xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision c106989fd5ca0f39f5e88d06a90a1227d037d43e)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/WinEHFuncInfo.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetFrameLowering.h"
60 #include "llvm/Target/TargetInstrInfo.h"
61 #include "llvm/Target/TargetIntrinsicInfo.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetOptions.h"
64 #include "llvm/Target/TargetSelectionDAGInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
66 #include <algorithm>
67 #include <utility>
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "isel"
71 
72 /// LimitFloatPrecision - Generate low-precision inline sequences for
73 /// some float libcalls (6, 8 or 12 bits).
74 static unsigned LimitFloatPrecision;
75 
76 static cl::opt<unsigned, true>
77 LimitFPPrecision("limit-float-precision",
78                  cl::desc("Generate low-precision inline sequences "
79                           "for some float libcalls"),
80                  cl::location(LimitFloatPrecision),
81                  cl::init(0));
82 
83 static cl::opt<bool>
84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
85                 cl::desc("Enable fast-math-flags for DAG nodes"));
86 
87 // Limit the width of DAG chains. This is important in general to prevent
88 // DAG-based analysis from blowing up. For example, alias analysis and
89 // load clustering may not complete in reasonable time. It is difficult to
90 // recognize and avoid this situation within each individual analysis, and
91 // future analyses are likely to have the same behavior. Limiting DAG width is
92 // the safe approach and will be especially important with global DAGs.
93 //
94 // MaxParallelChains default is arbitrarily high to avoid affecting
95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
96 // sequence over this should have been converted to llvm.memcpy by the
97 // frontend. It easy to induce this behavior with .ll code such as:
98 // %buffer = alloca [4096 x i8]
99 // %data = load [4096 x i8]* %argPtr
100 // store [4096 x i8] %data, [4096 x i8]* %buffer
101 static const unsigned MaxParallelChains = 64;
102 
103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
104                                       const SDValue *Parts, unsigned NumParts,
105                                       MVT PartVT, EVT ValueVT, const Value *V);
106 
107 /// getCopyFromParts - Create a value that contains the specified legal parts
108 /// combined into the value they represent.  If the parts combine to a type
109 /// larger then ValueVT then AssertOp can be used to specify whether the extra
110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
111 /// (ISD::AssertSext).
112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
113                                 const SDValue *Parts,
114                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
115                                 const Value *V,
116                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
117   if (ValueVT.isVector())
118     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
119                                   PartVT, ValueVT, V);
120 
121   assert(NumParts > 0 && "No parts to assemble!");
122   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
123   SDValue Val = Parts[0];
124 
125   if (NumParts > 1) {
126     // Assemble the value from multiple parts.
127     if (ValueVT.isInteger()) {
128       unsigned PartBits = PartVT.getSizeInBits();
129       unsigned ValueBits = ValueVT.getSizeInBits();
130 
131       // Assemble the power of 2 part.
132       unsigned RoundParts = NumParts & (NumParts - 1) ?
133         1 << Log2_32(NumParts) : NumParts;
134       unsigned RoundBits = PartBits * RoundParts;
135       EVT RoundVT = RoundBits == ValueBits ?
136         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
137       SDValue Lo, Hi;
138 
139       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
140 
141       if (RoundParts > 2) {
142         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
143                               PartVT, HalfVT, V);
144         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
145                               RoundParts / 2, PartVT, HalfVT, V);
146       } else {
147         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
148         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
149       }
150 
151       if (DAG.getDataLayout().isBigEndian())
152         std::swap(Lo, Hi);
153 
154       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
155 
156       if (RoundParts < NumParts) {
157         // Assemble the trailing non-power-of-2 part.
158         unsigned OddParts = NumParts - RoundParts;
159         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
160         Hi = getCopyFromParts(DAG, DL,
161                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
162 
163         // Combine the round and odd parts.
164         Lo = Val;
165         if (DAG.getDataLayout().isBigEndian())
166           std::swap(Lo, Hi);
167         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
168         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
169         Hi =
170             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
171                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
172                                         TLI.getPointerTy(DAG.getDataLayout())));
173         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
174         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
175       }
176     } else if (PartVT.isFloatingPoint()) {
177       // FP split into multiple FP parts (for ppcf128)
178       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
179              "Unexpected split");
180       SDValue Lo, Hi;
181       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
182       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
183       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
184         std::swap(Lo, Hi);
185       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
186     } else {
187       // FP split into integer parts (soft fp)
188       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
189              !PartVT.isVector() && "Unexpected split");
190       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
191       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
192     }
193   }
194 
195   // There is now one part, held in Val.  Correct it to match ValueVT.
196   EVT PartEVT = Val.getValueType();
197 
198   if (PartEVT == ValueVT)
199     return Val;
200 
201   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
202       ValueVT.bitsLT(PartEVT)) {
203     // For an FP value in an integer part, we need to truncate to the right
204     // width first.
205     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
206     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
207   }
208 
209   if (PartEVT.isInteger() && ValueVT.isInteger()) {
210     if (ValueVT.bitsLT(PartEVT)) {
211       // For a truncate, see if we have any information to
212       // indicate whether the truncated bits will always be
213       // zero or sign-extension.
214       if (AssertOp != ISD::DELETED_NODE)
215         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
216                           DAG.getValueType(ValueVT));
217       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
218     }
219     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
220   }
221 
222   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
223     // FP_ROUND's are always exact here.
224     if (ValueVT.bitsLT(Val.getValueType()))
225       return DAG.getNode(
226           ISD::FP_ROUND, DL, ValueVT, Val,
227           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
228 
229     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
230   }
231 
232   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
233     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
234 
235   llvm_unreachable("Unknown mismatch!");
236 }
237 
238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
239                                               const Twine &ErrMsg) {
240   const Instruction *I = dyn_cast_or_null<Instruction>(V);
241   if (!V)
242     return Ctx.emitError(ErrMsg);
243 
244   const char *AsmError = ", possible invalid constraint for vector type";
245   if (const CallInst *CI = dyn_cast<CallInst>(I))
246     if (isa<InlineAsm>(CI->getCalledValue()))
247       return Ctx.emitError(I, ErrMsg + AsmError);
248 
249   return Ctx.emitError(I, ErrMsg);
250 }
251 
252 /// getCopyFromPartsVector - Create a value that contains the specified legal
253 /// parts combined into the value they represent.  If the parts combine to a
254 /// type larger then ValueVT then AssertOp can be used to specify whether the
255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
256 /// ValueVT (ISD::AssertSext).
257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
258                                       const SDValue *Parts, unsigned NumParts,
259                                       MVT PartVT, EVT ValueVT, const Value *V) {
260   assert(ValueVT.isVector() && "Not a vector value");
261   assert(NumParts > 0 && "No parts to assemble!");
262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
263   SDValue Val = Parts[0];
264 
265   // Handle a multi-element vector.
266   if (NumParts > 1) {
267     EVT IntermediateVT;
268     MVT RegisterVT;
269     unsigned NumIntermediates;
270     unsigned NumRegs =
271     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
272                                NumIntermediates, RegisterVT);
273     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
274     NumParts = NumRegs; // Silence a compiler warning.
275     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
276     assert(RegisterVT.getSizeInBits() ==
277            Parts[0].getSimpleValueType().getSizeInBits() &&
278            "Part type sizes don't match!");
279 
280     // Assemble the parts into intermediate operands.
281     SmallVector<SDValue, 8> Ops(NumIntermediates);
282     if (NumIntermediates == NumParts) {
283       // If the register was not expanded, truncate or copy the value,
284       // as appropriate.
285       for (unsigned i = 0; i != NumParts; ++i)
286         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
287                                   PartVT, IntermediateVT, V);
288     } else if (NumParts > 0) {
289       // If the intermediate type was expanded, build the intermediate
290       // operands from the parts.
291       assert(NumParts % NumIntermediates == 0 &&
292              "Must expand into a divisible number of parts!");
293       unsigned Factor = NumParts / NumIntermediates;
294       for (unsigned i = 0; i != NumIntermediates; ++i)
295         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
296                                   PartVT, IntermediateVT, V);
297     }
298 
299     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
300     // intermediate operands.
301     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
302                                                 : ISD::BUILD_VECTOR,
303                       DL, ValueVT, Ops);
304   }
305 
306   // There is now one part, held in Val.  Correct it to match ValueVT.
307   EVT PartEVT = Val.getValueType();
308 
309   if (PartEVT == ValueVT)
310     return Val;
311 
312   if (PartEVT.isVector()) {
313     // If the element type of the source/dest vectors are the same, but the
314     // parts vector has more elements than the value vector, then we have a
315     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
316     // elements we want.
317     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
318       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
319              "Cannot narrow, it would be a lossy transformation");
320       return DAG.getNode(
321           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
322           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
323     }
324 
325     // Vector/Vector bitcast.
326     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
327       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
328 
329     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
330       "Cannot handle this kind of promotion");
331     // Promoted vector extract
332     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
333 
334   }
335 
336   // Trivial bitcast if the types are the same size and the destination
337   // vector type is legal.
338   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
339       TLI.isTypeLegal(ValueVT))
340     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
341 
342   // Handle cases such as i8 -> <1 x i1>
343   if (ValueVT.getVectorNumElements() != 1) {
344     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
345                                       "non-trivial scalar-to-vector conversion");
346     return DAG.getUNDEF(ValueVT);
347   }
348 
349   if (ValueVT.getVectorNumElements() == 1 &&
350       ValueVT.getVectorElementType() != PartEVT)
351     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
352 
353   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
354 }
355 
356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
357                                  SDValue Val, SDValue *Parts, unsigned NumParts,
358                                  MVT PartVT, const Value *V);
359 
360 /// getCopyToParts - Create a series of nodes that contain the specified value
361 /// split into legal parts.  If the parts contain more bits than Val, then, for
362 /// integers, ExtendKind can be used to specify how to generate the extra bits.
363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
364                            SDValue Val, SDValue *Parts, unsigned NumParts,
365                            MVT PartVT, const Value *V,
366                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
367   EVT ValueVT = Val.getValueType();
368 
369   // Handle the vector case separately.
370   if (ValueVT.isVector())
371     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
372 
373   unsigned PartBits = PartVT.getSizeInBits();
374   unsigned OrigNumParts = NumParts;
375   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
376          "Copying to an illegal type!");
377 
378   if (NumParts == 0)
379     return;
380 
381   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
382   EVT PartEVT = PartVT;
383   if (PartEVT == ValueVT) {
384     assert(NumParts == 1 && "No-op copy with multiple parts!");
385     Parts[0] = Val;
386     return;
387   }
388 
389   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
390     // If the parts cover more bits than the value has, promote the value.
391     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
392       assert(NumParts == 1 && "Do not know what to promote to!");
393       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
394     } else {
395       if (ValueVT.isFloatingPoint()) {
396         // FP values need to be bitcast, then extended if they are being put
397         // into a larger container.
398         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
399         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400       }
401       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
402              ValueVT.isInteger() &&
403              "Unknown mismatch!");
404       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
405       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
406       if (PartVT == MVT::x86mmx)
407         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
408     }
409   } else if (PartBits == ValueVT.getSizeInBits()) {
410     // Different types of the same size.
411     assert(NumParts == 1 && PartEVT != ValueVT);
412     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
413   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
414     // If the parts cover less bits than value has, truncate the value.
415     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
416            ValueVT.isInteger() &&
417            "Unknown mismatch!");
418     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
419     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
420     if (PartVT == MVT::x86mmx)
421       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
422   }
423 
424   // The value may have changed - recompute ValueVT.
425   ValueVT = Val.getValueType();
426   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
427          "Failed to tile the value with PartVT!");
428 
429   if (NumParts == 1) {
430     if (PartEVT != ValueVT)
431       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
432                                         "scalar-to-vector conversion failed");
433 
434     Parts[0] = Val;
435     return;
436   }
437 
438   // Expand the value into multiple parts.
439   if (NumParts & (NumParts - 1)) {
440     // The number of parts is not a power of 2.  Split off and copy the tail.
441     assert(PartVT.isInteger() && ValueVT.isInteger() &&
442            "Do not know what to expand to!");
443     unsigned RoundParts = 1 << Log2_32(NumParts);
444     unsigned RoundBits = RoundParts * PartBits;
445     unsigned OddParts = NumParts - RoundParts;
446     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
447                                  DAG.getIntPtrConstant(RoundBits, DL));
448     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
449 
450     if (DAG.getDataLayout().isBigEndian())
451       // The odd parts were reversed by getCopyToParts - unreverse them.
452       std::reverse(Parts + RoundParts, Parts + NumParts);
453 
454     NumParts = RoundParts;
455     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
456     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
457   }
458 
459   // The number of parts is a power of 2.  Repeatedly bisect the value using
460   // EXTRACT_ELEMENT.
461   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
462                          EVT::getIntegerVT(*DAG.getContext(),
463                                            ValueVT.getSizeInBits()),
464                          Val);
465 
466   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
467     for (unsigned i = 0; i < NumParts; i += StepSize) {
468       unsigned ThisBits = StepSize * PartBits / 2;
469       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
470       SDValue &Part0 = Parts[i];
471       SDValue &Part1 = Parts[i+StepSize/2];
472 
473       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
474                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
475       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
476                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
477 
478       if (ThisBits == PartBits && ThisVT != PartVT) {
479         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
480         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
481       }
482     }
483   }
484 
485   if (DAG.getDataLayout().isBigEndian())
486     std::reverse(Parts, Parts + OrigNumParts);
487 }
488 
489 
490 /// getCopyToPartsVector - Create a series of nodes that contain the specified
491 /// value split into legal parts.
492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
493                                  SDValue Val, SDValue *Parts, unsigned NumParts,
494                                  MVT PartVT, const Value *V) {
495   EVT ValueVT = Val.getValueType();
496   assert(ValueVT.isVector() && "Not a vector");
497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
498 
499   if (NumParts == 1) {
500     EVT PartEVT = PartVT;
501     if (PartEVT == ValueVT) {
502       // Nothing to do.
503     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
504       // Bitconvert vector->vector case.
505       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
506     } else if (PartVT.isVector() &&
507                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
508                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
509       EVT ElementVT = PartVT.getVectorElementType();
510       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
511       // undef elements.
512       SmallVector<SDValue, 16> Ops;
513       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
514         Ops.push_back(DAG.getNode(
515             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
516             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
517 
518       for (unsigned i = ValueVT.getVectorNumElements(),
519            e = PartVT.getVectorNumElements(); i != e; ++i)
520         Ops.push_back(DAG.getUNDEF(ElementVT));
521 
522       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
523 
524       // FIXME: Use CONCAT for 2x -> 4x.
525 
526       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
527       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
528     } else if (PartVT.isVector() &&
529                PartEVT.getVectorElementType().bitsGE(
530                  ValueVT.getVectorElementType()) &&
531                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
532 
533       // Promoted vector extract
534       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
535     } else{
536       // Vector -> scalar conversion.
537       assert(ValueVT.getVectorNumElements() == 1 &&
538              "Only trivial vector-to-scalar conversions should get here!");
539       Val = DAG.getNode(
540           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
541           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
542 
543       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
544     }
545 
546     Parts[0] = Val;
547     return;
548   }
549 
550   // Handle a multi-element vector.
551   EVT IntermediateVT;
552   MVT RegisterVT;
553   unsigned NumIntermediates;
554   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
555                                                 IntermediateVT,
556                                                 NumIntermediates, RegisterVT);
557   unsigned NumElements = ValueVT.getVectorNumElements();
558 
559   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
560   NumParts = NumRegs; // Silence a compiler warning.
561   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
562 
563   // Split the vector into intermediate operands.
564   SmallVector<SDValue, 8> Ops(NumIntermediates);
565   for (unsigned i = 0; i != NumIntermediates; ++i) {
566     if (IntermediateVT.isVector())
567       Ops[i] =
568           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
569                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
570                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
571     else
572       Ops[i] = DAG.getNode(
573           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
574           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
575   }
576 
577   // Split the intermediate operands into legal parts.
578   if (NumParts == NumIntermediates) {
579     // If the register was not expanded, promote or copy the value,
580     // as appropriate.
581     for (unsigned i = 0; i != NumParts; ++i)
582       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
583   } else if (NumParts > 0) {
584     // If the intermediate type was expanded, split each the value into
585     // legal parts.
586     assert(NumIntermediates != 0 && "division by zero");
587     assert(NumParts % NumIntermediates == 0 &&
588            "Must expand into a divisible number of parts!");
589     unsigned Factor = NumParts / NumIntermediates;
590     for (unsigned i = 0; i != NumIntermediates; ++i)
591       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
592   }
593 }
594 
595 RegsForValue::RegsForValue() {}
596 
597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
598                            EVT valuevt)
599     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
600 
601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
602                            const DataLayout &DL, unsigned Reg, Type *Ty) {
603   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
604 
605   for (EVT ValueVT : ValueVTs) {
606     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
607     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
608     for (unsigned i = 0; i != NumRegs; ++i)
609       Regs.push_back(Reg + i);
610     RegVTs.push_back(RegisterVT);
611     Reg += NumRegs;
612   }
613 }
614 
615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
616 /// this value and returns the result as a ValueVT value.  This uses
617 /// Chain/Flag as the input and updates them for the output Chain/Flag.
618 /// If the Flag pointer is NULL, no flag is used.
619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
620                                       FunctionLoweringInfo &FuncInfo,
621                                       SDLoc dl,
622                                       SDValue &Chain, SDValue *Flag,
623                                       const Value *V) const {
624   // A Value with type {} or [0 x %t] needs no registers.
625   if (ValueVTs.empty())
626     return SDValue();
627 
628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
629 
630   // Assemble the legal parts into the final values.
631   SmallVector<SDValue, 4> Values(ValueVTs.size());
632   SmallVector<SDValue, 8> Parts;
633   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
634     // Copy the legal parts from the registers.
635     EVT ValueVT = ValueVTs[Value];
636     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
637     MVT RegisterVT = RegVTs[Value];
638 
639     Parts.resize(NumRegs);
640     for (unsigned i = 0; i != NumRegs; ++i) {
641       SDValue P;
642       if (!Flag) {
643         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
644       } else {
645         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
646         *Flag = P.getValue(2);
647       }
648 
649       Chain = P.getValue(1);
650       Parts[i] = P;
651 
652       // If the source register was virtual and if we know something about it,
653       // add an assert node.
654       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
655           !RegisterVT.isInteger() || RegisterVT.isVector())
656         continue;
657 
658       const FunctionLoweringInfo::LiveOutInfo *LOI =
659         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
660       if (!LOI)
661         continue;
662 
663       unsigned RegSize = RegisterVT.getSizeInBits();
664       unsigned NumSignBits = LOI->NumSignBits;
665       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
666 
667       if (NumZeroBits == RegSize) {
668         // The current value is a zero.
669         // Explicitly express that as it would be easier for
670         // optimizations to kick in.
671         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
672         continue;
673       }
674 
675       // FIXME: We capture more information than the dag can represent.  For
676       // now, just use the tightest assertzext/assertsext possible.
677       bool isSExt = true;
678       EVT FromVT(MVT::Other);
679       if (NumSignBits == RegSize)
680         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
681       else if (NumZeroBits >= RegSize-1)
682         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
683       else if (NumSignBits > RegSize-8)
684         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
685       else if (NumZeroBits >= RegSize-8)
686         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
687       else if (NumSignBits > RegSize-16)
688         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
689       else if (NumZeroBits >= RegSize-16)
690         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
691       else if (NumSignBits > RegSize-32)
692         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
693       else if (NumZeroBits >= RegSize-32)
694         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
695       else
696         continue;
697 
698       // Add an assertion node.
