1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1182 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1183 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1184 if (IsMSVCCXX || IsCoreCLR) 1185 CatchPadMBB->setIsEHFuncletEntry(); 1186 1187 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1188 1189 // Update machine-CFG edge. 1190 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1191 1192 SDValue Chain = 1193 DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()); 1194 1195 // If this is not a fall-through branch or optimizations are switched off, 1196 // emit the branch. 1197 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1198 TM.getOptLevel() == CodeGenOpt::None) 1199 Chain = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 1200 DAG.getBasicBlock(NormalDestMBB)); 1201 DAG.setRoot(Chain); 1202 } 1203 1204 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1205 // Update machine-CFG edge. 1206 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1207 FuncInfo.MBB->addSuccessor(TargetMBB); 1208 1209 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1210 bool IsSEH = isAsynchronousEHPersonality(Pers); 1211 if (IsSEH) { 1212 // If this is not a fall-through branch or optimizations are switched off, 1213 // emit the branch. 1214 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1215 TM.getOptLevel() == CodeGenOpt::None) 1216 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1217 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1218 return; 1219 } 1220 1221 // Figure out the funclet membership for the catchret's successor. 1222 // This will be used by the FuncletLayout pass to determine how to order the 1223 // BB's. 1224 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 1225 const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I]; 1226 assert(SuccessorColor && "No parent funclet for catchret!"); 1227 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1228 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1229 1230 // Create the terminator node. 1231 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1232 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1233 DAG.getBasicBlock(SuccessorColorMBB)); 1234 DAG.setRoot(Ret); 1235 } 1236 1237 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1238 llvm_unreachable("should never codegen catchendpads"); 1239 } 1240 1241 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1242 // Don't emit any special code for the cleanuppad instruction. It just marks 1243 // the start of a funclet. 1244 FuncInfo.MBB->setIsEHFuncletEntry(); 1245 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1246 } 1247 1248 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1249 /// many places it could ultimately go. In the IR, we have a single unwind 1250 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1251 /// This function skips over imaginary basic blocks that hold catchpad, 1252 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1253 /// basic block destinations. As those destinations may not be successors of 1254 /// EHPadBB, here we also calculate the edge weight to those destinations. The 1255 /// passed-in Weight is the edge weight to EHPadBB. 1256 static void findUnwindDestinations( 1257 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, uint32_t Weight, 1258 SmallVectorImpl<std::pair<MachineBasicBlock *, uint32_t>> &UnwindDests) { 1259 EHPersonality Personality = 1260 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1261 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1262 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1263 1264 while (EHPadBB) { 1265 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1266 BasicBlock *NewEHPadBB = nullptr; 1267 if (isa<LandingPadInst>(Pad)) { 1268 // Stop on landingpads. They are not funclets. 1269 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1270 break; 1271 } else if (isa<CleanupPadInst>(Pad)) { 1272 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1273 // personalities. 1274 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1275 UnwindDests.back().first->setIsEHFuncletEntry(); 1276 break; 1277 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1278 // Add the catchpad handler to the possible destinations. 1279 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1280 // In MSVC C++, catchblocks are funclets and need prologues. 1281 if (IsMSVCCXX || IsCoreCLR) 1282 UnwindDests.back().first->setIsEHFuncletEntry(); 1283 NewEHPadBB = CPI->getUnwindDest(); 1284 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) 1285 NewEHPadBB = CEPI->getUnwindDest(); 1286 else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) 1287 NewEHPadBB = CEPI->getUnwindDest(); 1288 else 1289 continue; 1290 1291 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1292 if (BPI && NewEHPadBB) { 1293 // When BPI is available, the calculated weight cannot be zero as zero 1294 // will be turned to a default weight in MachineBlockFrequencyInfo. 1295 Weight = std::max<uint32_t>( 1296 BPI->getEdgeProbability(EHPadBB, NewEHPadBB).scale(Weight), 1); 1297 } 1298 EHPadBB = NewEHPadBB; 1299 } 1300 } 1301 1302 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1303 // Update successor info. 1304 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 1305 auto UnwindDest = I.getUnwindDest(); 1306 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1307 uint32_t UnwindDestWeight = 1308 BPI ? BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), UnwindDest) : 0; 1309 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestWeight, UnwindDests); 1310 for (auto &UnwindDest : UnwindDests) { 1311 UnwindDest.first->setIsEHPad(); 1312 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1313 } 1314 1315 // Create the terminator node. 1316 SDValue Ret = 1317 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1318 DAG.setRoot(Ret); 1319 } 1320 1321 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1322 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1323 } 1324 1325 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1326 report_fatal_error("visitTerminatePad not yet implemented!"); 1327 } 1328 1329 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1331 auto &DL = DAG.getDataLayout(); 1332 SDValue Chain = getControlRoot(); 1333 SmallVector<ISD::OutputArg, 8> Outs; 1334 SmallVector<SDValue, 8> OutVals; 1335 1336 if (!FuncInfo.CanLowerReturn) { 1337 unsigned DemoteReg = FuncInfo.DemoteRegister; 1338 const Function *F = I.getParent()->getParent(); 1339 1340 // Emit a store of the return value through the virtual register. 1341 // Leave Outs empty so that LowerReturn won't try to load return 1342 // registers the usual way. 1343 SmallVector<EVT, 1> PtrValueVTs; 1344 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1345 PtrValueVTs); 1346 1347 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1348 SDValue RetOp = getValue(I.getOperand(0)); 1349 1350 SmallVector<EVT, 4> ValueVTs; 1351 SmallVector<uint64_t, 4> Offsets; 1352 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1353 unsigned NumValues = ValueVTs.size(); 1354 1355 SmallVector<SDValue, 4> Chains(NumValues); 1356 for (unsigned i = 0; i != NumValues; ++i) { 1357 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1358 RetPtr.getValueType(), RetPtr, 1359 DAG.getIntPtrConstant(Offsets[i], 1360 getCurSDLoc())); 1361 Chains[i] = 1362 DAG.getStore(Chain, getCurSDLoc(), 1363 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1364 // FIXME: better loc info would be nice. 1365 Add, MachinePointerInfo(), false, false, 0); 1366 } 1367 1368 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1369 MVT::Other, Chains); 1370 } else if (I.getNumOperands() != 0) { 1371 SmallVector<EVT, 4> ValueVTs; 1372 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1373 unsigned NumValues = ValueVTs.size(); 1374 if (NumValues) { 1375 SDValue RetOp = getValue(I.getOperand(0)); 1376 1377 const Function *F = I.getParent()->getParent(); 1378 1379 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1380 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1381 Attribute::SExt)) 1382 ExtendKind = ISD::SIGN_EXTEND; 1383 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1384 Attribute::ZExt)) 1385 ExtendKind = ISD::ZERO_EXTEND; 1386 1387 LLVMContext &Context = F->getContext(); 1388 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1389 Attribute::InReg); 1390 1391 for (unsigned j = 0; j != NumValues; ++j) { 1392 EVT VT = ValueVTs[j]; 1393 1394 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1395 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1396 1397 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1398 MVT PartVT = TLI.getRegisterType(Context, VT); 1399 SmallVector<SDValue, 4> Parts(NumParts); 1400 getCopyToParts(DAG, getCurSDLoc(), 1401 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1402 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1403 1404 // 'inreg' on function refers to return value 1405 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1406 if (RetInReg) 1407 Flags.setInReg(); 1408 1409 // Propagate extension type if any 1410 if (ExtendKind == ISD::SIGN_EXTEND) 1411 Flags.setSExt(); 1412 else if (ExtendKind == ISD::ZERO_EXTEND) 1413 Flags.setZExt(); 1414 1415 for (unsigned i = 0; i < NumParts; ++i) { 1416 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1417 VT, /*isfixed=*/true, 0, 0)); 1418 OutVals.push_back(Parts[i]); 1419 } 1420 } 1421 } 1422 } 1423 1424 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1425 CallingConv::ID CallConv = 1426 DAG.getMachineFunction().getFunction()->getCallingConv(); 1427 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1428 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1429 1430 // Verify that the target's LowerReturn behaved as expected. 1431 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1432 "LowerReturn didn't return a valid chain!"); 1433 1434 // Update the DAG with the new chain value resulting from return lowering. 1435 DAG.setRoot(Chain); 1436 } 1437 1438 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1439 /// created for it, emit nodes to copy the value into the virtual 1440 /// registers. 1441 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1442 // Skip empty types 1443 if (V->getType()->isEmptyTy()) 1444 return; 1445 1446 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1447 if (VMI != FuncInfo.ValueMap.end()) { 1448 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1449 CopyValueToVirtualRegister(V, VMI->second); 1450 } 1451 } 1452 1453 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1454 /// the current basic block, add it to ValueMap now so that we'll get a 1455 /// CopyTo/FromReg. 1456 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1457 // No need to export constants. 1458 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1459 1460 // Already exported? 1461 if (FuncInfo.isExportedInst(V)) return; 1462 1463 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1464 CopyValueToVirtualRegister(V, Reg); 1465 } 1466 1467 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1468 const BasicBlock *FromBB) { 1469 // The operands of the setcc have to be in this block. We don't know 1470 // how to export them from some other block. 1471 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1472 // Can export from current BB. 1473 if (VI->getParent() == FromBB) 1474 return true; 1475 1476 // Is already exported, noop. 1477 return FuncInfo.isExportedInst(V); 1478 } 1479 1480 // If this is an argument, we can export it if the BB is the entry block or 1481 // if it is already exported. 1482 if (isa<Argument>(V)) { 1483 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1484 return true; 1485 1486 // Otherwise, can only export this if it is already exported. 1487 return FuncInfo.isExportedInst(V); 1488 } 1489 1490 // Otherwise, constants can always be exported. 1491 return true; 1492 } 1493 1494 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1495 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1496 const MachineBasicBlock *Dst) const { 1497 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1498 if (!BPI) 1499 return 0; 1500 const BasicBlock *SrcBB = Src->getBasicBlock(); 1501 const BasicBlock *DstBB = Dst->getBasicBlock(); 1502 return BPI->getEdgeWeight(SrcBB, DstBB); 1503 } 1504 1505 void SelectionDAGBuilder:: 1506 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1507 uint32_t Weight /* = 0 */) { 1508 if (!FuncInfo.BPI) 1509 Src->addSuccessorWithoutWeight(Dst); 1510 else { 1511 if (!Weight) 1512 Weight = getEdgeWeight(Src, Dst); 1513 Src->addSuccessor(Dst, Weight); 1514 } 1515 } 1516 1517 1518 static bool InBlock(const Value *V, const BasicBlock *BB) { 1519 if (const Instruction *I = dyn_cast<Instruction>(V)) 1520 return I->getParent() == BB; 1521 return true; 1522 } 1523 1524 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1525 /// This function emits a branch and is used at the leaves of an OR or an 1526 /// AND operator tree. 1527 /// 1528 void 1529 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1530 MachineBasicBlock *TBB, 1531 MachineBasicBlock *FBB, 1532 MachineBasicBlock *CurBB, 1533 MachineBasicBlock *SwitchBB, 1534 uint32_t TWeight, 1535 uint32_t FWeight) { 1536 const BasicBlock *BB = CurBB->getBasicBlock(); 1537 1538 // If the leaf of the tree is a comparison, merge the condition into 1539 // the caseblock. 1540 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1541 // The operands of the cmp have to be in this block. We don't know 1542 // how to export them from some other block. If this is the first block 1543 // of the sequence, no exporting is needed. 1544 if (CurBB == SwitchBB || 1545 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1546 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1547 ISD::CondCode Condition; 1548 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1549 Condition = getICmpCondCode(IC->getPredicate()); 1550 } else { 1551 const FCmpInst *FC = cast<FCmpInst>(Cond); 1552 Condition = getFCmpCondCode(FC->getPredicate()); 1553 if (TM.Options.NoNaNsFPMath) 1554 Condition = getFCmpCodeWithoutNaN(Condition); 1555 } 1556 1557 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1558 TBB, FBB, CurBB, TWeight, FWeight); 1559 SwitchCases.push_back(CB); 1560 return; 1561 } 1562 } 1563 1564 // Create a CaseBlock record representing this branch. 1565 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1566 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1567 SwitchCases.push_back(CB); 1568 } 1569 1570 /// Scale down both weights to fit into uint32_t. 1571 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1572 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1573 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1574 NewTrue = NewTrue / Scale; 1575 NewFalse = NewFalse / Scale; 1576 } 1577 1578 /// FindMergedConditions - If Cond is an expression like 1579 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1580 MachineBasicBlock *TBB, 1581 MachineBasicBlock *FBB, 1582 MachineBasicBlock *CurBB, 1583 MachineBasicBlock *SwitchBB, 1584 Instruction::BinaryOps Opc, 1585 uint32_t TWeight, 1586 uint32_t FWeight) { 1587 // If this node is not part of the or/and tree, emit it as a branch. 1588 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1589 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1590 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1591 BOp->getParent() != CurBB->getBasicBlock() || 1592 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1593 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1594 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1595 TWeight, FWeight); 1596 return; 1597 } 1598 1599 // Create TmpBB after CurBB. 1600 MachineFunction::iterator BBI(CurBB); 1601 MachineFunction &MF = DAG.getMachineFunction(); 1602 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1603 CurBB->getParent()->insert(++BBI, TmpBB); 1604 1605 if (Opc == Instruction::Or) { 1606 // Codegen X | Y as: 1607 // BB1: 1608 // jmp_if_X TBB 1609 // jmp TmpBB 1610 // TmpBB: 1611 // jmp_if_Y TBB 1612 // jmp FBB 1613 // 1614 1615 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1616 // The requirement is that 1617 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1618 // = TrueProb for original BB. 1619 // Assuming the original weights are A and B, one choice is to set BB1's 1620 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1621 // assumes that 1622 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1623 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1624 // TmpBB, but the math is more complicated. 1625 1626 uint64_t NewTrueWeight = TWeight; 1627 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1628 ScaleWeights(NewTrueWeight, NewFalseWeight); 1629 // Emit the LHS condition. 1630 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1631 NewTrueWeight, NewFalseWeight); 1632 1633 NewTrueWeight = TWeight; 1634 NewFalseWeight = 2 * (uint64_t)FWeight; 1635 ScaleWeights(NewTrueWeight, NewFalseWeight); 1636 // Emit the RHS condition into TmpBB. 1637 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1638 NewTrueWeight, NewFalseWeight); 1639 } else { 1640 assert(Opc == Instruction::And && "Unknown merge op!"); 1641 // Codegen X & Y as: 1642 // BB1: 1643 // jmp_if_X TmpBB 1644 // jmp FBB 1645 // TmpBB: 1646 // jmp_if_Y TBB 1647 // jmp FBB 1648 // 1649 // This requires creation of TmpBB after CurBB. 1650 1651 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1652 // The requirement is that 1653 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1654 // = FalseProb for original BB. 1655 // Assuming the original weights are A and B, one choice is to set BB1's 1656 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1657 // assumes that 1658 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1659 1660 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1661 uint64_t NewFalseWeight = FWeight; 1662 ScaleWeights(NewTrueWeight, NewFalseWeight); 1663 // Emit the LHS condition. 1664 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1665 NewTrueWeight, NewFalseWeight); 1666 1667 NewTrueWeight = 2 * (uint64_t)TWeight; 1668 NewFalseWeight = FWeight; 1669 ScaleWeights(NewTrueWeight, NewFalseWeight); 1670 // Emit the RHS condition into TmpBB. 1671 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1672 NewTrueWeight, NewFalseWeight); 1673 } 1674 } 1675 1676 /// If the set of cases should be emitted as a series of branches, return true. 1677 /// If we should emit this as a bunch of and/or'd together conditions, return 1678 /// false. 1679 bool 1680 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1681 if (Cases.size() != 2) return true; 1682 1683 // If this is two comparisons of the same values or'd or and'd together, they 1684 // will get folded into a single comparison, so don't emit two blocks. 1685 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1686 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1687 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1688 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1689 return false; 1690 } 1691 1692 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1693 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1694 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1695 Cases[0].CC == Cases[1].CC && 1696 isa<Constant>(Cases[0].CmpRHS) && 1697 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1698 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1699 return false; 1700 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1701 return false; 1702 } 1703 1704 return true; 1705 } 1706 1707 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1708 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1709 1710 // Update machine-CFG edges. 1711 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1712 1713 if (I.isUnconditional()) { 1714 // Update machine-CFG edges. 1715 BrMBB->addSuccessor(Succ0MBB); 1716 1717 // If this is not a fall-through branch or optimizations are switched off, 1718 // emit the branch. 1719 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1720 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1721 MVT::Other, getControlRoot(), 1722 DAG.getBasicBlock(Succ0MBB))); 1723 1724 return; 1725 } 1726 1727 // If this condition is one of the special cases we handle, do special stuff 1728 // now. 1729 const Value *CondVal = I.getCondition(); 1730 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1731 1732 // If this is a series of conditions that are or'd or and'd together, emit 1733 // this as a sequence of branches instead of setcc's with and/or operations. 1734 // As long as jumps are not expensive, this should improve performance. 1735 // For example, instead of something like: 1736 // cmp A, B 1737 // C = seteq 1738 // cmp D, E 1739 // F = setle 1740 // or C, F 1741 // jnz foo 1742 // Emit: 1743 // cmp A, B 1744 // je foo 1745 // cmp D, E 1746 // jle foo 1747 // 1748 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1749 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1750 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1751 !I.getMetadata(LLVMContext::MD_unpredictable) && 1752 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1753 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1754 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1755 getEdgeWeight(BrMBB, Succ1MBB)); 1756 // If the compares in later blocks need to use values not currently 1757 // exported from this block, export them now. This block should always 1758 // be the first entry. 1759 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1760 1761 // Allow some cases to be rejected. 1762 if (ShouldEmitAsBranches(SwitchCases)) { 1763 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1764 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1765 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1766 } 1767 1768 // Emit the branch for this block. 1769 visitSwitchCase(SwitchCases[0], BrMBB); 1770 SwitchCases.erase(SwitchCases.begin()); 1771 return; 1772 } 1773 1774 // Okay, we decided not to do this, remove any inserted MBB's and clear 1775 // SwitchCases. 1776 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1777 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1778 1779 SwitchCases.clear(); 1780 } 1781 } 1782 1783 // Create a CaseBlock record representing this branch. 1784 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1785 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1786 1787 // Use visitSwitchCase to actually insert the fast branch sequence for this 1788 // cond branch. 1789 visitSwitchCase(CB, BrMBB); 1790 } 1791 1792 /// visitSwitchCase - Emits the necessary code to represent a single node in 1793 /// the binary search tree resulting from lowering a switch instruction. 1794 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1795 MachineBasicBlock *SwitchBB) { 1796 SDValue Cond; 1797 SDValue CondLHS = getValue(CB.CmpLHS); 1798 SDLoc dl = getCurSDLoc(); 1799 1800 // Build the setcc now. 1801 if (!CB.CmpMHS) { 1802 // Fold "(X == true)" to X and "(X == false)" to !X to 1803 // handle common cases produced by branch lowering. 1804 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1805 CB.CC == ISD::SETEQ) 1806 Cond = CondLHS; 1807 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1808 CB.CC == ISD::SETEQ) { 1809 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1810 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1811 } else 1812 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1813 } else { 1814 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1815 1816 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1817 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1818 1819 SDValue CmpOp = getValue(CB.CmpMHS); 1820 EVT VT = CmpOp.getValueType(); 1821 1822 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1823 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1824 ISD::SETLE); 1825 } else { 1826 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1827 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1828 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1829 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1830 } 1831 } 1832 1833 // Update successor info 1834 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1835 // TrueBB and FalseBB are always different unless the incoming IR is 1836 // degenerate. This only happens when running llc on weird IR. 1837 if (CB.TrueBB != CB.FalseBB) 1838 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1839 1840 // If the lhs block is the next block, invert the condition so that we can 1841 // fall through to the lhs instead of the rhs block. 1842 if (CB.TrueBB == NextBlock(SwitchBB)) { 1843 std::swap(CB.TrueBB, CB.FalseBB); 1844 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1845 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1846 } 1847 1848 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1849 MVT::Other, getControlRoot(), Cond, 1850 DAG.getBasicBlock(CB.TrueBB)); 1851 1852 // Insert the false branch. Do this even if it's a fall through branch, 1853 // this makes it easier to do DAG optimizations which require inverting 1854 // the branch condition. 1855 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1856 DAG.getBasicBlock(CB.FalseBB)); 1857 1858 DAG.setRoot(BrCond); 1859 } 1860 1861 /// visitJumpTable - Emit JumpTable node in the current MBB 1862 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1863 // Emit the code for the jump table 1864 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1865 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1866 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1867 JT.Reg, PTy); 1868 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1869 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1870 MVT::Other, Index.getValue(1), 1871 Table, Index); 1872 DAG.setRoot(BrJumpTable); 1873 } 1874 1875 /// visitJumpTableHeader - This function emits necessary code to produce index 1876 /// in the JumpTable from switch case. 1877 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1878 JumpTableHeader &JTH, 1879 MachineBasicBlock *SwitchBB) { 1880 SDLoc dl = getCurSDLoc(); 1881 1882 // Subtract the lowest switch case value from the value being switched on and 1883 // conditional branch to default mbb if the result is greater than the 1884 // difference between smallest and largest cases. 1885 SDValue SwitchOp = getValue(JTH.SValue); 1886 EVT VT = SwitchOp.getValueType(); 1887 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1888 DAG.getConstant(JTH.First, dl, VT)); 1889 1890 // The SDNode we just created, which holds the value being switched on minus 1891 // the smallest case value, needs to be copied to a virtual register so it 1892 // can be used as an index into the jump table in a subsequent basic block. 1893 // This value may be smaller or larger than the target's pointer type, and 1894 // therefore require extension or truncating. 1895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1896 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1897 1898 unsigned JumpTableReg = 1899 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1900 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1901 JumpTableReg, SwitchOp); 1902 JT.Reg = JumpTableReg; 1903 1904 // Emit the range check for the jump table, and branch to the default block 1905 // for the switch statement if the value being switched on exceeds the largest 1906 // case in the switch. 1907 SDValue CMP = DAG.getSetCC( 1908 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1909 Sub.getValueType()), 1910 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1911 1912 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1913 MVT::Other, CopyTo, CMP, 1914 DAG.getBasicBlock(JT.Default)); 1915 1916 // Avoid emitting unnecessary branches to the next block. 1917 if (JT.MBB != NextBlock(SwitchBB)) 1918 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1919 DAG.getBasicBlock(JT.MBB)); 1920 1921 DAG.setRoot(BrCond); 1922 } 1923 1924 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1925 /// tail spliced into a stack protector check success bb. 1926 /// 1927 /// For a high level explanation of how this fits into the stack protector 1928 /// generation see the comment on the declaration of class 1929 /// StackProtectorDescriptor. 1930 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1931 MachineBasicBlock *ParentBB) { 1932 1933 // First create the loads to the guard/stack slot for the comparison. 1934 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1935 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1936 1937 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1938 int FI = MFI->getStackProtectorIndex(); 1939 1940 const Value *IRGuard = SPD.getGuard(); 1941 SDValue GuardPtr = getValue(IRGuard); 1942 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1943 1944 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1945 1946 SDValue Guard; 1947 SDLoc dl = getCurSDLoc(); 1948 1949 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1950 // guard value from the virtual register holding the value. Otherwise, emit a 1951 // volatile load to retrieve the stack guard value. 1952 unsigned GuardReg = SPD.getGuardReg(); 1953 1954 if (GuardReg && TLI.useLoadStackGuardNode()) 1955 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1956 PtrTy); 1957 else 1958 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1959 GuardPtr, MachinePointerInfo(IRGuard, 0), 1960 true, false, false, Align); 1961 1962 SDValue StackSlot = DAG.getLoad( 1963 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1964 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1965 false, false, Align); 1966 1967 // Perform the comparison via a subtract/getsetcc. 1968 EVT VT = Guard.getValueType(); 1969 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1970 1971 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1972 *DAG.getContext(), 1973 Sub.getValueType()), 1974 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1975 1976 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1977 // branch to failure MBB. 1978 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1979 MVT::Other, StackSlot.getOperand(0), 1980 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1981 // Otherwise branch to success MBB. 1982 SDValue Br = DAG.getNode(ISD::BR, dl, 1983 MVT::Other, BrCond, 1984 DAG.getBasicBlock(SPD.getSuccessMBB())); 1985 1986 DAG.setRoot(Br); 1987 } 1988 1989 /// Codegen the failure basic block for a stack protector check. 1990 /// 1991 /// A failure stack protector machine basic block consists simply of a call to 1992 /// __stack_chk_fail(). 1993 /// 1994 /// For a high level explanation of how this fits into the stack protector 1995 /// generation see the comment on the declaration of class 1996 /// StackProtectorDescriptor. 1997 void 1998 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2000 SDValue Chain = 2001 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2002 None, false, getCurSDLoc(), false, false).second; 2003 DAG.setRoot(Chain); 2004 } 2005 2006 /// visitBitTestHeader - This function emits necessary code to produce value 2007 /// suitable for "bit tests" 2008 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2009 MachineBasicBlock *SwitchBB) { 2010 SDLoc dl = getCurSDLoc(); 2011 2012 // Subtract the minimum value 2013 SDValue SwitchOp = getValue(B.SValue); 2014 EVT VT = SwitchOp.getValueType(); 2015 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2016 DAG.getConstant(B.First, dl, VT)); 2017 2018 // Check range 2019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2020 SDValue RangeCmp = DAG.getSetCC( 2021 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2022 Sub.getValueType()), 2023 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2024 2025 // Determine the type of the test operands. 2026 bool UsePtrType = false; 2027 if (!TLI.isTypeLegal(VT)) 2028 UsePtrType = true; 2029 else { 2030 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2031 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2032 // Switch table case range are encoded into series of masks. 2033 // Just use pointer type, it's guaranteed to fit. 2034 UsePtrType = true; 2035 break; 2036 } 2037 } 2038 if (UsePtrType) { 2039 VT = TLI.getPointerTy(DAG.getDataLayout()); 2040 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2041 } 2042 2043 B.RegVT = VT.getSimpleVT(); 2044 B.Reg = FuncInfo.CreateReg(B.RegVT); 2045 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2046 2047 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2048 2049 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 2050 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 2051 2052 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2053 MVT::Other, CopyTo, RangeCmp, 2054 DAG.getBasicBlock(B.Default)); 2055 2056 // Avoid emitting unnecessary branches to the next block. 2057 if (MBB != NextBlock(SwitchBB)) 2058 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2059 DAG.getBasicBlock(MBB)); 2060 2061 DAG.setRoot(BrRange); 2062 } 2063 2064 /// visitBitTestCase - this function produces one "bit test" 2065 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2066 MachineBasicBlock* NextMBB, 2067 uint32_t BranchWeightToNext, 2068 unsigned Reg, 2069 BitTestCase &B, 2070 MachineBasicBlock *SwitchBB) { 2071 SDLoc dl = getCurSDLoc(); 2072 MVT VT = BB.RegVT; 2073 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2074 SDValue Cmp; 2075 unsigned PopCount = countPopulation(B.Mask); 2076 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2077 if (PopCount == 1) { 2078 // Testing for a single bit; just compare the shift count with what it 2079 // would need to be to shift a 1 bit in that position. 2080 Cmp = DAG.getSetCC( 2081 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2082 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2083 ISD::SETEQ); 2084 } else if (PopCount == BB.Range) { 2085 // There is only one zero bit in the range, test for it directly. 