI->NumSignBits; 925 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 926 927 if (NumZeroBits == RegSize) { 928 // The current value is a zero. 929 // Explicitly express that as it would be easier for 930 // optimizations to kick in. 931 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 932 continue; 933 } 934 935 // FIXME: We capture more information than the dag can represent. For 936 // now, just use the tightest assertzext/assertsext possible. 937 bool isSExt; 938 EVT FromVT(MVT::Other); 939 if (NumZeroBits) { 940 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 941 isSExt = false; 942 } else if (NumSignBits > 1) { 943 FromVT = 944 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 945 isSExt = true; 946 } else { 947 continue; 948 } 949 // Add an assertion node. 950 assert(FromVT != MVT::Other); 951 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 952 RegisterVT, P, DAG.getValueType(FromVT)); 953 } 954 955 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 956 RegisterVT, ValueVT, V, Chain, CallConv); 957 Part += NumRegs; 958 Parts.clear(); 959 } 960 961 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 962 } 963 964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 965 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 966 const Value *V, 967 ISD::NodeType PreferredExtendType) const { 968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 969 ISD::NodeType ExtendKind = PreferredExtendType; 970 971 // Get the list of the values's legal parts. 972 unsigned NumRegs = Regs.size(); 973 SmallVector<SDValue, 8> Parts(NumRegs); 974 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumParts = RegCount[Value]; 976 977 MVT RegisterVT = isABIMangled() 978 ? TLI.getRegisterTypeForCallingConv( 979 *DAG.getContext(), *CallConv, RegVTs[Value]) 980 : RegVTs[Value]; 981 982 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 983 ExtendKind = ISD::ZERO_EXTEND; 984 985 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 986 NumParts, RegisterVT, V, CallConv, ExtendKind); 987 Part += NumParts; 988 } 989 990 // Copy the parts into the registers. 991 SmallVector<SDValue, 8> Chains(NumRegs); 992 for (unsigned i = 0; i != NumRegs; ++i) { 993 SDValue Part; 994 if (!Glue) { 995 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 996 } else { 997 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 998 *Glue = Part.getValue(1); 999 } 1000 1001 Chains[i] = Part.getValue(0); 1002 } 1003 1004 if (NumRegs == 1 || Glue) 1005 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1006 // flagged to it. That is the CopyToReg nodes and the user are considered 1007 // a single scheduling unit. If we create a TokenFactor and return it as 1008 // chain, then the TokenFactor is both a predecessor (operand) of the 1009 // user as well as a successor (the TF operands are flagged to the user). 1010 // c1, f1 = CopyToReg 1011 // c2, f2 = CopyToReg 1012 // c3 = TokenFactor c1, c2 1013 // ... 1014 // = op c3, ..., f2 1015 Chain = Chains[NumRegs-1]; 1016 else 1017 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1018 } 1019 1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1021 unsigned MatchingIdx, const SDLoc &dl, 1022 SelectionDAG &DAG, 1023 std::vector<SDValue> &Ops) const { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 InlineAsm::Flag Flag(Code, Regs.size()); 1027 if (HasMatching) 1028 Flag.setMatchingOp(MatchingIdx); 1029 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1030 // Put the register class of the virtual registers in the flag word. That 1031 // way, later passes can recompute register class constraints for inline 1032 // assembly as well as normal instructions. 1033 // Don't do this for tied operands that can use the regclass information 1034 // from the def. 1035 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1036 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1037 Flag.setRegClass(RC->getID()); 1038 } 1039 1040 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1041 Ops.push_back(Res); 1042 1043 if (Code == InlineAsm::Kind::Clobber) { 1044 // Clobbers should always have a 1:1 mapping with registers, and may 1045 // reference registers that have illegal (e.g. vector) types. Hence, we 1046 // shouldn't try to apply any sort of splitting logic to them. 1047 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1048 "No 1:1 mapping from clobbers to regs?"); 1049 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1050 (void)SP; 1051 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1052 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1053 assert( 1054 (Regs[I] != SP || 1055 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1056 "If we clobbered the stack pointer, MFI should know about it."); 1057 } 1058 return; 1059 } 1060 1061 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1062 MVT RegisterVT = RegVTs[Value]; 1063 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1064 RegisterVT); 1065 for (unsigned i = 0; i != NumRegs; ++i) { 1066 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1067 unsigned TheReg = Regs[Reg++]; 1068 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1069 } 1070 } 1071 } 1072 1073 SmallVector<std::pair<Register, TypeSize>, 4> 1074 RegsForValue::getRegsAndSizes() const { 1075 SmallVector<std::pair<Register, TypeSize>, 4> OutVec; 1076 unsigned I = 0; 1077 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1078 unsigned RegCount = std::get<0>(CountAndVT); 1079 MVT RegisterVT = std::get<1>(CountAndVT); 1080 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1081 for (unsigned E = I + RegCount; I != E; ++I) 1082 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1083 } 1084 return OutVec; 1085 } 1086 1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1088 AssumptionCache *ac, 1089 const TargetLibraryInfo *li) { 1090 AA = aa; 1091 AC = ac; 1092 GFI = gfi; 1093 LibInfo = li; 1094 Context = DAG.getContext(); 1095 LPadToCallSiteMap.clear(); 1096 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1097 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1098 *DAG.getMachineFunction().getFunction().getParent()); 1099 } 1100 1101 void SelectionDAGBuilder::clear() { 1102 NodeMap.clear(); 1103 UnusedArgNodeMap.clear(); 1104 PendingLoads.clear(); 1105 PendingExports.clear(); 1106 PendingConstrainedFP.clear(); 1107 PendingConstrainedFPStrict.clear(); 1108 CurInst = nullptr; 1109 HasTailCall = false; 1110 SDNodeOrder = LowestSDNodeOrder; 1111 StatepointLowering.clear(); 1112 } 1113 1114 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1115 DanglingDebugInfoMap.clear(); 1116 } 1117 1118 // Update DAG root to include dependencies on Pending chains. 1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1120 SDValue Root = DAG.getRoot(); 1121 1122 if (Pending.empty()) 1123 return Root; 1124 1125 // Add current root to PendingChains, unless we already indirectly 1126 // depend on it. 1127 if (Root.getOpcode() != ISD::EntryToken) { 1128 unsigned i = 0, e = Pending.size(); 1129 for (; i != e; ++i) { 1130 assert(Pending[i].getNode()->getNumOperands() > 1); 1131 if (Pending[i].getNode()->getOperand(0) == Root) 1132 break; // Don't add the root if we already indirectly depend on it. 1133 } 1134 1135 if (i == e) 1136 Pending.push_back(Root); 1137 } 1138 1139 if (Pending.size() == 1) 1140 Root = Pending[0]; 1141 else 1142 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1143 1144 DAG.setRoot(Root); 1145 Pending.clear(); 1146 return Root; 1147 } 1148 1149 SDValue SelectionDAGBuilder::getMemoryRoot() { 1150 return updateRoot(PendingLoads); 1151 } 1152 1153 SDValue SelectionDAGBuilder::getRoot() { 1154 // Chain up all pending constrained intrinsics together with all 1155 // pending loads, by simply appending them to PendingLoads and 1156 // then calling getMemoryRoot(). 1157 PendingLoads.reserve(PendingLoads.size() + 1158 PendingConstrainedFP.size() + 1159 PendingConstrainedFPStrict.size()); 1160 PendingLoads.append(PendingConstrainedFP.begin(), 1161 PendingConstrainedFP.end()); 1162 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1163 PendingConstrainedFPStrict.end()); 1164 PendingConstrainedFP.clear(); 1165 PendingConstrainedFPStrict.clear(); 1166 return getMemoryRoot(); 1167 } 1168 1169 SDValue SelectionDAGBuilder::getControlRoot() { 1170 // We need to emit pending fpexcept.strict constrained intrinsics, 1171 // so append them to the PendingExports list. 1172 PendingExports.append(PendingConstrainedFPStrict.begin(), 1173 PendingConstrainedFPStrict.end()); 1174 PendingConstrainedFPStrict.clear(); 1175 return updateRoot(PendingExports); 1176 } 1177 1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1179 DILocalVariable *Variable, 1180 DIExpression *Expression, 1181 DebugLoc DL) { 1182 assert(Variable && "Missing variable"); 1183 1184 // Check if address has undef value. 1185 if (!Address || isa<UndefValue>(Address) || 1186 (Address->use_empty() && !isa<Argument>(Address))) { 1187 LLVM_DEBUG( 1188 dbgs() 1189 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1190 return; 1191 } 1192 1193 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1194 1195 SDValue &N = NodeMap[Address]; 1196 if (!N.getNode() && isa<Argument>(Address)) 1197 // Check unused arguments map. 1198 N = UnusedArgNodeMap[Address]; 1199 SDDbgValue *SDV; 1200 if (N.getNode()) { 1201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1202 Address = BCI->getOperand(0); 1203 // Parameters are handled specially. 1204 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1205 if (IsParameter && FINode) { 1206 // Byval parameter. We have a frame index at this point. 1207 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1208 /*IsIndirect*/ true, DL, SDNodeOrder); 1209 } else if (isa<Argument>(Address)) { 1210 // Address is an argument, so try to emit its dbg value using 1211 // virtual register info from the FuncInfo.ValueMap. 1212 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1213 FuncArgumentDbgValueKind::Declare, N); 1214 return; 1215 } else { 1216 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1217 true, DL, SDNodeOrder); 1218 } 1219 DAG.AddDbgValue(SDV, IsParameter); 1220 } else { 1221 // If Address is an argument then try to emit its dbg value using 1222 // virtual register info from the FuncInfo.ValueMap. 1223 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1224 FuncArgumentDbgValueKind::Declare, N)) { 1225 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1226 << " (could not emit func-arg dbg_value)\n"); 1227 } 1228 } 1229 return; 1230 } 1231 1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1233 // Add SDDbgValue nodes for any var locs here. Do so before updating 1234 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1235 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1236 // Add SDDbgValue nodes for any var locs here. Do so before updating 1237 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1238 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1239 It != End; ++It) { 1240 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1241 dropDanglingDebugInfo(Var, It->Expr); 1242 if (It->Values.isKillLocation(It->Expr)) { 1243 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1244 continue; 1245 } 1246 SmallVector<Value *> Values(It->Values.location_ops()); 1247 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1248 It->Values.hasArgList())) { 1249 SmallVector<Value *, 4> Vals(It->Values.location_ops()); 1250 addDanglingDebugInfo(Vals, 1251 FnVarLocs->getDILocalVariable(It->VariableID), 1252 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1253 } 1254 } 1255 } 1256 1257 // We must skip DbgVariableRecords if they've already been processed above as 1258 // we have just emitted the debug values resulting from assignment tracking 1259 // analysis, making any existing DbgVariableRecords redundant (and probably 1260 // less correct). We still need to process DbgLabelRecords. This does sink 1261 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1262 // be important as it does so deterministcally and ordering between 1263 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1264 // printing). 1265 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1266 // Is there is any debug-info attached to this instruction, in the form of 1267 // DbgRecord non-instruction debug-info records. 1268 for (DbgRecord &DR : I.getDbgRecordRange()) { 1269 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1270 assert(DLR->getLabel() && "Missing label"); 1271 SDDbgLabel *SDV = 1272 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1273 DAG.AddDbgLabel(SDV); 1274 continue; 1275 } 1276 1277 if (SkipDbgVariableRecords) 1278 continue; 1279 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1280 DILocalVariable *Variable = DVR.getVariable(); 1281 DIExpression *Expression = DVR.getExpression(); 1282 dropDanglingDebugInfo(Variable, Expression); 1283 1284 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1285 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1286 continue; 1287 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1288 << "\n"); 1289 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1290 DVR.getDebugLoc()); 1291 continue; 1292 } 1293 1294 // A DbgVariableRecord with no locations is a kill location. 1295 SmallVector<Value *, 4> Values(DVR.location_ops()); 1296 if (Values.empty()) { 1297 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1298 SDNodeOrder); 1299 continue; 1300 } 1301 1302 // A DbgVariableRecord with an undef or absent location is also a kill 1303 // location. 1304 if (llvm::any_of(Values, 1305 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1306 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1307 SDNodeOrder); 1308 continue; 1309 } 1310 1311 bool IsVariadic = DVR.hasArgList(); 1312 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1313 SDNodeOrder, IsVariadic)) { 1314 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1315 DVR.getDebugLoc(), SDNodeOrder); 1316 } 1317 } 1318 } 1319 1320 void SelectionDAGBuilder::visit(const Instruction &I) { 1321 visitDbgInfo(I); 1322 1323 // Set up outgoing PHI node register values before emitting the terminator. 1324 if (I.isTerminator()) { 1325 HandlePHINodesInSuccessorBlocks(I.getParent()); 1326 } 1327 1328 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1329 if (!isa<DbgInfoIntrinsic>(I)) 1330 ++SDNodeOrder; 1331 1332 CurInst = &I; 1333 1334 // Set inserted listener only if required. 1335 bool NodeInserted = false; 1336 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1337 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1338 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1339 if (PCSectionsMD || MMRA) { 1340 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1341 DAG, [&](SDNode *) { NodeInserted = true; }); 1342 } 1343 1344 visit(I.getOpcode(), I); 1345 1346 if (!I.isTerminator() && !HasTailCall && 1347 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1348 CopyToExportRegsIfNeeded(&I); 1349 1350 // Handle metadata. 1351 if (PCSectionsMD || MMRA) { 1352 auto It = NodeMap.find(&I); 1353 if (It != NodeMap.end()) { 1354 if (PCSectionsMD) 1355 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1356 if (MMRA) 1357 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1358 } else if (NodeInserted) { 1359 // This should not happen; if it does, don't let it go unnoticed so we can 1360 // fix it. Relevant visit*() function is probably missing a setValue(). 1361 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1362 << I.getModule()->getName() << "]\n"; 1363 LLVM_DEBUG(I.dump()); 1364 assert(false); 1365 } 1366 } 1367 1368 CurInst = nullptr; 1369 } 1370 1371 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1372 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1373 } 1374 1375 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1376 // Note: this doesn't use InstVisitor, because it has to work with 1377 // ConstantExpr's in addition to instructions. 1378 switch (Opcode) { 1379 default: llvm_unreachable("Unknown instruction type encountered!"); 1380 // Build the switch statement using the Instruction.def file. 1381 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1382 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1383 #include "llvm/IR/Instruction.def" 1384 } 1385 } 1386 1387 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1388 DILocalVariable *Variable, 1389 DebugLoc DL, unsigned Order, 1390 SmallVectorImpl<Value *> &Values, 1391 DIExpression *Expression) { 1392 // For variadic dbg_values we will now insert an undef. 1393 // FIXME: We can potentially recover these! 1394 SmallVector<SDDbgOperand, 2> Locs; 1395 for (const Value *V : Values) { 1396 auto *Undef = UndefValue::get(V->getType()); 1397 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1398 } 1399 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1400 /*IsIndirect=*/false, DL, Order, 1401 /*IsVariadic=*/true); 1402 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1403 return true; 1404 } 1405 1406 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1407 DILocalVariable *Var, 1408 DIExpression *Expr, 1409 bool IsVariadic, DebugLoc DL, 1410 unsigned Order) { 1411 if (IsVariadic) { 1412 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1413 return; 1414 } 1415 // TODO: Dangling debug info will eventually either be resolved or produce 1416 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1417 // between the original dbg.value location and its resolved DBG_VALUE, 1418 // which we should ideally fill with an extra Undef DBG_VALUE. 1419 assert(Values.size() == 1); 1420 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1421 } 1422 1423 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1424 const DIExpression *Expr) { 1425 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1426 DIVariable *DanglingVariable = DDI.getVariable(); 1427 DIExpression *DanglingExpr = DDI.getExpression(); 1428 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1429 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1430 << printDDI(nullptr, DDI) << "\n"); 1431 return true; 1432 } 1433 return false; 1434 }; 1435 1436 for (auto &DDIMI : DanglingDebugInfoMap) { 1437 DanglingDebugInfoVector &DDIV = DDIMI.second; 1438 1439 // If debug info is to be dropped, run it through final checks to see 1440 // whether it can be salvaged. 1441 for (auto &DDI : DDIV) 1442 if (isMatchingDbgValue(DDI)) 1443 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1444 1445 erase_if(DDIV, isMatchingDbgValue); 1446 } 1447 } 1448 1449 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1450 // generate the debug data structures now that we've seen its definition. 1451 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1452 SDValue Val) { 1453 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1454 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1455 return; 1456 1457 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1458 for (auto &DDI : DDIV) { 1459 DebugLoc DL = DDI.getDebugLoc(); 1460 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1461 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1462 DILocalVariable *Variable = DDI.getVariable(); 1463 DIExpression *Expr = DDI.getExpression(); 1464 assert(Variable->isValidLocationForIntrinsic(DL) && 1465 "Expected inlined-at fields to agree"); 1466 SDDbgValue *SDV; 1467 if (Val.getNode()) { 1468 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1469 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1470 // we couldn't resolve it directly when examining the DbgValue intrinsic 1471 // in the first place we should not be more successful here). Unless we 1472 // have some test case that prove this to be correct we should avoid 1473 // calling EmitFuncArgumentDbgValue here. 1474 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1475 FuncArgumentDbgValueKind::Value, Val)) { 1476 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1477 << printDDI(V, DDI) << "\n"); 1478 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1479 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1480 // inserted after the definition of Val when emitting the instructions 1481 // after ISel. An alternative could be to teach 1482 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1483 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1484 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1485 << ValSDNodeOrder << "\n"); 1486 SDV = getDbgValue(Val, Variable, Expr, DL, 1487 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1488 DAG.AddDbgValue(SDV, false); 1489 } else 1490 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1491 << printDDI(V, DDI) 1492 << " in EmitFuncArgumentDbgValue\n"); 1493 } else { 1494 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1495 << "\n"); 1496 auto Undef = UndefValue::get(V->getType()); 1497 auto SDV = 1498 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1499 DAG.AddDbgValue(SDV, false); 1500 } 1501 } 1502 DDIV.clear(); 1503 } 1504 1505 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1506 DanglingDebugInfo &DDI) { 1507 // TODO: For the variadic implementation, instead of only checking the fail 1508 // state of `handleDebugValue`, we need know specifically which values were 1509 // invalid, so that we attempt to salvage only those values when processing 1510 // a DIArgList. 1511 const Value *OrigV = V; 1512 DILocalVariable *Var = DDI.getVariable(); 1513 DIExpression *Expr = DDI.getExpression(); 1514 DebugLoc DL = DDI.getDebugLoc(); 1515 unsigned SDOrder = DDI.getSDNodeOrder(); 1516 1517 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1518 // that DW_OP_stack_value is desired. 1519 bool StackValue = true; 1520 1521 // Can this Value can be encoded without any further work? 1522 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1523 return; 1524 1525 // Attempt to salvage back through as many instructions as possible. Bail if 1526 // a non-instruction is seen, such as a constant expression or global 1527 // variable. FIXME: Further work could recover those too. 1528 while (isa<Instruction>(V)) { 1529 const Instruction &VAsInst = *cast<const Instruction>(V); 1530 // Temporary "0", awaiting real implementation. 1531 SmallVector<uint64_t, 16> Ops; 1532 SmallVector<Value *, 4> AdditionalValues; 1533 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1534 Expr->getNumLocationOperands(), Ops, 1535 AdditionalValues); 1536 // If we cannot salvage any further, and haven't yet found a suitable debug 1537 // expression, bail out. 1538 if (!V) 1539 break; 1540 1541 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1542 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1543 // here for variadic dbg_values, remove that condition. 1544 if (!AdditionalValues.empty()) 1545 break; 1546 1547 // New value and expr now represent this debuginfo. 1548 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1549 1550 // Some kind of simplification occurred: check whether the operand of the 1551 // salvaged debug expression can be encoded in this DAG. 1552 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1553 LLVM_DEBUG( 1554 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1555 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1556 return; 1557 } 1558 } 1559 1560 // This was the final opportunity to salvage this debug information, and it 1561 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1562 // any earlier variable location. 1563 assert(OrigV && "V shouldn't be null"); 1564 auto *Undef = UndefValue::get(OrigV->getType()); 1565 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1566 DAG.AddDbgValue(SDV, false); 1567 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1568 << printDDI(OrigV, DDI) << "\n"); 1569 } 1570 1571 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1572 DIExpression *Expr, 1573 DebugLoc DbgLoc, 1574 unsigned Order) { 1575 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1576 DIExpression *NewExpr = 1577 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1578 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1579 /*IsVariadic*/ false); 1580 } 1581 1582 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1583 DILocalVariable *Var, 1584 DIExpression *Expr, DebugLoc DbgLoc, 1585 unsigned Order, bool IsVariadic) { 1586 if (Values.empty()) 1587 return true; 1588 1589 // Filter EntryValue locations out early. 1590 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1591 return true; 1592 1593 SmallVector<SDDbgOperand> LocationOps; 1594 SmallVector<SDNode *> Dependencies; 1595 for (const Value *V : Values) { 1596 // Constant value. 1597 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1598 isa<ConstantPointerNull>(V)) { 1599 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1600 continue; 1601 } 1602 1603 // Look through IntToPtr constants. 1604 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1605 if (CE->getOpcode() == Instruction::IntToPtr) { 1606 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1607 continue; 1608 } 1609 1610 // If the Value is a frame index, we can create a FrameIndex debug value 1611 // without relying on the DAG at all. 1612 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1613 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1614 if (SI != FuncInfo.StaticAllocaMap.end()) { 1615 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1616 continue; 1617 } 1618 } 1619 1620 // Do not use getValue() in here; we don't want to generate code at 1621 // this point if it hasn't been done yet. 1622 SDValue N = NodeMap[V]; 1623 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1624 N = UnusedArgNodeMap[V]; 1625 1626 if (N.getNode()) { 1627 // Only emit func arg dbg value for non-variadic dbg.values for now. 1628 if (!IsVariadic && 1629 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1630 FuncArgumentDbgValueKind::Value, N)) 1631 return true; 1632 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1633 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1634 // describe stack slot locations. 1635 // 1636 // Consider "int x = 0; int *px = &x;". There are two kinds of 1637 // interesting debug values here after optimization: 1638 // 1639 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1640 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1641 // 1642 // Both describe the direct values of their associated variables. 1643 Dependencies.push_back(N.getNode()); 1644 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1645 continue; 1646 } 1647 LocationOps.emplace_back( 1648 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1649 continue; 1650 } 1651 1652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1653 // Special rules apply for the first dbg.values of parameter variables in a 1654 // function. Identify them by the fact they reference Argument Values, that 1655 // they're parameters, and they are parameters of the current function. We 1656 // need to let them dangle until they get an SDNode. 1657 bool IsParamOfFunc = 1658 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1659 if (IsParamOfFunc) 1660 return false; 1661 1662 // The value is not used in this block yet (or it would have an SDNode). 1663 // We still want the value to appear for the user if possible -- if it has 1664 // an associated VReg, we can refer to that instead. 1665 auto VMI = FuncInfo.ValueMap.find(V); 1666 if (VMI != FuncInfo.ValueMap.end()) { 1667 unsigned Reg = VMI->second; 1668 // If this is a PHI node, it may be split up into several MI PHI nodes 1669 // (in FunctionLoweringInfo::set). 1670 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1671 V->getType(), std::nullopt); 1672 if (RFV.occupiesMultipleRegs()) { 1673 // FIXME: We could potentially support variadic dbg_values here. 1674 if (IsVariadic) 1675 return false; 1676 unsigned Offset = 0; 1677 unsigned BitsToDescribe = 0; 1678 if (auto VarSize = Var->getSizeInBits()) 1679 BitsToDescribe = *VarSize; 1680 if (auto Fragment = Expr->getFragmentInfo()) 1681 BitsToDescribe = Fragment->SizeInBits; 1682 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1683 // Bail out if all bits are described already. 1684 if (Offset >= BitsToDescribe) 1685 break; 1686 // TODO: handle scalable vectors. 1687 unsigned RegisterSize = RegAndSize.second; 1688 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1689 ? BitsToDescribe - Offset 1690 : RegisterSize; 1691 auto FragmentExpr = DIExpression::createFragmentExpression( 1692 Expr, Offset, FragmentSize); 1693 if (!FragmentExpr) 1694 continue; 1695 SDDbgValue *SDV = DAG.getVRegDbgValue( 1696 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1697 DAG.AddDbgValue(SDV, false); 1698 Offset += RegisterSize; 1699 } 1700 return true; 1701 } 1702 // We can use simple vreg locations for variadic dbg_values as well. 1703 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1704 continue; 1705 } 1706 // We failed to create a SDDbgOperand for V. 1707 return false; 1708 } 1709 1710 // We have created a SDDbgOperand for each Value in Values. 1711 assert(!LocationOps.empty()); 1712 SDDbgValue *SDV = 1713 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1714 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1715 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1716 return true; 1717 } 1718 1719 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1720 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1721 for (auto &Pair : DanglingDebugInfoMap) 1722 for (auto &DDI : Pair.second) 1723 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1724 clearDanglingDebugInfo(); 1725 } 1726 1727 /// getCopyFromRegs - If there was virtual register allocated for the value V 1728 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1729 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1730 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1731 SDValue Result; 1732 1733 if (It != FuncInfo.ValueMap.end()) { 1734 Register InReg = It->second; 1735 1736 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1737 DAG.getDataLayout(), InReg, Ty, 1738 std::nullopt); // This is not an ABI copy. 1739 SDValue Chain = DAG.getEntryNode(); 1740 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1741 V); 1742 resolveDanglingDebugInfo(V, Result); 1743 } 1744 1745 return Result; 1746 } 1747 1748 /// getValue - Return an SDValue for the given Value. 1749 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1750 // If we already have an SDValue for this value, use it. It's important 1751 // to do this first, so that we don't create a CopyFromReg if we already 1752 // have a regular SDValue. 1753 SDValue &N = NodeMap[V]; 1754 if (N.getNode()) return N; 1755 1756 // If there's a virtual register allocated and initialized for this 1757 // value, use it. 1758 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1759 return copyFromReg; 1760 1761 // Otherwise create a new SDValue and remember it. 1762 SDValue Val = getValueImpl(V); 1763 NodeMap[V] = Val; 1764 resolveDanglingDebugInfo(V, Val); 1765 return Val; 1766 } 1767 1768 /// getNonRegisterValue - Return an SDValue for the given Value, but 1769 /// don't look in FuncInfo.ValueMap for a virtual register. 1770 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1771 // If we already have an SDValue for this value, use it. 1772 SDValue &N = NodeMap[V]; 1773 if (N.getNode()) { 1774 if (isIntOrFPConstant(N)) { 1775 // Remove the debug location from the node as the node is about to be used 1776 // in a location which may differ from the original debug location. This 1777 // is relevant to Constant and ConstantFP nodes because they can appear 1778 // as constant expressions inside PHI nodes. 1779 N->setDebugLoc(DebugLoc()); 1780 } 1781 return N; 1782 } 1783 1784 // Otherwise create a new SDValue and remember it. 1785 SDValue Val = getValueImpl(V); 1786 NodeMap[V] = Val; 1787 resolveDanglingDebugInfo(V, Val); 1788 return Val; 1789 } 1790 1791 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1792 /// Create an SDValue for the given value. 1793 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1795 1796 if (const Constant *C = dyn_cast<Constant>(V)) { 1797 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1800 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1801 1802 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1803 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1804 1805 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1806 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1807 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1808 getValue(CPA->getAddrDiscriminator()), 1809 getValue(CPA->getDiscriminator())); 1810 } 1811 1812 if (isa<ConstantPointerNull>(C)) { 1813 unsigned AS = V->getType()->getPointerAddressSpace(); 1814 return DAG.getConstant(0, getCurSDLoc(), 1815 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1816 } 1817 1818 if (match(C, m_VScale())) 1819 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1820 1821 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1822 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1823 1824 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1825 return DAG.getUNDEF(VT); 1826 1827 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1828 visit(CE->getOpcode(), *CE); 1829 SDValue N1 = NodeMap[V]; 1830 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1831 return N1; 1832 } 1833 1834 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1835 SmallVector<SDValue, 4> Constants; 1836 for (const Use &U : C->operands()) { 1837 SDNode *Val = getValue(U).getNode(); 1838 // If the operand is an empty aggregate, there are no values. 1839 if (!Val) continue; 1840 // Add each leaf value from the operand to the Constants list 1841 // to form a flattened list of all the values. 1842 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1843 Constants.push_back(SDValue(Val, i)); 1844 } 1845 1846 return DAG.getMergeValues(Constants, getCurSDLoc()); 1847 } 1848 1849 if (const ConstantDataSequential *CDS = 1850 dyn_cast<ConstantDataSequential>(C)) { 1851 SmallVector<SDValue, 4> Ops; 1852 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1853 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1854 // Add each leaf value from the operand to the Constants list 1855 // to form a flattened list of all the values. 1856 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1857 Ops.push_back(SDValue(Val, i)); 1858 } 1859 1860 if (isa<ArrayType>(CDS->getType())) 1861 return DAG.getMergeValues(Ops, getCurSDLoc()); 1862 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1863 } 1864 1865 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1866 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1867 "Unknown struct or array constant!"); 1868 1869 SmallVector<EVT, 4> ValueVTs; 1870 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1871 unsigned NumElts = ValueVTs.size(); 1872 if (NumElts == 0) 1873 return SDValue(); // empty struct 1874 SmallVector<SDValue, 4> Constants(NumElts); 1875 for (unsigned i = 0; i != NumElts; ++i) { 1876 EVT EltVT = ValueVTs[i]; 1877 if (isa<UndefValue>(C)) 1878 Constants[i] = DAG.getUNDEF(EltVT); 1879 else if (EltVT.isFloatingPoint()) 1880 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1881 else 1882 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1883 } 1884 1885 return DAG.getMergeValues(Constants, getCurSDLoc()); 1886 } 1887 1888 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1889 return DAG.getBlockAddress(BA, VT); 1890 1891 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1892 return getValue(Equiv->getGlobalValue()); 1893 1894 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1895 return getValue(NC->getGlobalValue()); 1896 1897 if (VT == MVT::aarch64svcount) { 1898 assert(C->isNullValue() && "Can only zero this target type!"); 1899 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1900 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1901 } 1902 1903 VectorType *VecTy = cast<VectorType>(V->getType()); 1904 1905 // Now that we know the number and type of the elements, get that number of 1906 // elements into the Ops array based on what kind of constant it is. 1907 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1908 SmallVector<SDValue, 16> Ops; 1909 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1910 for (unsigned i = 0; i != NumElements; ++i) 1911 Ops.push_back(getValue(CV->getOperand(i))); 1912 1913 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1914 } 1915 1916 if (isa<ConstantAggregateZero>(C)) { 1917 EVT EltVT = 1918 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1919 1920 SDValue Op; 1921 if (EltVT.isFloatingPoint()) 1922 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1923 else 1924 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1925 1926 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1927 } 1928 1929 llvm_unreachable("Unknown vector constant"); 1930 } 1931 1932 // If this is a static alloca, generate it as the frameindex instead of 1933 // computation. 1934 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1935 DenseMap<const AllocaInst*, int>::iterator SI = 1936 FuncInfo.StaticAllocaMap.find(AI); 1937 if (SI != FuncInfo.StaticAllocaMap.end()) 1938 return DAG.getFrameIndex( 1939 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1940 } 1941 1942 // If this is an instruction which fast-isel has deferred, select it now. 1943 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1944 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1945 1946 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1947 Inst->getType(), std::nullopt); 1948 SDValue Chain = DAG.getEntryNode(); 1949 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1950 } 1951 1952 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1953 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1954 1955 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1956 return DAG.getBasicBlock(FuncInfo.getMBB(BB)); 1957 1958 llvm_unreachable("Can't get register for value!"); 1959 } 1960 1961 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1962 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1963 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1964 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1965 bool IsSEH = isAsynchronousEHPersonality(Pers); 1966 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1967 if (!IsSEH) 1968 CatchPadMBB->setIsEHScopeEntry(); 1969 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1970 if (IsMSVCCXX || IsCoreCLR) 1971 CatchPadMBB->setIsEHFuncletEntry(); 1972 } 1973 1974 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1975 // Update machine-CFG edge. 1976 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor()); 1977 FuncInfo.MBB->addSuccessor(TargetMBB); 1978 TargetMBB->setIsEHCatchretTarget(true); 1979 DAG.getMachineFunction().setHasEHCatchret(true); 1980 1981 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1982 bool IsSEH = isAsynchronousEHPersonality(Pers); 1983 if (IsSEH) { 1984 // If this is not a fall-through branch or optimizations are switched off, 1985 // emit the branch. 1986 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1987 TM.getOptLevel() == CodeGenOptLevel::None) 1988 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1989 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1990 return; 1991 } 1992 1993 // Figure out the funclet membership for the catchret's successor. 1994 // This will be used by the FuncletLayout pass to determine how to order the 1995 // BB's. 1996 // A 'catchret' returns to the outer scope's color. 1997 Value *ParentPad = I.getCatchSwitchParentPad(); 1998 const BasicBlock *SuccessorColor; 1999 if (isa<ConstantTokenNone>(ParentPad)) 2000 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2001 else 2002 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2003 assert(SuccessorColor && "No parent funclet for catchret!"); 2004 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor); 2005 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2006 2007 // Create the terminator node. 2008 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2009 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2010 DAG.getBasicBlock(SuccessorColorMBB)); 2011 DAG.setRoot(Ret); 2012 } 2013 2014 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2015 // Don't emit any special code for the cleanuppad instruction. It just marks 2016 // the start of an EH scope/funclet. 2017 FuncInfo.MBB->setIsEHScopeEntry(); 2018 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2019 if (Pers != EHPersonality::Wasm_CXX) { 2020 FuncInfo.MBB->setIsEHFuncletEntry(); 2021 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2022 } 2023 } 2024 2025 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2026 // not match, it is OK to add only the first unwind destination catchpad to the 2027 // successors, because there will be at least one invoke instruction within the 2028 // catch scope that points to the next unwind destination, if one exists, so 2029 // CFGSort cannot mess up with BB sorting order. 2030 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2031 // call within them, and catchpads only consisting of 'catch (...)' have a 2032 // '__cxa_end_catch' call within them, both of which generate invokes in case 2033 // the next unwind destination exists, i.e., the next unwind destination is not 2034 // the caller.) 2035 // 2036 // Having at most one EH pad successor is also simpler and helps later 2037 // transformations. 2038 // 2039 // For example, 2040 // current: 2041 // invoke void @foo to ... unwind label %catch.dispatch 2042 // catch.dispatch: 2043 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2044 // catch.start: 2045 // ... 2046 // ... in this BB or some other child BB dominated by this BB there will be an 2047 // invoke that points to 'next' BB as an unwind destination 2048 // 2049 // next: ; We don't need to add this to 'current' BB's successor 2050 // ... 2051 static void findWasmUnwindDestinations( 2052 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2053 BranchProbability Prob, 2054 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2055 &UnwindDests) { 2056 while (EHPadBB) { 2057 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2058 if (isa<CleanupPadInst>(Pad)) { 2059 // Stop on cleanup pads. 2060 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2061 UnwindDests.back().first->setIsEHScopeEntry(); 2062 break; 2063 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2064 // Add the catchpad handlers to the possible destinations. We don't 2065 // continue to the unwind destination of the catchswitch for wasm. 2066 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2067 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2068 UnwindDests.back().first->setIsEHScopeEntry(); 2069 } 2070 break; 2071 } else { 2072 continue; 2073 } 2074 } 2075 } 2076 2077 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2078 /// many places it could ultimately go. In the IR, we have a single unwind 2079 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2080 /// This function skips over imaginary basic blocks that hold catchswitch 2081 /// instructions, and finds all the "real" machine 2082 /// basic block destinations. As those destinations may not be successors of 2083 /// EHPadBB, here we also calculate the edge probability to those destinations. 2084 /// The passed-in Prob is the edge probability to EHPadBB. 2085 static void findUnwindDestinations( 2086 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2087 BranchProbability Prob, 2088 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2089 &UnwindDests) { 2090 EHPersonality Personality = 2091 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2092 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2093 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2094 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2095 bool IsSEH = isAsynchronousEHPersonality(Personality); 2096 2097 if (IsWasmCXX) { 2098 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2099 assert(UnwindDests.size() <= 1 && 2100 "There should be at most one unwind destination for wasm"); 2101 return; 2102 } 2103 2104 while (EHPadBB) { 2105 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2106 BasicBlock *NewEHPadBB = nullptr; 2107 if (isa<LandingPadInst>(Pad)) { 2108 // Stop on landingpads. They are not funclets. 2109 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2110 break; 2111 } else if (isa<CleanupPadInst>(Pad)) { 2112 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2113 // personalities. 2114 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2115 UnwindDests.back().first->setIsEHScopeEntry(); 2116 UnwindDests.back().first->setIsEHFuncletEntry(); 2117 break; 2118 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2119 // Add the catchpad handlers to the possible destinations. 2120 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2121 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2122 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2123 if (IsMSVCCXX || IsCoreCLR) 2124 UnwindDests.back().first->setIsEHFuncletEntry(); 2125 if (!IsSEH) 2126 UnwindDests.back().first->setIsEHScopeEntry(); 2127 } 2128 NewEHPadBB = CatchSwitch->getUnwindDest(); 2129 } else { 2130 continue; 2131 } 2132 2133 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2134 if (BPI && NewEHPadBB) 2135 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2136 EHPadBB = NewEHPadBB; 2137 } 2138 } 2139 2140 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2141 // Update successor info. 2142 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2143 auto UnwindDest = I.getUnwindDest(); 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability UnwindDestProb = 2146 (BPI && UnwindDest) 2147 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2148 : BranchProbability::getZero(); 2149 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2150 for (auto &UnwindDest : UnwindDests) { 2151 UnwindDest.first->setIsEHPad(); 2152 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2153 } 2154 FuncInfo.MBB->normalizeSuccProbs(); 2155 2156 // Create the terminator node. 2157 SDValue Ret = 2158 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2159 DAG.setRoot(Ret); 2160 } 2161 2162 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2163 report_fatal_error("visitCatchSwitch not yet implemented!"); 2164 } 2165 2166 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2168 auto &DL = DAG.getDataLayout(); 2169 SDValue Chain = getControlRoot(); 2170 SmallVector<ISD::OutputArg, 8> Outs; 2171 SmallVector<SDValue, 8> OutVals; 2172 2173 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2174 // lower 2175 // 2176 // %val = call <ty> @llvm.experimental.deoptimize() 2177 // ret <ty> %val 2178 // 2179 // differently. 2180 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2181 LowerDeoptimizingReturn(); 2182 return; 2183 } 2184 2185 if (!FuncInfo.CanLowerReturn) { 2186 Register DemoteReg = FuncInfo.DemoteRegister; 2187 const Function *F = I.getParent()->getParent(); 2188 2189 // Emit a store of the return value through the virtual register. 2190 // Leave Outs empty so that LowerReturn won't try to load return 2191 // registers the usual way. 2192 SmallVector<EVT, 1> PtrValueVTs; 2193 ComputeValueVTs(TLI, DL, 2194 PointerType::get(F->getContext(), 2195 DAG.getDataLayout().getAllocaAddrSpace()), 2196 PtrValueVTs); 2197 2198 SDValue RetPtr = 2199 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2200 SDValue RetOp = getValue(I.getOperand(0)); 2201 2202 SmallVector<EVT, 4> ValueVTs, MemVTs; 2203 SmallVector<uint64_t, 4> Offsets; 2204 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2205 &Offsets, 0); 2206 unsigned NumValues = ValueVTs.size(); 2207 2208 SmallVector<SDValue, 4> Chains(NumValues); 2209 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2210 for (unsigned i = 0; i != NumValues; ++i) { 2211 // An aggregate return value cannot wrap around the address space, so 2212 // offsets to its parts don't wrap either. 2213 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2214 TypeSize::getFixed(Offsets[i])); 2215 2216 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2217 if (MemVTs[i] != ValueVTs[i]) 2218 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2219 Chains[i] = DAG.getStore( 2220 Chain, getCurSDLoc(), Val, 2221 // FIXME: better loc info would be nice. 2222 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2223 commonAlignment(BaseAlign, Offsets[i])); 2224 } 2225 2226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2227 MVT::Other, Chains); 2228 } else if (I.getNumOperands() != 0) { 2229 SmallVector<EVT, 4> ValueVTs; 2230 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2231 unsigned NumValues = ValueVTs.size(); 2232 if (NumValues) { 2233 SDValue RetOp = getValue(I.getOperand(0)); 2234 2235 const Function *F = I.getParent()->getParent(); 2236 2237 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2238 I.getOperand(0)->getType(), F->getCallingConv(), 2239 /*IsVarArg*/ false, DL); 2240 2241 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2242 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2243 ExtendKind = ISD::SIGN_EXTEND; 2244 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2245 ExtendKind = ISD::ZERO_EXTEND; 2246 2247 LLVMContext &Context = F->getContext(); 2248 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2249 2250 for (unsigned j = 0; j != NumValues; ++j) { 2251 EVT VT = ValueVTs[j]; 2252 2253 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2254 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2255 2256 CallingConv::ID CC = F->getCallingConv(); 2257 2258 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2259 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2260 SmallVector<SDValue, 4> Parts(NumParts); 2261 getCopyToParts(DAG, getCurSDLoc(), 2262 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2263 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2264 2265 // 'inreg' on function refers to return value 2266 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2267 if (RetInReg) 2268 Flags.setInReg(); 2269 2270 if (I.getOperand(0)->getType()->isPointerTy()) { 2271 Flags.setPointer(); 2272 Flags.setPointerAddrSpace( 2273 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2274 } 2275 2276 if (NeedsRegBlock) { 2277 Flags.setInConsecutiveRegs(); 2278 if (j == NumValues - 1) 2279 Flags.setInConsecutiveRegsLast(); 2280 } 2281 2282 // Propagate extension type if any 2283 if (ExtendKind == ISD::SIGN_EXTEND) 2284 Flags.setSExt(); 2285 else if (ExtendKind == ISD::ZERO_EXTEND) 2286 Flags.setZExt(); 2287 else if (F->getAttributes().hasRetAttr(Attribute::NoExt)) 2288 Flags.setNoExt(); 2289 2290 for (unsigned i = 0; i < NumParts; ++i) { 2291 Outs.push_back(ISD::OutputArg(Flags, 2292 Parts[i].getValueType().getSimpleVT(), 2293 VT, /*isfixed=*/true, 0, 0)); 2294 OutVals.push_back(Parts[i]); 2295 } 2296 } 2297 } 2298 } 2299 2300 // Push in swifterror virtual register as the last element of Outs. This makes 2301 // sure swifterror virtual register will be returned in the swifterror 2302 // physical register. 2303 const Function *F = I.getParent()->getParent(); 2304 if (TLI.supportSwiftError() && 2305 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2306 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2307 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2308 Flags.setSwiftError(); 2309 Outs.push_back(ISD::OutputArg( 2310 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2311 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2312 // Create SDNode for the swifterror virtual register. 2313 OutVals.push_back( 2314 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2315 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2316 EVT(TLI.getPointerTy(DL)))); 2317 } 2318 2319 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2320 CallingConv::ID CallConv = 2321 DAG.getMachineFunction().getFunction().getCallingConv(); 2322 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2323 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2324 2325 // Verify that the target's LowerReturn behaved as expected. 2326 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2327 "LowerReturn didn't return a valid chain!"); 2328 2329 // Update the DAG with the new chain value resulting from return lowering. 2330 DAG.setRoot(Chain); 2331 } 2332 2333 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2334 /// created for it, emit nodes to copy the value into the virtual 2335 /// registers. 2336 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2337 // Skip empty types 2338 if (V->getType()->isEmptyTy()) 2339 return; 2340 2341 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2342 if (VMI != FuncInfo.ValueMap.end()) { 2343 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2344 "Unused value assigned virtual registers!"); 2345 CopyValueToVirtualRegister(V, VMI->second); 2346 } 2347 } 2348 2349 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2350 /// the current basic block, add it to ValueMap now so that we'll get a 2351 /// CopyTo/FromReg. 2352 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2353 // No need to export constants. 2354 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2355 2356 // Already exported? 2357 if (FuncInfo.isExportedInst(V)) return; 2358 2359 Register Reg = FuncInfo.InitializeRegForValue(V); 2360 CopyValueToVirtualRegister(V, Reg); 2361 } 2362 2363 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2364 const BasicBlock *FromBB) { 2365 // The operands of the setcc have to be in this block. We don't know 2366 // how to export them from some other block. 2367 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2368 // Can export from current BB. 2369 if (VI->getParent() == FromBB) 2370 return true; 2371 2372 // Is already exported, noop. 2373 return FuncInfo.isExportedInst(V); 2374 } 2375 2376 // If this is an argument, we can export it if the BB is the entry block or 2377 // if it is already exported. 2378 if (isa<Argument>(V)) { 2379 if (FromBB->isEntryBlock()) 2380 return true; 2381 2382 // Otherwise, can only export this if it is already exported. 2383 return FuncInfo.isExportedInst(V); 2384 } 2385 2386 // Otherwise, constants can always be exported. 2387 return true; 2388 } 2389 2390 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2391 BranchProbability 2392 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2393 const MachineBasicBlock *Dst) const { 2394 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2395 const BasicBlock *SrcBB = Src->getBasicBlock(); 2396 const BasicBlock *DstBB = Dst->getBasicBlock(); 2397 if (!BPI) { 2398 // If BPI is not available, set the default probability as 1 / N, where N is 2399 // the number of successors. 