699       assert(FromVT != MVT::Other);
700       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
701                              RegisterVT, P, DAG.getValueType(FromVT));
702     }
703 
704     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
705                                      NumRegs, RegisterVT, ValueVT, V);
706     Part += NumRegs;
707     Parts.clear();
708   }
709 
710   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
711 }
712 
713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
714 /// specified value into the registers specified by this object.  This uses
715 /// Chain/Flag as the input and updates them for the output Chain/Flag.
716 /// If the Flag pointer is NULL, no flag is used.
717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
718                                  SDValue &Chain, SDValue *Flag, const Value *V,
719                                  ISD::NodeType PreferredExtendType) const {
720   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
721   ISD::NodeType ExtendKind = PreferredExtendType;
722 
723   // Get the list of the values's legal parts.
724   unsigned NumRegs = Regs.size();
725   SmallVector<SDValue, 8> Parts(NumRegs);
726   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
727     EVT ValueVT = ValueVTs[Value];
728     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
729     MVT RegisterVT = RegVTs[Value];
730 
731     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
732       ExtendKind = ISD::ZERO_EXTEND;
733 
734     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
735                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
736     Part += NumParts;
737   }
738 
739   // Copy the parts into the registers.
740   SmallVector<SDValue, 8> Chains(NumRegs);
741   for (unsigned i = 0; i != NumRegs; ++i) {
742     SDValue Part;
743     if (!Flag) {
744       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
745     } else {
746       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
747       *Flag = Part.getValue(1);
748     }
749 
750     Chains[i] = Part.getValue(0);
751   }
752 
753   if (NumRegs == 1 || Flag)
754     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
755     // flagged to it. That is the CopyToReg nodes and the user are considered
756     // a single scheduling unit. If we create a TokenFactor and return it as
757     // chain, then the TokenFactor is both a predecessor (operand) of the
758     // user as well as a successor (the TF operands are flagged to the user).
759     // c1, f1 = CopyToReg
760     // c2, f2 = CopyToReg
761     // c3     = TokenFactor c1, c2
762     // ...
763     //        = op c3, ..., f2
764     Chain = Chains[NumRegs-1];
765   else
766     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
767 }
768 
769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
770 /// operand list.  This adds the code marker and includes the number of
771 /// values added into it.
772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
773                                         unsigned MatchingIdx, SDLoc dl,
774                                         SelectionDAG &DAG,
775                                         std::vector<SDValue> &Ops) const {
776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
777 
778   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
779   if (HasMatching)
780     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
781   else if (!Regs.empty() &&
782            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
783     // Put the register class of the virtual registers in the flag word.  That
784     // way, later passes can recompute register class constraints for inline
785     // assembly as well as normal instructions.
786     // Don't do this for tied operands that can use the regclass information
787     // from the def.
788     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
789     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
790     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
791   }
792 
793   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
794   Ops.push_back(Res);
795 
796   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
797   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
798     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
799     MVT RegisterVT = RegVTs[Value];
800     for (unsigned i = 0; i != NumRegs; ++i) {
801       assert(Reg < Regs.size() && "Mismatch in # registers expected");
802       unsigned TheReg = Regs[Reg++];
803       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
804 
805       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
806         // If we clobbered the stack pointer, MFI should know about it.
807         assert(DAG.getMachineFunction().getFrameInfo()->
808             hasOpaqueSPAdjustment());
809       }
810     }
811   }
812 }
813 
814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
815                                const TargetLibraryInfo *li) {
816   AA = &aa;
817   GFI = gfi;
818   LibInfo = li;
819   DL = &DAG.getDataLayout();
820   Context = DAG.getContext();
821   LPadToCallSiteMap.clear();
822 }
823 
824 /// clear - Clear out the current SelectionDAG and the associated
825 /// state and prepare this SelectionDAGBuilder object to be used
826 /// for a new block. This doesn't clear out information about
827 /// additional blocks that are needed to complete switch lowering
828 /// or PHI node updating; that information is cleared out as it is
829 /// consumed.
830 void SelectionDAGBuilder::clear() {
831   NodeMap.clear();
832   UnusedArgNodeMap.clear();
833   PendingLoads.clear();
834   PendingExports.clear();
835   CurInst = nullptr;
836   HasTailCall = false;
837   SDNodeOrder = LowestSDNodeOrder;
838   StatepointLowering.clear();
839 }
840 
841 /// clearDanglingDebugInfo - Clear the dangling debug information
842 /// map. This function is separated from the clear so that debug
843 /// information that is dangling in a basic block can be properly
844 /// resolved in a different basic block. This allows the
845 /// SelectionDAG to resolve dangling debug information attached
846 /// to PHI nodes.
847 void SelectionDAGBuilder::clearDanglingDebugInfo() {
848   DanglingDebugInfoMap.clear();
849 }
850 
851 /// getRoot - Return the current virtual root of the Selection DAG,
852 /// flushing any PendingLoad items. This must be done before emitting
853 /// a store or any other node that may need to be ordered after any
854 /// prior load instructions.
855 ///
856 SDValue SelectionDAGBuilder::getRoot() {
857   if (PendingLoads.empty())
858     return DAG.getRoot();
859 
860   if (PendingLoads.size() == 1) {
861     SDValue Root = PendingLoads[0];
862     DAG.setRoot(Root);
863     PendingLoads.clear();
864     return Root;
865   }
866 
867   // Otherwise, we have to make a token factor node.
868   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
869                              PendingLoads);
870   PendingLoads.clear();
871   DAG.setRoot(Root);
872   return Root;
873 }
874 
875 /// getControlRoot - Similar to getRoot, but instead of flushing all the
876 /// PendingLoad items, flush all the PendingExports items. It is necessary
877 /// to do this before emitting a terminator instruction.
878 ///
879 SDValue SelectionDAGBuilder::getControlRoot() {
880   SDValue Root = DAG.getRoot();
881 
882   if (PendingExports.empty())
883     return Root;
884 
885   // Turn all of the CopyToReg chains into one factored node.
886   if (Root.getOpcode() != ISD::EntryToken) {
887     unsigned i = 0, e = PendingExports.size();
888     for (; i != e; ++i) {
889       assert(PendingExports[i].getNode()->getNumOperands() > 1);
890       if (PendingExports[i].getNode()->getOperand(0) == Root)
891         break;  // Don't add the root if we already indirectly depend on it.
892     }
893 
894     if (i == e)
895       PendingExports.push_back(Root);
896   }
897 
898   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
899                      PendingExports);
900   PendingExports.clear();
901   DAG.setRoot(Root);
902   return Root;
903 }
904 
905 void SelectionDAGBuilder::visit(const Instruction &I) {
906   // Set up outgoing PHI node register values before emitting the terminator.
907   if (isa<TerminatorInst>(&I))
908     HandlePHINodesInSuccessorBlocks(I.getParent());
909 
910   ++SDNodeOrder;
911 
912   CurInst = &I;
913 
914   visit(I.getOpcode(), I);
915 
916   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
917       !isStatepoint(&I)) // statepoints handle their exports internally
918     CopyToExportRegsIfNeeded(&I);
919 
920   CurInst = nullptr;
921 }
922 
923 void SelectionDAGBuilder::visitPHI(const PHINode &) {
924   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
925 }
926 
927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
928   // Note: this doesn't use InstVisitor, because it has to work with
929   // ConstantExpr's in addition to instructions.
930   switch (Opcode) {
931   default: llvm_unreachable("Unknown instruction type encountered!");
932     // Build the switch statement using the Instruction.def file.
933 #define HANDLE_INST(NUM, OPCODE, CLASS) \
934     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
935 #include "llvm/IR/Instruction.def"
936   }
937 }
938 
939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
940 // generate the debug data structures now that we've seen its definition.
941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
942                                                    SDValue Val) {
943   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
944   if (DDI.getDI()) {
945     const DbgValueInst *DI = DDI.getDI();
946     DebugLoc dl = DDI.getdl();
947     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
948     DILocalVariable *Variable = DI->getVariable();
949     DIExpression *Expr = DI->getExpression();
950     assert(Variable->isValidLocationForIntrinsic(dl) &&
951            "Expected inlined-at fields to agree");
952     uint64_t Offset = DI->getOffset();
953     // A dbg.value for an alloca is always indirect.
954     bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
955     SDDbgValue *SDV;
956     if (Val.getNode()) {
957       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect,
958                                     Val)) {
959         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
960                               IsIndirect, Offset, dl, DbgSDNodeOrder);
961         DAG.AddDbgValue(SDV, Val.getNode(), false);
962       }
963     } else
964       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
965     DanglingDebugInfoMap[V] = DanglingDebugInfo();
966   }
967 }
968 
969 /// getCopyFromRegs - If there was virtual register allocated for the value V
970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
972   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
973   SDValue Result;
974 
975   if (It != FuncInfo.ValueMap.end()) {
976     unsigned InReg = It->second;
977     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
978                      DAG.getDataLayout(), InReg, Ty);
979     SDValue Chain = DAG.getEntryNode();
980     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
981     resolveDanglingDebugInfo(V, Result);
982   }
983 
984   return Result;
985 }
986 
987 /// getValue - Return an SDValue for the given Value.
988 SDValue SelectionDAGBuilder::getValue(const Value *V) {
989   // If we already have an SDValue for this value, use it. It's important
990   // to do this first, so that we don't create a CopyFromReg if we already
991   // have a regular SDValue.
992   SDValue &N = NodeMap[V];
993   if (N.getNode()) return N;
994 
995   // If there's a virtual register allocated and initialized for this
996   // value, use it.
997   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
998   if (copyFromReg.getNode()) {
999     return copyFromReg;
1000   }
1001 
1002   // Otherwise create a new SDValue and remember it.
1003   SDValue Val = getValueImpl(V);
1004   NodeMap[V] = Val;
1005   resolveDanglingDebugInfo(V, Val);
1006   return Val;
1007 }
1008 
1009 // Return true if SDValue exists for the given Value
1010 bool SelectionDAGBuilder::findValue(const Value *V) const {
1011   return (NodeMap.find(V) != NodeMap.end()) ||
1012     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1013 }
1014 
1015 /// getNonRegisterValue - Return an SDValue for the given Value, but
1016 /// don't look in FuncInfo.ValueMap for a virtual register.
1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1018   // If we already have an SDValue for this value, use it.
1019   SDValue &N = NodeMap[V];
1020   if (N.getNode()) {
1021     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1022       // Remove the debug location from the node as the node is about to be used
1023       // in a location which may differ from the original debug location.  This
1024       // is relevant to Constant and ConstantFP nodes because they can appear
1025       // as constant expressions inside PHI nodes.
1026       N->setDebugLoc(DebugLoc());
1027     }
1028     return N;
1029   }
1030 
1031   // Otherwise create a new SDValue and remember it.
1032   SDValue Val = getValueImpl(V);
1033   NodeMap[V] = Val;
1034   resolveDanglingDebugInfo(V, Val);
1035   return Val;
1036 }
1037 
1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1039 /// Create an SDValue for the given value.
1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1041   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1042 
1043   if (const Constant *C = dyn_cast<Constant>(V)) {
1044     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1045 
1046     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1047       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1048 
1049     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1050       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1051 
1052     if (isa<ConstantPointerNull>(C)) {
1053       unsigned AS = V->getType()->getPointerAddressSpace();
1054       return DAG.getConstant(0, getCurSDLoc(),
1055                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1056     }
1057 
1058     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1059       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1060 
1061     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1062       return DAG.getUNDEF(VT);
1063 
1064     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1065       visit(CE->getOpcode(), *CE);
1066       SDValue N1 = NodeMap[V];
1067       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1068       return N1;
1069     }
1070 
1071     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1072       SmallVector<SDValue, 4> Constants;
1073       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1074            OI != OE; ++OI) {
1075         SDNode *Val = getValue(*OI).getNode();
1076         // If the operand is an empty aggregate, there are no values.
1077         if (!Val) continue;
1078         // Add each leaf value from the operand to the Constants list
1079         // to form a flattened list of all the values.
1080         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1081           Constants.push_back(SDValue(Val, i));
1082       }
1083 
1084       return DAG.getMergeValues(Constants, getCurSDLoc());
1085     }
1086 
1087     if (const ConstantDataSequential *CDS =
1088           dyn_cast<ConstantDataSequential>(C)) {
1089       SmallVector<SDValue, 4> Ops;
1090       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1091         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1092         // Add each leaf value from the operand to the Constants list
1093         // to form a flattened list of all the values.
1094         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1095           Ops.push_back(SDValue(Val, i));
1096       }
1097 
1098       if (isa<ArrayType>(CDS->getType()))
1099         return DAG.getMergeValues(Ops, getCurSDLoc());
1100       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1101                                       VT, Ops);
1102     }
1103 
1104     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1105       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1106              "Unknown struct or array constant!");
1107 
1108       SmallVector<EVT, 4> ValueVTs;
1109       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1110       unsigned NumElts = ValueVTs.size();
1111       if (NumElts == 0)
1112         return SDValue(); // empty struct
1113       SmallVector<SDValue, 4> Constants(NumElts);
1114       for (unsigned i = 0; i != NumElts; ++i) {
1115         EVT EltVT = ValueVTs[i];
1116         if (isa<UndefValue>(C))
1117           Constants[i] = DAG.getUNDEF(EltVT);
1118         else if (EltVT.isFloatingPoint())
1119           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1120         else
1121           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1122       }
1123 
1124       return DAG.getMergeValues(Constants, getCurSDLoc());
1125     }
1126 
1127     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1128       return DAG.getBlockAddress(BA, VT);
1129 
1130     VectorType *VecTy = cast<VectorType>(V->getType());
1131     unsigned NumElements = VecTy->getNumElements();
1132 
1133     // Now that we know the number and type of the elements, get that number of
1134     // elements into the Ops array based on what kind of constant it is.
1135     SmallVector<SDValue, 16> Ops;
1136     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1137       for (unsigned i = 0; i != NumElements; ++i)
1138         Ops.push_back(getValue(CV->getOperand(i)));
1139     } else {
1140       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1141       EVT EltVT =
1142           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1143 
1144       SDValue Op;
1145       if (EltVT.isFloatingPoint())
1146         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1147       else
1148         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1149       Ops.assign(NumElements, Op);
1150     }
1151 
1152     // Create a BUILD_VECTOR node.
1153     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1154   }
1155 
1156   // If this is a static alloca, generate it as the frameindex instead of
1157   // computation.
1158   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1159     DenseMap<const AllocaInst*, int>::iterator SI =
1160       FuncInfo.StaticAllocaMap.find(AI);
1161     if (SI != FuncInfo.StaticAllocaMap.end())
1162       return DAG.getFrameIndex(SI->second,
1163                                TLI.getPointerTy(DAG.getDataLayout()));
1164   }
1165 
1166   // If this is an instruction which fast-isel has deferred, select it now.
1167   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1168     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1169     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1170                      Inst->getType());
1171     SDValue Chain = DAG.getEntryNode();
1172     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1173   }
1174 
1175   llvm_unreachable("Can't get register for value!");
1176 }
1177 
1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1179   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1180   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1181   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1182   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1183   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1184   if (IsMSVCCXX || IsCoreCLR)
1185     CatchPadMBB->setIsEHFuncletEntry();
1186 
1187   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1188 }
1189 
1190 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1191   // Update machine-CFG edge.
1192   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1193   FuncInfo.MBB->addSuccessor(TargetMBB);
1194 
1195   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1196   bool IsSEH = isAsynchronousEHPersonality(Pers);
1197   if (IsSEH) {
1198     // If this is not a fall-through branch or optimizations are switched off,
1199     // emit the branch.
1200     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1201         TM.getOptLevel() == CodeGenOpt::None)
1202       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1203                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1204     return;
1205   }
1206 
1207   // Figure out the funclet membership for the catchret's successor.
1208   // This will be used by the FuncletLayout pass to determine how to order the
1209   // BB's.
1210   WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
1211   const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I];
1212   assert(SuccessorColor && "No parent funclet for catchret!");
1213   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1214   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1215 
1216   // Create the terminator node.
1217   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1218                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1219                             DAG.getBasicBlock(SuccessorColorMBB));
1220   DAG.setRoot(Ret);
1221 }
1222 
1223 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1224   // Don't emit any special code for the cleanuppad instruction. It just marks
1225   // the start of a funclet.
1226   FuncInfo.MBB->setIsEHFuncletEntry();
1227   FuncInfo.MBB->setIsCleanupFuncletEntry();
1228 }
1229 
1230 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1231 /// many places it could ultimately go. In the IR, we have a single unwind
1232 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1233 /// This function skips over imaginary basic blocks that hold catchswitch or
1234 /// terminatepad instructions, and finds all the "real" machine
1235 /// basic block destinations. As those destinations may not be successors of
1236 /// EHPadBB, here we also calculate the edge probability to those destinations.
1237 /// The passed-in Prob is the edge probability to EHPadBB.
1238 static void findUnwindDestinations(
1239     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1240     BranchProbability Prob,
1241     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1242         &UnwindDests) {
1243   EHPersonality Personality =
1244     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1245   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1246   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1247 
1248   while (EHPadBB) {
1249     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1250     BasicBlock *NewEHPadBB = nullptr;
1251     if (isa<LandingPadInst>(Pad)) {
1252       // Stop on landingpads. They are not funclets.
1253       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1254       break;
1255     } else if (isa<CleanupPadInst>(Pad)) {
1256       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1257       // personalities.
1258       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1259       UnwindDests.back().first->setIsEHFuncletEntry();
1260       break;
1261     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1262       // Add the catchpad handlers to the possible destinations.
1263       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1264         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1265         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1266         if (IsMSVCCXX || IsCoreCLR)
1267           UnwindDests.back().first->setIsEHFuncletEntry();
1268       }
1269       NewEHPadBB = CatchSwitch->getUnwindDest();
1270     } else {
1271       continue;
1272     }
1273 
1274     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1275     if (BPI && NewEHPadBB)
1276       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1277     EHPadBB = NewEHPadBB;
1278   }
1279 }
1280 
1281 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1282   // Update successor info.
1283   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1284   auto UnwindDest = I.getUnwindDest();
1285   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1286   BranchProbability UnwindDestProb =
1287       (BPI && UnwindDest)
1288           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1289           : BranchProbability::getZero();
1290   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1291   for (auto &UnwindDest : UnwindDests) {
1292     UnwindDest.first->setIsEHPad();
1293     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1294   }
1295   FuncInfo.MBB->normalizeSuccProbs();
1296 
1297   // Create the terminator node.
1298   SDValue Ret =
1299       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1300   DAG.setRoot(Ret);
1301 }
1302 
1303 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) {
1304   report_fatal_error("visitTerminatePad not yet implemented!");
1305 }
1306 
1307 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1308   report_fatal_error("visitCatchSwitch not yet implemented!");
1309 }
1310 
1311 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1312   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1313   auto &DL = DAG.getDataLayout();
1314   SDValue Chain = getControlRoot();
1315   SmallVector<ISD::OutputArg, 8> Outs;
1316   SmallVector<SDValue, 8> OutVals;
1317 
1318   if (!FuncInfo.CanLowerReturn) {
1319     unsigned DemoteReg = FuncInfo.DemoteRegister;
1320     const Function *F = I.getParent()->getParent();
1321 
1322     // Emit a store of the return value through the virtual register.