2086 Cmp = DAG.getSetCC( 2087 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2088 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2089 ISD::SETNE); 2090 } else { 2091 // Make desired shift 2092 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2093 DAG.getConstant(1, dl, VT), ShiftOp); 2094 2095 // Emit bit tests and jumps 2096 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2097 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2098 Cmp = DAG.getSetCC( 2099 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2100 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2101 } 2102 2103 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2104 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2105 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2106 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2107 2108 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2109 MVT::Other, getControlRoot(), 2110 Cmp, DAG.getBasicBlock(B.TargetBB)); 2111 2112 // Avoid emitting unnecessary branches to the next block. 2113 if (NextMBB != NextBlock(SwitchBB)) 2114 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2115 DAG.getBasicBlock(NextMBB)); 2116 2117 DAG.setRoot(BrAnd); 2118 } 2119 2120 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2121 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2122 2123 // Retrieve successors. Look through artificial IR level blocks like catchpads 2124 // and catchendpads for successors. 2125 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2126 const BasicBlock *EHPadBB = I.getSuccessor(1); 2127 2128 const Value *Callee(I.getCalledValue()); 2129 const Function *Fn = dyn_cast<Function>(Callee); 2130 if (isa<InlineAsm>(Callee)) 2131 visitInlineAsm(&I); 2132 else if (Fn && Fn->isIntrinsic()) { 2133 switch (Fn->getIntrinsicID()) { 2134 default: 2135 llvm_unreachable("Cannot invoke this intrinsic"); 2136 case Intrinsic::donothing: 2137 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2138 break; 2139 case Intrinsic::experimental_patchpoint_void: 2140 case Intrinsic::experimental_patchpoint_i64: 2141 visitPatchpoint(&I, EHPadBB); 2142 break; 2143 case Intrinsic::experimental_gc_statepoint: 2144 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2145 break; 2146 } 2147 } else 2148 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2149 2150 // If the value of the invoke is used outside of its defining block, make it 2151 // available as a virtual register. 2152 // We already took care of the exported value for the statepoint instruction 2153 // during call to the LowerStatepoint. 2154 if (!isStatepoint(I)) { 2155 CopyToExportRegsIfNeeded(&I); 2156 } 2157 2158 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 2159 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2160 uint32_t EHPadBBWeight = 2161 BPI ? BPI->getEdgeWeight(InvokeMBB->getBasicBlock(), EHPadBB) : 0; 2162 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBWeight, UnwindDests); 2163 2164 // Update successor info. 2165 addSuccessorWithWeight(InvokeMBB, Return); 2166 for (auto &UnwindDest : UnwindDests) { 2167 UnwindDest.first->setIsEHPad(); 2168 addSuccessorWithWeight(InvokeMBB, UnwindDest.first, UnwindDest.second); 2169 } 2170 2171 // Drop into normal successor. 2172 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2173 MVT::Other, getControlRoot(), 2174 DAG.getBasicBlock(Return))); 2175 } 2176 2177 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2178 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2179 } 2180 2181 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2182 assert(FuncInfo.MBB->isEHPad() && 2183 "Call to landingpad not in landing pad!"); 2184 2185 MachineBasicBlock *MBB = FuncInfo.MBB; 2186 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2187 AddLandingPadInfo(LP, MMI, MBB); 2188 2189 // If there aren't registers to copy the values into (e.g., during SjLj 2190 // exceptions), then don't bother to create these DAG nodes. 2191 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2192 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2193 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2194 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2195 return; 2196 2197 SmallVector<EVT, 2> ValueVTs; 2198 SDLoc dl = getCurSDLoc(); 2199 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2200 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2201 2202 // Get the two live-in registers as SDValues. The physregs have already been 2203 // copied into virtual registers. 2204 SDValue Ops[2]; 2205 if (FuncInfo.ExceptionPointerVirtReg) { 2206 Ops[0] = DAG.getZExtOrTrunc( 2207 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2208 FuncInfo.ExceptionPointerVirtReg, 2209 TLI.getPointerTy(DAG.getDataLayout())), 2210 dl, ValueVTs[0]); 2211 } else { 2212 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2213 } 2214 Ops[1] = DAG.getZExtOrTrunc( 2215 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2216 FuncInfo.ExceptionSelectorVirtReg, 2217 TLI.getPointerTy(DAG.getDataLayout())), 2218 dl, ValueVTs[1]); 2219 2220 // Merge into one. 2221 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2222 DAG.getVTList(ValueVTs), Ops); 2223 setValue(&LP, Res); 2224 } 2225 2226 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2227 #ifndef NDEBUG 2228 for (const CaseCluster &CC : Clusters) 2229 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2230 #endif 2231 2232 std::sort(Clusters.begin(), Clusters.end(), 2233 [](const CaseCluster &a, const CaseCluster &b) { 2234 return a.Low->getValue().slt(b.Low->getValue()); 2235 }); 2236 2237 // Merge adjacent clusters with the same destination. 2238 const unsigned N = Clusters.size(); 2239 unsigned DstIndex = 0; 2240 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2241 CaseCluster &CC = Clusters[SrcIndex]; 2242 const ConstantInt *CaseVal = CC.Low; 2243 MachineBasicBlock *Succ = CC.MBB; 2244 2245 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2246 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2247 // If this case has the same successor and is a neighbour, merge it into 2248 // the previous cluster. 2249 Clusters[DstIndex - 1].High = CaseVal; 2250 Clusters[DstIndex - 1].Weight += CC.Weight; 2251 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2252 } else { 2253 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2254 sizeof(Clusters[SrcIndex])); 2255 } 2256 } 2257 Clusters.resize(DstIndex); 2258 } 2259 2260 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2261 MachineBasicBlock *Last) { 2262 // Update JTCases. 2263 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2264 if (JTCases[i].first.HeaderBB == First) 2265 JTCases[i].first.HeaderBB = Last; 2266 2267 // Update BitTestCases. 2268 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2269 if (BitTestCases[i].Parent == First) 2270 BitTestCases[i].Parent = Last; 2271 } 2272 2273 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2274 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2275 2276 // Update machine-CFG edges with unique successors. 2277 SmallSet<BasicBlock*, 32> Done; 2278 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2279 BasicBlock *BB = I.getSuccessor(i); 2280 bool Inserted = Done.insert(BB).second; 2281 if (!Inserted) 2282 continue; 2283 2284 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2285 addSuccessorWithWeight(IndirectBrMBB, Succ); 2286 } 2287 2288 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2289 MVT::Other, getControlRoot(), 2290 getValue(I.getAddress()))); 2291 } 2292 2293 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2294 if (DAG.getTarget().Options.TrapUnreachable) 2295 DAG.setRoot( 2296 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2297 } 2298 2299 void SelectionDAGBuilder::visitFSub(const User &I) { 2300 // -0.0 - X --> fneg 2301 Type *Ty = I.getType(); 2302 if (isa<Constant>(I.getOperand(0)) && 2303 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2304 SDValue Op2 = getValue(I.getOperand(1)); 2305 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2306 Op2.getValueType(), Op2)); 2307 return; 2308 } 2309 2310 visitBinary(I, ISD::FSUB); 2311 } 2312 2313 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2314 SDValue Op1 = getValue(I.getOperand(0)); 2315 SDValue Op2 = getValue(I.getOperand(1)); 2316 2317 bool nuw = false; 2318 bool nsw = false; 2319 bool exact = false; 2320 FastMathFlags FMF; 2321 2322 if (const OverflowingBinaryOperator *OFBinOp = 2323 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2324 nuw = OFBinOp->hasNoUnsignedWrap(); 2325 nsw = OFBinOp->hasNoSignedWrap(); 2326 } 2327 if (const PossiblyExactOperator *ExactOp = 2328 dyn_cast<const PossiblyExactOperator>(&I)) 2329 exact = ExactOp->isExact(); 2330 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2331 FMF = FPOp->getFastMathFlags(); 2332 2333 SDNodeFlags Flags; 2334 Flags.setExact(exact); 2335 Flags.setNoSignedWrap(nsw); 2336 Flags.setNoUnsignedWrap(nuw); 2337 if (EnableFMFInDAG) { 2338 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2339 Flags.setNoInfs(FMF.noInfs()); 2340 Flags.setNoNaNs(FMF.noNaNs()); 2341 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2342 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2343 } 2344 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2345 Op1, Op2, &Flags); 2346 setValue(&I, BinNodeValue); 2347 } 2348 2349 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2350 SDValue Op1 = getValue(I.getOperand(0)); 2351 SDValue Op2 = getValue(I.getOperand(1)); 2352 2353 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2354 Op2.getValueType(), DAG.getDataLayout()); 2355 2356 // Coerce the shift amount to the right type if we can. 2357 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2358 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2359 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2360 SDLoc DL = getCurSDLoc(); 2361 2362 // If the operand is smaller than the shift count type, promote it. 2363 if (ShiftSize > Op2Size) 2364 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2365 2366 // If the operand is larger than the shift count type but the shift 2367 // count type has enough bits to represent any shift value, truncate 2368 // it now. This is a common case and it exposes the truncate to 2369 // optimization early. 2370 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2371 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2372 // Otherwise we'll need to temporarily settle for some other convenient 2373 // type. Type legalization will make adjustments once the shiftee is split. 2374 else 2375 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2376 } 2377 2378 bool nuw = false; 2379 bool nsw = false; 2380 bool exact = false; 2381 2382 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2383 2384 if (const OverflowingBinaryOperator *OFBinOp = 2385 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2386 nuw = OFBinOp->hasNoUnsignedWrap(); 2387 nsw = OFBinOp->hasNoSignedWrap(); 2388 } 2389 if (const PossiblyExactOperator *ExactOp = 2390 dyn_cast<const PossiblyExactOperator>(&I)) 2391 exact = ExactOp->isExact(); 2392 } 2393 SDNodeFlags Flags; 2394 Flags.setExact(exact); 2395 Flags.setNoSignedWrap(nsw); 2396 Flags.setNoUnsignedWrap(nuw); 2397 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2398 &Flags); 2399 setValue(&I, Res); 2400 } 2401 2402 void SelectionDAGBuilder::visitSDiv(const User &I) { 2403 SDValue Op1 = getValue(I.getOperand(0)); 2404 SDValue Op2 = getValue(I.getOperand(1)); 2405 2406 SDNodeFlags Flags; 2407 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2408 cast<PossiblyExactOperator>(&I)->isExact()); 2409 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2410 Op2, &Flags)); 2411 } 2412 2413 void SelectionDAGBuilder::visitICmp(const User &I) { 2414 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2415 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2416 predicate = IC->getPredicate(); 2417 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2418 predicate = ICmpInst::Predicate(IC->getPredicate()); 2419 SDValue Op1 = getValue(I.getOperand(0)); 2420 SDValue Op2 = getValue(I.getOperand(1)); 2421 ISD::CondCode Opcode = getICmpCondCode(predicate); 2422 2423 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2424 I.getType()); 2425 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2426 } 2427 2428 void SelectionDAGBuilder::visitFCmp(const User &I) { 2429 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2430 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2431 predicate = FC->getPredicate(); 2432 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2433 predicate = FCmpInst::Predicate(FC->getPredicate()); 2434 SDValue Op1 = getValue(I.getOperand(0)); 2435 SDValue Op2 = getValue(I.getOperand(1)); 2436 ISD::CondCode Condition = getFCmpCondCode(predicate); 2437 2438 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2439 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2440 // further optimization, but currently FMF is only applicable to binary nodes. 2441 if (TM.Options.NoNaNsFPMath) 2442 Condition = getFCmpCodeWithoutNaN(Condition); 2443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2444 I.getType()); 2445 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2446 } 2447 2448 void SelectionDAGBuilder::visitSelect(const User &I) { 2449 SmallVector<EVT, 4> ValueVTs; 2450 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2451 ValueVTs); 2452 unsigned NumValues = ValueVTs.size(); 2453 if (NumValues == 0) return; 2454 2455 SmallVector<SDValue, 4> Values(NumValues); 2456 SDValue Cond = getValue(I.getOperand(0)); 2457 SDValue LHSVal = getValue(I.getOperand(1)); 2458 SDValue RHSVal = getValue(I.getOperand(2)); 2459 auto BaseOps = {Cond}; 2460 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2461 ISD::VSELECT : ISD::SELECT; 2462 2463 // Min/max matching is only viable if all output VTs are the same. 2464 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2465 EVT VT = ValueVTs[0]; 2466 LLVMContext &Ctx = *DAG.getContext(); 2467 auto &TLI = DAG.getTargetLoweringInfo(); 2468 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2469 VT = TLI.getTypeToTransformTo(Ctx, VT); 2470 2471 Value *LHS, *RHS; 2472 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2473 ISD::NodeType Opc = ISD::DELETED_NODE; 2474 switch (SPR.Flavor) { 2475 case SPF_UMAX: Opc = ISD::UMAX; break; 2476 case SPF_UMIN: Opc = ISD::UMIN; break; 2477 case SPF_SMAX: Opc = ISD::SMAX; break; 2478 case SPF_SMIN: Opc = ISD::SMIN; break; 2479 case SPF_FMINNUM: 2480 switch (SPR.NaNBehavior) { 2481 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2482 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2483 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2484 case SPNB_RETURNS_ANY: 2485 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2486 : ISD::FMINNAN; 2487 break; 2488 } 2489 break; 2490 case SPF_FMAXNUM: 2491 switch (SPR.NaNBehavior) { 2492 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2493 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2494 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2495 case SPNB_RETURNS_ANY: 2496 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2497 : ISD::FMAXNAN; 2498 break; 2499 } 2500 break; 2501 default: break; 2502 } 2503 2504 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2505 // If the underlying comparison instruction is used by any other instruction, 2506 // the consumed instructions won't be destroyed, so it is not profitable 2507 // to convert to a min/max. 2508 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2509 OpCode = Opc; 2510 LHSVal = getValue(LHS); 2511 RHSVal = getValue(RHS); 2512 BaseOps = {}; 2513 } 2514 } 2515 2516 for (unsigned i = 0; i != NumValues; ++i) { 2517 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2518 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2519 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2520 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2521 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2522 Ops); 2523 } 2524 2525 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2526 DAG.getVTList(ValueVTs), Values)); 2527 } 2528 2529 void SelectionDAGBuilder::visitTrunc(const User &I) { 2530 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2531 SDValue N = getValue(I.getOperand(0)); 2532 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2533 I.getType()); 2534 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2535 } 2536 2537 void SelectionDAGBuilder::visitZExt(const User &I) { 2538 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2539 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2540 SDValue N = getValue(I.getOperand(0)); 2541 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2542 I.getType()); 2543 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2544 } 2545 2546 void SelectionDAGBuilder::visitSExt(const User &I) { 2547 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2548 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2549 SDValue N = getValue(I.getOperand(0)); 2550 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2551 I.getType()); 2552 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2553 } 2554 2555 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2556 // FPTrunc is never a no-op cast, no need to check 2557 SDValue N = getValue(I.getOperand(0)); 2558 SDLoc dl = getCurSDLoc(); 2559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2560 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2561 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2562 DAG.getTargetConstant( 2563 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2564 } 2565 2566 void SelectionDAGBuilder::visitFPExt(const User &I) { 2567 // FPExt is never a no-op cast, no need to check 2568 SDValue N = getValue(I.getOperand(0)); 2569 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2570 I.getType()); 2571 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2572 } 2573 2574 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2575 // FPToUI is never a no-op cast, no need to check 2576 SDValue N = getValue(I.getOperand(0)); 2577 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2578 I.getType()); 2579 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2580 } 2581 2582 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2583 // FPToSI is never a no-op cast, no need to check 2584 SDValue N = getValue(I.getOperand(0)); 2585 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2586 I.getType()); 2587 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2588 } 2589 2590 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2591 // UIToFP is never a no-op cast, no need to check 2592 SDValue N = getValue(I.getOperand(0)); 2593 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2594 I.getType()); 2595 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2596 } 2597 2598 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2599 // SIToFP is never a no-op cast, no need to check 2600 SDValue N = getValue(I.getOperand(0)); 2601 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2602 I.getType()); 2603 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2604 } 2605 2606 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2607 // What to do depends on the size of the integer and the size of the pointer. 2608 // We can either truncate, zero extend, or no-op, accordingly. 2609 SDValue N = getValue(I.getOperand(0)); 2610 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2611 I.getType()); 2612 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2613 } 2614 2615 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2616 // What to do depends on the size of the integer and the size of the pointer. 2617 // We can either truncate, zero extend, or no-op, accordingly. 2618 SDValue N = getValue(I.getOperand(0)); 2619 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2620 I.getType()); 2621 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2622 } 2623 2624 void SelectionDAGBuilder::visitBitCast(const User &I) { 2625 SDValue N = getValue(I.getOperand(0)); 2626 SDLoc dl = getCurSDLoc(); 2627 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2628 I.getType()); 2629 2630 // BitCast assures us that source and destination are the same size so this is 2631 // either a BITCAST or a no-op. 2632 if (DestVT != N.getValueType()) 2633 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2634 DestVT, N)); // convert types. 2635 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2636 // might fold any kind of constant expression to an integer constant and that 2637 // is not what we are looking for. Only regcognize a bitcast of a genuine 2638 // constant integer as an opaque constant. 2639 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2640 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2641 /*isOpaque*/true)); 2642 else 2643 setValue(&I, N); // noop cast. 2644 } 2645 2646 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2648 const Value *SV = I.getOperand(0); 2649 SDValue N = getValue(SV); 2650 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2651 2652 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2653 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2654 2655 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2656 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2657 2658 setValue(&I, N); 2659 } 2660 2661 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2663 SDValue InVec = getValue(I.getOperand(0)); 2664 SDValue InVal = getValue(I.getOperand(1)); 2665 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2666 TLI.getVectorIdxTy(DAG.getDataLayout())); 2667 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2668 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2669 InVec, InVal, InIdx)); 2670 } 2671 2672 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2674 SDValue InVec = getValue(I.getOperand(0)); 2675 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2676 TLI.getVectorIdxTy(DAG.getDataLayout())); 2677 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2678 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2679 InVec, InIdx)); 2680 } 2681 2682 // Utility for visitShuffleVector - Return true if every element in Mask, 2683 // beginning from position Pos and ending in Pos+Size, falls within the 2684 // specified sequential range [L, L+Pos). or is undef. 2685 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2686 unsigned Pos, unsigned Size, int Low) { 2687 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2688 if (Mask[i] >= 0 && Mask[i] != Low) 2689 return false; 2690 return true; 2691 } 2692 2693 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2694 SDValue Src1 = getValue(I.getOperand(0)); 2695 SDValue Src2 = getValue(I.getOperand(1)); 2696 2697 SmallVector<int, 8> Mask; 2698 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2699 unsigned MaskNumElts = Mask.size(); 2700 2701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2702 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2703 EVT SrcVT = Src1.getValueType(); 2704 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2705 2706 if (SrcNumElts == MaskNumElts) { 2707 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2708 &Mask[0])); 2709 return; 2710 } 2711 2712 // Normalize the shuffle vector since mask and vector length don't match. 2713 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2714 // Mask is longer than the source vectors and is a multiple of the source 2715 // vectors. We can use concatenate vector to make the mask and vectors 2716 // lengths match. 2717 if (SrcNumElts*2 == MaskNumElts) { 2718 // First check for Src1 in low and Src2 in high 2719 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2720 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2721 // The shuffle is concatenating two vectors together. 2722 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2723 VT, Src1, Src2)); 2724 return; 2725 } 2726 // Then check for Src2 in low and Src1 in high 2727 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2728 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2729 // The shuffle is concatenating two vectors together. 2730 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2731 VT, Src2, Src1)); 2732 return; 2733 } 2734 } 2735 2736 // Pad both vectors with undefs to make them the same length as the mask. 2737 unsigned NumConcat = MaskNumElts / SrcNumElts; 2738 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2739 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2740 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2741 2742 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2743 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2744 MOps1[0] = Src1; 2745 MOps2[0] = Src2; 2746 2747 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2748 getCurSDLoc(), VT, MOps1); 2749 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2750 getCurSDLoc(), VT, MOps2); 2751 2752 // Readjust mask for new input vector length. 2753 SmallVector<int, 8> MappedOps; 2754 for (unsigned i = 0; i != MaskNumElts; ++i) { 2755 int Idx = Mask[i]; 2756 if (Idx >= (int)SrcNumElts) 2757 Idx -= SrcNumElts - MaskNumElts; 2758 MappedOps.push_back(Idx); 2759 } 2760 2761 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2762 &MappedOps[0])); 2763 return; 2764 } 2765 2766 if (SrcNumElts > MaskNumElts) { 2767 // Analyze the access pattern of the vector to see if we can extract 2768 // two subvectors and do the shuffle. The analysis is done by calculating 2769 // the range of elements the mask access on both vectors. 2770 int MinRange[2] = { static_cast<int>(SrcNumElts), 2771 static_cast<int>(SrcNumElts)}; 2772 int MaxRange[2] = {-1, -1}; 2773 2774 for (unsigned i = 0; i != MaskNumElts; ++i) { 2775 int Idx = Mask[i]; 2776 unsigned Input = 0; 2777 if (Idx < 0) 2778 continue; 2779 2780 if (Idx >= (int)SrcNumElts) { 2781 Input = 1; 2782 Idx -= SrcNumElts; 2783 } 2784 if (Idx > MaxRange[Input]) 2785 MaxRange[Input] = Idx; 2786 if (Idx < MinRange[Input]) 2787 MinRange[Input] = Idx; 2788 } 2789 2790 // Check if the access is smaller than the vector size and can we find 2791 // a reasonable extract index. 2792 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2793 // Extract. 2794 int StartIdx[2]; // StartIdx to extract from 2795 for (unsigned Input = 0; Input < 2; ++Input) { 2796 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2797 RangeUse[Input] = 0; // Unused 2798 StartIdx[Input] = 0; 2799 continue; 2800 } 2801 2802 // Find a good start index that is a multiple of the mask length. Then 2803 // see if the rest of the elements are in range. 2804 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2805 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2806 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2807 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2808 } 2809 2810 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2811 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2812 return; 2813 } 2814 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2815 // Extract appropriate subvector and generate a vector shuffle 2816 for (unsigned Input = 0; Input < 2; ++Input) { 2817 SDValue &Src = Input == 0 ? Src1 : Src2; 2818 if (RangeUse[Input] == 0) 2819 Src = DAG.getUNDEF(VT); 2820 else { 2821 SDLoc dl = getCurSDLoc(); 2822 Src = DAG.getNode( 2823 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2824 DAG.getConstant(StartIdx[Input], dl, 2825 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2826 } 2827 } 2828 2829 // Calculate new mask. 2830 SmallVector<int, 8> MappedOps; 2831 for (unsigned i = 0; i != MaskNumElts; ++i) { 2832 int Idx = Mask[i]; 2833 if (Idx >= 0) { 2834 if (Idx < (int)SrcNumElts) 2835 Idx -= StartIdx[0]; 2836 else 2837 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2838 } 2839 MappedOps.push_back(Idx); 2840 } 2841 2842 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2843 &MappedOps[0])); 2844 return; 2845 } 2846 } 2847 2848 // We can't use either concat vectors or extract subvectors so fall back to 2849 // replacing the shuffle with extract and build vector. 2850 // to insert and build vector. 2851 EVT EltVT = VT.getVectorElementType(); 2852 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2853 SDLoc dl = getCurSDLoc(); 2854 SmallVector<SDValue,8> Ops; 2855 for (unsigned i = 0; i != MaskNumElts; ++i) { 2856 int Idx = Mask[i]; 2857 SDValue Res; 2858 2859 if (Idx < 0) { 2860 Res = DAG.getUNDEF(EltVT); 2861 } else { 2862 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2863 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2864 2865 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2866 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2867 } 2868 2869 Ops.push_back(Res); 2870 } 2871 2872 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2873 } 2874 2875 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2876 const Value *Op0 = I.getOperand(0); 2877 const Value *Op1 = I.getOperand(1); 2878 Type *AggTy = I.getType(); 2879 Type *ValTy = Op1->getType(); 2880 bool IntoUndef = isa<UndefValue>(Op0); 2881 bool FromUndef = isa<UndefValue>(Op1); 2882 2883 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2884 2885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2886 SmallVector<EVT, 4> AggValueVTs; 2887 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2888 SmallVector<EVT, 4> ValValueVTs; 2889 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2890 2891 unsigned NumAggValues = AggValueVTs.size(); 2892 unsigned NumValValues = ValValueVTs.size(); 2893 SmallVector<SDValue, 4> Values(NumAggValues); 2894 2895 // Ignore an insertvalue that produces an empty object 2896 if (!NumAggValues) { 2897 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2898 return; 2899 } 2900 2901 SDValue Agg = getValue(Op0); 2902 unsigned i = 0; 2903 // Copy the beginning value(s) from the original aggregate. 2904 for (; i != LinearIndex; ++i) 2905 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2906 SDValue(Agg.getNode(), Agg.getResNo() + i); 2907 // Copy values from the inserted value(s). 2908 if (NumValValues) { 2909 SDValue Val = getValue(Op1); 2910 for (; i != LinearIndex + NumValValues; ++i) 2911 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2912 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2913 } 2914 // Copy remaining value(s) from the original aggregate. 2915 for (; i != NumAggValues; ++i) 2916 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2917 SDValue(Agg.getNode(), Agg.getResNo() + i); 2918 2919 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2920 DAG.getVTList(AggValueVTs), Values)); 2921 } 2922 2923 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2924 const Value *Op0 = I.getOperand(0); 2925 Type *AggTy = Op0->getType(); 2926 Type *ValTy = I.getType(); 2927 bool OutOfUndef = isa<UndefValue>(Op0); 2928 2929 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2930 2931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2932 SmallVector<EVT, 4> ValValueVTs; 2933 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2934 2935 unsigned NumValValues = ValValueVTs.size(); 2936 2937 // Ignore a extractvalue that produces an empty object 2938 if (!NumValValues) { 2939 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2940 return; 2941 } 2942 2943 SmallVector<SDValue, 4> Values(NumValValues); 2944 2945 SDValue Agg = getValue(Op0); 2946 // Copy out the selected value(s). 2947 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2948 Values[i - LinearIndex] = 2949 OutOfUndef ? 2950 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2951 SDValue(Agg.getNode(), Agg.getResNo() + i); 2952 2953 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2954 DAG.getVTList(ValValueVTs), Values)); 2955 } 2956 2957 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2958 Value *Op0 = I.getOperand(0); 2959 // Note that the pointer operand may be a vector of pointers. Take the scalar 2960 // element which holds a pointer. 2961 Type *Ty = Op0->getType()->getScalarType(); 2962 unsigned AS = Ty->getPointerAddressSpace(); 2963 SDValue N = getValue(Op0); 2964 SDLoc dl = getCurSDLoc(); 2965 2966 // Normalize Vector GEP - all scalar operands should be converted to the 2967 // splat vector. 2968 unsigned VectorWidth = I.getType()->isVectorTy() ? 2969 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2970 2971 if (VectorWidth && !N.getValueType().isVector()) { 2972 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2973 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2974 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2975 } 2976 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2977 OI != E; ++OI) { 2978 const Value *Idx = *OI; 2979 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2980 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2981 if (Field) { 2982 // N = N + Offset 2983 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2984 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2985 DAG.getConstant(Offset, dl, N.getValueType())); 2986 } 2987 2988 Ty = StTy->getElementType(Field); 2989 } else { 2990 Ty = cast<SequentialType>(Ty)->getElementType(); 2991 MVT PtrTy = 2992 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2993 unsigned PtrSize = PtrTy.getSizeInBits(); 2994 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2995 2996 // If this is a scalar constant or a splat vector of constants, 2997 // handle it quickly. 2998 const auto *CI = dyn_cast<ConstantInt>(Idx); 2999 if (!CI && isa<ConstantDataVector>(Idx) && 3000 cast<ConstantDataVector>(Idx)->getSplatValue()) 3001 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3002 3003 if (CI) { 3004 if (CI->isZero()) 3005 continue; 3006 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3007 SDValue OffsVal = VectorWidth ? 