2400 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2401 return BranchProbability(1, SuccSize); 2402 } 2403 return BPI->getEdgeProbability(SrcBB, DstBB); 2404 } 2405 2406 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2407 MachineBasicBlock *Dst, 2408 BranchProbability Prob) { 2409 if (!FuncInfo.BPI) 2410 Src->addSuccessorWithoutProb(Dst); 2411 else { 2412 if (Prob.isUnknown()) 2413 Prob = getEdgeProbability(Src, Dst); 2414 Src->addSuccessor(Dst, Prob); 2415 } 2416 } 2417 2418 static bool InBlock(const Value *V, const BasicBlock *BB) { 2419 if (const Instruction *I = dyn_cast<Instruction>(V)) 2420 return I->getParent() == BB; 2421 return true; 2422 } 2423 2424 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2425 /// This function emits a branch and is used at the leaves of an OR or an 2426 /// AND operator tree. 2427 void 2428 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2429 MachineBasicBlock *TBB, 2430 MachineBasicBlock *FBB, 2431 MachineBasicBlock *CurBB, 2432 MachineBasicBlock *SwitchBB, 2433 BranchProbability TProb, 2434 BranchProbability FProb, 2435 bool InvertCond) { 2436 const BasicBlock *BB = CurBB->getBasicBlock(); 2437 2438 // If the leaf of the tree is a comparison, merge the condition into 2439 // the caseblock. 2440 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2441 // The operands of the cmp have to be in this block. We don't know 2442 // how to export them from some other block. If this is the first block 2443 // of the sequence, no exporting is needed. 2444 if (CurBB == SwitchBB || 2445 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2446 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2447 ISD::CondCode Condition; 2448 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2449 ICmpInst::Predicate Pred = 2450 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2451 Condition = getICmpCondCode(Pred); 2452 } else { 2453 const FCmpInst *FC = cast<FCmpInst>(Cond); 2454 FCmpInst::Predicate Pred = 2455 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2456 Condition = getFCmpCondCode(Pred); 2457 if (TM.Options.NoNaNsFPMath) 2458 Condition = getFCmpCodeWithoutNaN(Condition); 2459 } 2460 2461 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2462 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2463 SL->SwitchCases.push_back(CB); 2464 return; 2465 } 2466 } 2467 2468 // Create a CaseBlock record representing this branch. 2469 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2470 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2471 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2472 SL->SwitchCases.push_back(CB); 2473 } 2474 2475 // Collect dependencies on V recursively. This is used for the cost analysis in 2476 // `shouldKeepJumpConditionsTogether`. 2477 static bool collectInstructionDeps( 2478 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2479 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2480 unsigned Depth = 0) { 2481 // Return false if we have an incomplete count. 2482 if (Depth >= SelectionDAG::MaxRecursionDepth) 2483 return false; 2484 2485 auto *I = dyn_cast<Instruction>(V); 2486 if (I == nullptr) 2487 return true; 2488 2489 if (Necessary != nullptr) { 2490 // This instruction is necessary for the other side of the condition so 2491 // don't count it. 2492 if (Necessary->contains(I)) 2493 return true; 2494 } 2495 2496 // Already added this dep. 2497 if (!Deps->try_emplace(I, false).second) 2498 return true; 2499 2500 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2501 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2502 Depth + 1)) 2503 return false; 2504 return true; 2505 } 2506 2507 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2508 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2509 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2510 TargetLoweringBase::CondMergingParams Params) const { 2511 if (I.getNumSuccessors() != 2) 2512 return false; 2513 2514 if (!I.isConditional()) 2515 return false; 2516 2517 if (Params.BaseCost < 0) 2518 return false; 2519 2520 // Baseline cost. 2521 InstructionCost CostThresh = Params.BaseCost; 2522 2523 BranchProbabilityInfo *BPI = nullptr; 2524 if (Params.LikelyBias || Params.UnlikelyBias) 2525 BPI = FuncInfo.BPI; 2526 if (BPI != nullptr) { 2527 // See if we are either likely to get an early out or compute both lhs/rhs 2528 // of the condition. 2529 BasicBlock *IfFalse = I.getSuccessor(0); 2530 BasicBlock *IfTrue = I.getSuccessor(1); 2531 2532 std::optional<bool> Likely; 2533 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2534 Likely = true; 2535 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2536 Likely = false; 2537 2538 if (Likely) { 2539 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2540 // Its likely we will have to compute both lhs and rhs of condition 2541 CostThresh += Params.LikelyBias; 2542 else { 2543 if (Params.UnlikelyBias < 0) 2544 return false; 2545 // Its likely we will get an early out. 2546 CostThresh -= Params.UnlikelyBias; 2547 } 2548 } 2549 } 2550 2551 if (CostThresh <= 0) 2552 return false; 2553 2554 // Collect "all" instructions that lhs condition is dependent on. 2555 // Use map for stable iteration (to avoid non-determanism of iteration of 2556 // SmallPtrSet). The `bool` value is just a dummy. 2557 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2558 collectInstructionDeps(&LhsDeps, Lhs); 2559 // Collect "all" instructions that rhs condition is dependent on AND are 2560 // dependencies of lhs. This gives us an estimate on which instructions we 2561 // stand to save by splitting the condition. 2562 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2563 return false; 2564 // Add the compare instruction itself unless its a dependency on the LHS. 2565 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2566 if (!LhsDeps.contains(RhsI)) 2567 RhsDeps.try_emplace(RhsI, false); 2568 2569 const auto &TLI = DAG.getTargetLoweringInfo(); 2570 const auto &TTI = 2571 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2572 2573 InstructionCost CostOfIncluding = 0; 2574 // See if this instruction will need to computed independently of whether RHS 2575 // is. 2576 Value *BrCond = I.getCondition(); 2577 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2578 for (const auto *U : Ins->users()) { 2579 // If user is independent of RHS calculation we don't need to count it. 2580 if (auto *UIns = dyn_cast<Instruction>(U)) 2581 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2582 return false; 2583 } 2584 return true; 2585 }; 2586 2587 // Prune instructions from RHS Deps that are dependencies of unrelated 2588 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2589 // arbitrary and just meant to cap the how much time we spend in the pruning 2590 // loop. Its highly unlikely to come into affect. 2591 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2592 // Stop after a certain point. No incorrectness from including too many 2593 // instructions. 2594 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2595 const Instruction *ToDrop = nullptr; 2596 for (const auto &InsPair : RhsDeps) { 2597 if (!ShouldCountInsn(InsPair.first)) { 2598 ToDrop = InsPair.first; 2599 break; 2600 } 2601 } 2602 if (ToDrop == nullptr) 2603 break; 2604 RhsDeps.erase(ToDrop); 2605 } 2606 2607 for (const auto &InsPair : RhsDeps) { 2608 // Finally accumulate latency that we can only attribute to computing the 2609 // RHS condition. Use latency because we are essentially trying to calculate 2610 // the cost of the dependency chain. 2611 // Possible TODO: We could try to estimate ILP and make this more precise. 2612 CostOfIncluding += 2613 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2614 2615 if (CostOfIncluding > CostThresh) 2616 return false; 2617 } 2618 return true; 2619 } 2620 2621 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2622 MachineBasicBlock *TBB, 2623 MachineBasicBlock *FBB, 2624 MachineBasicBlock *CurBB, 2625 MachineBasicBlock *SwitchBB, 2626 Instruction::BinaryOps Opc, 2627 BranchProbability TProb, 2628 BranchProbability FProb, 2629 bool InvertCond) { 2630 // Skip over not part of the tree and remember to invert op and operands at 2631 // next level. 2632 Value *NotCond; 2633 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2634 InBlock(NotCond, CurBB->getBasicBlock())) { 2635 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2636 !InvertCond); 2637 return; 2638 } 2639 2640 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2641 const Value *BOpOp0, *BOpOp1; 2642 // Compute the effective opcode for Cond, taking into account whether it needs 2643 // to be inverted, e.g. 2644 // and (not (or A, B)), C 2645 // gets lowered as 2646 // and (and (not A, not B), C) 2647 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2648 if (BOp) { 2649 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2650 ? Instruction::And 2651 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2652 ? Instruction::Or 2653 : (Instruction::BinaryOps)0); 2654 if (InvertCond) { 2655 if (BOpc == Instruction::And) 2656 BOpc = Instruction::Or; 2657 else if (BOpc == Instruction::Or) 2658 BOpc = Instruction::And; 2659 } 2660 } 2661 2662 // If this node is not part of the or/and tree, emit it as a branch. 2663 // Note that all nodes in the tree should have same opcode. 2664 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2665 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2666 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2667 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2668 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2669 TProb, FProb, InvertCond); 2670 return; 2671 } 2672 2673 // Create TmpBB after CurBB. 2674 MachineFunction::iterator BBI(CurBB); 2675 MachineFunction &MF = DAG.getMachineFunction(); 2676 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2677 CurBB->getParent()->insert(++BBI, TmpBB); 2678 2679 if (Opc == Instruction::Or) { 2680 // Codegen X | Y as: 2681 // BB1: 2682 // jmp_if_X TBB 2683 // jmp TmpBB 2684 // TmpBB: 2685 // jmp_if_Y TBB 2686 // jmp FBB 2687 // 2688 2689 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2690 // The requirement is that 2691 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2692 // = TrueProb for original BB. 2693 // Assuming the original probabilities are A and B, one choice is to set 2694 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2695 // A/(1+B) and 2B/(1+B). This choice assumes that 2696 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2697 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2698 // TmpBB, but the math is more complicated. 2699 2700 auto NewTrueProb = TProb / 2; 2701 auto NewFalseProb = TProb / 2 + FProb; 2702 // Emit the LHS condition. 2703 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2704 NewFalseProb, InvertCond); 2705 2706 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2707 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2708 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2709 // Emit the RHS condition into TmpBB. 2710 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2711 Probs[1], InvertCond); 2712 } else { 2713 assert(Opc == Instruction::And && "Unknown merge op!"); 2714 // Codegen X & Y as: 2715 // BB1: 2716 // jmp_if_X TmpBB 2717 // jmp FBB 2718 // TmpBB: 2719 // jmp_if_Y TBB 2720 // jmp FBB 2721 // 2722 // This requires creation of TmpBB after CurBB. 2723 2724 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2725 // The requirement is that 2726 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2727 // = FalseProb for original BB. 2728 // Assuming the original probabilities are A and B, one choice is to set 2729 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2730 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2731 // TrueProb for BB1 * FalseProb for TmpBB. 2732 2733 auto NewTrueProb = TProb + FProb / 2; 2734 auto NewFalseProb = FProb / 2; 2735 // Emit the LHS condition. 2736 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2737 NewFalseProb, InvertCond); 2738 2739 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2740 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2741 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2742 // Emit the RHS condition into TmpBB. 2743 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2744 Probs[1], InvertCond); 2745 } 2746 } 2747 2748 /// If the set of cases should be emitted as a series of branches, return true. 2749 /// If we should emit this as a bunch of and/or'd together conditions, return 2750 /// false. 2751 bool 2752 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2753 if (Cases.size() != 2) return true; 2754 2755 // If this is two comparisons of the same values or'd or and'd together, they 2756 // will get folded into a single comparison, so don't emit two blocks. 2757 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2758 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2759 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2760 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2761 return false; 2762 } 2763 2764 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2765 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2766 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2767 Cases[0].CC == Cases[1].CC && 2768 isa<Constant>(Cases[0].CmpRHS) && 2769 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2770 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2771 return false; 2772 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2773 return false; 2774 } 2775 2776 return true; 2777 } 2778 2779 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2780 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2781 2782 // Update machine-CFG edges. 2783 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0)); 2784 2785 if (I.isUnconditional()) { 2786 // Update machine-CFG edges. 2787 BrMBB->addSuccessor(Succ0MBB); 2788 2789 // If this is not a fall-through branch or optimizations are switched off, 2790 // emit the branch. 2791 if (Succ0MBB != NextBlock(BrMBB) || 2792 TM.getOptLevel() == CodeGenOptLevel::None) { 2793 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2794 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2795 setValue(&I, Br); 2796 DAG.setRoot(Br); 2797 } 2798 2799 return; 2800 } 2801 2802 // If this condition is one of the special cases we handle, do special stuff 2803 // now. 2804 const Value *CondVal = I.getCondition(); 2805 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1)); 2806 2807 // If this is a series of conditions that are or'd or and'd together, emit 2808 // this as a sequence of branches instead of setcc's with and/or operations. 2809 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2810 // unpredictable branches, and vector extracts because those jumps are likely 2811 // expensive for any target), this should improve performance. 2812 // For example, instead of something like: 2813 // cmp A, B 2814 // C = seteq 2815 // cmp D, E 2816 // F = setle 2817 // or C, F 2818 // jnz foo 2819 // Emit: 2820 // cmp A, B 2821 // je foo 2822 // cmp D, E 2823 // jle foo 2824 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable); 2825 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2826 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2827 BOp->hasOneUse() && !IsUnpredictable) { 2828 Value *Vec; 2829 const Value *BOp0, *BOp1; 2830 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2831 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2832 Opcode = Instruction::And; 2833 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2834 Opcode = Instruction::Or; 2835 2836 if (Opcode && 2837 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2838 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2839 !shouldKeepJumpConditionsTogether( 2840 FuncInfo, I, Opcode, BOp0, BOp1, 2841 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2842 Opcode, BOp0, BOp1))) { 2843 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2844 getEdgeProbability(BrMBB, Succ0MBB), 2845 getEdgeProbability(BrMBB, Succ1MBB), 2846 /*InvertCond=*/false); 2847 // If the compares in later blocks need to use values not currently 2848 // exported from this block, export them now. This block should always 2849 // be the first entry. 2850 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2851 2852 // Allow some cases to be rejected. 2853 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2854 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2855 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2856 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2857 } 2858 2859 // Emit the branch for this block. 2860 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2861 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2862 return; 2863 } 2864 2865 // Okay, we decided not to do this, remove any inserted MBB's and clear 2866 // SwitchCases. 2867 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2868 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2869 2870 SL->SwitchCases.clear(); 2871 } 2872 } 2873 2874 // Create a CaseBlock record representing this branch. 2875 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2876 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(), 2877 BranchProbability::getUnknown(), BranchProbability::getUnknown(), 2878 IsUnpredictable); 2879 2880 // Use visitSwitchCase to actually insert the fast branch sequence for this 2881 // cond branch. 2882 visitSwitchCase(CB, BrMBB); 2883 } 2884 2885 /// visitSwitchCase - Emits the necessary code to represent a single node in 2886 /// the binary search tree resulting from lowering a switch instruction. 2887 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2888 MachineBasicBlock *SwitchBB) { 2889 SDValue Cond; 2890 SDValue CondLHS = getValue(CB.CmpLHS); 2891 SDLoc dl = CB.DL; 2892 2893 if (CB.CC == ISD::SETTRUE) { 2894 // Branch or fall through to TrueBB. 2895 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2896 SwitchBB->normalizeSuccProbs(); 2897 if (CB.TrueBB != NextBlock(SwitchBB)) { 2898 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2899 DAG.getBasicBlock(CB.TrueBB))); 2900 } 2901 return; 2902 } 2903 2904 auto &TLI = DAG.getTargetLoweringInfo(); 2905 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2906 2907 // Build the setcc now. 2908 if (!CB.CmpMHS) { 2909 // Fold "(X == true)" to X and "(X == false)" to !X to 2910 // handle common cases produced by branch lowering. 2911 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2912 CB.CC == ISD::SETEQ) 2913 Cond = CondLHS; 2914 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2915 CB.CC == ISD::SETEQ) { 2916 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2917 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2918 } else { 2919 SDValue CondRHS = getValue(CB.CmpRHS); 2920 2921 // If a pointer's DAG type is larger than its memory type then the DAG 2922 // values are zero-extended. This breaks signed comparisons so truncate 2923 // back to the underlying type before doing the compare. 2924 if (CondLHS.getValueType() != MemVT) { 2925 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2926 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2927 } 2928 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2929 } 2930 } else { 2931 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2932 2933 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2934 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2935 2936 SDValue CmpOp = getValue(CB.CmpMHS); 2937 EVT VT = CmpOp.getValueType(); 2938 2939 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2940 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2941 ISD::SETLE); 2942 } else { 2943 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2944 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2945 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2946 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2947 } 2948 } 2949 2950 // Update successor info 2951 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2952 // TrueBB and FalseBB are always different unless the incoming IR is 2953 // degenerate. This only happens when running llc on weird IR. 2954 if (CB.TrueBB != CB.FalseBB) 2955 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2956 SwitchBB->normalizeSuccProbs(); 2957 2958 // If the lhs block is the next block, invert the condition so that we can 2959 // fall through to the lhs instead of the rhs block. 2960 if (CB.TrueBB == NextBlock(SwitchBB)) { 2961 std::swap(CB.TrueBB, CB.FalseBB); 2962 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2963 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2964 } 2965 2966 SDNodeFlags Flags; 2967 Flags.setUnpredictable(CB.IsUnpredictable); 2968 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(), 2969 Cond, DAG.getBasicBlock(CB.TrueBB), Flags); 2970 2971 setValue(CurInst, BrCond); 2972 2973 // Insert the false branch. Do this even if it's a fall through branch, 2974 // this makes it easier to do DAG optimizations which require inverting 2975 // the branch condition. 2976 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2977 DAG.getBasicBlock(CB.FalseBB)); 2978 2979 DAG.setRoot(BrCond); 2980 } 2981 2982 /// visitJumpTable - Emit JumpTable node in the current MBB 2983 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2984 // Emit the code for the jump table 2985 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2986 assert(JT.Reg && "Should lower JT Header first!"); 2987 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout()); 2988 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2989 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2990 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2991 Index.getValue(1), Table, Index); 2992 DAG.setRoot(BrJumpTable); 2993 } 2994 2995 /// visitJumpTableHeader - This function emits necessary code to produce index 2996 /// in the JumpTable from switch case. 2997 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2998 JumpTableHeader &JTH, 2999 MachineBasicBlock *SwitchBB) { 3000 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 3001 const SDLoc &dl = *JT.SL; 3002 3003 // Subtract the lowest switch case value from the value being switched on. 3004 SDValue SwitchOp = getValue(JTH.SValue); 3005 EVT VT = SwitchOp.getValueType(); 3006 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3007 DAG.getConstant(JTH.First, dl, VT)); 3008 3009 // The SDNode we just created, which holds the value being switched on minus 3010 // the smallest case value, needs to be copied to a virtual register so it 3011 // can be used as an index into the jump table in a subsequent basic block. 3012 // This value may be smaller or larger than the target's pointer type, and 3013 // therefore require extension or truncating. 3014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3015 SwitchOp = 3016 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout())); 3017 3018 Register JumpTableReg = 3019 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout())); 3020 SDValue CopyTo = 3021 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp); 3022 JT.Reg = JumpTableReg; 3023 3024 if (!JTH.FallthroughUnreachable) { 3025 // Emit the range check for the jump table, and branch to the default block 3026 // for the switch statement if the value being switched on exceeds the 3027 // largest case in the switch. 3028 SDValue CMP = DAG.getSetCC( 3029 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3030 Sub.getValueType()), 3031 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3032 3033 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3034 MVT::Other, CopyTo, CMP, 3035 DAG.getBasicBlock(JT.Default)); 3036 3037 // Avoid emitting unnecessary branches to the next block. 3038 if (JT.MBB != NextBlock(SwitchBB)) 3039 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3040 DAG.getBasicBlock(JT.MBB)); 3041 3042 DAG.setRoot(BrCond); 3043 } else { 3044 // Avoid emitting unnecessary branches to the next block. 3045 if (JT.MBB != NextBlock(SwitchBB)) 3046 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3047 DAG.getBasicBlock(JT.MBB))); 3048 else 3049 DAG.setRoot(CopyTo); 3050 } 3051 } 3052 3053 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3054 /// variable if there exists one. 3055 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3056 SDValue &Chain) { 3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3058 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3059 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3060 MachineFunction &MF = DAG.getMachineFunction(); 3061 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3062 MachineSDNode *Node = 3063 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3064 if (Global) { 3065 MachinePointerInfo MPInfo(Global); 3066 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3067 MachineMemOperand::MODereferenceable; 3068 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3069 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3070 DAG.getEVTAlign(PtrTy)); 3071 DAG.setNodeMemRefs(Node, {MemRef}); 3072 } 3073 if (PtrTy != PtrMemTy) 3074 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3075 return SDValue(Node, 0); 3076 } 3077 3078 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3079 /// tail spliced into a stack protector check success bb. 3080 /// 3081 /// For a high level explanation of how this fits into the stack protector 3082 /// generation see the comment on the declaration of class 3083 /// StackProtectorDescriptor. 3084 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3085 MachineBasicBlock *ParentBB) { 3086 3087 // First create the loads to the guard/stack slot for the comparison. 3088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3089 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3090 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3091 3092 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3093 int FI = MFI.getStackProtectorIndex(); 3094 3095 SDValue Guard; 3096 SDLoc dl = getCurSDLoc(); 3097 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3098 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3099 Align Align = 3100 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3101 3102 // Generate code to load the content of the guard slot. 3103 SDValue GuardVal = DAG.getLoad( 3104 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3105 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3106 MachineMemOperand::MOVolatile); 3107 3108 if (TLI.useStackGuardXorFP()) 3109 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3110 3111 // Retrieve guard check function, nullptr if instrumentation is inlined. 3112 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3113 // The target provides a guard check function to validate the guard value. 3114 // Generate a call to that function with the content of the guard slot as 3115 // argument. 3116 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3117 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3118 3119 TargetLowering::ArgListTy Args; 3120 TargetLowering::ArgListEntry Entry; 3121 Entry.Node = GuardVal; 3122 Entry.Ty = FnTy->getParamType(0); 3123 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3124 Entry.IsInReg = true; 3125 Args.push_back(Entry); 3126 3127 TargetLowering::CallLoweringInfo CLI(DAG); 3128 CLI.setDebugLoc(getCurSDLoc()) 3129 .setChain(DAG.getEntryNode()) 3130 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3131 getValue(GuardCheckFn), std::move(Args)); 3132 3133 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3134 DAG.setRoot(Result.second); 3135 return; 3136 } 3137 3138 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3139 // Otherwise, emit a volatile load to retrieve the stack guard value. 3140 SDValue Chain = DAG.getEntryNode(); 3141 if (TLI.useLoadStackGuardNode(M)) { 3142 Guard = getLoadStackGuard(DAG, dl, Chain); 3143 } else { 3144 const Value *IRGuard = TLI.getSDagStackGuard(M); 3145 SDValue GuardPtr = getValue(IRGuard); 3146 3147 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3148 MachinePointerInfo(IRGuard, 0), Align, 3149 MachineMemOperand::MOVolatile); 3150 } 3151 3152 // Perform the comparison via a getsetcc. 3153 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3154 *DAG.getContext(), 3155 Guard.getValueType()), 3156 Guard, GuardVal, ISD::SETNE); 3157 3158 // If the guard/stackslot do not equal, branch to failure MBB. 3159 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3160 MVT::Other, GuardVal.getOperand(0), 3161 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3162 // Otherwise branch to success MBB. 3163 SDValue Br = DAG.getNode(ISD::BR, dl, 3164 MVT::Other, BrCond, 3165 DAG.getBasicBlock(SPD.getSuccessMBB())); 3166 3167 DAG.setRoot(Br); 3168 } 3169 3170 /// Codegen the failure basic block for a stack protector check. 3171 /// 3172 /// A failure stack protector machine basic block consists simply of a call to 3173 /// __stack_chk_fail(). 3174 /// 3175 /// For a high level explanation of how this fits into the stack protector 3176 /// generation see the comment on the declaration of class 3177 /// StackProtectorDescriptor. 3178 void 3179 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3180 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3181 TargetLowering::MakeLibCallOptions CallOptions; 3182 CallOptions.setDiscardResult(true); 3183 SDValue Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 3184 MVT::isVoid, {}, CallOptions, getCurSDLoc()) 3185 .second; 3186 3187 // Emit a trap instruction if we are required to do so. 3188 const TargetOptions &TargetOpts = DAG.getTarget().Options; 3189 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn) 3190 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3191 3192 DAG.setRoot(Chain); 3193 } 3194 3195 /// visitBitTestHeader - This function emits necessary code to produce value 3196 /// suitable for "bit tests" 3197 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3198 MachineBasicBlock *SwitchBB) { 3199 SDLoc dl = getCurSDLoc(); 3200 3201 // Subtract the minimum value. 3202 SDValue SwitchOp = getValue(B.SValue); 3203 EVT VT = SwitchOp.getValueType(); 3204 SDValue RangeSub = 3205 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3206 3207 // Determine the type of the test operands. 3208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3209 bool UsePtrType = false; 3210 if (!TLI.isTypeLegal(VT)) { 3211 UsePtrType = true; 3212 } else { 3213 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3214 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3215 // Switch table case range are encoded into series of masks. 3216 // Just use pointer type, it's guaranteed to fit. 3217 UsePtrType = true; 3218 break; 3219 } 3220 } 3221 SDValue Sub = RangeSub; 3222 if (UsePtrType) { 3223 VT = TLI.getPointerTy(DAG.getDataLayout()); 3224 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3225 } 3226 3227 B.RegVT = VT.getSimpleVT(); 3228 B.Reg = FuncInfo.CreateReg(B.RegVT); 3229 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3230 3231 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3232 3233 if (!B.FallthroughUnreachable) 3234 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3235 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3236 SwitchBB->normalizeSuccProbs(); 3237 3238 SDValue Root = CopyTo; 3239 if (!B.FallthroughUnreachable) { 3240 // Conditional branch to the default block. 3241 SDValue RangeCmp = DAG.getSetCC(dl, 3242 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3243 RangeSub.getValueType()), 3244 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3245 ISD::SETUGT); 3246 3247 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3248 DAG.getBasicBlock(B.Default)); 3249 } 3250 3251 // Avoid emitting unnecessary branches to the next block. 3252 if (MBB != NextBlock(SwitchBB)) 3253 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3254 3255 DAG.setRoot(Root); 3256 } 3257 3258 /// visitBitTestCase - this function produces one "bit test" 3259 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3260 MachineBasicBlock *NextMBB, 3261 BranchProbability BranchProbToNext, 3262 Register Reg, BitTestCase &B, 3263 MachineBasicBlock *SwitchBB) { 3264 SDLoc dl = getCurSDLoc(); 3265 MVT VT = BB.RegVT; 3266 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3267 SDValue Cmp; 3268 unsigned PopCount = llvm::popcount(B.Mask); 3269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3270 if (PopCount == 1) { 3271 // Testing for a single bit; just compare the shift count with what it 3272 // would need to be to shift a 1 bit in that position. 3273 Cmp = DAG.getSetCC( 3274 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3275 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3276 ISD::SETEQ); 3277 } else if (PopCount == BB.Range) { 3278 // There is only one zero bit in the range, test for it directly. 3279 Cmp = DAG.getSetCC( 3280 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3281 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3282 } else { 3283 // Make desired shift 3284 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3285 DAG.getConstant(1, dl, VT), ShiftOp); 3286 3287 // Emit bit tests and jumps 3288 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3289 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3290 Cmp = DAG.getSetCC( 3291 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3292 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3293 } 3294 3295 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3296 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3297 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3298 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3299 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3300 // one as they are relative probabilities (and thus work more like weights), 3301 // and hence we need to normalize them to let the sum of them become one. 3302 SwitchBB->normalizeSuccProbs(); 3303 3304 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3305 MVT::Other, getControlRoot(), 3306 Cmp, DAG.getBasicBlock(B.TargetBB)); 3307 3308 // Avoid emitting unnecessary branches to the next block. 3309 if (NextMBB != NextBlock(SwitchBB)) 3310 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3311 DAG.getBasicBlock(NextMBB)); 3312 3313 DAG.setRoot(BrAnd); 3314 } 3315 3316 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3317 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3318 3319 // Retrieve successors. Look through artificial IR level blocks like 3320 // catchswitch for successors. 3321 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0)); 3322 const BasicBlock *EHPadBB = I.getSuccessor(1); 3323 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB); 3324 3325 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3326 // have to do anything here to lower funclet bundles. 3327 assert(!I.hasOperandBundlesOtherThan( 3328 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3329 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3330 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3331 LLVMContext::OB_clang_arc_attachedcall}) && 3332 "Cannot lower invokes with arbitrary operand bundles yet!"); 3333 3334 const Value *Callee(I.getCalledOperand()); 3335 const Function *Fn = dyn_cast<Function>(Callee); 3336 if (isa<InlineAsm>(Callee)) 3337 visitInlineAsm(I, EHPadBB); 3338 else if (Fn && Fn->isIntrinsic()) { 3339 switch (Fn->getIntrinsicID()) { 3340 default: 3341 llvm_unreachable("Cannot invoke this intrinsic"); 3342 case Intrinsic::donothing: 3343 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3344 case Intrinsic::seh_try_begin: 3345 case Intrinsic::seh_scope_begin: 3346 case Intrinsic::seh_try_end: 3347 case Intrinsic::seh_scope_end: 3348 if (EHPadMBB) 3349 // a block referenced by EH table 3350 // so dtor-funclet not removed by opts 3351 EHPadMBB->setMachineBlockAddressTaken(); 3352 break; 3353 case Intrinsic::experimental_patchpoint_void: 3354 case Intrinsic::experimental_patchpoint: 3355 visitPatchpoint(I, EHPadBB); 3356 break; 3357 case Intrinsic::experimental_gc_statepoint: 3358 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3359 break; 3360 case Intrinsic::wasm_rethrow: { 3361 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3362 // special because it can be invoked, so we manually lower it to a DAG 3363 // node here. 3364 SmallVector<SDValue, 8> Ops; 3365 Ops.push_back(getControlRoot()); // inchain for the terminator node 3366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3367 Ops.push_back( 3368 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3369 TLI.getPointerTy(DAG.getDataLayout()))); 3370 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3371 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3372 break; 3373 } 3374 } 3375 } else if (I.hasDeoptState()) { 3376 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3377 // Eventually we will support lowering the @llvm.experimental.deoptimize 3378 // intrinsic, and right now there are no plans to support other intrinsics 3379 // with deopt state. 3380 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3381 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3382 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3383 } else { 3384 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3385 } 3386 3387 // If the value of the invoke is used outside of its defining block, make it 3388 // available as a virtual register. 3389 // We already took care of the exported value for the statepoint instruction 3390 // during call to the LowerStatepoint. 3391 if (!isa<GCStatepointInst>(I)) { 3392 CopyToExportRegsIfNeeded(&I); 3393 } 3394 3395 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3396 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3397 BranchProbability EHPadBBProb = 3398 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3399 : BranchProbability::getZero(); 3400 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3401 3402 // Update successor info. 3403 addSuccessorWithProb(InvokeMBB, Return); 3404 for (auto &UnwindDest : UnwindDests) { 3405 UnwindDest.first->setIsEHPad(); 3406 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3407 } 3408 InvokeMBB->normalizeSuccProbs(); 3409 3410 // Drop into normal successor. 3411 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3412 DAG.getBasicBlock(Return))); 3413 } 3414 3415 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3416 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3417 3418 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3419 // have to do anything here to lower funclet bundles. 3420 assert(!I.hasOperandBundlesOtherThan( 3421 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3422 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3423 3424 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3425 visitInlineAsm(I); 3426 CopyToExportRegsIfNeeded(&I); 3427 3428 // Retrieve successors. 3429 SmallPtrSet<BasicBlock *, 8> Dests; 3430 Dests.insert(I.getDefaultDest()); 3431 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest()); 3432 3433 // Update successor info. 3434 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3435 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3436 BasicBlock *Dest = I.getIndirectDest(i); 3437 MachineBasicBlock *Target = FuncInfo.getMBB(Dest); 3438 Target->setIsInlineAsmBrIndirectTarget(); 3439 Target->setMachineBlockAddressTaken(); 3440 Target->setLabelMustBeEmitted(); 3441 // Don't add duplicate machine successors. 3442 if (Dests.insert(Dest).second) 3443 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3444 } 3445 CallBrMBB->normalizeSuccProbs(); 3446 3447 // Drop into default successor. 3448 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3449 MVT::Other, getControlRoot(), 3450 DAG.getBasicBlock(Return))); 3451 } 3452 3453 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3454 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3455 } 3456 3457 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3458 assert(FuncInfo.MBB->isEHPad() && 3459 "Call to landingpad not in landing pad!"); 3460 3461 // If there aren't registers to copy the values into (e.g., during SjLj 3462 // exceptions), then don't bother to create these DAG nodes. 3463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3464 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3465 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3466 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3467 return; 3468 3469 // If landingpad's return type is token type, we don't create DAG nodes 3470 // for its exception pointer and selector value. The extraction of exception 3471 // pointer or selector value from token type landingpads is not currently 3472 // supported. 3473 if (LP.getType()->isTokenTy()) 3474 return; 3475 3476 SmallVector<EVT, 2> ValueVTs; 3477 SDLoc dl = getCurSDLoc(); 3478 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3479 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3480 3481 // Get the two live-in registers as SDValues. The physregs have already been 3482 // copied into virtual registers. 3483 SDValue Ops[2]; 3484 if (FuncInfo.ExceptionPointerVirtReg) { 3485 Ops[0] = DAG.getZExtOrTrunc( 3486 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3487 FuncInfo.ExceptionPointerVirtReg, 3488 TLI.getPointerTy(DAG.getDataLayout())), 3489 dl, ValueVTs[0]); 3490 } else { 3491 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3492 } 3493 Ops[1] = DAG.getZExtOrTrunc( 3494 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3495 FuncInfo.ExceptionSelectorVirtReg, 3496 TLI.getPointerTy(DAG.getDataLayout())), 3497 dl, ValueVTs[1]); 3498 3499 // Merge into one. 3500 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3501 DAG.getVTList(ValueVTs), Ops); 3502 setValue(&LP, Res); 3503 } 3504 3505 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3506 MachineBasicBlock *Last) { 3507 // Update JTCases. 3508 for (JumpTableBlock &JTB : SL->JTCases) 3509 if (JTB.first.HeaderBB == First) 3510 JTB.first.HeaderBB = Last; 3511 3512 // Update BitTestCases. 3513 for (BitTestBlock &BTB : SL->BitTestCases) 3514 if (BTB.Parent == First) 3515 BTB.Parent = Last; 3516 } 3517 3518 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3519 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3520 3521 // Update machine-CFG edges with unique successors. 3522 SmallSet<BasicBlock*, 32> Done; 3523 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3524 BasicBlock *BB = I.getSuccessor(i); 3525 bool Inserted = Done.insert(BB).second; 3526 if (!Inserted) 3527 continue; 3528 3529 MachineBasicBlock *Succ = FuncInfo.getMBB(BB); 3530 addSuccessorWithProb(IndirectBrMBB, Succ); 3531 } 3532 IndirectBrMBB->normalizeSuccProbs(); 3533 3534 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3535 MVT::Other, getControlRoot(), 3536 getValue(I.getAddress()))); 3537 } 3538 3539 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3540 if (!DAG.getTarget().Options.TrapUnreachable) 3541 return; 3542 3543 // We may be able to ignore unreachable behind a noreturn call. 3544 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode()); 3545 Call && Call->doesNotReturn()) { 3546 if (DAG.getTarget().Options.NoTrapAfterNoreturn) 3547 return; 3548 // Do not emit an additional trap instruction. 3549 if (Call->isNonContinuableTrap()) 3550 return; 3551 } 3552 3553 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3554 } 3555 3556 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3557 SDNodeFlags Flags; 3558 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3559 Flags.copyFMF(*FPOp); 3560 3561 SDValue Op = getValue(I.getOperand(0)); 3562 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3563 Op, Flags); 3564 setValue(&I, UnNodeValue); 3565 } 3566 3567 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3568 SDNodeFlags Flags; 3569 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3570 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3571 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3572 } 3573 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3574 Flags.setExact(ExactOp->isExact()); 3575 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3576 Flags.setDisjoint(DisjointOp->isDisjoint()); 3577 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3578 Flags.copyFMF(*FPOp); 3579 3580 SDValue Op1 = getValue(I.getOperand(0)); 3581 SDValue Op2 = getValue(I.getOperand(1)); 3582 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3583 Op1, Op2, Flags); 3584 setValue(&I, BinNodeValue); 3585 } 3586 3587 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3588 SDValue Op1 = getValue(I.getOperand(0)); 3589 SDValue Op2 = getValue(I.getOperand(1)); 3590 3591 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3592 Op1.getValueType(), DAG.getDataLayout()); 3593 3594 // Coerce the shift amount to the right type if we can. This exposes the 3595 // truncate or zext to optimization early. 3596 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3597 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3598 "Unexpected shift type"); 3599 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3600 } 3601 3602 bool nuw = false; 3603 bool nsw = false; 3604 bool exact = false; 3605 3606 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3607 3608 if (const OverflowingBinaryOperator *OFBinOp = 3609 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3610 nuw = OFBinOp->hasNoUnsignedWrap(); 3611 nsw = OFBinOp->hasNoSignedWrap(); 3612 } 3613 if (const PossiblyExactOperator *ExactOp = 3614 dyn_cast<const PossiblyExactOperator>(&I)) 3615 exact = ExactOp->isExact(); 3616 } 3617 SDNodeFlags Flags; 3618 Flags.setExact(exact); 3619 Flags.setNoSignedWrap(nsw); 3620 Flags.setNoUnsignedWrap(nuw); 3621 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3622 Flags); 3623 setValue(&I, Res); 3624 } 3625 3626 void SelectionDAGBuilder::visitSDiv(const User &I) { 3627 SDValue Op1 = getValue(I.getOperand(0)); 3628 SDValue Op2 = getValue(I.getOperand(1)); 3629 3630 SDNodeFlags Flags; 3631 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3632 cast<PossiblyExactOperator>(&I)->isExact()); 3633 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3634 Op2, Flags)); 3635 } 3636 3637 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3638 ICmpInst::Predicate predicate = I.getPredicate(); 3639 SDValue Op1 = getValue(I.getOperand(0)); 3640 SDValue Op2 = getValue(I.getOperand(1)); 3641 ISD::CondCode Opcode = getICmpCondCode(predicate); 3642 3643 auto &TLI = DAG.getTargetLoweringInfo(); 3644 EVT MemVT = 3645 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3646 3647 // If a pointer's DAG type is larger than its memory type then the DAG values 3648 // are zero-extended. This breaks signed comparisons so truncate back to the 3649 // underlying type before doing the compare. 3650 if (Op1.getValueType() != MemVT) { 3651 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3652 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3653 } 3654 3655 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3656 I.getType()); 3657 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3658 } 3659 3660 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3661 FCmpInst::Predicate predicate = I.getPredicate(); 3662 SDValue Op1 = getValue(I.getOperand(0)); 3663 SDValue Op2 = getValue(I.getOperand(1)); 3664 3665 ISD::CondCode Condition = getFCmpCondCode(predicate); 3666 auto *FPMO = cast<FPMathOperator>(&I); 3667 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3668 Condition = getFCmpCodeWithoutNaN(Condition); 3669 3670 SDNodeFlags Flags; 3671 Flags.copyFMF(*FPMO); 3672 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3673 3674 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3675 I.getType()); 3676 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3677 } 3678 3679 // Check if the condition of the select has one use or two users that are both 3680 // selects with the same condition. 3681 static bool hasOnlySelectUsers(const Value *Cond) { 3682 return llvm::all_of(Cond->users(), [](const Value *V) { 3683 return isa<SelectInst>(V); 3684 }); 3685 } 3686 3687 void SelectionDAGBuilder::visitSelect(const User &I) { 3688 SmallVector<EVT, 4> ValueVTs; 3689 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3690 ValueVTs); 3691 unsigned NumValues = ValueVTs.size(); 3692 if (NumValues == 0) return; 3693 3694 SmallVector<SDValue, 4> Values(NumValues); 3695 SDValue Cond = getValue(I.getOperand(0)); 3696 SDValue LHSVal = getValue(I.getOperand(1)); 3697 SDValue RHSVal = getValue(I.getOperand(2)); 3698 SmallVector<SDValue, 1> BaseOps(1, Cond); 3699 ISD::NodeType OpCode = 3700 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3701 3702 bool IsUnaryAbs = false; 3703 bool Negate = false; 3704 3705 SDNodeFlags Flags; 3706 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3707 Flags.copyFMF(*FPOp); 3708 3709 Flags.setUnpredictable( 3710 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3711 3712 // Min/max matching is only viable if all output VTs are the same. 3713 if (all_equal(ValueVTs)) { 3714 EVT VT = ValueVTs[0]; 3715 LLVMContext &Ctx = *DAG.getContext(); 3716 auto &TLI = DAG.getTargetLoweringInfo(); 3717 3718 // We care about the legality of the operation after it has been type 3719 // legalized. 3720 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3721 VT = TLI.getTypeToTransformTo(Ctx, VT); 3722 3723 // If the vselect is legal, assume we want to leave this as a vector setcc + 3724 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3725 // min/max is legal on the scalar type. 3726 bool UseScalarMinMax = VT.isVector() && 3727 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3728 3729 // ValueTracking's select pattern matching does not account for -0.0, 3730 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3731 // -0.0 is less than +0.0. 3732 const Value *LHS, *RHS; 3733 auto SPR = matchSelectPattern(&I, LHS, RHS); 3734 ISD::NodeType Opc = ISD::DELETED_NODE; 3735 switch (SPR.Flavor) { 3736 case SPF_UMAX: Opc = ISD::UMAX; break; 3737 case SPF_UMIN: Opc = ISD::UMIN; break; 3738 case SPF_SMAX: Opc = ISD::SMAX; break; 3739 case SPF_SMIN: Opc = ISD::SMIN; break; 3740 case SPF_FMINNUM: 3741 switch (SPR.NaNBehavior) { 3742 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3743 case SPNB_RETURNS_NAN: break; 3744 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3745 case SPNB_RETURNS_ANY: 3746 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3747 (UseScalarMinMax && 3748 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3749 Opc = ISD::FMINNUM; 3750 break; 3751 } 3752 break; 3753 case SPF_FMAXNUM: 3754 switch (SPR.NaNBehavior) { 3755 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3756 case SPNB_RETURNS_NAN: break; 3757 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3758 case SPNB_RETURNS_ANY: 3759 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3760 (UseScalarMinMax && 3761 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3762 Opc = ISD::FMAXNUM; 3763 break; 3764 } 3765 break; 3766 case SPF_NABS: 3767 Negate = true; 3768 [[fallthrough]]; 3769 case SPF_ABS: 3770 IsUnaryAbs = true; 3771 Opc = ISD::ABS; 3772 break; 3773 default: break; 3774 } 3775 3776 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3777 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3778 (UseScalarMinMax && 3779 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3780 // If the underlying comparison instruction is used by any other 3781 // instruction, the consumed instructions won't be destroyed, so it is 3782 // not profitable to convert to a min/max. 3783 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3784 OpCode = Opc; 3785 LHSVal = getValue(LHS); 3786 RHSVal = getValue(RHS); 3787 BaseOps.clear(); 3788 } 3789 3790 if (IsUnaryAbs) { 3791 OpCode = Opc; 3792 LHSVal = getValue(LHS); 3793 BaseOps.clear(); 3794 } 3795 } 3796 3797 if (IsUnaryAbs) { 3798 for (unsigned i = 0; i != NumValues; ++i) { 3799 SDLoc dl = getCurSDLoc(); 3800 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3801 Values[i] = 3802 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3803 if (Negate) 3804 Values[i] = DAG.getNegative(Values[i], dl, VT); 3805 } 3806 } else { 3807 for (unsigned i = 0; i != NumValues; ++i) { 3808 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3809 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3810 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3811 Values[i] = DAG.getNode( 3812 OpCode, getCurSDLoc(), 3813 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3814 } 3815 } 3816 3817 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3818 DAG.getVTList(ValueVTs), Values)); 3819 } 3820 3821 void SelectionDAGBuilder::visitTrunc(const User &I) { 3822 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3823 SDValue N = getValue(I.getOperand(0)); 3824 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3825 I.getType()); 3826 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3827 } 3828 3829 void SelectionDAGBuilder::visitZExt(const User &I) { 3830 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3831 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3832 SDValue N = getValue(I.getOperand(0)); 3833 auto &TLI = DAG.getTargetLoweringInfo(); 3834 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3835 3836 SDNodeFlags Flags; 3837 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3838 Flags.setNonNeg(PNI->hasNonNeg()); 3839 3840 // Eagerly use nonneg information to canonicalize towards sign_extend if 3841 // that is the target's preference. 3842 // TODO: Let the target do this later. 3843 if (Flags.hasNonNeg() && 3844 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3845 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3846 return; 3847 } 3848 3849 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3850 } 3851 3852 void SelectionDAGBuilder::visitSExt(const User &I) { 3853 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3854 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3855 SDValue N = getValue(I.getOperand(0)); 3856 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3857 I.getType()); 3858 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3859 } 3860 3861 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3862 // FPTrunc is never a no-op cast, no need to check 3863 SDValue N = getValue(I.getOperand(0)); 3864 SDLoc dl = getCurSDLoc(); 3865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3866 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3867 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3868 DAG.getTargetConstant( 3869 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3870 } 3871 3872 void SelectionDAGBuilder::visitFPExt(const User &I) { 3873 // FPExt is never a no-op cast, no need to check 3874 SDValue N = getValue(I.getOperand(0)); 3875 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3876 I.getType()); 3877 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3878 } 3879 3880 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3881 // FPToUI is never a no-op cast, no need to check 3882 SDValue N = getValue(I.getOperand(0)); 3883 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3884 I.getType()); 3885 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3886 } 3887 3888 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3889 // FPToSI is never a no-op cast, no need to check 3890 SDValue N = getValue(I.getOperand(0)); 3891 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3892 I.getType()); 3893 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3894 } 3895 3896 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3897 // UIToFP is never a no-op cast, no need to check 3898 SDValue N = getValue(I.getOperand(0)); 3899 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3900 I.getType()); 3901 SDNodeFlags Flags; 3902 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3903 Flags.setNonNeg(PNI->hasNonNeg()); 3904 3905 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3906 } 3907 3908 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3909 // SIToFP is never a no-op cast, no need to check 3910 SDValue N = getValue(I.getOperand(0)); 3911 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3912 I.getType()); 3913 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3914 } 3915 3916 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3917 // What to do depends on the size of the integer and the size of the pointer. 