1323     // Leave Outs empty so that LowerReturn won't try to load return
1324     // registers the usual way.
1325     SmallVector<EVT, 1> PtrValueVTs;
1326     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1327                     PtrValueVTs);
1328 
1329     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1330                                         DemoteReg, PtrValueVTs[0]);
1331     SDValue RetOp = getValue(I.getOperand(0));
1332 
1333     SmallVector<EVT, 4> ValueVTs;
1334     SmallVector<uint64_t, 4> Offsets;
1335     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1336     unsigned NumValues = ValueVTs.size();
1337 
1338     SmallVector<SDValue, 4> Chains(NumValues);
1339     for (unsigned i = 0; i != NumValues; ++i) {
1340       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1341                                 RetPtr.getValueType(), RetPtr,
1342                                 DAG.getIntPtrConstant(Offsets[i],
1343                                                       getCurSDLoc()));
1344       Chains[i] =
1345         DAG.getStore(Chain, getCurSDLoc(),
1346                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1347                      // FIXME: better loc info would be nice.
1348                      Add, MachinePointerInfo(), false, false, 0);
1349     }
1350 
1351     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1352                         MVT::Other, Chains);
1353   } else if (I.getNumOperands() != 0) {
1354     SmallVector<EVT, 4> ValueVTs;
1355     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1356     unsigned NumValues = ValueVTs.size();
1357     if (NumValues) {
1358       SDValue RetOp = getValue(I.getOperand(0));
1359 
1360       const Function *F = I.getParent()->getParent();
1361 
1362       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1363       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1364                                           Attribute::SExt))
1365         ExtendKind = ISD::SIGN_EXTEND;
1366       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1367                                                Attribute::ZExt))
1368         ExtendKind = ISD::ZERO_EXTEND;
1369 
1370       LLVMContext &Context = F->getContext();
1371       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1372                                                       Attribute::InReg);
1373 
1374       for (unsigned j = 0; j != NumValues; ++j) {
1375         EVT VT = ValueVTs[j];
1376 
1377         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1378           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1379 
1380         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1381         MVT PartVT = TLI.getRegisterType(Context, VT);
1382         SmallVector<SDValue, 4> Parts(NumParts);
1383         getCopyToParts(DAG, getCurSDLoc(),
1384                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1385                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1386 
1387         // 'inreg' on function refers to return value
1388         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1389         if (RetInReg)
1390           Flags.setInReg();
1391 
1392         // Propagate extension type if any
1393         if (ExtendKind == ISD::SIGN_EXTEND)
1394           Flags.setSExt();
1395         else if (ExtendKind == ISD::ZERO_EXTEND)
1396           Flags.setZExt();
1397 
1398         for (unsigned i = 0; i < NumParts; ++i) {
1399           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1400                                         VT, /*isfixed=*/true, 0, 0));
1401           OutVals.push_back(Parts[i]);
1402         }
1403       }
1404     }
1405   }
1406 
1407   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1408   CallingConv::ID CallConv =
1409     DAG.getMachineFunction().getFunction()->getCallingConv();
1410   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1411       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1412 
1413   // Verify that the target's LowerReturn behaved as expected.
1414   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1415          "LowerReturn didn't return a valid chain!");
1416 
1417   // Update the DAG with the new chain value resulting from return lowering.
1418   DAG.setRoot(Chain);
1419 }
1420 
1421 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1422 /// created for it, emit nodes to copy the value into the virtual
1423 /// registers.
1424 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1425   // Skip empty types
1426   if (V->getType()->isEmptyTy())
1427     return;
1428 
1429   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1430   if (VMI != FuncInfo.ValueMap.end()) {
1431     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1432     CopyValueToVirtualRegister(V, VMI->second);
1433   }
1434 }
1435 
1436 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1437 /// the current basic block, add it to ValueMap now so that we'll get a
1438 /// CopyTo/FromReg.
1439 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1440   // No need to export constants.
1441   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1442 
1443   // Already exported?
1444   if (FuncInfo.isExportedInst(V)) return;
1445 
1446   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1447   CopyValueToVirtualRegister(V, Reg);
1448 }
1449 
1450 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1451                                                      const BasicBlock *FromBB) {
1452   // The operands of the setcc have to be in this block.  We don't know
1453   // how to export them from some other block.
1454   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1455     // Can export from current BB.
1456     if (VI->getParent() == FromBB)
1457       return true;
1458 
1459     // Is already exported, noop.
1460     return FuncInfo.isExportedInst(V);
1461   }
1462 
1463   // If this is an argument, we can export it if the BB is the entry block or
1464   // if it is already exported.
1465   if (isa<Argument>(V)) {
1466     if (FromBB == &FromBB->getParent()->getEntryBlock())
1467       return true;
1468 
1469     // Otherwise, can only export this if it is already exported.
1470     return FuncInfo.isExportedInst(V);
1471   }
1472 
1473   // Otherwise, constants can always be exported.
1474   return true;
1475 }
1476 
1477 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1478 BranchProbability
1479 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1480                                         const MachineBasicBlock *Dst) const {
1481   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1482   const BasicBlock *SrcBB = Src->getBasicBlock();
1483   const BasicBlock *DstBB = Dst->getBasicBlock();
1484   if (!BPI) {
1485     // If BPI is not available, set the default probability as 1 / N, where N is
1486     // the number of successors.
1487     auto SuccSize = std::max<uint32_t>(
1488         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1489     return BranchProbability(1, SuccSize);
1490   }
1491   return BPI->getEdgeProbability(SrcBB, DstBB);
1492 }
1493 
1494 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1495                                                MachineBasicBlock *Dst,
1496                                                BranchProbability Prob) {
1497   if (!FuncInfo.BPI)
1498     Src->addSuccessorWithoutProb(Dst);
1499   else {
1500     if (Prob.isUnknown())
1501       Prob = getEdgeProbability(Src, Dst);
1502     Src->addSuccessor(Dst, Prob);
1503   }
1504 }
1505 
1506 static bool InBlock(const Value *V, const BasicBlock *BB) {
1507   if (const Instruction *I = dyn_cast<Instruction>(V))
1508     return I->getParent() == BB;
1509   return true;
1510 }
1511 
1512 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1513 /// This function emits a branch and is used at the leaves of an OR or an
1514 /// AND operator tree.
1515 ///
1516 void
1517 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1518                                                   MachineBasicBlock *TBB,
1519                                                   MachineBasicBlock *FBB,
1520                                                   MachineBasicBlock *CurBB,
1521                                                   MachineBasicBlock *SwitchBB,
1522                                                   BranchProbability TProb,
1523                                                   BranchProbability FProb) {
1524   const BasicBlock *BB = CurBB->getBasicBlock();
1525 
1526   // If the leaf of the tree is a comparison, merge the condition into
1527   // the caseblock.
1528   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1529     // The operands of the cmp have to be in this block.  We don't know
1530     // how to export them from some other block.  If this is the first block
1531     // of the sequence, no exporting is needed.
1532     if (CurBB == SwitchBB ||
1533         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1534          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1535       ISD::CondCode Condition;
1536       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1537         Condition = getICmpCondCode(IC->getPredicate());
1538       } else {
1539         const FCmpInst *FC = cast<FCmpInst>(Cond);
1540         Condition = getFCmpCondCode(FC->getPredicate());
1541         if (TM.Options.NoNaNsFPMath)
1542           Condition = getFCmpCodeWithoutNaN(Condition);
1543       }
1544 
1545       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1546                    TBB, FBB, CurBB, TProb, FProb);
1547       SwitchCases.push_back(CB);
1548       return;
1549     }
1550   }
1551 
1552   // Create a CaseBlock record representing this branch.
1553   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1554                nullptr, TBB, FBB, CurBB, TProb, FProb);
1555   SwitchCases.push_back(CB);
1556 }
1557 
1558 /// FindMergedConditions - If Cond is an expression like
1559 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1560                                                MachineBasicBlock *TBB,
1561                                                MachineBasicBlock *FBB,
1562                                                MachineBasicBlock *CurBB,
1563                                                MachineBasicBlock *SwitchBB,
1564                                                Instruction::BinaryOps Opc,
1565                                                BranchProbability TProb,
1566                                                BranchProbability FProb) {
1567   // If this node is not part of the or/and tree, emit it as a branch.
1568   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1569   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1570       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1571       BOp->getParent() != CurBB->getBasicBlock() ||
1572       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1573       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1574     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1575                                  TProb, FProb);
1576     return;
1577   }
1578 
1579   //  Create TmpBB after CurBB.
1580   MachineFunction::iterator BBI(CurBB);
1581   MachineFunction &MF = DAG.getMachineFunction();
1582   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1583   CurBB->getParent()->insert(++BBI, TmpBB);
1584 
1585   if (Opc == Instruction::Or) {
1586     // Codegen X | Y as:
1587     // BB1:
1588     //   jmp_if_X TBB
1589     //   jmp TmpBB
1590     // TmpBB:
1591     //   jmp_if_Y TBB
1592     //   jmp FBB
1593     //
1594 
1595     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1596     // The requirement is that
1597     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1598     //     = TrueProb for original BB.
1599     // Assuming the original probabilities are A and B, one choice is to set
1600     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1601     // A/(1+B) and 2B/(1+B). This choice assumes that
1602     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1603     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1604     // TmpBB, but the math is more complicated.
1605 
1606     auto NewTrueProb = TProb / 2;
1607     auto NewFalseProb = TProb / 2 + FProb;
1608     // Emit the LHS condition.
1609     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1610                          NewTrueProb, NewFalseProb);
1611 
1612     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1613     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1614     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1615     // Emit the RHS condition into TmpBB.
1616     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1617                          Probs[0], Probs[1]);
1618   } else {
1619     assert(Opc == Instruction::And && "Unknown merge op!");
1620     // Codegen X & Y as:
1621     // BB1:
1622     //   jmp_if_X TmpBB
1623     //   jmp FBB
1624     // TmpBB:
1625     //   jmp_if_Y TBB
1626     //   jmp FBB
1627     //
1628     //  This requires creation of TmpBB after CurBB.
1629 
1630     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1631     // The requirement is that
1632     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1633     //     = FalseProb for original BB.
1634     // Assuming the original probabilities are A and B, one choice is to set
1635     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1636     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1637     // TrueProb for BB1 * FalseProb for TmpBB.
1638 
1639     auto NewTrueProb = TProb + FProb / 2;
1640     auto NewFalseProb = FProb / 2;
1641     // Emit the LHS condition.
1642     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1643                          NewTrueProb, NewFalseProb);
1644 
1645     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1646     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1647     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1648     // Emit the RHS condition into TmpBB.
1649     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1650                          Probs[0], Probs[1]);
1651   }
1652 }
1653 
1654 /// If the set of cases should be emitted as a series of branches, return true.
1655 /// If we should emit this as a bunch of and/or'd together conditions, return
1656 /// false.
1657 bool
1658 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1659   if (Cases.size() != 2) return true;
1660 
1661   // If this is two comparisons of the same values or'd or and'd together, they
1662   // will get folded into a single comparison, so don't emit two blocks.
1663   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1664        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1665       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1666        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1667     return false;
1668   }
1669 
1670   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1671   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1672   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1673       Cases[0].CC == Cases[1].CC &&
1674       isa<Constant>(Cases[0].CmpRHS) &&
1675       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1676     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1677       return false;
1678     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1679       return false;
1680   }
1681 
1682   return true;
1683 }
1684 
1685 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1686   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1687 
1688   // Update machine-CFG edges.
1689   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1690 
1691   if (I.isUnconditional()) {
1692     // Update machine-CFG edges.
1693     BrMBB->addSuccessor(Succ0MBB);
1694 
1695     // If this is not a fall-through branch or optimizations are switched off,
1696     // emit the branch.
1697     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1698       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1699                               MVT::Other, getControlRoot(),
1700                               DAG.getBasicBlock(Succ0MBB)));
1701 
1702     return;
1703   }
1704 
1705   // If this condition is one of the special cases we handle, do special stuff
1706   // now.
1707   const Value *CondVal = I.getCondition();
1708   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1709 
1710   // If this is a series of conditions that are or'd or and'd together, emit
1711   // this as a sequence of branches instead of setcc's with and/or operations.
1712   // As long as jumps are not expensive, this should improve performance.
1713   // For example, instead of something like:
1714   //     cmp A, B
1715   //     C = seteq
1716   //     cmp D, E
1717   //     F = setle
1718   //     or C, F
1719   //     jnz foo
1720   // Emit:
1721   //     cmp A, B
1722   //     je foo
1723   //     cmp D, E
1724   //     jle foo
1725   //
1726   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1727     Instruction::BinaryOps Opcode = BOp->getOpcode();
1728     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1729         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1730         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1731       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1732                            Opcode,
1733                            getEdgeProbability(BrMBB, Succ0MBB),
1734                            getEdgeProbability(BrMBB, Succ1MBB));
1735       // If the compares in later blocks need to use values not currently
1736       // exported from this block, export them now.  This block should always
1737       // be the first entry.
1738       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1739 
1740       // Allow some cases to be rejected.
1741       if (ShouldEmitAsBranches(SwitchCases)) {
1742         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1743           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1744           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1745         }
1746 
1747         // Emit the branch for this block.
1748         visitSwitchCase(SwitchCases[0], BrMBB);
1749         SwitchCases.erase(SwitchCases.begin());
1750         return;
1751       }
1752 
1753       // Okay, we decided not to do this, remove any inserted MBB's and clear
1754       // SwitchCases.
1755       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1756         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1757 
1758       SwitchCases.clear();
1759     }
1760   }
1761 
1762   // Create a CaseBlock record representing this branch.
1763   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1764                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1765 
1766   // Use visitSwitchCase to actually insert the fast branch sequence for this
1767   // cond branch.
1768   visitSwitchCase(CB, BrMBB);
1769 }
1770 
1771 /// visitSwitchCase - Emits the necessary code to represent a single node in
1772 /// the binary search tree resulting from lowering a switch instruction.
1773 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1774                                           MachineBasicBlock *SwitchBB) {
1775   SDValue Cond;
1776   SDValue CondLHS = getValue(CB.CmpLHS);
1777   SDLoc dl = getCurSDLoc();
1778 
1779   // Build the setcc now.
1780   if (!CB.CmpMHS) {
1781     // Fold "(X == true)" to X and "(X == false)" to !X to
1782     // handle common cases produced by branch lowering.
1783     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1784         CB.CC == ISD::SETEQ)
1785       Cond = CondLHS;
1786     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1787              CB.CC == ISD::SETEQ) {
1788       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1789       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1790     } else
1791       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1792   } else {
1793     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1794 
1795     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1796     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1797 
1798     SDValue CmpOp = getValue(CB.CmpMHS);
1799     EVT VT = CmpOp.getValueType();
1800 
1801     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1802       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1803                           ISD::SETLE);
1804     } else {
1805       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1806                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1807       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1808                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1809     }
1810   }
1811 
1812   // Update successor info
1813   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1814   // TrueBB and FalseBB are always different unless the incoming IR is
1815   // degenerate. This only happens when running llc on weird IR.
1816   if (CB.TrueBB != CB.FalseBB)
1817     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1818   SwitchBB->normalizeSuccProbs();
1819 
1820   // If the lhs block is the next block, invert the condition so that we can
1821   // fall through to the lhs instead of the rhs block.
1822   if (CB.TrueBB == NextBlock(SwitchBB)) {
1823     std::swap(CB.TrueBB, CB.FalseBB);
1824     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1825     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1826   }
1827 
1828   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1829                                MVT::Other, getControlRoot(), Cond,
1830                                DAG.getBasicBlock(CB.TrueBB));
1831 
1832   // Insert the false branch. Do this even if it's a fall through branch,
1833   // this makes it easier to do DAG optimizations which require inverting
1834   // the branch condition.
1835   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1836                        DAG.getBasicBlock(CB.FalseBB));
1837 
1838   DAG.setRoot(BrCond);
1839 }
1840 
1841 /// visitJumpTable - Emit JumpTable node in the current MBB
1842 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1843   // Emit the code for the jump table
1844   assert(JT.Reg != -1U && "Should lower JT Header first!");
1845   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1846   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1847                                      JT.Reg, PTy);
1848   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1849   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1850                                     MVT::Other, Index.getValue(1),
1851                                     Table, Index);
1852   DAG.setRoot(BrJumpTable);
1853 }
1854 
1855 /// visitJumpTableHeader - This function emits necessary code to produce index
1856 /// in the JumpTable from switch case.
1857 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1858                                                JumpTableHeader &JTH,
1859                                                MachineBasicBlock *SwitchBB) {
1860   SDLoc dl = getCurSDLoc();
1861 
1862   // Subtract the lowest switch case value from the value being switched on and
1863   // conditional branch to default mbb if the result is greater than the
1864   // difference between smallest and largest cases.
1865   SDValue SwitchOp = getValue(JTH.SValue);
1866   EVT VT = SwitchOp.getValueType();
1867   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1868                             DAG.getConstant(JTH.First, dl, VT));
1869 
1870   // The SDNode we just created, which holds the value being switched on minus
1871   // the smallest case value, needs to be copied to a virtual register so it
1872   // can be used as an index into the jump table in a subsequent basic block.
1873   // This value may be smaller or larger than the target's pointer type, and
1874   // therefore require extension or truncating.
1875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1876   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1877 
1878   unsigned JumpTableReg =
1879       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1880   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1881                                     JumpTableReg, SwitchOp);
1882   JT.Reg = JumpTableReg;
1883 
1884   // Emit the range check for the jump table, and branch to the default block
1885   // for the switch statement if the value being switched on exceeds the largest
1886   // case in the switch.
1887   SDValue CMP = DAG.getSetCC(
1888       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1889                                  Sub.getValueType()),
1890       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1891 
1892   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1893                                MVT::Other, CopyTo, CMP,
1894                                DAG.getBasicBlock(JT.Default));
1895 
1896   // Avoid emitting unnecessary branches to the next block.
1897   if (JT.MBB != NextBlock(SwitchBB))
1898     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1899                          DAG.getBasicBlock(JT.MBB));
1900 
1901   DAG.setRoot(BrCond);
1902 }
1903 
1904 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1905 /// tail spliced into a stack protector check success bb.
1906 ///
1907 /// For a high level explanation of how this fits into the stack protector
1908 /// generation see the comment on the declaration of class
1909 /// StackProtectorDescriptor.
1910 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1911                                                   MachineBasicBlock *ParentBB) {
1912 
1913   // First create the loads to the guard/stack slot for the comparison.
1914   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1915   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1916 
1917   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1918   int FI = MFI->getStackProtectorIndex();
1919 
1920   const Value *IRGuard = SPD.getGuard();
1921   SDValue GuardPtr = getValue(IRGuard);
1922   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1923 
1924   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
1925 
1926   SDValue Guard;
1927   SDLoc dl = getCurSDLoc();
1928 
1929   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1930   // guard value from the virtual register holding the value. Otherwise, emit a
1931   // volatile load to retrieve the stack guard value.