3008 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3009 DAG.getConstant(Offs, dl, PtrTy); 3010 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3011 continue; 3012 } 3013 3014 // N = N + Idx * ElementSize; 3015 SDValue IdxN = getValue(Idx); 3016 3017 if (!IdxN.getValueType().isVector() && VectorWidth) { 3018 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3019 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3020 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3021 } 3022 // If the index is smaller or larger than intptr_t, truncate or extend 3023 // it. 3024 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3025 3026 // If this is a multiply by a power of two, turn it into a shl 3027 // immediately. This is a very common case. 3028 if (ElementSize != 1) { 3029 if (ElementSize.isPowerOf2()) { 3030 unsigned Amt = ElementSize.logBase2(); 3031 IdxN = DAG.getNode(ISD::SHL, dl, 3032 N.getValueType(), IdxN, 3033 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3034 } else { 3035 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3036 IdxN = DAG.getNode(ISD::MUL, dl, 3037 N.getValueType(), IdxN, Scale); 3038 } 3039 } 3040 3041 N = DAG.getNode(ISD::ADD, dl, 3042 N.getValueType(), N, IdxN); 3043 } 3044 } 3045 3046 setValue(&I, N); 3047 } 3048 3049 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3050 // If this is a fixed sized alloca in the entry block of the function, 3051 // allocate it statically on the stack. 3052 if (FuncInfo.StaticAllocaMap.count(&I)) 3053 return; // getValue will auto-populate this. 3054 3055 SDLoc dl = getCurSDLoc(); 3056 Type *Ty = I.getAllocatedType(); 3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3058 auto &DL = DAG.getDataLayout(); 3059 uint64_t TySize = DL.getTypeAllocSize(Ty); 3060 unsigned Align = 3061 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3062 3063 SDValue AllocSize = getValue(I.getArraySize()); 3064 3065 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3066 if (AllocSize.getValueType() != IntPtr) 3067 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3068 3069 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3070 AllocSize, 3071 DAG.getConstant(TySize, dl, IntPtr)); 3072 3073 // Handle alignment. If the requested alignment is less than or equal to 3074 // the stack alignment, ignore it. If the size is greater than or equal to 3075 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3076 unsigned StackAlign = 3077 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3078 if (Align <= StackAlign) 3079 Align = 0; 3080 3081 // Round the size of the allocation up to the stack alignment size 3082 // by add SA-1 to the size. 3083 AllocSize = DAG.getNode(ISD::ADD, dl, 3084 AllocSize.getValueType(), AllocSize, 3085 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3086 3087 // Mask out the low bits for alignment purposes. 3088 AllocSize = DAG.getNode(ISD::AND, dl, 3089 AllocSize.getValueType(), AllocSize, 3090 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3091 dl)); 3092 3093 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3094 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3095 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3096 setValue(&I, DSA); 3097 DAG.setRoot(DSA.getValue(1)); 3098 3099 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3100 } 3101 3102 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3103 if (I.isAtomic()) 3104 return visitAtomicLoad(I); 3105 3106 const Value *SV = I.getOperand(0); 3107 SDValue Ptr = getValue(SV); 3108 3109 Type *Ty = I.getType(); 3110 3111 bool isVolatile = I.isVolatile(); 3112 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3113 3114 // The IR notion of invariant_load only guarantees that all *non-faulting* 3115 // invariant loads result in the same value. The MI notion of invariant load 3116 // guarantees that the load can be legally moved to any location within its 3117 // containing function. The MI notion of invariant_load is stronger than the 3118 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3119 // with a guarantee that the location being loaded from is dereferenceable 3120 // throughout the function's lifetime. 3121 3122 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3123 isDereferenceablePointer(SV, DAG.getDataLayout()); 3124 unsigned Alignment = I.getAlignment(); 3125 3126 AAMDNodes AAInfo; 3127 I.getAAMetadata(AAInfo); 3128 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3129 3130 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3131 SmallVector<EVT, 4> ValueVTs; 3132 SmallVector<uint64_t, 4> Offsets; 3133 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3134 unsigned NumValues = ValueVTs.size(); 3135 if (NumValues == 0) 3136 return; 3137 3138 SDValue Root; 3139 bool ConstantMemory = false; 3140 if (isVolatile || NumValues > MaxParallelChains) 3141 // Serialize volatile loads with other side effects. 3142 Root = getRoot(); 3143 else if (AA->pointsToConstantMemory(MemoryLocation( 3144 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3145 // Do not serialize (non-volatile) loads of constant memory with anything. 3146 Root = DAG.getEntryNode(); 3147 ConstantMemory = true; 3148 } else { 3149 // Do not serialize non-volatile loads against each other. 3150 Root = DAG.getRoot(); 3151 } 3152 3153 SDLoc dl = getCurSDLoc(); 3154 3155 if (isVolatile) 3156 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3157 3158 SmallVector<SDValue, 4> Values(NumValues); 3159 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3160 EVT PtrVT = Ptr.getValueType(); 3161 unsigned ChainI = 0; 3162 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3163 // Serializing loads here may result in excessive register pressure, and 3164 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3165 // could recover a bit by hoisting nodes upward in the chain by recognizing 3166 // they are side-effect free or do not alias. The optimizer should really 3167 // avoid this case by converting large object/array copies to llvm.memcpy 3168 // (MaxParallelChains should always remain as failsafe). 3169 if (ChainI == MaxParallelChains) { 3170 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3171 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3172 makeArrayRef(Chains.data(), ChainI)); 3173 Root = Chain; 3174 ChainI = 0; 3175 } 3176 SDValue A = DAG.getNode(ISD::ADD, dl, 3177 PtrVT, Ptr, 3178 DAG.getConstant(Offsets[i], dl, PtrVT)); 3179 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3180 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3181 isNonTemporal, isInvariant, Alignment, AAInfo, 3182 Ranges); 3183 3184 Values[i] = L; 3185 Chains[ChainI] = L.getValue(1); 3186 } 3187 3188 if (!ConstantMemory) { 3189 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3190 makeArrayRef(Chains.data(), ChainI)); 3191 if (isVolatile) 3192 DAG.setRoot(Chain); 3193 else 3194 PendingLoads.push_back(Chain); 3195 } 3196 3197 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3198 DAG.getVTList(ValueVTs), Values)); 3199 } 3200 3201 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3202 if (I.isAtomic()) 3203 return visitAtomicStore(I); 3204 3205 const Value *SrcV = I.getOperand(0); 3206 const Value *PtrV = I.getOperand(1); 3207 3208 SmallVector<EVT, 4> ValueVTs; 3209 SmallVector<uint64_t, 4> Offsets; 3210 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3211 SrcV->getType(), ValueVTs, &Offsets); 3212 unsigned NumValues = ValueVTs.size(); 3213 if (NumValues == 0) 3214 return; 3215 3216 // Get the lowered operands. Note that we do this after 3217 // checking if NumResults is zero, because with zero results 3218 // the operands won't have values in the map. 3219 SDValue Src = getValue(SrcV); 3220 SDValue Ptr = getValue(PtrV); 3221 3222 SDValue Root = getRoot(); 3223 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3224 EVT PtrVT = Ptr.getValueType(); 3225 bool isVolatile = I.isVolatile(); 3226 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3227 unsigned Alignment = I.getAlignment(); 3228 SDLoc dl = getCurSDLoc(); 3229 3230 AAMDNodes AAInfo; 3231 I.getAAMetadata(AAInfo); 3232 3233 unsigned ChainI = 0; 3234 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3235 // See visitLoad comments. 3236 if (ChainI == MaxParallelChains) { 3237 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3238 makeArrayRef(Chains.data(), ChainI)); 3239 Root = Chain; 3240 ChainI = 0; 3241 } 3242 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3243 DAG.getConstant(Offsets[i], dl, PtrVT)); 3244 SDValue St = DAG.getStore(Root, dl, 3245 SDValue(Src.getNode(), Src.getResNo() + i), 3246 Add, MachinePointerInfo(PtrV, Offsets[i]), 3247 isVolatile, isNonTemporal, Alignment, AAInfo); 3248 Chains[ChainI] = St; 3249 } 3250 3251 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3252 makeArrayRef(Chains.data(), ChainI)); 3253 DAG.setRoot(StoreNode); 3254 } 3255 3256 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3257 SDLoc sdl = getCurSDLoc(); 3258 3259 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3260 Value *PtrOperand = I.getArgOperand(1); 3261 SDValue Ptr = getValue(PtrOperand); 3262 SDValue Src0 = getValue(I.getArgOperand(0)); 3263 SDValue Mask = getValue(I.getArgOperand(3)); 3264 EVT VT = Src0.getValueType(); 3265 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3266 if (!Alignment) 3267 Alignment = DAG.getEVTAlignment(VT); 3268 3269 AAMDNodes AAInfo; 3270 I.getAAMetadata(AAInfo); 3271 3272 MachineMemOperand *MMO = 3273 DAG.getMachineFunction(). 3274 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3275 MachineMemOperand::MOStore, VT.getStoreSize(), 3276 Alignment, AAInfo); 3277 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3278 MMO, false); 3279 DAG.setRoot(StoreNode); 3280 setValue(&I, StoreNode); 3281 } 3282 3283 // Get a uniform base for the Gather/Scatter intrinsic. 3284 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3285 // We try to represent it as a base pointer + vector of indices. 3286 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3287 // The first operand of the GEP may be a single pointer or a vector of pointers 3288 // Example: 3289 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3290 // or 3291 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3292 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3293 // 3294 // When the first GEP operand is a single pointer - it is the uniform base we 3295 // are looking for. If first operand of the GEP is a splat vector - we 3296 // extract the spalt value and use it as a uniform base. 3297 // In all other cases the function returns 'false'. 3298 // 3299 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3300 SelectionDAGBuilder* SDB) { 3301 3302 SelectionDAG& DAG = SDB->DAG; 3303 LLVMContext &Context = *DAG.getContext(); 3304 3305 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3306 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3307 if (!GEP || GEP->getNumOperands() > 2) 3308 return false; 3309 3310 Value *GEPPtr = GEP->getPointerOperand(); 3311 if (!GEPPtr->getType()->isVectorTy()) 3312 Ptr = GEPPtr; 3313 else if (!(Ptr = getSplatValue(GEPPtr))) 3314 return false; 3315 3316 Value *IndexVal = GEP->getOperand(1); 3317 3318 // The operands of the GEP may be defined in another basic block. 3319 // In this case we'll not find nodes for the operands. 3320 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3321 return false; 3322 3323 Base = SDB->getValue(Ptr); 3324 Index = SDB->getValue(IndexVal); 3325 3326 // Suppress sign extension. 3327 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3328 if (SDB->findValue(Sext->getOperand(0))) { 3329 IndexVal = Sext->getOperand(0); 3330 Index = SDB->getValue(IndexVal); 3331 } 3332 } 3333 if (!Index.getValueType().isVector()) { 3334 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3335 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3336 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3337 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3338 } 3339 return true; 3340 } 3341 3342 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3343 SDLoc sdl = getCurSDLoc(); 3344 3345 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3346 Value *Ptr = I.getArgOperand(1); 3347 SDValue Src0 = getValue(I.getArgOperand(0)); 3348 SDValue Mask = getValue(I.getArgOperand(3)); 3349 EVT VT = Src0.getValueType(); 3350 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3351 if (!Alignment) 3352 Alignment = DAG.getEVTAlignment(VT); 3353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3354 3355 AAMDNodes AAInfo; 3356 I.getAAMetadata(AAInfo); 3357 3358 SDValue Base; 3359 SDValue Index; 3360 Value *BasePtr = Ptr; 3361 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3362 3363 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3364 MachineMemOperand *MMO = DAG.getMachineFunction(). 3365 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3366 MachineMemOperand::MOStore, VT.getStoreSize(), 3367 Alignment, AAInfo); 3368 if (!UniformBase) { 3369 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3370 Index = getValue(Ptr); 3371 } 3372 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3373 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3374 Ops, MMO); 3375 DAG.setRoot(Scatter); 3376 setValue(&I, Scatter); 3377 } 3378 3379 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3380 SDLoc sdl = getCurSDLoc(); 3381 3382 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3383 Value *PtrOperand = I.getArgOperand(0); 3384 SDValue Ptr = getValue(PtrOperand); 3385 SDValue Src0 = getValue(I.getArgOperand(3)); 3386 SDValue Mask = getValue(I.getArgOperand(2)); 3387 3388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3389 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3390 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3391 if (!Alignment) 3392 Alignment = DAG.getEVTAlignment(VT); 3393 3394 AAMDNodes AAInfo; 3395 I.getAAMetadata(AAInfo); 3396 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3397 3398 SDValue InChain = DAG.getRoot(); 3399 if (AA->pointsToConstantMemory(MemoryLocation( 3400 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3401 AAInfo))) { 3402 // Do not serialize (non-volatile) loads of constant memory with anything. 3403 InChain = DAG.getEntryNode(); 3404 } 3405 3406 MachineMemOperand *MMO = 3407 DAG.getMachineFunction(). 3408 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3409 MachineMemOperand::MOLoad, VT.getStoreSize(), 3410 Alignment, AAInfo, Ranges); 3411 3412 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3413 ISD::NON_EXTLOAD); 3414 SDValue OutChain = Load.getValue(1); 3415 DAG.setRoot(OutChain); 3416 setValue(&I, Load); 3417 } 3418 3419 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3420 SDLoc sdl = getCurSDLoc(); 3421 3422 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3423 Value *Ptr = I.getArgOperand(0); 3424 SDValue Src0 = getValue(I.getArgOperand(3)); 3425 SDValue Mask = getValue(I.getArgOperand(2)); 3426 3427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3428 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3429 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3430 if (!Alignment) 3431 Alignment = DAG.getEVTAlignment(VT); 3432 3433 AAMDNodes AAInfo; 3434 I.getAAMetadata(AAInfo); 3435 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3436 3437 SDValue Root = DAG.getRoot(); 3438 SDValue Base; 3439 SDValue Index; 3440 Value *BasePtr = Ptr; 3441 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3442 bool ConstantMemory = false; 3443 if (UniformBase && 3444 AA->pointsToConstantMemory(MemoryLocation( 3445 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3446 AAInfo))) { 3447 // Do not serialize (non-volatile) loads of constant memory with anything. 3448 Root = DAG.getEntryNode(); 3449 ConstantMemory = true; 3450 } 3451 3452 MachineMemOperand *MMO = 3453 DAG.getMachineFunction(). 3454 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3455 MachineMemOperand::MOLoad, VT.getStoreSize(), 3456 Alignment, AAInfo, Ranges); 3457 3458 if (!UniformBase) { 3459 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3460 Index = getValue(Ptr); 3461 } 3462 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3463 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3464 Ops, MMO); 3465 3466 SDValue OutChain = Gather.getValue(1); 3467 if (!ConstantMemory) 3468 PendingLoads.push_back(OutChain); 3469 setValue(&I, Gather); 3470 } 3471 3472 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3473 SDLoc dl = getCurSDLoc(); 3474 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3475 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3476 SynchronizationScope Scope = I.getSynchScope(); 3477 3478 SDValue InChain = getRoot(); 3479 3480 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3481 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3482 SDValue L = DAG.getAtomicCmpSwap( 3483 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3484 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3485 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3486 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3487 3488 SDValue OutChain = L.getValue(2); 3489 3490 setValue(&I, L); 3491 DAG.setRoot(OutChain); 3492 } 3493 3494 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3495 SDLoc dl = getCurSDLoc(); 3496 ISD::NodeType NT; 3497 switch (I.getOperation()) { 3498 default: llvm_unreachable("Unknown atomicrmw operation"); 3499 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3500 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3501 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3502 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3503 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3504 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3505 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3506 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3507 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3508 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3509 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3510 } 3511 AtomicOrdering Order = I.getOrdering(); 3512 SynchronizationScope Scope = I.getSynchScope(); 3513 3514 SDValue InChain = getRoot(); 3515 3516 SDValue L = 3517 DAG.getAtomic(NT, dl, 3518 getValue(I.getValOperand()).getSimpleValueType(), 3519 InChain, 3520 getValue(I.getPointerOperand()), 3521 getValue(I.getValOperand()), 3522 I.getPointerOperand(), 3523 /* Alignment=*/ 0, Order, Scope); 3524 3525 SDValue OutChain = L.getValue(1); 3526 3527 setValue(&I, L); 3528 DAG.setRoot(OutChain); 3529 } 3530 3531 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3532 SDLoc dl = getCurSDLoc(); 3533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3534 SDValue Ops[3]; 3535 Ops[0] = getRoot(); 3536 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3537 TLI.getPointerTy(DAG.getDataLayout())); 3538 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3539 TLI.getPointerTy(DAG.getDataLayout())); 3540 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3541 } 3542 3543 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3544 SDLoc dl = getCurSDLoc(); 3545 AtomicOrdering Order = I.getOrdering(); 3546 SynchronizationScope Scope = I.getSynchScope(); 3547 3548 SDValue InChain = getRoot(); 3549 3550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3551 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3552 3553 if (I.getAlignment() < VT.getSizeInBits() / 8) 3554 report_fatal_error("Cannot generate unaligned atomic load"); 3555 3556 MachineMemOperand *MMO = 3557 DAG.getMachineFunction(). 3558 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3559 MachineMemOperand::MOVolatile | 3560 MachineMemOperand::MOLoad, 3561 VT.getStoreSize(), 3562 I.getAlignment() ? I.getAlignment() : 3563 DAG.getEVTAlignment(VT)); 3564 3565 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3566 SDValue L = 3567 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3568 getValue(I.getPointerOperand()), MMO, 3569 Order, Scope); 3570 3571 SDValue OutChain = L.getValue(1); 3572 3573 setValue(&I, L); 3574 DAG.setRoot(OutChain); 3575 } 3576 3577 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3578 SDLoc dl = getCurSDLoc(); 3579 3580 AtomicOrdering Order = I.getOrdering(); 3581 SynchronizationScope Scope = I.getSynchScope(); 3582 3583 SDValue InChain = getRoot(); 3584 3585 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3586 EVT VT = 3587 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3588 3589 if (I.getAlignment() < VT.getSizeInBits() / 8) 3590 report_fatal_error("Cannot generate unaligned atomic store"); 3591 3592 SDValue OutChain = 3593 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3594 InChain, 3595 getValue(I.getPointerOperand()), 3596 getValue(I.getValueOperand()), 3597 I.getPointerOperand(), I.getAlignment(), 3598 Order, Scope); 3599 3600 DAG.setRoot(OutChain); 3601 } 3602 3603 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3604 /// node. 3605 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3606 unsigned Intrinsic) { 3607 bool HasChain = !I.doesNotAccessMemory(); 3608 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3609 3610 // Build the operand list. 3611 SmallVector<SDValue, 8> Ops; 3612 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3613 if (OnlyLoad) { 3614 // We don't need to serialize loads against other loads. 3615 Ops.push_back(DAG.getRoot()); 3616 } else { 3617 Ops.push_back(getRoot()); 3618 } 3619 } 3620 3621 // Info is set by getTgtMemInstrinsic 3622 TargetLowering::IntrinsicInfo Info; 3623 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3624 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3625 3626 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3627 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3628 Info.opc == ISD::INTRINSIC_W_CHAIN) 3629 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3630 TLI.getPointerTy(DAG.getDataLayout()))); 3631 3632 // Add all operands of the call to the operand list. 3633 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3634 SDValue Op = getValue(I.getArgOperand(i)); 3635 Ops.push_back(Op); 3636 } 3637 3638 SmallVector<EVT, 4> ValueVTs; 3639 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3640 3641 if (HasChain) 3642 ValueVTs.push_back(MVT::Other); 3643 3644 SDVTList VTs = DAG.getVTList(ValueVTs); 3645 3646 // Create the node. 3647 SDValue Result; 3648 if (IsTgtIntrinsic) { 3649 // This is target intrinsic that touches memory 3650 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3651 VTs, Ops, Info.memVT, 3652 MachinePointerInfo(Info.ptrVal, Info.offset), 3653 Info.align, Info.vol, 3654 Info.readMem, Info.writeMem, Info.size); 3655 } else if (!HasChain) { 3656 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3657 } else if (!I.getType()->isVoidTy()) { 3658 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3659 } else { 3660 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3661 } 3662 3663 if (HasChain) { 3664 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3665 if (OnlyLoad) 3666 PendingLoads.push_back(Chain); 3667 else 3668 DAG.setRoot(Chain); 3669 } 3670 3671 if (!I.getType()->isVoidTy()) { 3672 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3673 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3674 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3675 } 3676 3677 setValue(&I, Result); 3678 } 3679 } 3680 3681 /// GetSignificand - Get the significand and build it into a floating-point 3682 /// number with exponent of 1: 3683 /// 3684 /// Op = (Op & 0x007fffff) | 0x3f800000; 3685 /// 3686 /// where Op is the hexadecimal representation of floating point value. 3687 static SDValue 3688 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3689 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3690 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3691 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3692 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3693 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3694 } 3695 3696 /// GetExponent - Get the exponent: 3697 /// 3698 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3699 /// 3700 /// where Op is the hexadecimal representation of floating point value. 3701 static SDValue 3702 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3703 SDLoc dl) { 3704 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3705 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3706 SDValue t1 = DAG.getNode( 3707 ISD::SRL, dl, MVT::i32, t0, 3708 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3709 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3710 DAG.getConstant(127, dl, MVT::i32)); 3711 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3712 } 3713 3714 /// getF32Constant - Get 32-bit floating point constant. 3715 static SDValue 3716 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3717 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3718 MVT::f32); 3719 } 3720 3721 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3722 SelectionDAG &DAG) { 3723 // TODO: What fast-math-flags should be set on the floating-point nodes? 3724 3725 // IntegerPartOfX = ((int32_t)(t0); 3726 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3727 3728 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3729 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3730 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3731 3732 // IntegerPartOfX <<= 23; 3733 IntegerPartOfX = DAG.getNode( 3734 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3735 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3736 DAG.getDataLayout()))); 3737 3738 SDValue TwoToFractionalPartOfX; 3739 if (LimitFloatPrecision <= 6) { 3740 // For floating-point precision of 6: 3741 // 3742 // TwoToFractionalPartOfX = 3743 // 0.997535578f + 3744 // (0.735607626f + 0.252464424f * x) * x; 3745 // 3746 // error 0.0144103317, which is 6 bits 3747 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3748 getF32Constant(DAG, 0x3e814304, dl)); 3749 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3750 getF32Constant(DAG, 0x3f3c50c8, dl)); 3751 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3752 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3753 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3754 } else if (LimitFloatPrecision <= 12) { 3755 // For floating-point precision of 12: 3756 // 3757 // TwoToFractionalPartOfX = 3758 // 0.999892986f + 3759 // (0.696457318f + 3760 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3761 // 3762 // error 0.000107046256, which is 13 to 14 bits 3763 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3764 getF32Constant(DAG, 0x3da235e3, dl)); 3765 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3766 getF32Constant(DAG, 0x3e65b8f3, dl)); 3767 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3768 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3769 getF32Constant(DAG, 0x3f324b07, dl)); 3770 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3771 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3772 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3773 } else { // LimitFloatPrecision <= 18 3774 // For floating-point precision of 18: 3775 // 3776 // TwoToFractionalPartOfX = 3777 // 0.999999982f + 3778 // (0.693148872f + 3779 // (0.240227044f + 3780 // (0.554906021e-1f + 3781 // (0.961591928e-2f + 3782 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3783 // error 2.47208000*10^(-7), which is better than 18 bits 3784 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3785 getF32Constant(DAG, 0x3924b03e, dl)); 3786 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3787 getF32Constant(DAG, 0x3ab24b87, dl)); 3788 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3789 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3790 getF32Constant(DAG, 0x3c1d8c17, dl)); 3791 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3792 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3793 getF32Constant(DAG, 0x3d634a1d, dl)); 3794 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3795 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3796 getF32Constant(DAG, 0x3e75fe14, dl)); 3797 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3798 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3799 getF32Constant(DAG, 0x3f317234, dl)); 3800 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3801 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3802 getF32Constant(DAG, 0x3f800000, dl)); 3803 } 3804 3805 // Add the exponent into the result in integer domain. 3806 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3807 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3808 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3809 } 3810 3811 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3812 /// limited-precision mode. 3813 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3814 const TargetLowering &TLI) { 3815 if (Op.getValueType() == MVT::f32 && 3816 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3817 3818 // Put the exponent in the right bit position for later addition to the 3819 // final result: 3820 // 3821 // #define LOG2OFe 1.4426950f 3822 // t0 = Op * LOG2OFe 3823 3824 // TODO: What fast-math-flags should be set here? 3825 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3826 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3827 return getLimitedPrecisionExp2(t0, dl, DAG); 3828 } 3829 3830 // No special expansion. 3831 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3832 } 3833 3834 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3835 /// limited-precision mode. 3836 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3837 const TargetLowering &TLI) { 3838 3839 // TODO: What fast-math-flags should be set on the floating-point nodes? 3840 3841 if (Op.getValueType() == MVT::f32 && 3842 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3843 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3844 3845 // Scale the exponent by log(2) [0.69314718f]. 3846 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3847 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3848 getF32Constant(DAG, 0x3f317218, dl)); 3849 3850 // Get the significand and build it into a floating-point number with 3851 // exponent of 1. 3852 SDValue X = GetSignificand(DAG, Op1, dl); 3853 3854 SDValue LogOfMantissa; 3855 if (LimitFloatPrecision <= 6) { 3856 // For floating-point precision of 6: 3857 // 3858 // LogofMantissa = 3859 // -1.1609546f + 3860 // (1.4034025f - 0.23903021f * x) * x; 3861 // 3862 // error 0.0034276066, which is better than 8 bits 3863 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3864 getF32Constant(DAG, 0xbe74c456, dl)); 3865 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3866 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3867 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3868 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3869 getF32Constant(DAG, 0x3f949a29, dl)); 3870 } else if (LimitFloatPrecision <= 12) { 3871 // For floating-point precision of 12: 3872 // 3873 // LogOfMantissa = 3874 // -1.7417939f + 3875 // (2.8212026f + 3876 // (-1.4699568f + 3877 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3878 // 3879 // error 0.000061011436, which is 14 bits 3880 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3881 getF32Constant(DAG, 0xbd67b6d6, dl)); 3882 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3883 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3884 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3885 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3886 getF32Constant(DAG, 0x3fbc278b, dl)); 3887 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3888 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3889 getF32Constant(DAG, 0x40348e95, dl)); 3890 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3891 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3892 getF32Constant(DAG, 0x3fdef31a, dl)); 3893 } else { // LimitFloatPrecision <= 18 3894 // For floating-point precision of 18: 3895 // 3896 // LogOfMantissa = 3897 // -2.1072184f + 3898 // (4.2372794f + 3899 // (-3.7029485f + 3900 // (2.2781945f + 3901 // (-0.87823314f + 3902 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3903 // 3904 // error 0.0000023660568, which is better than 18 bits 3905 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3906 getF32Constant(DAG, 0xbc91e5ac, dl)); 3907 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3908 getF32Constant(DAG, 0x3e4350aa, dl)); 3909 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3910 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3911 getF32Constant(DAG, 0x3f60d3e3, dl)); 3912 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3913 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3914 getF32Constant(DAG, 0x4011cdf0, dl)); 3915 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3916 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3917 getF32Constant(DAG, 0x406cfd1c, dl)); 3918 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3919 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3920 getF32Constant(DAG, 0x408797cb, dl)); 3921 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3922 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3923 getF32Constant(DAG, 0x4006dcab, dl)); 3924 } 3925 3926 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3927 } 3928 3929 // No special expansion. 3930 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3931 } 3932 3933 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3934 /// limited-precision mode. 3935 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3936 const TargetLowering &TLI) { 3937 3938 // TODO: What fast-math-flags should be set on the floating-point nodes? 3939 3940 if (Op.getValueType() == MVT::f32 && 3941 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3942 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3943 3944 // Get the exponent. 