3918 // We can either truncate, zero extend, or no-op, accordingly. 3919 SDValue N = getValue(I.getOperand(0)); 3920 auto &TLI = DAG.getTargetLoweringInfo(); 3921 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3922 I.getType()); 3923 EVT PtrMemVT = 3924 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3925 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3926 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3927 setValue(&I, N); 3928 } 3929 3930 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3931 // What to do depends on the size of the integer and the size of the pointer. 3932 // We can either truncate, zero extend, or no-op, accordingly. 3933 SDValue N = getValue(I.getOperand(0)); 3934 auto &TLI = DAG.getTargetLoweringInfo(); 3935 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3936 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3937 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3938 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3939 setValue(&I, N); 3940 } 3941 3942 void SelectionDAGBuilder::visitBitCast(const User &I) { 3943 SDValue N = getValue(I.getOperand(0)); 3944 SDLoc dl = getCurSDLoc(); 3945 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3946 I.getType()); 3947 3948 // BitCast assures us that source and destination are the same size so this is 3949 // either a BITCAST or a no-op. 3950 if (DestVT != N.getValueType()) 3951 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3952 DestVT, N)); // convert types. 3953 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3954 // might fold any kind of constant expression to an integer constant and that 3955 // is not what we are looking for. Only recognize a bitcast of a genuine 3956 // constant integer as an opaque constant. 3957 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3958 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3959 /*isOpaque*/true)); 3960 else 3961 setValue(&I, N); // noop cast. 3962 } 3963 3964 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3965 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3966 const Value *SV = I.getOperand(0); 3967 SDValue N = getValue(SV); 3968 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3969 3970 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3971 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3972 3973 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3974 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3975 3976 setValue(&I, N); 3977 } 3978 3979 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3981 SDValue InVec = getValue(I.getOperand(0)); 3982 SDValue InVal = getValue(I.getOperand(1)); 3983 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3984 TLI.getVectorIdxTy(DAG.getDataLayout())); 3985 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3986 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3987 InVec, InVal, InIdx)); 3988 } 3989 3990 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3991 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3992 SDValue InVec = getValue(I.getOperand(0)); 3993 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3994 TLI.getVectorIdxTy(DAG.getDataLayout())); 3995 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3996 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3997 InVec, InIdx)); 3998 } 3999 4000 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 4001 SDValue Src1 = getValue(I.getOperand(0)); 4002 SDValue Src2 = getValue(I.getOperand(1)); 4003 ArrayRef<int> Mask; 4004 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4005 Mask = SVI->getShuffleMask(); 4006 else 4007 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4008 SDLoc DL = getCurSDLoc(); 4009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4010 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4011 EVT SrcVT = Src1.getValueType(); 4012 4013 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4014 VT.isScalableVector()) { 4015 // Canonical splat form of first element of first input vector. 4016 SDValue FirstElt = 4017 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4018 DAG.getVectorIdxConstant(0, DL)); 4019 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4020 return; 4021 } 4022 4023 // For now, we only handle splats for scalable vectors. 4024 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4025 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4026 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4027 4028 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4029 unsigned MaskNumElts = Mask.size(); 4030 4031 if (SrcNumElts == MaskNumElts) { 4032 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4033 return; 4034 } 4035 4036 // Normalize the shuffle vector since mask and vector length don't match. 4037 if (SrcNumElts < MaskNumElts) { 4038 // Mask is longer than the source vectors. We can use concatenate vector to 4039 // make the mask and vectors lengths match. 4040 4041 if (MaskNumElts % SrcNumElts == 0) { 4042 // Mask length is a multiple of the source vector length. 4043 // Check if the shuffle is some kind of concatenation of the input 4044 // vectors. 4045 unsigned NumConcat = MaskNumElts / SrcNumElts; 4046 bool IsConcat = true; 4047 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4048 for (unsigned i = 0; i != MaskNumElts; ++i) { 4049 int Idx = Mask[i]; 4050 if (Idx < 0) 4051 continue; 4052 // Ensure the indices in each SrcVT sized piece are sequential and that 4053 // the same source is used for the whole piece. 4054 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4055 (ConcatSrcs[i / SrcNumElts] >= 0 && 4056 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4057 IsConcat = false; 4058 break; 4059 } 4060 // Remember which source this index came from. 4061 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4062 } 4063 4064 // The shuffle is concatenating multiple vectors together. Just emit 4065 // a CONCAT_VECTORS operation. 4066 if (IsConcat) { 4067 SmallVector<SDValue, 8> ConcatOps; 4068 for (auto Src : ConcatSrcs) { 4069 if (Src < 0) 4070 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4071 else if (Src == 0) 4072 ConcatOps.push_back(Src1); 4073 else 4074 ConcatOps.push_back(Src2); 4075 } 4076 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4077 return; 4078 } 4079 } 4080 4081 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4082 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4083 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4084 PaddedMaskNumElts); 4085 4086 // Pad both vectors with undefs to make them the same length as the mask. 4087 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4088 4089 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4090 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4091 MOps1[0] = Src1; 4092 MOps2[0] = Src2; 4093 4094 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4095 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4096 4097 // Readjust mask for new input vector length. 4098 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4099 for (unsigned i = 0; i != MaskNumElts; ++i) { 4100 int Idx = Mask[i]; 4101 if (Idx >= (int)SrcNumElts) 4102 Idx -= SrcNumElts - PaddedMaskNumElts; 4103 MappedOps[i] = Idx; 4104 } 4105 4106 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4107 4108 // If the concatenated vector was padded, extract a subvector with the 4109 // correct number of elements. 4110 if (MaskNumElts != PaddedMaskNumElts) 4111 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4112 DAG.getVectorIdxConstant(0, DL)); 4113 4114 setValue(&I, Result); 4115 return; 4116 } 4117 4118 if (SrcNumElts > MaskNumElts) { 4119 // Analyze the access pattern of the vector to see if we can extract 4120 // two subvectors and do the shuffle. 4121 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4122 bool CanExtract = true; 4123 for (int Idx : Mask) { 4124 unsigned Input = 0; 4125 if (Idx < 0) 4126 continue; 4127 4128 if (Idx >= (int)SrcNumElts) { 4129 Input = 1; 4130 Idx -= SrcNumElts; 4131 } 4132 4133 // If all the indices come from the same MaskNumElts sized portion of 4134 // the sources we can use extract. Also make sure the extract wouldn't 4135 // extract past the end of the source. 4136 int NewStartIdx = alignDown(Idx, MaskNumElts); 4137 if (NewStartIdx + MaskNumElts > SrcNumElts || 4138 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4139 CanExtract = false; 4140 // Make sure we always update StartIdx as we use it to track if all 4141 // elements are undef. 4142 StartIdx[Input] = NewStartIdx; 4143 } 4144 4145 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4146 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4147 return; 4148 } 4149 if (CanExtract) { 4150 // Extract appropriate subvector and generate a vector shuffle 4151 for (unsigned Input = 0; Input < 2; ++Input) { 4152 SDValue &Src = Input == 0 ? Src1 : Src2; 4153 if (StartIdx[Input] < 0) 4154 Src = DAG.getUNDEF(VT); 4155 else { 4156 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4157 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4158 } 4159 } 4160 4161 // Calculate new mask. 4162 SmallVector<int, 8> MappedOps(Mask); 4163 for (int &Idx : MappedOps) { 4164 if (Idx >= (int)SrcNumElts) 4165 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4166 else if (Idx >= 0) 4167 Idx -= StartIdx[0]; 4168 } 4169 4170 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4171 return; 4172 } 4173 } 4174 4175 // We can't use either concat vectors or extract subvectors so fall back to 4176 // replacing the shuffle with extract and build vector. 4177 // to insert and build vector. 4178 EVT EltVT = VT.getVectorElementType(); 4179 SmallVector<SDValue,8> Ops; 4180 for (int Idx : Mask) { 4181 SDValue Res; 4182 4183 if (Idx < 0) { 4184 Res = DAG.getUNDEF(EltVT); 4185 } else { 4186 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4187 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4188 4189 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4190 DAG.getVectorIdxConstant(Idx, DL)); 4191 } 4192 4193 Ops.push_back(Res); 4194 } 4195 4196 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4197 } 4198 4199 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4200 ArrayRef<unsigned> Indices = I.getIndices(); 4201 const Value *Op0 = I.getOperand(0); 4202 const Value *Op1 = I.getOperand(1); 4203 Type *AggTy = I.getType(); 4204 Type *ValTy = Op1->getType(); 4205 bool IntoUndef = isa<UndefValue>(Op0); 4206 bool FromUndef = isa<UndefValue>(Op1); 4207 4208 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4209 4210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4211 SmallVector<EVT, 4> AggValueVTs; 4212 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4213 SmallVector<EVT, 4> ValValueVTs; 4214 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4215 4216 unsigned NumAggValues = AggValueVTs.size(); 4217 unsigned NumValValues = ValValueVTs.size(); 4218 SmallVector<SDValue, 4> Values(NumAggValues); 4219 4220 // Ignore an insertvalue that produces an empty object 4221 if (!NumAggValues) { 4222 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4223 return; 4224 } 4225 4226 SDValue Agg = getValue(Op0); 4227 unsigned i = 0; 4228 // Copy the beginning value(s) from the original aggregate. 4229 for (; i != LinearIndex; ++i) 4230 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4231 SDValue(Agg.getNode(), Agg.getResNo() + i); 4232 // Copy values from the inserted value(s). 4233 if (NumValValues) { 4234 SDValue Val = getValue(Op1); 4235 for (; i != LinearIndex + NumValValues; ++i) 4236 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4237 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4238 } 4239 // Copy remaining value(s) from the original aggregate. 4240 for (; i != NumAggValues; ++i) 4241 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4242 SDValue(Agg.getNode(), Agg.getResNo() + i); 4243 4244 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4245 DAG.getVTList(AggValueVTs), Values)); 4246 } 4247 4248 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4249 ArrayRef<unsigned> Indices = I.getIndices(); 4250 const Value *Op0 = I.getOperand(0); 4251 Type *AggTy = Op0->getType(); 4252 Type *ValTy = I.getType(); 4253 bool OutOfUndef = isa<UndefValue>(Op0); 4254 4255 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4256 4257 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4258 SmallVector<EVT, 4> ValValueVTs; 4259 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4260 4261 unsigned NumValValues = ValValueVTs.size(); 4262 4263 // Ignore a extractvalue that produces an empty object 4264 if (!NumValValues) { 4265 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4266 return; 4267 } 4268 4269 SmallVector<SDValue, 4> Values(NumValValues); 4270 4271 SDValue Agg = getValue(Op0); 4272 // Copy out the selected value(s). 4273 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4274 Values[i - LinearIndex] = 4275 OutOfUndef ? 4276 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4277 SDValue(Agg.getNode(), Agg.getResNo() + i); 4278 4279 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4280 DAG.getVTList(ValValueVTs), Values)); 4281 } 4282 4283 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4284 Value *Op0 = I.getOperand(0); 4285 // Note that the pointer operand may be a vector of pointers. Take the scalar 4286 // element which holds a pointer. 4287 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4288 SDValue N = getValue(Op0); 4289 SDLoc dl = getCurSDLoc(); 4290 auto &TLI = DAG.getTargetLoweringInfo(); 4291 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags(); 4292 4293 // Normalize Vector GEP - all scalar operands should be converted to the 4294 // splat vector. 4295 bool IsVectorGEP = I.getType()->isVectorTy(); 4296 ElementCount VectorElementCount = 4297 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4298 : ElementCount::getFixed(0); 4299 4300 if (IsVectorGEP && !N.getValueType().isVector()) { 4301 LLVMContext &Context = *DAG.getContext(); 4302 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4303 N = DAG.getSplat(VT, dl, N); 4304 } 4305 4306 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4307 GTI != E; ++GTI) { 4308 const Value *Idx = GTI.getOperand(); 4309 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4310 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4311 if (Field) { 4312 // N = N + Offset 4313 uint64_t Offset = 4314 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4315 4316 // In an inbounds GEP with an offset that is nonnegative even when 4317 // interpreted as signed, assume there is no unsigned overflow. 4318 SDNodeFlags Flags; 4319 if (NW.hasNoUnsignedWrap() || 4320 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap())) 4321 Flags.setNoUnsignedWrap(true); 4322 4323 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4324 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4325 } 4326 } else { 4327 // IdxSize is the width of the arithmetic according to IR semantics. 4328 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4329 // (and fix up the result later). 4330 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4331 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4332 TypeSize ElementSize = 4333 GTI.getSequentialElementStride(DAG.getDataLayout()); 4334 // We intentionally mask away the high bits here; ElementSize may not 4335 // fit in IdxTy. 4336 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(), 4337 /*isSigned=*/false, /*implicitTrunc=*/true); 4338 bool ElementScalable = ElementSize.isScalable(); 4339 4340 // If this is a scalar constant or a splat vector of constants, 4341 // handle it quickly. 4342 const auto *C = dyn_cast<Constant>(Idx); 4343 if (C && isa<VectorType>(C->getType())) 4344 C = C->getSplatValue(); 4345 4346 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4347 if (CI && CI->isZero()) 4348 continue; 4349 if (CI && !ElementScalable) { 4350 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4351 LLVMContext &Context = *DAG.getContext(); 4352 SDValue OffsVal; 4353 if (IsVectorGEP) 4354 OffsVal = DAG.getConstant( 4355 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4356 else 4357 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4358 4359 // In an inbounds GEP with an offset that is nonnegative even when 4360 // interpreted as signed, assume there is no unsigned overflow. 4361 SDNodeFlags Flags; 4362 if (NW.hasNoUnsignedWrap() || 4363 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap())) 4364 Flags.setNoUnsignedWrap(true); 4365 4366 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4367 4368 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4369 continue; 4370 } 4371 4372 // N = N + Idx * ElementMul; 4373 SDValue IdxN = getValue(Idx); 4374 4375 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4376 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4377 VectorElementCount); 4378 IdxN = DAG.getSplat(VT, dl, IdxN); 4379 } 4380 4381 // If the index is smaller or larger than intptr_t, truncate or extend 4382 // it. 4383 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4384 4385 SDNodeFlags ScaleFlags; 4386 // The multiplication of an index by the type size does not wrap the 4387 // pointer index type in a signed sense (mul nsw). 4388 ScaleFlags.setNoSignedWrap(NW.hasNoUnsignedSignedWrap()); 4389 4390 // The multiplication of an index by the type size does not wrap the 4391 // pointer index type in an unsigned sense (mul nuw). 4392 ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap()); 4393 4394 if (ElementScalable) { 4395 EVT VScaleTy = N.getValueType().getScalarType(); 4396 SDValue VScale = DAG.getNode( 4397 ISD::VSCALE, dl, VScaleTy, 4398 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4399 if (IsVectorGEP) 4400 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4401 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale, 4402 ScaleFlags); 4403 } else { 4404 // If this is a multiply by a power of two, turn it into a shl 4405 // immediately. This is a very common case. 4406 if (ElementMul != 1) { 4407 if (ElementMul.isPowerOf2()) { 4408 unsigned Amt = ElementMul.logBase2(); 4409 IdxN = DAG.getNode(ISD::SHL, dl, N.getValueType(), IdxN, 4410 DAG.getConstant(Amt, dl, IdxN.getValueType()), 4411 ScaleFlags); 4412 } else { 4413 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4414 IdxN.getValueType()); 4415 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale, 4416 ScaleFlags); 4417 } 4418 } 4419 } 4420 4421 // The successive addition of the current address, truncated to the 4422 // pointer index type and interpreted as an unsigned number, and each 4423 // offset, also interpreted as an unsigned number, does not wrap the 4424 // pointer index type (add nuw). 4425 SDNodeFlags AddFlags; 4426 AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap()); 4427 4428 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, IdxN, AddFlags); 4429 } 4430 } 4431 4432 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4433 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4434 if (IsVectorGEP) { 4435 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4436 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4437 } 4438 4439 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4440 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4441 4442 setValue(&I, N); 4443 } 4444 4445 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4446 // If this is a fixed sized alloca in the entry block of the function, 4447 // allocate it statically on the stack. 4448 if (FuncInfo.StaticAllocaMap.count(&I)) 4449 return; // getValue will auto-populate this. 4450 4451 SDLoc dl = getCurSDLoc(); 4452 Type *Ty = I.getAllocatedType(); 4453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4454 auto &DL = DAG.getDataLayout(); 4455 TypeSize TySize = DL.getTypeAllocSize(Ty); 4456 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4457 4458 SDValue AllocSize = getValue(I.getArraySize()); 4459 4460 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4461 if (AllocSize.getValueType() != IntPtr) 4462 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4463 4464 if (TySize.isScalable()) 4465 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4466 DAG.getVScale(dl, IntPtr, 4467 APInt(IntPtr.getScalarSizeInBits(), 4468 TySize.getKnownMinValue()))); 4469 else { 4470 SDValue TySizeValue = 4471 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4472 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4473 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4474 } 4475 4476 // Handle alignment. If the requested alignment is less than or equal to 4477 // the stack alignment, ignore it. If the size is greater than or equal to 4478 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4479 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4480 if (*Alignment <= StackAlign) 4481 Alignment = std::nullopt; 4482 4483 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4484 // Round the size of the allocation up to the stack alignment size 4485 // by add SA-1 to the size. This doesn't overflow because we're computing 4486 // an address inside an alloca. 4487 SDNodeFlags Flags; 4488 Flags.setNoUnsignedWrap(true); 4489 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4490 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4491 4492 // Mask out the low bits for alignment purposes. 4493 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4494 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr)); 4495 4496 SDValue Ops[] = { 4497 getRoot(), AllocSize, 4498 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4499 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4500 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4501 setValue(&I, DSA); 4502 DAG.setRoot(DSA.getValue(1)); 4503 4504 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4505 } 4506 4507 static const MDNode *getRangeMetadata(const Instruction &I) { 4508 // If !noundef is not present, then !range violation results in a poison 4509 // value rather than immediate undefined behavior. In theory, transferring 4510 // these annotations to SDAG is fine, but in practice there are key SDAG 4511 // transforms that are known not to be poison-safe, such as folding logical 4512 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4513 // also present. 4514 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4515 return nullptr; 4516 return I.getMetadata(LLVMContext::MD_range); 4517 } 4518 4519 static std::optional<ConstantRange> getRange(const Instruction &I) { 4520 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4521 // see comment in getRangeMetadata about this check 4522 if (CB->hasRetAttr(Attribute::NoUndef)) 4523 return CB->getRange(); 4524 } 4525 if (const MDNode *Range = getRangeMetadata(I)) 4526 return getConstantRangeFromMetadata(*Range); 4527 return std::nullopt; 4528 } 4529 4530 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4531 if (I.isAtomic()) 4532 return visitAtomicLoad(I); 4533 4534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4535 const Value *SV = I.getOperand(0); 4536 if (TLI.supportSwiftError()) { 4537 // Swifterror values can come from either a function parameter with 4538 // swifterror attribute or an alloca with swifterror attribute. 4539 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4540 if (Arg->hasSwiftErrorAttr()) 4541 return visitLoadFromSwiftError(I); 4542 } 4543 4544 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4545 if (Alloca->isSwiftError()) 4546 return visitLoadFromSwiftError(I); 4547 } 4548 } 4549 4550 SDValue Ptr = getValue(SV); 4551 4552 Type *Ty = I.getType(); 4553 SmallVector<EVT, 4> ValueVTs, MemVTs; 4554 SmallVector<TypeSize, 4> Offsets; 4555 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4556 unsigned NumValues = ValueVTs.size(); 4557 if (NumValues == 0) 4558 return; 4559 4560 Align Alignment = I.getAlign(); 4561 AAMDNodes AAInfo = I.getAAMetadata(); 4562 const MDNode *Ranges = getRangeMetadata(I); 4563 bool isVolatile = I.isVolatile(); 4564 MachineMemOperand::Flags MMOFlags = 4565 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4566 4567 SDValue Root; 4568 bool ConstantMemory = false; 4569 if (isVolatile) 4570 // Serialize volatile loads with other side effects. 4571 Root = getRoot(); 4572 else if (NumValues > MaxParallelChains) 4573 Root = getMemoryRoot(); 4574 else if (AA && 4575 AA->pointsToConstantMemory(MemoryLocation( 4576 SV, 4577 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4578 AAInfo))) { 4579 // Do not serialize (non-volatile) loads of constant memory with anything. 4580 Root = DAG.getEntryNode(); 4581 ConstantMemory = true; 4582 MMOFlags |= MachineMemOperand::MOInvariant; 4583 } else { 4584 // Do not serialize non-volatile loads against each other. 4585 Root = DAG.getRoot(); 4586 } 4587 4588 SDLoc dl = getCurSDLoc(); 4589 4590 if (isVolatile) 4591 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4592 4593 SmallVector<SDValue, 4> Values(NumValues); 4594 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4595 4596 unsigned ChainI = 0; 4597 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4598 // Serializing loads here may result in excessive register pressure, and 4599 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4600 // could recover a bit by hoisting nodes upward in the chain by recognizing 4601 // they are side-effect free or do not alias. The optimizer should really 4602 // avoid this case by converting large object/array copies to llvm.memcpy 4603 // (MaxParallelChains should always remain as failsafe). 4604 if (ChainI == MaxParallelChains) { 4605 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4606 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4607 ArrayRef(Chains.data(), ChainI)); 4608 Root = Chain; 4609 ChainI = 0; 4610 } 4611 4612 // TODO: MachinePointerInfo only supports a fixed length offset. 4613 MachinePointerInfo PtrInfo = 4614 !Offsets[i].isScalable() || Offsets[i].isZero() 4615 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4616 : MachinePointerInfo(); 4617 4618 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4619 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4620 MMOFlags, AAInfo, Ranges); 4621 Chains[ChainI] = L.getValue(1); 4622 4623 if (MemVTs[i] != ValueVTs[i]) 4624 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4625 4626 Values[i] = L; 4627 } 4628 4629 if (!ConstantMemory) { 4630 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4631 ArrayRef(Chains.data(), ChainI)); 4632 if (isVolatile) 4633 DAG.setRoot(Chain); 4634 else 4635 PendingLoads.push_back(Chain); 4636 } 4637 4638 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4639 DAG.getVTList(ValueVTs), Values)); 4640 } 4641 4642 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4643 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4644 "call visitStoreToSwiftError when backend supports swifterror"); 4645 4646 SmallVector<EVT, 4> ValueVTs; 4647 SmallVector<uint64_t, 4> Offsets; 4648 const Value *SrcV = I.getOperand(0); 4649 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4650 SrcV->getType(), ValueVTs, &Offsets, 0); 4651 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4652 "expect a single EVT for swifterror"); 4653 4654 SDValue Src = getValue(SrcV); 4655 // Create a virtual register, then update the virtual register. 4656 Register VReg = 4657 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4658 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4659 // Chain can be getRoot or getControlRoot. 4660 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4661 SDValue(Src.getNode(), Src.getResNo())); 4662 DAG.setRoot(CopyNode); 4663 } 4664 4665 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4666 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4667 "call visitLoadFromSwiftError when backend supports swifterror"); 4668 4669 assert(!I.isVolatile() && 4670 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4671 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4672 "Support volatile, non temporal, invariant for load_from_swift_error"); 4673 4674 const Value *SV = I.getOperand(0); 4675 Type *Ty = I.getType(); 4676 assert( 4677 (!AA || 4678 !AA->pointsToConstantMemory(MemoryLocation( 4679 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4680 I.getAAMetadata()))) && 4681 "load_from_swift_error should not be constant memory"); 4682 4683 SmallVector<EVT, 4> ValueVTs; 4684 SmallVector<uint64_t, 4> Offsets; 4685 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4686 ValueVTs, &Offsets, 0); 4687 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4688 "expect a single EVT for swifterror"); 4689 4690 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4691 SDValue L = DAG.getCopyFromReg( 4692 getRoot(), getCurSDLoc(), 4693 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4694 4695 setValue(&I, L); 4696 } 4697 4698 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4699 if (I.isAtomic()) 4700 return visitAtomicStore(I); 4701 4702 const Value *SrcV = I.getOperand(0); 4703 const Value *PtrV = I.getOperand(1); 4704 4705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4706 if (TLI.supportSwiftError()) { 4707 // Swifterror values can come from either a function parameter with 4708 // swifterror attribute or an alloca with swifterror attribute. 4709 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4710 if (Arg->hasSwiftErrorAttr()) 4711 return visitStoreToSwiftError(I); 4712 } 4713 4714 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4715 if (Alloca->isSwiftError()) 4716 return visitStoreToSwiftError(I); 4717 } 4718 } 4719 4720 SmallVector<EVT, 4> ValueVTs, MemVTs; 4721 SmallVector<TypeSize, 4> Offsets; 4722 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4723 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4724 unsigned NumValues = ValueVTs.size(); 4725 if (NumValues == 0) 4726 return; 4727 4728 // Get the lowered operands. Note that we do this after 4729 // checking if NumResults is zero, because with zero results 4730 // the operands won't have values in the map. 4731 SDValue Src = getValue(SrcV); 4732 SDValue Ptr = getValue(PtrV); 4733 4734 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4735 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4736 SDLoc dl = getCurSDLoc(); 4737 Align Alignment = I.getAlign(); 4738 AAMDNodes AAInfo = I.getAAMetadata(); 4739 4740 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4741 4742 unsigned ChainI = 0; 4743 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4744 // See visitLoad comments. 4745 if (ChainI == MaxParallelChains) { 4746 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4747 ArrayRef(Chains.data(), ChainI)); 4748 Root = Chain; 4749 ChainI = 0; 4750 } 4751 4752 // TODO: MachinePointerInfo only supports a fixed length offset. 4753 MachinePointerInfo PtrInfo = 4754 !Offsets[i].isScalable() || Offsets[i].isZero() 4755 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4756 : MachinePointerInfo(); 4757 4758 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4759 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4760 if (MemVTs[i] != ValueVTs[i]) 4761 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4762 SDValue St = 4763 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4764 Chains[ChainI] = St; 4765 } 4766 4767 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4768 ArrayRef(Chains.data(), ChainI)); 4769 setValue(&I, StoreNode); 4770 DAG.setRoot(StoreNode); 4771 } 4772 4773 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4774 bool IsCompressing) { 4775 SDLoc sdl = getCurSDLoc(); 4776 4777 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4778 Align &Alignment) { 4779 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4780 Src0 = I.getArgOperand(0); 4781 Ptr = I.getArgOperand(1); 4782 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4783 Mask = I.getArgOperand(3); 4784 }; 4785 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4786 Align &Alignment) { 4787 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4788 Src0 = I.getArgOperand(0); 4789 Ptr = I.getArgOperand(1); 4790 Mask = I.getArgOperand(2); 4791 Alignment = I.getParamAlign(1).valueOrOne(); 4792 }; 4793 4794 Value *PtrOperand, *MaskOperand, *Src0Operand; 4795 Align Alignment; 4796 if (IsCompressing) 4797 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4798 else 4799 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4800 4801 SDValue Ptr = getValue(PtrOperand); 4802 SDValue Src0 = getValue(Src0Operand); 4803 SDValue Mask = getValue(MaskOperand); 4804 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4805 4806 EVT VT = Src0.getValueType(); 4807 4808 auto MMOFlags = MachineMemOperand::MOStore; 4809 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4810 MMOFlags |= MachineMemOperand::MONonTemporal; 4811 4812 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4813 MachinePointerInfo(PtrOperand), MMOFlags, 4814 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4815 4816 const auto &TLI = DAG.getTargetLoweringInfo(); 4817 const auto &TTI = 4818 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4819 SDValue StoreNode = 4820 !IsCompressing && 4821 TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType()) 4822 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4823 Mask) 4824 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4825 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4826 IsCompressing); 4827 DAG.setRoot(StoreNode); 4828 setValue(&I, StoreNode); 4829 } 4830 4831 // Get a uniform base for the Gather/Scatter intrinsic. 4832 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4833 // We try to represent it as a base pointer + vector of indices. 4834 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4835 // The first operand of the GEP may be a single pointer or a vector of pointers 4836 // Example: 4837 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4838 // or 4839 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4840 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4841 // 4842 // When the first GEP operand is a single pointer - it is the uniform base we 4843 // are looking for. If first operand of the GEP is a splat vector - we 4844 // extract the splat value and use it as a uniform base. 4845 // In all other cases the function returns 'false'. 4846 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4847 ISD::MemIndexType &IndexType, SDValue &Scale, 4848 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4849 uint64_t ElemSize) { 4850 SelectionDAG& DAG = SDB->DAG; 4851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4852 const DataLayout &DL = DAG.getDataLayout(); 4853 4854 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4855 4856 // Handle splat constant pointer. 4857 if (auto *C = dyn_cast<Constant>(Ptr)) { 4858 C = C->getSplatValue(); 4859 if (!C) 4860 return false; 4861 4862 Base = SDB->getValue(C); 4863 4864 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4865 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4866 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4867 IndexType = ISD::SIGNED_SCALED; 4868 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4869 return true; 4870 } 4871 4872 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4873 if (!GEP || GEP->getParent() != CurBB) 4874 return false; 4875 4876 if (GEP->getNumOperands() != 2) 4877 return false; 4878 4879 const Value *BasePtr = GEP->getPointerOperand(); 4880 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4881 4882 // Make sure the base is scalar and the index is a vector. 4883 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4884 return false; 4885 4886 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4887 if (ScaleVal.isScalable()) 4888 return false; 4889 4890 // Target may not support the required addressing mode. 4891 if (ScaleVal != 1 && 4892 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4893 return false; 4894 4895 Base = SDB->getValue(BasePtr); 4896 Index = SDB->getValue(IndexVal); 4897 IndexType = ISD::SIGNED_SCALED; 4898 4899 Scale = 4900 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4901 return true; 4902 } 4903 4904 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4905 SDLoc sdl = getCurSDLoc(); 4906 4907 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4908 const Value *Ptr = I.getArgOperand(1); 4909 SDValue Src0 = getValue(I.getArgOperand(0)); 4910 SDValue Mask = getValue(I.getArgOperand(3)); 4911 EVT VT = Src0.getValueType(); 4912 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4913 ->getMaybeAlignValue() 4914 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4916 4917 SDValue Base; 4918 SDValue Index; 4919 ISD::MemIndexType IndexType; 4920 SDValue Scale; 4921 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4922 I.getParent(), VT.getScalarStoreSize()); 4923 4924 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4925 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4926 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4927 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4928 if (!UniformBase) { 4929 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4930 Index = getValue(Ptr); 4931 IndexType = ISD::SIGNED_SCALED; 4932 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4933 } 4934 4935 EVT IdxVT = Index.getValueType(); 4936 EVT EltTy = IdxVT.getVectorElementType(); 4937 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4938 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4939 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4940 } 4941 4942 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4943 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4944 Ops, MMO, IndexType, false); 4945 DAG.setRoot(Scatter); 4946 setValue(&I, Scatter); 4947 } 4948 4949 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4950 SDLoc sdl = getCurSDLoc(); 4951 4952 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4953 Align &Alignment) { 4954 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4955 Ptr = I.getArgOperand(0); 4956 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4957 Mask = I.getArgOperand(2); 4958 Src0 = I.getArgOperand(3); 4959 }; 4960 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4961 Align &Alignment) { 4962 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4963 Ptr = I.getArgOperand(0); 4964 Alignment = I.getParamAlign(0).valueOrOne(); 4965 Mask = I.getArgOperand(1); 4966 Src0 = I.getArgOperand(2); 4967 }; 4968 4969 Value *PtrOperand, *MaskOperand, *Src0Operand; 4970 Align Alignment; 4971 if (IsExpanding) 4972 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4973 else 4974 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4975 4976 SDValue Ptr = getValue(PtrOperand); 4977 SDValue Src0 = getValue(Src0Operand); 4978 SDValue Mask = getValue(MaskOperand); 4979 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4980 4981 EVT VT = Src0.getValueType(); 4982 AAMDNodes AAInfo = I.getAAMetadata(); 4983 const MDNode *Ranges = getRangeMetadata(I); 4984 4985 // Do not serialize masked loads of constant memory with anything. 4986 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4987 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4988 4989 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4990 4991 auto MMOFlags = MachineMemOperand::MOLoad; 4992 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4993 MMOFlags |= MachineMemOperand::MONonTemporal; 4994 4995 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4996 MachinePointerInfo(PtrOperand), MMOFlags, 4997 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4998 4999 const auto &TLI = DAG.getTargetLoweringInfo(); 5000 const auto &TTI = 5001 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 5002 // The Load/Res may point to different values and both of them are output 5003 // variables. 5004 SDValue Load; 5005 SDValue Res; 5006 if (!IsExpanding && 5007 TTI.hasConditionalLoadStoreForType(Src0Operand->getType())) 5008 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 5009 else 5010 Res = Load = 5011 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 5012 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 5013 if (AddToChain) 5014 PendingLoads.push_back(Load.getValue(1)); 5015 setValue(&I, Res); 5016 } 5017 5018 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 5019 SDLoc sdl = getCurSDLoc(); 5020 5021 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 5022 const Value *Ptr = I.getArgOperand(0); 5023 SDValue Src0 = getValue(I.getArgOperand(3)); 5024 SDValue Mask = getValue(I.getArgOperand(2)); 5025 5026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5027 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5028 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5029 ->getMaybeAlignValue() 5030 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5031 5032 const MDNode *Ranges = getRangeMetadata(I); 5033 5034 SDValue Root = DAG.getRoot(); 5035 SDValue Base; 5036 SDValue Index; 5037 ISD::MemIndexType IndexType; 5038 SDValue Scale; 5039 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5040 I.getParent(), VT.getScalarStoreSize()); 5041 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5042 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5043 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5044 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5045 Ranges); 5046 5047 if (!UniformBase) { 5048 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5049 Index = getValue(Ptr); 5050 IndexType = ISD::SIGNED_SCALED; 5051 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5052 } 5053 5054 EVT IdxVT = Index.getValueType(); 5055 EVT EltTy = IdxVT.getVectorElementType(); 5056 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5057 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5058 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5059 } 5060 5061 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5062 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5063 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5064 5065 PendingLoads.push_back(Gather.getValue(1)); 5066 setValue(&I, Gather); 5067 } 5068 5069 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5070 SDLoc dl = getCurSDLoc(); 5071 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5072 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5073 SyncScope::ID SSID = I.getSyncScopeID(); 5074 5075 SDValue InChain = getRoot(); 5076 5077 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5078 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5079 5080 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5081 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5082 5083 MachineFunction &MF = DAG.getMachineFunction(); 5084 MachineMemOperand *MMO = MF.getMachineMemOperand( 5085 MachinePointerInfo(I.getPointerOperand()), Flags, 5086 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5087 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5088 5089 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5090 dl, MemVT, VTs, InChain, 5091 getValue(I.getPointerOperand()), 5092 getValue(I.getCompareOperand()), 5093 getValue(I.getNewValOperand()), MMO); 5094 5095 SDValue OutChain = L.getValue(2); 5096 5097 setValue(&I, L); 5098 DAG.setRoot(OutChain); 5099 } 5100 5101 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5102 SDLoc dl = getCurSDLoc(); 5103 ISD::NodeType NT; 5104 switch (I.getOperation()) { 5105 default: llvm_unreachable("Unknown atomicrmw operation"); 5106 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5107 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5108 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5109 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5110 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5111 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5112 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5113 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5114 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5115 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5116 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5117 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5118 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5119 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5120 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5121 case AtomicRMWInst::UIncWrap: 5122 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5123 break; 5124 case AtomicRMWInst::UDecWrap: 5125 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5126 break; 5127 case AtomicRMWInst::USubCond: 5128 NT = ISD::ATOMIC_LOAD_USUB_COND; 5129 break; 5130 case AtomicRMWInst::USubSat: 5131 NT = ISD::ATOMIC_LOAD_USUB_SAT; 5132 break; 5133 } 5134 AtomicOrdering Ordering = I.getOrdering(); 5135 SyncScope::ID SSID = I.getSyncScopeID(); 5136 5137 SDValue InChain = getRoot(); 5138 5139 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5140 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5141 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5142 5143 MachineFunction &MF = DAG.getMachineFunction(); 5144 MachineMemOperand *MMO = MF.getMachineMemOperand( 5145 MachinePointerInfo(I.getPointerOperand()), Flags, 5146 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5147 AAMDNodes(), nullptr, SSID, Ordering); 5148 5149 SDValue L = 5150 DAG.getAtomic(NT, dl, MemVT, InChain, 5151 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5152 MMO); 5153 5154 SDValue OutChain = L.getValue(1); 5155 5156 setValue(&I, L); 5157 DAG.setRoot(OutChain); 5158 } 5159 5160 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5161 SDLoc dl = getCurSDLoc(); 5162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5163 SDValue Ops[3]; 5164 Ops[0] = getRoot(); 5165 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5166 TLI.getFenceOperandTy(DAG.getDataLayout())); 5167 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5168 TLI.getFenceOperandTy(DAG.getDataLayout())); 5169 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5170 setValue(&I, N); 5171 DAG.setRoot(N); 5172 } 5173 5174 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5175 SDLoc dl = getCurSDLoc(); 5176 AtomicOrdering Order = I.getOrdering(); 5177 SyncScope::ID SSID = I.getSyncScopeID(); 5178 5179 SDValue InChain = getRoot(); 5180 5181 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5182 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5183 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5184 5185 if (!TLI.supportsUnalignedAtomics() && 5186 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5187 report_fatal_error("Cannot generate unaligned atomic load"); 5188 5189 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5190 5191 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5192 MachinePointerInfo(I.getPointerOperand()), Flags, 5193 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5194 nullptr, SSID, Order); 5195 5196 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5197 5198 SDValue Ptr = getValue(I.getPointerOperand()); 5199 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5200 Ptr, MMO); 5201 5202 SDValue OutChain = L.getValue(1); 5203 if (MemVT != VT) 5204 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5205 5206 setValue(&I, L); 5207 DAG.setRoot(OutChain); 5208 } 5209 5210 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5211 SDLoc dl = getCurSDLoc(); 5212 5213 AtomicOrdering Ordering = I.getOrdering(); 5214 SyncScope::ID SSID = I.getSyncScopeID(); 5215 5216 SDValue InChain = getRoot(); 5217 5218 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5219 EVT MemVT = 5220 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5221 5222 if (!TLI.supportsUnalignedAtomics() && 5223 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5224 report_fatal_error("Cannot generate unaligned atomic store"); 5225 5226 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5227 5228 MachineFunction &MF = DAG.getMachineFunction(); 5229 MachineMemOperand *MMO = MF.getMachineMemOperand( 5230 MachinePointerInfo(I.getPointerOperand()), Flags, 5231 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5232 nullptr, SSID, Ordering); 5233 5234 SDValue Val = getValue(I.getValueOperand()); 5235 if (Val.getValueType() != MemVT) 5236 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5237 SDValue Ptr = getValue(I.getPointerOperand()); 5238 5239 SDValue OutChain = 5240 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5241 5242 setValue(&I, OutChain); 5243 DAG.setRoot(OutChain); 5244 } 5245 5246 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5247 /// node. 5248 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5249 unsigned Intrinsic) { 5250 // Ignore the callsite's attributes. A specific call site may be marked with 5251 // readnone, but the lowering code will expect the chain based on the 5252 // definition. 5253 const Function *F = I.getCalledFunction(); 5254 bool HasChain = !F->doesNotAccessMemory(); 5255 bool OnlyLoad = 5256 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow(); 5257 5258 // Build the operand list. 5259 SmallVector<SDValue, 8> Ops; 5260 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5261 if (OnlyLoad) { 5262 // We don't need to serialize loads against other loads. 5263 Ops.push_back(DAG.getRoot()); 5264 } else { 5265 Ops.push_back(getRoot()); 5266 } 5267 } 5268 5269 // Info is set by getTgtMemIntrinsic 5270 TargetLowering::IntrinsicInfo Info; 5271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5272 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5273 DAG.getMachineFunction(), 5274 Intrinsic); 5275 5276 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5277 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5278 Info.opc == ISD::INTRINSIC_W_CHAIN) 5279 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5280 TLI.getPointerTy(DAG.getDataLayout()))); 5281 5282 // Add all operands of the call to the operand list. 5283 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5284 const Value *Arg = I.getArgOperand(i); 5285 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5286 Ops.push_back(getValue(Arg)); 5287 continue; 5288 } 5289 5290 // Use TargetConstant instead of a regular constant for immarg. 5291 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5292 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5293 assert(CI->getBitWidth() <= 64 && 5294 "large intrinsic immediates not handled"); 5295 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5296 } else { 5297 Ops.push_back( 5298 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5299 } 5300 } 5301 5302 SmallVector<EVT, 4> ValueVTs; 5303 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5304 5305 if (HasChain) 5306 ValueVTs.push_back(MVT::Other); 5307 5308 SDVTList VTs = DAG.getVTList(ValueVTs); 5309 5310 // Propagate fast-math-flags from IR to node(s). 5311 SDNodeFlags Flags; 5312 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5313 Flags.copyFMF(*FPMO); 5314 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5315 5316 // Create the node. 5317 SDValue Result; 5318 5319 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5320 auto *Token = Bundle->Inputs[0].get(); 5321 SDValue ConvControlToken = getValue(Token); 5322 assert(Ops.back().getValueType() != MVT::Glue && 5323 "Did not expected another glue node here."); 5324 ConvControlToken = 5325 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5326 Ops.push_back(ConvControlToken); 5327 } 5328 5329 // In some cases, custom collection of operands from CallInst I may be needed. 5330 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5331 if (IsTgtIntrinsic) { 5332 // This is target intrinsic that touches memory 5333 // 5334 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5335 // didn't yield anything useful. 5336 MachinePointerInfo MPI; 5337 if (Info.ptrVal) 5338 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5339 else if (Info.fallbackAddressSpace) 5340 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5341 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5342 Info.memVT, MPI, Info.align, Info.flags, 5343 Info.size, I.getAAMetadata()); 5344 } else if (!HasChain) { 5345 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5346 } else if (!I.getType()->isVoidTy()) { 5347 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5348 } else { 5349 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5350 } 5351 5352 if (HasChain) { 5353 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5354 if (OnlyLoad) 5355 PendingLoads.push_back(Chain); 5356 else 5357 DAG.setRoot(Chain); 5358 } 5359 5360 if (!I.getType()->isVoidTy()) { 5361 if (!isa<VectorType>(I.getType())) 5362 Result = lowerRangeToAssertZExt(DAG, I, Result); 5363 5364 MaybeAlign Alignment = I.getRetAlign(); 5365 5366 // Insert `assertalign` node if there's an alignment. 5367 if (InsertAssertAlign && Alignment) { 5368 Result = 5369 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5370 } 5371 } 5372 5373 setValue(&I, Result); 5374 } 5375 5376 /// GetSignificand - Get the significand and build it into a floating-point 5377 /// number with exponent of 1: 5378 /// 5379 /// Op = (Op & 0x007fffff) | 0x3f800000; 5380 /// 5381 /// where Op is the hexadecimal representation of floating point value. 5382 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5383 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5384 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5385 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5386 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5387 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5388 } 5389 5390 /// GetExponent - Get the exponent: 5391 /// 5392 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5393 /// 5394 /// where Op is the hexadecimal representation of floating point value. 