1932   unsigned GuardReg = SPD.getGuardReg();
1933 
1934   if (GuardReg && TLI.useLoadStackGuardNode())
1935     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1936                                PtrTy);
1937   else
1938     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1939                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1940                         true, false, false, Align);
1941 
1942   SDValue StackSlot = DAG.getLoad(
1943       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
1944       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
1945       false, false, Align);
1946 
1947   // Perform the comparison via a subtract/getsetcc.
1948   EVT VT = Guard.getValueType();
1949   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1950 
1951   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
1952                                                         *DAG.getContext(),
1953                                                         Sub.getValueType()),
1954                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1955 
1956   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1957   // branch to failure MBB.
1958   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1959                                MVT::Other, StackSlot.getOperand(0),
1960                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1961   // Otherwise branch to success MBB.
1962   SDValue Br = DAG.getNode(ISD::BR, dl,
1963                            MVT::Other, BrCond,
1964                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1965 
1966   DAG.setRoot(Br);
1967 }
1968 
1969 /// Codegen the failure basic block for a stack protector check.
1970 ///
1971 /// A failure stack protector machine basic block consists simply of a call to
1972 /// __stack_chk_fail().
1973 ///
1974 /// For a high level explanation of how this fits into the stack protector
1975 /// generation see the comment on the declaration of class
1976 /// StackProtectorDescriptor.
1977 void
1978 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1979   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1980   SDValue Chain =
1981       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1982                       None, false, getCurSDLoc(), false, false).second;
1983   DAG.setRoot(Chain);
1984 }
1985 
1986 /// visitBitTestHeader - This function emits necessary code to produce value
1987 /// suitable for "bit tests"
1988 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1989                                              MachineBasicBlock *SwitchBB) {
1990   SDLoc dl = getCurSDLoc();
1991 
1992   // Subtract the minimum value
1993   SDValue SwitchOp = getValue(B.SValue);
1994   EVT VT = SwitchOp.getValueType();
1995   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1996                             DAG.getConstant(B.First, dl, VT));
1997 
1998   // Check range
1999   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2000   SDValue RangeCmp = DAG.getSetCC(
2001       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2002                                  Sub.getValueType()),
2003       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2004 
2005   // Determine the type of the test operands.
2006   bool UsePtrType = false;
2007   if (!TLI.isTypeLegal(VT))
2008     UsePtrType = true;
2009   else {
2010     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2011       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2012         // Switch table case range are encoded into series of masks.
2013         // Just use pointer type, it's guaranteed to fit.
2014         UsePtrType = true;
2015         break;
2016       }
2017   }
2018   if (UsePtrType) {
2019     VT = TLI.getPointerTy(DAG.getDataLayout());
2020     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2021   }
2022 
2023   B.RegVT = VT.getSimpleVT();
2024   B.Reg = FuncInfo.CreateReg(B.RegVT);
2025   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2026 
2027   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2028 
2029   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2030   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2031   SwitchBB->normalizeSuccProbs();
2032 
2033   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2034                                 MVT::Other, CopyTo, RangeCmp,
2035                                 DAG.getBasicBlock(B.Default));
2036 
2037   // Avoid emitting unnecessary branches to the next block.
2038   if (MBB != NextBlock(SwitchBB))
2039     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2040                           DAG.getBasicBlock(MBB));
2041 
2042   DAG.setRoot(BrRange);
2043 }
2044 
2045 /// visitBitTestCase - this function produces one "bit test"
2046 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2047                                            MachineBasicBlock* NextMBB,
2048                                            BranchProbability BranchProbToNext,
2049                                            unsigned Reg,
2050                                            BitTestCase &B,
2051                                            MachineBasicBlock *SwitchBB) {
2052   SDLoc dl = getCurSDLoc();
2053   MVT VT = BB.RegVT;
2054   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2055   SDValue Cmp;
2056   unsigned PopCount = countPopulation(B.Mask);
2057   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2058   if (PopCount == 1) {
2059     // Testing for a single bit; just compare the shift count with what it
2060     // would need to be to shift a 1 bit in that position.
2061     Cmp = DAG.getSetCC(
2062         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2063         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2064         ISD::SETEQ);
2065   } else if (PopCount == BB.Range) {
2066     // There is only one zero bit in the range, test for it directly.
2067     Cmp = DAG.getSetCC(
2068         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2069         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2070         ISD::SETNE);
2071   } else {
2072     // Make desired shift
2073     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2074                                     DAG.getConstant(1, dl, VT), ShiftOp);
2075 
2076     // Emit bit tests and jumps
2077     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2078                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2079     Cmp = DAG.getSetCC(
2080         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2081         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2082   }
2083 
2084   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2085   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2086   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2087   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2088   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2089   // one as they are relative probabilities (and thus work more like weights),
2090   // and hence we need to normalize them to let the sum of them become one.
2091   SwitchBB->normalizeSuccProbs();
2092 
2093   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2094                               MVT::Other, getControlRoot(),
2095                               Cmp, DAG.getBasicBlock(B.TargetBB));
2096 
2097   // Avoid emitting unnecessary branches to the next block.
2098   if (NextMBB != NextBlock(SwitchBB))
2099     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2100                         DAG.getBasicBlock(NextMBB));
2101 
2102   DAG.setRoot(BrAnd);
2103 }
2104 
2105 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2106   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2107 
2108   // Retrieve successors. Look through artificial IR level blocks like
2109   // catchswitch for successors.
2110   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2111   const BasicBlock *EHPadBB = I.getSuccessor(1);
2112 
2113   const Value *Callee(I.getCalledValue());
2114   const Function *Fn = dyn_cast<Function>(Callee);
2115   if (isa<InlineAsm>(Callee))
2116     visitInlineAsm(&I);
2117   else if (Fn && Fn->isIntrinsic()) {
2118     switch (Fn->getIntrinsicID()) {
2119     default:
2120       llvm_unreachable("Cannot invoke this intrinsic");
2121     case Intrinsic::donothing:
2122       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2123       break;
2124     case Intrinsic::experimental_patchpoint_void:
2125     case Intrinsic::experimental_patchpoint_i64:
2126       visitPatchpoint(&I, EHPadBB);
2127       break;
2128     case Intrinsic::experimental_gc_statepoint:
2129       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2130       break;
2131     }
2132   } else
2133     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2134 
2135   // If the value of the invoke is used outside of its defining block, make it
2136   // available as a virtual register.
2137   // We already took care of the exported value for the statepoint instruction
2138   // during call to the LowerStatepoint.
2139   if (!isStatepoint(I)) {
2140     CopyToExportRegsIfNeeded(&I);
2141   }
2142 
2143   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2144   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2145   BranchProbability EHPadBBProb =
2146       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2147           : BranchProbability::getZero();
2148   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2149 
2150   // Update successor info.
2151   addSuccessorWithProb(InvokeMBB, Return);
2152   for (auto &UnwindDest : UnwindDests) {
2153     UnwindDest.first->setIsEHPad();
2154     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2155   }
2156   InvokeMBB->normalizeSuccProbs();
2157 
2158   // Drop into normal successor.
2159   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2160                           MVT::Other, getControlRoot(),
2161                           DAG.getBasicBlock(Return)));
2162 }
2163 
2164 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2165   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2166 }
2167 
2168 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2169   assert(FuncInfo.MBB->isEHPad() &&
2170          "Call to landingpad not in landing pad!");
2171 
2172   MachineBasicBlock *MBB = FuncInfo.MBB;
2173   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2174   AddLandingPadInfo(LP, MMI, MBB);
2175 
2176   // If there aren't registers to copy the values into (e.g., during SjLj
2177   // exceptions), then don't bother to create these DAG nodes.
2178   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2179   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2180   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2181       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2182     return;
2183 
2184   SmallVector<EVT, 2> ValueVTs;
2185   SDLoc dl = getCurSDLoc();
2186   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2187   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2188 
2189   // Get the two live-in registers as SDValues. The physregs have already been
2190   // copied into virtual registers.
2191   SDValue Ops[2];
2192   if (FuncInfo.ExceptionPointerVirtReg) {
2193     Ops[0] = DAG.getZExtOrTrunc(
2194         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2195                            FuncInfo.ExceptionPointerVirtReg,
2196                            TLI.getPointerTy(DAG.getDataLayout())),
2197         dl, ValueVTs[0]);
2198   } else {
2199     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2200   }
2201   Ops[1] = DAG.getZExtOrTrunc(
2202       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2203                          FuncInfo.ExceptionSelectorVirtReg,
2204                          TLI.getPointerTy(DAG.getDataLayout())),
2205       dl, ValueVTs[1]);
2206 
2207   // Merge into one.
2208   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2209                             DAG.getVTList(ValueVTs), Ops);
2210   setValue(&LP, Res);
2211 }
2212 
2213 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2214 #ifndef NDEBUG
2215   for (const CaseCluster &CC : Clusters)
2216     assert(CC.Low == CC.High && "Input clusters must be single-case");
2217 #endif
2218 
2219   std::sort(Clusters.begin(), Clusters.end(),
2220             [](const CaseCluster &a, const CaseCluster &b) {
2221     return a.Low->getValue().slt(b.Low->getValue());
2222   });
2223 
2224   // Merge adjacent clusters with the same destination.
2225   const unsigned N = Clusters.size();
2226   unsigned DstIndex = 0;
2227   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2228     CaseCluster &CC = Clusters[SrcIndex];
2229     const ConstantInt *CaseVal = CC.Low;
2230     MachineBasicBlock *Succ = CC.MBB;
2231 
2232     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2233         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2234       // If this case has the same successor and is a neighbour, merge it into
2235       // the previous cluster.
2236       Clusters[DstIndex - 1].High = CaseVal;
2237       Clusters[DstIndex - 1].Prob += CC.Prob;
2238     } else {
2239       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2240                    sizeof(Clusters[SrcIndex]));
2241     }
2242   }
2243   Clusters.resize(DstIndex);
2244 }
2245 
2246 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2247                                            MachineBasicBlock *Last) {
2248   // Update JTCases.
2249   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2250     if (JTCases[i].first.HeaderBB == First)
2251       JTCases[i].first.HeaderBB = Last;
2252 
2253   // Update BitTestCases.
2254   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2255     if (BitTestCases[i].Parent == First)
2256       BitTestCases[i].Parent = Last;
2257 }
2258 
2259 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2260   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2261 
2262   // Update machine-CFG edges with unique successors.
2263   SmallSet<BasicBlock*, 32> Done;
2264   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2265     BasicBlock *BB = I.getSuccessor(i);
2266     bool Inserted = Done.insert(BB).second;
2267     if (!Inserted)
2268         continue;
2269 
2270     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2271     addSuccessorWithProb(IndirectBrMBB, Succ);
2272   }
2273   IndirectBrMBB->normalizeSuccProbs();
2274 
2275   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2276                           MVT::Other, getControlRoot(),
2277                           getValue(I.getAddress())));
2278 }
2279 
2280 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2281   if (DAG.getTarget().Options.TrapUnreachable)
2282     DAG.setRoot(
2283         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2284 }
2285 
2286 void SelectionDAGBuilder::visitFSub(const User &I) {
2287   // -0.0 - X --> fneg
2288   Type *Ty = I.getType();
2289   if (isa<Constant>(I.getOperand(0)) &&
2290       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2291     SDValue Op2 = getValue(I.getOperand(1));
2292     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2293                              Op2.getValueType(), Op2));
2294     return;
2295   }
2296 
2297   visitBinary(I, ISD::FSUB);
2298 }
2299 
2300 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2301   SDValue Op1 = getValue(I.getOperand(0));
2302   SDValue Op2 = getValue(I.getOperand(1));
2303 
2304   bool nuw = false;
2305   bool nsw = false;
2306   bool exact = false;
2307   FastMathFlags FMF;
2308 
2309   if (const OverflowingBinaryOperator *OFBinOp =
2310           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2311     nuw = OFBinOp->hasNoUnsignedWrap();
2312     nsw = OFBinOp->hasNoSignedWrap();
2313   }
2314   if (const PossiblyExactOperator *ExactOp =
2315           dyn_cast<const PossiblyExactOperator>(&I))
2316     exact = ExactOp->isExact();
2317   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2318     FMF = FPOp->getFastMathFlags();
2319 
2320   SDNodeFlags Flags;
2321   Flags.setExact(exact);
2322   Flags.setNoSignedWrap(nsw);
2323   Flags.setNoUnsignedWrap(nuw);
2324   if (EnableFMFInDAG) {
2325     Flags.setAllowReciprocal(FMF.allowReciprocal());
2326     Flags.setNoInfs(FMF.noInfs());
2327     Flags.setNoNaNs(FMF.noNaNs());
2328     Flags.setNoSignedZeros(FMF.noSignedZeros());
2329     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2330   }
2331   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2332                                      Op1, Op2, &Flags);
2333   setValue(&I, BinNodeValue);
2334 }
2335 
2336 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2337   SDValue Op1 = getValue(I.getOperand(0));
2338   SDValue Op2 = getValue(I.getOperand(1));
2339 
2340   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2341       Op2.getValueType(), DAG.getDataLayout());
2342 
2343   // Coerce the shift amount to the right type if we can.
2344   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2345     unsigned ShiftSize = ShiftTy.getSizeInBits();
2346     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2347     SDLoc DL = getCurSDLoc();
2348 
2349     // If the operand is smaller than the shift count type, promote it.
2350     if (ShiftSize > Op2Size)
2351       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2352 
2353     // If the operand is larger than the shift count type but the shift
2354     // count type has enough bits to represent any shift value, truncate
2355     // it now. This is a common case and it exposes the truncate to
2356     // optimization early.
2357     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2358       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2359     // Otherwise we'll need to temporarily settle for some other convenient
2360     // type.  Type legalization will make adjustments once the shiftee is split.
2361     else
2362       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2363   }
2364 
2365   bool nuw = false;
2366   bool nsw = false;
2367   bool exact = false;
2368 
2369   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2370 
2371     if (const OverflowingBinaryOperator *OFBinOp =
2372             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2373       nuw = OFBinOp->hasNoUnsignedWrap();
2374       nsw = OFBinOp->hasNoSignedWrap();
2375     }
2376     if (const PossiblyExactOperator *ExactOp =
2377             dyn_cast<const PossiblyExactOperator>(&I))
2378       exact = ExactOp->isExact();
2379   }
2380   SDNodeFlags Flags;
2381   Flags.setExact(exact);
2382   Flags.setNoSignedWrap(nsw);
2383   Flags.setNoUnsignedWrap(nuw);
2384   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2385                             &Flags);
2386   setValue(&I, Res);
2387 }
2388 
2389 void SelectionDAGBuilder::visitSDiv(const User &I) {
2390   SDValue Op1 = getValue(I.getOperand(0));
2391   SDValue Op2 = getValue(I.getOperand(1));
2392 
2393   SDNodeFlags Flags;
2394   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2395                  cast<PossiblyExactOperator>(&I)->isExact());
2396   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2397                            Op2, &Flags));
2398 }
2399 
2400 void SelectionDAGBuilder::visitICmp(const User &I) {
2401   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2402   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2403     predicate = IC->getPredicate();
2404   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2405     predicate = ICmpInst::Predicate(IC->getPredicate());
2406   SDValue Op1 = getValue(I.getOperand(0));
2407   SDValue Op2 = getValue(I.getOperand(1));
2408   ISD::CondCode Opcode = getICmpCondCode(predicate);
2409 
2410   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2411                                                         I.getType());
2412   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2413 }
2414 
2415 void SelectionDAGBuilder::visitFCmp(const User &I) {
2416   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2417   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2418     predicate = FC->getPredicate();
2419   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2420     predicate = FCmpInst::Predicate(FC->getPredicate());
2421   SDValue Op1 = getValue(I.getOperand(0));
2422   SDValue Op2 = getValue(I.getOperand(1));
2423   ISD::CondCode Condition = getFCmpCondCode(predicate);
2424 
2425   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2426   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2427   // further optimization, but currently FMF is only applicable to binary nodes.
2428   if (TM.Options.NoNaNsFPMath)
2429     Condition = getFCmpCodeWithoutNaN(Condition);
2430   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2431                                                         I.getType());
2432   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2433 }
2434 
2435 void SelectionDAGBuilder::visitSelect(const User &I) {
2436   SmallVector<EVT, 4> ValueVTs;
2437   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2438                   ValueVTs);
2439   unsigned NumValues = ValueVTs.size();
2440   if (NumValues == 0) return;
2441 
2442   SmallVector<SDValue, 4> Values(NumValues);
2443   SDValue Cond     = getValue(I.getOperand(0));
2444   SDValue LHSVal   = getValue(I.getOperand(1));
2445   SDValue RHSVal   = getValue(I.getOperand(2));
2446   auto BaseOps = {Cond};
2447   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2448     ISD::VSELECT : ISD::SELECT;
2449 
2450   // Min/max matching is only viable if all output VTs are the same.
2451   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2452     EVT VT = ValueVTs[0];
2453     LLVMContext &Ctx = *DAG.getContext();
2454     auto &TLI = DAG.getTargetLoweringInfo();
2455 
2456     // We care about the legality of the operation after it has been type
2457     // legalized.
2458     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
2459       VT = TLI.getTypeToTransformTo(Ctx, VT);
2460 
2461     // If the vselect is legal, assume we want to leave this as a vector setcc +
2462     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2463     // min/max is legal on the scalar type.
2464     bool UseScalarMinMax = VT.isVector() &&
2465       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2466 
2467     Value *LHS, *RHS;
2468     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2469     ISD::NodeType Opc = ISD::DELETED_NODE;
2470     switch (SPR.Flavor) {
2471     case SPF_UMAX:    Opc = ISD::UMAX; break;
2472     case SPF_UMIN:    Opc = ISD::UMIN; break;
2473     case SPF_SMAX:    Opc = ISD::SMAX; break;
2474     case SPF_SMIN:    Opc = ISD::SMIN; break;
2475     case SPF_FMINNUM:
2476       switch (SPR.NaNBehavior) {
2477       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2478       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2479       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2480       case SPNB_RETURNS_ANY: {
2481         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2482           Opc = ISD::FMINNUM;
2483         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2484           Opc = ISD::FMINNAN;
2485         else if (UseScalarMinMax)
2486           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2487             ISD::FMINNUM : ISD::FMINNAN;
2488         break;
2489       }
2490       }
2491       break;
2492     case SPF_FMAXNUM:
2493       switch (SPR.NaNBehavior) {
2494       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2495       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2496       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2497       case SPNB_RETURNS_ANY:
2498 
2499         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2500           Opc = ISD::FMAXNUM;
2501         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2502           Opc = ISD::FMAXNAN;
2503         else if (UseScalarMinMax)
2504           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2505             ISD::FMAXNUM : ISD::FMAXNAN;
2506         break;
2507       }
2508       break;
2509     default: break;
2510     }
2511 
2512     if (Opc != ISD::DELETED_NODE &&
2513         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2514          (UseScalarMinMax &&
2515           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2516         // If the underlying comparison instruction is used by any other
2517         // instruction, the consumed instructions won't be destroyed, so it is
2518         // not profitable to convert to a min/max.