3945 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3946 3947 // Get the significand and build it into a floating-point number with 3948 // exponent of 1. 3949 SDValue X = GetSignificand(DAG, Op1, dl); 3950 3951 // Different possible minimax approximations of significand in 3952 // floating-point for various degrees of accuracy over [1,2]. 3953 SDValue Log2ofMantissa; 3954 if (LimitFloatPrecision <= 6) { 3955 // For floating-point precision of 6: 3956 // 3957 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3958 // 3959 // error 0.0049451742, which is more than 7 bits 3960 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3961 getF32Constant(DAG, 0xbeb08fe0, dl)); 3962 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3963 getF32Constant(DAG, 0x40019463, dl)); 3964 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3965 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3966 getF32Constant(DAG, 0x3fd6633d, dl)); 3967 } else if (LimitFloatPrecision <= 12) { 3968 // For floating-point precision of 12: 3969 // 3970 // Log2ofMantissa = 3971 // -2.51285454f + 3972 // (4.07009056f + 3973 // (-2.12067489f + 3974 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3975 // 3976 // error 0.0000876136000, which is better than 13 bits 3977 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3978 getF32Constant(DAG, 0xbda7262e, dl)); 3979 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3980 getF32Constant(DAG, 0x3f25280b, dl)); 3981 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3982 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3983 getF32Constant(DAG, 0x4007b923, dl)); 3984 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3985 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3986 getF32Constant(DAG, 0x40823e2f, dl)); 3987 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3988 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3989 getF32Constant(DAG, 0x4020d29c, dl)); 3990 } else { // LimitFloatPrecision <= 18 3991 // For floating-point precision of 18: 3992 // 3993 // Log2ofMantissa = 3994 // -3.0400495f + 3995 // (6.1129976f + 3996 // (-5.3420409f + 3997 // (3.2865683f + 3998 // (-1.2669343f + 3999 // (0.27515199f - 4000 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4001 // 4002 // error 0.0000018516, which is better than 18 bits 4003 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4004 getF32Constant(DAG, 0xbcd2769e, dl)); 4005 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4006 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4007 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4008 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4009 getF32Constant(DAG, 0x3fa22ae7, dl)); 4010 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4011 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4012 getF32Constant(DAG, 0x40525723, dl)); 4013 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4014 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4015 getF32Constant(DAG, 0x40aaf200, dl)); 4016 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4017 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4018 getF32Constant(DAG, 0x40c39dad, dl)); 4019 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4020 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4021 getF32Constant(DAG, 0x4042902c, dl)); 4022 } 4023 4024 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4025 } 4026 4027 // No special expansion. 4028 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4029 } 4030 4031 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4032 /// limited-precision mode. 4033 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4034 const TargetLowering &TLI) { 4035 4036 // TODO: What fast-math-flags should be set on the floating-point nodes? 4037 4038 if (Op.getValueType() == MVT::f32 && 4039 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4040 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4041 4042 // Scale the exponent by log10(2) [0.30102999f]. 4043 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4044 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4045 getF32Constant(DAG, 0x3e9a209a, dl)); 4046 4047 // Get the significand and build it into a floating-point number with 4048 // exponent of 1. 4049 SDValue X = GetSignificand(DAG, Op1, dl); 4050 4051 SDValue Log10ofMantissa; 4052 if (LimitFloatPrecision <= 6) { 4053 // For floating-point precision of 6: 4054 // 4055 // Log10ofMantissa = 4056 // -0.50419619f + 4057 // (0.60948995f - 0.10380950f * x) * x; 4058 // 4059 // error 0.0014886165, which is 6 bits 4060 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4061 getF32Constant(DAG, 0xbdd49a13, dl)); 4062 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4063 getF32Constant(DAG, 0x3f1c0789, dl)); 4064 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4065 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4066 getF32Constant(DAG, 0x3f011300, dl)); 4067 } else if (LimitFloatPrecision <= 12) { 4068 // For floating-point precision of 12: 4069 // 4070 // Log10ofMantissa = 4071 // -0.64831180f + 4072 // (0.91751397f + 4073 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4074 // 4075 // error 0.00019228036, which is better than 12 bits 4076 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4077 getF32Constant(DAG, 0x3d431f31, dl)); 4078 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4079 getF32Constant(DAG, 0x3ea21fb2, dl)); 4080 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4081 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4082 getF32Constant(DAG, 0x3f6ae232, dl)); 4083 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4084 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4085 getF32Constant(DAG, 0x3f25f7c3, dl)); 4086 } else { // LimitFloatPrecision <= 18 4087 // For floating-point precision of 18: 4088 // 4089 // Log10ofMantissa = 4090 // -0.84299375f + 4091 // (1.5327582f + 4092 // (-1.0688956f + 4093 // (0.49102474f + 4094 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4095 // 4096 // error 0.0000037995730, which is better than 18 bits 4097 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4098 getF32Constant(DAG, 0x3c5d51ce, dl)); 4099 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4100 getF32Constant(DAG, 0x3e00685a, dl)); 4101 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4102 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4103 getF32Constant(DAG, 0x3efb6798, dl)); 4104 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4105 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4106 getF32Constant(DAG, 0x3f88d192, dl)); 4107 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4108 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4109 getF32Constant(DAG, 0x3fc4316c, dl)); 4110 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4111 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4112 getF32Constant(DAG, 0x3f57ce70, dl)); 4113 } 4114 4115 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4116 } 4117 4118 // No special expansion. 4119 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4120 } 4121 4122 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4123 /// limited-precision mode. 4124 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4125 const TargetLowering &TLI) { 4126 if (Op.getValueType() == MVT::f32 && 4127 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4128 return getLimitedPrecisionExp2(Op, dl, DAG); 4129 4130 // No special expansion. 4131 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4132 } 4133 4134 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4135 /// limited-precision mode with x == 10.0f. 4136 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4137 SelectionDAG &DAG, const TargetLowering &TLI) { 4138 bool IsExp10 = false; 4139 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4140 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4141 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4142 APFloat Ten(10.0f); 4143 IsExp10 = LHSC->isExactlyValue(Ten); 4144 } 4145 } 4146 4147 // TODO: What fast-math-flags should be set on the FMUL node? 4148 if (IsExp10) { 4149 // Put the exponent in the right bit position for later addition to the 4150 // final result: 4151 // 4152 // #define LOG2OF10 3.3219281f 4153 // t0 = Op * LOG2OF10; 4154 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4155 getF32Constant(DAG, 0x40549a78, dl)); 4156 return getLimitedPrecisionExp2(t0, dl, DAG); 4157 } 4158 4159 // No special expansion. 4160 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4161 } 4162 4163 4164 /// ExpandPowI - Expand a llvm.powi intrinsic. 4165 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4166 SelectionDAG &DAG) { 4167 // If RHS is a constant, we can expand this out to a multiplication tree, 4168 // otherwise we end up lowering to a call to __powidf2 (for example). When 4169 // optimizing for size, we only want to do this if the expansion would produce 4170 // a small number of multiplies, otherwise we do the full expansion. 4171 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4172 // Get the exponent as a positive value. 4173 unsigned Val = RHSC->getSExtValue(); 4174 if ((int)Val < 0) Val = -Val; 4175 4176 // powi(x, 0) -> 1.0 4177 if (Val == 0) 4178 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4179 4180 const Function *F = DAG.getMachineFunction().getFunction(); 4181 if (!F->optForSize() || 4182 // If optimizing for size, don't insert too many multiplies. 4183 // This inserts up to 5 multiplies. 4184 countPopulation(Val) + Log2_32(Val) < 7) { 4185 // We use the simple binary decomposition method to generate the multiply 4186 // sequence. There are more optimal ways to do this (for example, 4187 // powi(x,15) generates one more multiply than it should), but this has 4188 // the benefit of being both really simple and much better than a libcall. 4189 SDValue Res; // Logically starts equal to 1.0 4190 SDValue CurSquare = LHS; 4191 // TODO: Intrinsics should have fast-math-flags that propagate to these 4192 // nodes. 4193 while (Val) { 4194 if (Val & 1) { 4195 if (Res.getNode()) 4196 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4197 else 4198 Res = CurSquare; // 1.0*CurSquare. 4199 } 4200 4201 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4202 CurSquare, CurSquare); 4203 Val >>= 1; 4204 } 4205 4206 // If the original was negative, invert the result, producing 1/(x*x*x). 4207 if (RHSC->getSExtValue() < 0) 4208 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4209 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4210 return Res; 4211 } 4212 } 4213 4214 // Otherwise, expand to a libcall. 4215 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4216 } 4217 4218 // getUnderlyingArgReg - Find underlying register used for a truncated or 4219 // bitcasted argument. 4220 static unsigned getUnderlyingArgReg(const SDValue &N) { 4221 switch (N.getOpcode()) { 4222 case ISD::CopyFromReg: 4223 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4224 case ISD::BITCAST: 4225 case ISD::AssertZext: 4226 case ISD::AssertSext: 4227 case ISD::TRUNCATE: 4228 return getUnderlyingArgReg(N.getOperand(0)); 4229 default: 4230 return 0; 4231 } 4232 } 4233 4234 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4235 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4236 /// At the end of instruction selection, they will be inserted to the entry BB. 4237 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4238 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4239 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4240 const Argument *Arg = dyn_cast<Argument>(V); 4241 if (!Arg) 4242 return false; 4243 4244 MachineFunction &MF = DAG.getMachineFunction(); 4245 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4246 4247 // Ignore inlined function arguments here. 4248 // 4249 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4250 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4251 return false; 4252 4253 Optional<MachineOperand> Op; 4254 // Some arguments' frame index is recorded during argument lowering. 4255 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4256 Op = MachineOperand::CreateFI(FI); 4257 4258 if (!Op && N.getNode()) { 4259 unsigned Reg = getUnderlyingArgReg(N); 4260 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4261 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4262 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4263 if (PR) 4264 Reg = PR; 4265 } 4266 if (Reg) 4267 Op = MachineOperand::CreateReg(Reg, false); 4268 } 4269 4270 if (!Op) { 4271 // Check if ValueMap has reg number. 4272 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4273 if (VMI != FuncInfo.ValueMap.end()) 4274 Op = MachineOperand::CreateReg(VMI->second, false); 4275 } 4276 4277 if (!Op && N.getNode()) 4278 // Check if frame index is available. 4279 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4280 if (FrameIndexSDNode *FINode = 4281 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4282 Op = MachineOperand::CreateFI(FINode->getIndex()); 4283 4284 if (!Op) 4285 return false; 4286 4287 assert(Variable->isValidLocationForIntrinsic(DL) && 4288 "Expected inlined-at fields to agree"); 4289 if (Op->isReg()) 4290 FuncInfo.ArgDbgValues.push_back( 4291 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4292 Op->getReg(), Offset, Variable, Expr)); 4293 else 4294 FuncInfo.ArgDbgValues.push_back( 4295 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4296 .addOperand(*Op) 4297 .addImm(Offset) 4298 .addMetadata(Variable) 4299 .addMetadata(Expr)); 4300 4301 return true; 4302 } 4303 4304 // VisualStudio defines setjmp as _setjmp 4305 #if defined(_MSC_VER) && defined(setjmp) && \ 4306 !defined(setjmp_undefined_for_msvc) 4307 # pragma push_macro("setjmp") 4308 # undef setjmp 4309 # define setjmp_undefined_for_msvc 4310 #endif 4311 4312 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4313 /// we want to emit this as a call to a named external function, return the name 4314 /// otherwise lower it and return null. 4315 const char * 4316 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4317 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4318 SDLoc sdl = getCurSDLoc(); 4319 DebugLoc dl = getCurDebugLoc(); 4320 SDValue Res; 4321 4322 switch (Intrinsic) { 4323 default: 4324 // By default, turn this into a target intrinsic node. 4325 visitTargetIntrinsic(I, Intrinsic); 4326 return nullptr; 4327 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4328 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4329 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4330 case Intrinsic::returnaddress: 4331 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4332 TLI.getPointerTy(DAG.getDataLayout()), 4333 getValue(I.getArgOperand(0)))); 4334 return nullptr; 4335 case Intrinsic::frameaddress: 4336 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4337 TLI.getPointerTy(DAG.getDataLayout()), 4338 getValue(I.getArgOperand(0)))); 4339 return nullptr; 4340 case Intrinsic::read_register: { 4341 Value *Reg = I.getArgOperand(0); 4342 SDValue Chain = getRoot(); 4343 SDValue RegName = 4344 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4345 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4346 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4347 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4348 setValue(&I, Res); 4349 DAG.setRoot(Res.getValue(1)); 4350 return nullptr; 4351 } 4352 case Intrinsic::write_register: { 4353 Value *Reg = I.getArgOperand(0); 4354 Value *RegValue = I.getArgOperand(1); 4355 SDValue Chain = getRoot(); 4356 SDValue RegName = 4357 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4358 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4359 RegName, getValue(RegValue))); 4360 return nullptr; 4361 } 4362 case Intrinsic::setjmp: 4363 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4364 case Intrinsic::longjmp: 4365 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4366 case Intrinsic::memcpy: { 4367 // FIXME: this definition of "user defined address space" is x86-specific 4368 // Assert for address < 256 since we support only user defined address 4369 // spaces. 4370 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4371 < 256 && 4372 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4373 < 256 && 4374 "Unknown address space"); 4375 SDValue Op1 = getValue(I.getArgOperand(0)); 4376 SDValue Op2 = getValue(I.getArgOperand(1)); 4377 SDValue Op3 = getValue(I.getArgOperand(2)); 4378 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4379 if (!Align) 4380 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4381 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4382 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4383 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4384 false, isTC, 4385 MachinePointerInfo(I.getArgOperand(0)), 4386 MachinePointerInfo(I.getArgOperand(1))); 4387 updateDAGForMaybeTailCall(MC); 4388 return nullptr; 4389 } 4390 case Intrinsic::memset: { 4391 // FIXME: this definition of "user defined address space" is x86-specific 4392 // Assert for address < 256 since we support only user defined address 4393 // spaces. 4394 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4395 < 256 && 4396 "Unknown address space"); 4397 SDValue Op1 = getValue(I.getArgOperand(0)); 4398 SDValue Op2 = getValue(I.getArgOperand(1)); 4399 SDValue Op3 = getValue(I.getArgOperand(2)); 4400 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4401 if (!Align) 4402 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4403 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4404 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4405 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4406 isTC, MachinePointerInfo(I.getArgOperand(0))); 4407 updateDAGForMaybeTailCall(MS); 4408 return nullptr; 4409 } 4410 case Intrinsic::memmove: { 4411 // FIXME: this definition of "user defined address space" is x86-specific 4412 // Assert for address < 256 since we support only user defined address 4413 // spaces. 4414 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4415 < 256 && 4416 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4417 < 256 && 4418 "Unknown address space"); 4419 SDValue Op1 = getValue(I.getArgOperand(0)); 4420 SDValue Op2 = getValue(I.getArgOperand(1)); 4421 SDValue Op3 = getValue(I.getArgOperand(2)); 4422 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4423 if (!Align) 4424 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4425 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4426 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4427 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4428 isTC, MachinePointerInfo(I.getArgOperand(0)), 4429 MachinePointerInfo(I.getArgOperand(1))); 4430 updateDAGForMaybeTailCall(MM); 4431 return nullptr; 4432 } 4433 case Intrinsic::dbg_declare: { 4434 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4435 DILocalVariable *Variable = DI.getVariable(); 4436 DIExpression *Expression = DI.getExpression(); 4437 const Value *Address = DI.getAddress(); 4438 assert(Variable && "Missing variable"); 4439 if (!Address) { 4440 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4441 return nullptr; 4442 } 4443 4444 // Check if address has undef value. 4445 if (isa<UndefValue>(Address) || 4446 (Address->use_empty() && !isa<Argument>(Address))) { 4447 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4448 return nullptr; 4449 } 4450 4451 SDValue &N = NodeMap[Address]; 4452 if (!N.getNode() && isa<Argument>(Address)) 4453 // Check unused arguments map. 4454 N = UnusedArgNodeMap[Address]; 4455 SDDbgValue *SDV; 4456 if (N.getNode()) { 4457 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4458 Address = BCI->getOperand(0); 4459 // Parameters are handled specially. 4460 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4461 4462 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4463 4464 if (isParameter && !AI) { 4465 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4466 if (FINode) 4467 // Byval parameter. We have a frame index at this point. 4468 SDV = DAG.getFrameIndexDbgValue( 4469 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4470 else { 4471 // Address is an argument, so try to emit its dbg value using 4472 // virtual register info from the FuncInfo.ValueMap. 4473 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4474 N); 4475 return nullptr; 4476 } 4477 } else { 4478 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4479 true, 0, dl, SDNodeOrder); 4480 } 4481 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4482 } else { 4483 // If Address is an argument then try to emit its dbg value using 4484 // virtual register info from the FuncInfo.ValueMap. 4485 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4486 N)) { 4487 // If variable is pinned by a alloca in dominating bb then 4488 // use StaticAllocaMap. 4489 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4490 if (AI->getParent() != DI.getParent()) { 4491 DenseMap<const AllocaInst*, int>::iterator SI = 4492 FuncInfo.StaticAllocaMap.find(AI); 4493 if (SI != FuncInfo.StaticAllocaMap.end()) { 4494 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4495 0, dl, SDNodeOrder); 4496 DAG.AddDbgValue(SDV, nullptr, false); 4497 return nullptr; 4498 } 4499 } 4500 } 4501 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4502 } 4503 } 4504 return nullptr; 4505 } 4506 case Intrinsic::dbg_value: { 4507 const DbgValueInst &DI = cast<DbgValueInst>(I); 4508 assert(DI.getVariable() && "Missing variable"); 4509 4510 DILocalVariable *Variable = DI.getVariable(); 4511 DIExpression *Expression = DI.getExpression(); 4512 uint64_t Offset = DI.getOffset(); 4513 const Value *V = DI.getValue(); 4514 if (!V) 4515 return nullptr; 4516 4517 SDDbgValue *SDV; 4518 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4519 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4520 SDNodeOrder); 4521 DAG.AddDbgValue(SDV, nullptr, false); 4522 } else { 4523 // Do not use getValue() in here; we don't want to generate code at 4524 // this point if it hasn't been done yet. 4525 SDValue N = NodeMap[V]; 4526 if (!N.getNode() && isa<Argument>(V)) 4527 // Check unused arguments map. 4528 N = UnusedArgNodeMap[V]; 4529 if (N.getNode()) { 4530 // A dbg.value for an alloca is always indirect. 4531 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4532 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4533 IsIndirect, N)) { 4534 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4535 IsIndirect, Offset, dl, SDNodeOrder); 4536 DAG.AddDbgValue(SDV, N.getNode(), false); 4537 } 4538 } else if (!V->use_empty() ) { 4539 // Do not call getValue(V) yet, as we don't want to generate code. 4540 // Remember it for later. 4541 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4542 DanglingDebugInfoMap[V] = DDI; 4543 } else { 4544 // We may expand this to cover more cases. One case where we have no 4545 // data available is an unreferenced parameter. 4546 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4547 } 4548 } 4549 4550 // Build a debug info table entry. 4551 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4552 V = BCI->getOperand(0); 4553 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4554 // Don't handle byval struct arguments or VLAs, for example. 4555 if (!AI) { 4556 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4557 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4558 return nullptr; 4559 } 4560 DenseMap<const AllocaInst*, int>::iterator SI = 4561 FuncInfo.StaticAllocaMap.find(AI); 4562 if (SI == FuncInfo.StaticAllocaMap.end()) 4563 return nullptr; // VLAs. 4564 return nullptr; 4565 } 4566 4567 case Intrinsic::eh_typeid_for: { 4568 // Find the type id for the given typeinfo. 4569 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4570 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4571 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4572 setValue(&I, Res); 4573 return nullptr; 4574 } 4575 4576 case Intrinsic::eh_return_i32: 4577 case Intrinsic::eh_return_i64: 4578 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4579 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4580 MVT::Other, 4581 getControlRoot(), 4582 getValue(I.getArgOperand(0)), 4583 getValue(I.getArgOperand(1)))); 4584 return nullptr; 4585 case Intrinsic::eh_unwind_init: 4586 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4587 return nullptr; 4588 case Intrinsic::eh_dwarf_cfa: { 4589 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4590 TLI.getPointerTy(DAG.getDataLayout())); 4591 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4592 CfaArg.getValueType(), 4593 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4594 CfaArg.getValueType()), 4595 CfaArg); 4596 SDValue FA = DAG.getNode( 4597 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4598 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4599 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4600 FA, Offset)); 4601 return nullptr; 4602 } 4603 case Intrinsic::eh_sjlj_callsite: { 4604 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4605 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4606 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4607 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4608 4609 MMI.setCurrentCallSite(CI->getZExtValue()); 4610 return nullptr; 4611 } 4612 case Intrinsic::eh_sjlj_functioncontext: { 4613 // Get and store the index of the function context. 4614 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4615 AllocaInst *FnCtx = 4616 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4617 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4618 MFI->setFunctionContextIndex(FI); 4619 return nullptr; 4620 } 4621 case Intrinsic::eh_sjlj_setjmp: { 4622 SDValue Ops[2]; 4623 Ops[0] = getRoot(); 4624 Ops[1] = getValue(I.getArgOperand(0)); 4625 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4626 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4627 setValue(&I, Op.getValue(0)); 4628 DAG.setRoot(Op.getValue(1)); 4629 return nullptr; 4630 } 4631 case Intrinsic::eh_sjlj_longjmp: { 4632 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4633 getRoot(), getValue(I.getArgOperand(0)))); 4634 return nullptr; 4635 } 4636 case Intrinsic::eh_sjlj_setup_dispatch: { 4637 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4638 getRoot())); 4639 return nullptr; 4640 } 4641 4642 case Intrinsic::masked_gather: 4643 visitMaskedGather(I); 4644 return nullptr; 4645 case Intrinsic::masked_load: 4646 visitMaskedLoad(I); 4647 return nullptr; 4648 case Intrinsic::masked_scatter: 4649 visitMaskedScatter(I); 4650 return nullptr; 4651 case Intrinsic::masked_store: 4652 visitMaskedStore(I); 4653 return nullptr; 4654 case Intrinsic::x86_mmx_pslli_w: 4655 case Intrinsic::x86_mmx_pslli_d: 4656 case Intrinsic::x86_mmx_pslli_q: 4657 case Intrinsic::x86_mmx_psrli_w: 4658 case Intrinsic::x86_mmx_psrli_d: 4659 case Intrinsic::x86_mmx_psrli_q: 4660 case Intrinsic::x86_mmx_psrai_w: 4661 case Intrinsic::x86_mmx_psrai_d: { 4662 SDValue ShAmt = getValue(I.getArgOperand(1)); 4663 if (isa<ConstantSDNode>(ShAmt)) { 4664 visitTargetIntrinsic(I, Intrinsic); 4665 return nullptr; 4666 } 4667 unsigned NewIntrinsic = 0; 4668 EVT ShAmtVT = MVT::v2i32; 4669 switch (Intrinsic) { 4670 case Intrinsic::x86_mmx_pslli_w: 4671 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4672 break; 4673 case Intrinsic::x86_mmx_pslli_d: 4674 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4675 break; 4676 case Intrinsic::x86_mmx_pslli_q: 4677 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4678 break; 4679 case Intrinsic::x86_mmx_psrli_w: 4680 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4681 break; 4682 case Intrinsic::x86_mmx_psrli_d: 4683 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4684 break; 4685 case Intrinsic::x86_mmx_psrli_q: 4686 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4687 break; 4688 case Intrinsic::x86_mmx_psrai_w: 4689 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4690 break; 4691 case Intrinsic::x86_mmx_psrai_d: 4692 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4693 break; 4694 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4695 } 4696 4697 // The vector shift intrinsics with scalars uses 32b shift amounts but 4698 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4699 // to be zero. 4700 // We must do this early because v2i32 is not a legal type. 4701 SDValue ShOps[2]; 4702 ShOps[0] = ShAmt; 4703 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4704 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4705 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4706 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4707 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4708 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4709 getValue(I.getArgOperand(0)), ShAmt); 4710 setValue(&I, Res); 4711 return nullptr; 4712 } 4713 case Intrinsic::convertff: 4714 case Intrinsic::convertfsi: 4715 case Intrinsic::convertfui: 4716 case Intrinsic::convertsif: 4717 case Intrinsic::convertuif: 4718 case Intrinsic::convertss: 4719 case Intrinsic::convertsu: 4720 case Intrinsic::convertus: 4721 case Intrinsic::convertuu: { 4722 ISD::CvtCode Code = ISD::CVT_INVALID; 4723 switch (Intrinsic) { 4724 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4725 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4726 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4727 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4728 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4729 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4730 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4731 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4732 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4733 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4734 } 4735 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4736 const Value *Op1 = I.getArgOperand(0); 4737 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4738 DAG.getValueType(DestVT), 4739 DAG.getValueType(getValue(Op1).getValueType()), 4740 getValue(I.getArgOperand(1)), 4741 getValue(I.getArgOperand(2)), 4742 Code); 4743 setValue(&I, Res); 4744 return nullptr; 4745 } 4746 case Intrinsic::powi: 4747 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4748 getValue(I.getArgOperand(1)), DAG)); 4749 return nullptr; 4750 case Intrinsic::log: 4751 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4752 return nullptr; 4753 case Intrinsic::log2: 4754 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4755 return nullptr; 4756 case Intrinsic::log10: 4757 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4758 return nullptr; 4759 case Intrinsic::exp: 4760 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4761 return nullptr; 4762 case Intrinsic::exp2: 4763 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4764 return nullptr; 4765 case Intrinsic::pow: 4766 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4767 getValue(I.getArgOperand(1)), DAG, TLI)); 4768 return nullptr; 4769 case Intrinsic::sqrt: 4770 case Intrinsic::fabs: 4771 case Intrinsic::sin: 4772 case Intrinsic::cos: 4773 case Intrinsic::floor: 4774 case Intrinsic::ceil: 4775 case Intrinsic::trunc: 4776 case Intrinsic::rint: 4777 case Intrinsic::nearbyint: 4778 case Intrinsic::round: { 4779 unsigned Opcode; 4780 switch (Intrinsic) { 4781 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4782 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4783 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4784 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4785 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4786 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4787 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4788 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4789 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4790 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4791 case Intrinsic::round: Opcode = ISD::FROUND; break; 4792 } 4793 4794 setValue(&I, DAG.getNode(Opcode, sdl, 4795 getValue(I.getArgOperand(0)).getValueType(), 4796 getValue(I.getArgOperand(0)))); 4797 return nullptr; 4798 } 4799 case Intrinsic::minnum: 4800 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4801 getValue(I.getArgOperand(0)).getValueType(), 4802 getValue(I.getArgOperand(0)), 4803 getValue(I.getArgOperand(1)))); 4804 return nullptr; 4805 case Intrinsic::maxnum: 4806 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4807 getValue(I.getArgOperand(0)).getValueType(), 4808 getValue(I.getArgOperand(0)), 4809 getValue(I.getArgOperand(1)))); 4810 return nullptr; 4811 case Intrinsic::copysign: 4812 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4813 getValue(I.getArgOperand(0)).getValueType(), 4814 getValue(I.getArgOperand(0)), 4815 getValue(I.getArgOperand(1)))); 4816 return nullptr; 4817 case Intrinsic::fma: 4818 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4819 getValue(I.getArgOperand(0)).getValueType(), 4820 getValue(I.getArgOperand(0)), 4821 getValue(I.getArgOperand(1)), 4822 getValue(I.getArgOperand(2)))); 4823 return nullptr; 4824 case Intrinsic::fmuladd: { 4825 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4826 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4827 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4828 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4829 getValue(I.getArgOperand(0)).getValueType(), 4830 getValue(I.getArgOperand(0)), 4831 getValue(I.getArgOperand(1)), 4832 getValue(I.getArgOperand(2)))); 4833 } else { 4834 // TODO: Intrinsic calls should have fast-math-flags. 