5395 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5396 const TargetLowering &TLI, const SDLoc &dl) { 5397 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5398 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5399 SDValue t1 = DAG.getNode( 5400 ISD::SRL, dl, MVT::i32, t0, 5401 DAG.getConstant(23, dl, 5402 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5403 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5404 DAG.getConstant(127, dl, MVT::i32)); 5405 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5406 } 5407 5408 /// getF32Constant - Get 32-bit floating point constant. 5409 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5410 const SDLoc &dl) { 5411 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5412 MVT::f32); 5413 } 5414 5415 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5416 SelectionDAG &DAG) { 5417 // TODO: What fast-math-flags should be set on the floating-point nodes? 5418 5419 // IntegerPartOfX = ((int32_t)(t0); 5420 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5421 5422 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5423 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5424 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5425 5426 // IntegerPartOfX <<= 23; 5427 IntegerPartOfX = 5428 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5429 DAG.getConstant(23, dl, 5430 DAG.getTargetLoweringInfo().getShiftAmountTy( 5431 MVT::i32, DAG.getDataLayout()))); 5432 5433 SDValue TwoToFractionalPartOfX; 5434 if (LimitFloatPrecision <= 6) { 5435 // For floating-point precision of 6: 5436 // 5437 // TwoToFractionalPartOfX = 5438 // 0.997535578f + 5439 // (0.735607626f + 0.252464424f * x) * x; 5440 // 5441 // error 0.0144103317, which is 6 bits 5442 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5443 getF32Constant(DAG, 0x3e814304, dl)); 5444 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5445 getF32Constant(DAG, 0x3f3c50c8, dl)); 5446 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5447 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5448 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5449 } else if (LimitFloatPrecision <= 12) { 5450 // For floating-point precision of 12: 5451 // 5452 // TwoToFractionalPartOfX = 5453 // 0.999892986f + 5454 // (0.696457318f + 5455 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5456 // 5457 // error 0.000107046256, which is 13 to 14 bits 5458 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5459 getF32Constant(DAG, 0x3da235e3, dl)); 5460 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5461 getF32Constant(DAG, 0x3e65b8f3, dl)); 5462 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5463 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5464 getF32Constant(DAG, 0x3f324b07, dl)); 5465 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5466 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5467 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5468 } else { // LimitFloatPrecision <= 18 5469 // For floating-point precision of 18: 5470 // 5471 // TwoToFractionalPartOfX = 5472 // 0.999999982f + 5473 // (0.693148872f + 5474 // (0.240227044f + 5475 // (0.554906021e-1f + 5476 // (0.961591928e-2f + 5477 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5478 // error 2.47208000*10^(-7), which is better than 18 bits 5479 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5480 getF32Constant(DAG, 0x3924b03e, dl)); 5481 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5482 getF32Constant(DAG, 0x3ab24b87, dl)); 5483 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5484 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5485 getF32Constant(DAG, 0x3c1d8c17, dl)); 5486 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5487 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5488 getF32Constant(DAG, 0x3d634a1d, dl)); 5489 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5490 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5491 getF32Constant(DAG, 0x3e75fe14, dl)); 5492 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5493 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5494 getF32Constant(DAG, 0x3f317234, dl)); 5495 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5496 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5497 getF32Constant(DAG, 0x3f800000, dl)); 5498 } 5499 5500 // Add the exponent into the result in integer domain. 5501 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5502 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5503 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5504 } 5505 5506 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5507 /// limited-precision mode. 5508 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5509 const TargetLowering &TLI, SDNodeFlags Flags) { 5510 if (Op.getValueType() == MVT::f32 && 5511 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5512 5513 // Put the exponent in the right bit position for later addition to the 5514 // final result: 5515 // 5516 // t0 = Op * log2(e) 5517 5518 // TODO: What fast-math-flags should be set here? 5519 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5520 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5521 return getLimitedPrecisionExp2(t0, dl, DAG); 5522 } 5523 5524 // No special expansion. 5525 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5526 } 5527 5528 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5529 /// limited-precision mode. 5530 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5531 const TargetLowering &TLI, SDNodeFlags Flags) { 5532 // TODO: What fast-math-flags should be set on the floating-point nodes? 5533 5534 if (Op.getValueType() == MVT::f32 && 5535 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5536 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5537 5538 // Scale the exponent by log(2). 5539 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5540 SDValue LogOfExponent = 5541 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5542 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5543 5544 // Get the significand and build it into a floating-point number with 5545 // exponent of 1. 5546 SDValue X = GetSignificand(DAG, Op1, dl); 5547 5548 SDValue LogOfMantissa; 5549 if (LimitFloatPrecision <= 6) { 5550 // For floating-point precision of 6: 5551 // 5552 // LogofMantissa = 5553 // -1.1609546f + 5554 // (1.4034025f - 0.23903021f * x) * x; 5555 // 5556 // error 0.0034276066, which is better than 8 bits 5557 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5558 getF32Constant(DAG, 0xbe74c456, dl)); 5559 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5560 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5561 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5562 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5563 getF32Constant(DAG, 0x3f949a29, dl)); 5564 } else if (LimitFloatPrecision <= 12) { 5565 // For floating-point precision of 12: 5566 // 5567 // LogOfMantissa = 5568 // -1.7417939f + 5569 // (2.8212026f + 5570 // (-1.4699568f + 5571 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5572 // 5573 // error 0.000061011436, which is 14 bits 5574 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5575 getF32Constant(DAG, 0xbd67b6d6, dl)); 5576 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5577 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5578 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5579 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5580 getF32Constant(DAG, 0x3fbc278b, dl)); 5581 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5582 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5583 getF32Constant(DAG, 0x40348e95, dl)); 5584 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5585 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5586 getF32Constant(DAG, 0x3fdef31a, dl)); 5587 } else { // LimitFloatPrecision <= 18 5588 // For floating-point precision of 18: 5589 // 5590 // LogOfMantissa = 5591 // -2.1072184f + 5592 // (4.2372794f + 5593 // (-3.7029485f + 5594 // (2.2781945f + 5595 // (-0.87823314f + 5596 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5597 // 5598 // error 0.0000023660568, which is better than 18 bits 5599 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5600 getF32Constant(DAG, 0xbc91e5ac, dl)); 5601 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5602 getF32Constant(DAG, 0x3e4350aa, dl)); 5603 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5604 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5605 getF32Constant(DAG, 0x3f60d3e3, dl)); 5606 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5607 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5608 getF32Constant(DAG, 0x4011cdf0, dl)); 5609 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5610 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5611 getF32Constant(DAG, 0x406cfd1c, dl)); 5612 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5613 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5614 getF32Constant(DAG, 0x408797cb, dl)); 5615 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5616 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5617 getF32Constant(DAG, 0x4006dcab, dl)); 5618 } 5619 5620 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5621 } 5622 5623 // No special expansion. 5624 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5625 } 5626 5627 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5628 /// limited-precision mode. 5629 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5630 const TargetLowering &TLI, SDNodeFlags Flags) { 5631 // TODO: What fast-math-flags should be set on the floating-point nodes? 5632 5633 if (Op.getValueType() == MVT::f32 && 5634 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5635 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5636 5637 // Get the exponent. 5638 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5639 5640 // Get the significand and build it into a floating-point number with 5641 // exponent of 1. 5642 SDValue X = GetSignificand(DAG, Op1, dl); 5643 5644 // Different possible minimax approximations of significand in 5645 // floating-point for various degrees of accuracy over [1,2]. 5646 SDValue Log2ofMantissa; 5647 if (LimitFloatPrecision <= 6) { 5648 // For floating-point precision of 6: 5649 // 5650 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5651 // 5652 // error 0.0049451742, which is more than 7 bits 5653 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5654 getF32Constant(DAG, 0xbeb08fe0, dl)); 5655 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5656 getF32Constant(DAG, 0x40019463, dl)); 5657 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5658 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5659 getF32Constant(DAG, 0x3fd6633d, dl)); 5660 } else if (LimitFloatPrecision <= 12) { 5661 // For floating-point precision of 12: 5662 // 5663 // Log2ofMantissa = 5664 // -2.51285454f + 5665 // (4.07009056f + 5666 // (-2.12067489f + 5667 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5668 // 5669 // error 0.0000876136000, which is better than 13 bits 5670 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5671 getF32Constant(DAG, 0xbda7262e, dl)); 5672 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5673 getF32Constant(DAG, 0x3f25280b, dl)); 5674 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5675 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5676 getF32Constant(DAG, 0x4007b923, dl)); 5677 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5678 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5679 getF32Constant(DAG, 0x40823e2f, dl)); 5680 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5681 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5682 getF32Constant(DAG, 0x4020d29c, dl)); 5683 } else { // LimitFloatPrecision <= 18 5684 // For floating-point precision of 18: 5685 // 5686 // Log2ofMantissa = 5687 // -3.0400495f + 5688 // (6.1129976f + 5689 // (-5.3420409f + 5690 // (3.2865683f + 5691 // (-1.2669343f + 5692 // (0.27515199f - 5693 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5694 // 5695 // error 0.0000018516, which is better than 18 bits 5696 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5697 getF32Constant(DAG, 0xbcd2769e, dl)); 5698 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5699 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5700 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5701 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5702 getF32Constant(DAG, 0x3fa22ae7, dl)); 5703 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5704 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5705 getF32Constant(DAG, 0x40525723, dl)); 5706 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5707 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5708 getF32Constant(DAG, 0x40aaf200, dl)); 5709 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5710 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5711 getF32Constant(DAG, 0x40c39dad, dl)); 5712 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5713 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5714 getF32Constant(DAG, 0x4042902c, dl)); 5715 } 5716 5717 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5718 } 5719 5720 // No special expansion. 5721 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5722 } 5723 5724 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5725 /// limited-precision mode. 5726 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5727 const TargetLowering &TLI, SDNodeFlags Flags) { 5728 // TODO: What fast-math-flags should be set on the floating-point nodes? 5729 5730 if (Op.getValueType() == MVT::f32 && 5731 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5732 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5733 5734 // Scale the exponent by log10(2) [0.30102999f]. 5735 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5736 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5737 getF32Constant(DAG, 0x3e9a209a, dl)); 5738 5739 // Get the significand and build it into a floating-point number with 5740 // exponent of 1. 5741 SDValue X = GetSignificand(DAG, Op1, dl); 5742 5743 SDValue Log10ofMantissa; 5744 if (LimitFloatPrecision <= 6) { 5745 // For floating-point precision of 6: 5746 // 5747 // Log10ofMantissa = 5748 // -0.50419619f + 5749 // (0.60948995f - 0.10380950f * x) * x; 5750 // 5751 // error 0.0014886165, which is 6 bits 5752 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5753 getF32Constant(DAG, 0xbdd49a13, dl)); 5754 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5755 getF32Constant(DAG, 0x3f1c0789, dl)); 5756 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5757 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5758 getF32Constant(DAG, 0x3f011300, dl)); 5759 } else if (LimitFloatPrecision <= 12) { 5760 // For floating-point precision of 12: 5761 // 5762 // Log10ofMantissa = 5763 // -0.64831180f + 5764 // (0.91751397f + 5765 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5766 // 5767 // error 0.00019228036, which is better than 12 bits 5768 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5769 getF32Constant(DAG, 0x3d431f31, dl)); 5770 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5771 getF32Constant(DAG, 0x3ea21fb2, dl)); 5772 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5773 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5774 getF32Constant(DAG, 0x3f6ae232, dl)); 5775 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5776 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5777 getF32Constant(DAG, 0x3f25f7c3, dl)); 5778 } else { // LimitFloatPrecision <= 18 5779 // For floating-point precision of 18: 5780 // 5781 // Log10ofMantissa = 5782 // -0.84299375f + 5783 // (1.5327582f + 5784 // (-1.0688956f + 5785 // (0.49102474f + 5786 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5787 // 5788 // error 0.0000037995730, which is better than 18 bits 5789 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5790 getF32Constant(DAG, 0x3c5d51ce, dl)); 5791 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5792 getF32Constant(DAG, 0x3e00685a, dl)); 5793 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5794 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5795 getF32Constant(DAG, 0x3efb6798, dl)); 5796 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5797 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5798 getF32Constant(DAG, 0x3f88d192, dl)); 5799 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5800 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5801 getF32Constant(DAG, 0x3fc4316c, dl)); 5802 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5803 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5804 getF32Constant(DAG, 0x3f57ce70, dl)); 5805 } 5806 5807 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5808 } 5809 5810 // No special expansion. 5811 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5812 } 5813 5814 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5815 /// limited-precision mode. 5816 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5817 const TargetLowering &TLI, SDNodeFlags Flags) { 5818 if (Op.getValueType() == MVT::f32 && 5819 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5820 return getLimitedPrecisionExp2(Op, dl, DAG); 5821 5822 // No special expansion. 5823 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5824 } 5825 5826 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5827 /// limited-precision mode with x == 10.0f. 5828 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5829 SelectionDAG &DAG, const TargetLowering &TLI, 5830 SDNodeFlags Flags) { 5831 bool IsExp10 = false; 5832 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5833 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5834 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5835 APFloat Ten(10.0f); 5836 IsExp10 = LHSC->isExactlyValue(Ten); 5837 } 5838 } 5839 5840 // TODO: What fast-math-flags should be set on the FMUL node? 5841 if (IsExp10) { 5842 // Put the exponent in the right bit position for later addition to the 5843 // final result: 5844 // 5845 // #define LOG2OF10 3.3219281f 5846 // t0 = Op * LOG2OF10; 5847 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5848 getF32Constant(DAG, 0x40549a78, dl)); 5849 return getLimitedPrecisionExp2(t0, dl, DAG); 5850 } 5851 5852 // No special expansion. 5853 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5854 } 5855 5856 /// ExpandPowI - Expand a llvm.powi intrinsic. 5857 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5858 SelectionDAG &DAG) { 5859 // If RHS is a constant, we can expand this out to a multiplication tree if 5860 // it's beneficial on the target, otherwise we end up lowering to a call to 5861 // __powidf2 (for example). 5862 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5863 unsigned Val = RHSC->getSExtValue(); 5864 5865 // powi(x, 0) -> 1.0 5866 if (Val == 0) 5867 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5868 5869 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5870 Val, DAG.shouldOptForSize())) { 5871 // Get the exponent as a positive value. 5872 if ((int)Val < 0) 5873 Val = -Val; 5874 // We use the simple binary decomposition method to generate the multiply 5875 // sequence. There are more optimal ways to do this (for example, 5876 // powi(x,15) generates one more multiply than it should), but this has 5877 // the benefit of being both really simple and much better than a libcall. 5878 SDValue Res; // Logically starts equal to 1.0 5879 SDValue CurSquare = LHS; 5880 // TODO: Intrinsics should have fast-math-flags that propagate to these 5881 // nodes. 5882 while (Val) { 5883 if (Val & 1) { 5884 if (Res.getNode()) 5885 Res = 5886 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5887 else 5888 Res = CurSquare; // 1.0*CurSquare. 5889 } 5890 5891 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5892 CurSquare, CurSquare); 5893 Val >>= 1; 5894 } 5895 5896 // If the original was negative, invert the result, producing 1/(x*x*x). 5897 if (RHSC->getSExtValue() < 0) 5898 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5899 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5900 return Res; 5901 } 5902 } 5903 5904 // Otherwise, expand to a libcall. 5905 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5906 } 5907 5908 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5909 SDValue LHS, SDValue RHS, SDValue Scale, 5910 SelectionDAG &DAG, const TargetLowering &TLI) { 5911 EVT VT = LHS.getValueType(); 5912 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5913 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5914 LLVMContext &Ctx = *DAG.getContext(); 5915 5916 // If the type is legal but the operation isn't, this node might survive all 5917 // the way to operation legalization. If we end up there and we do not have 5918 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5919 // node. 5920 5921 // Coax the legalizer into expanding the node during type legalization instead 5922 // by bumping the size by one bit. This will force it to Promote, enabling the 5923 // early expansion and avoiding the need to expand later. 5924 5925 // We don't have to do this if Scale is 0; that can always be expanded, unless 5926 // it's a saturating signed operation. Those can experience true integer 5927 // division overflow, a case which we must avoid. 5928 5929 // FIXME: We wouldn't have to do this (or any of the early 5930 // expansion/promotion) if it was possible to expand a libcall of an 5931 // illegal type during operation legalization. But it's not, so things 5932 // get a bit hacky. 5933 unsigned ScaleInt = Scale->getAsZExtVal(); 5934 if ((ScaleInt > 0 || (Saturating && Signed)) && 5935 (TLI.isTypeLegal(VT) || 5936 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5937 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5938 Opcode, VT, ScaleInt); 5939 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5940 EVT PromVT; 5941 if (VT.isScalarInteger()) 5942 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5943 else if (VT.isVector()) { 5944 PromVT = VT.getVectorElementType(); 5945 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5946 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5947 } else 5948 llvm_unreachable("Wrong VT for DIVFIX?"); 5949 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5950 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5951 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5952 // For saturating operations, we need to shift up the LHS to get the 5953 // proper saturation width, and then shift down again afterwards. 5954 if (Saturating) 5955 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5956 DAG.getConstant(1, DL, ShiftTy)); 5957 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5958 if (Saturating) 5959 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5960 DAG.getConstant(1, DL, ShiftTy)); 5961 return DAG.getZExtOrTrunc(Res, DL, VT); 5962 } 5963 } 5964 5965 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5966 } 5967 5968 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5969 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5970 static void 5971 getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs, 5972 const SDValue &N) { 5973 switch (N.getOpcode()) { 5974 case ISD::CopyFromReg: { 5975 SDValue Op = N.getOperand(1); 5976 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5977 Op.getValueType().getSizeInBits()); 5978 return; 5979 } 5980 case ISD::BITCAST: 5981 case ISD::AssertZext: 5982 case ISD::AssertSext: 5983 case ISD::TRUNCATE: 5984 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5985 return; 5986 case ISD::BUILD_PAIR: 5987 case ISD::BUILD_VECTOR: 5988 case ISD::CONCAT_VECTORS: 5989 for (SDValue Op : N->op_values()) 5990 getUnderlyingArgRegs(Regs, Op); 5991 return; 5992 default: 5993 return; 5994 } 5995 } 5996 5997 /// If the DbgValueInst is a dbg_value of a function argument, create the 5998 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5999 /// instruction selection, they will be inserted to the entry BB. 6000 /// We don't currently support this for variadic dbg_values, as they shouldn't 6001 /// appear for function arguments or in the prologue. 6002 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 6003 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 6004 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 6005 const Argument *Arg = dyn_cast<Argument>(V); 6006 if (!Arg) 6007 return false; 6008 6009 MachineFunction &MF = DAG.getMachineFunction(); 6010 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6011 6012 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 6013 // we've been asked to pursue. 6014 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 6015 bool Indirect) { 6016 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 6017 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 6018 // pointing at the VReg, which will be patched up later. 6019 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 6020 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 6021 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 6022 /* isKill */ false, /* isDead */ false, 6023 /* isUndef */ false, /* isEarlyClobber */ false, 6024 /* SubReg */ 0, /* isDebug */ true)}); 6025 6026 auto *NewDIExpr = FragExpr; 6027 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 6028 // the DIExpression. 6029 if (Indirect) 6030 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 6031 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 6032 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 6033 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 6034 } else { 6035 // Create a completely standard DBG_VALUE. 6036 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6037 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6038 } 6039 }; 6040 6041 if (Kind == FuncArgumentDbgValueKind::Value) { 6042 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6043 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6044 // the entry block. 6045 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6046 if (!IsInEntryBlock) 6047 return false; 6048 6049 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6050 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6051 // variable that also is a param. 6052 // 6053 // Although, if we are at the top of the entry block already, we can still 6054 // emit using ArgDbgValue. This might catch some situations when the 6055 // dbg.value refers to an argument that isn't used in the entry block, so 6056 // any CopyToReg node would be optimized out and the only way to express 6057 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6058 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6059 // we should only emit as ArgDbgValue if the Variable is an argument to the 6060 // current function, and the dbg.value intrinsic is found in the entry 6061 // block. 6062 bool VariableIsFunctionInputArg = Variable->isParameter() && 6063 !DL->getInlinedAt(); 6064 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6065 if (!IsInPrologue && !VariableIsFunctionInputArg) 6066 return false; 6067 6068 // Here we assume that a function argument on IR level only can be used to 6069 // describe one input parameter on source level. If we for example have 6070 // source code like this 6071 // 6072 // struct A { long x, y; }; 6073 // void foo(struct A a, long b) { 6074 // ... 6075 // b = a.x; 6076 // ... 6077 // } 6078 // 6079 // and IR like this 6080 // 6081 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6082 // entry: 6083 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6084 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6085 // call void @llvm.dbg.value(metadata i32 %b, "b", 6086 // ... 6087 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6088 // ... 6089 // 6090 // then the last dbg.value is describing a parameter "b" using a value that 6091 // is an argument. But since we already has used %a1 to describe a parameter 6092 // we should not handle that last dbg.value here (that would result in an 6093 // incorrect hoisting of the DBG_VALUE to the function entry). 6094 // Notice that we allow one dbg.value per IR level argument, to accommodate 6095 // for the situation with fragments above. 6096 // If there is no node for the value being handled, we return true to skip 6097 // the normal generation of debug info, as it would kill existing debug 6098 // info for the parameter in case of duplicates. 6099 if (VariableIsFunctionInputArg) { 6100 unsigned ArgNo = Arg->getArgNo(); 6101 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6102 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6103 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6104 return !NodeMap[V].getNode(); 6105 FuncInfo.DescribedArgs.set(ArgNo); 6106 } 6107 } 6108 6109 bool IsIndirect = false; 6110 std::optional<MachineOperand> Op; 6111 // Some arguments' frame index is recorded during argument lowering. 6112 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6113 if (FI != std::numeric_limits<int>::max()) 6114 Op = MachineOperand::CreateFI(FI); 6115 6116 SmallVector<std::pair<Register, TypeSize>, 8> ArgRegsAndSizes; 6117 if (!Op && N.getNode()) { 6118 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6119 Register Reg; 6120 if (ArgRegsAndSizes.size() == 1) 6121 Reg = ArgRegsAndSizes.front().first; 6122 6123 if (Reg && Reg.isVirtual()) { 6124 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6125 Register PR = RegInfo.getLiveInPhysReg(Reg); 6126 if (PR) 6127 Reg = PR; 6128 } 6129 if (Reg) { 6130 Op = MachineOperand::CreateReg(Reg, false); 6131 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6132 } 6133 } 6134 6135 if (!Op && N.getNode()) { 6136 // Check if frame index is available. 6137 SDValue LCandidate = peekThroughBitcasts(N); 6138 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6139 if (FrameIndexSDNode *FINode = 6140 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6141 Op = MachineOperand::CreateFI(FINode->getIndex()); 6142 } 6143 6144 if (!Op) { 6145 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6146 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<Register, TypeSize>> 6147 SplitRegs) { 6148 unsigned Offset = 0; 6149 for (const auto &RegAndSize : SplitRegs) { 6150 // If the expression is already a fragment, the current register 6151 // offset+size might extend beyond the fragment. In this case, only 6152 // the register bits that are inside the fragment are relevant. 6153 int RegFragmentSizeInBits = RegAndSize.second; 6154 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6155 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6156 // The register is entirely outside the expression fragment, 6157 // so is irrelevant for debug info. 6158 if (Offset >= ExprFragmentSizeInBits) 6159 break; 6160 // The register is partially outside the expression fragment, only 6161 // the low bits within the fragment are relevant for debug info. 6162 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6163 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6164 } 6165 } 6166 6167 auto FragmentExpr = DIExpression::createFragmentExpression( 6168 Expr, Offset, RegFragmentSizeInBits); 6169 Offset += RegAndSize.second; 6170 // If a valid fragment expression cannot be created, the variable's 6171 // correct value cannot be determined and so it is set as Undef. 6172 if (!FragmentExpr) { 6173 SDDbgValue *SDV = DAG.getConstantDbgValue( 6174 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6175 DAG.AddDbgValue(SDV, false); 6176 continue; 6177 } 6178 MachineInstr *NewMI = 6179 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6180 Kind != FuncArgumentDbgValueKind::Value); 6181 FuncInfo.ArgDbgValues.push_back(NewMI); 6182 } 6183 }; 6184 6185 // Check if ValueMap has reg number. 6186 DenseMap<const Value *, Register>::const_iterator 6187 VMI = FuncInfo.ValueMap.find(V); 6188 if (VMI != FuncInfo.ValueMap.end()) { 6189 const auto &TLI = DAG.getTargetLoweringInfo(); 6190 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6191 V->getType(), std::nullopt); 6192 if (RFV.occupiesMultipleRegs()) { 6193 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6194 return true; 6195 } 6196 6197 Op = MachineOperand::CreateReg(VMI->second, false); 6198 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6199 } else if (ArgRegsAndSizes.size() > 1) { 6200 // This was split due to the calling convention, and no virtual register 6201 // mapping exists for the value. 6202 splitMultiRegDbgValue(ArgRegsAndSizes); 6203 return true; 6204 } 6205 } 6206 6207 if (!Op) 6208 return false; 6209 6210 assert(Variable->isValidLocationForIntrinsic(DL) && 6211 "Expected inlined-at fields to agree"); 6212 MachineInstr *NewMI = nullptr; 6213 6214 if (Op->isReg()) 6215 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6216 else 6217 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6218 Variable, Expr); 6219 6220 // Otherwise, use ArgDbgValues. 6221 FuncInfo.ArgDbgValues.push_back(NewMI); 6222 return true; 6223 } 6224 6225 /// Return the appropriate SDDbgValue based on N. 6226 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6227 DILocalVariable *Variable, 6228 DIExpression *Expr, 6229 const DebugLoc &dl, 6230 unsigned DbgSDNodeOrder) { 6231 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6232 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6233 // stack slot locations. 6234 // 6235 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6236 // debug values here after optimization: 6237 // 6238 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6239 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6240 // 6241 // Both describe the direct values of their associated variables. 6242 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6243 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6244 } 6245 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6246 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6247 } 6248 6249 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6250 switch (Intrinsic) { 6251 case Intrinsic::smul_fix: 6252 return ISD::SMULFIX; 6253 case Intrinsic::umul_fix: 6254 return ISD::UMULFIX; 6255 case Intrinsic::smul_fix_sat: 6256 return ISD::SMULFIXSAT; 6257 case Intrinsic::umul_fix_sat: 6258 return ISD::UMULFIXSAT; 6259 case Intrinsic::sdiv_fix: 6260 return ISD::SDIVFIX; 6261 case Intrinsic::udiv_fix: 6262 return ISD::UDIVFIX; 6263 case Intrinsic::sdiv_fix_sat: 6264 return ISD::SDIVFIXSAT; 6265 case Intrinsic::udiv_fix_sat: 6266 return ISD::UDIVFIXSAT; 6267 default: 6268 llvm_unreachable("Unhandled fixed point intrinsic"); 6269 } 6270 } 6271 6272 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6273 const char *FunctionName) { 6274 assert(FunctionName && "FunctionName must not be nullptr"); 6275 SDValue Callee = DAG.getExternalSymbol( 6276 FunctionName, 6277 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6278 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6279 } 6280 6281 /// Given a @llvm.call.preallocated.setup, return the corresponding 6282 /// preallocated call. 6283 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6284 assert(cast<CallBase>(PreallocatedSetup) 6285 ->getCalledFunction() 6286 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6287 "expected call_preallocated_setup Value"); 6288 for (const auto *U : PreallocatedSetup->users()) { 6289 auto *UseCall = cast<CallBase>(U); 6290 const Function *Fn = UseCall->getCalledFunction(); 6291 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6292 return UseCall; 6293 } 6294 } 6295 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6296 } 6297 6298 /// If DI is a debug value with an EntryValue expression, lower it using the 6299 /// corresponding physical register of the associated Argument value 6300 /// (guaranteed to exist by the verifier). 6301 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6302 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6303 DIExpression *Expr, DebugLoc DbgLoc) { 6304 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6305 return false; 6306 6307 // These properties are guaranteed by the verifier. 6308 const Argument *Arg = cast<Argument>(Values[0]); 6309 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6310 6311 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6312 if (ArgIt == FuncInfo.ValueMap.end()) { 6313 LLVM_DEBUG( 6314 dbgs() << "Dropping dbg.value: expression is entry_value but " 6315 "couldn't find an associated register for the Argument\n"); 6316 return true; 6317 } 6318 Register ArgVReg = ArgIt->getSecond(); 6319 6320 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6321 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6322 SDDbgValue *SDV = DAG.getVRegDbgValue( 6323 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6324 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6325 return true; 6326 } 6327 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6328 "couldn't find a physical register\n"); 6329 return true; 6330 } 6331 6332 /// Lower the call to the specified intrinsic function. 6333 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6334 unsigned Intrinsic) { 6335 SDLoc sdl = getCurSDLoc(); 6336 switch (Intrinsic) { 6337 case Intrinsic::experimental_convergence_anchor: 6338 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6339 break; 6340 case Intrinsic::experimental_convergence_entry: 6341 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6342 break; 6343 case Intrinsic::experimental_convergence_loop: { 6344 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6345 auto *Token = Bundle->Inputs[0].get(); 6346 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6347 getValue(Token))); 6348 break; 6349 } 6350 } 6351 } 6352 6353 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6354 unsigned IntrinsicID) { 6355 // For now, we're only lowering an 'add' histogram. 6356 // We can add others later, e.g. saturating adds, min/max. 6357 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6358 "Tried to lower unsupported histogram type"); 6359 SDLoc sdl = getCurSDLoc(); 6360 Value *Ptr = I.getOperand(0); 6361 SDValue Inc = getValue(I.getOperand(1)); 6362 SDValue Mask = getValue(I.getOperand(2)); 6363 6364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6365 DataLayout TargetDL = DAG.getDataLayout(); 6366 EVT VT = Inc.getValueType(); 6367 Align Alignment = DAG.getEVTAlign(VT); 6368 6369 const MDNode *Ranges = getRangeMetadata(I); 6370 6371 SDValue Root = DAG.getRoot(); 6372 SDValue Base; 6373 SDValue Index; 6374 ISD::MemIndexType IndexType; 6375 SDValue Scale; 6376 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6377 I.getParent(), VT.getScalarStoreSize()); 6378 6379 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6380 6381 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6382 MachinePointerInfo(AS), 6383 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6384 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6385 6386 if (!UniformBase) { 6387 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6388 Index = getValue(Ptr); 6389 IndexType = ISD::SIGNED_SCALED; 6390 Scale = 6391 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6392 } 6393 6394 EVT IdxVT = Index.getValueType(); 6395 EVT EltTy = IdxVT.getVectorElementType(); 6396 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6397 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6398 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6399 } 6400 6401 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6402 6403 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6404 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6405 Ops, MMO, IndexType); 6406 6407 setValue(&I, Histogram); 6408 DAG.setRoot(Histogram); 6409 } 6410 6411 /// Lower the call to the specified intrinsic function. 6412 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6413 unsigned Intrinsic) { 6414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6415 SDLoc sdl = getCurSDLoc(); 6416 DebugLoc dl = getCurDebugLoc(); 6417 SDValue Res; 6418 6419 SDNodeFlags Flags; 6420 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6421 Flags.copyFMF(*FPOp); 6422 6423 switch (Intrinsic) { 6424 default: 6425 // By default, turn this into a target intrinsic node. 6426 visitTargetIntrinsic(I, Intrinsic); 6427 return; 6428 case Intrinsic::vscale: { 6429 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6430 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6431 return; 6432 } 6433 case Intrinsic::vastart: visitVAStart(I); return; 6434 case Intrinsic::vaend: visitVAEnd(I); return; 6435 case Intrinsic::vacopy: visitVACopy(I); return; 6436 case Intrinsic::returnaddress: 6437 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6438 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6439 getValue(I.getArgOperand(0)))); 6440 return; 6441 case Intrinsic::addressofreturnaddress: 6442 setValue(&I, 6443 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6444 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6445 return; 6446 case Intrinsic::sponentry: 6447 setValue(&I, 6448 DAG.getNode(ISD::SPONENTRY, sdl, 6449 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6450 return; 6451 case Intrinsic::frameaddress: 6452 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6453 TLI.getFrameIndexTy(DAG.getDataLayout()), 6454 getValue(I.getArgOperand(0)))); 6455 return; 6456 case Intrinsic::read_volatile_register: 6457 case Intrinsic::read_register: { 6458 Value *Reg = I.getArgOperand(0); 6459 SDValue Chain = getRoot(); 6460 SDValue RegName = 6461 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6462 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6463 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6464 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6465 setValue(&I, Res); 6466 DAG.setRoot(Res.getValue(1)); 6467 return; 6468 } 6469 case Intrinsic::write_register: { 6470 Value *Reg = I.getArgOperand(0); 6471 Value *RegValue = I.getArgOperand(1); 6472 SDValue Chain = getRoot(); 6473 SDValue RegName = 6474 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6475 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6476 RegName, getValue(RegValue))); 6477 return; 6478 } 6479 case Intrinsic::memcpy: { 6480 const auto &MCI = cast<MemCpyInst>(I); 6481 SDValue Op1 = getValue(I.getArgOperand(0)); 6482 SDValue Op2 = getValue(I.getArgOperand(1)); 6483 SDValue Op3 = getValue(I.getArgOperand(2)); 6484 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6485 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6486 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6487 Align Alignment = std::min(DstAlign, SrcAlign); 6488 bool isVol = MCI.isVolatile(); 6489 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6490 // node. 6491 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6492 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6493 /* AlwaysInline */ false, &I, std::nullopt, 6494 MachinePointerInfo(I.getArgOperand(0)), 6495 MachinePointerInfo(I.getArgOperand(1)), 6496 I.getAAMetadata(), AA); 6497 updateDAGForMaybeTailCall(MC); 6498 return; 6499 } 6500 case Intrinsic::memcpy_inline: { 6501 const auto &MCI = cast<MemCpyInlineInst>(I); 6502 SDValue Dst = getValue(I.getArgOperand(0)); 6503 SDValue Src = getValue(I.getArgOperand(1)); 6504 SDValue Size = getValue(I.getArgOperand(2)); 6505 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6506 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6507 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6508 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6509 Align Alignment = std::min(DstAlign, SrcAlign); 6510 bool isVol = MCI.isVolatile(); 6511 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6512 // node. 6513 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6514 /* AlwaysInline */ true, &I, std::nullopt, 6515 MachinePointerInfo(I.getArgOperand(0)), 6516 MachinePointerInfo(I.getArgOperand(1)), 6517 I.getAAMetadata(), AA); 6518 updateDAGForMaybeTailCall(MC); 6519 return; 6520 } 6521 case Intrinsic::memset: { 6522 const auto &MSI = cast<MemSetInst>(I); 6523 SDValue Op1 = getValue(I.getArgOperand(0)); 6524 SDValue Op2 = getValue(I.getArgOperand(1)); 6525 SDValue Op3 = getValue(I.getArgOperand(2)); 6526 // @llvm.memset defines 0 and 1 to both mean no alignment. 6527 Align Alignment = MSI.getDestAlign().valueOrOne(); 6528 bool isVol = MSI.isVolatile(); 6529 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6530 SDValue MS = DAG.getMemset( 6531 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6532 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6533 updateDAGForMaybeTailCall(MS); 6534 return; 6535 } 6536 case Intrinsic::memset_inline: { 6537 const auto &MSII = cast<MemSetInlineInst>(I); 6538 SDValue Dst = getValue(I.getArgOperand(0)); 6539 SDValue Value = getValue(I.getArgOperand(1)); 6540 SDValue Size = getValue(I.getArgOperand(2)); 6541 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6542 // @llvm.memset defines 0 and 1 to both mean no alignment. 6543 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6544 bool isVol = MSII.isVolatile(); 6545 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6546 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6547 /* AlwaysInline */ true, &I, 6548 MachinePointerInfo(I.getArgOperand(0)), 6549 I.getAAMetadata()); 6550 updateDAGForMaybeTailCall(MC); 6551 return; 6552 } 6553 case Intrinsic::memmove: { 6554 const auto &MMI = cast<MemMoveInst>(I); 6555 SDValue Op1 = getValue(I.getArgOperand(0)); 6556 SDValue Op2 = getValue(I.getArgOperand(1)); 6557 SDValue Op3 = getValue(I.getArgOperand(2)); 6558 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6559 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6560 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6561 Align Alignment = std::min(DstAlign, SrcAlign); 6562 bool isVol = MMI.isVolatile(); 6563 // FIXME: Support passing different dest/src alignments to the memmove DAG 6564 // node. 6565 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6566 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I, 6567 /* OverrideTailCall */ std::nullopt, 6568 MachinePointerInfo(I.getArgOperand(0)), 6569 MachinePointerInfo(I.getArgOperand(1)), 6570 I.getAAMetadata(), AA); 6571 updateDAGForMaybeTailCall(MM); 6572 return; 6573 } 6574 case Intrinsic::memcpy_element_unordered_atomic: { 6575 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6576 SDValue Dst = getValue(MI.getRawDest()); 6577 SDValue Src = getValue(MI.getRawSource()); 6578 SDValue Length = getValue(MI.getLength()); 6579 6580 Type *LengthTy = MI.getLength()->getType(); 6581 unsigned ElemSz = MI.getElementSizeInBytes(); 6582 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6583 SDValue MC = 6584 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6585 isTC, MachinePointerInfo(MI.getRawDest()), 6586 MachinePointerInfo(MI.getRawSource())); 6587 updateDAGForMaybeTailCall(MC); 6588 return; 6589 } 6590 case Intrinsic::memmove_element_unordered_atomic: { 6591 auto &MI = cast<AtomicMemMoveInst>(I); 6592 SDValue Dst = getValue(MI.getRawDest()); 6593 SDValue Src = getValue(MI.getRawSource()); 6594 SDValue Length = getValue(MI.getLength()); 6595 6596 Type *LengthTy = MI.getLength()->getType(); 6597 unsigned ElemSz = MI.getElementSizeInBytes(); 6598 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6599 SDValue MC = 6600 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6601 isTC, MachinePointerInfo(MI.getRawDest()), 6602 MachinePointerInfo(MI.getRawSource())); 6603 updateDAGForMaybeTailCall(MC); 6604 return; 6605 } 6606 case Intrinsic::memset_element_unordered_atomic: { 6607 auto &MI = cast<AtomicMemSetInst>(I); 6608 SDValue Dst = getValue(MI.getRawDest()); 6609 SDValue Val = getValue(MI.getValue()); 6610 SDValue Length = getValue(MI.getLength()); 6611 6612 Type *LengthTy = MI.getLength()->getType(); 6613 unsigned ElemSz = MI.getElementSizeInBytes(); 6614 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6615 SDValue MC = 6616 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6617 isTC, MachinePointerInfo(MI.getRawDest())); 6618 updateDAGForMaybeTailCall(MC); 6619 return; 6620 } 6621 case Intrinsic::call_preallocated_setup: { 6622 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6623 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6624 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6625 getRoot(), SrcValue); 6626 setValue(&I, Res); 6627 DAG.setRoot(Res); 6628 return; 6629 } 6630 case Intrinsic::call_preallocated_arg: { 6631 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6632 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6633 SDValue Ops[3]; 6634 Ops[0] = getRoot(); 6635 Ops[1] = SrcValue; 6636 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6637 MVT::i32); // arg index 6638 SDValue Res = DAG.getNode( 6639 ISD::PREALLOCATED_ARG, sdl, 6640 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6641 setValue(&I, Res); 6642 DAG.setRoot(Res.getValue(1)); 6643 return; 6644 } 6645 case Intrinsic::dbg_declare: { 6646 const auto &DI = cast<DbgDeclareInst>(I); 6647 // Debug intrinsics are handled separately in assignment tracking mode. 6648 // Some intrinsics are handled right after Argument lowering. 6649 if (AssignmentTrackingEnabled || 6650 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6651 return; 6652 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6653 DILocalVariable *Variable = DI.getVariable(); 6654 DIExpression *Expression = DI.getExpression(); 6655 dropDanglingDebugInfo(Variable, Expression); 6656 // Assume dbg.declare can not currently use DIArgList, i.e. 6657 // it is non-variadic. 6658 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6659 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6660 DI.getDebugLoc()); 6661 return; 6662 } 6663 case Intrinsic::dbg_label: { 6664 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6665 DILabel *Label = DI.getLabel(); 6666 assert(Label && "Missing label"); 6667 6668 SDDbgLabel *SDV; 6669 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6670 DAG.AddDbgLabel(SDV); 6671 return; 6672 } 6673 case Intrinsic::dbg_assign: { 6674 // Debug intrinsics are handled separately in assignment tracking mode. 6675 if (AssignmentTrackingEnabled) 6676 return; 6677 // If assignment tracking hasn't been enabled then fall through and treat 6678 // the dbg.assign as a dbg.value. 6679 [[fallthrough]]; 6680 } 6681 case Intrinsic::dbg_value: { 6682 // Debug intrinsics are handled separately in assignment tracking mode. 6683 if (AssignmentTrackingEnabled) 6684 return; 6685 const DbgValueInst &DI = cast<DbgValueInst>(I); 6686 assert(DI.getVariable() && "Missing variable"); 6687 6688 DILocalVariable *Variable = DI.getVariable(); 6689 DIExpression *Expression = DI.getExpression(); 6690 dropDanglingDebugInfo(Variable, Expression); 6691 6692 if (DI.isKillLocation()) { 6693 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6694 return; 6695 } 6696 6697 SmallVector<Value *, 4> Values(DI.getValues()); 6698 if (Values.empty()) 6699 return; 6700 6701 bool IsVariadic = DI.hasArgList(); 6702 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6703 SDNodeOrder, IsVariadic)) 6704 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6705 DI.getDebugLoc(), SDNodeOrder); 6706 return; 6707 } 6708 6709 case Intrinsic::eh_typeid_for: { 6710 // Find the type id for the given typeinfo. 6711 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6712 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6713 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6714 setValue(&I, Res); 6715 return; 6716 } 6717 6718 case Intrinsic::eh_return_i32: 6719 case Intrinsic::eh_return_i64: 6720 DAG.getMachineFunction().setCallsEHReturn(true); 6721 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6722 MVT::Other, 6723 getControlRoot(), 6724 getValue(I.getArgOperand(0)), 6725 getValue(I.getArgOperand(1)))); 6726 return; 6727 case Intrinsic::eh_unwind_init: 6728 DAG.getMachineFunction().setCallsUnwindInit(true); 6729 return; 6730 case Intrinsic::eh_dwarf_cfa: 6731 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6732 TLI.getPointerTy(DAG.getDataLayout()), 6733 getValue(I.getArgOperand(0)))); 6734 return; 6735 case Intrinsic::eh_sjlj_callsite: { 6736 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6737 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6738 6739 FuncInfo.setCurrentCallSite(CI->getZExtValue()); 6740 return; 6741 } 6742 case Intrinsic::eh_sjlj_functioncontext: { 6743 // Get and store the index of the function context. 