2519         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2520       OpCode = Opc;
2521       LHSVal = getValue(LHS);
2522       RHSVal = getValue(RHS);
2523       BaseOps = {};
2524     }
2525   }
2526 
2527   for (unsigned i = 0; i != NumValues; ++i) {
2528     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2529     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2530     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2531     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2532                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2533                             Ops);
2534   }
2535 
2536   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2537                            DAG.getVTList(ValueVTs), Values));
2538 }
2539 
2540 void SelectionDAGBuilder::visitTrunc(const User &I) {
2541   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2542   SDValue N = getValue(I.getOperand(0));
2543   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2544                                                         I.getType());
2545   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2546 }
2547 
2548 void SelectionDAGBuilder::visitZExt(const User &I) {
2549   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2550   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2551   SDValue N = getValue(I.getOperand(0));
2552   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2553                                                         I.getType());
2554   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2555 }
2556 
2557 void SelectionDAGBuilder::visitSExt(const User &I) {
2558   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2559   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2560   SDValue N = getValue(I.getOperand(0));
2561   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2562                                                         I.getType());
2563   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2564 }
2565 
2566 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2567   // FPTrunc is never a no-op cast, no need to check
2568   SDValue N = getValue(I.getOperand(0));
2569   SDLoc dl = getCurSDLoc();
2570   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2571   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2572   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2573                            DAG.getTargetConstant(
2574                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2575 }
2576 
2577 void SelectionDAGBuilder::visitFPExt(const User &I) {
2578   // FPExt is never a no-op cast, no need to check
2579   SDValue N = getValue(I.getOperand(0));
2580   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2581                                                         I.getType());
2582   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2583 }
2584 
2585 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2586   // FPToUI is never a no-op cast, no need to check
2587   SDValue N = getValue(I.getOperand(0));
2588   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2589                                                         I.getType());
2590   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2591 }
2592 
2593 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2594   // FPToSI is never a no-op cast, no need to check
2595   SDValue N = getValue(I.getOperand(0));
2596   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2597                                                         I.getType());
2598   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2599 }
2600 
2601 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2602   // UIToFP is never a no-op cast, no need to check
2603   SDValue N = getValue(I.getOperand(0));
2604   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2605                                                         I.getType());
2606   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2607 }
2608 
2609 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2610   // SIToFP is never a no-op cast, no need to check
2611   SDValue N = getValue(I.getOperand(0));
2612   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2613                                                         I.getType());
2614   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2615 }
2616 
2617 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2618   // What to do depends on the size of the integer and the size of the pointer.
2619   // We can either truncate, zero extend, or no-op, accordingly.
2620   SDValue N = getValue(I.getOperand(0));
2621   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2622                                                         I.getType());
2623   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2624 }
2625 
2626 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2627   // What to do depends on the size of the integer and the size of the pointer.
2628   // We can either truncate, zero extend, or no-op, accordingly.
2629   SDValue N = getValue(I.getOperand(0));
2630   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2631                                                         I.getType());
2632   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2633 }
2634 
2635 void SelectionDAGBuilder::visitBitCast(const User &I) {
2636   SDValue N = getValue(I.getOperand(0));
2637   SDLoc dl = getCurSDLoc();
2638   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2639                                                         I.getType());
2640 
2641   // BitCast assures us that source and destination are the same size so this is
2642   // either a BITCAST or a no-op.
2643   if (DestVT != N.getValueType())
2644     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2645                              DestVT, N)); // convert types.
2646   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2647   // might fold any kind of constant expression to an integer constant and that
2648   // is not what we are looking for. Only regcognize a bitcast of a genuine
2649   // constant integer as an opaque constant.
2650   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2651     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2652                                  /*isOpaque*/true));
2653   else
2654     setValue(&I, N);            // noop cast.
2655 }
2656 
2657 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2658   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2659   const Value *SV = I.getOperand(0);
2660   SDValue N = getValue(SV);
2661   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2662 
2663   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2664   unsigned DestAS = I.getType()->getPointerAddressSpace();
2665 
2666   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2667     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2668 
2669   setValue(&I, N);
2670 }
2671 
2672 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2673   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2674   SDValue InVec = getValue(I.getOperand(0));
2675   SDValue InVal = getValue(I.getOperand(1));
2676   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2677                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2678   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2679                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2680                            InVec, InVal, InIdx));
2681 }
2682 
2683 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2684   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2685   SDValue InVec = getValue(I.getOperand(0));
2686   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2687                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2688   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2689                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2690                            InVec, InIdx));
2691 }
2692 
2693 // Utility for visitShuffleVector - Return true if every element in Mask,
2694 // beginning from position Pos and ending in Pos+Size, falls within the
2695 // specified sequential range [L, L+Pos). or is undef.
2696 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2697                                 unsigned Pos, unsigned Size, int Low) {
2698   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2699     if (Mask[i] >= 0 && Mask[i] != Low)
2700       return false;
2701   return true;
2702 }
2703 
2704 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2705   SDValue Src1 = getValue(I.getOperand(0));
2706   SDValue Src2 = getValue(I.getOperand(1));
2707 
2708   SmallVector<int, 8> Mask;
2709   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2710   unsigned MaskNumElts = Mask.size();
2711 
2712   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2713   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2714   EVT SrcVT = Src1.getValueType();
2715   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2716 
2717   if (SrcNumElts == MaskNumElts) {
2718     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2719                                       &Mask[0]));
2720     return;
2721   }
2722 
2723   // Normalize the shuffle vector since mask and vector length don't match.
2724   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2725     // Mask is longer than the source vectors and is a multiple of the source
2726     // vectors.  We can use concatenate vector to make the mask and vectors
2727     // lengths match.
2728     if (SrcNumElts*2 == MaskNumElts) {
2729       // First check for Src1 in low and Src2 in high
2730       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2731           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2732         // The shuffle is concatenating two vectors together.
2733         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2734                                  VT, Src1, Src2));
2735         return;
2736       }
2737       // Then check for Src2 in low and Src1 in high
2738       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2739           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2740         // The shuffle is concatenating two vectors together.
2741         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2742                                  VT, Src2, Src1));
2743         return;
2744       }
2745     }
2746 
2747     // Pad both vectors with undefs to make them the same length as the mask.
2748     unsigned NumConcat = MaskNumElts / SrcNumElts;
2749     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2750     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2751     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2752 
2753     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2754     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2755     MOps1[0] = Src1;
2756     MOps2[0] = Src2;
2757 
2758     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2759                                                   getCurSDLoc(), VT, MOps1);
2760     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2761                                                   getCurSDLoc(), VT, MOps2);
2762 
2763     // Readjust mask for new input vector length.
2764     SmallVector<int, 8> MappedOps;
2765     for (unsigned i = 0; i != MaskNumElts; ++i) {
2766       int Idx = Mask[i];
2767       if (Idx >= (int)SrcNumElts)
2768         Idx -= SrcNumElts - MaskNumElts;
2769       MappedOps.push_back(Idx);
2770     }
2771 
2772     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2773                                       &MappedOps[0]));
2774     return;
2775   }
2776 
2777   if (SrcNumElts > MaskNumElts) {
2778     // Analyze the access pattern of the vector to see if we can extract
2779     // two subvectors and do the shuffle. The analysis is done by calculating
2780     // the range of elements the mask access on both vectors.
2781     int MinRange[2] = { static_cast<int>(SrcNumElts),
2782                         static_cast<int>(SrcNumElts)};
2783     int MaxRange[2] = {-1, -1};
2784 
2785     for (unsigned i = 0; i != MaskNumElts; ++i) {
2786       int Idx = Mask[i];
2787       unsigned Input = 0;
2788       if (Idx < 0)
2789         continue;
2790 
2791       if (Idx >= (int)SrcNumElts) {
2792         Input = 1;
2793         Idx -= SrcNumElts;
2794       }
2795       if (Idx > MaxRange[Input])
2796         MaxRange[Input] = Idx;
2797       if (Idx < MinRange[Input])
2798         MinRange[Input] = Idx;
2799     }
2800 
2801     // Check if the access is smaller than the vector size and can we find
2802     // a reasonable extract index.
2803     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2804                                    // Extract.
2805     int StartIdx[2];  // StartIdx to extract from
2806     for (unsigned Input = 0; Input < 2; ++Input) {
2807       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2808         RangeUse[Input] = 0; // Unused
2809         StartIdx[Input] = 0;
2810         continue;
2811       }
2812 
2813       // Find a good start index that is a multiple of the mask length. Then
2814       // see if the rest of the elements are in range.
2815       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2816       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2817           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2818         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2819     }
2820 
2821     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2822       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2823       return;
2824     }
2825     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2826       // Extract appropriate subvector and generate a vector shuffle
2827       for (unsigned Input = 0; Input < 2; ++Input) {
2828         SDValue &Src = Input == 0 ? Src1 : Src2;
2829         if (RangeUse[Input] == 0)
2830           Src = DAG.getUNDEF(VT);
2831         else {
2832           SDLoc dl = getCurSDLoc();
2833           Src = DAG.getNode(
2834               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2835               DAG.getConstant(StartIdx[Input], dl,
2836                               TLI.getVectorIdxTy(DAG.getDataLayout())));
2837         }
2838       }
2839 
2840       // Calculate new mask.
2841       SmallVector<int, 8> MappedOps;
2842       for (unsigned i = 0; i != MaskNumElts; ++i) {
2843         int Idx = Mask[i];
2844         if (Idx >= 0) {
2845           if (Idx < (int)SrcNumElts)
2846             Idx -= StartIdx[0];
2847           else
2848             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2849         }
2850         MappedOps.push_back(Idx);
2851       }
2852 
2853       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2854                                         &MappedOps[0]));
2855       return;
2856     }
2857   }
2858 
2859   // We can't use either concat vectors or extract subvectors so fall back to
2860   // replacing the shuffle with extract and build vector.
2861   // to insert and build vector.
2862   EVT EltVT = VT.getVectorElementType();
2863   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
2864   SDLoc dl = getCurSDLoc();
2865   SmallVector<SDValue,8> Ops;
2866   for (unsigned i = 0; i != MaskNumElts; ++i) {
2867     int Idx = Mask[i];
2868     SDValue Res;
2869 
2870     if (Idx < 0) {
2871       Res = DAG.getUNDEF(EltVT);
2872     } else {
2873       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2874       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2875 
2876       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2877                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
2878     }
2879 
2880     Ops.push_back(Res);
2881   }
2882 
2883   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
2884 }
2885 
2886 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2887   const Value *Op0 = I.getOperand(0);
2888   const Value *Op1 = I.getOperand(1);
2889   Type *AggTy = I.getType();
2890   Type *ValTy = Op1->getType();
2891   bool IntoUndef = isa<UndefValue>(Op0);
2892   bool FromUndef = isa<UndefValue>(Op1);
2893 
2894   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2895 
2896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2897   SmallVector<EVT, 4> AggValueVTs;
2898   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
2899   SmallVector<EVT, 4> ValValueVTs;
2900   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2901 
2902   unsigned NumAggValues = AggValueVTs.size();
2903   unsigned NumValValues = ValValueVTs.size();
2904   SmallVector<SDValue, 4> Values(NumAggValues);
2905 
2906   // Ignore an insertvalue that produces an empty object
2907   if (!NumAggValues) {
2908     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2909     return;
2910   }
2911 
2912   SDValue Agg = getValue(Op0);
2913   unsigned i = 0;
2914   // Copy the beginning value(s) from the original aggregate.
2915   for (; i != LinearIndex; ++i)
2916     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2917                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2918   // Copy values from the inserted value(s).
2919   if (NumValValues) {
2920     SDValue Val = getValue(Op1);
2921     for (; i != LinearIndex + NumValValues; ++i)
2922       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2923                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2924   }
2925   // Copy remaining value(s) from the original aggregate.
2926   for (; i != NumAggValues; ++i)
2927     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2928                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2929 
2930   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2931                            DAG.getVTList(AggValueVTs), Values));
2932 }
2933 
2934 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2935   const Value *Op0 = I.getOperand(0);
2936   Type *AggTy = Op0->getType();
2937   Type *ValTy = I.getType();
2938   bool OutOfUndef = isa<UndefValue>(Op0);
2939 
2940   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2941 
2942   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2943   SmallVector<EVT, 4> ValValueVTs;
2944   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2945 
2946   unsigned NumValValues = ValValueVTs.size();
2947 
2948   // Ignore a extractvalue that produces an empty object
2949   if (!NumValValues) {
2950     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2951     return;
2952   }
2953 
2954   SmallVector<SDValue, 4> Values(NumValValues);
2955 
2956   SDValue Agg = getValue(Op0);
2957   // Copy out the selected value(s).
2958   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2959     Values[i - LinearIndex] =
2960       OutOfUndef ?
2961         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2962         SDValue(Agg.getNode(), Agg.getResNo() + i);
2963 
2964   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2965                            DAG.getVTList(ValValueVTs), Values));
2966 }
2967 
2968 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2969   Value *Op0 = I.getOperand(0);
2970   // Note that the pointer operand may be a vector of pointers. Take the scalar
2971   // element which holds a pointer.
2972   Type *Ty = Op0->getType()->getScalarType();
2973   unsigned AS = Ty->getPointerAddressSpace();
2974   SDValue N = getValue(Op0);
2975   SDLoc dl = getCurSDLoc();
2976 
2977   // Normalize Vector GEP - all scalar operands should be converted to the
2978   // splat vector.
2979   unsigned VectorWidth = I.getType()->isVectorTy() ?
2980     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
2981 
2982   if (VectorWidth && !N.getValueType().isVector()) {
2983     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
2984     SmallVector<SDValue, 16> Ops(VectorWidth, N);
2985     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
2986   }
2987   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2988        OI != E; ++OI) {
2989     const Value *Idx = *OI;
2990     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2991       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
2992       if (Field) {
2993         // N = N + Offset
2994         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
2995         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
2996                         DAG.getConstant(Offset, dl, N.getValueType()));
2997       }
2998 
2999       Ty = StTy->getElementType(Field);
3000     } else {
3001       Ty = cast<SequentialType>(Ty)->getElementType();
3002       MVT PtrTy =
3003           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3004       unsigned PtrSize = PtrTy.getSizeInBits();
3005       APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
3006 
3007       // If this is a scalar constant or a splat vector of constants,
3008       // handle it quickly.
3009       const auto *CI = dyn_cast<ConstantInt>(Idx);
3010       if (!CI && isa<ConstantDataVector>(Idx) &&
3011           cast<ConstantDataVector>(Idx)->getSplatValue())
3012         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3013 
3014       if (CI) {
3015         if (CI->isZero())
3016           continue;
3017         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3018         SDValue OffsVal = VectorWidth ?
3019           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3020           DAG.getConstant(Offs, dl, PtrTy);
3021         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal);
3022         continue;
3023       }
3024 
3025       // N = N + Idx * ElementSize;
3026       SDValue IdxN = getValue(Idx);
3027 
3028       if (!IdxN.getValueType().isVector() && VectorWidth) {
3029         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3030         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3031         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3032       }
3033       // If the index is smaller or larger than intptr_t, truncate or extend
3034       // it.
3035       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3036 
3037       // If this is a multiply by a power of two, turn it into a shl
3038       // immediately.  This is a very common case.
3039       if (ElementSize != 1) {
3040         if (ElementSize.isPowerOf2()) {
3041           unsigned Amt = ElementSize.logBase2();
3042           IdxN = DAG.getNode(ISD::SHL, dl,
3043                              N.getValueType(), IdxN,
3044                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3045         } else {
3046           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3047           IdxN = DAG.getNode(ISD::MUL, dl,
3048                              N.getValueType(), IdxN, Scale);
3049         }
3050       }
3051 
3052       N = DAG.getNode(ISD::ADD, dl,
3053                       N.getValueType(), N, IdxN);
3054     }
3055   }
3056 
3057   setValue(&I, N);
3058 }
3059 
3060 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3061   // If this is a fixed sized alloca in the entry block of the function,
3062   // allocate it statically on the stack.
3063   if (FuncInfo.StaticAllocaMap.count(&I))
3064     return;   // getValue will auto-populate this.
3065 
3066   SDLoc dl = getCurSDLoc();
3067   Type *Ty = I.getAllocatedType();
3068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3069   auto &DL = DAG.getDataLayout();
3070   uint64_t TySize = DL.getTypeAllocSize(Ty);
3071   unsigned Align =
3072       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3073 
3074   SDValue AllocSize = getValue(I.getArraySize());
3075 
3076   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3077   if (AllocSize.getValueType() != IntPtr)
3078     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3079 
3080   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3081                           AllocSize,
3082                           DAG.getConstant(TySize, dl, IntPtr));
3083 
3084   // Handle alignment.  If the requested alignment is less than or equal to
3085   // the stack alignment, ignore it.  If the size is greater than or equal to
3086   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3087   unsigned StackAlign =
3088       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3089   if (Align <= StackAlign)
3090     Align = 0;
3091 
3092   // Round the size of the allocation up to the stack alignment size
3093   // by add SA-1 to the size.
3094   AllocSize = DAG.getNode(ISD::ADD, dl,
3095                           AllocSize.getValueType(), AllocSize,
3096                           DAG.getIntPtrConstant(StackAlign - 1, dl));
3097 
3098   // Mask out the low bits for alignment purposes.
3099   AllocSize = DAG.getNode(ISD::AND, dl,
3100                           AllocSize.getValueType(), AllocSize,
3101                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3102                                                 dl));
3103 
3104   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3105   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3106   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3107   setValue(&I, DSA);
3108   DAG.setRoot(DSA.getValue(1));
3109 
3110   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3111 }
3112 
3113 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3114   if (I.isAtomic())
3115     return visitAtomicLoad(I);
3116 
3117   const Value *SV = I.getOperand(0);
3118   SDValue Ptr = getValue(SV);
3119 
3120   Type *Ty = I.getType();
3121 
3122   bool isVolatile = I.isVolatile();
3123   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3124 
3125   // The IR notion of invariant_load only guarantees that all *non-faulting*
3126   // invariant loads result in the same value.  The MI notion of invariant load
3127   // guarantees that the load can be legally moved to any location within its
3128   // containing function.  The MI notion of invariant_load is stronger than the
3129   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3130   // with a guarantee that the location being loaded from is dereferenceable
3131   // throughout the function's lifetime.
3132 
3133   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3134                      isDereferenceablePointer(SV, DAG.getDataLayout());
3135   unsigned Alignment = I.getAlignment();
3136 
3137   AAMDNodes AAInfo;
3138   I.getAAMetadata(AAInfo);
3139   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3140 
3141   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3142   SmallVector<EVT, 4> ValueVTs;
3143   SmallVector<uint64_t, 4> Offsets;
3144   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3145   unsigned NumValues = ValueVTs.size();
3146   if (NumValues == 0)
3147     return;
3148 
3149   SDValue Root;
3150   bool ConstantMemory = false;
3151   if (isVolatile || NumValues > MaxParallelChains)
3152     // Serialize volatile loads with other side effects.
3153     Root = getRoot();
3154   else if (AA->pointsToConstantMemory(MemoryLocation(
3155                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3156     // Do not serialize (non-volatile) loads of constant memory with anything.
3157     Root = DAG.getEntryNode();
3158     ConstantMemory = true;
3159   } else {
3160     // Do not serialize non-volatile loads against each other.
3161     Root = DAG.getRoot();
3162   }
3163 
3164   SDLoc dl = getCurSDLoc();
3165 
3166   if (isVolatile)
3167     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3168 
3169   SmallVector<SDValue, 4> Values(NumValues);
3170   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3171   EVT PtrVT = Ptr.getValueType();
3172   unsigned ChainI = 0;
3173   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3174     // Serializing loads here may result in excessive register pressure, and
3175     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3176     // could recover a bit by hoisting nodes upward in the chain by recognizing
3177     // they are side-effect free or do not alias. The optimizer should really
3178     // avoid this case by converting large object/array copies to llvm.memcpy
3179     // (MaxParallelChains should always remain as failsafe).