4835 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4836 getValue(I.getArgOperand(0)).getValueType(), 4837 getValue(I.getArgOperand(0)), 4838 getValue(I.getArgOperand(1))); 4839 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4840 getValue(I.getArgOperand(0)).getValueType(), 4841 Mul, 4842 getValue(I.getArgOperand(2))); 4843 setValue(&I, Add); 4844 } 4845 return nullptr; 4846 } 4847 case Intrinsic::convert_to_fp16: 4848 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4849 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4850 getValue(I.getArgOperand(0)), 4851 DAG.getTargetConstant(0, sdl, 4852 MVT::i32)))); 4853 return nullptr; 4854 case Intrinsic::convert_from_fp16: 4855 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4856 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4857 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4858 getValue(I.getArgOperand(0))))); 4859 return nullptr; 4860 case Intrinsic::pcmarker: { 4861 SDValue Tmp = getValue(I.getArgOperand(0)); 4862 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4863 return nullptr; 4864 } 4865 case Intrinsic::readcyclecounter: { 4866 SDValue Op = getRoot(); 4867 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4868 DAG.getVTList(MVT::i64, MVT::Other), Op); 4869 setValue(&I, Res); 4870 DAG.setRoot(Res.getValue(1)); 4871 return nullptr; 4872 } 4873 case Intrinsic::bitreverse: 4874 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4875 getValue(I.getArgOperand(0)).getValueType(), 4876 getValue(I.getArgOperand(0)))); 4877 return nullptr; 4878 case Intrinsic::bswap: 4879 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4880 getValue(I.getArgOperand(0)).getValueType(), 4881 getValue(I.getArgOperand(0)))); 4882 return nullptr; 4883 case Intrinsic::uabsdiff: 4884 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4885 getValue(I.getArgOperand(0)).getValueType(), 4886 getValue(I.getArgOperand(0)), 4887 getValue(I.getArgOperand(1)))); 4888 return nullptr; 4889 case Intrinsic::sabsdiff: 4890 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4891 getValue(I.getArgOperand(0)).getValueType(), 4892 getValue(I.getArgOperand(0)), 4893 getValue(I.getArgOperand(1)))); 4894 return nullptr; 4895 case Intrinsic::cttz: { 4896 SDValue Arg = getValue(I.getArgOperand(0)); 4897 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4898 EVT Ty = Arg.getValueType(); 4899 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4900 sdl, Ty, Arg)); 4901 return nullptr; 4902 } 4903 case Intrinsic::ctlz: { 4904 SDValue Arg = getValue(I.getArgOperand(0)); 4905 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4906 EVT Ty = Arg.getValueType(); 4907 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4908 sdl, Ty, Arg)); 4909 return nullptr; 4910 } 4911 case Intrinsic::ctpop: { 4912 SDValue Arg = getValue(I.getArgOperand(0)); 4913 EVT Ty = Arg.getValueType(); 4914 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4915 return nullptr; 4916 } 4917 case Intrinsic::stacksave: { 4918 SDValue Op = getRoot(); 4919 Res = DAG.getNode( 4920 ISD::STACKSAVE, sdl, 4921 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4922 setValue(&I, Res); 4923 DAG.setRoot(Res.getValue(1)); 4924 return nullptr; 4925 } 4926 case Intrinsic::stackrestore: { 4927 Res = getValue(I.getArgOperand(0)); 4928 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4929 return nullptr; 4930 } 4931 case Intrinsic::stackprotector: { 4932 // Emit code into the DAG to store the stack guard onto the stack. 4933 MachineFunction &MF = DAG.getMachineFunction(); 4934 MachineFrameInfo *MFI = MF.getFrameInfo(); 4935 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4936 SDValue Src, Chain = getRoot(); 4937 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4938 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4939 4940 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4941 // global variable __stack_chk_guard. 4942 if (!GV) 4943 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4944 if (BC->getOpcode() == Instruction::BitCast) 4945 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4946 4947 if (GV && TLI.useLoadStackGuardNode()) { 4948 // Emit a LOAD_STACK_GUARD node. 4949 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4950 sdl, PtrTy, Chain); 4951 MachinePointerInfo MPInfo(GV); 4952 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4953 unsigned Flags = MachineMemOperand::MOLoad | 4954 MachineMemOperand::MOInvariant; 4955 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4956 PtrTy.getSizeInBits() / 8, 4957 DAG.getEVTAlignment(PtrTy)); 4958 Node->setMemRefs(MemRefs, MemRefs + 1); 4959 4960 // Copy the guard value to a virtual register so that it can be 4961 // retrieved in the epilogue. 4962 Src = SDValue(Node, 0); 4963 const TargetRegisterClass *RC = 4964 TLI.getRegClassFor(Src.getSimpleValueType()); 4965 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4966 4967 SPDescriptor.setGuardReg(Reg); 4968 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4969 } else { 4970 Src = getValue(I.getArgOperand(0)); // The guard's value. 4971 } 4972 4973 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4974 4975 int FI = FuncInfo.StaticAllocaMap[Slot]; 4976 MFI->setStackProtectorIndex(FI); 4977 4978 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4979 4980 // Store the stack protector onto the stack. 4981 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4982 DAG.getMachineFunction(), FI), 4983 true, false, 0); 4984 setValue(&I, Res); 4985 DAG.setRoot(Res); 4986 return nullptr; 4987 } 4988 case Intrinsic::objectsize: { 4989 // If we don't know by now, we're never going to know. 4990 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4991 4992 assert(CI && "Non-constant type in __builtin_object_size?"); 4993 4994 SDValue Arg = getValue(I.getCalledValue()); 4995 EVT Ty = Arg.getValueType(); 4996 4997 if (CI->isZero()) 4998 Res = DAG.getConstant(-1ULL, sdl, Ty); 4999 else 5000 Res = DAG.getConstant(0, sdl, Ty); 5001 5002 setValue(&I, Res); 5003 return nullptr; 5004 } 5005 case Intrinsic::annotation: 5006 case Intrinsic::ptr_annotation: 5007 // Drop the intrinsic, but forward the value 5008 setValue(&I, getValue(I.getOperand(0))); 5009 return nullptr; 5010 case Intrinsic::assume: 5011 case Intrinsic::var_annotation: 5012 // Discard annotate attributes and assumptions 5013 return nullptr; 5014 5015 case Intrinsic::init_trampoline: { 5016 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5017 5018 SDValue Ops[6]; 5019 Ops[0] = getRoot(); 5020 Ops[1] = getValue(I.getArgOperand(0)); 5021 Ops[2] = getValue(I.getArgOperand(1)); 5022 Ops[3] = getValue(I.getArgOperand(2)); 5023 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5024 Ops[5] = DAG.getSrcValue(F); 5025 5026 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5027 5028 DAG.setRoot(Res); 5029 return nullptr; 5030 } 5031 case Intrinsic::adjust_trampoline: { 5032 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5033 TLI.getPointerTy(DAG.getDataLayout()), 5034 getValue(I.getArgOperand(0)))); 5035 return nullptr; 5036 } 5037 case Intrinsic::gcroot: 5038 if (GFI) { 5039 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5040 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5041 5042 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5043 GFI->addStackRoot(FI->getIndex(), TypeMap); 5044 } 5045 return nullptr; 5046 case Intrinsic::gcread: 5047 case Intrinsic::gcwrite: 5048 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5049 case Intrinsic::flt_rounds: 5050 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5051 return nullptr; 5052 5053 case Intrinsic::expect: { 5054 // Just replace __builtin_expect(exp, c) with EXP. 5055 setValue(&I, getValue(I.getArgOperand(0))); 5056 return nullptr; 5057 } 5058 5059 case Intrinsic::debugtrap: 5060 case Intrinsic::trap: { 5061 StringRef TrapFuncName = 5062 I.getAttributes() 5063 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5064 .getValueAsString(); 5065 if (TrapFuncName.empty()) { 5066 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5067 ISD::TRAP : ISD::DEBUGTRAP; 5068 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5069 return nullptr; 5070 } 5071 TargetLowering::ArgListTy Args; 5072 5073 TargetLowering::CallLoweringInfo CLI(DAG); 5074 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5075 CallingConv::C, I.getType(), 5076 DAG.getExternalSymbol(TrapFuncName.data(), 5077 TLI.getPointerTy(DAG.getDataLayout())), 5078 std::move(Args), 0); 5079 5080 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5081 DAG.setRoot(Result.second); 5082 return nullptr; 5083 } 5084 5085 case Intrinsic::uadd_with_overflow: 5086 case Intrinsic::sadd_with_overflow: 5087 case Intrinsic::usub_with_overflow: 5088 case Intrinsic::ssub_with_overflow: 5089 case Intrinsic::umul_with_overflow: 5090 case Intrinsic::smul_with_overflow: { 5091 ISD::NodeType Op; 5092 switch (Intrinsic) { 5093 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5094 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5095 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5096 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5097 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5098 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5099 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5100 } 5101 SDValue Op1 = getValue(I.getArgOperand(0)); 5102 SDValue Op2 = getValue(I.getArgOperand(1)); 5103 5104 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5105 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5106 return nullptr; 5107 } 5108 case Intrinsic::prefetch: { 5109 SDValue Ops[5]; 5110 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5111 Ops[0] = getRoot(); 5112 Ops[1] = getValue(I.getArgOperand(0)); 5113 Ops[2] = getValue(I.getArgOperand(1)); 5114 Ops[3] = getValue(I.getArgOperand(2)); 5115 Ops[4] = getValue(I.getArgOperand(3)); 5116 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5117 DAG.getVTList(MVT::Other), Ops, 5118 EVT::getIntegerVT(*Context, 8), 5119 MachinePointerInfo(I.getArgOperand(0)), 5120 0, /* align */ 5121 false, /* volatile */ 5122 rw==0, /* read */ 5123 rw==1)); /* write */ 5124 return nullptr; 5125 } 5126 case Intrinsic::lifetime_start: 5127 case Intrinsic::lifetime_end: { 5128 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5129 // Stack coloring is not enabled in O0, discard region information. 5130 if (TM.getOptLevel() == CodeGenOpt::None) 5131 return nullptr; 5132 5133 SmallVector<Value *, 4> Allocas; 5134 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5135 5136 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5137 E = Allocas.end(); Object != E; ++Object) { 5138 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5139 5140 // Could not find an Alloca. 5141 if (!LifetimeObject) 5142 continue; 5143 5144 // First check that the Alloca is static, otherwise it won't have a 5145 // valid frame index. 5146 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5147 if (SI == FuncInfo.StaticAllocaMap.end()) 5148 return nullptr; 5149 5150 int FI = SI->second; 5151 5152 SDValue Ops[2]; 5153 Ops[0] = getRoot(); 5154 Ops[1] = 5155 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5156 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5157 5158 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5159 DAG.setRoot(Res); 5160 } 5161 return nullptr; 5162 } 5163 case Intrinsic::invariant_start: 5164 // Discard region information. 5165 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5166 return nullptr; 5167 case Intrinsic::invariant_end: 5168 // Discard region information. 5169 return nullptr; 5170 case Intrinsic::stackprotectorcheck: { 5171 // Do not actually emit anything for this basic block. Instead we initialize 5172 // the stack protector descriptor and export the guard variable so we can 5173 // access it in FinishBasicBlock. 5174 const BasicBlock *BB = I.getParent(); 5175 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5176 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5177 5178 // Flush our exports since we are going to process a terminator. 5179 (void)getControlRoot(); 5180 return nullptr; 5181 } 5182 case Intrinsic::clear_cache: 5183 return TLI.getClearCacheBuiltinName(); 5184 case Intrinsic::donothing: 5185 // ignore 5186 return nullptr; 5187 case Intrinsic::experimental_stackmap: { 5188 visitStackmap(I); 5189 return nullptr; 5190 } 5191 case Intrinsic::experimental_patchpoint_void: 5192 case Intrinsic::experimental_patchpoint_i64: { 5193 visitPatchpoint(&I); 5194 return nullptr; 5195 } 5196 case Intrinsic::experimental_gc_statepoint: { 5197 visitStatepoint(I); 5198 return nullptr; 5199 } 5200 case Intrinsic::experimental_gc_result_int: 5201 case Intrinsic::experimental_gc_result_float: 5202 case Intrinsic::experimental_gc_result_ptr: 5203 case Intrinsic::experimental_gc_result: { 5204 visitGCResult(I); 5205 return nullptr; 5206 } 5207 case Intrinsic::experimental_gc_relocate: { 5208 visitGCRelocate(I); 5209 return nullptr; 5210 } 5211 case Intrinsic::instrprof_increment: 5212 llvm_unreachable("instrprof failed to lower an increment"); 5213 5214 case Intrinsic::localescape: { 5215 MachineFunction &MF = DAG.getMachineFunction(); 5216 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5217 5218 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5219 // is the same on all targets. 5220 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5221 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5222 if (isa<ConstantPointerNull>(Arg)) 5223 continue; // Skip null pointers. They represent a hole in index space. 5224 AllocaInst *Slot = cast<AllocaInst>(Arg); 5225 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5226 "can only escape static allocas"); 5227 int FI = FuncInfo.StaticAllocaMap[Slot]; 5228 MCSymbol *FrameAllocSym = 5229 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5230 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5231 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5232 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5233 .addSym(FrameAllocSym) 5234 .addFrameIndex(FI); 5235 } 5236 5237 return nullptr; 5238 } 5239 5240 case Intrinsic::localrecover: { 5241 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5242 MachineFunction &MF = DAG.getMachineFunction(); 5243 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5244 5245 // Get the symbol that defines the frame offset. 5246 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5247 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5248 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5249 MCSymbol *FrameAllocSym = 5250 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5251 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5252 5253 // Create a MCSymbol for the label to avoid any target lowering 5254 // that would make this PC relative. 5255 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5256 SDValue OffsetVal = 5257 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5258 5259 // Add the offset to the FP. 5260 Value *FP = I.getArgOperand(1); 5261 SDValue FPVal = getValue(FP); 5262 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5263 setValue(&I, Add); 5264 5265 return nullptr; 5266 } 5267 5268 case Intrinsic::eh_exceptionpointer: 5269 case Intrinsic::eh_exceptioncode: { 5270 // Get the exception pointer vreg, copy from it, and resize it to fit. 5271 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5272 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5273 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5274 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5275 SDValue N = 5276 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5277 if (Intrinsic == Intrinsic::eh_exceptioncode) 5278 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5279 setValue(&I, N); 5280 return nullptr; 5281 } 5282 } 5283 } 5284 5285 std::pair<SDValue, SDValue> 5286 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5287 const BasicBlock *EHPadBB) { 5288 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5289 MCSymbol *BeginLabel = nullptr; 5290 5291 if (EHPadBB) { 5292 // Insert a label before the invoke call to mark the try range. This can be 5293 // used to detect deletion of the invoke via the MachineModuleInfo. 5294 BeginLabel = MMI.getContext().createTempSymbol(); 5295 5296 // For SjLj, keep track of which landing pads go with which invokes 5297 // so as to maintain the ordering of pads in the LSDA. 5298 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5299 if (CallSiteIndex) { 5300 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5301 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5302 5303 // Now that the call site is handled, stop tracking it. 5304 MMI.setCurrentCallSite(0); 5305 } 5306 5307 // Both PendingLoads and PendingExports must be flushed here; 5308 // this call might not return. 5309 (void)getRoot(); 5310 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5311 5312 CLI.setChain(getRoot()); 5313 } 5314 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5315 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5316 5317 assert((CLI.IsTailCall || Result.second.getNode()) && 5318 "Non-null chain expected with non-tail call!"); 5319 assert((Result.second.getNode() || !Result.first.getNode()) && 5320 "Null value expected with tail call!"); 5321 5322 if (!Result.second.getNode()) { 5323 // As a special case, a null chain means that a tail call has been emitted 5324 // and the DAG root is already updated. 5325 HasTailCall = true; 5326 5327 // Since there's no actual continuation from this block, nothing can be 5328 // relying on us setting vregs for them. 5329 PendingExports.clear(); 5330 } else { 5331 DAG.setRoot(Result.second); 5332 } 5333 5334 if (EHPadBB) { 5335 // Insert a label at the end of the invoke call to mark the try range. This 5336 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5337 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5338 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5339 5340 // Inform MachineModuleInfo of range. 5341 if (MMI.hasEHFunclets()) { 5342 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5343 EHInfo->addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5344 } else { 5345 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5346 } 5347 } 5348 5349 return Result; 5350 } 5351 5352 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5353 bool isTailCall, 5354 const BasicBlock *EHPadBB) { 5355 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5356 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5357 Type *RetTy = FTy->getReturnType(); 5358 5359 TargetLowering::ArgListTy Args; 5360 TargetLowering::ArgListEntry Entry; 5361 Args.reserve(CS.arg_size()); 5362 5363 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5364 i != e; ++i) { 5365 const Value *V = *i; 5366 5367 // Skip empty types 5368 if (V->getType()->isEmptyTy()) 5369 continue; 5370 5371 SDValue ArgNode = getValue(V); 5372 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5373 5374 // Skip the first return-type Attribute to get to params. 5375 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5376 Args.push_back(Entry); 5377 5378 // If we have an explicit sret argument that is an Instruction, (i.e., it 5379 // might point to function-local memory), we can't meaningfully tail-call. 5380 if (Entry.isSRet && isa<Instruction>(V)) 5381 isTailCall = false; 5382 } 5383 5384 // Check if target-independent constraints permit a tail call here. 5385 // Target-dependent constraints are checked within TLI->LowerCallTo. 5386 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5387 isTailCall = false; 5388 5389 TargetLowering::CallLoweringInfo CLI(DAG); 5390 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5391 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5392 .setTailCall(isTailCall); 5393 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5394 5395 if (Result.first.getNode()) 5396 setValue(CS.getInstruction(), Result.first); 5397 } 5398 5399 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5400 /// value is equal or not-equal to zero. 5401 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5402 for (const User *U : V->users()) { 5403 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5404 if (IC->isEquality()) 5405 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5406 if (C->isNullValue()) 5407 continue; 5408 // Unknown instruction. 5409 return false; 5410 } 5411 return true; 5412 } 5413 5414 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5415 Type *LoadTy, 5416 SelectionDAGBuilder &Builder) { 5417 5418 // Check to see if this load can be trivially constant folded, e.g. if the 5419 // input is from a string literal. 5420 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5421 // Cast pointer to the type we really want to load. 5422 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5423 PointerType::getUnqual(LoadTy)); 5424 5425 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5426 const_cast<Constant *>(LoadInput), *Builder.DL)) 5427 return Builder.getValue(LoadCst); 5428 } 5429 5430 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5431 // still constant memory, the input chain can be the entry node. 5432 SDValue Root; 5433 bool ConstantMemory = false; 5434 5435 // Do not serialize (non-volatile) loads of constant memory with anything. 5436 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5437 Root = Builder.DAG.getEntryNode(); 5438 ConstantMemory = true; 5439 } else { 5440 // Do not serialize non-volatile loads against each other. 5441 Root = Builder.DAG.getRoot(); 5442 } 5443 5444 SDValue Ptr = Builder.getValue(PtrVal); 5445 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5446 Ptr, MachinePointerInfo(PtrVal), 5447 false /*volatile*/, 5448 false /*nontemporal*/, 5449 false /*isinvariant*/, 1 /* align=1 */); 5450 5451 if (!ConstantMemory) 5452 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5453 return LoadVal; 5454 } 5455 5456 /// processIntegerCallValue - Record the value for an instruction that 5457 /// produces an integer result, converting the type where necessary. 5458 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5459 SDValue Value, 5460 bool IsSigned) { 5461 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5462 I.getType(), true); 5463 if (IsSigned) 5464 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5465 else 5466 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5467 setValue(&I, Value); 5468 } 5469 5470 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5471 /// If so, return true and lower it, otherwise return false and it will be 5472 /// lowered like a normal call. 5473 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5474 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5475 if (I.getNumArgOperands() != 3) 5476 return false; 5477 5478 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5479 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5480 !I.getArgOperand(2)->getType()->isIntegerTy() || 5481 !I.getType()->isIntegerTy()) 5482 return false; 5483 5484 const Value *Size = I.getArgOperand(2); 5485 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5486 if (CSize && CSize->getZExtValue() == 0) { 5487 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5488 I.getType(), true); 5489 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5490 return true; 5491 } 5492 5493 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5494 std::pair<SDValue, SDValue> Res = 5495 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5496 getValue(LHS), getValue(RHS), getValue(Size), 5497 MachinePointerInfo(LHS), 5498 MachinePointerInfo(RHS)); 5499 if (Res.first.getNode()) { 5500 processIntegerCallValue(I, Res.first, true); 5501 PendingLoads.push_back(Res.second); 5502 return true; 5503 } 5504 5505 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5506 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5507 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5508 bool ActuallyDoIt = true; 5509 MVT LoadVT; 5510 Type *LoadTy; 5511 switch (CSize->getZExtValue()) { 5512 default: 5513 LoadVT = MVT::Other; 5514 LoadTy = nullptr; 5515 ActuallyDoIt = false; 5516 break; 5517 case 2: 5518 LoadVT = MVT::i16; 5519 LoadTy = Type::getInt16Ty(CSize->getContext()); 5520 break; 5521 case 4: 5522 LoadVT = MVT::i32; 5523 LoadTy = Type::getInt32Ty(CSize->getContext()); 5524 break; 5525 case 8: 5526 LoadVT = MVT::i64; 5527 LoadTy = Type::getInt64Ty(CSize->getContext()); 5528 break; 5529 /* 5530 case 16: 5531 LoadVT = MVT::v4i32; 5532 LoadTy = Type::getInt32Ty(CSize->getContext()); 5533 LoadTy = VectorType::get(LoadTy, 4); 5534 break; 5535 */ 5536 } 5537 5538 // This turns into unaligned loads. We only do this if the target natively 5539 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5540 // we'll only produce a small number of byte loads. 5541 5542 // Require that we can find a legal MVT, and only do this if the target 5543 // supports unaligned loads of that type. Expanding into byte loads would 5544 // bloat the code. 5545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5546 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5547 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5548 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5549 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5550 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5551 // TODO: Check alignment of src and dest ptrs. 5552 if (!TLI.isTypeLegal(LoadVT) || 5553 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5554 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5555 ActuallyDoIt = false; 5556 } 5557 5558 if (ActuallyDoIt) { 5559 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5560 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5561 5562 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5563 ISD::SETNE); 5564 processIntegerCallValue(I, Res, false); 5565 return true; 5566 } 5567 } 5568 5569 5570 return false; 5571 } 5572 5573 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5574 /// form. If so, return true and lower it, otherwise return false and it 5575 /// will be lowered like a normal call. 5576 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5577 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5578 if (I.getNumArgOperands() != 3) 5579 return false; 5580 5581 const Value *Src = I.getArgOperand(0); 5582 const Value *Char = I.getArgOperand(1); 5583 const Value *Length = I.getArgOperand(2); 5584 if (!Src->getType()->isPointerTy() || 5585 !Char->getType()->isIntegerTy() || 5586 !Length->getType()->isIntegerTy() || 5587 !I.getType()->isPointerTy()) 5588 return false; 5589 5590 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5591 std::pair<SDValue, SDValue> Res = 5592 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5593 getValue(Src), getValue(Char), getValue(Length), 5594 MachinePointerInfo(Src)); 5595 if (Res.first.getNode()) { 5596 setValue(&I, Res.first); 5597 PendingLoads.push_back(Res.second); 5598 return true; 5599 } 5600 5601 return false; 5602 } 5603 5604 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5605 /// optimized form. If so, return true and lower it, otherwise return false 5606 /// and it will be lowered like a normal call. 5607 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5608 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5609 if (I.getNumArgOperands() != 2) 5610 return false; 5611 5612 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5613 if (!Arg0->getType()->isPointerTy() || 5614 !Arg1->getType()->isPointerTy() || 5615 !I.getType()->isPointerTy()) 5616 return false; 5617 5618 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5619 std::pair<SDValue, SDValue> Res = 5620 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5621 getValue(Arg0), getValue(Arg1), 5622 MachinePointerInfo(Arg0), 5623 MachinePointerInfo(Arg1), isStpcpy); 5624 if (Res.first.getNode()) { 5625 setValue(&I, Res.first); 5626 DAG.setRoot(Res.second); 5627 return true; 5628 } 5629 5630 return false; 5631 } 5632 5633 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5634 /// If so, return true and lower it, otherwise return false and it will be 5635 /// lowered like a normal call. 5636 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5637 // Verify that the prototype makes sense. int strcmp(void*,void*) 5638 if (I.getNumArgOperands() != 2) 5639 return false; 5640 5641 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5642 if (!Arg0->getType()->isPointerTy() || 5643 !Arg1->getType()->isPointerTy() || 5644 !I.getType()->isIntegerTy()) 5645 return false; 5646 5647 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5648 std::pair<SDValue, SDValue> Res = 5649 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5650 getValue(Arg0), getValue(Arg1), 5651 MachinePointerInfo(Arg0), 5652 MachinePointerInfo(Arg1)); 5653 if (Res.first.getNode()) { 5654 processIntegerCallValue(I, Res.first, true); 5655 PendingLoads.push_back(Res.second); 5656 return true; 5657 } 5658 5659 return false; 5660 } 5661 5662 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5663 /// form. If so, return true and lower it, otherwise return false and it 5664 /// will be lowered like a normal call. 5665 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5666 // Verify that the prototype makes sense. size_t strlen(char *) 5667 if (I.getNumArgOperands() != 1) 5668 return false; 5669 5670 const Value *Arg0 = I.getArgOperand(0); 5671 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5672 return false; 5673 5674 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5675 std::pair<SDValue, SDValue> Res = 5676 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5677 getValue(Arg0), MachinePointerInfo(Arg0)); 5678 if (Res.first.getNode()) { 5679 processIntegerCallValue(I, Res.first, false); 5680 PendingLoads.push_back(Res.second); 5681 return true; 5682 } 5683 5684 return false; 5685 } 5686 5687 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5688 /// form. If so, return true and lower it, otherwise return false and it 5689 /// will be lowered like a normal call. 5690 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5691 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5692 if (I.getNumArgOperands() != 2) 5693 return false; 5694 5695 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5696 if (!Arg0->getType()->isPointerTy() || 5697 !Arg1->getType()->isIntegerTy() || 5698 !I.getType()->isIntegerTy()) 5699 return false; 5700 5701 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5702 std::pair<SDValue, SDValue> Res = 5703 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5704 getValue(Arg0), getValue(Arg1), 5705 MachinePointerInfo(Arg0)); 5706 if (Res.first.getNode()) { 5707 processIntegerCallValue(I, Res.first, false); 5708 PendingLoads.push_back(Res.second); 5709 return true; 5710 } 5711 5712 return false; 5713 } 5714 5715 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5716 /// operation (as expected), translate it to an SDNode with the specified opcode 5717 /// and return true. 5718 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5719 unsigned Opcode) { 5720 // Sanity check that it really is a unary floating-point call. 5721 if (I.getNumArgOperands() != 1 || 5722 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5723 I.getType() != I.getArgOperand(0)->getType() || 5724 !I.onlyReadsMemory()) 5725 return false; 5726 5727 SDValue Tmp = getValue(I.getArgOperand(0)); 5728 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5729 return true; 5730 } 5731 5732 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5733 /// operation (as expected), translate it to an SDNode with the specified opcode 5734 /// and return true. 5735 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5736 unsigned Opcode) { 5737 // Sanity check that it really is a binary floating-point call. 5738 if (I.getNumArgOperands() != 2 || 5739 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5740 I.getType() != I.getArgOperand(0)->getType() || 5741 I.getType() != I.getArgOperand(1)->getType() || 5742 !I.onlyReadsMemory()) 5743 return false; 5744 5745 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5746 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5747 EVT VT = Tmp0.getValueType(); 5748 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5749 return true; 5750 } 5751 5752 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5753 // Handle inline assembly differently. 