6744 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6745 AllocaInst *FnCtx = 6746 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6747 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6748 MFI.setFunctionContextIndex(FI); 6749 return; 6750 } 6751 case Intrinsic::eh_sjlj_setjmp: { 6752 SDValue Ops[2]; 6753 Ops[0] = getRoot(); 6754 Ops[1] = getValue(I.getArgOperand(0)); 6755 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6756 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6757 setValue(&I, Op.getValue(0)); 6758 DAG.setRoot(Op.getValue(1)); 6759 return; 6760 } 6761 case Intrinsic::eh_sjlj_longjmp: 6762 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6763 getRoot(), getValue(I.getArgOperand(0)))); 6764 return; 6765 case Intrinsic::eh_sjlj_setup_dispatch: 6766 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6767 getRoot())); 6768 return; 6769 case Intrinsic::masked_gather: 6770 visitMaskedGather(I); 6771 return; 6772 case Intrinsic::masked_load: 6773 visitMaskedLoad(I); 6774 return; 6775 case Intrinsic::masked_scatter: 6776 visitMaskedScatter(I); 6777 return; 6778 case Intrinsic::masked_store: 6779 visitMaskedStore(I); 6780 return; 6781 case Intrinsic::masked_expandload: 6782 visitMaskedLoad(I, true /* IsExpanding */); 6783 return; 6784 case Intrinsic::masked_compressstore: 6785 visitMaskedStore(I, true /* IsCompressing */); 6786 return; 6787 case Intrinsic::powi: 6788 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6789 getValue(I.getArgOperand(1)), DAG)); 6790 return; 6791 case Intrinsic::log: 6792 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6793 return; 6794 case Intrinsic::log2: 6795 setValue(&I, 6796 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6797 return; 6798 case Intrinsic::log10: 6799 setValue(&I, 6800 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6801 return; 6802 case Intrinsic::exp: 6803 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6804 return; 6805 case Intrinsic::exp2: 6806 setValue(&I, 6807 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6808 return; 6809 case Intrinsic::pow: 6810 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6811 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6812 return; 6813 case Intrinsic::sqrt: 6814 case Intrinsic::fabs: 6815 case Intrinsic::sin: 6816 case Intrinsic::cos: 6817 case Intrinsic::tan: 6818 case Intrinsic::asin: 6819 case Intrinsic::acos: 6820 case Intrinsic::atan: 6821 case Intrinsic::sinh: 6822 case Intrinsic::cosh: 6823 case Intrinsic::tanh: 6824 case Intrinsic::exp10: 6825 case Intrinsic::floor: 6826 case Intrinsic::ceil: 6827 case Intrinsic::trunc: 6828 case Intrinsic::rint: 6829 case Intrinsic::nearbyint: 6830 case Intrinsic::round: 6831 case Intrinsic::roundeven: 6832 case Intrinsic::canonicalize: { 6833 unsigned Opcode; 6834 // clang-format off 6835 switch (Intrinsic) { 6836 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6837 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6838 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6839 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6840 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6841 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6842 case Intrinsic::asin: Opcode = ISD::FASIN; break; 6843 case Intrinsic::acos: Opcode = ISD::FACOS; break; 6844 case Intrinsic::atan: Opcode = ISD::FATAN; break; 6845 case Intrinsic::sinh: Opcode = ISD::FSINH; break; 6846 case Intrinsic::cosh: Opcode = ISD::FCOSH; break; 6847 case Intrinsic::tanh: Opcode = ISD::FTANH; break; 6848 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6849 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6850 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6851 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6852 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6853 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6854 case Intrinsic::round: Opcode = ISD::FROUND; break; 6855 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6856 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6857 } 6858 // clang-format on 6859 6860 setValue(&I, DAG.getNode(Opcode, sdl, 6861 getValue(I.getArgOperand(0)).getValueType(), 6862 getValue(I.getArgOperand(0)), Flags)); 6863 return; 6864 } 6865 case Intrinsic::atan2: 6866 setValue(&I, DAG.getNode(ISD::FATAN2, sdl, 6867 getValue(I.getArgOperand(0)).getValueType(), 6868 getValue(I.getArgOperand(0)), 6869 getValue(I.getArgOperand(1)), Flags)); 6870 return; 6871 case Intrinsic::lround: 6872 case Intrinsic::llround: 6873 case Intrinsic::lrint: 6874 case Intrinsic::llrint: { 6875 unsigned Opcode; 6876 // clang-format off 6877 switch (Intrinsic) { 6878 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6879 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6880 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6881 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6882 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6883 } 6884 // clang-format on 6885 6886 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6887 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6888 getValue(I.getArgOperand(0)))); 6889 return; 6890 } 6891 case Intrinsic::minnum: 6892 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6893 getValue(I.getArgOperand(0)).getValueType(), 6894 getValue(I.getArgOperand(0)), 6895 getValue(I.getArgOperand(1)), Flags)); 6896 return; 6897 case Intrinsic::maxnum: 6898 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6899 getValue(I.getArgOperand(0)).getValueType(), 6900 getValue(I.getArgOperand(0)), 6901 getValue(I.getArgOperand(1)), Flags)); 6902 return; 6903 case Intrinsic::minimum: 6904 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6905 getValue(I.getArgOperand(0)).getValueType(), 6906 getValue(I.getArgOperand(0)), 6907 getValue(I.getArgOperand(1)), Flags)); 6908 return; 6909 case Intrinsic::maximum: 6910 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6911 getValue(I.getArgOperand(0)).getValueType(), 6912 getValue(I.getArgOperand(0)), 6913 getValue(I.getArgOperand(1)), Flags)); 6914 return; 6915 case Intrinsic::minimumnum: 6916 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl, 6917 getValue(I.getArgOperand(0)).getValueType(), 6918 getValue(I.getArgOperand(0)), 6919 getValue(I.getArgOperand(1)), Flags)); 6920 return; 6921 case Intrinsic::maximumnum: 6922 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl, 6923 getValue(I.getArgOperand(0)).getValueType(), 6924 getValue(I.getArgOperand(0)), 6925 getValue(I.getArgOperand(1)), Flags)); 6926 return; 6927 case Intrinsic::copysign: 6928 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6929 getValue(I.getArgOperand(0)).getValueType(), 6930 getValue(I.getArgOperand(0)), 6931 getValue(I.getArgOperand(1)), Flags)); 6932 return; 6933 case Intrinsic::ldexp: 6934 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6935 getValue(I.getArgOperand(0)).getValueType(), 6936 getValue(I.getArgOperand(0)), 6937 getValue(I.getArgOperand(1)), Flags)); 6938 return; 6939 case Intrinsic::sincos: 6940 case Intrinsic::frexp: { 6941 unsigned Opcode; 6942 switch (Intrinsic) { 6943 default: 6944 llvm_unreachable("unexpected intrinsic"); 6945 case Intrinsic::sincos: 6946 Opcode = ISD::FSINCOS; 6947 break; 6948 case Intrinsic::frexp: 6949 Opcode = ISD::FFREXP; 6950 break; 6951 } 6952 SmallVector<EVT, 2> ValueVTs; 6953 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6954 SDVTList VTs = DAG.getVTList(ValueVTs); 6955 setValue( 6956 &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags)); 6957 return; 6958 } 6959 case Intrinsic::arithmetic_fence: { 6960 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6961 getValue(I.getArgOperand(0)).getValueType(), 6962 getValue(I.getArgOperand(0)), Flags)); 6963 return; 6964 } 6965 case Intrinsic::fma: 6966 setValue(&I, DAG.getNode( 6967 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6968 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6969 getValue(I.getArgOperand(2)), Flags)); 6970 return; 6971 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6972 case Intrinsic::INTRINSIC: 6973 #include "llvm/IR/ConstrainedOps.def" 6974 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6975 return; 6976 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6977 #include "llvm/IR/VPIntrinsics.def" 6978 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6979 return; 6980 case Intrinsic::fptrunc_round: { 6981 // Get the last argument, the metadata and convert it to an integer in the 6982 // call 6983 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6984 std::optional<RoundingMode> RoundMode = 6985 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6986 6987 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6988 6989 // Propagate fast-math-flags from IR to node(s). 6990 SDNodeFlags Flags; 6991 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6992 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6993 6994 SDValue Result; 6995 Result = DAG.getNode( 6996 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6997 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32)); 6998 setValue(&I, Result); 6999 7000 return; 7001 } 7002 case Intrinsic::fmuladd: { 7003 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7004 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7005 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7006 setValue(&I, DAG.getNode(ISD::FMA, sdl, 7007 getValue(I.getArgOperand(0)).getValueType(), 7008 getValue(I.getArgOperand(0)), 7009 getValue(I.getArgOperand(1)), 7010 getValue(I.getArgOperand(2)), Flags)); 7011 } else { 7012 // TODO: Intrinsic calls should have fast-math-flags. 7013 SDValue Mul = DAG.getNode( 7014 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 7015 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 7016 SDValue Add = DAG.getNode(ISD::FADD, sdl, 7017 getValue(I.getArgOperand(0)).getValueType(), 7018 Mul, getValue(I.getArgOperand(2)), Flags); 7019 setValue(&I, Add); 7020 } 7021 return; 7022 } 7023 case Intrinsic::convert_to_fp16: 7024 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 7025 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 7026 getValue(I.getArgOperand(0)), 7027 DAG.getTargetConstant(0, sdl, 7028 MVT::i32)))); 7029 return; 7030 case Intrinsic::convert_from_fp16: 7031 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 7032 TLI.getValueType(DAG.getDataLayout(), I.getType()), 7033 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 7034 getValue(I.getArgOperand(0))))); 7035 return; 7036 case Intrinsic::fptosi_sat: { 7037 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7038 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 7039 getValue(I.getArgOperand(0)), 7040 DAG.getValueType(VT.getScalarType()))); 7041 return; 7042 } 7043 case Intrinsic::fptoui_sat: { 7044 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7045 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 7046 getValue(I.getArgOperand(0)), 7047 DAG.getValueType(VT.getScalarType()))); 7048 return; 7049 } 7050 case Intrinsic::set_rounding: 7051 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 7052 {getRoot(), getValue(I.getArgOperand(0))}); 7053 setValue(&I, Res); 7054 DAG.setRoot(Res.getValue(0)); 7055 return; 7056 case Intrinsic::is_fpclass: { 7057 const DataLayout DLayout = DAG.getDataLayout(); 7058 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 7059 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 7060 FPClassTest Test = static_cast<FPClassTest>( 7061 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 7062 MachineFunction &MF = DAG.getMachineFunction(); 7063 const Function &F = MF.getFunction(); 7064 SDValue Op = getValue(I.getArgOperand(0)); 7065 SDNodeFlags Flags; 7066 Flags.setNoFPExcept( 7067 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 7068 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 7069 // expansion can use illegal types. Making expansion early allows 7070 // legalizing these types prior to selection. 7071 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) && 7072 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) { 7073 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 7074 setValue(&I, Result); 7075 return; 7076 } 7077 7078 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7079 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7080 setValue(&I, V); 7081 return; 7082 } 7083 case Intrinsic::get_fpenv: { 7084 const DataLayout DLayout = DAG.getDataLayout(); 7085 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7086 Align TempAlign = DAG.getEVTAlign(EnvVT); 7087 SDValue Chain = getRoot(); 7088 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7089 // and temporary storage in stack. 7090 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7091 Res = DAG.getNode( 7092 ISD::GET_FPENV, sdl, 7093 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7094 MVT::Other), 7095 Chain); 7096 } else { 7097 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7098 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7099 auto MPI = 7100 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7101 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7102 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7103 TempAlign); 7104 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7105 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7106 } 7107 setValue(&I, Res); 7108 DAG.setRoot(Res.getValue(1)); 7109 return; 7110 } 7111 case Intrinsic::set_fpenv: { 7112 const DataLayout DLayout = DAG.getDataLayout(); 7113 SDValue Env = getValue(I.getArgOperand(0)); 7114 EVT EnvVT = Env.getValueType(); 7115 Align TempAlign = DAG.getEVTAlign(EnvVT); 7116 SDValue Chain = getRoot(); 7117 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7118 // environment from memory. 7119 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7120 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7121 } else { 7122 // Allocate space in stack, copy environment bits into it and use this 7123 // memory in SET_FPENV_MEM. 7124 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7125 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7126 auto MPI = 7127 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7128 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7129 MachineMemOperand::MOStore); 7130 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7131 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7132 TempAlign); 7133 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7134 } 7135 DAG.setRoot(Chain); 7136 return; 7137 } 7138 case Intrinsic::reset_fpenv: 7139 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7140 return; 7141 case Intrinsic::get_fpmode: 7142 Res = DAG.getNode( 7143 ISD::GET_FPMODE, sdl, 7144 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7145 MVT::Other), 7146 DAG.getRoot()); 7147 setValue(&I, Res); 7148 DAG.setRoot(Res.getValue(1)); 7149 return; 7150 case Intrinsic::set_fpmode: 7151 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7152 getValue(I.getArgOperand(0))); 7153 DAG.setRoot(Res); 7154 return; 7155 case Intrinsic::reset_fpmode: { 7156 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7157 DAG.setRoot(Res); 7158 return; 7159 } 7160 case Intrinsic::pcmarker: { 7161 SDValue Tmp = getValue(I.getArgOperand(0)); 7162 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7163 return; 7164 } 7165 case Intrinsic::readcyclecounter: { 7166 SDValue Op = getRoot(); 7167 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7168 DAG.getVTList(MVT::i64, MVT::Other), Op); 7169 setValue(&I, Res); 7170 DAG.setRoot(Res.getValue(1)); 7171 return; 7172 } 7173 case Intrinsic::readsteadycounter: { 7174 SDValue Op = getRoot(); 7175 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7176 DAG.getVTList(MVT::i64, MVT::Other), Op); 7177 setValue(&I, Res); 7178 DAG.setRoot(Res.getValue(1)); 7179 return; 7180 } 7181 case Intrinsic::bitreverse: 7182 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7183 getValue(I.getArgOperand(0)).getValueType(), 7184 getValue(I.getArgOperand(0)))); 7185 return; 7186 case Intrinsic::bswap: 7187 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7188 getValue(I.getArgOperand(0)).getValueType(), 7189 getValue(I.getArgOperand(0)))); 7190 return; 7191 case Intrinsic::cttz: { 7192 SDValue Arg = getValue(I.getArgOperand(0)); 7193 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7194 EVT Ty = Arg.getValueType(); 7195 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7196 sdl, Ty, Arg)); 7197 return; 7198 } 7199 case Intrinsic::ctlz: { 7200 SDValue Arg = getValue(I.getArgOperand(0)); 7201 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7202 EVT Ty = Arg.getValueType(); 7203 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7204 sdl, Ty, Arg)); 7205 return; 7206 } 7207 case Intrinsic::ctpop: { 7208 SDValue Arg = getValue(I.getArgOperand(0)); 7209 EVT Ty = Arg.getValueType(); 7210 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7211 return; 7212 } 7213 case Intrinsic::fshl: 7214 case Intrinsic::fshr: { 7215 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7216 SDValue X = getValue(I.getArgOperand(0)); 7217 SDValue Y = getValue(I.getArgOperand(1)); 7218 SDValue Z = getValue(I.getArgOperand(2)); 7219 EVT VT = X.getValueType(); 7220 7221 if (X == Y) { 7222 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7223 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7224 } else { 7225 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7226 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7227 } 7228 return; 7229 } 7230 case Intrinsic::sadd_sat: { 7231 SDValue Op1 = getValue(I.getArgOperand(0)); 7232 SDValue Op2 = getValue(I.getArgOperand(1)); 7233 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7234 return; 7235 } 7236 case Intrinsic::uadd_sat: { 7237 SDValue Op1 = getValue(I.getArgOperand(0)); 7238 SDValue Op2 = getValue(I.getArgOperand(1)); 7239 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7240 return; 7241 } 7242 case Intrinsic::ssub_sat: { 7243 SDValue Op1 = getValue(I.getArgOperand(0)); 7244 SDValue Op2 = getValue(I.getArgOperand(1)); 7245 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7246 return; 7247 } 7248 case Intrinsic::usub_sat: { 7249 SDValue Op1 = getValue(I.getArgOperand(0)); 7250 SDValue Op2 = getValue(I.getArgOperand(1)); 7251 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7252 return; 7253 } 7254 case Intrinsic::sshl_sat: { 7255 SDValue Op1 = getValue(I.getArgOperand(0)); 7256 SDValue Op2 = getValue(I.getArgOperand(1)); 7257 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7258 return; 7259 } 7260 case Intrinsic::ushl_sat: { 7261 SDValue Op1 = getValue(I.getArgOperand(0)); 7262 SDValue Op2 = getValue(I.getArgOperand(1)); 7263 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7264 return; 7265 } 7266 case Intrinsic::smul_fix: 7267 case Intrinsic::umul_fix: 7268 case Intrinsic::smul_fix_sat: 7269 case Intrinsic::umul_fix_sat: { 7270 SDValue Op1 = getValue(I.getArgOperand(0)); 7271 SDValue Op2 = getValue(I.getArgOperand(1)); 7272 SDValue Op3 = getValue(I.getArgOperand(2)); 7273 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7274 Op1.getValueType(), Op1, Op2, Op3)); 7275 return; 7276 } 7277 case Intrinsic::sdiv_fix: 7278 case Intrinsic::udiv_fix: 7279 case Intrinsic::sdiv_fix_sat: 7280 case Intrinsic::udiv_fix_sat: { 7281 SDValue Op1 = getValue(I.getArgOperand(0)); 7282 SDValue Op2 = getValue(I.getArgOperand(1)); 7283 SDValue Op3 = getValue(I.getArgOperand(2)); 7284 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7285 Op1, Op2, Op3, DAG, TLI)); 7286 return; 7287 } 7288 case Intrinsic::smax: { 7289 SDValue Op1 = getValue(I.getArgOperand(0)); 7290 SDValue Op2 = getValue(I.getArgOperand(1)); 7291 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7292 return; 7293 } 7294 case Intrinsic::smin: { 7295 SDValue Op1 = getValue(I.getArgOperand(0)); 7296 SDValue Op2 = getValue(I.getArgOperand(1)); 7297 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7298 return; 7299 } 7300 case Intrinsic::umax: { 7301 SDValue Op1 = getValue(I.getArgOperand(0)); 7302 SDValue Op2 = getValue(I.getArgOperand(1)); 7303 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7304 return; 7305 } 7306 case Intrinsic::umin: { 7307 SDValue Op1 = getValue(I.getArgOperand(0)); 7308 SDValue Op2 = getValue(I.getArgOperand(1)); 7309 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7310 return; 7311 } 7312 case Intrinsic::abs: { 7313 // TODO: Preserve "int min is poison" arg in SDAG? 7314 SDValue Op1 = getValue(I.getArgOperand(0)); 7315 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7316 return; 7317 } 7318 case Intrinsic::scmp: { 7319 SDValue Op1 = getValue(I.getArgOperand(0)); 7320 SDValue Op2 = getValue(I.getArgOperand(1)); 7321 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7322 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7323 break; 7324 } 7325 case Intrinsic::ucmp: { 7326 SDValue Op1 = getValue(I.getArgOperand(0)); 7327 SDValue Op2 = getValue(I.getArgOperand(1)); 7328 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7329 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7330 break; 7331 } 7332 case Intrinsic::stacksave: { 7333 SDValue Op = getRoot(); 7334 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7335 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7336 setValue(&I, Res); 7337 DAG.setRoot(Res.getValue(1)); 7338 return; 7339 } 7340 case Intrinsic::stackrestore: 7341 Res = getValue(I.getArgOperand(0)); 7342 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7343 return; 7344 case Intrinsic::get_dynamic_area_offset: { 7345 SDValue Op = getRoot(); 7346 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7347 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7348 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7349 // target. 7350 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7351 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7352 " intrinsic!"); 7353 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7354 Op); 7355 DAG.setRoot(Op); 7356 setValue(&I, Res); 7357 return; 7358 } 7359 case Intrinsic::stackguard: { 7360 MachineFunction &MF = DAG.getMachineFunction(); 7361 const Module &M = *MF.getFunction().getParent(); 7362 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7363 SDValue Chain = getRoot(); 7364 if (TLI.useLoadStackGuardNode(M)) { 7365 Res = getLoadStackGuard(DAG, sdl, Chain); 7366 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7367 } else { 7368 const Value *Global = TLI.getSDagStackGuard(M); 7369 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7370 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7371 MachinePointerInfo(Global, 0), Align, 7372 MachineMemOperand::MOVolatile); 7373 } 7374 if (TLI.useStackGuardXorFP()) 7375 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7376 DAG.setRoot(Chain); 7377 setValue(&I, Res); 7378 return; 7379 } 7380 case Intrinsic::stackprotector: { 7381 // Emit code into the DAG to store the stack guard onto the stack. 7382 MachineFunction &MF = DAG.getMachineFunction(); 7383 MachineFrameInfo &MFI = MF.getFrameInfo(); 7384 const Module &M = *MF.getFunction().getParent(); 7385 SDValue Src, Chain = getRoot(); 7386 7387 if (TLI.useLoadStackGuardNode(M)) 7388 Src = getLoadStackGuard(DAG, sdl, Chain); 7389 else 7390 Src = getValue(I.getArgOperand(0)); // The guard's value. 7391 7392 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7393 7394 int FI = FuncInfo.StaticAllocaMap[Slot]; 7395 MFI.setStackProtectorIndex(FI); 7396 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7397 7398 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7399 7400 // Store the stack protector onto the stack. 7401 Res = DAG.getStore( 7402 Chain, sdl, Src, FIN, 7403 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7404 MaybeAlign(), MachineMemOperand::MOVolatile); 7405 setValue(&I, Res); 7406 DAG.setRoot(Res); 7407 return; 7408 } 7409 case Intrinsic::objectsize: 7410 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7411 7412 case Intrinsic::is_constant: 7413 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7414 7415 case Intrinsic::annotation: 7416 case Intrinsic::ptr_annotation: 7417 case Intrinsic::launder_invariant_group: 7418 case Intrinsic::strip_invariant_group: 7419 // Drop the intrinsic, but forward the value 7420 setValue(&I, getValue(I.getOperand(0))); 7421 return; 7422 7423 case Intrinsic::assume: 7424 case Intrinsic::experimental_noalias_scope_decl: 7425 case Intrinsic::var_annotation: 7426 case Intrinsic::sideeffect: 7427 // Discard annotate attributes, noalias scope declarations, assumptions, and 7428 // artificial side-effects. 7429 return; 7430 7431 case Intrinsic::codeview_annotation: { 7432 // Emit a label associated with this metadata. 7433 MachineFunction &MF = DAG.getMachineFunction(); 7434 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true); 7435 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7436 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7437 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7438 DAG.setRoot(Res); 7439 return; 7440 } 7441 7442 case Intrinsic::init_trampoline: { 7443 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7444 7445 SDValue Ops[6]; 7446 Ops[0] = getRoot(); 7447 Ops[1] = getValue(I.getArgOperand(0)); 7448 Ops[2] = getValue(I.getArgOperand(1)); 7449 Ops[3] = getValue(I.getArgOperand(2)); 7450 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7451 Ops[5] = DAG.getSrcValue(F); 7452 7453 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7454 7455 DAG.setRoot(Res); 7456 return; 7457 } 7458 case Intrinsic::adjust_trampoline: 7459 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7460 TLI.getPointerTy(DAG.getDataLayout()), 7461 getValue(I.getArgOperand(0)))); 7462 return; 7463 case Intrinsic::gcroot: { 7464 assert(DAG.getMachineFunction().getFunction().hasGC() && 7465 "only valid in functions with gc specified, enforced by Verifier"); 7466 assert(GFI && "implied by previous"); 7467 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7468 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7469 7470 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7471 GFI->addStackRoot(FI->getIndex(), TypeMap); 7472 return; 7473 } 7474 case Intrinsic::gcread: 7475 case Intrinsic::gcwrite: 7476 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7477 case Intrinsic::get_rounding: 7478 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7479 setValue(&I, Res); 7480 DAG.setRoot(Res.getValue(1)); 7481 return; 7482 7483 case Intrinsic::expect: 7484 // Just replace __builtin_expect(exp, c) with EXP. 7485 setValue(&I, getValue(I.getArgOperand(0))); 7486 return; 7487 7488 case Intrinsic::ubsantrap: 7489 case Intrinsic::debugtrap: 7490 case Intrinsic::trap: { 7491 StringRef TrapFuncName = 7492 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7493 if (TrapFuncName.empty()) { 7494 switch (Intrinsic) { 7495 case Intrinsic::trap: 7496 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7497 break; 7498 case Intrinsic::debugtrap: 7499 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7500 break; 7501 case Intrinsic::ubsantrap: 7502 DAG.setRoot(DAG.getNode( 7503 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7504 DAG.getTargetConstant( 7505 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7506 MVT::i32))); 7507 break; 7508 default: llvm_unreachable("unknown trap intrinsic"); 7509 } 7510 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(), 7511 I.hasFnAttr(Attribute::NoMerge)); 7512 return; 7513 } 7514 TargetLowering::ArgListTy Args; 7515 if (Intrinsic == Intrinsic::ubsantrap) { 7516 Args.push_back(TargetLoweringBase::ArgListEntry()); 7517 Args[0].Val = I.getArgOperand(0); 7518 Args[0].Node = getValue(Args[0].Val); 7519 Args[0].Ty = Args[0].Val->getType(); 7520 } 7521 7522 TargetLowering::CallLoweringInfo CLI(DAG); 7523 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7524 CallingConv::C, I.getType(), 7525 DAG.getExternalSymbol(TrapFuncName.data(), 7526 TLI.getPointerTy(DAG.getDataLayout())), 7527 std::move(Args)); 7528 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge); 7529 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7530 DAG.setRoot(Result.second); 7531 return; 7532 } 7533 7534 case Intrinsic::allow_runtime_check: 7535 case Intrinsic::allow_ubsan_check: 7536 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7537 return; 7538 7539 case Intrinsic::uadd_with_overflow: 7540 case Intrinsic::sadd_with_overflow: 7541 case Intrinsic::usub_with_overflow: 7542 case Intrinsic::ssub_with_overflow: 7543 case Intrinsic::umul_with_overflow: 7544 case Intrinsic::smul_with_overflow: { 7545 ISD::NodeType Op; 7546 switch (Intrinsic) { 7547 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7548 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7549 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7550 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7551 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7552 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7553 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7554 } 7555 SDValue Op1 = getValue(I.getArgOperand(0)); 7556 SDValue Op2 = getValue(I.getArgOperand(1)); 7557 7558 EVT ResultVT = Op1.getValueType(); 7559 EVT OverflowVT = MVT::i1; 7560 if (ResultVT.isVector()) 7561 OverflowVT = EVT::getVectorVT( 7562 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7563 7564 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7565 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7566 return; 7567 } 7568 case Intrinsic::prefetch: { 7569 SDValue Ops[5]; 7570 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7571 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7572 Ops[0] = DAG.getRoot(); 7573 Ops[1] = getValue(I.getArgOperand(0)); 7574 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7575 MVT::i32); 7576 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7577 MVT::i32); 7578 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7579 MVT::i32); 7580 SDValue Result = DAG.getMemIntrinsicNode( 7581 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7582 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7583 /* align */ std::nullopt, Flags); 7584 7585 // Chain the prefetch in parallel with any pending loads, to stay out of 7586 // the way of later optimizations. 7587 PendingLoads.push_back(Result); 7588 Result = getRoot(); 7589 DAG.setRoot(Result); 7590 return; 7591 } 7592 case Intrinsic::lifetime_start: 7593 case Intrinsic::lifetime_end: { 7594 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7595 // Stack coloring is not enabled in O0, discard region information. 7596 if (TM.getOptLevel() == CodeGenOptLevel::None) 7597 return; 7598 7599 const int64_t ObjectSize = 7600 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7601 Value *const ObjectPtr = I.getArgOperand(1); 7602 SmallVector<const Value *, 4> Allocas; 7603 getUnderlyingObjects(ObjectPtr, Allocas); 7604 7605 for (const Value *Alloca : Allocas) { 7606 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7607 7608 // Could not find an Alloca. 7609 if (!LifetimeObject) 7610 continue; 7611 7612 // First check that the Alloca is static, otherwise it won't have a 7613 // valid frame index. 7614 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7615 if (SI == FuncInfo.StaticAllocaMap.end()) 7616 return; 7617 7618 const int FrameIndex = SI->second; 7619 int64_t Offset; 7620 if (GetPointerBaseWithConstantOffset( 7621 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7622 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7623 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7624 Offset); 7625 DAG.setRoot(Res); 7626 } 7627 return; 7628 } 7629 case Intrinsic::pseudoprobe: { 7630 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7631 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7632 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7633 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7634 DAG.setRoot(Res); 7635 return; 7636 } 7637 case Intrinsic::invariant_start: 7638 // Discard region information. 7639 setValue(&I, 7640 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7641 return; 7642 case Intrinsic::invariant_end: 7643 // Discard region information. 7644 return; 7645 case Intrinsic::clear_cache: { 7646 SDValue InputChain = DAG.getRoot(); 7647 SDValue StartVal = getValue(I.getArgOperand(0)); 7648 SDValue EndVal = getValue(I.getArgOperand(1)); 7649 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7650 {InputChain, StartVal, EndVal}); 7651 setValue(&I, Res); 7652 DAG.setRoot(Res); 7653 return; 7654 } 7655 case Intrinsic::donothing: 7656 case Intrinsic::seh_try_begin: 7657 case Intrinsic::seh_scope_begin: 7658 case Intrinsic::seh_try_end: 7659 case Intrinsic::seh_scope_end: 7660 // ignore 7661 return; 7662 case Intrinsic::experimental_stackmap: 7663 visitStackmap(I); 7664 return; 7665 case Intrinsic::experimental_patchpoint_void: 7666 case Intrinsic::experimental_patchpoint: 7667 visitPatchpoint(I); 7668 return; 7669 case Intrinsic::experimental_gc_statepoint: 7670 LowerStatepoint(cast<GCStatepointInst>(I)); 7671 return; 7672 case Intrinsic::experimental_gc_result: 7673 visitGCResult(cast<GCResultInst>(I)); 7674 return; 7675 case Intrinsic::experimental_gc_relocate: 7676 visitGCRelocate(cast<GCRelocateInst>(I)); 7677 return; 7678 case Intrinsic::instrprof_cover: 7679 llvm_unreachable("instrprof failed to lower a cover"); 7680 case Intrinsic::instrprof_increment: 7681 llvm_unreachable("instrprof failed to lower an increment"); 7682 case Intrinsic::instrprof_timestamp: 7683 llvm_unreachable("instrprof failed to lower a timestamp"); 7684 case Intrinsic::instrprof_value_profile: 7685 llvm_unreachable("instrprof failed to lower a value profiling call"); 7686 case Intrinsic::instrprof_mcdc_parameters: 7687 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7688 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7689 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7690 case Intrinsic::localescape: { 7691 MachineFunction &MF = DAG.getMachineFunction(); 7692 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7693 7694 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7695 // is the same on all targets. 7696 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7697 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7698 if (isa<ConstantPointerNull>(Arg)) 7699 continue; // Skip null pointers. They represent a hole in index space. 7700 AllocaInst *Slot = cast<AllocaInst>(Arg); 7701 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7702 "can only escape static allocas"); 7703 int FI = FuncInfo.StaticAllocaMap[Slot]; 7704 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7705 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7706 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7707 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7708 .addSym(FrameAllocSym) 7709 .addFrameIndex(FI); 7710 } 7711 7712 return; 7713 } 7714 7715 case Intrinsic::localrecover: { 7716 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7717 MachineFunction &MF = DAG.getMachineFunction(); 7718 7719 // Get the symbol that defines the frame offset. 7720 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7721 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7722 unsigned IdxVal = 7723 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7724 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7725 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7726 7727 Value *FP = I.getArgOperand(1); 7728 SDValue FPVal = getValue(FP); 7729 EVT PtrVT = FPVal.getValueType(); 7730 7731 // Create a MCSymbol for the label to avoid any target lowering 7732 // that would make this PC relative. 7733 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7734 SDValue OffsetVal = 7735 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7736 7737 // Add the offset to the FP. 7738 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7739 setValue(&I, Add); 7740 7741 return; 7742 } 7743 7744 case Intrinsic::fake_use: { 7745 Value *V = I.getArgOperand(0); 7746 SDValue Ops[2]; 7747 // For Values not declared or previously used in this basic block, the 7748 // NodeMap will not have an entry, and `getValue` will assert if V has no 7749 // valid register value. 7750 auto FakeUseValue = [&]() -> SDValue { 7751 SDValue &N = NodeMap[V]; 7752 if (N.getNode()) 7753 return N; 7754 7755 // If there's a virtual register allocated and initialized for this 7756 // value, use it. 7757 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 7758 return copyFromReg; 7759 // FIXME: Do we want to preserve constants? It seems pointless. 7760 if (isa<Constant>(V)) 7761 return getValue(V); 7762 return SDValue(); 7763 }(); 7764 if (!FakeUseValue || FakeUseValue.isUndef()) 7765 return; 7766 Ops[0] = getRoot(); 7767 Ops[1] = FakeUseValue; 7768 // Also, do not translate a fake use with an undef operand, or any other 7769 // empty SDValues. 7770 if (!Ops[1] || Ops[1].isUndef()) 7771 return; 7772 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops)); 7773 return; 7774 } 7775 7776 case Intrinsic::eh_exceptionpointer: 7777 case Intrinsic::eh_exceptioncode: { 7778 // Get the exception pointer vreg, copy from it, and resize it to fit. 7779 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7780 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7781 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7782 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7783 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7784 if (Intrinsic == Intrinsic::eh_exceptioncode) 7785 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7786 setValue(&I, N); 7787 return; 7788 } 7789 case Intrinsic::xray_customevent: { 7790 // Here we want to make sure that the intrinsic behaves as if it has a 7791 // specific calling convention. 7792 const auto &Triple = DAG.getTarget().getTargetTriple(); 7793 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7794 return; 7795 7796 SmallVector<SDValue, 8> Ops; 7797 7798 // We want to say that we always want the arguments in registers. 7799 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7800 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7801 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7802 SDValue Chain = getRoot(); 7803 Ops.push_back(LogEntryVal); 7804 Ops.push_back(StrSizeVal); 7805 Ops.push_back(Chain); 7806 7807 // We need to enforce the calling convention for the callsite, so that 7808 // argument ordering is enforced correctly, and that register allocation can 7809 // see that some registers may be assumed clobbered and have to preserve 7810 // them across calls to the intrinsic. 7811 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7812 sdl, NodeTys, Ops); 7813 SDValue patchableNode = SDValue(MN, 0); 7814 DAG.setRoot(patchableNode); 7815 setValue(&I, patchableNode); 7816 return; 7817 } 7818 case Intrinsic::xray_typedevent: { 7819 // Here we want to make sure that the intrinsic behaves as if it has a 7820 // specific calling convention. 7821 const auto &Triple = DAG.getTarget().getTargetTriple(); 7822 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7823 return; 7824 7825 SmallVector<SDValue, 8> Ops; 7826 7827 // We want to say that we always want the arguments in registers. 7828 // It's unclear to me how manipulating the selection DAG here forces callers 7829 // to provide arguments in registers instead of on the stack. 7830 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7831 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7832 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7833 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7834 SDValue Chain = getRoot(); 7835 Ops.push_back(LogTypeId); 7836 Ops.push_back(LogEntryVal); 7837 Ops.push_back(StrSizeVal); 7838 Ops.push_back(Chain); 7839 7840 // We need to enforce the calling convention for the callsite, so that 7841 // argument ordering is enforced correctly, and that register allocation can 7842 // see that some registers may be assumed clobbered and have to preserve 7843 // them across calls to the intrinsic. 7844 MachineSDNode *MN = DAG.getMachineNode( 7845 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7846 SDValue patchableNode = SDValue(MN, 0); 7847 DAG.setRoot(patchableNode); 7848 setValue(&I, patchableNode); 7849 return; 7850 } 7851 case Intrinsic::experimental_deoptimize: 7852 LowerDeoptimizeCall(&I); 7853 return; 7854 case Intrinsic::stepvector: 7855 visitStepVector(I); 7856 return; 7857 case Intrinsic::vector_reduce_fadd: 7858 case Intrinsic::vector_reduce_fmul: 7859 case Intrinsic::vector_reduce_add: 7860 case Intrinsic::vector_reduce_mul: 7861 case Intrinsic::vector_reduce_and: 7862 case Intrinsic::vector_reduce_or: 7863 case Intrinsic::vector_reduce_xor: 7864 case Intrinsic::vector_reduce_smax: 7865 case Intrinsic::vector_reduce_smin: 7866 case Intrinsic::vector_reduce_umax: 7867 case Intrinsic::vector_reduce_umin: 7868 case Intrinsic::vector_reduce_fmax: 7869 case Intrinsic::vector_reduce_fmin: 7870 case Intrinsic::vector_reduce_fmaximum: 7871 case Intrinsic::vector_reduce_fminimum: 7872 visitVectorReduce(I, Intrinsic); 7873 return; 7874 7875 case Intrinsic::icall_branch_funnel: { 7876 SmallVector<SDValue, 16> Ops; 7877 Ops.push_back(getValue(I.getArgOperand(0))); 7878 7879 int64_t Offset; 7880 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7881 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7882 if (!Base) 7883 report_fatal_error( 7884 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7885 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7886 7887 struct BranchFunnelTarget { 7888 int64_t Offset; 7889 SDValue Target; 7890 }; 7891 SmallVector<BranchFunnelTarget, 8> Targets; 7892 7893 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7894 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7895 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7896 if (ElemBase != Base) 7897 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7898 "to the same GlobalValue"); 7899 7900 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7901 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7902 if (!GA) 7903 report_fatal_error( 7904 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7905 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7906 GA->getGlobal(), sdl, Val.getValueType(), 7907 GA->getOffset())}); 7908 } 7909 llvm::sort(Targets, 7910 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7911 return T1.Offset < T2.Offset; 7912 }); 7913 7914 for (auto &T : Targets) { 7915 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7916 Ops.push_back(T.Target); 7917 } 7918 7919 Ops.push_back(DAG.getRoot()); // Chain 7920 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7921 MVT::Other, Ops), 7922 0); 7923 DAG.setRoot(N); 7924 setValue(&I, N); 7925 HasTailCall = true; 7926 return; 7927 } 7928 7929 case Intrinsic::wasm_landingpad_index: 7930 // Information this intrinsic contained has been transferred to 7931 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7932 // delete it now. 7933 return; 7934 7935 case Intrinsic::aarch64_settag: 7936 case Intrinsic::aarch64_settag_zero: { 7937 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7938 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7939 SDValue Val = TSI.EmitTargetCodeForSetTag( 7940 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7941 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7942 ZeroMemory); 7943 DAG.setRoot(Val); 7944 setValue(&I, Val); 7945 return; 7946 } 7947 case Intrinsic::amdgcn_cs_chain: { 7948 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7949 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7950 "Non-zero flags not supported yet"); 7951 7952 // At this point we don't care if it's amdgpu_cs_chain or 7953 // amdgpu_cs_chain_preserve. 7954 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7955 7956 Type *RetTy = I.getType(); 7957 assert(RetTy->isVoidTy() && "Should not return"); 7958 7959 SDValue Callee = getValue(I.getOperand(0)); 7960 7961 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7962 // We'll also tack the value of the EXEC mask at the end. 7963 TargetLowering::ArgListTy Args; 7964 Args.reserve(3); 7965 7966 for (unsigned Idx : {2, 3, 1}) { 7967 TargetLowering::ArgListEntry Arg; 7968 Arg.Node = getValue(I.getOperand(Idx)); 7969 Arg.Ty = I.getOperand(Idx)->getType(); 7970 Arg.setAttributes(&I, Idx); 7971 Args.push_back(Arg); 7972 } 7973 7974 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7975 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7976 Args[2].IsInReg = true; // EXEC should be inreg 7977 7978 TargetLowering::CallLoweringInfo CLI(DAG); 7979 CLI.setDebugLoc(getCurSDLoc()) 7980 .setChain(getRoot()) 7981 .setCallee(CC, RetTy, Callee, std::move(Args)) 7982 .setNoReturn(true) 7983 .setTailCall(true) 7984 .setConvergent(I.isConvergent()); 7985 CLI.CB = &I; 7986 std::pair<SDValue, SDValue> Result = 7987 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7988 (void)Result; 7989 assert(!Result.first.getNode() && !Result.second.getNode() && 7990 "Should've lowered as tail call"); 7991 7992 HasTailCall = true; 7993 return; 7994 } 7995 case Intrinsic::ptrmask: { 7996 SDValue Ptr = getValue(I.getOperand(0)); 7997 SDValue Mask = getValue(I.getOperand(1)); 7998 7999 // On arm64_32, pointers are 32 bits when stored in memory, but 8000 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 8001 // match the index type, but the pointer is 64 bits, so the the mask must be 8002 // zero-extended up to 64 bits to match the pointer. 8003 EVT PtrVT = 8004 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 8005 EVT MemVT = 8006 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 8007 assert(PtrVT == Ptr.getValueType()); 8008 assert(MemVT == Mask.getValueType()); 8009 if (MemVT != PtrVT) 8010 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 8011 8012 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 8013 return; 8014 } 8015 case Intrinsic::threadlocal_address: { 8016 setValue(&I, getValue(I.getOperand(0))); 8017 return; 8018 } 8019 case Intrinsic::get_active_lane_mask: { 8020 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8021 SDValue Index = getValue(I.getOperand(0)); 8022 EVT ElementVT = Index.getValueType(); 8023 8024 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 8025 visitTargetIntrinsic(I, Intrinsic); 8026 return; 8027 } 8028 8029 SDValue TripCount = getValue(I.getOperand(1)); 8030 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 8031 CCVT.getVectorElementCount()); 8032 8033 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 8034 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 8035 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 8036 SDValue VectorInduction = DAG.getNode( 8037 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 8038 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 8039 VectorTripCount, ISD::CondCode::SETULT); 8040 setValue(&I, SetCC); 8041 return; 8042 } 8043 case Intrinsic::experimental_get_vector_length: { 8044 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 8045 "Expected positive VF"); 8046 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 8047 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 8048 8049 SDValue Count = getValue(I.getOperand(0)); 8050 EVT CountVT = Count.getValueType(); 8051 8052 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 8053 visitTargetIntrinsic(I, Intrinsic); 8054 return; 8055 } 8056 8057 // Expand to a umin between the trip count and the maximum elements the type 8058 // can hold. 8059 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8060 8061 // Extend the trip count to at least the result VT. 8062 if (CountVT.bitsLT(VT)) { 8063 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 8064 CountVT = VT; 8065 } 8066 8067 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 8068 ElementCount::get(VF, IsScalable)); 8069 8070 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 8071 // Clip to the result type if needed. 8072 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 8073 8074 setValue(&I, Trunc); 8075 return; 8076 } 8077 case Intrinsic::experimental_vector_partial_reduce_add: { 8078 8079 if (!TLI.shouldExpandPartialReductionIntrinsic(cast<IntrinsicInst>(&I))) { 8080 visitTargetIntrinsic(I, Intrinsic); 8081 return; 8082 } 8083 8084 setValue(&I, DAG.getPartialReduceAdd(sdl, EVT::getEVT(I.getType()), 8085 getValue(I.getOperand(0)), 8086 getValue(I.getOperand(1)))); 8087 return; 8088 } 8089 case Intrinsic::experimental_cttz_elts: { 8090 auto DL = getCurSDLoc(); 8091 SDValue Op = getValue(I.getOperand(0)); 8092 EVT OpVT = Op.getValueType(); 8093 8094 if (!TLI.shouldExpandCttzElements(OpVT)) { 8095 visitTargetIntrinsic(I, Intrinsic); 8096 return; 8097 } 8098 8099 if (OpVT.getScalarType() != MVT::i1) { 8100 // Compare the input vector elements to zero & use to count trailing zeros 8101 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 8102 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 8103 OpVT.getVectorElementCount()); 8104 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 8105 } 8106 8107 // If the zero-is-poison flag is set, we can assume the upper limit 8108 // of the result is VF-1. 8109 bool ZeroIsPoison = 8110 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 8111 ConstantRange VScaleRange(1, true); // Dummy value. 8112 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 8113 VScaleRange = getVScaleRange(I.getCaller(), 64); 8114 unsigned EltWidth = TLI.getBitWidthForCttzElements( 8115 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 8116 8117 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 8118 8119 // Create the new vector type & get the vector length 8120 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8121 OpVT.getVectorElementCount()); 8122 8123 SDValue VL = 8124 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8125 8126 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8127 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8128 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8129 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8130 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8131 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8132 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8133 8134 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8135 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8136 8137 setValue(&I, Ret); 8138 return; 8139 } 8140 case Intrinsic::vector_insert: { 8141 SDValue Vec = getValue(I.getOperand(0)); 8142 SDValue SubVec = getValue(I.getOperand(1)); 8143 SDValue Index = getValue(I.getOperand(2)); 8144 8145 // The intrinsic's index type is i64, but the SDNode requires an index type 8146 // suitable for the target. Convert the index as required. 8147 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8148 if (Index.getValueType() != VectorIdxTy) 8149 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8150 8151 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8152 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8153 Index)); 8154 return; 8155 } 8156 case Intrinsic::vector_extract: { 8157 SDValue Vec = getValue(I.getOperand(0)); 8158 SDValue Index = getValue(I.getOperand(1)); 8159 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8160 8161 // The intrinsic's index type is i64, but the SDNode requires an index type 8162 // suitable for the target. Convert the index as required. 8163 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8164 if (Index.getValueType() != VectorIdxTy) 8165 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8166 8167 setValue(&I, 8168 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8169 return; 8170 } 8171 case Intrinsic::vector_reverse: 8172 visitVectorReverse(I); 8173 return; 8174 case Intrinsic::vector_splice: 8175 visitVectorSplice(I); 8176 return; 8177 case Intrinsic::callbr_landingpad: 8178 visitCallBrLandingPad(I); 8179 return; 8180 case Intrinsic::vector_interleave2: 8181 visitVectorInterleave(I); 8182 return; 8183 case Intrinsic::vector_deinterleave2: 8184 visitVectorDeinterleave(I); 8185 return; 8186 case Intrinsic::experimental_vector_compress: 8187 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl, 8188 getValue(I.getArgOperand(0)).getValueType(), 8189 getValue(I.getArgOperand(0)), 8190 getValue(I.getArgOperand(1)), 8191 getValue(I.getArgOperand(2)), Flags)); 8192 return; 8193 case Intrinsic::experimental_convergence_anchor: 8194 case Intrinsic::experimental_convergence_entry: 8195 case Intrinsic::experimental_convergence_loop: 8196 visitConvergenceControl(I, Intrinsic); 8197 return; 8198 case Intrinsic::experimental_vector_histogram_add: { 8199 visitVectorHistogram(I, Intrinsic); 8200 return; 8201 } 8202 } 8203 } 8204 8205 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8206 const ConstrainedFPIntrinsic &FPI) { 8207 SDLoc sdl = getCurSDLoc(); 8208 8209 // We do not need to serialize constrained FP intrinsics against 8210 // each other or against (nonvolatile) loads, so they can be 8211 // chained like loads. 8212 SDValue Chain = DAG.getRoot(); 8213 SmallVector<SDValue, 4> Opers; 8214 Opers.push_back(Chain); 8215 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8216 Opers.push_back(getValue(FPI.getArgOperand(I))); 8217 8218 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8219 assert(Result.getNode()->getNumValues() == 2); 8220 8221 // Push node to the appropriate list so that future instructions can be 8222 // chained up correctly. 8223 SDValue OutChain = Result.getValue(1); 8224 switch (EB) { 8225 case fp::ExceptionBehavior::ebIgnore: 8226 // The only reason why ebIgnore nodes still need to be chained is that 8227 // they might depend on the current rounding mode, and therefore must 8228 // not be moved across instruction that may change that mode. 8229 [[fallthrough]]; 8230 case fp::ExceptionBehavior::ebMayTrap: 8231 // These must not be moved across calls or instructions that may change 8232 // floating-point exception masks. 8233 PendingConstrainedFP.push_back(OutChain); 8234 break; 8235 case fp::ExceptionBehavior::ebStrict: 8236 // These must not be moved across calls or instructions that may change 8237 // floating-point exception masks or read floating-point exception flags. 8238 // In addition, they cannot be optimized out even if unused. 8239 PendingConstrainedFPStrict.push_back(OutChain); 8240 break; 8241 } 8242 }; 8243 8244 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8245 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8246 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8247 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8248 8249 SDNodeFlags Flags; 8250 if (EB == fp::ExceptionBehavior::ebIgnore) 8251 Flags.setNoFPExcept(true); 8252 8253 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8254 Flags.copyFMF(*FPOp); 8255 8256 unsigned Opcode; 8257 switch (FPI.getIntrinsicID()) { 8258 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8259 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8260 case Intrinsic::INTRINSIC: \ 8261 Opcode = ISD::STRICT_##DAGN; \ 8262 break; 8263 #include "llvm/IR/ConstrainedOps.def" 8264 case Intrinsic::experimental_constrained_fmuladd: { 8265 Opcode = ISD::STRICT_FMA; 8266 // Break fmuladd into fmul and fadd. 8267 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8268 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8269 Opers.pop_back(); 8270 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8271 pushOutChain(Mul, EB); 8272 Opcode = ISD::STRICT_FADD; 8273 Opers.clear(); 8274 Opers.push_back(Mul.getValue(1)); 8275 Opers.push_back(Mul.getValue(0)); 8276 Opers.push_back(getValue(FPI.getArgOperand(2))); 8277 } 8278 break; 8279 } 8280 } 8281 8282 // A few strict DAG nodes carry additional operands that are not 8283 // set up by the default code above. 8284 switch (Opcode) { 8285 default: break; 8286 case ISD::STRICT_FP_ROUND: 8287 Opers.push_back( 8288 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8289 break; 8290 case ISD::STRICT_FSETCC: 8291 case ISD::STRICT_FSETCCS: { 8292 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8293 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8294 if (TM.Options.NoNaNsFPMath) 8295 Condition = getFCmpCodeWithoutNaN(Condition); 8296 Opers.push_back(DAG.getCondCode(Condition)); 8297 break; 8298 } 8299 } 8300 8301 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8302 pushOutChain(Result, EB); 8303 8304 SDValue FPResult = Result.getValue(0); 8305 setValue(&FPI, FPResult); 8306 } 8307 8308 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8309 std::optional<unsigned> ResOPC; 8310 switch (VPIntrin.getIntrinsicID()) { 8311 case Intrinsic::vp_ctlz: { 8312 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8313 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8314 break; 8315 } 8316 case Intrinsic::vp_cttz: { 8317 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8318 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8319 break; 8320 } 8321 case Intrinsic::vp_cttz_elts: { 8322 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8323 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8324 break; 8325 } 8326 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8327 case Intrinsic::VPID: \ 8328 ResOPC = ISD::VPSD; \ 8329 break; 8330 #include "llvm/IR/VPIntrinsics.def" 8331 } 8332 8333 if (!ResOPC) 8334 llvm_unreachable( 8335 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8336 8337 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8338 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8339 if (VPIntrin.getFastMathFlags().allowReassoc()) 8340 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8341 : ISD::VP_REDUCE_FMUL; 8342 } 8343 8344 return *ResOPC; 8345 } 8346 8347 void SelectionDAGBuilder::visitVPLoad( 8348 const VPIntrinsic &VPIntrin, EVT VT, 8349 const SmallVectorImpl<SDValue> &OpValues) { 8350 SDLoc DL = getCurSDLoc(); 8351 Value *PtrOperand = VPIntrin.getArgOperand(0); 8352 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8353 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8354 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8355 SDValue LD; 8356 // Do not serialize variable-length loads of constant memory with 8357 // anything. 