3180     if (ChainI == MaxParallelChains) {
3181       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3182       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3183                                   makeArrayRef(Chains.data(), ChainI));
3184       Root = Chain;
3185       ChainI = 0;
3186     }
3187     SDValue A = DAG.getNode(ISD::ADD, dl,
3188                             PtrVT, Ptr,
3189                             DAG.getConstant(Offsets[i], dl, PtrVT));
3190     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3191                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3192                             isNonTemporal, isInvariant, Alignment, AAInfo,
3193                             Ranges);
3194 
3195     Values[i] = L;
3196     Chains[ChainI] = L.getValue(1);
3197   }
3198 
3199   if (!ConstantMemory) {
3200     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3201                                 makeArrayRef(Chains.data(), ChainI));
3202     if (isVolatile)
3203       DAG.setRoot(Chain);
3204     else
3205       PendingLoads.push_back(Chain);
3206   }
3207 
3208   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3209                            DAG.getVTList(ValueVTs), Values));
3210 }
3211 
3212 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3213   if (I.isAtomic())
3214     return visitAtomicStore(I);
3215 
3216   const Value *SrcV = I.getOperand(0);
3217   const Value *PtrV = I.getOperand(1);
3218 
3219   SmallVector<EVT, 4> ValueVTs;
3220   SmallVector<uint64_t, 4> Offsets;
3221   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3222                   SrcV->getType(), ValueVTs, &Offsets);
3223   unsigned NumValues = ValueVTs.size();
3224   if (NumValues == 0)
3225     return;
3226 
3227   // Get the lowered operands. Note that we do this after
3228   // checking if NumResults is zero, because with zero results
3229   // the operands won't have values in the map.
3230   SDValue Src = getValue(SrcV);
3231   SDValue Ptr = getValue(PtrV);
3232 
3233   SDValue Root = getRoot();
3234   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3235   EVT PtrVT = Ptr.getValueType();
3236   bool isVolatile = I.isVolatile();
3237   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3238   unsigned Alignment = I.getAlignment();
3239   SDLoc dl = getCurSDLoc();
3240 
3241   AAMDNodes AAInfo;
3242   I.getAAMetadata(AAInfo);
3243 
3244   unsigned ChainI = 0;
3245   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3246     // See visitLoad comments.
3247     if (ChainI == MaxParallelChains) {
3248       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3249                                   makeArrayRef(Chains.data(), ChainI));
3250       Root = Chain;
3251       ChainI = 0;
3252     }
3253     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3254                               DAG.getConstant(Offsets[i], dl, PtrVT));
3255     SDValue St = DAG.getStore(Root, dl,
3256                               SDValue(Src.getNode(), Src.getResNo() + i),
3257                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3258                               isVolatile, isNonTemporal, Alignment, AAInfo);
3259     Chains[ChainI] = St;
3260   }
3261 
3262   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3263                                   makeArrayRef(Chains.data(), ChainI));
3264   DAG.setRoot(StoreNode);
3265 }
3266 
3267 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3268   SDLoc sdl = getCurSDLoc();
3269 
3270   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3271   Value  *PtrOperand = I.getArgOperand(1);
3272   SDValue Ptr = getValue(PtrOperand);
3273   SDValue Src0 = getValue(I.getArgOperand(0));
3274   SDValue Mask = getValue(I.getArgOperand(3));
3275   EVT VT = Src0.getValueType();
3276   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3277   if (!Alignment)
3278     Alignment = DAG.getEVTAlignment(VT);
3279 
3280   AAMDNodes AAInfo;
3281   I.getAAMetadata(AAInfo);
3282 
3283   MachineMemOperand *MMO =
3284     DAG.getMachineFunction().
3285     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3286                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3287                           Alignment, AAInfo);
3288   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3289                                          MMO, false);
3290   DAG.setRoot(StoreNode);
3291   setValue(&I, StoreNode);
3292 }
3293 
3294 // Get a uniform base for the Gather/Scatter intrinsic.
3295 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3296 // We try to represent it as a base pointer + vector of indices.
3297 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3298 // The first operand of the GEP may be a single pointer or a vector of pointers
3299 // Example:
3300 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3301 //  or
3302 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3303 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3304 //
3305 // When the first GEP operand is a single pointer - it is the uniform base we
3306 // are looking for. If first operand of the GEP is a splat vector - we
3307 // extract the spalt value and use it as a uniform base.
3308 // In all other cases the function returns 'false'.
3309 //
3310 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3311                            SelectionDAGBuilder* SDB) {
3312 
3313   SelectionDAG& DAG = SDB->DAG;
3314   LLVMContext &Context = *DAG.getContext();
3315 
3316   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3317   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3318   if (!GEP || GEP->getNumOperands() > 2)
3319     return false;
3320 
3321   const Value *GEPPtr = GEP->getPointerOperand();
3322   if (!GEPPtr->getType()->isVectorTy())
3323     Ptr = GEPPtr;
3324   else if (!(Ptr = getSplatValue(GEPPtr)))
3325     return false;
3326 
3327   Value *IndexVal = GEP->getOperand(1);
3328 
3329   // The operands of the GEP may be defined in another basic block.
3330   // In this case we'll not find nodes for the operands.
3331   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3332     return false;
3333 
3334   Base = SDB->getValue(Ptr);
3335   Index = SDB->getValue(IndexVal);
3336 
3337   // Suppress sign extension.
3338   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3339     if (SDB->findValue(Sext->getOperand(0))) {
3340       IndexVal = Sext->getOperand(0);
3341       Index = SDB->getValue(IndexVal);
3342     }
3343   }
3344   if (!Index.getValueType().isVector()) {
3345     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3346     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3347     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3348     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3349   }
3350   return true;
3351 }
3352 
3353 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3354   SDLoc sdl = getCurSDLoc();
3355 
3356   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3357   const Value *Ptr = I.getArgOperand(1);
3358   SDValue Src0 = getValue(I.getArgOperand(0));
3359   SDValue Mask = getValue(I.getArgOperand(3));
3360   EVT VT = Src0.getValueType();
3361   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3362   if (!Alignment)
3363     Alignment = DAG.getEVTAlignment(VT);
3364   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3365 
3366   AAMDNodes AAInfo;
3367   I.getAAMetadata(AAInfo);
3368 
3369   SDValue Base;
3370   SDValue Index;
3371   const Value *BasePtr = Ptr;
3372   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3373 
3374   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3375   MachineMemOperand *MMO = DAG.getMachineFunction().
3376     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3377                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3378                          Alignment, AAInfo);
3379   if (!UniformBase) {
3380     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3381     Index = getValue(Ptr);
3382   }
3383   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3384   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3385                                          Ops, MMO);
3386   DAG.setRoot(Scatter);
3387   setValue(&I, Scatter);
3388 }
3389 
3390 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3391   SDLoc sdl = getCurSDLoc();
3392 
3393   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3394   Value  *PtrOperand = I.getArgOperand(0);
3395   SDValue Ptr = getValue(PtrOperand);
3396   SDValue Src0 = getValue(I.getArgOperand(3));
3397   SDValue Mask = getValue(I.getArgOperand(2));
3398 
3399   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3400   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3401   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3402   if (!Alignment)
3403     Alignment = DAG.getEVTAlignment(VT);
3404 
3405   AAMDNodes AAInfo;
3406   I.getAAMetadata(AAInfo);
3407   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3408 
3409   SDValue InChain = DAG.getRoot();
3410   if (AA->pointsToConstantMemory(MemoryLocation(
3411           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3412           AAInfo))) {
3413     // Do not serialize (non-volatile) loads of constant memory with anything.
3414     InChain = DAG.getEntryNode();
3415   }
3416 
3417   MachineMemOperand *MMO =
3418     DAG.getMachineFunction().
3419     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3420                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3421                           Alignment, AAInfo, Ranges);
3422 
3423   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3424                                    ISD::NON_EXTLOAD);
3425   SDValue OutChain = Load.getValue(1);
3426   DAG.setRoot(OutChain);
3427   setValue(&I, Load);
3428 }
3429 
3430 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3431   SDLoc sdl = getCurSDLoc();
3432 
3433   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3434   const Value *Ptr = I.getArgOperand(0);
3435   SDValue Src0 = getValue(I.getArgOperand(3));
3436   SDValue Mask = getValue(I.getArgOperand(2));
3437 
3438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3439   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3440   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3441   if (!Alignment)
3442     Alignment = DAG.getEVTAlignment(VT);
3443 
3444   AAMDNodes AAInfo;
3445   I.getAAMetadata(AAInfo);
3446   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3447 
3448   SDValue Root = DAG.getRoot();
3449   SDValue Base;
3450   SDValue Index;
3451   const Value *BasePtr = Ptr;
3452   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3453   bool ConstantMemory = false;
3454   if (UniformBase &&
3455       AA->pointsToConstantMemory(MemoryLocation(
3456           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3457           AAInfo))) {
3458     // Do not serialize (non-volatile) loads of constant memory with anything.
3459     Root = DAG.getEntryNode();
3460     ConstantMemory = true;
3461   }
3462 
3463   MachineMemOperand *MMO =
3464     DAG.getMachineFunction().
3465     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3466                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3467                          Alignment, AAInfo, Ranges);
3468 
3469   if (!UniformBase) {
3470     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3471     Index = getValue(Ptr);
3472   }
3473   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3474   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3475                                        Ops, MMO);
3476 
3477   SDValue OutChain = Gather.getValue(1);
3478   if (!ConstantMemory)
3479     PendingLoads.push_back(OutChain);
3480   setValue(&I, Gather);
3481 }
3482 
3483 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3484   SDLoc dl = getCurSDLoc();
3485   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3486   AtomicOrdering FailureOrder = I.getFailureOrdering();
3487   SynchronizationScope Scope = I.getSynchScope();
3488 
3489   SDValue InChain = getRoot();
3490 
3491   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3492   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3493   SDValue L = DAG.getAtomicCmpSwap(
3494       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3495       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3496       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3497       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3498 
3499   SDValue OutChain = L.getValue(2);
3500 
3501   setValue(&I, L);
3502   DAG.setRoot(OutChain);
3503 }
3504 
3505 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3506   SDLoc dl = getCurSDLoc();
3507   ISD::NodeType NT;
3508   switch (I.getOperation()) {
3509   default: llvm_unreachable("Unknown atomicrmw operation");
3510   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3511   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3512   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3513   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3514   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3515   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3516   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3517   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3518   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3519   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3520   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3521   }
3522   AtomicOrdering Order = I.getOrdering();
3523   SynchronizationScope Scope = I.getSynchScope();
3524 
3525   SDValue InChain = getRoot();
3526 
3527   SDValue L =
3528     DAG.getAtomic(NT, dl,
3529                   getValue(I.getValOperand()).getSimpleValueType(),
3530                   InChain,
3531                   getValue(I.getPointerOperand()),
3532                   getValue(I.getValOperand()),
3533                   I.getPointerOperand(),
3534                   /* Alignment=*/ 0, Order, Scope);
3535 
3536   SDValue OutChain = L.getValue(1);
3537 
3538   setValue(&I, L);
3539   DAG.setRoot(OutChain);
3540 }
3541 
3542 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3543   SDLoc dl = getCurSDLoc();
3544   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3545   SDValue Ops[3];
3546   Ops[0] = getRoot();
3547   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
3548                            TLI.getPointerTy(DAG.getDataLayout()));
3549   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3550                            TLI.getPointerTy(DAG.getDataLayout()));
3551   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3552 }
3553 
3554 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3555   SDLoc dl = getCurSDLoc();
3556   AtomicOrdering Order = I.getOrdering();
3557   SynchronizationScope Scope = I.getSynchScope();
3558 
3559   SDValue InChain = getRoot();
3560 
3561   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3562   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3563 
3564   if (I.getAlignment() < VT.getSizeInBits() / 8)
3565     report_fatal_error("Cannot generate unaligned atomic load");
3566 
3567   MachineMemOperand *MMO =
3568       DAG.getMachineFunction().
3569       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3570                            MachineMemOperand::MOVolatile |
3571                            MachineMemOperand::MOLoad,
3572                            VT.getStoreSize(),
3573                            I.getAlignment() ? I.getAlignment() :
3574                                               DAG.getEVTAlignment(VT));
3575 
3576   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3577   SDValue L =
3578       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3579                     getValue(I.getPointerOperand()), MMO,
3580                     Order, Scope);
3581 
3582   SDValue OutChain = L.getValue(1);
3583 
3584   setValue(&I, L);
3585   DAG.setRoot(OutChain);
3586 }
3587 
3588 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3589   SDLoc dl = getCurSDLoc();
3590 
3591   AtomicOrdering Order = I.getOrdering();
3592   SynchronizationScope Scope = I.getSynchScope();
3593 
3594   SDValue InChain = getRoot();
3595 
3596   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3597   EVT VT =
3598       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3599 
3600   if (I.getAlignment() < VT.getSizeInBits() / 8)
3601     report_fatal_error("Cannot generate unaligned atomic store");
3602 
3603   SDValue OutChain =
3604     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3605                   InChain,
3606                   getValue(I.getPointerOperand()),
3607                   getValue(I.getValueOperand()),
3608                   I.getPointerOperand(), I.getAlignment(),
3609                   Order, Scope);
3610 
3611   DAG.setRoot(OutChain);
3612 }
3613 
3614 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3615 /// node.
3616 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3617                                                unsigned Intrinsic) {
3618   bool HasChain = !I.doesNotAccessMemory();
3619   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3620 
3621   // Build the operand list.
3622   SmallVector<SDValue, 8> Ops;
3623   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3624     if (OnlyLoad) {
3625       // We don't need to serialize loads against other loads.
3626       Ops.push_back(DAG.getRoot());
3627     } else {
3628       Ops.push_back(getRoot());
3629     }
3630   }
3631 
3632   // Info is set by getTgtMemInstrinsic
3633   TargetLowering::IntrinsicInfo Info;
3634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3635   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3636 
3637   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3638   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3639       Info.opc == ISD::INTRINSIC_W_CHAIN)
3640     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3641                                         TLI.getPointerTy(DAG.getDataLayout())));
3642 
3643   // Add all operands of the call to the operand list.
3644   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3645     SDValue Op = getValue(I.getArgOperand(i));
3646     Ops.push_back(Op);
3647   }
3648 
3649   SmallVector<EVT, 4> ValueVTs;
3650   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
3651 
3652   if (HasChain)
3653     ValueVTs.push_back(MVT::Other);
3654 
3655   SDVTList VTs = DAG.getVTList(ValueVTs);
3656 
3657   // Create the node.
3658   SDValue Result;
3659   if (IsTgtIntrinsic) {
3660     // This is target intrinsic that touches memory
3661     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3662                                      VTs, Ops, Info.memVT,
3663                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3664                                      Info.align, Info.vol,
3665                                      Info.readMem, Info.writeMem, Info.size);
3666   } else if (!HasChain) {
3667     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3668   } else if (!I.getType()->isVoidTy()) {
3669     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3670   } else {
3671     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3672   }
3673 
3674   if (HasChain) {
3675     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3676     if (OnlyLoad)
3677       PendingLoads.push_back(Chain);
3678     else
3679       DAG.setRoot(Chain);
3680   }
3681 
3682   if (!I.getType()->isVoidTy()) {
3683     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3684       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
3685       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3686     }
3687 
3688     setValue(&I, Result);
3689   }
3690 }
3691 
3692 /// GetSignificand - Get the significand and build it into a floating-point
3693 /// number with exponent of 1:
3694 ///
3695 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3696 ///
3697 /// where Op is the hexadecimal representation of floating point value.
3698 static SDValue
3699 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3700   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3701                            DAG.getConstant(0x007fffff, dl, MVT::i32));
3702   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3703                            DAG.getConstant(0x3f800000, dl, MVT::i32));
3704   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3705 }
3706 
3707 /// GetExponent - Get the exponent:
3708 ///
3709 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3710 ///
3711 /// where Op is the hexadecimal representation of floating point value.
3712 static SDValue
3713 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3714             SDLoc dl) {
3715   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3716                            DAG.getConstant(0x7f800000, dl, MVT::i32));
3717   SDValue t1 = DAG.getNode(
3718       ISD::SRL, dl, MVT::i32, t0,
3719       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
3720   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3721                            DAG.getConstant(127, dl, MVT::i32));
3722   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3723 }
3724 
3725 /// getF32Constant - Get 32-bit floating point constant.
3726 static SDValue
3727 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3728   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3729                            MVT::f32);
3730 }
3731 
3732 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3733                                        SelectionDAG &DAG) {
3734   // TODO: What fast-math-flags should be set on the floating-point nodes?
3735 
3736   //   IntegerPartOfX = ((int32_t)(t0);
3737   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3738 
3739   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3740   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3741   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3742 
3743   //   IntegerPartOfX <<= 23;
3744   IntegerPartOfX = DAG.getNode(
3745       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3746       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
3747                                   DAG.getDataLayout())));
3748 
3749   SDValue TwoToFractionalPartOfX;
3750   if (LimitFloatPrecision <= 6) {
3751     // For floating-point precision of 6:
3752     //
3753     //   TwoToFractionalPartOfX =
3754     //     0.997535578f +
3755     //       (0.735607626f + 0.252464424f * x) * x;
3756     //
3757     // error 0.0144103317, which is 6 bits
3758     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3759                              getF32Constant(DAG, 0x3e814304, dl));
3760     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3761                              getF32Constant(DAG, 0x3f3c50c8, dl));
3762     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3763     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3764                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
3765   } else if (LimitFloatPrecision <= 12) {
3766     // For floating-point precision of 12:
3767     //
3768     //   TwoToFractionalPartOfX =
3769     //     0.999892986f +
3770     //       (0.696457318f +
3771     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3772     //
3773     // error 0.000107046256, which is 13 to 14 bits
3774     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3775                              getF32Constant(DAG, 0x3da235e3, dl));
3776     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3777                              getF32Constant(DAG, 0x3e65b8f3, dl));
3778     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3779     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3780                              getF32Constant(DAG, 0x3f324b07, dl));
3781     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3782     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3783                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
3784   } else { // LimitFloatPrecision <= 18
3785     // For floating-point precision of 18:
3786     //
3787     //   TwoToFractionalPartOfX =
3788     //     0.999999982f +
3789     //       (0.693148872f +
3790     //         (0.240227044f +
3791     //           (0.554906021e-1f +
3792     //             (0.961591928e-2f +
3793     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3794     // error 2.47208000*10^(-7), which is better than 18 bits
3795     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3796                              getF32Constant(DAG, 0x3924b03e, dl));
3797     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3798                              getF32Constant(DAG, 0x3ab24b87, dl));
3799     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3800     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3801                              getF32Constant(DAG, 0x3c1d8c17, dl));
3802     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3803     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3804                              getF32Constant(DAG, 0x3d634a1d, dl));
3805     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3806     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3807                              getF32Constant(DAG, 0x3e75fe14, dl));
3808     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3809     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3810                               getF32Constant(DAG, 0x3f317234, dl));
3811     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3812     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3813                                          getF32Constant(DAG, 0x3f800000, dl));
3814   }
3815 
3816   // Add the exponent into the result in integer domain.