5754 if (isa<InlineAsm>(I.getCalledValue())) { 5755 visitInlineAsm(&I); 5756 return; 5757 } 5758 5759 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5760 ComputeUsesVAFloatArgument(I, &MMI); 5761 5762 const char *RenameFn = nullptr; 5763 if (Function *F = I.getCalledFunction()) { 5764 if (F->isDeclaration()) { 5765 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5766 if (unsigned IID = II->getIntrinsicID(F)) { 5767 RenameFn = visitIntrinsicCall(I, IID); 5768 if (!RenameFn) 5769 return; 5770 } 5771 } 5772 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5773 RenameFn = visitIntrinsicCall(I, IID); 5774 if (!RenameFn) 5775 return; 5776 } 5777 } 5778 5779 // Check for well-known libc/libm calls. If the function is internal, it 5780 // can't be a library call. 5781 LibFunc::Func Func; 5782 if (!F->hasLocalLinkage() && F->hasName() && 5783 LibInfo->getLibFunc(F->getName(), Func) && 5784 LibInfo->hasOptimizedCodeGen(Func)) { 5785 switch (Func) { 5786 default: break; 5787 case LibFunc::copysign: 5788 case LibFunc::copysignf: 5789 case LibFunc::copysignl: 5790 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5791 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5792 I.getType() == I.getArgOperand(0)->getType() && 5793 I.getType() == I.getArgOperand(1)->getType() && 5794 I.onlyReadsMemory()) { 5795 SDValue LHS = getValue(I.getArgOperand(0)); 5796 SDValue RHS = getValue(I.getArgOperand(1)); 5797 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5798 LHS.getValueType(), LHS, RHS)); 5799 return; 5800 } 5801 break; 5802 case LibFunc::fabs: 5803 case LibFunc::fabsf: 5804 case LibFunc::fabsl: 5805 if (visitUnaryFloatCall(I, ISD::FABS)) 5806 return; 5807 break; 5808 case LibFunc::fmin: 5809 case LibFunc::fminf: 5810 case LibFunc::fminl: 5811 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5812 return; 5813 break; 5814 case LibFunc::fmax: 5815 case LibFunc::fmaxf: 5816 case LibFunc::fmaxl: 5817 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5818 return; 5819 break; 5820 case LibFunc::sin: 5821 case LibFunc::sinf: 5822 case LibFunc::sinl: 5823 if (visitUnaryFloatCall(I, ISD::FSIN)) 5824 return; 5825 break; 5826 case LibFunc::cos: 5827 case LibFunc::cosf: 5828 case LibFunc::cosl: 5829 if (visitUnaryFloatCall(I, ISD::FCOS)) 5830 return; 5831 break; 5832 case LibFunc::sqrt: 5833 case LibFunc::sqrtf: 5834 case LibFunc::sqrtl: 5835 case LibFunc::sqrt_finite: 5836 case LibFunc::sqrtf_finite: 5837 case LibFunc::sqrtl_finite: 5838 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5839 return; 5840 break; 5841 case LibFunc::floor: 5842 case LibFunc::floorf: 5843 case LibFunc::floorl: 5844 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5845 return; 5846 break; 5847 case LibFunc::nearbyint: 5848 case LibFunc::nearbyintf: 5849 case LibFunc::nearbyintl: 5850 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5851 return; 5852 break; 5853 case LibFunc::ceil: 5854 case LibFunc::ceilf: 5855 case LibFunc::ceill: 5856 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5857 return; 5858 break; 5859 case LibFunc::rint: 5860 case LibFunc::rintf: 5861 case LibFunc::rintl: 5862 if (visitUnaryFloatCall(I, ISD::FRINT)) 5863 return; 5864 break; 5865 case LibFunc::round: 5866 case LibFunc::roundf: 5867 case LibFunc::roundl: 5868 if (visitUnaryFloatCall(I, ISD::FROUND)) 5869 return; 5870 break; 5871 case LibFunc::trunc: 5872 case LibFunc::truncf: 5873 case LibFunc::truncl: 5874 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5875 return; 5876 break; 5877 case LibFunc::log2: 5878 case LibFunc::log2f: 5879 case LibFunc::log2l: 5880 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5881 return; 5882 break; 5883 case LibFunc::exp2: 5884 case LibFunc::exp2f: 5885 case LibFunc::exp2l: 5886 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5887 return; 5888 break; 5889 case LibFunc::memcmp: 5890 if (visitMemCmpCall(I)) 5891 return; 5892 break; 5893 case LibFunc::memchr: 5894 if (visitMemChrCall(I)) 5895 return; 5896 break; 5897 case LibFunc::strcpy: 5898 if (visitStrCpyCall(I, false)) 5899 return; 5900 break; 5901 case LibFunc::stpcpy: 5902 if (visitStrCpyCall(I, true)) 5903 return; 5904 break; 5905 case LibFunc::strcmp: 5906 if (visitStrCmpCall(I)) 5907 return; 5908 break; 5909 case LibFunc::strlen: 5910 if (visitStrLenCall(I)) 5911 return; 5912 break; 5913 case LibFunc::strnlen: 5914 if (visitStrNLenCall(I)) 5915 return; 5916 break; 5917 } 5918 } 5919 } 5920 5921 SDValue Callee; 5922 if (!RenameFn) 5923 Callee = getValue(I.getCalledValue()); 5924 else 5925 Callee = DAG.getExternalSymbol( 5926 RenameFn, 5927 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5928 5929 // Check if we can potentially perform a tail call. More detailed checking is 5930 // be done within LowerCallTo, after more information about the call is known. 5931 LowerCallTo(&I, Callee, I.isTailCall()); 5932 } 5933 5934 namespace { 5935 5936 /// AsmOperandInfo - This contains information for each constraint that we are 5937 /// lowering. 5938 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5939 public: 5940 /// CallOperand - If this is the result output operand or a clobber 5941 /// this is null, otherwise it is the incoming operand to the CallInst. 5942 /// This gets modified as the asm is processed. 5943 SDValue CallOperand; 5944 5945 /// AssignedRegs - If this is a register or register class operand, this 5946 /// contains the set of register corresponding to the operand. 5947 RegsForValue AssignedRegs; 5948 5949 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5950 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5951 } 5952 5953 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5954 /// corresponds to. If there is no Value* for this operand, it returns 5955 /// MVT::Other. 5956 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5957 const DataLayout &DL) const { 5958 if (!CallOperandVal) return MVT::Other; 5959 5960 if (isa<BasicBlock>(CallOperandVal)) 5961 return TLI.getPointerTy(DL); 5962 5963 llvm::Type *OpTy = CallOperandVal->getType(); 5964 5965 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5966 // If this is an indirect operand, the operand is a pointer to the 5967 // accessed type. 5968 if (isIndirect) { 5969 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5970 if (!PtrTy) 5971 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5972 OpTy = PtrTy->getElementType(); 5973 } 5974 5975 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5976 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5977 if (STy->getNumElements() == 1) 5978 OpTy = STy->getElementType(0); 5979 5980 // If OpTy is not a single value, it may be a struct/union that we 5981 // can tile with integers. 5982 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5983 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5984 switch (BitSize) { 5985 default: break; 5986 case 1: 5987 case 8: 5988 case 16: 5989 case 32: 5990 case 64: 5991 case 128: 5992 OpTy = IntegerType::get(Context, BitSize); 5993 break; 5994 } 5995 } 5996 5997 return TLI.getValueType(DL, OpTy, true); 5998 } 5999 }; 6000 6001 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6002 6003 } // end anonymous namespace 6004 6005 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6006 /// specified operand. We prefer to assign virtual registers, to allow the 6007 /// register allocator to handle the assignment process. However, if the asm 6008 /// uses features that we can't model on machineinstrs, we have SDISel do the 6009 /// allocation. This produces generally horrible, but correct, code. 6010 /// 6011 /// OpInfo describes the operand. 6012 /// 6013 static void GetRegistersForValue(SelectionDAG &DAG, 6014 const TargetLowering &TLI, 6015 SDLoc DL, 6016 SDISelAsmOperandInfo &OpInfo) { 6017 LLVMContext &Context = *DAG.getContext(); 6018 6019 MachineFunction &MF = DAG.getMachineFunction(); 6020 SmallVector<unsigned, 4> Regs; 6021 6022 // If this is a constraint for a single physreg, or a constraint for a 6023 // register class, find it. 6024 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6025 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6026 OpInfo.ConstraintCode, 6027 OpInfo.ConstraintVT); 6028 6029 unsigned NumRegs = 1; 6030 if (OpInfo.ConstraintVT != MVT::Other) { 6031 // If this is a FP input in an integer register (or visa versa) insert a bit 6032 // cast of the input value. More generally, handle any case where the input 6033 // value disagrees with the register class we plan to stick this in. 6034 if (OpInfo.Type == InlineAsm::isInput && 6035 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6036 // Try to convert to the first EVT that the reg class contains. If the 6037 // types are identical size, use a bitcast to convert (e.g. two differing 6038 // vector types). 6039 MVT RegVT = *PhysReg.second->vt_begin(); 6040 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6041 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6042 RegVT, OpInfo.CallOperand); 6043 OpInfo.ConstraintVT = RegVT; 6044 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6045 // If the input is a FP value and we want it in FP registers, do a 6046 // bitcast to the corresponding integer type. This turns an f64 value 6047 // into i64, which can be passed with two i32 values on a 32-bit 6048 // machine. 6049 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6050 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6051 RegVT, OpInfo.CallOperand); 6052 OpInfo.ConstraintVT = RegVT; 6053 } 6054 } 6055 6056 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6057 } 6058 6059 MVT RegVT; 6060 EVT ValueVT = OpInfo.ConstraintVT; 6061 6062 // If this is a constraint for a specific physical register, like {r17}, 6063 // assign it now. 6064 if (unsigned AssignedReg = PhysReg.first) { 6065 const TargetRegisterClass *RC = PhysReg.second; 6066 if (OpInfo.ConstraintVT == MVT::Other) 6067 ValueVT = *RC->vt_begin(); 6068 6069 // Get the actual register value type. This is important, because the user 6070 // may have asked for (e.g.) the AX register in i32 type. We need to 6071 // remember that AX is actually i16 to get the right extension. 6072 RegVT = *RC->vt_begin(); 6073 6074 // This is a explicit reference to a physical register. 6075 Regs.push_back(AssignedReg); 6076 6077 // If this is an expanded reference, add the rest of the regs to Regs. 6078 if (NumRegs != 1) { 6079 TargetRegisterClass::iterator I = RC->begin(); 6080 for (; *I != AssignedReg; ++I) 6081 assert(I != RC->end() && "Didn't find reg!"); 6082 6083 // Already added the first reg. 6084 --NumRegs; ++I; 6085 for (; NumRegs; --NumRegs, ++I) { 6086 assert(I != RC->end() && "Ran out of registers to allocate!"); 6087 Regs.push_back(*I); 6088 } 6089 } 6090 6091 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6092 return; 6093 } 6094 6095 // Otherwise, if this was a reference to an LLVM register class, create vregs 6096 // for this reference. 6097 if (const TargetRegisterClass *RC = PhysReg.second) { 6098 RegVT = *RC->vt_begin(); 6099 if (OpInfo.ConstraintVT == MVT::Other) 6100 ValueVT = RegVT; 6101 6102 // Create the appropriate number of virtual registers. 6103 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6104 for (; NumRegs; --NumRegs) 6105 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6106 6107 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6108 return; 6109 } 6110 6111 // Otherwise, we couldn't allocate enough registers for this. 6112 } 6113 6114 /// visitInlineAsm - Handle a call to an InlineAsm object. 6115 /// 6116 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6117 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6118 6119 /// ConstraintOperands - Information about all of the constraints. 6120 SDISelAsmOperandInfoVector ConstraintOperands; 6121 6122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6123 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6124 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6125 6126 bool hasMemory = false; 6127 6128 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6129 unsigned ResNo = 0; // ResNo - The result number of the next output. 6130 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6131 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6132 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6133 6134 MVT OpVT = MVT::Other; 6135 6136 // Compute the value type for each operand. 6137 switch (OpInfo.Type) { 6138 case InlineAsm::isOutput: 6139 // Indirect outputs just consume an argument. 6140 if (OpInfo.isIndirect) { 6141 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6142 break; 6143 } 6144 6145 // The return value of the call is this value. As such, there is no 6146 // corresponding argument. 6147 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6148 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6149 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6150 STy->getElementType(ResNo)); 6151 } else { 6152 assert(ResNo == 0 && "Asm only has one result!"); 6153 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6154 } 6155 ++ResNo; 6156 break; 6157 case InlineAsm::isInput: 6158 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6159 break; 6160 case InlineAsm::isClobber: 6161 // Nothing to do. 6162 break; 6163 } 6164 6165 // If this is an input or an indirect output, process the call argument. 6166 // BasicBlocks are labels, currently appearing only in asm's. 6167 if (OpInfo.CallOperandVal) { 6168 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6169 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6170 } else { 6171 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6172 } 6173 6174 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6175 DAG.getDataLayout()).getSimpleVT(); 6176 } 6177 6178 OpInfo.ConstraintVT = OpVT; 6179 6180 // Indirect operand accesses access memory. 6181 if (OpInfo.isIndirect) 6182 hasMemory = true; 6183 else { 6184 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6185 TargetLowering::ConstraintType 6186 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6187 if (CType == TargetLowering::C_Memory) { 6188 hasMemory = true; 6189 break; 6190 } 6191 } 6192 } 6193 } 6194 6195 SDValue Chain, Flag; 6196 6197 // We won't need to flush pending loads if this asm doesn't touch 6198 // memory and is nonvolatile. 6199 if (hasMemory || IA->hasSideEffects()) 6200 Chain = getRoot(); 6201 else 6202 Chain = DAG.getRoot(); 6203 6204 // Second pass over the constraints: compute which constraint option to use 6205 // and assign registers to constraints that want a specific physreg. 6206 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6207 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6208 6209 // If this is an output operand with a matching input operand, look up the 6210 // matching input. If their types mismatch, e.g. one is an integer, the 6211 // other is floating point, or their sizes are different, flag it as an 6212 // error. 6213 if (OpInfo.hasMatchingInput()) { 6214 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6215 6216 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6217 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6218 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6219 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6220 OpInfo.ConstraintVT); 6221 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6222 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6223 Input.ConstraintVT); 6224 if ((OpInfo.ConstraintVT.isInteger() != 6225 Input.ConstraintVT.isInteger()) || 6226 (MatchRC.second != InputRC.second)) { 6227 report_fatal_error("Unsupported asm: input constraint" 6228 " with a matching output constraint of" 6229 " incompatible type!"); 6230 } 6231 Input.ConstraintVT = OpInfo.ConstraintVT; 6232 } 6233 } 6234 6235 // Compute the constraint code and ConstraintType to use. 6236 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6237 6238 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6239 OpInfo.Type == InlineAsm::isClobber) 6240 continue; 6241 6242 // If this is a memory input, and if the operand is not indirect, do what we 6243 // need to to provide an address for the memory input. 6244 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6245 !OpInfo.isIndirect) { 6246 assert((OpInfo.isMultipleAlternative || 6247 (OpInfo.Type == InlineAsm::isInput)) && 6248 "Can only indirectify direct input operands!"); 6249 6250 // Memory operands really want the address of the value. If we don't have 6251 // an indirect input, put it in the constpool if we can, otherwise spill 6252 // it to a stack slot. 6253 // TODO: This isn't quite right. We need to handle these according to 6254 // the addressing mode that the constraint wants. Also, this may take 6255 // an additional register for the computation and we don't want that 6256 // either. 6257 6258 // If the operand is a float, integer, or vector constant, spill to a 6259 // constant pool entry to get its address. 6260 const Value *OpVal = OpInfo.CallOperandVal; 6261 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6262 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6263 OpInfo.CallOperand = DAG.getConstantPool( 6264 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6265 } else { 6266 // Otherwise, create a stack slot and emit a store to it before the 6267 // asm. 6268 Type *Ty = OpVal->getType(); 6269 auto &DL = DAG.getDataLayout(); 6270 uint64_t TySize = DL.getTypeAllocSize(Ty); 6271 unsigned Align = DL.getPrefTypeAlignment(Ty); 6272 MachineFunction &MF = DAG.getMachineFunction(); 6273 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6274 SDValue StackSlot = 6275 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6276 Chain = DAG.getStore( 6277 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6278 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6279 false, false, 0); 6280 OpInfo.CallOperand = StackSlot; 6281 } 6282 6283 // There is no longer a Value* corresponding to this operand. 6284 OpInfo.CallOperandVal = nullptr; 6285 6286 // It is now an indirect operand. 6287 OpInfo.isIndirect = true; 6288 } 6289 6290 // If this constraint is for a specific register, allocate it before 6291 // anything else. 6292 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6293 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6294 } 6295 6296 // Second pass - Loop over all of the operands, assigning virtual or physregs 6297 // to register class operands. 6298 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6299 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6300 6301 // C_Register operands have already been allocated, Other/Memory don't need 6302 // to be. 6303 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6304 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6305 } 6306 6307 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6308 std::vector<SDValue> AsmNodeOperands; 6309 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6310 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6311 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6312 6313 // If we have a !srcloc metadata node associated with it, we want to attach 6314 // this to the ultimately generated inline asm machineinstr. To do this, we 6315 // pass in the third operand as this (potentially null) inline asm MDNode. 6316 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6317 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6318 6319 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6320 // bits as operand 3. 6321 unsigned ExtraInfo = 0; 6322 if (IA->hasSideEffects()) 6323 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6324 if (IA->isAlignStack()) 6325 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6326 // Set the asm dialect. 6327 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6328 6329 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6330 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6331 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6332 6333 // Compute the constraint code and ConstraintType to use. 6334 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6335 6336 // Ideally, we would only check against memory constraints. However, the 6337 // meaning of an other constraint can be target-specific and we can't easily 6338 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6339 // for other constriants as well. 6340 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6341 OpInfo.ConstraintType == TargetLowering::C_Other) { 6342 if (OpInfo.Type == InlineAsm::isInput) 6343 ExtraInfo |= InlineAsm::Extra_MayLoad; 6344 else if (OpInfo.Type == InlineAsm::isOutput) 6345 ExtraInfo |= InlineAsm::Extra_MayStore; 6346 else if (OpInfo.Type == InlineAsm::isClobber) 6347 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6348 } 6349 } 6350 6351 AsmNodeOperands.push_back(DAG.getTargetConstant( 6352 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6353 6354 // Loop over all of the inputs, copying the operand values into the 6355 // appropriate registers and processing the output regs. 6356 RegsForValue RetValRegs; 6357 6358 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6359 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6360 6361 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6362 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6363 6364 switch (OpInfo.Type) { 6365 case InlineAsm::isOutput: { 6366 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6367 OpInfo.ConstraintType != TargetLowering::C_Register) { 6368 // Memory output, or 'other' output (e.g. 'X' constraint). 6369 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6370 6371 unsigned ConstraintID = 6372 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6373 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6374 "Failed to convert memory constraint code to constraint id."); 6375 6376 // Add information to the INLINEASM node to know about this output. 6377 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6378 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6379 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6380 MVT::i32)); 6381 AsmNodeOperands.push_back(OpInfo.CallOperand); 6382 break; 6383 } 6384 6385 // Otherwise, this is a register or register class output. 6386 6387 // Copy the output from the appropriate register. Find a register that 6388 // we can use. 6389 if (OpInfo.AssignedRegs.Regs.empty()) { 6390 LLVMContext &Ctx = *DAG.getContext(); 6391 Ctx.emitError(CS.getInstruction(), 6392 "couldn't allocate output register for constraint '" + 6393 Twine(OpInfo.ConstraintCode) + "'"); 6394 return; 6395 } 6396 6397 // If this is an indirect operand, store through the pointer after the 6398 // asm. 6399 if (OpInfo.isIndirect) { 6400 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6401 OpInfo.CallOperandVal)); 6402 } else { 6403 // This is the result value of the call. 6404 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6405 // Concatenate this output onto the outputs list. 6406 RetValRegs.append(OpInfo.AssignedRegs); 6407 } 6408 6409 // Add information to the INLINEASM node to know that this register is 6410 // set. 6411 OpInfo.AssignedRegs 6412 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6413 ? InlineAsm::Kind_RegDefEarlyClobber 6414 : InlineAsm::Kind_RegDef, 6415 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6416 break; 6417 } 6418 case InlineAsm::isInput: { 6419 SDValue InOperandVal = OpInfo.CallOperand; 6420 6421 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6422 // If this is required to match an output register we have already set, 6423 // just use its register. 6424 unsigned OperandNo = OpInfo.getMatchedOperand(); 6425 6426 // Scan until we find the definition we already emitted of this operand. 6427 // When we find it, create a RegsForValue operand. 6428 unsigned CurOp = InlineAsm::Op_FirstOperand; 6429 for (; OperandNo; --OperandNo) { 6430 // Advance to the next operand. 6431 unsigned OpFlag = 6432 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6433 assert((InlineAsm::isRegDefKind(OpFlag) || 6434 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6435 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6436 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6437 } 6438 6439 unsigned OpFlag = 6440 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6441 if (InlineAsm::isRegDefKind(OpFlag) || 6442 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6443 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6444 if (OpInfo.isIndirect) { 6445 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6446 LLVMContext &Ctx = *DAG.getContext(); 6447 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6448 " don't know how to handle tied " 6449 "indirect register inputs"); 6450 return; 6451 } 6452 6453 RegsForValue MatchedRegs; 6454 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6455 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6456 MatchedRegs.RegVTs.push_back(RegVT); 6457 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6458 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6459 i != e; ++i) { 6460 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6461 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6462 else { 6463 LLVMContext &Ctx = *DAG.getContext(); 6464 Ctx.emitError(CS.getInstruction(), 6465 "inline asm error: This value" 6466 " type register class is not natively supported!"); 6467 return; 6468 } 6469 } 6470 SDLoc dl = getCurSDLoc(); 6471 // Use the produced MatchedRegs object to 6472 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6473 Chain, &Flag, CS.getInstruction()); 6474 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6475 true, OpInfo.getMatchedOperand(), dl, 6476 DAG, AsmNodeOperands); 6477 break; 6478 } 6479 6480 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6481 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6482 "Unexpected number of operands"); 6483 // Add information to the INLINEASM node to know about this input. 6484 // See InlineAsm.h isUseOperandTiedToDef. 6485 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6486 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6487 OpInfo.getMatchedOperand()); 6488 AsmNodeOperands.push_back(DAG.getTargetConstant( 6489 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6490 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6491 break; 6492 } 6493 6494 // Treat indirect 'X' constraint as memory. 6495 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6496 OpInfo.isIndirect) 6497 OpInfo.ConstraintType = TargetLowering::C_Memory; 6498 6499 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6500 std::vector<SDValue> Ops; 6501 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6502 Ops, DAG); 6503 if (Ops.empty()) { 6504 LLVMContext &Ctx = *DAG.getContext(); 6505 Ctx.emitError(CS.getInstruction(), 6506 "invalid operand for inline asm constraint '" + 6507 Twine(OpInfo.ConstraintCode) + "'"); 6508 return; 6509 } 6510 6511 // Add information to the INLINEASM node to know about this input. 6512 unsigned ResOpType = 6513 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6514 AsmNodeOperands.push_back(DAG.getTargetConstant( 6515 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6516 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6517 break; 6518 } 6519 6520 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6521 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6522 assert(InOperandVal.getValueType() == 6523 TLI.getPointerTy(DAG.getDataLayout()) && 6524 "Memory operands expect pointer values"); 6525 6526 unsigned ConstraintID = 6527 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6528 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6529 "Failed to convert memory constraint code to constraint id."); 6530 6531 // Add information to the INLINEASM node to know about this input. 6532 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6533 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6534 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6535 getCurSDLoc(), 6536 MVT::i32)); 6537 AsmNodeOperands.push_back(InOperandVal); 6538 break; 6539 } 6540 6541 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6542 OpInfo.ConstraintType == TargetLowering::C_Register) && 6543 "Unknown constraint type!"); 6544 6545 // TODO: Support this. 6546 if (OpInfo.isIndirect) { 6547 LLVMContext &Ctx = *DAG.getContext(); 6548 Ctx.emitError(CS.getInstruction(), 6549 "Don't know how to handle indirect register inputs yet " 6550 "for constraint '" + 6551 Twine(OpInfo.ConstraintCode) + "'"); 6552 return; 6553 } 6554 6555 // Copy the input into the appropriate registers. 6556 if (OpInfo.AssignedRegs.Regs.empty()) { 6557 LLVMContext &Ctx = *DAG.getContext(); 6558 Ctx.emitError(CS.getInstruction(), 6559 "couldn't allocate input reg for constraint '" + 6560 Twine(OpInfo.ConstraintCode) + "'"); 6561 return; 6562 } 6563 6564 SDLoc dl = getCurSDLoc(); 6565 6566 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6567 Chain, &Flag, CS.getInstruction()); 6568 6569 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6570 dl, DAG, AsmNodeOperands); 6571 break; 6572 } 6573 case InlineAsm::isClobber: { 6574 // Add the clobbered value to the operand list, so that the register 6575 // allocator is aware that the physreg got clobbered. 6576 if (!OpInfo.AssignedRegs.Regs.empty()) 6577 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6578 false, 0, getCurSDLoc(), DAG, 6579 AsmNodeOperands); 6580 break; 6581 } 6582 } 6583 } 6584 6585 // Finish up input operands. Set the input chain and add the flag last. 6586 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6587 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6588 6589 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6590 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6591 Flag = Chain.getValue(1); 6592 6593 // If this asm returns a register value, copy the result from that register 6594 // and set it as the value of the call. 6595 if (!RetValRegs.Regs.empty()) { 6596 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6597 Chain, &Flag, CS.getInstruction()); 6598 6599 // FIXME: Why don't we do this for inline asms with MRVs? 6600 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6601 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6602 6603 // If any of the results of the inline asm is a vector, it may have the 6604 // wrong width/num elts. This can happen for register classes that can 6605 // contain multiple different value types. The preg or vreg allocated may 6606 // not have the same VT as was expected. Convert it to the right type 6607 // with bit_convert. 6608 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6609 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6610 ResultType, Val); 6611 6612 } else if (ResultType != Val.getValueType() && 6613 ResultType.isInteger() && Val.getValueType().isInteger()) { 6614 // If a result value was tied to an input value, the computed result may 6615 // have a wider width than the expected result. Extract the relevant 6616 // portion. 6617 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6618 } 6619 6620 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6621 } 6622 6623 setValue(CS.getInstruction(), Val); 6624 // Don't need to use this as a chain in this case. 6625 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6626 return; 6627 } 6628 6629 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6630 6631 // Process indirect outputs, first output all of the flagged copies out of 6632 // physregs. 6633 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6634 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6635 const Value *Ptr = IndirectStoresToEmit[i].second; 6636 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6637 Chain, &Flag, IA); 6638 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6639 } 6640 6641 // Emit the non-flagged stores from the physregs. 6642 SmallVector<SDValue, 8> OutChains; 6643 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6644 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6645 StoresToEmit[i].first, 6646 getValue(StoresToEmit[i].second), 6647 MachinePointerInfo(StoresToEmit[i].second), 6648 false, false, 0); 6649 OutChains.push_back(Val); 6650 } 6651 6652 if (!OutChains.empty()) 6653 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6654 6655 DAG.setRoot(Chain); 6656 } 6657 6658 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6659 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6660 MVT::Other, getRoot(), 6661 getValue(I.getArgOperand(0)), 6662 DAG.getSrcValue(I.getArgOperand(0)))); 6663 } 6664 6665 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6667 const DataLayout &DL = DAG.getDataLayout(); 6668 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6669 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6670 DAG.getSrcValue(I.getOperand(0)), 6671 DL.getABITypeAlignment(I.getType())); 6672 setValue(&I, V); 6673 DAG.setRoot(V.getValue(1)); 6674 } 6675 6676 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6677 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6678 MVT::Other, getRoot(), 6679 getValue(I.getArgOperand(0)), 6680 DAG.getSrcValue(I.getArgOperand(0)))); 6681 } 6682 6683 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6684 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6685 MVT::Other, getRoot(), 6686 getValue(I.getArgOperand(0)), 6687 getValue(I.getArgOperand(1)), 6688 DAG.getSrcValue(I.getArgOperand(0)), 6689 DAG.getSrcValue(I.getArgOperand(1)))); 6690 } 6691 6692 /// \brief Lower an argument list according to the target calling convention. 6693 /// 6694 /// \return A tuple of <return-value, token-chain> 6695 /// 6696 /// This is a helper for lowering intrinsics that follow a target calling 6697 /// convention or require stack pointer adjustment. Only a subset of the 6698 /// intrinsic's operands need to participate in the calling convention. 6699 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6700 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6701 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6702 TargetLowering::ArgListTy Args; 6703 Args.reserve(NumArgs); 6704 6705 // Populate the argument list. 6706 // Attributes for args start at offset 1, after the return attribute. 6707 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6708 ArgI != ArgE; ++ArgI) { 6709 const Value *V = CS->getOperand(ArgI); 6710 6711 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6712 6713 TargetLowering::ArgListEntry Entry; 6714 Entry.Node = getValue(V); 6715 Entry.Ty = V->getType(); 6716 Entry.setAttributes(&CS, AttrI); 6717 Args.push_back(Entry); 6718 } 6719 6720 TargetLowering::CallLoweringInfo CLI(DAG); 6721 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6722 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6723 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6724 6725 return lowerInvokable(CLI, EHPadBB); 6726 } 6727 6728 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6729 /// or patchpoint target node's operand list. 6730 /// 6731 /// Constants are converted to TargetConstants purely as an optimization to 6732 /// avoid constant materialization and register allocation. 6733 /// 6734 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6735 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6736 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6737 /// address materialization and register allocation, but may also be required 6738 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6739 /// alloca in the entry block, then the runtime may assume that the alloca's 6740 /// StackMap location can be read immediately after compilation and that the 6741 /// location is valid at any point during execution (this is similar to the 6742 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6743 /// only available in a register, then the runtime would need to trap when 6744 /// execution reaches the StackMap in order to read the alloca's location. 