8358 if (!Alignment) 8359 Alignment = DAG.getEVTAlign(VT); 8360 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8361 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8362 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8363 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8364 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8365 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8366 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8367 MMO, false /*IsExpanding */); 8368 if (AddToChain) 8369 PendingLoads.push_back(LD.getValue(1)); 8370 setValue(&VPIntrin, LD); 8371 } 8372 8373 void SelectionDAGBuilder::visitVPGather( 8374 const VPIntrinsic &VPIntrin, EVT VT, 8375 const SmallVectorImpl<SDValue> &OpValues) { 8376 SDLoc DL = getCurSDLoc(); 8377 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8378 Value *PtrOperand = VPIntrin.getArgOperand(0); 8379 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8380 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8381 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8382 SDValue LD; 8383 if (!Alignment) 8384 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8385 unsigned AS = 8386 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8387 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8388 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8389 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8390 SDValue Base, Index, Scale; 8391 ISD::MemIndexType IndexType; 8392 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8393 this, VPIntrin.getParent(), 8394 VT.getScalarStoreSize()); 8395 if (!UniformBase) { 8396 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8397 Index = getValue(PtrOperand); 8398 IndexType = ISD::SIGNED_SCALED; 8399 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8400 } 8401 EVT IdxVT = Index.getValueType(); 8402 EVT EltTy = IdxVT.getVectorElementType(); 8403 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8404 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8405 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8406 } 8407 LD = DAG.getGatherVP( 8408 DAG.getVTList(VT, MVT::Other), VT, DL, 8409 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8410 IndexType); 8411 PendingLoads.push_back(LD.getValue(1)); 8412 setValue(&VPIntrin, LD); 8413 } 8414 8415 void SelectionDAGBuilder::visitVPStore( 8416 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8417 SDLoc DL = getCurSDLoc(); 8418 Value *PtrOperand = VPIntrin.getArgOperand(1); 8419 EVT VT = OpValues[0].getValueType(); 8420 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8421 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8422 SDValue ST; 8423 if (!Alignment) 8424 Alignment = DAG.getEVTAlign(VT); 8425 SDValue Ptr = OpValues[1]; 8426 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8427 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8428 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8429 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8430 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8431 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8432 /* IsTruncating */ false, /*IsCompressing*/ false); 8433 DAG.setRoot(ST); 8434 setValue(&VPIntrin, ST); 8435 } 8436 8437 void SelectionDAGBuilder::visitVPScatter( 8438 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8439 SDLoc DL = getCurSDLoc(); 8440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8441 Value *PtrOperand = VPIntrin.getArgOperand(1); 8442 EVT VT = OpValues[0].getValueType(); 8443 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8444 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8445 SDValue ST; 8446 if (!Alignment) 8447 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8448 unsigned AS = 8449 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8450 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8451 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8452 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8453 SDValue Base, Index, Scale; 8454 ISD::MemIndexType IndexType; 8455 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8456 this, VPIntrin.getParent(), 8457 VT.getScalarStoreSize()); 8458 if (!UniformBase) { 8459 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8460 Index = getValue(PtrOperand); 8461 IndexType = ISD::SIGNED_SCALED; 8462 Scale = 8463 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8464 } 8465 EVT IdxVT = Index.getValueType(); 8466 EVT EltTy = IdxVT.getVectorElementType(); 8467 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8468 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8469 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8470 } 8471 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8472 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8473 OpValues[2], OpValues[3]}, 8474 MMO, IndexType); 8475 DAG.setRoot(ST); 8476 setValue(&VPIntrin, ST); 8477 } 8478 8479 void SelectionDAGBuilder::visitVPStridedLoad( 8480 const VPIntrinsic &VPIntrin, EVT VT, 8481 const SmallVectorImpl<SDValue> &OpValues) { 8482 SDLoc DL = getCurSDLoc(); 8483 Value *PtrOperand = VPIntrin.getArgOperand(0); 8484 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8485 if (!Alignment) 8486 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8487 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8488 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8489 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8490 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8491 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8492 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8493 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8494 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8495 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8496 8497 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8498 OpValues[2], OpValues[3], MMO, 8499 false /*IsExpanding*/); 8500 8501 if (AddToChain) 8502 PendingLoads.push_back(LD.getValue(1)); 8503 setValue(&VPIntrin, LD); 8504 } 8505 8506 void SelectionDAGBuilder::visitVPStridedStore( 8507 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8508 SDLoc DL = getCurSDLoc(); 8509 Value *PtrOperand = VPIntrin.getArgOperand(1); 8510 EVT VT = OpValues[0].getValueType(); 8511 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8512 if (!Alignment) 8513 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8514 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8515 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8516 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8517 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8518 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8519 8520 SDValue ST = DAG.getStridedStoreVP( 8521 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8522 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8523 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8524 /*IsCompressing*/ false); 8525 8526 DAG.setRoot(ST); 8527 setValue(&VPIntrin, ST); 8528 } 8529 8530 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8532 SDLoc DL = getCurSDLoc(); 8533 8534 ISD::CondCode Condition; 8535 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8536 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8537 if (IsFP) { 8538 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8539 // flags, but calls that don't return floating-point types can't be 8540 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8541 Condition = getFCmpCondCode(CondCode); 8542 if (TM.Options.NoNaNsFPMath) 8543 Condition = getFCmpCodeWithoutNaN(Condition); 8544 } else { 8545 Condition = getICmpCondCode(CondCode); 8546 } 8547 8548 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8549 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8550 // #2 is the condition code 8551 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8552 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8553 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8554 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8555 "Unexpected target EVL type"); 8556 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8557 8558 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8559 VPIntrin.getType()); 8560 setValue(&VPIntrin, 8561 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8562 } 8563 8564 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8565 const VPIntrinsic &VPIntrin) { 8566 SDLoc DL = getCurSDLoc(); 8567 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8568 8569 auto IID = VPIntrin.getIntrinsicID(); 8570 8571 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8572 return visitVPCmp(*CmpI); 8573 8574 SmallVector<EVT, 4> ValueVTs; 8575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8576 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8577 SDVTList VTs = DAG.getVTList(ValueVTs); 8578 8579 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8580 8581 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8582 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8583 "Unexpected target EVL type"); 8584 8585 // Request operands. 8586 SmallVector<SDValue, 7> OpValues; 8587 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8588 auto Op = getValue(VPIntrin.getArgOperand(I)); 8589 if (I == EVLParamPos) 8590 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8591 OpValues.push_back(Op); 8592 } 8593 8594 switch (Opcode) { 8595 default: { 8596 SDNodeFlags SDFlags; 8597 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8598 SDFlags.copyFMF(*FPMO); 8599 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8600 setValue(&VPIntrin, Result); 8601 break; 8602 } 8603 case ISD::VP_LOAD: 8604 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8605 break; 8606 case ISD::VP_GATHER: 8607 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8608 break; 8609 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8610 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8611 break; 8612 case ISD::VP_STORE: 8613 visitVPStore(VPIntrin, OpValues); 8614 break; 8615 case ISD::VP_SCATTER: 8616 visitVPScatter(VPIntrin, OpValues); 8617 break; 8618 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8619 visitVPStridedStore(VPIntrin, OpValues); 8620 break; 8621 case ISD::VP_FMULADD: { 8622 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8623 SDNodeFlags SDFlags; 8624 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8625 SDFlags.copyFMF(*FPMO); 8626 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8627 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8628 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8629 } else { 8630 SDValue Mul = DAG.getNode( 8631 ISD::VP_FMUL, DL, VTs, 8632 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8633 SDValue Add = 8634 DAG.getNode(ISD::VP_FADD, DL, VTs, 8635 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8636 setValue(&VPIntrin, Add); 8637 } 8638 break; 8639 } 8640 case ISD::VP_IS_FPCLASS: { 8641 const DataLayout DLayout = DAG.getDataLayout(); 8642 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8643 auto Constant = OpValues[1]->getAsZExtVal(); 8644 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8645 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8646 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8647 setValue(&VPIntrin, V); 8648 return; 8649 } 8650 case ISD::VP_INTTOPTR: { 8651 SDValue N = OpValues[0]; 8652 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8653 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8654 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8655 OpValues[2]); 8656 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8657 OpValues[2]); 8658 setValue(&VPIntrin, N); 8659 break; 8660 } 8661 case ISD::VP_PTRTOINT: { 8662 SDValue N = OpValues[0]; 8663 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8664 VPIntrin.getType()); 8665 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8666 VPIntrin.getOperand(0)->getType()); 8667 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8668 OpValues[2]); 8669 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8670 OpValues[2]); 8671 setValue(&VPIntrin, N); 8672 break; 8673 } 8674 case ISD::VP_ABS: 8675 case ISD::VP_CTLZ: 8676 case ISD::VP_CTLZ_ZERO_UNDEF: 8677 case ISD::VP_CTTZ: 8678 case ISD::VP_CTTZ_ZERO_UNDEF: 8679 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8680 case ISD::VP_CTTZ_ELTS: { 8681 SDValue Result = 8682 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8683 setValue(&VPIntrin, Result); 8684 break; 8685 } 8686 } 8687 } 8688 8689 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8690 const BasicBlock *EHPadBB, 8691 MCSymbol *&BeginLabel) { 8692 MachineFunction &MF = DAG.getMachineFunction(); 8693 8694 // Insert a label before the invoke call to mark the try range. This can be 8695 // used to detect deletion of the invoke via the MachineModuleInfo. 8696 BeginLabel = MF.getContext().createTempSymbol(); 8697 8698 // For SjLj, keep track of which landing pads go with which invokes 8699 // so as to maintain the ordering of pads in the LSDA. 8700 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite(); 8701 if (CallSiteIndex) { 8702 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8703 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex); 8704 8705 // Now that the call site is handled, stop tracking it. 8706 FuncInfo.setCurrentCallSite(0); 8707 } 8708 8709 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8710 } 8711 8712 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8713 const BasicBlock *EHPadBB, 8714 MCSymbol *BeginLabel) { 8715 assert(BeginLabel && "BeginLabel should've been set"); 8716 8717 MachineFunction &MF = DAG.getMachineFunction(); 8718 8719 // Insert a label at the end of the invoke call to mark the try range. This 8720 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8721 MCSymbol *EndLabel = MF.getContext().createTempSymbol(); 8722 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8723 8724 // Inform MachineModuleInfo of range. 8725 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8726 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8727 // actually use outlined funclets and their LSDA info style. 8728 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8729 assert(II && "II should've been set"); 8730 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8731 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8732 } else if (!isScopedEHPersonality(Pers)) { 8733 assert(EHPadBB); 8734 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel); 8735 } 8736 8737 return Chain; 8738 } 8739 8740 std::pair<SDValue, SDValue> 8741 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8742 const BasicBlock *EHPadBB) { 8743 MCSymbol *BeginLabel = nullptr; 8744 8745 if (EHPadBB) { 8746 // Both PendingLoads and PendingExports must be flushed here; 8747 // this call might not return. 8748 (void)getRoot(); 8749 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8750 CLI.setChain(getRoot()); 8751 } 8752 8753 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8754 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8755 8756 assert((CLI.IsTailCall || Result.second.getNode()) && 8757 "Non-null chain expected with non-tail call!"); 8758 assert((Result.second.getNode() || !Result.first.getNode()) && 8759 "Null value expected with tail call!"); 8760 8761 if (!Result.second.getNode()) { 8762 // As a special case, a null chain means that a tail call has been emitted 8763 // and the DAG root is already updated. 8764 HasTailCall = true; 8765 8766 // Since there's no actual continuation from this block, nothing can be 8767 // relying on us setting vregs for them. 8768 PendingExports.clear(); 8769 } else { 8770 DAG.setRoot(Result.second); 8771 } 8772 8773 if (EHPadBB) { 8774 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8775 BeginLabel)); 8776 Result.second = getRoot(); 8777 } 8778 8779 return Result; 8780 } 8781 8782 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8783 bool isTailCall, bool isMustTailCall, 8784 const BasicBlock *EHPadBB, 8785 const TargetLowering::PtrAuthInfo *PAI) { 8786 auto &DL = DAG.getDataLayout(); 8787 FunctionType *FTy = CB.getFunctionType(); 8788 Type *RetTy = CB.getType(); 8789 8790 TargetLowering::ArgListTy Args; 8791 Args.reserve(CB.arg_size()); 8792 8793 const Value *SwiftErrorVal = nullptr; 8794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8795 8796 if (isTailCall) { 8797 // Avoid emitting tail calls in functions with the disable-tail-calls 8798 // attribute. 8799 auto *Caller = CB.getParent()->getParent(); 8800 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8801 "true" && !isMustTailCall) 8802 isTailCall = false; 8803 8804 // We can't tail call inside a function with a swifterror argument. Lowering 8805 // does not support this yet. It would have to move into the swifterror 8806 // register before the call. 8807 if (TLI.supportSwiftError() && 8808 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8809 isTailCall = false; 8810 } 8811 8812 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8813 TargetLowering::ArgListEntry Entry; 8814 const Value *V = *I; 8815 8816 // Skip empty types 8817 if (V->getType()->isEmptyTy()) 8818 continue; 8819 8820 SDValue ArgNode = getValue(V); 8821 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8822 8823 Entry.setAttributes(&CB, I - CB.arg_begin()); 8824 8825 // Use swifterror virtual register as input to the call. 8826 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8827 SwiftErrorVal = V; 8828 // We find the virtual register for the actual swifterror argument. 8829 // Instead of using the Value, we use the virtual register instead. 8830 Entry.Node = 8831 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8832 EVT(TLI.getPointerTy(DL))); 8833 } 8834 8835 Args.push_back(Entry); 8836 8837 // If we have an explicit sret argument that is an Instruction, (i.e., it 8838 // might point to function-local memory), we can't meaningfully tail-call. 8839 if (Entry.IsSRet && isa<Instruction>(V)) 8840 isTailCall = false; 8841 } 8842 8843 // If call site has a cfguardtarget operand bundle, create and add an 8844 // additional ArgListEntry. 8845 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8846 TargetLowering::ArgListEntry Entry; 8847 Value *V = Bundle->Inputs[0]; 8848 SDValue ArgNode = getValue(V); 8849 Entry.Node = ArgNode; 8850 Entry.Ty = V->getType(); 8851 Entry.IsCFGuardTarget = true; 8852 Args.push_back(Entry); 8853 } 8854 8855 // Check if target-independent constraints permit a tail call here. 8856 // Target-dependent constraints are checked within TLI->LowerCallTo. 8857 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8858 isTailCall = false; 8859 8860 // Disable tail calls if there is an swifterror argument. Targets have not 8861 // been updated to support tail calls. 8862 if (TLI.supportSwiftError() && SwiftErrorVal) 8863 isTailCall = false; 8864 8865 ConstantInt *CFIType = nullptr; 8866 if (CB.isIndirectCall()) { 8867 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8868 if (!TLI.supportKCFIBundles()) 8869 report_fatal_error( 8870 "Target doesn't support calls with kcfi operand bundles."); 8871 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8872 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8873 } 8874 } 8875 8876 SDValue ConvControlToken; 8877 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8878 auto *Token = Bundle->Inputs[0].get(); 8879 ConvControlToken = getValue(Token); 8880 } 8881 8882 TargetLowering::CallLoweringInfo CLI(DAG); 8883 CLI.setDebugLoc(getCurSDLoc()) 8884 .setChain(getRoot()) 8885 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8886 .setTailCall(isTailCall) 8887 .setConvergent(CB.isConvergent()) 8888 .setIsPreallocated( 8889 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8890 .setCFIType(CFIType) 8891 .setConvergenceControlToken(ConvControlToken); 8892 8893 // Set the pointer authentication info if we have it. 8894 if (PAI) { 8895 if (!TLI.supportPtrAuthBundles()) 8896 report_fatal_error( 8897 "This target doesn't support calls with ptrauth operand bundles."); 8898 CLI.setPtrAuth(*PAI); 8899 } 8900 8901 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8902 8903 if (Result.first.getNode()) { 8904 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8905 setValue(&CB, Result.first); 8906 } 8907 8908 // The last element of CLI.InVals has the SDValue for swifterror return. 8909 // Here we copy it to a virtual register and update SwiftErrorMap for 8910 // book-keeping. 8911 if (SwiftErrorVal && TLI.supportSwiftError()) { 8912 // Get the last element of InVals. 8913 SDValue Src = CLI.InVals.back(); 8914 Register VReg = 8915 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8916 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8917 DAG.setRoot(CopyNode); 8918 } 8919 } 8920 8921 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8922 SelectionDAGBuilder &Builder) { 8923 // Check to see if this load can be trivially constant folded, e.g. if the 8924 // input is from a string literal. 8925 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8926 // Cast pointer to the type we really want to load. 8927 Type *LoadTy = 8928 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8929 if (LoadVT.isVector()) 8930 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8931 8932 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8933 PointerType::getUnqual(LoadTy)); 8934 8935 if (const Constant *LoadCst = 8936 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8937 LoadTy, Builder.DAG.getDataLayout())) 8938 return Builder.getValue(LoadCst); 8939 } 8940 8941 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8942 // still constant memory, the input chain can be the entry node. 8943 SDValue Root; 8944 bool ConstantMemory = false; 8945 8946 // Do not serialize (non-volatile) loads of constant memory with anything. 8947 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8948 Root = Builder.DAG.getEntryNode(); 8949 ConstantMemory = true; 8950 } else { 8951 // Do not serialize non-volatile loads against each other. 8952 Root = Builder.DAG.getRoot(); 8953 } 8954 8955 SDValue Ptr = Builder.getValue(PtrVal); 8956 SDValue LoadVal = 8957 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8958 MachinePointerInfo(PtrVal), Align(1)); 8959 8960 if (!ConstantMemory) 8961 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8962 return LoadVal; 8963 } 8964 8965 /// Record the value for an instruction that produces an integer result, 8966 /// converting the type where necessary. 8967 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8968 SDValue Value, 8969 bool IsSigned) { 8970 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8971 I.getType(), true); 8972 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8973 setValue(&I, Value); 8974 } 8975 8976 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8977 /// true and lower it. Otherwise return false, and it will be lowered like a 8978 /// normal call. 8979 /// The caller already checked that \p I calls the appropriate LibFunc with a 8980 /// correct prototype. 8981 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8982 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8983 const Value *Size = I.getArgOperand(2); 8984 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8985 if (CSize && CSize->getZExtValue() == 0) { 8986 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8987 I.getType(), true); 8988 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8989 return true; 8990 } 8991 8992 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8993 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8994 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8995 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8996 if (Res.first.getNode()) { 8997 processIntegerCallValue(I, Res.first, true); 8998 PendingLoads.push_back(Res.second); 8999 return true; 9000 } 9001 9002 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 9003 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 9004 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 9005 return false; 9006 9007 // If the target has a fast compare for the given size, it will return a 9008 // preferred load type for that size. Require that the load VT is legal and 9009 // that the target supports unaligned loads of that type. Otherwise, return 9010 // INVALID. 9011 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 9012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9013 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 9014 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 9015 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 9016 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 9017 // TODO: Check alignment of src and dest ptrs. 9018 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 9019 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 9020 if (!TLI.isTypeLegal(LVT) || 9021 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 9022 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 9023 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 9024 } 9025 9026 return LVT; 9027 }; 9028 9029 // This turns into unaligned loads. We only do this if the target natively 9030 // supports the MVT we'll be loading or if it is small enough (<= 4) that 9031 // we'll only produce a small number of byte loads. 9032 MVT LoadVT; 9033 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 9034 switch (NumBitsToCompare) { 9035 default: 9036 return false; 9037 case 16: 9038 LoadVT = MVT::i16; 9039 break; 9040 case 32: 9041 LoadVT = MVT::i32; 9042 break; 9043 case 64: 9044 case 128: 9045 case 256: 9046 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 9047 break; 9048 } 9049 9050 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 9051 return false; 9052 9053 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 9054 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 9055 9056 // Bitcast to a wide integer type if the loads are vectors. 9057 if (LoadVT.isVector()) { 9058 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 9059 LoadL = DAG.getBitcast(CmpVT, LoadL); 9060 LoadR = DAG.getBitcast(CmpVT, LoadR); 9061 } 9062 9063 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 9064 processIntegerCallValue(I, Cmp, false); 9065 return true; 9066 } 9067 9068 /// See if we can lower a memchr call into an optimized form. If so, return 9069 /// true and lower it. Otherwise return false, and it will be lowered like a 9070 /// normal call. 9071 /// The caller already checked that \p I calls the appropriate LibFunc with a 9072 /// correct prototype. 9073 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 9074 const Value *Src = I.getArgOperand(0); 9075 const Value *Char = I.getArgOperand(1); 9076 const Value *Length = I.getArgOperand(2); 9077 9078 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9079 std::pair<SDValue, SDValue> Res = 9080 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 9081 getValue(Src), getValue(Char), getValue(Length), 9082 MachinePointerInfo(Src)); 9083 if (Res.first.getNode()) { 9084 setValue(&I, Res.first); 9085 PendingLoads.push_back(Res.second); 9086 return true; 9087 } 9088 9089 return false; 9090 } 9091 9092 /// See if we can lower a mempcpy call into an optimized form. If so, return 9093 /// true and lower it. Otherwise return false, and it will be lowered like a 9094 /// normal call. 9095 /// The caller already checked that \p I calls the appropriate LibFunc with a 9096 /// correct prototype. 9097 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 9098 SDValue Dst = getValue(I.getArgOperand(0)); 9099 SDValue Src = getValue(I.getArgOperand(1)); 9100 SDValue Size = getValue(I.getArgOperand(2)); 9101 9102 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 9103 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 9104 // DAG::getMemcpy needs Alignment to be defined. 9105 Align Alignment = std::min(DstAlign, SrcAlign); 9106 9107 SDLoc sdl = getCurSDLoc(); 9108 9109 // In the mempcpy context we need to pass in a false value for isTailCall 9110 // because the return pointer needs to be adjusted by the size of 9111 // the copied memory. 9112 SDValue Root = getMemoryRoot(); 9113 SDValue MC = DAG.getMemcpy( 9114 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr, 9115 std::nullopt, MachinePointerInfo(I.getArgOperand(0)), 9116 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata()); 9117 assert(MC.getNode() != nullptr && 9118 "** memcpy should not be lowered as TailCall in mempcpy context **"); 9119 DAG.setRoot(MC); 9120 9121 // Check if Size needs to be truncated or extended. 9122 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9123 9124 // Adjust return pointer to point just past the last dst byte. 9125 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9126 Dst, Size); 9127 setValue(&I, DstPlusSize); 9128 return true; 9129 } 9130 9131 /// See if we can lower a strcpy call into an optimized form. If so, return 9132 /// true and lower it, otherwise return false and it will be lowered like a 9133 /// normal call. 9134 /// The caller already checked that \p I calls the appropriate LibFunc with a 9135 /// correct prototype. 9136 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9137 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9138 9139 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9140 std::pair<SDValue, SDValue> Res = 9141 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9142 getValue(Arg0), getValue(Arg1), 9143 MachinePointerInfo(Arg0), 9144 MachinePointerInfo(Arg1), isStpcpy); 9145 if (Res.first.getNode()) { 9146 setValue(&I, Res.first); 9147 DAG.setRoot(Res.second); 9148 return true; 9149 } 9150 9151 return false; 9152 } 9153 9154 /// See if we can lower a strcmp call into an optimized form. If so, return 9155 /// true and lower it, otherwise return false and it will be lowered like a 9156 /// normal call. 9157 /// The caller already checked that \p I calls the appropriate LibFunc with a 9158 /// correct prototype. 9159 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9160 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9161 9162 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9163 std::pair<SDValue, SDValue> Res = 9164 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9165 getValue(Arg0), getValue(Arg1), 9166 MachinePointerInfo(Arg0), 9167 MachinePointerInfo(Arg1)); 9168 if (Res.first.getNode()) { 9169 processIntegerCallValue(I, Res.first, true); 9170 PendingLoads.push_back(Res.second); 9171 return true; 9172 } 9173 9174 return false; 9175 } 9176 9177 /// See if we can lower a strlen call into an optimized form. If so, return 9178 /// true and lower it, otherwise return false and it will be lowered like a 9179 /// normal call. 9180 /// The caller already checked that \p I calls the appropriate LibFunc with a 9181 /// correct prototype. 9182 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9183 const Value *Arg0 = I.getArgOperand(0); 9184 9185 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9186 std::pair<SDValue, SDValue> Res = 9187 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9188 getValue(Arg0), MachinePointerInfo(Arg0)); 9189 if (Res.first.getNode()) { 9190 processIntegerCallValue(I, Res.first, false); 9191 PendingLoads.push_back(Res.second); 9192 return true; 9193 } 9194 9195 return false; 9196 } 9197 9198 /// See if we can lower a strnlen call into an optimized form. If so, return 9199 /// true and lower it, otherwise return false and it will be lowered like a 9200 /// normal call. 9201 /// The caller already checked that \p I calls the appropriate LibFunc with a 9202 /// correct prototype. 9203 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9204 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9205 9206 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9207 std::pair<SDValue, SDValue> Res = 9208 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9209 getValue(Arg0), getValue(Arg1), 9210 MachinePointerInfo(Arg0)); 9211 if (Res.first.getNode()) { 9212 processIntegerCallValue(I, Res.first, false); 9213 PendingLoads.push_back(Res.second); 9214 return true; 9215 } 9216 9217 return false; 9218 } 9219 9220 /// See if we can lower a unary floating-point operation into an SDNode with 9221 /// the specified Opcode. If so, return true and lower it, otherwise return 9222 /// false and it will be lowered like a normal call. 9223 /// The caller already checked that \p I calls the appropriate LibFunc with a 9224 /// correct prototype. 9225 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9226 unsigned Opcode) { 9227 // We already checked this call's prototype; verify it doesn't modify errno. 9228 if (!I.onlyReadsMemory()) 9229 return false; 9230 9231 SDNodeFlags Flags; 9232 Flags.copyFMF(cast<FPMathOperator>(I)); 9233 9234 SDValue Tmp = getValue(I.getArgOperand(0)); 9235 setValue(&I, 9236 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9237 return true; 9238 } 9239 9240 /// See if we can lower a binary floating-point operation into an SDNode with 9241 /// the specified Opcode. If so, return true and lower it. Otherwise return 9242 /// false, and it will be lowered like a normal call. 9243 /// The caller already checked that \p I calls the appropriate LibFunc with a 9244 /// correct prototype. 9245 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9246 unsigned Opcode) { 9247 // We already checked this call's prototype; verify it doesn't modify errno. 9248 if (!I.onlyReadsMemory()) 9249 return false; 9250 9251 SDNodeFlags Flags; 9252 Flags.copyFMF(cast<FPMathOperator>(I)); 9253 9254 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9255 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9256 EVT VT = Tmp0.getValueType(); 9257 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9258 return true; 9259 } 9260 9261 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9262 // Handle inline assembly differently. 9263 if (I.isInlineAsm()) { 9264 visitInlineAsm(I); 9265 return; 9266 } 9267 9268 diagnoseDontCall(I); 9269 9270 if (Function *F = I.getCalledFunction()) { 9271 if (F->isDeclaration()) { 9272 // Is this an LLVM intrinsic or a target-specific intrinsic? 9273 unsigned IID = F->getIntrinsicID(); 9274 if (!IID) 9275 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9276 IID = II->getIntrinsicID(F); 9277 9278 if (IID) { 9279 visitIntrinsicCall(I, IID); 9280 return; 9281 } 9282 } 9283 9284 // Check for well-known libc/libm calls. If the function is internal, it 9285 // can't be a library call. Don't do the check if marked as nobuiltin for 9286 // some reason or the call site requires strict floating point semantics. 9287 LibFunc Func; 9288 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9289 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9290 LibInfo->hasOptimizedCodeGen(Func)) { 9291 switch (Func) { 9292 default: break; 9293 case LibFunc_bcmp: 9294 if (visitMemCmpBCmpCall(I)) 9295 return; 9296 break; 9297 case LibFunc_copysign: 9298 case LibFunc_copysignf: 9299 case LibFunc_copysignl: 9300 // We already checked this call's prototype; verify it doesn't modify 9301 // errno. 9302 if (I.onlyReadsMemory()) { 9303 SDValue LHS = getValue(I.getArgOperand(0)); 9304 SDValue RHS = getValue(I.getArgOperand(1)); 9305 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9306 LHS.getValueType(), LHS, RHS)); 9307 return; 9308 } 9309 break; 9310 case LibFunc_fabs: 9311 case LibFunc_fabsf: 9312 case LibFunc_fabsl: 9313 if (visitUnaryFloatCall(I, ISD::FABS)) 9314 return; 9315 break; 9316 case LibFunc_fmin: 9317 case LibFunc_fminf: 9318 case LibFunc_fminl: 9319 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9320 return; 9321 break; 9322 case LibFunc_fmax: 9323 case LibFunc_fmaxf: 9324 case LibFunc_fmaxl: 9325 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9326 return; 9327 break; 9328 case LibFunc_fminimum_num: 9329 case LibFunc_fminimum_numf: 9330 case LibFunc_fminimum_numl: 9331 if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM)) 9332 return; 9333 break; 9334 case LibFunc_fmaximum_num: 9335 case LibFunc_fmaximum_numf: 9336 case LibFunc_fmaximum_numl: 9337 if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM)) 9338 return; 9339 break; 9340 case LibFunc_sin: 9341 case LibFunc_sinf: 9342 case LibFunc_sinl: 9343 if (visitUnaryFloatCall(I, ISD::FSIN)) 9344 return; 9345 break; 9346 case LibFunc_cos: 9347 case LibFunc_cosf: 9348 case LibFunc_cosl: 9349 if (visitUnaryFloatCall(I, ISD::FCOS)) 9350 return; 9351 break; 9352 case LibFunc_tan: 9353 case LibFunc_tanf: 9354 case LibFunc_tanl: 9355 if (visitUnaryFloatCall(I, ISD::FTAN)) 9356 return; 9357 break; 9358 case LibFunc_asin: 9359 case LibFunc_asinf: 9360 case LibFunc_asinl: 9361 if (visitUnaryFloatCall(I, ISD::FASIN)) 9362 return; 9363 break; 9364 case LibFunc_acos: 9365 case LibFunc_acosf: 9366 case LibFunc_acosl: 9367 if (visitUnaryFloatCall(I, ISD::FACOS)) 9368 return; 9369 break; 9370 case LibFunc_atan: 9371 case LibFunc_atanf: 9372 case LibFunc_atanl: 9373 if (visitUnaryFloatCall(I, ISD::FATAN)) 9374 return; 9375 break; 9376 case LibFunc_atan2: 9377 case LibFunc_atan2f: 9378 case LibFunc_atan2l: 9379 if (visitBinaryFloatCall(I, ISD::FATAN2)) 9380 return; 9381 break; 9382 case LibFunc_sinh: 9383 case LibFunc_sinhf: 9384 case LibFunc_sinhl: 9385 if (visitUnaryFloatCall(I, ISD::FSINH)) 9386 return; 9387 break; 9388 case LibFunc_cosh: 9389 case LibFunc_coshf: 9390 case LibFunc_coshl: 9391 if (visitUnaryFloatCall(I, ISD::FCOSH)) 9392 return; 9393 break; 9394 case LibFunc_tanh: 9395 case LibFunc_tanhf: 9396 case LibFunc_tanhl: 9397 if (visitUnaryFloatCall(I, ISD::FTANH)) 9398 return; 9399 break; 9400 case LibFunc_sqrt: 9401 case LibFunc_sqrtf: 9402 case LibFunc_sqrtl: 9403 case LibFunc_sqrt_finite: 9404 case LibFunc_sqrtf_finite: 9405 case LibFunc_sqrtl_finite: 9406 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9407 return; 9408 break; 9409 case LibFunc_floor: 9410 case LibFunc_floorf: 9411 case LibFunc_floorl: 9412 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9413 return; 9414 break; 9415 case LibFunc_nearbyint: 9416 case LibFunc_nearbyintf: 9417 case LibFunc_nearbyintl: 9418 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9419 return; 9420 break; 9421 case LibFunc_ceil: 9422 case LibFunc_ceilf: 9423 case LibFunc_ceill: 9424 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9425 return; 9426 break; 9427 case LibFunc_rint: 9428 case LibFunc_rintf: 9429 case LibFunc_rintl: 9430 if (visitUnaryFloatCall(I, ISD::FRINT)) 9431 return; 9432 break; 9433 case LibFunc_round: 9434 case LibFunc_roundf: 9435 case LibFunc_roundl: 9436 if (visitUnaryFloatCall(I, ISD::FROUND)) 9437 return; 9438 break; 9439 case LibFunc_trunc: 9440 case LibFunc_truncf: 9441 case LibFunc_truncl: 9442 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9443 return; 9444 break; 9445 case LibFunc_log2: 9446 case LibFunc_log2f: 9447 case LibFunc_log2l: 9448 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9449 return; 9450 break; 9451 case LibFunc_exp2: 9452 case LibFunc_exp2f: 9453 case LibFunc_exp2l: 9454 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9455 return; 9456 break; 9457 case LibFunc_exp10: 9458 case LibFunc_exp10f: 9459 case LibFunc_exp10l: 9460 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9461 return; 9462 break; 9463 case LibFunc_ldexp: 9464 case LibFunc_ldexpf: 9465 case LibFunc_ldexpl: 9466 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9467 return; 9468 break; 9469 case LibFunc_memcmp: 9470 if (visitMemCmpBCmpCall(I)) 9471 return; 9472 break; 9473 case LibFunc_mempcpy: 9474 if (visitMemPCpyCall(I)) 9475 return; 9476 break; 9477 case LibFunc_memchr: 9478 if (visitMemChrCall(I)) 9479 return; 9480 break; 9481 case LibFunc_strcpy: 9482 if (visitStrCpyCall(I, false)) 9483 return; 9484 break; 9485 case LibFunc_stpcpy: 9486 if (visitStrCpyCall(I, true)) 9487 return; 9488 break; 9489 case LibFunc_strcmp: 9490 if (visitStrCmpCall(I)) 9491 return; 9492 break; 9493 case LibFunc_strlen: 9494 if (visitStrLenCall(I)) 9495 return; 9496 break; 9497 case LibFunc_strnlen: 9498 if (visitStrNLenCall(I)) 9499 return; 9500 break; 9501 } 9502 } 9503 } 9504 9505 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9506 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9507 return; 9508 } 9509 9510 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9511 // have to do anything here to lower funclet bundles. 9512 // CFGuardTarget bundles are lowered in LowerCallTo. 9513 assert(!I.hasOperandBundlesOtherThan( 9514 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9515 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9516 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9517 LLVMContext::OB_convergencectrl}) && 9518 "Cannot lower calls with arbitrary operand bundles!"); 9519 9520 SDValue Callee = getValue(I.getCalledOperand()); 9521 9522 if (I.hasDeoptState()) 9523 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9524 else 9525 // Check if we can potentially perform a tail call. More detailed checking 9526 // is be done within LowerCallTo, after more information about the call is 9527 // known. 9528 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9529 } 9530 9531 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9532 const CallBase &CB, const BasicBlock *EHPadBB) { 9533 auto PAB = CB.getOperandBundle("ptrauth"); 9534 const Value *CalleeV = CB.getCalledOperand(); 9535 9536 // Gather the call ptrauth data from the operand bundle: 9537 // [ i32 <key>, i64 <discriminator> ] 9538 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9539 const Value *Discriminator = PAB->Inputs[1]; 9540 9541 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9542 assert(Discriminator->getType()->isIntegerTy(64) && 9543 "Invalid ptrauth discriminator"); 9544 9545 // Look through ptrauth constants to find the raw callee. 9546 // Do a direct unauthenticated call if we found it and everything matches. 9547 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV)) 9548 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator, 9549 DAG.getDataLayout())) 9550 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(), 9551 CB.isMustTailCall(), EHPadBB); 9552 9553 // Functions should never be ptrauth-called directly. 9554 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9555 9556 // Otherwise, do an authenticated indirect call. 9557 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9558 getValue(Discriminator)}; 9559 9560 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9561 EHPadBB, &PAI); 9562 } 9563 9564 namespace { 9565 9566 /// AsmOperandInfo - This contains information for each constraint that we are 9567 /// lowering. 9568 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9569 public: 9570 /// CallOperand - If this is the result output operand or a clobber 9571 /// this is null, otherwise it is the incoming operand to the CallInst. 9572 /// This gets modified as the asm is processed. 9573 SDValue CallOperand; 9574 9575 /// AssignedRegs - If this is a register or register class operand, this 9576 /// contains the set of register corresponding to the operand. 9577 RegsForValue AssignedRegs; 9578 9579 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9580 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9581 } 9582 9583 /// Whether or not this operand accesses memory 9584 bool hasMemory(const TargetLowering &TLI) const { 9585 // Indirect operand accesses access memory. 9586 if (isIndirect) 9587 return true; 9588 9589 for (const auto &Code : Codes) 9590 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9591 return true; 9592 9593 return false; 9594 } 9595 }; 9596 9597 9598 } // end anonymous namespace 9599 9600 /// Make sure that the output operand \p OpInfo and its corresponding input 9601 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9602 /// out). 9603 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9604 SDISelAsmOperandInfo &MatchingOpInfo, 9605 SelectionDAG &DAG) { 9606 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9607 return; 9608 9609 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9610 const auto &TLI = DAG.getTargetLoweringInfo(); 9611 9612 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9613 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9614 OpInfo.ConstraintVT); 9615 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9616 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9617 MatchingOpInfo.ConstraintVT); 9618 const bool OutOpIsIntOrFP = 9619 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint(); 9620 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() || 9621 MatchingOpInfo.ConstraintVT.isFloatingPoint(); 9622 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) { 9623 // FIXME: error out in a more elegant fashion 9624 report_fatal_error("Unsupported asm: input constraint" 9625 " with a matching output constraint of" 9626 " incompatible type!"); 9627 } 9628 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9629 } 9630 9631 /// Get a direct memory input to behave well as an indirect operand. 9632 /// This may introduce stores, hence the need for a \p Chain. 9633 /// \return The (possibly updated) chain. 9634 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9635 SDISelAsmOperandInfo &OpInfo, 9636 SelectionDAG &DAG) { 9637 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9638 9639 // If we don't have an indirect input, put it in the constpool if we can, 9640 // otherwise spill it to a stack slot. 9641 // TODO: This isn't quite right. We need to handle these according to 9642 // the addressing mode that the constraint wants. Also, this may take 9643 // an additional register for the computation and we don't want that 9644 // either. 9645 9646 // If the operand is a float, integer, or vector constant, spill to a 9647 // constant pool entry to get its address. 9648 const Value *OpVal = OpInfo.CallOperandVal; 9649 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9650 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9651 OpInfo.CallOperand = DAG.getConstantPool( 9652 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9653 return Chain; 9654 } 9655 9656 // Otherwise, create a stack slot and emit a store to it before the asm. 9657 Type *Ty = OpVal->getType(); 9658 auto &DL = DAG.getDataLayout(); 9659 TypeSize TySize = DL.getTypeAllocSize(Ty); 9660 MachineFunction &MF = DAG.getMachineFunction(); 9661 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 9662 int StackID = 0; 9663 if (TySize.isScalable()) 9664 StackID = TFI->getStackIDForScalableVectors(); 9665 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(), 9666 DL.getPrefTypeAlign(Ty), false, 9667 nullptr, StackID); 9668 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9669 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9670 MachinePointerInfo::getFixedStack(MF, SSFI), 9671 TLI.getMemValueType(DL, Ty)); 9672 OpInfo.CallOperand = StackSlot; 9673 9674 return Chain; 9675 } 9676 9677 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9678 /// specified operand. We prefer to assign virtual registers, to allow the 9679 /// register allocator to handle the assignment process. However, if the asm 9680 /// uses features that we can't model on machineinstrs, we have SDISel do the 9681 /// allocation. This produces generally horrible, but correct, code. 9682 /// 9683 /// OpInfo describes the operand 9684 /// RefOpInfo describes the matching operand if any, the operand otherwise 9685 static std::optional<unsigned> 9686 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9687 SDISelAsmOperandInfo &OpInfo, 9688 SDISelAsmOperandInfo &RefOpInfo) { 9689 LLVMContext &Context = *DAG.getContext(); 9690 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9691 9692 MachineFunction &MF = DAG.getMachineFunction(); 9693 SmallVector<Register, 4> Regs; 9694 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9695 9696 // No work to do for memory/address operands. 9697 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9698 OpInfo.ConstraintType == TargetLowering::C_Address) 9699 return std::nullopt; 9700 9701 // If this is a constraint for a single physreg, or a constraint for a 9702 // register class, find it. 9703 unsigned AssignedReg; 9704 const TargetRegisterClass *RC; 9705 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9706 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9707 // RC is unset only on failure. Return immediately. 9708 if (!RC) 9709 return std::nullopt; 9710 9711 // Get the actual register value type. This is important, because the user 9712 // may have asked for (e.g.) the AX register in i32 type. We need to 9713 // remember that AX is actually i16 to get the right extension. 9714 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9715 9716 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9717 // If this is an FP operand in an integer register (or visa versa), or more 9718 // generally if the operand value disagrees with the register class we plan 9719 // to stick it in, fix the operand type. 9720 // 9721 // If this is an input value, the bitcast to the new type is done now. 9722 // Bitcast for output value is done at the end of visitInlineAsm(). 9723 if ((OpInfo.Type == InlineAsm::isOutput || 9724 OpInfo.Type == InlineAsm::isInput) && 9725 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9726 // Try to convert to the first EVT that the reg class contains. If the 9727 // types are identical size, use a bitcast to convert (e.g. two differing 9728 // vector types). Note: output bitcast is done at the end of 9729 // visitInlineAsm(). 9730 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9731 // Exclude indirect inputs while they are unsupported because the code 9732 // to perform the load is missing and thus OpInfo.CallOperand still 9733 // refers to the input address rather than the pointed-to value. 9734 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9735 OpInfo.CallOperand = 9736 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9737 OpInfo.ConstraintVT = RegVT; 9738 // If the operand is an FP value and we want it in integer registers, 9739 // use the corresponding integer type. This turns an f64 value into 9740 // i64, which can be passed with two i32 values on a 32-bit machine. 9741 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9742 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9743 if (OpInfo.Type == InlineAsm::isInput) 9744 OpInfo.CallOperand = 9745 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9746 OpInfo.ConstraintVT = VT; 9747 } 9748 } 9749 } 9750 9751 // No need to allocate a matching input constraint since the constraint it's 9752 // matching to has already been allocated. 9753 if (OpInfo.isMatchingInputConstraint()) 9754 return std::nullopt; 9755 9756 EVT ValueVT = OpInfo.ConstraintVT; 9757 if (OpInfo.ConstraintVT == MVT::Other) 9758 ValueVT = RegVT; 9759 9760 // Initialize NumRegs. 9761 unsigned NumRegs = 1; 9762 if (OpInfo.ConstraintVT != MVT::Other) 9763 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9764 9765 // If this is a constraint for a specific physical register, like {r17}, 9766 // assign it now. 9767 9768 // If this associated to a specific register, initialize iterator to correct 9769 // place. If virtual, make sure we have enough registers 9770 9771 // Initialize iterator if necessary 9772 TargetRegisterClass::iterator I = RC->begin(); 9773 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9774 9775 // Do not check for single registers. 9776 if (AssignedReg) { 9777 I = std::find(I, RC->end(), AssignedReg); 9778 if (I == RC->end()) { 9779 // RC does not contain the selected register, which indicates a 9780 // mismatch between the register and the required type/bitwidth. 9781 return {AssignedReg}; 9782 } 9783 } 9784 9785 for (; NumRegs; --NumRegs, ++I) { 9786 assert(I != RC->end() && "Ran out of registers to allocate!"); 9787 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9788 Regs.push_back(R); 9789 } 9790 9791 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9792 return std::nullopt; 9793 } 9794 9795 static unsigned 9796 findMatchingInlineAsmOperand(unsigned OperandNo, 9797 const std::vector<SDValue> &AsmNodeOperands) { 9798 // Scan until we find the definition we already emitted of this operand. 9799 unsigned CurOp = InlineAsm::Op_FirstOperand; 9800 for (; OperandNo; --OperandNo) { 9801 // Advance to the next operand. 9802 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9803 const InlineAsm::Flag F(OpFlag); 9804 assert( 9805 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9806 "Skipped past definitions?"); 9807 CurOp += F.getNumOperandRegisters() + 1; 9808 } 9809 return CurOp; 9810 } 9811 9812 namespace { 9813 9814 class ExtraFlags { 9815 unsigned Flags = 0; 9816 9817 public: 9818 explicit ExtraFlags(const CallBase &Call) { 9819 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9820 if (IA->hasSideEffects()) 9821 Flags |= InlineAsm::Extra_HasSideEffects; 9822 if (IA->isAlignStack()) 9823 Flags |= InlineAsm::Extra_IsAlignStack; 9824 if (Call.isConvergent()) 9825 Flags |= InlineAsm::Extra_IsConvergent; 9826 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9827 } 9828 9829 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9830 // Ideally, we would only check against memory constraints. However, the 9831 // meaning of an Other constraint can be target-specific and we can't easily 9832 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9833 // for Other constraints as well. 9834 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9835 OpInfo.ConstraintType == TargetLowering::C_Other) { 9836 if (OpInfo.Type == InlineAsm::isInput) 9837 Flags |= InlineAsm::Extra_MayLoad; 9838 else if (OpInfo.Type == InlineAsm::isOutput) 9839 Flags |= InlineAsm::Extra_MayStore; 9840 else if (OpInfo.Type == InlineAsm::isClobber) 9841 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9842 } 9843 } 9844 9845 unsigned get() const { return Flags; } 9846 }; 9847 9848 } // end anonymous namespace 9849 9850 static bool isFunction(SDValue Op) { 9851 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9852 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9853 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9854 9855 // In normal "call dllimport func" instruction (non-inlineasm) it force 9856 // indirect access by specifing call opcode. And usually specially print 9857 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9858 // not do in this way now. (In fact, this is similar with "Data Access" 9859 // action). So here we ignore dllimport function. 9860 if (Fn && !Fn->hasDLLImportStorageClass()) 9861 return true; 9862 } 9863 } 9864 return false; 9865 } 9866 9867 /// visitInlineAsm - Handle a call to an InlineAsm object. 