3817   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3818   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3819                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
3820 }
3821 
3822 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3823 /// limited-precision mode.
3824 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3825                          const TargetLowering &TLI) {
3826   if (Op.getValueType() == MVT::f32 &&
3827       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3828 
3829     // Put the exponent in the right bit position for later addition to the
3830     // final result:
3831     //
3832     //   #define LOG2OFe 1.4426950f
3833     //   t0 = Op * LOG2OFe
3834 
3835     // TODO: What fast-math-flags should be set here?
3836     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3837                              getF32Constant(DAG, 0x3fb8aa3b, dl));
3838     return getLimitedPrecisionExp2(t0, dl, DAG);
3839   }
3840 
3841   // No special expansion.
3842   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3843 }
3844 
3845 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3846 /// limited-precision mode.
3847 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3848                          const TargetLowering &TLI) {
3849 
3850   // TODO: What fast-math-flags should be set on the floating-point nodes?
3851 
3852   if (Op.getValueType() == MVT::f32 &&
3853       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3854     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3855 
3856     // Scale the exponent by log(2) [0.69314718f].
3857     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3858     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3859                                         getF32Constant(DAG, 0x3f317218, dl));
3860 
3861     // Get the significand and build it into a floating-point number with
3862     // exponent of 1.
3863     SDValue X = GetSignificand(DAG, Op1, dl);
3864 
3865     SDValue LogOfMantissa;
3866     if (LimitFloatPrecision <= 6) {
3867       // For floating-point precision of 6:
3868       //
3869       //   LogofMantissa =
3870       //     -1.1609546f +
3871       //       (1.4034025f - 0.23903021f * x) * x;
3872       //
3873       // error 0.0034276066, which is better than 8 bits
3874       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3875                                getF32Constant(DAG, 0xbe74c456, dl));
3876       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3877                                getF32Constant(DAG, 0x3fb3a2b1, dl));
3878       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3879       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3880                                   getF32Constant(DAG, 0x3f949a29, dl));
3881     } else if (LimitFloatPrecision <= 12) {
3882       // For floating-point precision of 12:
3883       //
3884       //   LogOfMantissa =
3885       //     -1.7417939f +
3886       //       (2.8212026f +
3887       //         (-1.4699568f +
3888       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3889       //
3890       // error 0.000061011436, which is 14 bits
3891       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3892                                getF32Constant(DAG, 0xbd67b6d6, dl));
3893       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3894                                getF32Constant(DAG, 0x3ee4f4b8, dl));
3895       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3896       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3897                                getF32Constant(DAG, 0x3fbc278b, dl));
3898       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3899       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3900                                getF32Constant(DAG, 0x40348e95, dl));
3901       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3902       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3903                                   getF32Constant(DAG, 0x3fdef31a, dl));
3904     } else { // LimitFloatPrecision <= 18
3905       // For floating-point precision of 18:
3906       //
3907       //   LogOfMantissa =
3908       //     -2.1072184f +
3909       //       (4.2372794f +
3910       //         (-3.7029485f +
3911       //           (2.2781945f +
3912       //             (-0.87823314f +
3913       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3914       //
3915       // error 0.0000023660568, which is better than 18 bits
3916       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3917                                getF32Constant(DAG, 0xbc91e5ac, dl));
3918       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3919                                getF32Constant(DAG, 0x3e4350aa, dl));
3920       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3921       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3922                                getF32Constant(DAG, 0x3f60d3e3, dl));
3923       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3924       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3925                                getF32Constant(DAG, 0x4011cdf0, dl));
3926       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3927       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3928                                getF32Constant(DAG, 0x406cfd1c, dl));
3929       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3930       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3931                                getF32Constant(DAG, 0x408797cb, dl));
3932       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3933       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3934                                   getF32Constant(DAG, 0x4006dcab, dl));
3935     }
3936 
3937     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3938   }
3939 
3940   // No special expansion.
3941   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3942 }
3943 
3944 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3945 /// limited-precision mode.
3946 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3947                           const TargetLowering &TLI) {
3948 
3949   // TODO: What fast-math-flags should be set on the floating-point nodes?
3950 
3951   if (Op.getValueType() == MVT::f32 &&
3952       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3953     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3954 
3955     // Get the exponent.
3956     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3957 
3958     // Get the significand and build it into a floating-point number with
3959     // exponent of 1.
3960     SDValue X = GetSignificand(DAG, Op1, dl);
3961 
3962     // Different possible minimax approximations of significand in
3963     // floating-point for various degrees of accuracy over [1,2].
3964     SDValue Log2ofMantissa;
3965     if (LimitFloatPrecision <= 6) {
3966       // For floating-point precision of 6:
3967       //
3968       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3969       //
3970       // error 0.0049451742, which is more than 7 bits
3971       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3972                                getF32Constant(DAG, 0xbeb08fe0, dl));
3973       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3974                                getF32Constant(DAG, 0x40019463, dl));
3975       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3976       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3977                                    getF32Constant(DAG, 0x3fd6633d, dl));
3978     } else if (LimitFloatPrecision <= 12) {
3979       // For floating-point precision of 12:
3980       //
3981       //   Log2ofMantissa =
3982       //     -2.51285454f +
3983       //       (4.07009056f +
3984       //         (-2.12067489f +
3985       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3986       //
3987       // error 0.0000876136000, which is better than 13 bits
3988       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3989                                getF32Constant(DAG, 0xbda7262e, dl));
3990       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3991                                getF32Constant(DAG, 0x3f25280b, dl));
3992       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3993       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3994                                getF32Constant(DAG, 0x4007b923, dl));
3995       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3996       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3997                                getF32Constant(DAG, 0x40823e2f, dl));
3998       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3999       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4000                                    getF32Constant(DAG, 0x4020d29c, dl));
4001     } else { // LimitFloatPrecision <= 18
4002       // For floating-point precision of 18:
4003       //
4004       //   Log2ofMantissa =
4005       //     -3.0400495f +
4006       //       (6.1129976f +
4007       //         (-5.3420409f +
4008       //           (3.2865683f +
4009       //             (-1.2669343f +
4010       //               (0.27515199f -
4011       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4012       //
4013       // error 0.0000018516, which is better than 18 bits
4014       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4015                                getF32Constant(DAG, 0xbcd2769e, dl));
4016       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4017                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4018       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4019       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4020                                getF32Constant(DAG, 0x3fa22ae7, dl));
4021       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4022       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4023                                getF32Constant(DAG, 0x40525723, dl));
4024       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4025       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4026                                getF32Constant(DAG, 0x40aaf200, dl));
4027       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4028       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4029                                getF32Constant(DAG, 0x40c39dad, dl));
4030       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4031       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4032                                    getF32Constant(DAG, 0x4042902c, dl));
4033     }
4034 
4035     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4036   }
4037 
4038   // No special expansion.
4039   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4040 }
4041 
4042 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4043 /// limited-precision mode.
4044 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4045                            const TargetLowering &TLI) {
4046 
4047   // TODO: What fast-math-flags should be set on the floating-point nodes?
4048 
4049   if (Op.getValueType() == MVT::f32 &&
4050       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4051     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4052 
4053     // Scale the exponent by log10(2) [0.30102999f].
4054     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4055     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4056                                         getF32Constant(DAG, 0x3e9a209a, dl));
4057 
4058     // Get the significand and build it into a floating-point number with
4059     // exponent of 1.
4060     SDValue X = GetSignificand(DAG, Op1, dl);
4061 
4062     SDValue Log10ofMantissa;
4063     if (LimitFloatPrecision <= 6) {
4064       // For floating-point precision of 6:
4065       //
4066       //   Log10ofMantissa =
4067       //     -0.50419619f +
4068       //       (0.60948995f - 0.10380950f * x) * x;
4069       //
4070       // error 0.0014886165, which is 6 bits
4071       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4072                                getF32Constant(DAG, 0xbdd49a13, dl));
4073       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4074                                getF32Constant(DAG, 0x3f1c0789, dl));
4075       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4076       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4077                                     getF32Constant(DAG, 0x3f011300, dl));
4078     } else if (LimitFloatPrecision <= 12) {
4079       // For floating-point precision of 12:
4080       //
4081       //   Log10ofMantissa =
4082       //     -0.64831180f +
4083       //       (0.91751397f +
4084       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4085       //
4086       // error 0.00019228036, which is better than 12 bits
4087       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4088                                getF32Constant(DAG, 0x3d431f31, dl));
4089       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4090                                getF32Constant(DAG, 0x3ea21fb2, dl));
4091       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4092       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4093                                getF32Constant(DAG, 0x3f6ae232, dl));
4094       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4095       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4096                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4097     } else { // LimitFloatPrecision <= 18
4098       // For floating-point precision of 18:
4099       //
4100       //   Log10ofMantissa =
4101       //     -0.84299375f +
4102       //       (1.5327582f +
4103       //         (-1.0688956f +
4104       //           (0.49102474f +
4105       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4106       //
4107       // error 0.0000037995730, which is better than 18 bits
4108       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4109                                getF32Constant(DAG, 0x3c5d51ce, dl));
4110       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4111                                getF32Constant(DAG, 0x3e00685a, dl));
4112       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4113       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4114                                getF32Constant(DAG, 0x3efb6798, dl));
4115       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4116       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4117                                getF32Constant(DAG, 0x3f88d192, dl));
4118       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4119       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4120                                getF32Constant(DAG, 0x3fc4316c, dl));
4121       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4122       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4123                                     getF32Constant(DAG, 0x3f57ce70, dl));
4124     }
4125 
4126     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4127   }
4128 
4129   // No special expansion.
4130   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4131 }
4132 
4133 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4134 /// limited-precision mode.
4135 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4136                           const TargetLowering &TLI) {
4137   if (Op.getValueType() == MVT::f32 &&
4138       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4139     return getLimitedPrecisionExp2(Op, dl, DAG);
4140 
4141   // No special expansion.
4142   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4143 }
4144 
4145 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4146 /// limited-precision mode with x == 10.0f.
4147 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4148                          SelectionDAG &DAG, const TargetLowering &TLI) {
4149   bool IsExp10 = false;
4150   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4151       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4152     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4153       APFloat Ten(10.0f);
4154       IsExp10 = LHSC->isExactlyValue(Ten);
4155     }
4156   }
4157 
4158   // TODO: What fast-math-flags should be set on the FMUL node?
4159   if (IsExp10) {
4160     // Put the exponent in the right bit position for later addition to the
4161     // final result:
4162     //
4163     //   #define LOG2OF10 3.3219281f
4164     //   t0 = Op * LOG2OF10;
4165     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4166                              getF32Constant(DAG, 0x40549a78, dl));
4167     return getLimitedPrecisionExp2(t0, dl, DAG);
4168   }
4169 
4170   // No special expansion.
4171   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4172 }
4173 
4174 
4175 /// ExpandPowI - Expand a llvm.powi intrinsic.
4176 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4177                           SelectionDAG &DAG) {
4178   // If RHS is a constant, we can expand this out to a multiplication tree,
4179   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4180   // optimizing for size, we only want to do this if the expansion would produce
4181   // a small number of multiplies, otherwise we do the full expansion.
4182   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4183     // Get the exponent as a positive value.
4184     unsigned Val = RHSC->getSExtValue();
4185     if ((int)Val < 0) Val = -Val;
4186 
4187     // powi(x, 0) -> 1.0
4188     if (Val == 0)
4189       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4190 
4191     const Function *F = DAG.getMachineFunction().getFunction();
4192     if (!F->optForSize() ||
4193         // If optimizing for size, don't insert too many multiplies.
4194         // This inserts up to 5 multiplies.
4195         countPopulation(Val) + Log2_32(Val) < 7) {
4196       // We use the simple binary decomposition method to generate the multiply
4197       // sequence.  There are more optimal ways to do this (for example,
4198       // powi(x,15) generates one more multiply than it should), but this has
4199       // the benefit of being both really simple and much better than a libcall.
4200       SDValue Res;  // Logically starts equal to 1.0
4201       SDValue CurSquare = LHS;
4202       // TODO: Intrinsics should have fast-math-flags that propagate to these
4203       // nodes.
4204       while (Val) {
4205         if (Val & 1) {
4206           if (Res.getNode())
4207             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4208           else
4209             Res = CurSquare;  // 1.0*CurSquare.
4210         }
4211 
4212         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4213                                 CurSquare, CurSquare);
4214         Val >>= 1;
4215       }
4216 
4217       // If the original was negative, invert the result, producing 1/(x*x*x).
4218       if (RHSC->getSExtValue() < 0)
4219         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4220                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4221       return Res;
4222     }
4223   }
4224 
4225   // Otherwise, expand to a libcall.
4226   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4227 }
4228 
4229 // getUnderlyingArgReg - Find underlying register used for a truncated or
4230 // bitcasted argument.
4231 static unsigned getUnderlyingArgReg(const SDValue &N) {
4232   switch (N.getOpcode()) {
4233   case ISD::CopyFromReg:
4234     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4235   case ISD::BITCAST:
4236   case ISD::AssertZext:
4237   case ISD::AssertSext:
4238   case ISD::TRUNCATE:
4239     return getUnderlyingArgReg(N.getOperand(0));
4240   default:
4241     return 0;
4242   }
4243 }
4244 
4245 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4246 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4247 /// At the end of instruction selection, they will be inserted to the entry BB.
4248 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4249     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4250     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4251   const Argument *Arg = dyn_cast<Argument>(V);
4252   if (!Arg)
4253     return false;
4254 
4255   MachineFunction &MF = DAG.getMachineFunction();
4256   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4257 
4258   // Ignore inlined function arguments here.
4259   //
4260   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4261   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4262     return false;
4263 
4264   Optional<MachineOperand> Op;
4265   // Some arguments' frame index is recorded during argument lowering.
4266   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4267     Op = MachineOperand::CreateFI(FI);
4268 
4269   if (!Op && N.getNode()) {
4270     unsigned Reg = getUnderlyingArgReg(N);
4271     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4272       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4273       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4274       if (PR)
4275         Reg = PR;
4276     }
4277     if (Reg)
4278       Op = MachineOperand::CreateReg(Reg, false);
4279   }
4280 
4281   if (!Op) {
4282     // Check if ValueMap has reg number.
4283     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4284     if (VMI != FuncInfo.ValueMap.end())
4285       Op = MachineOperand::CreateReg(VMI->second, false);
4286   }
4287 
4288   if (!Op && N.getNode())
4289     // Check if frame index is available.
4290     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4291       if (FrameIndexSDNode *FINode =
4292           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4293         Op = MachineOperand::CreateFI(FINode->getIndex());
4294 
4295   if (!Op)
4296     return false;
4297 
4298   assert(Variable->isValidLocationForIntrinsic(DL) &&
4299          "Expected inlined-at fields to agree");
4300   if (Op->isReg())
4301     FuncInfo.ArgDbgValues.push_back(
4302         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4303                 Op->getReg(), Offset, Variable, Expr));
4304   else
4305     FuncInfo.ArgDbgValues.push_back(
4306         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4307             .addOperand(*Op)
4308             .addImm(Offset)
4309             .addMetadata(Variable)
4310             .addMetadata(Expr));
4311 
4312   return true;
4313 }
4314 
4315 // VisualStudio defines setjmp as _setjmp
4316 #if defined(_MSC_VER) && defined(setjmp) && \
4317                          !defined(setjmp_undefined_for_msvc)
4318 #  pragma push_macro("setjmp")
4319 #  undef setjmp
4320 #  define setjmp_undefined_for_msvc
4321 #endif
4322 
4323 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4324 /// we want to emit this as a call to a named external function, return the name
4325 /// otherwise lower it and return null.
4326 const char *
4327 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4328   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4329   SDLoc sdl = getCurSDLoc();
4330   DebugLoc dl = getCurDebugLoc();
4331   SDValue Res;
4332 
4333   switch (Intrinsic) {
4334   default:
4335     // By default, turn this into a target intrinsic node.
4336     visitTargetIntrinsic(I, Intrinsic);
4337     return nullptr;
4338   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4339   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4340   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4341   case Intrinsic::returnaddress:
4342     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4343                              TLI.getPointerTy(DAG.getDataLayout()),
4344                              getValue(I.getArgOperand(0))));
4345     return nullptr;
4346   case Intrinsic::frameaddress:
4347     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4348                              TLI.getPointerTy(DAG.getDataLayout()),
4349                              getValue(I.getArgOperand(0))));
4350     return nullptr;
4351   case Intrinsic::read_register: {
4352     Value *Reg = I.getArgOperand(0);
4353     SDValue Chain = getRoot();
4354     SDValue RegName =
4355         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4356     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4357     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4358       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4359     setValue(&I, Res);
4360     DAG.setRoot(Res.getValue(1));
4361     return nullptr;
4362   }
4363   case Intrinsic::write_register: {
4364     Value *Reg = I.getArgOperand(0);
4365     Value *RegValue = I.getArgOperand(1);
4366     SDValue Chain = getRoot();
4367     SDValue RegName =
4368         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4369     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4370                             RegName, getValue(RegValue)));
4371     return nullptr;
4372   }
4373   case Intrinsic::setjmp:
4374     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4375   case Intrinsic::longjmp:
4376     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4377   case Intrinsic::memcpy: {
4378     SDValue Op1 = getValue(I.getArgOperand(0));
4379     SDValue Op2 = getValue(I.getArgOperand(1));
4380     SDValue Op3 = getValue(I.getArgOperand(2));
4381     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4382     if (!Align)
4383       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4384     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4385     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4386     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4387                                false, isTC,
4388                                MachinePointerInfo(I.getArgOperand(0)),
4389                                MachinePointerInfo(I.getArgOperand(1)));
4390     updateDAGForMaybeTailCall(MC);
4391     return nullptr;
4392   }
4393   case Intrinsic::memset: {
4394     SDValue Op1 = getValue(I.getArgOperand(0));
4395     SDValue Op2 = getValue(I.getArgOperand(1));
4396     SDValue Op3 = getValue(I.getArgOperand(2));
4397     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4398     if (!Align)
4399       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4400     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4401     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4402     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4403                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4404     updateDAGForMaybeTailCall(MS);
4405     return nullptr;
4406   }
4407   case Intrinsic::memmove: {
4408     SDValue Op1 = getValue(I.getArgOperand(0));
4409     SDValue Op2 = getValue(I.getArgOperand(1));
4410     SDValue Op3 = getValue(I.getArgOperand(2));
4411     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4412     if (!Align)
4413       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4414     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4415     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4416     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4417                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4418                                 MachinePointerInfo(I.getArgOperand(1)));
4419     updateDAGForMaybeTailCall(MM);
4420     return nullptr;
4421   }
4422   case Intrinsic::dbg_declare: {
4423     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4424     DILocalVariable *Variable = DI.getVariable();
4425     DIExpression *Expression = DI.getExpression();
4426     const Value *Address = DI.getAddress();
4427     assert(Variable && "Missing variable");
4428     if (!Address) {
4429       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4430       return nullptr;
4431     }
4432 
4433     // Check if address has undef value.
4434     if (isa<UndefValue>(Address) ||
4435         (Address->use_empty() && !isa<Argument>(Address))) {
4436       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4437       return nullptr;
4438     }
4439 
4440     SDValue &N = NodeMap[Address];
4441     if (!N.getNode() && isa<Argument>(Address))
4442       // Check unused arguments map.