6745 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6746 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6747 SelectionDAGBuilder &Builder) { 6748 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6749 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6750 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6751 Ops.push_back( 6752 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6753 Ops.push_back( 6754 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6755 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6756 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6757 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6758 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6759 } else 6760 Ops.push_back(OpVal); 6761 } 6762 } 6763 6764 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6765 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6766 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6767 // [live variables...]) 6768 6769 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6770 6771 SDValue Chain, InFlag, Callee, NullPtr; 6772 SmallVector<SDValue, 32> Ops; 6773 6774 SDLoc DL = getCurSDLoc(); 6775 Callee = getValue(CI.getCalledValue()); 6776 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6777 6778 // The stackmap intrinsic only records the live variables (the arguemnts 6779 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6780 // intrinsic, this won't be lowered to a function call. This means we don't 6781 // have to worry about calling conventions and target specific lowering code. 6782 // Instead we perform the call lowering right here. 6783 // 6784 // chain, flag = CALLSEQ_START(chain, 0) 6785 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6786 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6787 // 6788 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6789 InFlag = Chain.getValue(1); 6790 6791 // Add the <id> and <numBytes> constants. 6792 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6793 Ops.push_back(DAG.getTargetConstant( 6794 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6795 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6796 Ops.push_back(DAG.getTargetConstant( 6797 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6798 MVT::i32)); 6799 6800 // Push live variables for the stack map. 6801 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6802 6803 // We are not pushing any register mask info here on the operands list, 6804 // because the stackmap doesn't clobber anything. 6805 6806 // Push the chain and the glue flag. 6807 Ops.push_back(Chain); 6808 Ops.push_back(InFlag); 6809 6810 // Create the STACKMAP node. 6811 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6812 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6813 Chain = SDValue(SM, 0); 6814 InFlag = Chain.getValue(1); 6815 6816 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6817 6818 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6819 6820 // Set the root to the target-lowered call chain. 6821 DAG.setRoot(Chain); 6822 6823 // Inform the Frame Information that we have a stackmap in this function. 6824 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6825 } 6826 6827 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6828 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6829 const BasicBlock *EHPadBB) { 6830 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6831 // i32 <numBytes>, 6832 // i8* <target>, 6833 // i32 <numArgs>, 6834 // [Args...], 6835 // [live variables...]) 6836 6837 CallingConv::ID CC = CS.getCallingConv(); 6838 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6839 bool HasDef = !CS->getType()->isVoidTy(); 6840 SDLoc dl = getCurSDLoc(); 6841 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6842 6843 // Handle immediate and symbolic callees. 6844 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6845 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6846 /*isTarget=*/true); 6847 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6848 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6849 SDLoc(SymbolicCallee), 6850 SymbolicCallee->getValueType(0)); 6851 6852 // Get the real number of arguments participating in the call <numArgs> 6853 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6854 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6855 6856 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6857 // Intrinsics include all meta-operands up to but not including CC. 6858 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6859 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6860 "Not enough arguments provided to the patchpoint intrinsic"); 6861 6862 // For AnyRegCC the arguments are lowered later on manually. 6863 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6864 Type *ReturnTy = 6865 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6866 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6867 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6868 6869 SDNode *CallEnd = Result.second.getNode(); 6870 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6871 CallEnd = CallEnd->getOperand(0).getNode(); 6872 6873 /// Get a call instruction from the call sequence chain. 6874 /// Tail calls are not allowed. 6875 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6876 "Expected a callseq node."); 6877 SDNode *Call = CallEnd->getOperand(0).getNode(); 6878 bool HasGlue = Call->getGluedNode(); 6879 6880 // Replace the target specific call node with the patchable intrinsic. 6881 SmallVector<SDValue, 8> Ops; 6882 6883 // Add the <id> and <numBytes> constants. 6884 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6885 Ops.push_back(DAG.getTargetConstant( 6886 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6887 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6888 Ops.push_back(DAG.getTargetConstant( 6889 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6890 MVT::i32)); 6891 6892 // Add the callee. 6893 Ops.push_back(Callee); 6894 6895 // Adjust <numArgs> to account for any arguments that have been passed on the 6896 // stack instead. 6897 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6898 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6899 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6900 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6901 6902 // Add the calling convention 6903 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6904 6905 // Add the arguments we omitted previously. The register allocator should 6906 // place these in any free register. 6907 if (IsAnyRegCC) 6908 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6909 Ops.push_back(getValue(CS.getArgument(i))); 6910 6911 // Push the arguments from the call instruction up to the register mask. 6912 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6913 Ops.append(Call->op_begin() + 2, e); 6914 6915 // Push live variables for the stack map. 6916 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6917 6918 // Push the register mask info. 6919 if (HasGlue) 6920 Ops.push_back(*(Call->op_end()-2)); 6921 else 6922 Ops.push_back(*(Call->op_end()-1)); 6923 6924 // Push the chain (this is originally the first operand of the call, but 6925 // becomes now the last or second to last operand). 6926 Ops.push_back(*(Call->op_begin())); 6927 6928 // Push the glue flag (last operand). 6929 if (HasGlue) 6930 Ops.push_back(*(Call->op_end()-1)); 6931 6932 SDVTList NodeTys; 6933 if (IsAnyRegCC && HasDef) { 6934 // Create the return types based on the intrinsic definition 6935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6936 SmallVector<EVT, 3> ValueVTs; 6937 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6938 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6939 6940 // There is always a chain and a glue type at the end 6941 ValueVTs.push_back(MVT::Other); 6942 ValueVTs.push_back(MVT::Glue); 6943 NodeTys = DAG.getVTList(ValueVTs); 6944 } else 6945 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6946 6947 // Replace the target specific call node with a PATCHPOINT node. 6948 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6949 dl, NodeTys, Ops); 6950 6951 // Update the NodeMap. 6952 if (HasDef) { 6953 if (IsAnyRegCC) 6954 setValue(CS.getInstruction(), SDValue(MN, 0)); 6955 else 6956 setValue(CS.getInstruction(), Result.first); 6957 } 6958 6959 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6960 // call sequence. Furthermore the location of the chain and glue can change 6961 // when the AnyReg calling convention is used and the intrinsic returns a 6962 // value. 6963 if (IsAnyRegCC && HasDef) { 6964 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6965 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6966 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6967 } else 6968 DAG.ReplaceAllUsesWith(Call, MN); 6969 DAG.DeleteNode(Call); 6970 6971 // Inform the Frame Information that we have a patchpoint in this function. 6972 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6973 } 6974 6975 /// Returns an AttributeSet representing the attributes applied to the return 6976 /// value of the given call. 6977 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6978 SmallVector<Attribute::AttrKind, 2> Attrs; 6979 if (CLI.RetSExt) 6980 Attrs.push_back(Attribute::SExt); 6981 if (CLI.RetZExt) 6982 Attrs.push_back(Attribute::ZExt); 6983 if (CLI.IsInReg) 6984 Attrs.push_back(Attribute::InReg); 6985 6986 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6987 Attrs); 6988 } 6989 6990 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6991 /// implementation, which just calls LowerCall. 6992 /// FIXME: When all targets are 6993 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6994 std::pair<SDValue, SDValue> 6995 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6996 // Handle the incoming return values from the call. 6997 CLI.Ins.clear(); 6998 Type *OrigRetTy = CLI.RetTy; 6999 SmallVector<EVT, 4> RetTys; 7000 SmallVector<uint64_t, 4> Offsets; 7001 auto &DL = CLI.DAG.getDataLayout(); 7002 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7003 7004 SmallVector<ISD::OutputArg, 4> Outs; 7005 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7006 7007 bool CanLowerReturn = 7008 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7009 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7010 7011 SDValue DemoteStackSlot; 7012 int DemoteStackIdx = -100; 7013 if (!CanLowerReturn) { 7014 // FIXME: equivalent assert? 7015 // assert(!CS.hasInAllocaArgument() && 7016 // "sret demotion is incompatible with inalloca"); 7017 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7018 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7019 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7020 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7021 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7022 7023 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7024 ArgListEntry Entry; 7025 Entry.Node = DemoteStackSlot; 7026 Entry.Ty = StackSlotPtrType; 7027 Entry.isSExt = false; 7028 Entry.isZExt = false; 7029 Entry.isInReg = false; 7030 Entry.isSRet = true; 7031 Entry.isNest = false; 7032 Entry.isByVal = false; 7033 Entry.isReturned = false; 7034 Entry.Alignment = Align; 7035 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7036 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7037 7038 // sret demotion isn't compatible with tail-calls, since the sret argument 7039 // points into the callers stack frame. 7040 CLI.IsTailCall = false; 7041 } else { 7042 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7043 EVT VT = RetTys[I]; 7044 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7045 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7046 for (unsigned i = 0; i != NumRegs; ++i) { 7047 ISD::InputArg MyFlags; 7048 MyFlags.VT = RegisterVT; 7049 MyFlags.ArgVT = VT; 7050 MyFlags.Used = CLI.IsReturnValueUsed; 7051 if (CLI.RetSExt) 7052 MyFlags.Flags.setSExt(); 7053 if (CLI.RetZExt) 7054 MyFlags.Flags.setZExt(); 7055 if (CLI.IsInReg) 7056 MyFlags.Flags.setInReg(); 7057 CLI.Ins.push_back(MyFlags); 7058 } 7059 } 7060 } 7061 7062 // Handle all of the outgoing arguments. 7063 CLI.Outs.clear(); 7064 CLI.OutVals.clear(); 7065 ArgListTy &Args = CLI.getArgs(); 7066 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7067 SmallVector<EVT, 4> ValueVTs; 7068 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7069 Type *FinalType = Args[i].Ty; 7070 if (Args[i].isByVal) 7071 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7072 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7073 FinalType, CLI.CallConv, CLI.IsVarArg); 7074 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7075 ++Value) { 7076 EVT VT = ValueVTs[Value]; 7077 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7078 SDValue Op = SDValue(Args[i].Node.getNode(), 7079 Args[i].Node.getResNo() + Value); 7080 ISD::ArgFlagsTy Flags; 7081 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7082 7083 if (Args[i].isZExt) 7084 Flags.setZExt(); 7085 if (Args[i].isSExt) 7086 Flags.setSExt(); 7087 if (Args[i].isInReg) 7088 Flags.setInReg(); 7089 if (Args[i].isSRet) 7090 Flags.setSRet(); 7091 if (Args[i].isByVal) 7092 Flags.setByVal(); 7093 if (Args[i].isInAlloca) { 7094 Flags.setInAlloca(); 7095 // Set the byval flag for CCAssignFn callbacks that don't know about 7096 // inalloca. This way we can know how many bytes we should've allocated 7097 // and how many bytes a callee cleanup function will pop. If we port 7098 // inalloca to more targets, we'll have to add custom inalloca handling 7099 // in the various CC lowering callbacks. 7100 Flags.setByVal(); 7101 } 7102 if (Args[i].isByVal || Args[i].isInAlloca) { 7103 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7104 Type *ElementTy = Ty->getElementType(); 7105 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7106 // For ByVal, alignment should come from FE. BE will guess if this 7107 // info is not there but there are cases it cannot get right. 7108 unsigned FrameAlign; 7109 if (Args[i].Alignment) 7110 FrameAlign = Args[i].Alignment; 7111 else 7112 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7113 Flags.setByValAlign(FrameAlign); 7114 } 7115 if (Args[i].isNest) 7116 Flags.setNest(); 7117 if (NeedsRegBlock) 7118 Flags.setInConsecutiveRegs(); 7119 Flags.setOrigAlign(OriginalAlignment); 7120 7121 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7122 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7123 SmallVector<SDValue, 4> Parts(NumParts); 7124 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7125 7126 if (Args[i].isSExt) 7127 ExtendKind = ISD::SIGN_EXTEND; 7128 else if (Args[i].isZExt) 7129 ExtendKind = ISD::ZERO_EXTEND; 7130 7131 // Conservatively only handle 'returned' on non-vectors for now 7132 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7133 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7134 "unexpected use of 'returned'"); 7135 // Before passing 'returned' to the target lowering code, ensure that 7136 // either the register MVT and the actual EVT are the same size or that 7137 // the return value and argument are extended in the same way; in these 7138 // cases it's safe to pass the argument register value unchanged as the 7139 // return register value (although it's at the target's option whether 7140 // to do so) 7141 // TODO: allow code generation to take advantage of partially preserved 7142 // registers rather than clobbering the entire register when the 7143 // parameter extension method is not compatible with the return 7144 // extension method 7145 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7146 (ExtendKind != ISD::ANY_EXTEND && 7147 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7148 Flags.setReturned(); 7149 } 7150 7151 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7152 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7153 7154 for (unsigned j = 0; j != NumParts; ++j) { 7155 // if it isn't first piece, alignment must be 1 7156 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7157 i < CLI.NumFixedArgs, 7158 i, j*Parts[j].getValueType().getStoreSize()); 7159 if (NumParts > 1 && j == 0) 7160 MyFlags.Flags.setSplit(); 7161 else if (j != 0) 7162 MyFlags.Flags.setOrigAlign(1); 7163 7164 CLI.Outs.push_back(MyFlags); 7165 CLI.OutVals.push_back(Parts[j]); 7166 } 7167 7168 if (NeedsRegBlock && Value == NumValues - 1) 7169 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7170 } 7171 } 7172 7173 SmallVector<SDValue, 4> InVals; 7174 CLI.Chain = LowerCall(CLI, InVals); 7175 7176 // Verify that the target's LowerCall behaved as expected. 7177 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7178 "LowerCall didn't return a valid chain!"); 7179 assert((!CLI.IsTailCall || InVals.empty()) && 7180 "LowerCall emitted a return value for a tail call!"); 7181 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7182 "LowerCall didn't emit the correct number of values!"); 7183 7184 // For a tail call, the return value is merely live-out and there aren't 7185 // any nodes in the DAG representing it. Return a special value to 7186 // indicate that a tail call has been emitted and no more Instructions 7187 // should be processed in the current block. 7188 if (CLI.IsTailCall) { 7189 CLI.DAG.setRoot(CLI.Chain); 7190 return std::make_pair(SDValue(), SDValue()); 7191 } 7192 7193 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7194 assert(InVals[i].getNode() && 7195 "LowerCall emitted a null value!"); 7196 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7197 "LowerCall emitted a value with the wrong type!"); 7198 }); 7199 7200 SmallVector<SDValue, 4> ReturnValues; 7201 if (!CanLowerReturn) { 7202 // The instruction result is the result of loading from the 7203 // hidden sret parameter. 7204 SmallVector<EVT, 1> PVTs; 7205 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7206 7207 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7208 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7209 EVT PtrVT = PVTs[0]; 7210 7211 unsigned NumValues = RetTys.size(); 7212 ReturnValues.resize(NumValues); 7213 SmallVector<SDValue, 4> Chains(NumValues); 7214 7215 for (unsigned i = 0; i < NumValues; ++i) { 7216 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7217 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7218 PtrVT)); 7219 SDValue L = CLI.DAG.getLoad( 7220 RetTys[i], CLI.DL, CLI.Chain, Add, 7221 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7222 DemoteStackIdx, Offsets[i]), 7223 false, false, false, 1); 7224 ReturnValues[i] = L; 7225 Chains[i] = L.getValue(1); 7226 } 7227 7228 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7229 } else { 7230 // Collect the legal value parts into potentially illegal values 7231 // that correspond to the original function's return values. 7232 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7233 if (CLI.RetSExt) 7234 AssertOp = ISD::AssertSext; 7235 else if (CLI.RetZExt) 7236 AssertOp = ISD::AssertZext; 7237 unsigned CurReg = 0; 7238 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7239 EVT VT = RetTys[I]; 7240 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7241 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7242 7243 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7244 NumRegs, RegisterVT, VT, nullptr, 7245 AssertOp)); 7246 CurReg += NumRegs; 7247 } 7248 7249 // For a function returning void, there is no return value. We can't create 7250 // such a node, so we just return a null return value in that case. In 7251 // that case, nothing will actually look at the value. 7252 if (ReturnValues.empty()) 7253 return std::make_pair(SDValue(), CLI.Chain); 7254 } 7255 7256 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7257 CLI.DAG.getVTList(RetTys), ReturnValues); 7258 return std::make_pair(Res, CLI.Chain); 7259 } 7260 7261 void TargetLowering::LowerOperationWrapper(SDNode *N, 7262 SmallVectorImpl<SDValue> &Results, 7263 SelectionDAG &DAG) const { 7264 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7265 if (Res.getNode()) 7266 Results.push_back(Res); 7267 } 7268 7269 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7270 llvm_unreachable("LowerOperation not implemented for this target!"); 7271 } 7272 7273 void 7274 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7275 SDValue Op = getNonRegisterValue(V); 7276 assert((Op.getOpcode() != ISD::CopyFromReg || 7277 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7278 "Copy from a reg to the same reg!"); 7279 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7280 7281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7282 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7283 V->getType()); 7284 SDValue Chain = DAG.getEntryNode(); 7285 7286 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7287 FuncInfo.PreferredExtendType.end()) 7288 ? ISD::ANY_EXTEND 7289 : FuncInfo.PreferredExtendType[V]; 7290 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7291 PendingExports.push_back(Chain); 7292 } 7293 7294 #include "llvm/CodeGen/SelectionDAGISel.h" 7295 7296 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7297 /// entry block, return true. This includes arguments used by switches, since 7298 /// the switch may expand into multiple basic blocks. 7299 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7300 // With FastISel active, we may be splitting blocks, so force creation 7301 // of virtual registers for all non-dead arguments. 7302 if (FastISel) 7303 return A->use_empty(); 7304 7305 const BasicBlock &Entry = A->getParent()->front(); 7306 for (const User *U : A->users()) 7307 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7308 return false; // Use not in entry block. 7309 7310 return true; 7311 } 7312 7313 void SelectionDAGISel::LowerArguments(const Function &F) { 7314 SelectionDAG &DAG = SDB->DAG; 7315 SDLoc dl = SDB->getCurSDLoc(); 7316 const DataLayout &DL = DAG.getDataLayout(); 7317 SmallVector<ISD::InputArg, 16> Ins; 7318 7319 if (!FuncInfo->CanLowerReturn) { 7320 // Put in an sret pointer parameter before all the other parameters. 7321 SmallVector<EVT, 1> ValueVTs; 7322 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7323 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7324 7325 // NOTE: Assuming that a pointer will never break down to more than one VT 7326 // or one register. 7327 ISD::ArgFlagsTy Flags; 7328 Flags.setSRet(); 7329 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7330 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7331 ISD::InputArg::NoArgIndex, 0); 7332 Ins.push_back(RetArg); 7333 } 7334 7335 // Set up the incoming argument description vector. 7336 unsigned Idx = 1; 7337 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7338 I != E; ++I, ++Idx) { 7339 SmallVector<EVT, 4> ValueVTs; 7340 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7341 bool isArgValueUsed = !I->use_empty(); 7342 unsigned PartBase = 0; 7343 Type *FinalType = I->getType(); 7344 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7345 FinalType = cast<PointerType>(FinalType)->getElementType(); 7346 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7347 FinalType, F.getCallingConv(), F.isVarArg()); 7348 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7349 Value != NumValues; ++Value) { 7350 EVT VT = ValueVTs[Value]; 7351 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7352 ISD::ArgFlagsTy Flags; 7353 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7354 7355 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7356 Flags.setZExt(); 7357 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7358 Flags.setSExt(); 7359 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7360 Flags.setInReg(); 7361 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7362 Flags.setSRet(); 7363 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7364 Flags.setByVal(); 7365 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7366 Flags.setInAlloca(); 7367 // Set the byval flag for CCAssignFn callbacks that don't know about 7368 // inalloca. This way we can know how many bytes we should've allocated 7369 // and how many bytes a callee cleanup function will pop. If we port 7370 // inalloca to more targets, we'll have to add custom inalloca handling 7371 // in the various CC lowering callbacks. 7372 Flags.setByVal(); 7373 } 7374 if (Flags.isByVal() || Flags.isInAlloca()) { 7375 PointerType *Ty = cast<PointerType>(I->getType()); 7376 Type *ElementTy = Ty->getElementType(); 7377 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7378 // For ByVal, alignment should be passed from FE. BE will guess if 7379 // this info is not there but there are cases it cannot get right. 7380 unsigned FrameAlign; 7381 if (F.getParamAlignment(Idx)) 7382 FrameAlign = F.getParamAlignment(Idx); 7383 else 7384 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7385 Flags.setByValAlign(FrameAlign); 7386 } 7387 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7388 Flags.setNest(); 7389 if (NeedsRegBlock) 7390 Flags.setInConsecutiveRegs(); 7391 Flags.setOrigAlign(OriginalAlignment); 7392 7393 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7394 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7395 for (unsigned i = 0; i != NumRegs; ++i) { 7396 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7397 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7398 if (NumRegs > 1 && i == 0) 7399 MyFlags.Flags.setSplit(); 7400 // if it isn't first piece, alignment must be 1 7401 else if (i > 0) 7402 MyFlags.Flags.setOrigAlign(1); 7403 Ins.push_back(MyFlags); 7404 } 7405 if (NeedsRegBlock && Value == NumValues - 1) 7406 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7407 PartBase += VT.getStoreSize(); 7408 } 7409 } 7410 7411 // Call the target to set up the argument values. 7412 SmallVector<SDValue, 8> InVals; 7413 SDValue NewRoot = TLI->LowerFormalArguments( 7414 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7415 7416 // Verify that the target's LowerFormalArguments behaved as expected. 7417 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7418 "LowerFormalArguments didn't return a valid chain!"); 7419 assert(InVals.size() == Ins.size() && 7420 "LowerFormalArguments didn't emit the correct number of values!"); 7421 DEBUG({ 7422 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7423 assert(InVals[i].getNode() && 7424 "LowerFormalArguments emitted a null value!"); 7425 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7426 "LowerFormalArguments emitted a value with the wrong type!"); 7427 } 7428 }); 7429 7430 // Update the DAG with the new chain value resulting from argument lowering. 7431 DAG.setRoot(NewRoot); 7432 7433 // Set up the argument values. 7434 unsigned i = 0; 7435 Idx = 1; 7436 if (!FuncInfo->CanLowerReturn) { 7437 // Create a virtual register for the sret pointer, and put in a copy 7438 // from the sret argument into it. 7439 SmallVector<EVT, 1> ValueVTs; 7440 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7441 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7442 MVT VT = ValueVTs[0].getSimpleVT(); 7443 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7444 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7445 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7446 RegVT, VT, nullptr, AssertOp); 7447 7448 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7449 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7450 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7451 FuncInfo->DemoteRegister = SRetReg; 7452 NewRoot = 7453 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7454 DAG.setRoot(NewRoot); 7455 7456 // i indexes lowered arguments. Bump it past the hidden sret argument. 7457 // Idx indexes LLVM arguments. Don't touch it. 7458 ++i; 7459 } 7460 7461 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7462 ++I, ++Idx) { 7463 SmallVector<SDValue, 4> ArgValues; 7464 SmallVector<EVT, 4> ValueVTs; 7465 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7466 unsigned NumValues = ValueVTs.size(); 7467 7468 // If this argument is unused then remember its value. It is used to generate 7469 // debugging information. 7470 if (I->use_empty() && NumValues) { 7471 SDB->setUnusedArgValue(&*I, InVals[i]); 7472 7473 // Also remember any frame index for use in FastISel. 7474 if (FrameIndexSDNode *FI = 7475 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7476 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7477 } 7478 7479 for (unsigned Val = 0; Val != NumValues; ++Val) { 7480 EVT VT = ValueVTs[Val]; 7481 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7482 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7483 7484 if (!I->use_empty()) { 7485 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7486 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7487 AssertOp = ISD::AssertSext; 7488 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7489 AssertOp = ISD::AssertZext; 7490 7491 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7492 NumParts, PartVT, VT, 7493 nullptr, AssertOp)); 7494 } 7495 7496 i += NumParts; 7497 } 7498 7499 // We don't need to do anything else for unused arguments. 7500 if (ArgValues.empty()) 7501 continue; 7502 7503 // Note down frame index. 7504 if (FrameIndexSDNode *FI = 7505 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7506 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7507 7508 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7509 SDB->getCurSDLoc()); 7510 7511 SDB->setValue(&*I, Res); 7512 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7513 if (LoadSDNode *LNode = 7514 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7515 if (FrameIndexSDNode *FI = 7516 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7517 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7518 } 7519 7520 // If this argument is live outside of the entry block, insert a copy from 7521 // wherever we got it to the vreg that other BB's will reference it as. 7522 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7523 // If we can, though, try to skip creating an unnecessary vreg. 7524 // FIXME: This isn't very clean... it would be nice to make this more 7525 // general. It's also subtly incompatible with the hacks FastISel 7526 // uses with vregs. 7527 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7528 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7529 FuncInfo->ValueMap[&*I] = Reg; 7530 continue; 7531 } 7532 } 7533 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7534 FuncInfo->InitializeRegForValue(&*I); 7535 SDB->CopyToExportRegsIfNeeded(&*I); 7536 } 7537 } 7538 7539 assert(i == InVals.size() && "Argument register count mismatch!"); 7540 7541 // Finally, if the target has anything special to do, allow it to do so. 7542 EmitFunctionEntryCode(); 7543 } 7544 7545 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7546 /// ensure constants are generated when needed. Remember the virtual registers 7547 /// that need to be added to the Machine PHI nodes as input. We cannot just 7548 /// directly add them, because expansion might result in multiple MBB's for one 7549 /// BB. As such, the start of the BB might correspond to a different MBB than 7550 /// the end. 7551 /// 7552 void 7553 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7554 const TerminatorInst *TI = LLVMBB->getTerminator(); 7555 7556 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7557 7558 // Check PHI nodes in successors that expect a value to be available from this 7559 // block. 7560 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7561 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7562 if (!isa<PHINode>(SuccBB->begin())) continue; 7563 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7564 7565 // If this terminator has multiple identical successors (common for 7566 // switches), only handle each succ once. 7567 if (!SuccsHandled.insert(SuccMBB).second) 7568 continue; 7569 7570 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7571 7572 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7573 // nodes and Machine PHI nodes, but the incoming operands have not been 7574 // emitted yet. 7575 for (BasicBlock::const_iterator I = SuccBB->begin(); 7576 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7577 // Ignore dead phi's. 7578 if (PN->use_empty()) continue; 7579 7580 // Skip empty types 7581 if (PN->getType()->isEmptyTy()) 7582 continue; 7583 7584 unsigned Reg; 7585 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7586 7587 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7588 unsigned &RegOut = ConstantsOut[C]; 7589 if (RegOut == 0) { 7590 RegOut = FuncInfo.CreateRegs(C->getType()); 7591 CopyValueToVirtualRegister(C, RegOut); 7592 } 7593 Reg = RegOut; 7594 } else { 7595 DenseMap<const Value *, unsigned>::iterator I = 7596 FuncInfo.ValueMap.find(PHIOp); 7597 if (I != FuncInfo.ValueMap.end()) 7598 Reg = I->second; 7599 else { 7600 assert(isa<AllocaInst>(PHIOp) && 7601 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7602 "Didn't codegen value into a register!??"); 7603 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7604 CopyValueToVirtualRegister(PHIOp, Reg); 7605 } 7606 } 7607 7608 // Remember that this register needs to added to the machine PHI node as 7609 // the input for this MBB. 7610 SmallVector<EVT, 4> ValueVTs; 7611 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7612 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7613 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7614 EVT VT = ValueVTs[vti]; 7615 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7616 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7617 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7618 Reg += NumRegisters; 7619 } 7620 } 7621 } 7622 7623 ConstantsOut.clear(); 7624 } 7625 7626 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7627 /// is 0. 