9868 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9869 const BasicBlock *EHPadBB) { 9870 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9871 9872 /// ConstraintOperands - Information about all of the constraints. 9873 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9874 9875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9876 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9877 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9878 9879 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9880 // AsmDialect, MayLoad, MayStore). 9881 bool HasSideEffect = IA->hasSideEffects(); 9882 ExtraFlags ExtraInfo(Call); 9883 9884 for (auto &T : TargetConstraints) { 9885 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9886 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9887 9888 if (OpInfo.CallOperandVal) 9889 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9890 9891 if (!HasSideEffect) 9892 HasSideEffect = OpInfo.hasMemory(TLI); 9893 9894 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9895 // FIXME: Could we compute this on OpInfo rather than T? 9896 9897 // Compute the constraint code and ConstraintType to use. 9898 TLI.ComputeConstraintToUse(T, SDValue()); 9899 9900 if (T.ConstraintType == TargetLowering::C_Immediate && 9901 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9902 // We've delayed emitting a diagnostic like the "n" constraint because 9903 // inlining could cause an integer showing up. 9904 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9905 "' expects an integer constant " 9906 "expression"); 9907 9908 ExtraInfo.update(T); 9909 } 9910 9911 // We won't need to flush pending loads if this asm doesn't touch 9912 // memory and is nonvolatile. 9913 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9914 9915 bool EmitEHLabels = isa<InvokeInst>(Call); 9916 if (EmitEHLabels) { 9917 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9918 } 9919 bool IsCallBr = isa<CallBrInst>(Call); 9920 9921 if (IsCallBr || EmitEHLabels) { 9922 // If this is a callbr or invoke we need to flush pending exports since 9923 // inlineasm_br and invoke are terminators. 9924 // We need to do this before nodes are glued to the inlineasm_br node. 9925 Chain = getControlRoot(); 9926 } 9927 9928 MCSymbol *BeginLabel = nullptr; 9929 if (EmitEHLabels) { 9930 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9931 } 9932 9933 int OpNo = -1; 9934 SmallVector<StringRef> AsmStrs; 9935 IA->collectAsmStrs(AsmStrs); 9936 9937 // Second pass over the constraints: compute which constraint option to use. 9938 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9939 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9940 OpNo++; 9941 9942 // If this is an output operand with a matching input operand, look up the 9943 // matching input. If their types mismatch, e.g. one is an integer, the 9944 // other is floating point, or their sizes are different, flag it as an 9945 // error. 9946 if (OpInfo.hasMatchingInput()) { 9947 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9948 patchMatchingInput(OpInfo, Input, DAG); 9949 } 9950 9951 // Compute the constraint code and ConstraintType to use. 9952 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9953 9954 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9955 OpInfo.Type == InlineAsm::isClobber) || 9956 OpInfo.ConstraintType == TargetLowering::C_Address) 9957 continue; 9958 9959 // In Linux PIC model, there are 4 cases about value/label addressing: 9960 // 9961 // 1: Function call or Label jmp inside the module. 9962 // 2: Data access (such as global variable, static variable) inside module. 9963 // 3: Function call or Label jmp outside the module. 9964 // 4: Data access (such as global variable) outside the module. 9965 // 9966 // Due to current llvm inline asm architecture designed to not "recognize" 9967 // the asm code, there are quite troubles for us to treat mem addressing 9968 // differently for same value/adress used in different instuctions. 9969 // For example, in pic model, call a func may in plt way or direclty 9970 // pc-related, but lea/mov a function adress may use got. 9971 // 9972 // Here we try to "recognize" function call for the case 1 and case 3 in 9973 // inline asm. And try to adjust the constraint for them. 9974 // 9975 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9976 // label, so here we don't handle jmp function label now, but we need to 9977 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9978 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9979 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9980 TM.getCodeModel() != CodeModel::Large) { 9981 OpInfo.isIndirect = false; 9982 OpInfo.ConstraintType = TargetLowering::C_Address; 9983 } 9984 9985 // If this is a memory input, and if the operand is not indirect, do what we 9986 // need to provide an address for the memory input. 9987 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9988 !OpInfo.isIndirect) { 9989 assert((OpInfo.isMultipleAlternative || 9990 (OpInfo.Type == InlineAsm::isInput)) && 9991 "Can only indirectify direct input operands!"); 9992 9993 // Memory operands really want the address of the value. 9994 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9995 9996 // There is no longer a Value* corresponding to this operand. 9997 OpInfo.CallOperandVal = nullptr; 9998 9999 // It is now an indirect operand. 10000 OpInfo.isIndirect = true; 10001 } 10002 10003 } 10004 10005 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 10006 std::vector<SDValue> AsmNodeOperands; 10007 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 10008 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 10009 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 10010 10011 // If we have a !srcloc metadata node associated with it, we want to attach 10012 // this to the ultimately generated inline asm machineinstr. To do this, we 10013 // pass in the third operand as this (potentially null) inline asm MDNode. 10014 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 10015 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 10016 10017 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 10018 // bits as operand 3. 10019 AsmNodeOperands.push_back(DAG.getTargetConstant( 10020 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10021 10022 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 10023 // this, assign virtual and physical registers for inputs and otput. 10024 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10025 // Assign Registers. 10026 SDISelAsmOperandInfo &RefOpInfo = 10027 OpInfo.isMatchingInputConstraint() 10028 ? ConstraintOperands[OpInfo.getMatchedOperand()] 10029 : OpInfo; 10030 const auto RegError = 10031 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 10032 if (RegError) { 10033 const MachineFunction &MF = DAG.getMachineFunction(); 10034 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10035 const char *RegName = TRI.getName(*RegError); 10036 emitInlineAsmError(Call, "register '" + Twine(RegName) + 10037 "' allocated for constraint '" + 10038 Twine(OpInfo.ConstraintCode) + 10039 "' does not match required type"); 10040 return; 10041 } 10042 10043 auto DetectWriteToReservedRegister = [&]() { 10044 const MachineFunction &MF = DAG.getMachineFunction(); 10045 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10046 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 10047 if (Register::isPhysicalRegister(Reg) && 10048 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 10049 const char *RegName = TRI.getName(Reg); 10050 emitInlineAsmError(Call, "write to reserved register '" + 10051 Twine(RegName) + "'"); 10052 return true; 10053 } 10054 } 10055 return false; 10056 }; 10057 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 10058 (OpInfo.Type == InlineAsm::isInput && 10059 !OpInfo.isMatchingInputConstraint())) && 10060 "Only address as input operand is allowed."); 10061 10062 switch (OpInfo.Type) { 10063 case InlineAsm::isOutput: 10064 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10065 const InlineAsm::ConstraintCode ConstraintID = 10066 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10067 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10068 "Failed to convert memory constraint code to constraint id."); 10069 10070 // Add information to the INLINEASM node to know about this output. 10071 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 10072 OpFlags.setMemConstraint(ConstraintID); 10073 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 10074 MVT::i32)); 10075 AsmNodeOperands.push_back(OpInfo.CallOperand); 10076 } else { 10077 // Otherwise, this outputs to a register (directly for C_Register / 10078 // C_RegisterClass, and a target-defined fashion for 10079 // C_Immediate/C_Other). Find a register that we can use. 10080 if (OpInfo.AssignedRegs.Regs.empty()) { 10081 emitInlineAsmError( 10082 Call, "couldn't allocate output register for constraint '" + 10083 Twine(OpInfo.ConstraintCode) + "'"); 10084 return; 10085 } 10086 10087 if (DetectWriteToReservedRegister()) 10088 return; 10089 10090 // Add information to the INLINEASM node to know that this register is 10091 // set. 10092 OpInfo.AssignedRegs.AddInlineAsmOperands( 10093 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 10094 : InlineAsm::Kind::RegDef, 10095 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 10096 } 10097 break; 10098 10099 case InlineAsm::isInput: 10100 case InlineAsm::isLabel: { 10101 SDValue InOperandVal = OpInfo.CallOperand; 10102 10103 if (OpInfo.isMatchingInputConstraint()) { 10104 // If this is required to match an output register we have already set, 10105 // just use its register. 10106 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 10107 AsmNodeOperands); 10108 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 10109 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 10110 if (OpInfo.isIndirect) { 10111 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 10112 emitInlineAsmError(Call, "inline asm not supported yet: " 10113 "don't know how to handle tied " 10114 "indirect register inputs"); 10115 return; 10116 } 10117 10118 SmallVector<Register, 4> Regs; 10119 MachineFunction &MF = DAG.getMachineFunction(); 10120 MachineRegisterInfo &MRI = MF.getRegInfo(); 10121 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10122 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 10123 Register TiedReg = R->getReg(); 10124 MVT RegVT = R->getSimpleValueType(0); 10125 const TargetRegisterClass *RC = 10126 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 10127 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 10128 : TRI.getMinimalPhysRegClass(TiedReg); 10129 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 10130 Regs.push_back(MRI.createVirtualRegister(RC)); 10131 10132 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 10133 10134 SDLoc dl = getCurSDLoc(); 10135 // Use the produced MatchedRegs object to 10136 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 10137 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 10138 OpInfo.getMatchedOperand(), dl, DAG, 10139 AsmNodeOperands); 10140 break; 10141 } 10142 10143 assert(Flag.isMemKind() && "Unknown matching constraint!"); 10144 assert(Flag.getNumOperandRegisters() == 1 && 10145 "Unexpected number of operands"); 10146 // Add information to the INLINEASM node to know about this input. 10147 // See InlineAsm.h isUseOperandTiedToDef. 10148 Flag.clearMemConstraint(); 10149 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 10150 AsmNodeOperands.push_back(DAG.getTargetConstant( 10151 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10152 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 10153 break; 10154 } 10155 10156 // Treat indirect 'X' constraint as memory. 10157 if (OpInfo.ConstraintType == TargetLowering::C_Other && 10158 OpInfo.isIndirect) 10159 OpInfo.ConstraintType = TargetLowering::C_Memory; 10160 10161 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 10162 OpInfo.ConstraintType == TargetLowering::C_Other) { 10163 std::vector<SDValue> Ops; 10164 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 10165 Ops, DAG); 10166 if (Ops.empty()) { 10167 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 10168 if (isa<ConstantSDNode>(InOperandVal)) { 10169 emitInlineAsmError(Call, "value out of range for constraint '" + 10170 Twine(OpInfo.ConstraintCode) + "'"); 10171 return; 10172 } 10173 10174 emitInlineAsmError(Call, 10175 "invalid operand for inline asm constraint '" + 10176 Twine(OpInfo.ConstraintCode) + "'"); 10177 return; 10178 } 10179 10180 // Add information to the INLINEASM node to know about this input. 10181 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 10182 AsmNodeOperands.push_back(DAG.getTargetConstant( 10183 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10184 llvm::append_range(AsmNodeOperands, Ops); 10185 break; 10186 } 10187 10188 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10189 assert((OpInfo.isIndirect || 10190 OpInfo.ConstraintType != TargetLowering::C_Memory) && 10191 "Operand must be indirect to be a mem!"); 10192 assert(InOperandVal.getValueType() == 10193 TLI.getPointerTy(DAG.getDataLayout()) && 10194 "Memory operands expect pointer values"); 10195 10196 const InlineAsm::ConstraintCode ConstraintID = 10197 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10198 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10199 "Failed to convert memory constraint code to constraint id."); 10200 10201 // Add information to the INLINEASM node to know about this input. 10202 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10203 ResOpType.setMemConstraint(ConstraintID); 10204 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10205 getCurSDLoc(), 10206 MVT::i32)); 10207 AsmNodeOperands.push_back(InOperandVal); 10208 break; 10209 } 10210 10211 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10212 const InlineAsm::ConstraintCode ConstraintID = 10213 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10214 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10215 "Failed to convert memory constraint code to constraint id."); 10216 10217 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10218 10219 SDValue AsmOp = InOperandVal; 10220 if (isFunction(InOperandVal)) { 10221 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10222 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10223 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10224 InOperandVal.getValueType(), 10225 GA->getOffset()); 10226 } 10227 10228 // Add information to the INLINEASM node to know about this input. 10229 ResOpType.setMemConstraint(ConstraintID); 10230 10231 AsmNodeOperands.push_back( 10232 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10233 10234 AsmNodeOperands.push_back(AsmOp); 10235 break; 10236 } 10237 10238 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10239 OpInfo.ConstraintType != TargetLowering::C_Register) { 10240 emitInlineAsmError(Call, "unknown asm constraint '" + 10241 Twine(OpInfo.ConstraintCode) + "'"); 10242 return; 10243 } 10244 10245 // TODO: Support this. 10246 if (OpInfo.isIndirect) { 10247 emitInlineAsmError( 10248 Call, "Don't know how to handle indirect register inputs yet " 10249 "for constraint '" + 10250 Twine(OpInfo.ConstraintCode) + "'"); 10251 return; 10252 } 10253 10254 // Copy the input into the appropriate registers. 10255 if (OpInfo.AssignedRegs.Regs.empty()) { 10256 emitInlineAsmError(Call, 10257 "couldn't allocate input reg for constraint '" + 10258 Twine(OpInfo.ConstraintCode) + "'"); 10259 return; 10260 } 10261 10262 if (DetectWriteToReservedRegister()) 10263 return; 10264 10265 SDLoc dl = getCurSDLoc(); 10266 10267 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10268 &Call); 10269 10270 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10271 0, dl, DAG, AsmNodeOperands); 10272 break; 10273 } 10274 case InlineAsm::isClobber: 10275 // Add the clobbered value to the operand list, so that the register 10276 // allocator is aware that the physreg got clobbered. 10277 if (!OpInfo.AssignedRegs.Regs.empty()) 10278 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10279 false, 0, getCurSDLoc(), DAG, 10280 AsmNodeOperands); 10281 break; 10282 } 10283 } 10284 10285 // Finish up input operands. Set the input chain and add the flag last. 10286 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10287 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10288 10289 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10290 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10291 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10292 Glue = Chain.getValue(1); 10293 10294 // Do additional work to generate outputs. 10295 10296 SmallVector<EVT, 1> ResultVTs; 10297 SmallVector<SDValue, 1> ResultValues; 10298 SmallVector<SDValue, 8> OutChains; 10299 10300 llvm::Type *CallResultType = Call.getType(); 10301 ArrayRef<Type *> ResultTypes; 10302 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10303 ResultTypes = StructResult->elements(); 10304 else if (!CallResultType->isVoidTy()) 10305 ResultTypes = ArrayRef(CallResultType); 10306 10307 auto CurResultType = ResultTypes.begin(); 10308 auto handleRegAssign = [&](SDValue V) { 10309 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10310 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10311 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10312 ++CurResultType; 10313 // If the type of the inline asm call site return value is different but has 10314 // same size as the type of the asm output bitcast it. One example of this 10315 // is for vectors with different width / number of elements. This can 10316 // happen for register classes that can contain multiple different value 10317 // types. The preg or vreg allocated may not have the same VT as was 10318 // expected. 10319 // 10320 // This can also happen for a return value that disagrees with the register 10321 // class it is put in, eg. a double in a general-purpose register on a 10322 // 32-bit machine. 10323 if (ResultVT != V.getValueType() && 10324 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10325 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10326 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10327 V.getValueType().isInteger()) { 10328 // If a result value was tied to an input value, the computed result 10329 // may have a wider width than the expected result. Extract the 10330 // relevant portion. 10331 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10332 } 10333 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10334 ResultVTs.push_back(ResultVT); 10335 ResultValues.push_back(V); 10336 }; 10337 10338 // Deal with output operands. 10339 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10340 if (OpInfo.Type == InlineAsm::isOutput) { 10341 SDValue Val; 10342 // Skip trivial output operands. 10343 if (OpInfo.AssignedRegs.Regs.empty()) 10344 continue; 10345 10346 switch (OpInfo.ConstraintType) { 10347 case TargetLowering::C_Register: 10348 case TargetLowering::C_RegisterClass: 10349 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10350 Chain, &Glue, &Call); 10351 break; 10352 case TargetLowering::C_Immediate: 10353 case TargetLowering::C_Other: 10354 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10355 OpInfo, DAG); 10356 break; 10357 case TargetLowering::C_Memory: 10358 break; // Already handled. 10359 case TargetLowering::C_Address: 10360 break; // Silence warning. 10361 case TargetLowering::C_Unknown: 10362 assert(false && "Unexpected unknown constraint"); 10363 } 10364 10365 // Indirect output manifest as stores. Record output chains. 10366 if (OpInfo.isIndirect) { 10367 const Value *Ptr = OpInfo.CallOperandVal; 10368 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10369 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10370 MachinePointerInfo(Ptr)); 10371 OutChains.push_back(Store); 10372 } else { 10373 // generate CopyFromRegs to associated registers. 10374 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10375 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10376 for (const SDValue &V : Val->op_values()) 10377 handleRegAssign(V); 10378 } else 10379 handleRegAssign(Val); 10380 } 10381 } 10382 } 10383 10384 // Set results. 10385 if (!ResultValues.empty()) { 10386 assert(CurResultType == ResultTypes.end() && 10387 "Mismatch in number of ResultTypes"); 10388 assert(ResultValues.size() == ResultTypes.size() && 10389 "Mismatch in number of output operands in asm result"); 10390 10391 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10392 DAG.getVTList(ResultVTs), ResultValues); 10393 setValue(&Call, V); 10394 } 10395 10396 // Collect store chains. 10397 if (!OutChains.empty()) 10398 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10399 10400 if (EmitEHLabels) { 10401 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10402 } 10403 10404 // Only Update Root if inline assembly has a memory effect. 10405 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10406 EmitEHLabels) 10407 DAG.setRoot(Chain); 10408 } 10409 10410 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10411 const Twine &Message) { 10412 LLVMContext &Ctx = *DAG.getContext(); 10413 Ctx.emitError(&Call, Message); 10414 10415 // Make sure we leave the DAG in a valid state 10416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10417 SmallVector<EVT, 1> ValueVTs; 10418 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10419 10420 if (ValueVTs.empty()) 10421 return; 10422 10423 SmallVector<SDValue, 1> Ops; 10424 for (const EVT &VT : ValueVTs) 10425 Ops.push_back(DAG.getUNDEF(VT)); 10426 10427 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10428 } 10429 10430 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10431 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10432 MVT::Other, getRoot(), 10433 getValue(I.getArgOperand(0)), 10434 DAG.getSrcValue(I.getArgOperand(0)))); 10435 } 10436 10437 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10439 const DataLayout &DL = DAG.getDataLayout(); 10440 SDValue V = DAG.getVAArg( 10441 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10442 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10443 DL.getABITypeAlign(I.getType()).value()); 10444 DAG.setRoot(V.getValue(1)); 10445 10446 if (I.getType()->isPointerTy()) 10447 V = DAG.getPtrExtOrTrunc( 10448 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10449 setValue(&I, V); 10450 } 10451 10452 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10453 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10454 MVT::Other, getRoot(), 10455 getValue(I.getArgOperand(0)), 10456 DAG.getSrcValue(I.getArgOperand(0)))); 10457 } 10458 10459 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10460 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10461 MVT::Other, getRoot(), 10462 getValue(I.getArgOperand(0)), 10463 getValue(I.getArgOperand(1)), 10464 DAG.getSrcValue(I.getArgOperand(0)), 10465 DAG.getSrcValue(I.getArgOperand(1)))); 10466 } 10467 10468 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10469 const Instruction &I, 10470 SDValue Op) { 10471 std::optional<ConstantRange> CR = getRange(I); 10472 10473 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10474 return Op; 10475 10476 APInt Lo = CR->getUnsignedMin(); 10477 if (!Lo.isMinValue()) 10478 return Op; 10479 10480 APInt Hi = CR->getUnsignedMax(); 10481 unsigned Bits = std::max(Hi.getActiveBits(), 10482 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10483 10484 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10485 10486 SDLoc SL = getCurSDLoc(); 10487 10488 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10489 DAG.getValueType(SmallVT)); 10490 unsigned NumVals = Op.getNode()->getNumValues(); 10491 if (NumVals == 1) 10492 return ZExt; 10493 10494 SmallVector<SDValue, 4> Ops; 10495 10496 Ops.push_back(ZExt); 10497 for (unsigned I = 1; I != NumVals; ++I) 10498 Ops.push_back(Op.getValue(I)); 10499 10500 return DAG.getMergeValues(Ops, SL); 10501 } 10502 10503 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10504 /// the call being lowered. 10505 /// 10506 /// This is a helper for lowering intrinsics that follow a target calling 10507 /// convention or require stack pointer adjustment. Only a subset of the 10508 /// intrinsic's operands need to participate in the calling convention. 10509 void SelectionDAGBuilder::populateCallLoweringInfo( 10510 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10511 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10512 AttributeSet RetAttrs, bool IsPatchPoint) { 10513 TargetLowering::ArgListTy Args; 10514 Args.reserve(NumArgs); 10515 10516 // Populate the argument list. 10517 // Attributes for args start at offset 1, after the return attribute. 10518 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10519 ArgI != ArgE; ++ArgI) { 10520 const Value *V = Call->getOperand(ArgI); 10521 10522 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10523 10524 TargetLowering::ArgListEntry Entry; 10525 Entry.Node = getValue(V); 10526 Entry.Ty = V->getType(); 10527 Entry.setAttributes(Call, ArgI); 10528 Args.push_back(Entry); 10529 } 10530 10531 CLI.setDebugLoc(getCurSDLoc()) 10532 .setChain(getRoot()) 10533 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10534 RetAttrs) 10535 .setDiscardResult(Call->use_empty()) 10536 .setIsPatchPoint(IsPatchPoint) 10537 .setIsPreallocated( 10538 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10539 } 10540 10541 /// Add a stack map intrinsic call's live variable operands to a stackmap 10542 /// or patchpoint target node's operand list. 10543 /// 10544 /// Constants are converted to TargetConstants purely as an optimization to 10545 /// avoid constant materialization and register allocation. 10546 /// 10547 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10548 /// generate addess computation nodes, and so FinalizeISel can convert the 10549 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10550 /// address materialization and register allocation, but may also be required 10551 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10552 /// alloca in the entry block, then the runtime may assume that the alloca's 10553 /// StackMap location can be read immediately after compilation and that the 10554 /// location is valid at any point during execution (this is similar to the 10555 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10556 /// only available in a register, then the runtime would need to trap when 10557 /// execution reaches the StackMap in order to read the alloca's location. 10558 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10559 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10560 SelectionDAGBuilder &Builder) { 10561 SelectionDAG &DAG = Builder.DAG; 10562 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10563 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10564 10565 // Things on the stack are pointer-typed, meaning that they are already 10566 // legal and can be emitted directly to target nodes. 10567 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10568 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10569 } else { 10570 // Otherwise emit a target independent node to be legalised. 10571 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10572 } 10573 } 10574 } 10575 10576 /// Lower llvm.experimental.stackmap. 10577 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10578 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10579 // [live variables...]) 10580 10581 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10582 10583 SDValue Chain, InGlue, Callee; 10584 SmallVector<SDValue, 32> Ops; 10585 10586 SDLoc DL = getCurSDLoc(); 10587 Callee = getValue(CI.getCalledOperand()); 10588 10589 // The stackmap intrinsic only records the live variables (the arguments 10590 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10591 // intrinsic, this won't be lowered to a function call. This means we don't 10592 // have to worry about calling conventions and target specific lowering code. 10593 // Instead we perform the call lowering right here. 10594 // 10595 // chain, flag = CALLSEQ_START(chain, 0, 0) 10596 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10597 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10598 // 10599 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10600 InGlue = Chain.getValue(1); 10601 10602 // Add the STACKMAP operands, starting with DAG house-keeping. 10603 Ops.push_back(Chain); 10604 Ops.push_back(InGlue); 10605 10606 // Add the <id>, <numShadowBytes> operands. 10607 // 10608 // These do not require legalisation, and can be emitted directly to target 10609 // constant nodes. 10610 SDValue ID = getValue(CI.getArgOperand(0)); 10611 assert(ID.getValueType() == MVT::i64); 10612 SDValue IDConst = 10613 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10614 Ops.push_back(IDConst); 10615 10616 SDValue Shad = getValue(CI.getArgOperand(1)); 10617 assert(Shad.getValueType() == MVT::i32); 10618 SDValue ShadConst = 10619 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10620 Ops.push_back(ShadConst); 10621 10622 // Add the live variables. 10623 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10624 10625 // Create the STACKMAP node. 10626 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10627 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10628 InGlue = Chain.getValue(1); 10629 10630 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10631 10632 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10633 10634 // Set the root to the target-lowered call chain. 10635 DAG.setRoot(Chain); 10636 10637 // Inform the Frame Information that we have a stackmap in this function. 10638 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10639 } 10640 10641 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10642 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10643 const BasicBlock *EHPadBB) { 10644 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10645 // i32 <numBytes>, 10646 // i8* <target>, 10647 // i32 <numArgs>, 10648 // [Args...], 10649 // [live variables...]) 10650 10651 CallingConv::ID CC = CB.getCallingConv(); 10652 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10653 bool HasDef = !CB.getType()->isVoidTy(); 10654 SDLoc dl = getCurSDLoc(); 10655 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10656 10657 // Handle immediate and symbolic callees. 10658 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10659 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10660 /*isTarget=*/true); 10661 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10662 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10663 SDLoc(SymbolicCallee), 10664 SymbolicCallee->getValueType(0)); 10665 10666 // Get the real number of arguments participating in the call <numArgs> 10667 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10668 unsigned NumArgs = NArgVal->getAsZExtVal(); 10669 10670 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10671 // Intrinsics include all meta-operands up to but not including CC. 10672 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10673 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10674 "Not enough arguments provided to the patchpoint intrinsic"); 10675 10676 // For AnyRegCC the arguments are lowered later on manually. 10677 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10678 Type *ReturnTy = 10679 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10680 10681 TargetLowering::CallLoweringInfo CLI(DAG); 10682 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10683 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10684 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10685 10686 SDNode *CallEnd = Result.second.getNode(); 10687 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10688 CallEnd = CallEnd->getOperand(0).getNode(); 10689 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10690 CallEnd = CallEnd->getOperand(0).getNode(); 10691 10692 /// Get a call instruction from the call sequence chain. 10693 /// Tail calls are not allowed. 10694 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10695 "Expected a callseq node."); 10696 SDNode *Call = CallEnd->getOperand(0).getNode(); 10697 bool HasGlue = Call->getGluedNode(); 10698 10699 // Replace the target specific call node with the patchable intrinsic. 10700 SmallVector<SDValue, 8> Ops; 10701 10702 // Push the chain. 10703 Ops.push_back(*(Call->op_begin())); 10704 10705 // Optionally, push the glue (if any). 10706 if (HasGlue) 10707 Ops.push_back(*(Call->op_end() - 1)); 10708 10709 // Push the register mask info. 10710 if (HasGlue) 10711 Ops.push_back(*(Call->op_end() - 2)); 10712 else 10713 Ops.push_back(*(Call->op_end() - 1)); 10714 10715 // Add the <id> and <numBytes> constants. 10716 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10717 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10718 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10719 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10720 10721 // Add the callee. 10722 Ops.push_back(Callee); 10723 10724 // Adjust <numArgs> to account for any arguments that have been passed on the 10725 // stack instead. 10726 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10727 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10728 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10729 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10730 10731 // Add the calling convention 10732 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10733 10734 // Add the arguments we omitted previously. The register allocator should 10735 // place these in any free register. 10736 if (IsAnyRegCC) 10737 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10738 Ops.push_back(getValue(CB.getArgOperand(i))); 10739 10740 // Push the arguments from the call instruction. 10741 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10742 Ops.append(Call->op_begin() + 2, e); 10743 10744 // Push live variables for the stack map. 10745 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10746 10747 SDVTList NodeTys; 10748 if (IsAnyRegCC && HasDef) { 10749 // Create the return types based on the intrinsic definition 10750 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10751 SmallVector<EVT, 3> ValueVTs; 10752 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10753 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10754 10755 // There is always a chain and a glue type at the end 10756 ValueVTs.push_back(MVT::Other); 10757 ValueVTs.push_back(MVT::Glue); 10758 NodeTys = DAG.getVTList(ValueVTs); 10759 } else 10760 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10761 10762 // Replace the target specific call node with a PATCHPOINT node. 10763 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10764 10765 // Update the NodeMap. 10766 if (HasDef) { 10767 if (IsAnyRegCC) 10768 setValue(&CB, SDValue(PPV.getNode(), 0)); 10769 else 10770 setValue(&CB, Result.first); 10771 } 10772 10773 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10774 // call sequence. Furthermore the location of the chain and glue can change 10775 // when the AnyReg calling convention is used and the intrinsic returns a 10776 // value. 10777 if (IsAnyRegCC && HasDef) { 10778 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10779 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10780 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10781 } else 10782 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10783 DAG.DeleteNode(Call); 10784 10785 // Inform the Frame Information that we have a patchpoint in this function. 10786 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10787 } 10788 10789 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10790 unsigned Intrinsic) { 10791 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10792 SDValue Op1 = getValue(I.getArgOperand(0)); 10793 SDValue Op2; 10794 if (I.arg_size() > 1) 10795 Op2 = getValue(I.getArgOperand(1)); 10796 SDLoc dl = getCurSDLoc(); 10797 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10798 SDValue Res; 10799 SDNodeFlags SDFlags; 10800 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10801 SDFlags.copyFMF(*FPMO); 10802 10803 switch (Intrinsic) { 10804 case Intrinsic::vector_reduce_fadd: 10805 if (SDFlags.hasAllowReassociation()) 10806 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10807 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10808 SDFlags); 10809 else 10810 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10811 break; 10812 case Intrinsic::vector_reduce_fmul: 10813 if (SDFlags.hasAllowReassociation()) 10814 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10815 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10816 SDFlags); 10817 else 10818 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10819 break; 10820 case Intrinsic::vector_reduce_add: 10821 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10822 break; 10823 case Intrinsic::vector_reduce_mul: 10824 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10825 break; 10826 case Intrinsic::vector_reduce_and: 10827 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10828 break; 10829 case Intrinsic::vector_reduce_or: 10830 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10831 break; 10832 case Intrinsic::vector_reduce_xor: 10833 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10834 break; 10835 case Intrinsic::vector_reduce_smax: 10836 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10837 break; 10838 case Intrinsic::vector_reduce_smin: 10839 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10840 break; 10841 case Intrinsic::vector_reduce_umax: 10842 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10843 break; 10844 case Intrinsic::vector_reduce_umin: 10845 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10846 break; 10847 case Intrinsic::vector_reduce_fmax: 10848 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10849 break; 10850 case Intrinsic::vector_reduce_fmin: 10851 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10852 break; 10853 case Intrinsic::vector_reduce_fmaximum: 10854 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10855 break; 10856 case Intrinsic::vector_reduce_fminimum: 10857 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10858 break; 10859 default: 10860 llvm_unreachable("Unhandled vector reduce intrinsic"); 10861 } 10862 setValue(&I, Res); 10863 } 10864 10865 /// Returns an AttributeList representing the attributes applied to the return 10866 /// value of the given call. 10867 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10868 SmallVector<Attribute::AttrKind, 2> Attrs; 10869 if (CLI.RetSExt) 10870 Attrs.push_back(Attribute::SExt); 10871 if (CLI.RetZExt) 10872 Attrs.push_back(Attribute::ZExt); 10873 if (CLI.IsInReg) 10874 Attrs.push_back(Attribute::InReg); 10875 10876 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10877 Attrs); 10878 } 10879 10880 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10881 /// implementation, which just calls LowerCall. 10882 /// FIXME: When all targets are 10883 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10884 std::pair<SDValue, SDValue> 10885 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10886 // Handle the incoming return values from the call. 10887 CLI.Ins.clear(); 10888 Type *OrigRetTy = CLI.RetTy; 10889 SmallVector<EVT, 4> RetTys; 10890 SmallVector<TypeSize, 4> Offsets; 10891 auto &DL = CLI.DAG.getDataLayout(); 10892 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10893 10894 if (CLI.IsPostTypeLegalization) { 10895 // If we are lowering a libcall after legalization, split the return type. 10896 SmallVector<EVT, 4> OldRetTys; 10897 SmallVector<TypeSize, 4> OldOffsets; 10898 RetTys.swap(OldRetTys); 10899 Offsets.swap(OldOffsets); 10900 10901 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10902 EVT RetVT = OldRetTys[i]; 10903 uint64_t Offset = OldOffsets[i]; 10904 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10905 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10906 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10907 RetTys.append(NumRegs, RegisterVT); 10908 for (unsigned j = 0; j != NumRegs; ++j) 10909 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10910 } 10911 } 10912 10913 SmallVector<ISD::OutputArg, 4> Outs; 10914 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10915 10916 bool CanLowerReturn = 10917 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10918 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10919 10920 SDValue DemoteStackSlot; 10921 int DemoteStackIdx = -100; 10922 if (!CanLowerReturn) { 10923 // FIXME: equivalent assert? 10924 // assert(!CS.hasInAllocaArgument() && 10925 // "sret demotion is incompatible with inalloca"); 10926 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10927 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10928 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10929 DemoteStackIdx = 10930 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10931 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10932 DL.getAllocaAddrSpace()); 10933 10934 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10935 ArgListEntry Entry; 10936 Entry.Node = DemoteStackSlot; 10937 Entry.Ty = StackSlotPtrType; 10938 Entry.IsSExt = false; 10939 Entry.IsZExt = false; 10940 Entry.IsInReg = false; 10941 Entry.IsSRet = true; 10942 Entry.IsNest = false; 10943 Entry.IsByVal = false; 10944 Entry.IsByRef = false; 10945 Entry.IsReturned = false; 10946 Entry.IsSwiftSelf = false; 10947 Entry.IsSwiftAsync = false; 10948 Entry.IsSwiftError = false; 10949 Entry.IsCFGuardTarget = false; 10950 Entry.Alignment = Alignment; 10951 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10952 CLI.NumFixedArgs += 1; 10953 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10954 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10955 10956 // sret demotion isn't compatible with tail-calls, since the sret argument 10957 // points into the callers stack frame. 10958 CLI.IsTailCall = false; 10959 } else { 10960 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10961 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10962 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10963 ISD::ArgFlagsTy Flags; 10964 if (NeedsRegBlock) { 10965 Flags.setInConsecutiveRegs(); 10966 if (I == RetTys.size() - 1) 10967 Flags.setInConsecutiveRegsLast(); 10968 } 10969 EVT VT = RetTys[I]; 10970 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10971 CLI.CallConv, VT); 10972 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10973 CLI.CallConv, VT); 10974 for (unsigned i = 0; i != NumRegs; ++i) { 10975 ISD::InputArg MyFlags; 10976 MyFlags.Flags = Flags; 10977 MyFlags.VT = RegisterVT; 10978 MyFlags.ArgVT = VT; 10979 MyFlags.Used = CLI.IsReturnValueUsed; 10980 if (CLI.RetTy->isPointerTy()) { 10981 MyFlags.Flags.setPointer(); 10982 MyFlags.Flags.setPointerAddrSpace( 10983 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10984 } 10985 if (CLI.RetSExt) 10986 MyFlags.Flags.setSExt(); 10987 if (CLI.RetZExt) 10988 MyFlags.Flags.setZExt(); 10989 if (CLI.IsInReg) 10990 MyFlags.Flags.setInReg(); 10991 CLI.Ins.push_back(MyFlags); 10992 } 10993 } 10994 } 10995 10996 // We push in swifterror return as the last element of CLI.Ins. 10997 ArgListTy &Args = CLI.getArgs(); 10998 if (supportSwiftError()) { 10999 for (const ArgListEntry &Arg : Args) { 11000 if (Arg.IsSwiftError) { 11001 ISD::InputArg MyFlags; 11002 MyFlags.VT = getPointerTy(DL); 11003 MyFlags.ArgVT = EVT(getPointerTy(DL)); 11004 MyFlags.Flags.setSwiftError(); 11005 CLI.Ins.push_back(MyFlags); 11006 } 11007 } 11008 } 11009 11010 // Handle all of the outgoing arguments. 11011 CLI.Outs.clear(); 11012 CLI.OutVals.clear(); 11013 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 11014 SmallVector<EVT, 4> ValueVTs; 11015 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 11016 // FIXME: Split arguments if CLI.IsPostTypeLegalization 11017 Type *FinalType = Args[i].Ty; 11018 if (Args[i].IsByVal) 11019 FinalType = Args[i].IndirectType; 11020 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 11021 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 11022 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 11023 ++Value) { 11024 EVT VT = ValueVTs[Value]; 11025 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 11026 SDValue Op = SDValue(Args[i].Node.getNode(), 11027 Args[i].Node.getResNo() + Value); 11028 ISD::ArgFlagsTy Flags; 11029 11030 // Certain targets (such as MIPS), may have a different ABI alignment 11031 // for a type depending on the context. Give the target a chance to 11032 // specify the alignment it wants. 11033 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 11034 Flags.setOrigAlign(OriginalAlignment); 11035 11036 if (Args[i].Ty->isPointerTy()) { 11037 Flags.setPointer(); 11038 Flags.setPointerAddrSpace( 11039 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 11040 } 11041 if (Args[i].IsZExt) 11042 Flags.setZExt(); 11043 if (Args[i].IsSExt) 11044 Flags.setSExt(); 11045 if (Args[i].IsNoExt) 11046 Flags.setNoExt(); 11047 if (Args[i].IsInReg) { 11048 // If we are using vectorcall calling convention, a structure that is 11049 // passed InReg - is surely an HVA 11050 if (CLI.CallConv == CallingConv::X86_VectorCall && 11051 isa<StructType>(FinalType)) { 11052 // The first value of a structure is marked 11053 if (0 == Value) 11054 Flags.setHvaStart(); 11055 Flags.setHva(); 11056 } 11057 // Set InReg Flag 11058 Flags.setInReg(); 11059 } 11060 if (Args[i].IsSRet) 11061 Flags.setSRet(); 11062 if (Args[i].IsSwiftSelf) 11063 Flags.setSwiftSelf(); 11064 if (Args[i].IsSwiftAsync) 11065 Flags.setSwiftAsync(); 11066 if (Args[i].IsSwiftError) 11067 Flags.setSwiftError(); 11068 if (Args[i].IsCFGuardTarget) 11069 Flags.setCFGuardTarget(); 11070 if (Args[i].IsByVal) 11071 Flags.setByVal(); 11072 if (Args[i].IsByRef) 11073 Flags.setByRef(); 11074 if (Args[i].IsPreallocated) { 11075 Flags.setPreallocated(); 11076 // Set the byval flag for CCAssignFn callbacks that don't know about 11077 // preallocated. This way we can know how many bytes we should've 11078 // allocated and how many bytes a callee cleanup function will pop. If 11079 // we port preallocated to more targets, we'll have to add custom 11080 // preallocated handling in the various CC lowering callbacks. 11081 Flags.setByVal(); 11082 } 11083 if (Args[i].IsInAlloca) { 11084 Flags.setInAlloca(); 11085 // Set the byval flag for CCAssignFn callbacks that don't know about 11086 // inalloca. This way we can know how many bytes we should've allocated 11087 // and how many bytes a callee cleanup function will pop. If we port 11088 // inalloca to more targets, we'll have to add custom inalloca handling 11089 // in the various CC lowering callbacks. 11090 Flags.setByVal(); 11091 } 11092 Align MemAlign; 11093 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 11094 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 11095 Flags.setByValSize(FrameSize); 11096 11097 // info is not there but there are cases it cannot get right. 11098 if (auto MA = Args[i].Alignment) 11099 MemAlign = *MA; 11100 else 11101 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 11102 } else if (auto MA = Args[i].Alignment) { 11103 MemAlign = *MA; 11104 } else { 11105 MemAlign = OriginalAlignment; 11106 } 11107 Flags.setMemAlign(MemAlign); 11108 if (Args[i].IsNest) 11109 Flags.setNest(); 11110 if (NeedsRegBlock) 11111 Flags.setInConsecutiveRegs(); 11112 11113 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11114 CLI.CallConv, VT); 11115 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11116 CLI.CallConv, VT); 11117 SmallVector<SDValue, 4> Parts(NumParts); 11118 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 11119 11120 if (Args[i].IsSExt) 11121 ExtendKind = ISD::SIGN_EXTEND; 11122 else if (Args[i].IsZExt) 11123 ExtendKind = ISD::ZERO_EXTEND; 11124 11125 // Conservatively only handle 'returned' on non-vectors that can be lowered, 11126 // for now. 11127 if (Args[i].IsReturned && !Op.getValueType().isVector() && 11128 CanLowerReturn) { 11129 assert((CLI.RetTy == Args[i].Ty || 11130 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 11131 CLI.RetTy->getPointerAddressSpace() == 11132 Args[i].Ty->getPointerAddressSpace())) && 11133 RetTys.size() == NumValues && "unexpected use of 'returned'"); 11134 // Before passing 'returned' to the target lowering code, ensure that 11135 // either the register MVT and the actual EVT are the same size or that 11136 // the return value and argument are extended in the same way; in these 11137 // cases it's safe to pass the argument register value unchanged as the 11138 // return register value (although it's at the target's option whether 11139 // to do so) 11140 // TODO: allow code generation to take advantage of partially preserved 11141 // registers rather than clobbering the entire register when the 11142 // parameter extension method is not compatible with the return 11143 // extension method 11144 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 11145 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 11146 CLI.RetZExt == Args[i].IsZExt)) 11147 Flags.setReturned(); 11148 } 11149 11150 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 11151 CLI.CallConv, ExtendKind); 11152 11153 for (unsigned j = 0; j != NumParts; ++j) { 11154 // if it isn't first piece, alignment must be 1 11155 // For scalable vectors the scalable part is currently handled 11156 // by individual targets, so we just use the known minimum size here. 11157 ISD::OutputArg MyFlags( 11158 Flags, Parts[j].getValueType().getSimpleVT(), VT, 11159 i < CLI.NumFixedArgs, i, 11160 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 11161 if (NumParts > 1 && j == 0) 11162 MyFlags.Flags.setSplit(); 11163 else if (j != 0) { 11164 MyFlags.Flags.setOrigAlign(Align(1)); 11165 if (j == NumParts - 1) 11166 MyFlags.Flags.setSplitEnd(); 11167 } 11168 11169 CLI.Outs.push_back(MyFlags); 11170 CLI.OutVals.push_back(Parts[j]); 11171 } 11172 11173 if (NeedsRegBlock && Value == NumValues - 1) 11174 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 11175 } 11176 } 11177 11178 SmallVector<SDValue, 4> InVals; 11179 CLI.Chain = LowerCall(CLI, InVals); 11180 11181 // Update CLI.InVals to use outside of this function. 11182 CLI.InVals = InVals; 11183 11184 // Verify that the target's LowerCall behaved as expected. 11185 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 11186 "LowerCall didn't return a valid chain!"); 11187 assert((!CLI.IsTailCall || InVals.empty()) && 11188 "LowerCall emitted a return value for a tail call!"); 11189 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 11190 "LowerCall didn't emit the correct number of values!"); 11191 11192 // For a tail call, the return value is merely live-out and there aren't 11193 // any nodes in the DAG representing it. Return a special value to 11194 // indicate that a tail call has been emitted and no more Instructions 11195 // should be processed in the current block. 11196 if (CLI.IsTailCall) { 11197 CLI.DAG.setRoot(CLI.Chain); 11198 return std::make_pair(SDValue(), SDValue()); 11199 } 11200 11201 #ifndef NDEBUG 11202 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11203 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11204 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11205 "LowerCall emitted a value with the wrong type!"); 11206 } 11207 #endif 11208 11209 SmallVector<SDValue, 4> ReturnValues; 11210 if (!CanLowerReturn) { 11211 // The instruction result is the result of loading from the 11212 // hidden sret parameter. 11213 SmallVector<EVT, 1> PVTs; 11214 Type *PtrRetTy = 11215 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 11216 11217 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11218 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11219 EVT PtrVT = PVTs[0]; 11220 11221 unsigned NumValues = RetTys.size(); 11222 ReturnValues.resize(NumValues); 11223 SmallVector<SDValue, 4> Chains(NumValues); 11224 11225 // An aggregate return value cannot wrap around the address space, so 11226 // offsets to its parts don't wrap either. 11227 SDNodeFlags Flags; 11228 Flags.setNoUnsignedWrap(true); 11229 11230 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11231 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11232 for (unsigned i = 0; i < NumValues; ++i) { 11233 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11234 CLI.DAG.getConstant(Offsets[i], CLI.DL, 11235 PtrVT), Flags); 11236 SDValue L = CLI.DAG.getLoad( 11237 RetTys[i], CLI.DL, CLI.Chain, Add, 11238 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11239 DemoteStackIdx, Offsets[i]), 11240 HiddenSRetAlign); 11241 ReturnValues[i] = L; 11242 Chains[i] = L.getValue(1); 11243 } 11244 11245 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11246 } else { 11247 // Collect the legal value parts into potentially illegal values 11248 // that correspond to the original function's return values. 11249 std::optional<ISD::NodeType> AssertOp; 11250 if (CLI.RetSExt) 11251 AssertOp = ISD::AssertSext; 11252 else if (CLI.RetZExt) 11253 AssertOp = ISD::AssertZext; 11254 unsigned CurReg = 0; 11255 for (EVT VT : RetTys) { 11256 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11257 CLI.CallConv, VT); 11258 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11259 CLI.CallConv, VT); 11260 11261 ReturnValues.push_back(getCopyFromParts( 11262 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11263 CLI.Chain, CLI.CallConv, AssertOp)); 11264 CurReg += NumRegs; 11265 } 11266 11267 // For a function returning void, there is no return value. We can't create 11268 // such a node, so we just return a null return value in that case. In 11269 // that case, nothing will actually look at the value. 11270 if (ReturnValues.empty()) 11271 return std::make_pair(SDValue(), CLI.Chain); 11272 } 11273 11274 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11275 CLI.DAG.getVTList(RetTys), ReturnValues); 11276 return std::make_pair(Res, CLI.Chain); 11277 } 11278 11279 /// Places new result values for the node in Results (their number 11280 /// and types must exactly match those of the original return values of 11281 /// the node), or leaves Results empty, which indicates that the node is not 11282 /// to be custom lowered after all. 11283 void TargetLowering::LowerOperationWrapper(SDNode *N, 11284 SmallVectorImpl<SDValue> &Results, 11285 SelectionDAG &DAG) const { 11286 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11287 11288 if (!Res.getNode()) 11289 return; 11290 11291 // If the original node has one result, take the return value from 11292 // LowerOperation as is. It might not be result number 0. 11293 if (N->getNumValues() == 1) { 11294 Results.push_back(Res); 11295 return; 11296 } 11297 11298 // If the original node has multiple results, then the return node should 11299 // have the same number of results. 11300 assert((N->getNumValues() == Res->getNumValues()) && 11301 "Lowering returned the wrong number of results!"); 11302 11303 // Places new result values base on N result number. 11304 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11305 Results.push_back(Res.getValue(I)); 11306 } 11307 11308 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11309 llvm_unreachable("LowerOperation not implemented for this target!"); 11310 } 11311 11312 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11313 unsigned Reg, 11314 ISD::NodeType ExtendType) { 11315 SDValue Op = getNonRegisterValue(V); 11316 assert((Op.getOpcode() != ISD::CopyFromReg || 11317 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11318 "Copy from a reg to the same reg!"); 11319 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11320 11321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11322 // If this is an InlineAsm we have to match the registers required, not the 11323 // notional registers required by the type. 11324 11325 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11326 std::nullopt); // This is not an ABI copy. 11327 SDValue Chain = DAG.getEntryNode(); 11328 11329 if (ExtendType == ISD::ANY_EXTEND) { 11330 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11331 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11332 ExtendType = PreferredExtendIt->second; 11333 } 11334 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11335 PendingExports.push_back(Chain); 11336 } 11337 11338 #include "llvm/CodeGen/SelectionDAGISel.h" 11339 11340 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11341 /// entry block, return true. This includes arguments used by switches, since 11342 /// the switch may expand into multiple basic blocks. 11343 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11344 // With FastISel active, we may be splitting blocks, so force creation 11345 // of virtual registers for all non-dead arguments. 11346 if (FastISel) 11347 return A->use_empty(); 11348 11349 const BasicBlock &Entry = A->getParent()->front(); 11350 for (const User *U : A->users()) 11351 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11352 return false; // Use not in entry block. 11353 11354 return true; 11355 } 11356 11357 using ArgCopyElisionMapTy = 11358 DenseMap<const Argument *, 11359 std::pair<const AllocaInst *, const StoreInst *>>; 11360 11361 /// Scan the entry block of the function in FuncInfo for arguments that look 11362 /// like copies into a local alloca. Record any copied arguments in 11363 /// ArgCopyElisionCandidates. 11364 static void 11365 findArgumentCopyElisionCandidates(const DataLayout &DL, 11366 FunctionLoweringInfo *FuncInfo, 11367 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11368 // Record the state of every static alloca used in the entry block. Argument 11369 // allocas are all used in the entry block, so we need approximately as many 11370 // entries as we have arguments. 11371 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11372 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11373 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11374 StaticAllocas.reserve(NumArgs * 2); 11375 11376 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11377 if (!V) 11378 return nullptr; 11379 V = V->stripPointerCasts(); 11380 const auto *AI = dyn_cast<AllocaInst>(V); 11381 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11382 return nullptr; 11383 auto Iter = StaticAllocas.insert({AI, Unknown}); 11384 return &Iter.first->second; 11385 }; 11386 11387 // Look for stores of arguments to static allocas. Look through bitcasts and 11388 // GEPs to handle type coercions, as long as the alloca is fully initialized 11389 // by the store. Any non-store use of an alloca escapes it and any subsequent 11390 // unanalyzed store might write it. 11391 // FIXME: Handle structs initialized with multiple stores. 11392 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11393 // Look for stores, and handle non-store uses conservatively. 11394 const auto *SI = dyn_cast<StoreInst>(&I); 11395 if (!SI) { 11396 // We will look through cast uses, so ignore them completely. 11397 if (I.isCast()) 11398 continue; 11399 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11400 // to allocas. 11401 if (I.isDebugOrPseudoInst()) 11402 continue; 11403 // This is an unknown instruction. Assume it escapes or writes to all 11404 // static alloca operands. 11405 for (const Use &U : I.operands()) { 11406 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11407 *Info = StaticAllocaInfo::Clobbered; 11408 } 11409 continue; 11410 } 11411 11412 // If the stored value is a static alloca, mark it as escaped. 11413 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11414 *Info = StaticAllocaInfo::Clobbered; 11415 11416 // Check if the destination is a static alloca. 11417 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11418 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11419 if (!Info) 11420 continue; 11421 const AllocaInst *AI = cast<AllocaInst>(Dst); 11422 11423 // Skip allocas that have been initialized or clobbered. 11424 if (*Info != StaticAllocaInfo::Unknown) 11425 continue; 11426 11427 // Check if the stored value is an argument, and that this store fully 11428 // initializes the alloca. 11429 // If the argument type has padding bits we can't directly forward a pointer 11430 // as the upper bits may contain garbage. 11431 // Don't elide copies from the same argument twice. 11432 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11433 const auto *Arg = dyn_cast<Argument>(Val); 11434 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11435 Arg->getType()->isEmptyTy() || 11436 DL.getTypeStoreSize(Arg->getType()) != 11437 DL.getTypeAllocSize(AI->getAllocatedType()) || 11438 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11439 ArgCopyElisionCandidates.count(Arg)) { 11440 *Info = StaticAllocaInfo::Clobbered; 11441 continue; 11442 } 11443 11444 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11445 << '\n'); 11446 11447 // Mark this alloca and store for argument copy elision. 11448 *Info = StaticAllocaInfo::Elidable; 11449 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11450 11451 // Stop scanning if we've seen all arguments. This will happen early in -O0 11452 // builds, which is useful, because -O0 builds have large entry blocks and 11453 // many allocas. 11454 if (ArgCopyElisionCandidates.size() == NumArgs) 11455 break; 11456 } 11457 } 11458 11459 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11460 /// ArgVal is a load from a suitable fixed stack object. 11461 static void tryToElideArgumentCopy( 11462 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11463 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11464 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11465 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11466 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11467 // Check if this is a load from a fixed stack object. 11468 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11469 if (!LNode) 11470 return; 11471 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11472 if (!FINode) 11473 return; 11474 11475 // Check that the fixed stack object is the right size and alignment. 11476 // Look at the alignment that the user wrote on the alloca instead of looking 11477 // at the stack object. 11478 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11479 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11480 const AllocaInst *AI = ArgCopyIter->second.first; 11481 int FixedIndex = FINode->getIndex(); 11482 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11483 int OldIndex = AllocaIndex; 11484 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11485 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11486 LLVM_DEBUG( 11487 dbgs() << " argument copy elision failed due to bad fixed stack " 11488 "object size\n"); 11489 return; 11490 } 11491 Align RequiredAlignment = AI->getAlign(); 11492 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11493 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11494 "greater than stack argument alignment (" 11495 << DebugStr(RequiredAlignment) << " vs " 11496 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11497 return; 11498 } 11499 11500 // Perform the elision. Delete the old stack object and replace its only use 11501 // in the variable info map. Mark the stack object as mutable and aliased. 11502 LLVM_DEBUG({ 11503 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11504 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11505 << '\n'; 11506 }); 11507 MFI.RemoveStackObject(OldIndex); 11508 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11509 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11510 AllocaIndex = FixedIndex; 11511 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11512 for (SDValue ArgVal : ArgVals) 11513 Chains.push_back(ArgVal.getValue(1)); 11514 11515 // Avoid emitting code for the store implementing the copy. 11516 const StoreInst *SI = ArgCopyIter->second.second; 11517 ElidedArgCopyInstrs.insert(SI); 11518 11519 // Check for uses of the argument again so that we can avoid exporting ArgVal 11520 // if it is't used by anything other than the store. 11521 for (const Value *U : Arg.users()) { 11522 if (U != SI) { 11523 ArgHasUses = true; 11524 break; 11525 } 11526 } 11527 } 11528 11529 void SelectionDAGISel::LowerArguments(const Function &F) { 11530 SelectionDAG &DAG = SDB->DAG; 11531 SDLoc dl = SDB->getCurSDLoc(); 11532 const DataLayout &DL = DAG.getDataLayout(); 11533 SmallVector<ISD::InputArg, 16> Ins; 11534 11535 // In Naked functions we aren't going to save any registers. 11536 if (F.hasFnAttribute(Attribute::Naked)) 11537 return; 11538 11539 if (!FuncInfo->CanLowerReturn) { 11540 // Put in an sret pointer parameter before all the other parameters. 11541 SmallVector<EVT, 1> ValueVTs; 11542 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11543 PointerType::get(F.getContext(), 11544 DAG.getDataLayout().getAllocaAddrSpace()), 11545 ValueVTs); 11546 11547 // NOTE: Assuming that a pointer will never break down to more than one VT 11548 // or one register. 11549 ISD::ArgFlagsTy Flags; 11550 Flags.setSRet(); 11551 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11552 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11553 ISD::InputArg::NoArgIndex, 0); 11554 Ins.push_back(RetArg); 11555 } 11556 11557 // Look for stores of arguments to static allocas. Mark such arguments with a 11558 // flag to ask the target to give us the memory location of that argument if 11559 // available. 11560 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11561 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11562 ArgCopyElisionCandidates); 11563 11564 // Set up the incoming argument description vector. 11565 for (const Argument &Arg : F.args()) { 11566 unsigned ArgNo = Arg.getArgNo(); 11567 SmallVector<EVT, 4> ValueVTs; 11568 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11569 bool isArgValueUsed = !Arg.use_empty(); 11570 unsigned PartBase = 0; 11571 Type *FinalType = Arg.getType(); 11572 if (Arg.hasAttribute(Attribute::ByVal)) 11573 FinalType = Arg.getParamByValType(); 11574 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11575 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11576 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11577 Value != NumValues; ++Value) { 11578 EVT VT = ValueVTs[Value]; 11579 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11580 ISD::ArgFlagsTy Flags; 11581 11582 11583 if (Arg.getType()->isPointerTy()) { 11584 Flags.setPointer(); 11585 Flags.setPointerAddrSpace( 11586 cast<PointerType>(Arg.getType())->getAddressSpace()); 11587 } 11588 if (Arg.hasAttribute(Attribute::ZExt)) 11589 Flags.setZExt(); 11590 if (Arg.hasAttribute(Attribute::SExt)) 11591 Flags.setSExt(); 11592 if (Arg.hasAttribute(Attribute::InReg)) { 11593 // If we are using vectorcall calling convention, a structure that is 11594 // passed InReg - is surely an HVA 11595 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11596 isa<StructType>(Arg.getType())) { 11597 // The first value of a structure is marked 11598 if (0 == Value) 11599 Flags.setHvaStart(); 11600 Flags.setHva(); 11601 } 11602 // Set InReg Flag 11603 Flags.setInReg(); 11604 } 11605 if (Arg.hasAttribute(Attribute::StructRet)) 11606 Flags.setSRet(); 11607 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11608 Flags.setSwiftSelf(); 11609 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11610 Flags.setSwiftAsync(); 11611 if (Arg.hasAttribute(Attribute::SwiftError)) 11612 Flags.setSwiftError(); 11613 if (Arg.hasAttribute(Attribute::ByVal)) 11614 Flags.setByVal(); 11615 if (Arg.hasAttribute(Attribute::ByRef)) 11616 Flags.setByRef(); 11617 if (Arg.hasAttribute(Attribute::InAlloca)) { 11618 Flags.setInAlloca(); 11619 // Set the byval flag for CCAssignFn callbacks that don't know about 11620 // inalloca. This way we can know how many bytes we should've allocated 11621 // and how many bytes a callee cleanup function will pop. If we port 11622 // inalloca to more targets, we'll have to add custom inalloca handling 11623 // in the various CC lowering callbacks. 11624 Flags.setByVal(); 11625 } 11626 if (Arg.hasAttribute(Attribute::Preallocated)) { 11627 Flags.setPreallocated(); 11628 // Set the byval flag for CCAssignFn callbacks that don't know about 11629 // preallocated. This way we can know how many bytes we should've 11630 // allocated and how many bytes a callee cleanup function will pop. If 11631 // we port preallocated to more targets, we'll have to add custom 11632 // preallocated handling in the various CC lowering callbacks. 11633 Flags.setByVal(); 11634 } 11635 11636 // Certain targets (such as MIPS), may have a different ABI alignment 11637 // for a type depending on the context. Give the target a chance to 11638 // specify the alignment it wants. 11639 const Align OriginalAlignment( 11640 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11641 Flags.setOrigAlign(OriginalAlignment); 11642 11643 Align MemAlign; 11644 Type *ArgMemTy = nullptr; 11645 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11646 Flags.isByRef()) { 11647 if (!ArgMemTy) 11648 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11649 11650 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11651 11652 // For in-memory arguments, size and alignment should be passed from FE. 11653 // BE will guess if this info is not there but there are cases it cannot 11654 // get right. 11655 if (auto ParamAlign = Arg.getParamStackAlign()) 11656 MemAlign = *ParamAlign; 11657 else if ((ParamAlign = Arg.getParamAlign())) 11658 MemAlign = *ParamAlign; 11659 else 11660 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11661 if (Flags.isByRef()) 11662 Flags.setByRefSize(MemSize); 11663 else 11664 Flags.setByValSize(MemSize); 11665 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11666 MemAlign = *ParamAlign; 11667 } else { 11668 MemAlign = OriginalAlignment; 11669 } 11670 Flags.setMemAlign(MemAlign); 11671 11672 if (Arg.hasAttribute(Attribute::Nest)) 11673 Flags.setNest(); 11674 if (NeedsRegBlock) 11675 Flags.setInConsecutiveRegs(); 11676 if (ArgCopyElisionCandidates.count(&Arg)) 11677 Flags.setCopyElisionCandidate(); 11678 if (Arg.hasAttribute(Attribute::Returned)) 11679 Flags.setReturned(); 11680 11681 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11682 *CurDAG->getContext(), F.getCallingConv(), VT); 11683 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11684 *CurDAG->getContext(), F.getCallingConv(), VT); 11685 for (unsigned i = 0; i != NumRegs; ++i) { 11686 // For scalable vectors, use the minimum size; individual targets 11687 // are responsible for handling scalable vector arguments and 11688 // return values. 11689 ISD::InputArg MyFlags( 11690 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11691 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11692 if (NumRegs > 1 && i == 0) 11693 MyFlags.Flags.setSplit(); 11694 // if it isn't first piece, alignment must be 1 11695 else if (i > 0) { 11696 MyFlags.Flags.setOrigAlign(Align(1)); 11697 if (i == NumRegs - 1) 11698 MyFlags.Flags.setSplitEnd(); 11699 } 11700 Ins.push_back(MyFlags); 11701 } 11702 if (NeedsRegBlock && Value == NumValues - 1) 11703 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11704 PartBase += VT.getStoreSize().getKnownMinValue(); 11705 } 11706 } 11707 11708 // Call the target to set up the argument values. 11709 SmallVector<SDValue, 8> InVals; 11710 SDValue NewRoot = TLI->LowerFormalArguments( 11711 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11712 11713 // Verify that the target's LowerFormalArguments behaved as expected. 11714 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11715 "LowerFormalArguments didn't return a valid chain!"); 11716 assert(InVals.size() == Ins.size() && 11717 "LowerFormalArguments didn't emit the correct number of values!"); 11718 LLVM_DEBUG({ 11719 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11720 assert(InVals[i].getNode() && 11721 "LowerFormalArguments emitted a null value!"); 11722 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11723 "LowerFormalArguments emitted a value with the wrong type!"); 11724 } 11725 }); 11726 11727 // Update the DAG with the new chain value resulting from argument lowering. 11728 DAG.setRoot(NewRoot); 11729 11730 // Set up the argument values. 11731 unsigned i = 0; 11732 if (!FuncInfo->CanLowerReturn) { 11733 // Create a virtual register for the sret pointer, and put in a copy 11734 // from the sret argument into it. 11735 SmallVector<EVT, 1> ValueVTs; 11736 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11737 PointerType::get(F.getContext(), 11738 DAG.getDataLayout().getAllocaAddrSpace()), 11739 ValueVTs); 11740 MVT VT = ValueVTs[0].getSimpleVT(); 11741 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11742 std::optional<ISD::NodeType> AssertOp; 11743 SDValue ArgValue = 11744 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11745 F.getCallingConv(), AssertOp); 11746 11747 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11748 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11749 Register SRetReg = 11750 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11751 FuncInfo->DemoteRegister = SRetReg; 11752 NewRoot = 11753 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11754 DAG.setRoot(NewRoot); 11755 11756 // i indexes lowered arguments. Bump it past the hidden sret argument. 11757 ++i; 11758 } 11759 11760 SmallVector<SDValue, 4> Chains; 11761 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11762 for (const Argument &Arg : F.args()) { 11763 SmallVector<SDValue, 4> ArgValues; 11764 SmallVector<EVT, 4> ValueVTs; 11765 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11766 unsigned NumValues = ValueVTs.size(); 11767 if (NumValues == 0) 11768 continue; 11769 11770 bool ArgHasUses = !Arg.use_empty(); 11771 11772 // Elide the copying store if the target loaded this argument from a 11773 // suitable fixed stack object. 11774 if (Ins[i].Flags.isCopyElisionCandidate()) { 11775 unsigned NumParts = 0; 11776 for (EVT VT : ValueVTs) 11777 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11778 F.getCallingConv(), VT); 11779 11780 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11781 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11782 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11783 } 11784 11785 // If this argument is unused then remember its value. It is used to generate 11786 // debugging information. 11787 bool isSwiftErrorArg = 11788 TLI->supportSwiftError() && 11789 Arg.hasAttribute(Attribute::SwiftError); 11790 if (!ArgHasUses && !isSwiftErrorArg) { 11791 SDB->setUnusedArgValue(&Arg, InVals[i]); 11792 11793 // Also remember any frame index for use in FastISel. 11794 if (FrameIndexSDNode *FI = 11795 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11796 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11797 } 11798 11799 for (unsigned Val = 0; Val != NumValues; ++Val) { 11800 EVT VT = ValueVTs[Val]; 11801 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11802 F.getCallingConv(), VT); 11803 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11804 *CurDAG->getContext(), F.getCallingConv(), VT); 11805 11806 // Even an apparent 'unused' swifterror argument needs to be returned. So 11807 // we do generate a copy for it that can be used on return from the 11808 // function. 11809 if (ArgHasUses || isSwiftErrorArg) { 11810 std::optional<ISD::NodeType> AssertOp; 11811 if (Arg.hasAttribute(Attribute::SExt)) 11812 AssertOp = ISD::AssertSext; 11813 else if (Arg.hasAttribute(Attribute::ZExt)) 11814 AssertOp = ISD::AssertZext; 11815 11816 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11817 PartVT, VT, nullptr, NewRoot, 11818 F.getCallingConv(), AssertOp)); 11819 } 11820 11821 i += NumParts; 11822 } 11823 11824 // We don't need to do anything else for unused arguments. 11825 if (ArgValues.empty()) 11826 continue; 11827 11828 // Note down frame index. 11829 if (FrameIndexSDNode *FI = 11830 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11831 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11832 11833 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11834 SDB->getCurSDLoc()); 11835 11836 SDB->setValue(&Arg, Res); 11837 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11838 // We want to associate the argument with the frame index, among 11839 // involved operands, that correspond to the lowest address. The 11840 // getCopyFromParts function, called earlier, is swapping the order of 11841 // the operands to BUILD_PAIR depending on endianness. The result of 11842 // that swapping is that the least significant bits of the argument will 11843 // be in the first operand of the BUILD_PAIR node, and the most 11844 // significant bits will be in the second operand. 11845 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11846 if (LoadSDNode *LNode = 11847 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11848 if (FrameIndexSDNode *FI = 11849 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11850 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11851 } 11852 11853 // Analyses past this point are naive and don't expect an assertion. 11854 if (Res.getOpcode() == ISD::AssertZext) 11855 Res = Res.getOperand(0); 11856 11857 // Update the SwiftErrorVRegDefMap. 11858 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11859 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11860 if (Reg.isVirtual()) 11861 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11862 Reg); 11863 } 11864 11865 // If this argument is live outside of the entry block, insert a copy from 11866 // wherever we got it to the vreg that other BB's will reference it as. 11867 if (Res.getOpcode() == ISD::CopyFromReg) { 11868 // If we can, though, try to skip creating an unnecessary vreg. 11869 // FIXME: This isn't very clean... it would be nice to make this more 11870 // general. 11871 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11872 if (Reg.isVirtual()) { 11873 FuncInfo->ValueMap[&Arg] = Reg; 11874 continue; 11875 } 11876 } 11877 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11878 FuncInfo->InitializeRegForValue(&Arg); 11879 SDB->CopyToExportRegsIfNeeded(&Arg); 11880 } 11881 } 11882 11883 if (!Chains.empty()) { 11884 Chains.push_back(NewRoot); 11885 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11886 } 11887 11888 DAG.setRoot(NewRoot); 11889 11890 assert(i == InVals.size() && "Argument register count mismatch!"); 11891 11892 // If any argument copy elisions occurred and we have debug info, update the 11893 // stale frame indices used in the dbg.declare variable info table. 11894 if (!ArgCopyElisionFrameIndexMap.empty()) { 11895 for (MachineFunction::VariableDbgInfo &VI : 11896 MF->getInStackSlotVariableDbgInfo()) { 11897 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11898 if (I != ArgCopyElisionFrameIndexMap.end()) 11899 VI.updateStackSlot(I->second); 11900 } 11901 } 11902 11903 // Finally, if the target has anything special to do, allow it to do so. 11904 emitFunctionEntryCode(); 11905 } 11906 11907 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11908 /// ensure constants are generated when needed. Remember the virtual registers 11909 /// that need to be added to the Machine PHI nodes as input. We cannot just 11910 /// directly add them, because expansion might result in multiple MBB's for one 11911 /// BB. As such, the start of the BB might correspond to a different MBB than 11912 /// the end. 11913 void 11914 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11916 11917 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11918 11919 // Check PHI nodes in successors that expect a value to be available from this 11920 // block. 11921 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11922 if (!isa<PHINode>(SuccBB->begin())) continue; 11923 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB); 11924 11925 // If this terminator has multiple identical successors (common for 11926 // switches), only handle each succ once. 11927 if (!SuccsHandled.insert(SuccMBB).second) 11928 continue; 11929 11930 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11931 11932 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11933 // nodes and Machine PHI nodes, but the incoming operands have not been 11934 // emitted yet. 11935 for (const PHINode &PN : SuccBB->phis()) { 11936 // Ignore dead phi's. 11937 if (PN.use_empty()) 11938 continue; 11939 11940 // Skip empty types 11941 if (PN.getType()->isEmptyTy()) 11942 continue; 11943 11944 unsigned Reg; 11945 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11946 11947 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11948 unsigned &RegOut = ConstantsOut[C]; 11949 if (RegOut == 0) { 11950 RegOut = FuncInfo.CreateRegs(C); 11951 // We need to zero/sign extend ConstantInt phi operands to match 11952 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11953 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11954 if (auto *CI = dyn_cast<ConstantInt>(C)) 11955 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11956 : ISD::ZERO_EXTEND; 11957 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11958 } 11959 Reg = RegOut; 11960 } else { 11961 DenseMap<const Value *, Register>::iterator I = 11962 FuncInfo.ValueMap.find(PHIOp); 11963 if (I != FuncInfo.ValueMap.end()) 11964 Reg = I->second; 11965 else { 11966 assert(isa<AllocaInst>(PHIOp) && 11967 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11968 "Didn't codegen value into a register!??"); 11969 Reg = FuncInfo.CreateRegs(PHIOp); 11970 CopyValueToVirtualRegister(PHIOp, Reg); 11971 } 11972 } 11973 11974 // Remember that this register needs to added to the machine PHI node as 11975 // the input for this MBB. 11976 SmallVector<EVT, 4> ValueVTs; 11977 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11978 for (EVT VT : ValueVTs) { 11979 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11980 for (unsigned i = 0; i != NumRegisters; ++i) 11981 FuncInfo.PHINodesToUpdate.push_back( 11982 std::make_pair(&*MBBI++, Reg + i)); 11983 Reg += NumRegisters; 11984 } 11985 } 11986 } 11987 11988 ConstantsOut.clear(); 11989 } 11990 11991 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11992 MachineFunction::iterator I(MBB); 11993 if (++I == FuncInfo.MF->end()) 11994 return nullptr; 11995 return &*I; 11996 } 11997 11998 /// During lowering new call nodes can be created (such as memset, etc.). 11999 /// Those will become new roots of the current DAG, but complications arise 12000 /// when they are tail calls. In such cases, the call lowering will update 12001 /// the root, but the builder still needs to know that a tail call has been 12002 /// lowered in order to avoid generating an additional return. 12003 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 12004 // If the node is null, we do have a tail call. 12005 if (MaybeTC.getNode() != nullptr) 12006 DAG.setRoot(MaybeTC); 12007 else 12008 HasTailCall = true; 12009 } 12010 12011 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 12012 MachineBasicBlock *SwitchMBB, 12013 MachineBasicBlock *DefaultMBB) { 12014 MachineFunction *CurMF = FuncInfo.MF; 12015 MachineBasicBlock *NextMBB = nullptr; 12016 MachineFunction::iterator BBI(W.MBB); 12017 if (++BBI != FuncInfo.MF->end()) 12018 NextMBB = &*BBI; 12019 12020 unsigned Size = W.LastCluster - W.FirstCluster + 1; 12021 12022 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12023 12024 if (Size == 2 && W.MBB == SwitchMBB) { 12025 // If any two of the cases has the same destination, and if one value 12026 // is the same as the other, but has one bit unset that the other has set, 12027 // use bit manipulation to do two compares at once. For example: 12028 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 12029 // TODO: This could be extended to merge any 2 cases in switches with 3 12030 // cases. 12031 // TODO: Handle cases where W.CaseBB != SwitchBB. 12032 CaseCluster &Small = *W.FirstCluster; 12033 CaseCluster &Big = *W.LastCluster; 12034 12035 if (Small.Low == Small.High && Big.Low == Big.High && 12036 Small.MBB == Big.MBB) { 12037 const APInt &SmallValue = Small.Low->getValue(); 12038 const APInt &BigValue = Big.Low->getValue(); 12039 12040 // Check that there is only one bit different. 12041 APInt CommonBit = BigValue ^ SmallValue; 12042 if (CommonBit.isPowerOf2()) { 12043 SDValue CondLHS = getValue(Cond); 12044 EVT VT = CondLHS.getValueType(); 12045 SDLoc DL = getCurSDLoc(); 12046 12047 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 12048 DAG.getConstant(CommonBit, DL, VT)); 12049 SDValue Cond = DAG.getSetCC( 12050 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 12051 ISD::SETEQ); 12052 12053 // Update successor info. 12054 // Both Small and Big will jump to Small.BB, so we sum up the 12055 // probabilities. 12056 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 12057 if (BPI) 12058 addSuccessorWithProb( 12059 SwitchMBB, DefaultMBB, 12060 // The default destination is the first successor in IR. 12061 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 12062 else 12063 addSuccessorWithProb(SwitchMBB, DefaultMBB); 12064 12065 // Insert the true branch. 12066 SDValue BrCond = 12067 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 12068 DAG.getBasicBlock(Small.MBB)); 12069 // Insert the false branch. 12070 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 12071 DAG.getBasicBlock(DefaultMBB)); 12072 12073 DAG.setRoot(BrCond); 12074 return; 12075 } 12076 } 12077 } 12078 12079 if (TM.getOptLevel() != CodeGenOptLevel::None) { 12080 // Here, we order cases by probability so the most likely case will be 12081 // checked first. However, two clusters can have the same probability in 12082 // which case their relative ordering is non-deterministic. So we use Low 12083 // as a tie-breaker as clusters are guaranteed to never overlap. 12084 llvm::sort(W.FirstCluster, W.LastCluster + 1, 12085 [](const CaseCluster &a, const CaseCluster &b) { 12086 return a.Prob != b.Prob ? 12087 a.Prob > b.Prob : 12088 a.Low->getValue().slt(b.Low->getValue()); 12089 }); 12090 12091 // Rearrange the case blocks so that the last one falls through if possible 12092 // without changing the order of probabilities. 12093 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 12094 --I; 12095 if (I->Prob > W.LastCluster->Prob) 12096 break; 12097 if (I->Kind == CC_Range && I->MBB == NextMBB) { 12098 std::swap(*I, *W.LastCluster); 12099 break; 12100 } 12101 } 12102 } 12103 12104 // Compute total probability. 12105 BranchProbability DefaultProb = W.DefaultProb; 12106 BranchProbability UnhandledProbs = DefaultProb; 12107 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 12108 UnhandledProbs += I->Prob; 12109 12110 MachineBasicBlock *CurMBB = W.MBB; 12111 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 12112 bool FallthroughUnreachable = false; 12113 MachineBasicBlock *Fallthrough; 12114 if (I == W.LastCluster) { 12115 // For the last cluster, fall through to the default destination. 12116 Fallthrough = DefaultMBB; 12117 FallthroughUnreachable = isa<UnreachableInst>( 12118 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 12119 } else { 12120 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 12121 CurMF->insert(BBI, Fallthrough); 12122 // Put Cond in a virtual register to make it available from the new blocks. 12123 ExportFromCurrentBlock(Cond); 12124 } 12125 UnhandledProbs -= I->Prob; 12126 12127 switch (I->Kind) { 12128 case CC_JumpTable: { 12129 // FIXME: Optimize away range check based on pivot comparisons. 12130 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 12131 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 12132 12133 // The jump block hasn't been inserted yet; insert it here. 12134 MachineBasicBlock *JumpMBB = JT->MBB; 12135 CurMF->insert(BBI, JumpMBB); 12136 12137 auto JumpProb = I->Prob; 12138 auto FallthroughProb = UnhandledProbs; 12139 12140 // If the default statement is a target of the jump table, we evenly 12141 // distribute the default probability to successors of CurMBB. Also 12142 // update the probability on the edge from JumpMBB to Fallthrough. 12143 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 12144 SE = JumpMBB->succ_end(); 12145 SI != SE; ++SI) { 12146 if (*SI == DefaultMBB) { 12147 JumpProb += DefaultProb / 2; 12148 FallthroughProb -= DefaultProb / 2; 12149 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 12150 JumpMBB->normalizeSuccProbs(); 12151 break; 12152 } 12153 } 12154 12155 // If the default clause is unreachable, propagate that knowledge into 12156 // JTH->FallthroughUnreachable which will use it to suppress the range 12157 // check. 12158 // 12159 // However, don't do this if we're doing branch target enforcement, 12160 // because a table branch _without_ a range check can be a tempting JOP 12161 // gadget - out-of-bounds inputs that are impossible in correct 12162 // execution become possible again if an attacker can influence the 12163 // control flow. So if an attacker doesn't already have a BTI bypass 12164 // available, we don't want them to be able to get one out of this 12165 // table branch. 12166 if (FallthroughUnreachable) { 12167 Function &CurFunc = CurMF->getFunction(); 12168 if (!CurFunc.hasFnAttribute("branch-target-enforcement")) 12169 JTH->FallthroughUnreachable = true; 12170 } 12171 12172 if (!JTH->FallthroughUnreachable) 12173 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 12174 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 12175 CurMBB->normalizeSuccProbs(); 12176 12177 // The jump table header will be inserted in our current block, do the 12178 // range check, and fall through to our fallthrough block. 12179 JTH->HeaderBB = CurMBB; 12180 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 12181 12182 // If we're in the right place, emit the jump table header right now. 12183 if (CurMBB == SwitchMBB) { 12184 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12185 JTH->Emitted = true; 12186 } 12187 break; 12188 } 12189 case CC_BitTests: { 12190 // FIXME: Optimize away range check based on pivot comparisons. 12191 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12192 12193 // The bit test blocks haven't been inserted yet; insert them here. 12194 for (BitTestCase &BTC : BTB->Cases) 12195 CurMF->insert(BBI, BTC.ThisBB); 12196 12197 // Fill in fields of the BitTestBlock. 12198 BTB->Parent = CurMBB; 12199 BTB->Default = Fallthrough; 12200 12201 BTB->DefaultProb = UnhandledProbs; 12202 // If the cases in bit test don't form a contiguous range, we evenly 12203 // distribute the probability on the edge to Fallthrough to two 12204 // successors of CurMBB. 12205 if (!BTB->ContiguousRange) { 12206 BTB->Prob += DefaultProb / 2; 12207 BTB->DefaultProb -= DefaultProb / 2; 12208 } 12209 12210 if (FallthroughUnreachable) 12211 BTB->FallthroughUnreachable = true; 12212 12213 // If we're in the right place, emit the bit test header right now. 12214 if (CurMBB == SwitchMBB) { 12215 visitBitTestHeader(*BTB, SwitchMBB); 12216 BTB->Emitted = true; 12217 } 12218 break; 12219 } 12220 case CC_Range: { 12221 const Value *RHS, *LHS, *MHS; 12222 ISD::CondCode CC; 12223 if (I->Low == I->High) { 12224 // Check Cond == I->Low. 12225 CC = ISD::SETEQ; 12226 LHS = Cond; 12227 RHS=I->Low; 12228 MHS = nullptr; 12229 } else { 12230 // Check I->Low <= Cond <= I->High. 12231 CC = ISD::SETLE; 12232 LHS = I->Low; 12233 MHS = Cond; 12234 RHS = I->High; 12235 } 12236 12237 // If Fallthrough is unreachable, fold away the comparison. 12238 if (FallthroughUnreachable) 12239 CC = ISD::SETTRUE; 12240 12241 // The false probability is the sum of all unhandled cases. 12242 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12243 getCurSDLoc(), I->Prob, UnhandledProbs); 12244 12245 if (CurMBB == SwitchMBB) 12246 visitSwitchCase(CB, SwitchMBB); 12247 else 12248 SL->SwitchCases.push_back(CB); 12249 12250 break; 12251 } 12252 } 12253 CurMBB = Fallthrough; 12254 } 12255 } 12256 12257 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12258 const SwitchWorkListItem &W, 12259 Value *Cond, 12260 MachineBasicBlock *SwitchMBB) { 12261 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12262 "Clusters not sorted?"); 12263 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12264 12265 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12266 SL->computeSplitWorkItemInfo(W); 12267 12268 // Use the first element on the right as pivot since we will make less-than 12269 // comparisons against it. 12270 CaseClusterIt PivotCluster = FirstRight; 12271 assert(PivotCluster > W.FirstCluster); 12272 assert(PivotCluster <= W.LastCluster); 12273 12274 CaseClusterIt FirstLeft = W.FirstCluster; 12275 CaseClusterIt LastRight = W.LastCluster; 12276 12277 const ConstantInt *Pivot = PivotCluster->Low; 12278 12279 // New blocks will be inserted immediately after the current one. 12280 MachineFunction::iterator BBI(W.MBB); 12281 ++BBI; 12282 12283 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12284 // we can branch to its destination directly if it's squeezed exactly in 12285 // between the known lower bound and Pivot - 1. 12286 MachineBasicBlock *LeftMBB; 12287 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12288 FirstLeft->Low == W.GE && 12289 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12290 LeftMBB = FirstLeft->MBB; 12291 } else { 12292 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12293 FuncInfo.MF->insert(BBI, LeftMBB); 12294 WorkList.push_back( 12295 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12296 // Put Cond in a virtual register to make it available from the new blocks. 12297 ExportFromCurrentBlock(Cond); 12298 } 12299 12300 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12301 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12302 // directly if RHS.High equals the current upper bound. 12303 MachineBasicBlock *RightMBB; 12304 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12305 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12306 RightMBB = FirstRight->MBB; 12307 } else { 12308 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12309 FuncInfo.MF->insert(BBI, RightMBB); 12310 WorkList.push_back( 12311 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12312 // Put Cond in a virtual register to make it available from the new blocks. 12313 ExportFromCurrentBlock(Cond); 12314 } 12315 12316 // Create the CaseBlock record that will be used to lower the branch. 12317 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12318 getCurSDLoc(), LeftProb, RightProb); 12319 12320 if (W.MBB == SwitchMBB) 12321 visitSwitchCase(CB, SwitchMBB); 12322 else 12323 SL->SwitchCases.push_back(CB); 12324 } 12325 12326 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12327 // from the swith statement. 12328 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12329 BranchProbability PeeledCaseProb) { 12330 if (PeeledCaseProb == BranchProbability::getOne()) 12331 return BranchProbability::getZero(); 12332 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12333 12334 uint32_t Numerator = CaseProb.getNumerator(); 12335 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12336 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12337 } 12338 12339 // Try to peel the top probability case if it exceeds the threshold. 12340 // Return current MachineBasicBlock for the switch statement if the peeling 12341 // does not occur. 12342 // If the peeling is performed, return the newly created MachineBasicBlock 12343 // for the peeled switch statement. Also update Clusters to remove the peeled 12344 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12345 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12346 const SwitchInst &SI, CaseClusterVector &Clusters, 12347 BranchProbability &PeeledCaseProb) { 12348 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12349 // Don't perform if there is only one cluster or optimizing for size. 12350 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12351 TM.getOptLevel() == CodeGenOptLevel::None || 12352 SwitchMBB->getParent()->getFunction().hasMinSize()) 12353 return SwitchMBB; 12354 12355 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12356 unsigned PeeledCaseIndex = 0; 12357 bool SwitchPeeled = false; 12358 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12359 CaseCluster &CC = Clusters[Index]; 12360 if (CC.Prob < TopCaseProb) 12361 continue; 12362 TopCaseProb = CC.Prob; 12363 PeeledCaseIndex = Index; 12364 SwitchPeeled = true; 12365 } 12366 if (!SwitchPeeled) 12367 return SwitchMBB; 12368 12369 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12370 << TopCaseProb << "\n"); 12371 12372 // Record the MBB for the peeled switch statement. 12373 MachineFunction::iterator BBI(SwitchMBB); 12374 ++BBI; 12375 MachineBasicBlock *PeeledSwitchMBB = 12376 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12377 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12378 12379 ExportFromCurrentBlock(SI.getCondition()); 12380 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12381 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12382 nullptr, nullptr, TopCaseProb.getCompl()}; 12383 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12384 12385 Clusters.erase(PeeledCaseIt); 12386 for (CaseCluster &CC : Clusters) { 12387 LLVM_DEBUG( 12388 dbgs() << "Scale the probablity for one cluster, before scaling: " 12389 << CC.Prob << "\n"); 12390 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12391 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12392 } 12393 PeeledCaseProb = TopCaseProb; 12394 return PeeledSwitchMBB; 12395 } 12396 12397 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12398 // Extract cases from the switch. 12399 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12400 CaseClusterVector Clusters; 12401 Clusters.reserve(SI.getNumCases()); 12402 for (auto I : SI.cases()) { 12403 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor()); 12404 const ConstantInt *CaseVal = I.getCaseValue(); 12405 BranchProbability Prob = 12406 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12407 : BranchProbability(1, SI.getNumCases() + 1); 12408 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12409 } 12410 12411 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest()); 12412 12413 // Cluster adjacent cases with the same destination. We do this at all 12414 // optimization levels because it's cheap to do and will make codegen faster 12415 // if there are many clusters. 12416 sortAndRangeify(Clusters); 12417 12418 // The branch probablity of the peeled case. 12419 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12420 MachineBasicBlock *PeeledSwitchMBB = 12421 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12422 12423 // If there is only the default destination, jump there directly. 12424 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12425 if (Clusters.empty()) { 12426 assert(PeeledSwitchMBB == SwitchMBB); 12427 SwitchMBB->addSuccessor(DefaultMBB); 12428 if (DefaultMBB != NextBlock(SwitchMBB)) { 12429 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12430 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12431 } 12432 return; 12433 } 12434 12435 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12436 DAG.getBFI()); 12437 SL->findBitTestClusters(Clusters, &SI); 12438 12439 LLVM_DEBUG({ 12440 dbgs() << "Case clusters: "; 12441 for (const CaseCluster &C : Clusters) { 12442 if (C.Kind == CC_JumpTable) 12443 dbgs() << "JT:"; 12444 if (C.Kind == CC_BitTests) 12445 dbgs() << "BT:"; 12446 12447 C.Low->getValue().print(dbgs(), true); 12448 if (C.Low != C.High) { 12449 dbgs() << '-'; 12450 C.High->getValue().print(dbgs(), true); 12451 } 12452 dbgs() << ' '; 12453 } 12454 dbgs() << '\n'; 12455 }); 12456 12457 assert(!Clusters.empty()); 12458 SwitchWorkList WorkList; 12459 CaseClusterIt First = Clusters.begin(); 12460 CaseClusterIt Last = Clusters.end() - 1; 12461 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12462 // Scale the branchprobability for DefaultMBB if the peel occurs and 12463 // DefaultMBB is not replaced. 12464 if (PeeledCaseProb != BranchProbability::getZero() && 12465 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest())) 12466 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12467 WorkList.push_back( 12468 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12469 12470 while (!WorkList.empty()) { 12471 SwitchWorkListItem W = WorkList.pop_back_val(); 12472 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12473 12474 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12475 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12476 // For optimized builds, lower large range as a balanced binary tree. 12477 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12478 continue; 12479 } 12480 12481 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12482 } 12483 } 12484 12485 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12487 auto DL = getCurSDLoc(); 12488 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12489 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12490 } 12491 12492 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12494 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12495 12496 SDLoc DL = getCurSDLoc(); 12497 SDValue V = getValue(I.getOperand(0)); 12498 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12499 12500 if (VT.isScalableVector()) { 12501 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12502 return; 12503 } 12504 12505 // Use VECTOR_SHUFFLE for the fixed-length vector 12506 // to maintain existing behavior. 12507 SmallVector<int, 8> Mask; 12508 unsigned NumElts = VT.getVectorMinNumElements(); 12509 for (unsigned i = 0; i != NumElts; ++i) 12510 Mask.push_back(NumElts - 1 - i); 12511 12512 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12513 } 12514 12515 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12516 auto DL = getCurSDLoc(); 12517 SDValue InVec = getValue(I.getOperand(0)); 12518 EVT OutVT = 12519 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12520 12521 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12522 12523 // ISD Node needs the input vectors split into two equal parts 12524 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12525 DAG.getVectorIdxConstant(0, DL)); 12526 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12527 DAG.getVectorIdxConstant(OutNumElts, DL)); 12528 12529 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12530 // legalisation and combines. 12531 if (OutVT.isFixedLengthVector()) { 12532 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12533 createStrideMask(0, 2, OutNumElts)); 12534 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12535 createStrideMask(1, 2, OutNumElts)); 12536 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12537 setValue(&I, Res); 12538 return; 12539 } 12540 12541 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12542 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12543 setValue(&I, Res); 12544 } 12545 12546 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12547 auto DL = getCurSDLoc(); 12548 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12549 SDValue InVec0 = getValue(I.getOperand(0)); 12550 SDValue InVec1 = getValue(I.getOperand(1)); 12551 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12552 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12553 12554 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12555 // legalisation and combines. 12556 if (OutVT.isFixedLengthVector()) { 12557 unsigned NumElts = InVT.getVectorMinNumElements(); 12558 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12559 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12560 createInterleaveMask(NumElts, 2))); 12561 return; 12562 } 12563 12564 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12565 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12566 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12567 Res.getValue(1)); 12568 setValue(&I, Res); 12569 } 12570 12571 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12572 SmallVector<EVT, 4> ValueVTs; 12573 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12574 ValueVTs); 12575 unsigned NumValues = ValueVTs.size(); 12576 if (NumValues == 0) return; 12577 12578 SmallVector<SDValue, 4> Values(NumValues); 12579 SDValue Op = getValue(I.getOperand(0)); 12580 12581 for (unsigned i = 0; i != NumValues; ++i) 12582 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12583 SDValue(Op.getNode(), Op.getResNo() + i)); 12584 12585 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12586 DAG.getVTList(ValueVTs), Values)); 12587 } 12588 12589 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12590 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12591 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12592 12593 SDLoc DL = getCurSDLoc(); 12594 SDValue V1 = getValue(I.getOperand(0)); 12595 SDValue V2 = getValue(I.getOperand(1)); 12596 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12597 12598 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12599 if (VT.isScalableVector()) { 12600 setValue( 12601 &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12602 DAG.getSignedConstant( 12603 Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 12604 return; 12605 } 12606 12607 unsigned NumElts = VT.getVectorNumElements(); 12608 12609 uint64_t Idx = (NumElts + Imm) % NumElts; 12610 12611 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12612 SmallVector<int, 8> Mask; 12613 for (unsigned i = 0; i < NumElts; ++i) 12614 Mask.push_back(Idx + i); 12615 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12616 } 12617 12618 // Consider the following MIR after SelectionDAG, which produces output in 12619 // phyregs in the first case or virtregs in the second case. 12620 // 12621 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12622 // %5:gr32 = COPY $ebx 12623 // %6:gr32 = COPY $edx 12624 // %1:gr32 = COPY %6:gr32 12625 // %0:gr32 = COPY %5:gr32 12626 // 12627 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12628 // %1:gr32 = COPY %6:gr32 12629 // %0:gr32 = COPY %5:gr32 12630 // 12631 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12632 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12633 // 12634 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12635 // to a single virtreg (such as %0). The remaining outputs monotonically 12636 // increase in virtreg number from there. If a callbr has no outputs, then it 12637 // should not have a corresponding callbr landingpad; in fact, the callbr 12638 // landingpad would not even be able to refer to such a callbr. 12639 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12640 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12641 // There is definitely at least one copy. 12642 assert(MI->getOpcode() == TargetOpcode::COPY && 12643 "start of copy chain MUST be COPY"); 12644 Reg = MI->getOperand(1).getReg(); 12645 MI = MRI.def_begin(Reg)->getParent(); 12646 // There may be an optional second copy. 12647 if (MI->getOpcode() == TargetOpcode::COPY) { 12648 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12649 Reg = MI->getOperand(1).getReg(); 12650 assert(Reg.isPhysical() && "expected COPY of physical register"); 12651 MI = MRI.def_begin(Reg)->getParent(); 12652 } 12653 // The start of the chain must be an INLINEASM_BR. 12654 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12655 "end of copy chain MUST be INLINEASM_BR"); 12656 return Reg; 12657 } 12658 12659 // We must do this walk rather than the simpler 12660 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12661 // otherwise we will end up with copies of virtregs only valid along direct 12662 // edges. 12663 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12664 SmallVector<EVT, 8> ResultVTs; 12665 SmallVector<SDValue, 8> ResultValues; 12666 const auto *CBR = 12667 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12668 12669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12670 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12671 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12672 12673 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12674 SDValue Chain = DAG.getRoot(); 12675 12676 // Re-parse the asm constraints string. 12677 TargetLowering::AsmOperandInfoVector TargetConstraints = 12678 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12679 for (auto &T : TargetConstraints) { 12680 SDISelAsmOperandInfo OpInfo(T); 12681 if (OpInfo.Type != InlineAsm::isOutput) 12682 continue; 12683 12684 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12685 // individual constraint. 12686 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12687 12688 switch (OpInfo.ConstraintType) { 12689 case TargetLowering::C_Register: 12690 case TargetLowering::C_RegisterClass: { 12691 // Fill in OpInfo.AssignedRegs.Regs. 12692 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12693 12694 // getRegistersForValue may produce 1 to many registers based on whether 12695 // the OpInfo.ConstraintVT is legal on the target or not. 12696 for (Register &Reg : OpInfo.AssignedRegs.Regs) { 12697 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12698 if (Register::isPhysicalRegister(OriginalDef)) 12699 FuncInfo.MBB->addLiveIn(OriginalDef); 12700 // Update the assigned registers to use the original defs. 12701 Reg = OriginalDef; 12702 } 12703 12704 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12705 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12706 ResultValues.push_back(V); 12707 ResultVTs.push_back(OpInfo.ConstraintVT); 12708 break; 12709 } 12710 case TargetLowering::C_Other: { 12711 SDValue Flag; 12712 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12713 OpInfo, DAG); 12714 ++InitialDef; 12715 ResultValues.push_back(V); 12716 ResultVTs.push_back(OpInfo.ConstraintVT); 12717 break; 12718 } 12719 default: 12720 break; 12721 } 12722 } 12723 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12724 DAG.getVTList(ResultVTs), ResultValues); 12725 setValue(&I, V); 12726 } 12727