7628 MachineBasicBlock * 7629 SelectionDAGBuilder::StackProtectorDescriptor:: 7630 AddSuccessorMBB(const BasicBlock *BB, 7631 MachineBasicBlock *ParentMBB, 7632 bool IsLikely, 7633 MachineBasicBlock *SuccMBB) { 7634 // If SuccBB has not been created yet, create it. 7635 if (!SuccMBB) { 7636 MachineFunction *MF = ParentMBB->getParent(); 7637 MachineFunction::iterator BBI(ParentMBB); 7638 SuccMBB = MF->CreateMachineBasicBlock(BB); 7639 MF->insert(++BBI, SuccMBB); 7640 } 7641 // Add it as a successor of ParentMBB. 7642 ParentMBB->addSuccessor( 7643 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7644 return SuccMBB; 7645 } 7646 7647 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7648 MachineFunction::iterator I(MBB); 7649 if (++I == FuncInfo.MF->end()) 7650 return nullptr; 7651 return &*I; 7652 } 7653 7654 /// During lowering new call nodes can be created (such as memset, etc.). 7655 /// Those will become new roots of the current DAG, but complications arise 7656 /// when they are tail calls. In such cases, the call lowering will update 7657 /// the root, but the builder still needs to know that a tail call has been 7658 /// lowered in order to avoid generating an additional return. 7659 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7660 // If the node is null, we do have a tail call. 7661 if (MaybeTC.getNode() != nullptr) 7662 DAG.setRoot(MaybeTC); 7663 else 7664 HasTailCall = true; 7665 } 7666 7667 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7668 unsigned *TotalCases, unsigned First, 7669 unsigned Last) { 7670 assert(Last >= First); 7671 assert(TotalCases[Last] >= TotalCases[First]); 7672 7673 APInt LowCase = Clusters[First].Low->getValue(); 7674 APInt HighCase = Clusters[Last].High->getValue(); 7675 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7676 7677 // FIXME: A range of consecutive cases has 100% density, but only requires one 7678 // comparison to lower. We should discriminate against such consecutive ranges 7679 // in jump tables. 7680 7681 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7682 uint64_t Range = Diff + 1; 7683 7684 uint64_t NumCases = 7685 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7686 7687 assert(NumCases < UINT64_MAX / 100); 7688 assert(Range >= NumCases); 7689 7690 return NumCases * 100 >= Range * MinJumpTableDensity; 7691 } 7692 7693 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7694 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7695 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7696 } 7697 7698 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7699 unsigned First, unsigned Last, 7700 const SwitchInst *SI, 7701 MachineBasicBlock *DefaultMBB, 7702 CaseCluster &JTCluster) { 7703 assert(First <= Last); 7704 7705 uint32_t Weight = 0; 7706 unsigned NumCmps = 0; 7707 std::vector<MachineBasicBlock*> Table; 7708 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7709 for (unsigned I = First; I <= Last; ++I) { 7710 assert(Clusters[I].Kind == CC_Range); 7711 Weight += Clusters[I].Weight; 7712 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7713 APInt Low = Clusters[I].Low->getValue(); 7714 APInt High = Clusters[I].High->getValue(); 7715 NumCmps += (Low == High) ? 1 : 2; 7716 if (I != First) { 7717 // Fill the gap between this and the previous cluster. 7718 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7719 assert(PreviousHigh.slt(Low)); 7720 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7721 for (uint64_t J = 0; J < Gap; J++) 7722 Table.push_back(DefaultMBB); 7723 } 7724 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7725 for (uint64_t J = 0; J < ClusterSize; ++J) 7726 Table.push_back(Clusters[I].MBB); 7727 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7728 } 7729 7730 unsigned NumDests = JTWeights.size(); 7731 if (isSuitableForBitTests(NumDests, NumCmps, 7732 Clusters[First].Low->getValue(), 7733 Clusters[Last].High->getValue())) { 7734 // Clusters[First..Last] should be lowered as bit tests instead. 7735 return false; 7736 } 7737 7738 // Create the MBB that will load from and jump through the table. 7739 // Note: We create it here, but it's not inserted into the function yet. 7740 MachineFunction *CurMF = FuncInfo.MF; 7741 MachineBasicBlock *JumpTableMBB = 7742 CurMF->CreateMachineBasicBlock(SI->getParent()); 7743 7744 // Add successors. Note: use table order for determinism. 7745 SmallPtrSet<MachineBasicBlock *, 8> Done; 7746 for (MachineBasicBlock *Succ : Table) { 7747 if (Done.count(Succ)) 7748 continue; 7749 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7750 Done.insert(Succ); 7751 } 7752 7753 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7754 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7755 ->createJumpTableIndex(Table); 7756 7757 // Set up the jump table info. 7758 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7759 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7760 Clusters[Last].High->getValue(), SI->getCondition(), 7761 nullptr, false); 7762 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7763 7764 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7765 JTCases.size() - 1, Weight); 7766 return true; 7767 } 7768 7769 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7770 const SwitchInst *SI, 7771 MachineBasicBlock *DefaultMBB) { 7772 #ifndef NDEBUG 7773 // Clusters must be non-empty, sorted, and only contain Range clusters. 7774 assert(!Clusters.empty()); 7775 for (CaseCluster &C : Clusters) 7776 assert(C.Kind == CC_Range); 7777 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7778 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7779 #endif 7780 7781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7782 if (!areJTsAllowed(TLI)) 7783 return; 7784 7785 const int64_t N = Clusters.size(); 7786 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7787 7788 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7789 SmallVector<unsigned, 8> TotalCases(N); 7790 7791 for (unsigned i = 0; i < N; ++i) { 7792 APInt Hi = Clusters[i].High->getValue(); 7793 APInt Lo = Clusters[i].Low->getValue(); 7794 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7795 if (i != 0) 7796 TotalCases[i] += TotalCases[i - 1]; 7797 } 7798 7799 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7800 // Cheap case: the whole range might be suitable for jump table. 7801 CaseCluster JTCluster; 7802 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7803 Clusters[0] = JTCluster; 7804 Clusters.resize(1); 7805 return; 7806 } 7807 } 7808 7809 // The algorithm below is not suitable for -O0. 7810 if (TM.getOptLevel() == CodeGenOpt::None) 7811 return; 7812 7813 // Split Clusters into minimum number of dense partitions. The algorithm uses 7814 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7815 // for the Case Statement'" (1994), but builds the MinPartitions array in 7816 // reverse order to make it easier to reconstruct the partitions in ascending 7817 // order. In the choice between two optimal partitionings, it picks the one 7818 // which yields more jump tables. 7819 7820 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7821 SmallVector<unsigned, 8> MinPartitions(N); 7822 // LastElement[i] is the last element of the partition starting at i. 7823 SmallVector<unsigned, 8> LastElement(N); 7824 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7825 SmallVector<unsigned, 8> NumTables(N); 7826 7827 // Base case: There is only one way to partition Clusters[N-1]. 7828 MinPartitions[N - 1] = 1; 7829 LastElement[N - 1] = N - 1; 7830 assert(MinJumpTableSize > 1); 7831 NumTables[N - 1] = 0; 7832 7833 // Note: loop indexes are signed to avoid underflow. 7834 for (int64_t i = N - 2; i >= 0; i--) { 7835 // Find optimal partitioning of Clusters[i..N-1]. 7836 // Baseline: Put Clusters[i] into a partition on its own. 7837 MinPartitions[i] = MinPartitions[i + 1] + 1; 7838 LastElement[i] = i; 7839 NumTables[i] = NumTables[i + 1]; 7840 7841 // Search for a solution that results in fewer partitions. 7842 for (int64_t j = N - 1; j > i; j--) { 7843 // Try building a partition from Clusters[i..j]. 7844 if (isDense(Clusters, &TotalCases[0], i, j)) { 7845 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7846 bool IsTable = j - i + 1 >= MinJumpTableSize; 7847 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7848 7849 // If this j leads to fewer partitions, or same number of partitions 7850 // with more lookup tables, it is a better partitioning. 7851 if (NumPartitions < MinPartitions[i] || 7852 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7853 MinPartitions[i] = NumPartitions; 7854 LastElement[i] = j; 7855 NumTables[i] = Tables; 7856 } 7857 } 7858 } 7859 } 7860 7861 // Iterate over the partitions, replacing some with jump tables in-place. 7862 unsigned DstIndex = 0; 7863 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7864 Last = LastElement[First]; 7865 assert(Last >= First); 7866 assert(DstIndex <= First); 7867 unsigned NumClusters = Last - First + 1; 7868 7869 CaseCluster JTCluster; 7870 if (NumClusters >= MinJumpTableSize && 7871 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7872 Clusters[DstIndex++] = JTCluster; 7873 } else { 7874 for (unsigned I = First; I <= Last; ++I) 7875 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7876 } 7877 } 7878 Clusters.resize(DstIndex); 7879 } 7880 7881 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7882 // FIXME: Using the pointer type doesn't seem ideal. 7883 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7884 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7885 return Range <= BW; 7886 } 7887 7888 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7889 unsigned NumCmps, 7890 const APInt &Low, 7891 const APInt &High) { 7892 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7893 // range of cases both require only one branch to lower. Just looking at the 7894 // number of clusters and destinations should be enough to decide whether to 7895 // build bit tests. 7896 7897 // To lower a range with bit tests, the range must fit the bitwidth of a 7898 // machine word. 7899 if (!rangeFitsInWord(Low, High)) 7900 return false; 7901 7902 // Decide whether it's profitable to lower this range with bit tests. Each 7903 // destination requires a bit test and branch, and there is an overall range 7904 // check branch. For a small number of clusters, separate comparisons might be 7905 // cheaper, and for many destinations, splitting the range might be better. 7906 return (NumDests == 1 && NumCmps >= 3) || 7907 (NumDests == 2 && NumCmps >= 5) || 7908 (NumDests == 3 && NumCmps >= 6); 7909 } 7910 7911 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7912 unsigned First, unsigned Last, 7913 const SwitchInst *SI, 7914 CaseCluster &BTCluster) { 7915 assert(First <= Last); 7916 if (First == Last) 7917 return false; 7918 7919 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7920 unsigned NumCmps = 0; 7921 for (int64_t I = First; I <= Last; ++I) { 7922 assert(Clusters[I].Kind == CC_Range); 7923 Dests.set(Clusters[I].MBB->getNumber()); 7924 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7925 } 7926 unsigned NumDests = Dests.count(); 7927 7928 APInt Low = Clusters[First].Low->getValue(); 7929 APInt High = Clusters[Last].High->getValue(); 7930 assert(Low.slt(High)); 7931 7932 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7933 return false; 7934 7935 APInt LowBound; 7936 APInt CmpRange; 7937 7938 const int BitWidth = DAG.getTargetLoweringInfo() 7939 .getPointerTy(DAG.getDataLayout()) 7940 .getSizeInBits(); 7941 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7942 7943 // Check if the clusters cover a contiguous range such that no value in the 7944 // range will jump to the default statement. 7945 bool ContiguousRange = true; 7946 for (int64_t I = First + 1; I <= Last; ++I) { 7947 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7948 ContiguousRange = false; 7949 break; 7950 } 7951 } 7952 7953 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7954 // Optimize the case where all the case values fit in a word without having 7955 // to subtract minValue. In this case, we can optimize away the subtraction. 7956 LowBound = APInt::getNullValue(Low.getBitWidth()); 7957 CmpRange = High; 7958 ContiguousRange = false; 7959 } else { 7960 LowBound = Low; 7961 CmpRange = High - Low; 7962 } 7963 7964 CaseBitsVector CBV; 7965 uint32_t TotalWeight = 0; 7966 for (unsigned i = First; i <= Last; ++i) { 7967 // Find the CaseBits for this destination. 7968 unsigned j; 7969 for (j = 0; j < CBV.size(); ++j) 7970 if (CBV[j].BB == Clusters[i].MBB) 7971 break; 7972 if (j == CBV.size()) 7973 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7974 CaseBits *CB = &CBV[j]; 7975 7976 // Update Mask, Bits and ExtraWeight. 7977 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7978 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7979 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7980 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7981 CB->Bits += Hi - Lo + 1; 7982 CB->ExtraWeight += Clusters[i].Weight; 7983 TotalWeight += Clusters[i].Weight; 7984 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7985 } 7986 7987 BitTestInfo BTI; 7988 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7989 // Sort by weight first, number of bits second. 7990 if (a.ExtraWeight != b.ExtraWeight) 7991 return a.ExtraWeight > b.ExtraWeight; 7992 return a.Bits > b.Bits; 7993 }); 7994 7995 for (auto &CB : CBV) { 7996 MachineBasicBlock *BitTestBB = 7997 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7998 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7999 } 8000 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8001 SI->getCondition(), -1U, MVT::Other, false, 8002 ContiguousRange, nullptr, nullptr, std::move(BTI), 8003 TotalWeight); 8004 8005 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8006 BitTestCases.size() - 1, TotalWeight); 8007 return true; 8008 } 8009 8010 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8011 const SwitchInst *SI) { 8012 // Partition Clusters into as few subsets as possible, where each subset has a 8013 // range that fits in a machine word and has <= 3 unique destinations. 8014 8015 #ifndef NDEBUG 8016 // Clusters must be sorted and contain Range or JumpTable clusters. 8017 assert(!Clusters.empty()); 8018 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8019 for (const CaseCluster &C : Clusters) 8020 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8021 for (unsigned i = 1; i < Clusters.size(); ++i) 8022 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8023 #endif 8024 8025 // The algorithm below is not suitable for -O0. 8026 if (TM.getOptLevel() == CodeGenOpt::None) 8027 return; 8028 8029 // If target does not have legal shift left, do not emit bit tests at all. 8030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8031 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8032 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8033 return; 8034 8035 int BitWidth = PTy.getSizeInBits(); 8036 const int64_t N = Clusters.size(); 8037 8038 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8039 SmallVector<unsigned, 8> MinPartitions(N); 8040 // LastElement[i] is the last element of the partition starting at i. 8041 SmallVector<unsigned, 8> LastElement(N); 8042 8043 // FIXME: This might not be the best algorithm for finding bit test clusters. 8044 8045 // Base case: There is only one way to partition Clusters[N-1]. 8046 MinPartitions[N - 1] = 1; 8047 LastElement[N - 1] = N - 1; 8048 8049 // Note: loop indexes are signed to avoid underflow. 8050 for (int64_t i = N - 2; i >= 0; --i) { 8051 // Find optimal partitioning of Clusters[i..N-1]. 8052 // Baseline: Put Clusters[i] into a partition on its own. 8053 MinPartitions[i] = MinPartitions[i + 1] + 1; 8054 LastElement[i] = i; 8055 8056 // Search for a solution that results in fewer partitions. 8057 // Note: the search is limited by BitWidth, reducing time complexity. 8058 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8059 // Try building a partition from Clusters[i..j]. 8060 8061 // Check the range. 8062 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8063 Clusters[j].High->getValue())) 8064 continue; 8065 8066 // Check nbr of destinations and cluster types. 8067 // FIXME: This works, but doesn't seem very efficient. 8068 bool RangesOnly = true; 8069 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8070 for (int64_t k = i; k <= j; k++) { 8071 if (Clusters[k].Kind != CC_Range) { 8072 RangesOnly = false; 8073 break; 8074 } 8075 Dests.set(Clusters[k].MBB->getNumber()); 8076 } 8077 if (!RangesOnly || Dests.count() > 3) 8078 break; 8079 8080 // Check if it's a better partition. 8081 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8082 if (NumPartitions < MinPartitions[i]) { 8083 // Found a better partition. 8084 MinPartitions[i] = NumPartitions; 8085 LastElement[i] = j; 8086 } 8087 } 8088 } 8089 8090 // Iterate over the partitions, replacing with bit-test clusters in-place. 8091 unsigned DstIndex = 0; 8092 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8093 Last = LastElement[First]; 8094 assert(First <= Last); 8095 assert(DstIndex <= First); 8096 8097 CaseCluster BitTestCluster; 8098 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8099 Clusters[DstIndex++] = BitTestCluster; 8100 } else { 8101 size_t NumClusters = Last - First + 1; 8102 std::memmove(&Clusters[DstIndex], &Clusters[First], 8103 sizeof(Clusters[0]) * NumClusters); 8104 DstIndex += NumClusters; 8105 } 8106 } 8107 Clusters.resize(DstIndex); 8108 } 8109 8110 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8111 MachineBasicBlock *SwitchMBB, 8112 MachineBasicBlock *DefaultMBB) { 8113 MachineFunction *CurMF = FuncInfo.MF; 8114 MachineBasicBlock *NextMBB = nullptr; 8115 MachineFunction::iterator BBI(W.MBB); 8116 if (++BBI != FuncInfo.MF->end()) 8117 NextMBB = &*BBI; 8118 8119 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8120 8121 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8122 8123 if (Size == 2 && W.MBB == SwitchMBB) { 8124 // If any two of the cases has the same destination, and if one value 8125 // is the same as the other, but has one bit unset that the other has set, 8126 // use bit manipulation to do two compares at once. For example: 8127 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8128 // TODO: This could be extended to merge any 2 cases in switches with 3 8129 // cases. 8130 // TODO: Handle cases where W.CaseBB != SwitchBB. 8131 CaseCluster &Small = *W.FirstCluster; 8132 CaseCluster &Big = *W.LastCluster; 8133 8134 if (Small.Low == Small.High && Big.Low == Big.High && 8135 Small.MBB == Big.MBB) { 8136 const APInt &SmallValue = Small.Low->getValue(); 8137 const APInt &BigValue = Big.Low->getValue(); 8138 8139 // Check that there is only one bit different. 8140 APInt CommonBit = BigValue ^ SmallValue; 8141 if (CommonBit.isPowerOf2()) { 8142 SDValue CondLHS = getValue(Cond); 8143 EVT VT = CondLHS.getValueType(); 8144 SDLoc DL = getCurSDLoc(); 8145 8146 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8147 DAG.getConstant(CommonBit, DL, VT)); 8148 SDValue Cond = DAG.getSetCC( 8149 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8150 ISD::SETEQ); 8151 8152 // Update successor info. 8153 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8154 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8155 addSuccessorWithWeight( 8156 SwitchMBB, DefaultMBB, 8157 // The default destination is the first successor in IR. 8158 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8159 : 0); 8160 8161 // Insert the true branch. 8162 SDValue BrCond = 8163 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8164 DAG.getBasicBlock(Small.MBB)); 8165 // Insert the false branch. 8166 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8167 DAG.getBasicBlock(DefaultMBB)); 8168 8169 DAG.setRoot(BrCond); 8170 return; 8171 } 8172 } 8173 } 8174 8175 if (TM.getOptLevel() != CodeGenOpt::None) { 8176 // Order cases by weight so the most likely case will be checked first. 8177 std::sort(W.FirstCluster, W.LastCluster + 1, 8178 [](const CaseCluster &a, const CaseCluster &b) { 8179 return a.Weight > b.Weight; 8180 }); 8181 8182 // Rearrange the case blocks so that the last one falls through if possible 8183 // without without changing the order of weights. 8184 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8185 --I; 8186 if (I->Weight > W.LastCluster->Weight) 8187 break; 8188 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8189 std::swap(*I, *W.LastCluster); 8190 break; 8191 } 8192 } 8193 } 8194 8195 // Compute total weight. 8196 uint32_t DefaultWeight = W.DefaultWeight; 8197 uint32_t UnhandledWeights = DefaultWeight; 8198 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8199 UnhandledWeights += I->Weight; 8200 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8201 } 8202 8203 MachineBasicBlock *CurMBB = W.MBB; 8204 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8205 MachineBasicBlock *Fallthrough; 8206 if (I == W.LastCluster) { 8207 // For the last cluster, fall through to the default destination. 8208 Fallthrough = DefaultMBB; 8209 } else { 8210 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8211 CurMF->insert(BBI, Fallthrough); 8212 // Put Cond in a virtual register to make it available from the new blocks. 8213 ExportFromCurrentBlock(Cond); 8214 } 8215 UnhandledWeights -= I->Weight; 8216 8217 switch (I->Kind) { 8218 case CC_JumpTable: { 8219 // FIXME: Optimize away range check based on pivot comparisons. 8220 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8221 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8222 8223 // The jump block hasn't been inserted yet; insert it here. 8224 MachineBasicBlock *JumpMBB = JT->MBB; 8225 CurMF->insert(BBI, JumpMBB); 8226 8227 uint32_t JumpWeight = I->Weight; 8228 uint32_t FallthroughWeight = UnhandledWeights; 8229 8230 // If the default statement is a target of the jump table, we evenly 8231 // distribute the default weight to successors of CurMBB. Also update 8232 // the weight on the edge from JumpMBB to Fallthrough. 8233 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8234 SE = JumpMBB->succ_end(); 8235 SI != SE; ++SI) { 8236 if (*SI == DefaultMBB) { 8237 JumpWeight += DefaultWeight / 2; 8238 FallthroughWeight -= DefaultWeight / 2; 8239 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8240 break; 8241 } 8242 } 8243 8244 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8245 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8246 8247 // The jump table header will be inserted in our current block, do the 8248 // range check, and fall through to our fallthrough block. 8249 JTH->HeaderBB = CurMBB; 8250 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8251 8252 // If we're in the right place, emit the jump table header right now. 8253 if (CurMBB == SwitchMBB) { 8254 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8255 JTH->Emitted = true; 8256 } 8257 break; 8258 } 8259 case CC_BitTests: { 8260 // FIXME: Optimize away range check based on pivot comparisons. 8261 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8262 8263 // The bit test blocks haven't been inserted yet; insert them here. 8264 for (BitTestCase &BTC : BTB->Cases) 8265 CurMF->insert(BBI, BTC.ThisBB); 8266 8267 // Fill in fields of the BitTestBlock. 8268 BTB->Parent = CurMBB; 8269 BTB->Default = Fallthrough; 8270 8271 BTB->DefaultWeight = UnhandledWeights; 8272 // If the cases in bit test don't form a contiguous range, we evenly 8273 // distribute the weight on the edge to Fallthrough to two successors 8274 // of CurMBB. 8275 if (!BTB->ContiguousRange) { 8276 BTB->Weight += DefaultWeight / 2; 8277 BTB->DefaultWeight -= DefaultWeight / 2; 8278 } 8279 8280 // If we're in the right place, emit the bit test header right now. 8281 if (CurMBB == SwitchMBB) { 8282 visitBitTestHeader(*BTB, SwitchMBB); 8283 BTB->Emitted = true; 8284 } 8285 break; 8286 } 8287 case CC_Range: { 8288 const Value *RHS, *LHS, *MHS; 8289 ISD::CondCode CC; 8290 if (I->Low == I->High) { 8291 // Check Cond == I->Low. 8292 CC = ISD::SETEQ; 8293 LHS = Cond; 8294 RHS=I->Low; 8295 MHS = nullptr; 8296 } else { 8297 // Check I->Low <= Cond <= I->High. 8298 CC = ISD::SETLE; 8299 LHS = I->Low; 8300 MHS = Cond; 8301 RHS = I->High; 8302 } 8303 8304 // The false weight is the sum of all unhandled cases. 8305 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8306 UnhandledWeights); 8307 8308 if (CurMBB == SwitchMBB) 8309 visitSwitchCase(CB, SwitchMBB); 8310 else 8311 SwitchCases.push_back(CB); 8312 8313 break; 8314 } 8315 } 8316 CurMBB = Fallthrough; 8317 } 8318 } 8319 8320 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8321 CaseClusterIt First, 8322 CaseClusterIt Last) { 8323 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8324 if (X.Weight != CC.Weight) 8325 return X.Weight > CC.Weight; 8326 8327 // Ties are broken by comparing the case value. 8328 return X.Low->getValue().slt(CC.Low->getValue()); 8329 }); 8330 } 8331 8332 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8333 const SwitchWorkListItem &W, 8334 Value *Cond, 8335 MachineBasicBlock *SwitchMBB) { 8336 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8337 "Clusters not sorted?"); 8338 8339 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8340 8341 // Balance the tree based on branch weights to create a near-optimal (in terms 8342 // of search time given key frequency) binary search tree. See e.g. Kurt 8343 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8344 CaseClusterIt LastLeft = W.FirstCluster; 8345 CaseClusterIt FirstRight = W.LastCluster; 8346 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8347 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8348 8349 // Move LastLeft and FirstRight towards each other from opposite directions to 8350 // find a partitioning of the clusters which balances the weight on both 8351 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8352 // taken to ensure 0-weight nodes are distributed evenly. 8353 unsigned I = 0; 8354 while (LastLeft + 1 < FirstRight) { 8355 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8356 LeftWeight += (++LastLeft)->Weight; 8357 else 8358 RightWeight += (--FirstRight)->Weight; 8359 I++; 8360 } 8361 8362 for (;;) { 8363 // Our binary search tree differs from a typical BST in that ours can have up 8364 // to three values in each leaf. The pivot selection above doesn't take that 8365 // into account, which means the tree might require more nodes and be less 8366 // efficient. We compensate for this here. 8367 8368 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8369 unsigned NumRight = W.LastCluster - FirstRight + 1; 8370 8371 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8372 // If one side has less than 3 clusters, and the other has more than 3, 8373 // consider taking a cluster from the other side. 8374 8375 if (NumLeft < NumRight) { 8376 // Consider moving the first cluster on the right to the left side. 8377 CaseCluster &CC = *FirstRight; 8378 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8379 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8380 if (LeftSideRank <= RightSideRank) { 8381 // Moving the cluster to the left does not demote it. 8382 ++LastLeft; 8383 ++FirstRight; 8384 continue; 8385 } 8386 } else { 8387 assert(NumRight < NumLeft); 8388 // Consider moving the last element on the left to the right side. 8389 CaseCluster &CC = *LastLeft; 8390 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8391 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8392 if (RightSideRank <= LeftSideRank) { 8393 // Moving the cluster to the right does not demot it. 8394 --LastLeft; 8395 --FirstRight; 8396 continue; 8397 } 8398 } 8399 } 8400 break; 8401 } 8402 8403 assert(LastLeft + 1 == FirstRight); 8404 assert(LastLeft >= W.FirstCluster); 8405 assert(FirstRight <= W.LastCluster); 8406 8407 // Use the first element on the right as pivot since we will make less-than 8408 // comparisons against it. 8409 CaseClusterIt PivotCluster = FirstRight; 8410 assert(PivotCluster > W.FirstCluster); 8411 assert(PivotCluster <= W.LastCluster); 8412 8413 CaseClusterIt FirstLeft = W.FirstCluster; 8414 CaseClusterIt LastRight = W.LastCluster; 8415 8416 const ConstantInt *Pivot = PivotCluster->Low; 8417 8418 // New blocks will be inserted immediately after the current one. 8419 MachineFunction::iterator BBI(W.MBB); 8420 ++BBI; 8421 8422 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8423 // we can branch to its destination directly if it's squeezed exactly in 8424 // between the known lower bound and Pivot - 1. 8425 MachineBasicBlock *LeftMBB; 8426 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8427 FirstLeft->Low == W.GE && 8428 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8429 LeftMBB = FirstLeft->MBB; 8430 } else { 8431 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8432 FuncInfo.MF->insert(BBI, LeftMBB); 8433 WorkList.push_back( 8434 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8435 // Put Cond in a virtual register to make it available from the new blocks. 8436 ExportFromCurrentBlock(Cond); 8437 } 8438 8439 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8440 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8441 // directly if RHS.High equals the current upper bound. 8442 MachineBasicBlock *RightMBB; 8443 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8444 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8445 RightMBB = FirstRight->MBB; 8446 } else { 8447 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8448 FuncInfo.MF->insert(BBI, RightMBB); 8449 WorkList.push_back( 8450 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8451 // Put Cond in a virtual register to make it available from the new blocks. 8452 ExportFromCurrentBlock(Cond); 8453 } 8454 8455 // Create the CaseBlock record that will be used to lower the branch. 8456 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8457 LeftWeight, RightWeight); 8458 8459 if (W.MBB == SwitchMBB) 8460 visitSwitchCase(CB, SwitchMBB); 8461 else 8462 SwitchCases.push_back(CB); 8463 } 8464 8465 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8466 // Extract cases from the switch. 8467 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8468 CaseClusterVector Clusters; 8469 Clusters.reserve(SI.getNumCases()); 8470 for (auto I : SI.cases()) { 8471 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8472 const ConstantInt *CaseVal = I.getCaseValue(); 8473 uint32_t Weight = 8474 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8475 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8476 } 8477 8478 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8479 8480 // Cluster adjacent cases with the same destination. We do this at all 8481 // optimization levels because it's cheap to do and will make codegen faster 8482 // if there are many clusters. 8483 sortAndRangeify(Clusters); 8484 8485 if (TM.getOptLevel() != CodeGenOpt::None) { 8486 // Replace an unreachable default with the most popular destination. 8487 // FIXME: Exploit unreachable default more aggressively. 8488 bool UnreachableDefault = 8489 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8490 if (UnreachableDefault && !Clusters.empty()) { 8491 DenseMap<const BasicBlock *, unsigned> Popularity; 8492 unsigned MaxPop = 0; 8493 const BasicBlock *MaxBB = nullptr; 8494 for (auto I : SI.cases()) { 8495 const BasicBlock *BB = I.getCaseSuccessor(); 8496 if (++Popularity[BB] > MaxPop) { 8497 MaxPop = Popularity[BB]; 8498 MaxBB = BB; 8499 } 8500 } 8501 // Set new default. 8502 assert(MaxPop > 0 && MaxBB); 8503 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8504 8505 // Remove cases that were pointing to the destination that is now the 8506 // default. 8507 CaseClusterVector New; 8508 New.reserve(Clusters.size()); 8509 for (CaseCluster &CC : Clusters) { 8510 if (CC.MBB != DefaultMBB) 8511 New.push_back(CC); 8512 } 8513 Clusters = std::move(New); 8514 } 8515 } 8516 8517 // If there is only the default destination, jump there directly. 8518 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8519 if (Clusters.empty()) { 8520 SwitchMBB->addSuccessor(DefaultMBB); 8521 if (DefaultMBB != NextBlock(SwitchMBB)) { 8522 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8523 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8524 } 8525 return; 8526 } 8527 8528 findJumpTables(Clusters, &SI, DefaultMBB); 8529 findBitTestClusters(Clusters, &SI); 8530 8531 DEBUG({ 8532 dbgs() << "Case clusters: "; 8533 for (const CaseCluster &C : Clusters) { 8534 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8535 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8536 8537 C.Low->getValue().print(dbgs(), true); 8538 if (C.Low != C.High) { 8539 dbgs() << '-'; 8540 C.High->getValue().print(dbgs(), true); 8541 } 8542 dbgs() << ' '; 8543 } 8544 dbgs() << '\n'; 8545 }); 8546 8547 assert(!Clusters.empty()); 8548 SwitchWorkList WorkList; 8549 CaseClusterIt First = Clusters.begin(); 8550 CaseClusterIt Last = Clusters.end() - 1; 8551 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8552 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8553 8554 while (!WorkList.empty()) { 8555 SwitchWorkListItem W = WorkList.back(); 8556 WorkList.pop_back(); 8557 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8558 8559 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8560 // For optimized builds, lower large range as a balanced binary tree. 8561 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8562 continue; 8563 } 8564 8565 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8566 } 8567 } 8568