4443       N = UnusedArgNodeMap[Address];
4444     SDDbgValue *SDV;
4445     if (N.getNode()) {
4446       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4447         Address = BCI->getOperand(0);
4448       // Parameters are handled specially.
4449       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4450       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4451       if (isParameter && FINode) {
4452         // Byval parameter. We have a frame index at this point.
4453         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4454                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4455       } else if (isa<Argument>(Address)) {
4456         // Address is an argument, so try to emit its dbg value using
4457         // virtual register info from the FuncInfo.ValueMap.
4458         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4459                                  N);
4460         return nullptr;
4461       } else {
4462         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4463                               true, 0, dl, SDNodeOrder);
4464       }
4465       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4466     } else {
4467       // If Address is an argument then try to emit its dbg value using
4468       // virtual register info from the FuncInfo.ValueMap.
4469       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4470                                     N)) {
4471         // If variable is pinned by a alloca in dominating bb then
4472         // use StaticAllocaMap.
4473         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4474           if (AI->getParent() != DI.getParent()) {
4475             DenseMap<const AllocaInst*, int>::iterator SI =
4476               FuncInfo.StaticAllocaMap.find(AI);
4477             if (SI != FuncInfo.StaticAllocaMap.end()) {
4478               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4479                                               0, dl, SDNodeOrder);
4480               DAG.AddDbgValue(SDV, nullptr, false);
4481               return nullptr;
4482             }
4483           }
4484         }
4485         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4486       }
4487     }
4488     return nullptr;
4489   }
4490   case Intrinsic::dbg_value: {
4491     const DbgValueInst &DI = cast<DbgValueInst>(I);
4492     assert(DI.getVariable() && "Missing variable");
4493 
4494     DILocalVariable *Variable = DI.getVariable();
4495     DIExpression *Expression = DI.getExpression();
4496     uint64_t Offset = DI.getOffset();
4497     const Value *V = DI.getValue();
4498     if (!V)
4499       return nullptr;
4500 
4501     SDDbgValue *SDV;
4502     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4503       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4504                                     SDNodeOrder);
4505       DAG.AddDbgValue(SDV, nullptr, false);
4506     } else {
4507       // Do not use getValue() in here; we don't want to generate code at
4508       // this point if it hasn't been done yet.
4509       SDValue N = NodeMap[V];
4510       if (!N.getNode() && isa<Argument>(V))
4511         // Check unused arguments map.
4512         N = UnusedArgNodeMap[V];
4513       if (N.getNode()) {
4514         // A dbg.value for an alloca is always indirect.
4515         bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4516         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4517                                       IsIndirect, N)) {
4518           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4519                                 IsIndirect, Offset, dl, SDNodeOrder);
4520           DAG.AddDbgValue(SDV, N.getNode(), false);
4521         }
4522       } else if (!V->use_empty() ) {
4523         // Do not call getValue(V) yet, as we don't want to generate code.
4524         // Remember it for later.
4525         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4526         DanglingDebugInfoMap[V] = DDI;
4527       } else {
4528         // We may expand this to cover more cases.  One case where we have no
4529         // data available is an unreferenced parameter.
4530         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4531       }
4532     }
4533 
4534     // Build a debug info table entry.
4535     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4536       V = BCI->getOperand(0);
4537     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4538     // Don't handle byval struct arguments or VLAs, for example.
4539     if (!AI) {
4540       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4541       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4542       return nullptr;
4543     }
4544     DenseMap<const AllocaInst*, int>::iterator SI =
4545       FuncInfo.StaticAllocaMap.find(AI);
4546     if (SI == FuncInfo.StaticAllocaMap.end())
4547       return nullptr; // VLAs.
4548     return nullptr;
4549   }
4550 
4551   case Intrinsic::eh_typeid_for: {
4552     // Find the type id for the given typeinfo.
4553     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4554     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4555     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4556     setValue(&I, Res);
4557     return nullptr;
4558   }
4559 
4560   case Intrinsic::eh_return_i32:
4561   case Intrinsic::eh_return_i64:
4562     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4563     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4564                             MVT::Other,
4565                             getControlRoot(),
4566                             getValue(I.getArgOperand(0)),
4567                             getValue(I.getArgOperand(1))));
4568     return nullptr;
4569   case Intrinsic::eh_unwind_init:
4570     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4571     return nullptr;
4572   case Intrinsic::eh_dwarf_cfa: {
4573     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4574                                         TLI.getPointerTy(DAG.getDataLayout()));
4575     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4576                                  CfaArg.getValueType(),
4577                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4578                                              CfaArg.getValueType()),
4579                                  CfaArg);
4580     SDValue FA = DAG.getNode(
4581         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4582         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4583     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4584                              FA, Offset));
4585     return nullptr;
4586   }
4587   case Intrinsic::eh_sjlj_callsite: {
4588     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4589     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4590     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4591     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4592 
4593     MMI.setCurrentCallSite(CI->getZExtValue());
4594     return nullptr;
4595   }
4596   case Intrinsic::eh_sjlj_functioncontext: {
4597     // Get and store the index of the function context.
4598     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4599     AllocaInst *FnCtx =
4600       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4601     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4602     MFI->setFunctionContextIndex(FI);
4603     return nullptr;
4604   }
4605   case Intrinsic::eh_sjlj_setjmp: {
4606     SDValue Ops[2];
4607     Ops[0] = getRoot();
4608     Ops[1] = getValue(I.getArgOperand(0));
4609     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4610                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4611     setValue(&I, Op.getValue(0));
4612     DAG.setRoot(Op.getValue(1));
4613     return nullptr;
4614   }
4615   case Intrinsic::eh_sjlj_longjmp: {
4616     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4617                             getRoot(), getValue(I.getArgOperand(0))));
4618     return nullptr;
4619   }
4620   case Intrinsic::eh_sjlj_setup_dispatch: {
4621     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4622                             getRoot()));
4623     return nullptr;
4624   }
4625 
4626   case Intrinsic::masked_gather:
4627     visitMaskedGather(I);
4628     return nullptr;
4629   case Intrinsic::masked_load:
4630     visitMaskedLoad(I);
4631     return nullptr;
4632   case Intrinsic::masked_scatter:
4633     visitMaskedScatter(I);
4634     return nullptr;
4635   case Intrinsic::masked_store:
4636     visitMaskedStore(I);
4637     return nullptr;
4638   case Intrinsic::x86_mmx_pslli_w:
4639   case Intrinsic::x86_mmx_pslli_d:
4640   case Intrinsic::x86_mmx_pslli_q:
4641   case Intrinsic::x86_mmx_psrli_w:
4642   case Intrinsic::x86_mmx_psrli_d:
4643   case Intrinsic::x86_mmx_psrli_q:
4644   case Intrinsic::x86_mmx_psrai_w:
4645   case Intrinsic::x86_mmx_psrai_d: {
4646     SDValue ShAmt = getValue(I.getArgOperand(1));
4647     if (isa<ConstantSDNode>(ShAmt)) {
4648       visitTargetIntrinsic(I, Intrinsic);
4649       return nullptr;
4650     }
4651     unsigned NewIntrinsic = 0;
4652     EVT ShAmtVT = MVT::v2i32;
4653     switch (Intrinsic) {
4654     case Intrinsic::x86_mmx_pslli_w:
4655       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4656       break;
4657     case Intrinsic::x86_mmx_pslli_d:
4658       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4659       break;
4660     case Intrinsic::x86_mmx_pslli_q:
4661       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4662       break;
4663     case Intrinsic::x86_mmx_psrli_w:
4664       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4665       break;
4666     case Intrinsic::x86_mmx_psrli_d:
4667       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4668       break;
4669     case Intrinsic::x86_mmx_psrli_q:
4670       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4671       break;
4672     case Intrinsic::x86_mmx_psrai_w:
4673       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4674       break;
4675     case Intrinsic::x86_mmx_psrai_d:
4676       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4677       break;
4678     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4679     }
4680 
4681     // The vector shift intrinsics with scalars uses 32b shift amounts but
4682     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4683     // to be zero.
4684     // We must do this early because v2i32 is not a legal type.
4685     SDValue ShOps[2];
4686     ShOps[0] = ShAmt;
4687     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
4688     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4689     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4690     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4691     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4692                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
4693                        getValue(I.getArgOperand(0)), ShAmt);
4694     setValue(&I, Res);
4695     return nullptr;
4696   }
4697   case Intrinsic::convertff:
4698   case Intrinsic::convertfsi:
4699   case Intrinsic::convertfui:
4700   case Intrinsic::convertsif:
4701   case Intrinsic::convertuif:
4702   case Intrinsic::convertss:
4703   case Intrinsic::convertsu:
4704   case Intrinsic::convertus:
4705   case Intrinsic::convertuu: {
4706     ISD::CvtCode Code = ISD::CVT_INVALID;
4707     switch (Intrinsic) {
4708     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4709     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4710     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4711     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4712     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4713     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4714     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4715     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4716     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4717     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4718     }
4719     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4720     const Value *Op1 = I.getArgOperand(0);
4721     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4722                                DAG.getValueType(DestVT),
4723                                DAG.getValueType(getValue(Op1).getValueType()),
4724                                getValue(I.getArgOperand(1)),
4725                                getValue(I.getArgOperand(2)),
4726                                Code);
4727     setValue(&I, Res);
4728     return nullptr;
4729   }
4730   case Intrinsic::powi:
4731     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4732                             getValue(I.getArgOperand(1)), DAG));
4733     return nullptr;
4734   case Intrinsic::log:
4735     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4736     return nullptr;
4737   case Intrinsic::log2:
4738     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4739     return nullptr;
4740   case Intrinsic::log10:
4741     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4742     return nullptr;
4743   case Intrinsic::exp:
4744     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4745     return nullptr;
4746   case Intrinsic::exp2:
4747     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4748     return nullptr;
4749   case Intrinsic::pow:
4750     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4751                            getValue(I.getArgOperand(1)), DAG, TLI));
4752     return nullptr;
4753   case Intrinsic::sqrt:
4754   case Intrinsic::fabs:
4755   case Intrinsic::sin:
4756   case Intrinsic::cos:
4757   case Intrinsic::floor:
4758   case Intrinsic::ceil:
4759   case Intrinsic::trunc:
4760   case Intrinsic::rint:
4761   case Intrinsic::nearbyint:
4762   case Intrinsic::round: {
4763     unsigned Opcode;
4764     switch (Intrinsic) {
4765     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4766     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4767     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4768     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4769     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4770     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4771     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4772     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4773     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4774     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4775     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4776     }
4777 
4778     setValue(&I, DAG.getNode(Opcode, sdl,
4779                              getValue(I.getArgOperand(0)).getValueType(),
4780                              getValue(I.getArgOperand(0))));
4781     return nullptr;
4782   }
4783   case Intrinsic::minnum:
4784     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
4785                              getValue(I.getArgOperand(0)).getValueType(),
4786                              getValue(I.getArgOperand(0)),
4787                              getValue(I.getArgOperand(1))));
4788     return nullptr;
4789   case Intrinsic::maxnum:
4790     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
4791                              getValue(I.getArgOperand(0)).getValueType(),
4792                              getValue(I.getArgOperand(0)),
4793                              getValue(I.getArgOperand(1))));
4794     return nullptr;
4795   case Intrinsic::copysign:
4796     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
4797                              getValue(I.getArgOperand(0)).getValueType(),
4798                              getValue(I.getArgOperand(0)),
4799                              getValue(I.getArgOperand(1))));
4800     return nullptr;
4801   case Intrinsic::fma:
4802     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4803                              getValue(I.getArgOperand(0)).getValueType(),
4804                              getValue(I.getArgOperand(0)),
4805                              getValue(I.getArgOperand(1)),
4806                              getValue(I.getArgOperand(2))));
4807     return nullptr;
4808   case Intrinsic::fmuladd: {
4809     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4810     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4811         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
4812       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4813                                getValue(I.getArgOperand(0)).getValueType(),
4814                                getValue(I.getArgOperand(0)),
4815                                getValue(I.getArgOperand(1)),
4816                                getValue(I.getArgOperand(2))));
4817     } else {
4818       // TODO: Intrinsic calls should have fast-math-flags.
4819       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4820                                 getValue(I.getArgOperand(0)).getValueType(),
4821                                 getValue(I.getArgOperand(0)),
4822                                 getValue(I.getArgOperand(1)));
4823       SDValue Add = DAG.getNode(ISD::FADD, sdl,
4824                                 getValue(I.getArgOperand(0)).getValueType(),
4825                                 Mul,
4826                                 getValue(I.getArgOperand(2)));
4827       setValue(&I, Add);
4828     }
4829     return nullptr;
4830   }
4831   case Intrinsic::convert_to_fp16:
4832     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
4833                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
4834                                          getValue(I.getArgOperand(0)),
4835                                          DAG.getTargetConstant(0, sdl,
4836                                                                MVT::i32))));
4837     return nullptr;
4838   case Intrinsic::convert_from_fp16:
4839     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
4840                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
4841                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
4842                                          getValue(I.getArgOperand(0)))));
4843     return nullptr;
4844   case Intrinsic::pcmarker: {
4845     SDValue Tmp = getValue(I.getArgOperand(0));
4846     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4847     return nullptr;
4848   }
4849   case Intrinsic::readcyclecounter: {
4850     SDValue Op = getRoot();
4851     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4852                       DAG.getVTList(MVT::i64, MVT::Other), Op);
4853     setValue(&I, Res);
4854     DAG.setRoot(Res.getValue(1));
4855     return nullptr;
4856   }
4857   case Intrinsic::bitreverse:
4858     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
4859                              getValue(I.getArgOperand(0)).getValueType(),
4860                              getValue(I.getArgOperand(0))));
4861     return nullptr;
4862   case Intrinsic::bswap:
4863     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4864                              getValue(I.getArgOperand(0)).getValueType(),
4865                              getValue(I.getArgOperand(0))));
4866     return nullptr;
4867   case Intrinsic::cttz: {
4868     SDValue Arg = getValue(I.getArgOperand(0));
4869     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4870     EVT Ty = Arg.getValueType();
4871     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4872                              sdl, Ty, Arg));
4873     return nullptr;
4874   }
4875   case Intrinsic::ctlz: {
4876     SDValue Arg = getValue(I.getArgOperand(0));
4877     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4878     EVT Ty = Arg.getValueType();
4879     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4880                              sdl, Ty, Arg));
4881     return nullptr;
4882   }
4883   case Intrinsic::ctpop: {
4884     SDValue Arg = getValue(I.getArgOperand(0));
4885     EVT Ty = Arg.getValueType();
4886     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4887     return nullptr;
4888   }
4889   case Intrinsic::stacksave: {
4890     SDValue Op = getRoot();
4891     Res = DAG.getNode(
4892         ISD::STACKSAVE, sdl,
4893         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
4894     setValue(&I, Res);
4895     DAG.setRoot(Res.getValue(1));
4896     return nullptr;
4897   }
4898   case Intrinsic::stackrestore: {
4899     Res = getValue(I.getArgOperand(0));
4900     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
4901     return nullptr;
4902   }
4903   case Intrinsic::get_dynamic_area_offset: {
4904     SDValue Op = getRoot();
4905     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4906     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
4907     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
4908     // target.
4909     if (PtrTy != ResTy)
4910       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
4911                          " intrinsic!");
4912     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
4913                       Op);
4914     DAG.setRoot(Op);
4915     setValue(&I, Res);
4916     return nullptr;
4917   }
4918   case Intrinsic::stackprotector: {
4919     // Emit code into the DAG to store the stack guard onto the stack.
4920     MachineFunction &MF = DAG.getMachineFunction();
4921     MachineFrameInfo *MFI = MF.getFrameInfo();
4922     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4923     SDValue Src, Chain = getRoot();
4924     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
4925     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
4926 
4927     // See if Ptr is a bitcast. If it is, look through it and see if we can get
4928     // global variable __stack_chk_guard.
4929     if (!GV)
4930       if (const Operator *BC = dyn_cast<Operator>(Ptr))
4931         if (BC->getOpcode() == Instruction::BitCast)
4932           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
4933 
4934     if (GV && TLI.useLoadStackGuardNode()) {
4935       // Emit a LOAD_STACK_GUARD node.
4936       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
4937                                                sdl, PtrTy, Chain);
4938       MachinePointerInfo MPInfo(GV);
4939       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
4940       unsigned Flags = MachineMemOperand::MOLoad |
4941                        MachineMemOperand::MOInvariant;
4942       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
4943                                          PtrTy.getSizeInBits() / 8,
4944                                          DAG.getEVTAlignment(PtrTy));
4945       Node->setMemRefs(MemRefs, MemRefs + 1);
4946 
4947       // Copy the guard value to a virtual register so that it can be
4948       // retrieved in the epilogue.
4949       Src = SDValue(Node, 0);
4950       const TargetRegisterClass *RC =
4951           TLI.getRegClassFor(Src.getSimpleValueType());
4952       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
4953 
4954       SPDescriptor.setGuardReg(Reg);
4955       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
4956     } else {
4957       Src = getValue(I.getArgOperand(0));   // The guard's value.
4958     }
4959 
4960     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4961 
4962     int FI = FuncInfo.StaticAllocaMap[Slot];
4963     MFI->setStackProtectorIndex(FI);
4964 
4965     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4966 
4967     // Store the stack protector onto the stack.
4968     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
4969                                                  DAG.getMachineFunction(), FI),
4970                        true, false, 0);
4971     setValue(&I, Res);
4972     DAG.setRoot(Res);
4973     return nullptr;
4974   }
4975   case Intrinsic::objectsize: {
4976     // If we don't know by now, we're never going to know.
4977     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4978 
4979     assert(CI && "Non-constant type in __builtin_object_size?");
4980 
4981     SDValue Arg = getValue(I.getCalledValue());
4982     EVT Ty = Arg.getValueType();
4983 
4984     if (CI->isZero())
4985       Res = DAG.getConstant(-1ULL, sdl, Ty);
4986     else
4987       Res = DAG.getConstant(0, sdl, Ty);
4988 
4989     setValue(&I, Res);
4990     return nullptr;
4991   }
4992   case Intrinsic::annotation:
4993   case Intrinsic::ptr_annotation:
4994     // Drop the intrinsic, but forward the value
4995     setValue(&I, getValue(I.getOperand(0)));
4996     return nullptr;
4997   case Intrinsic::assume:
4998   case Intrinsic::var_annotation:
4999     // Discard annotate attributes and assumptions
5000     return nullptr;
5001 
5002   case Intrinsic::init_trampoline: {
5003     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5004 
5005     SDValue Ops[6];
5006     Ops[0] = getRoot();
5007     Ops[1] = getValue(I.getArgOperand(0));
5008     Ops[2] = getValue(I.getArgOperand(1));
5009     Ops[3] = getValue(I.getArgOperand(2));
5010     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5011     Ops[5] = DAG.getSrcValue(F);
5012 
5013     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5014 
5015     DAG.setRoot(Res);
5016     return nullptr;
5017   }
5018   case Intrinsic::adjust_trampoline: {
5019     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5020                              TLI.getPointerTy(DAG.getDataLayout()),
5021                              getValue(I.getArgOperand(0))));
5022     return nullptr;
5023   }
5024   case Intrinsic::gcroot:
5025     if (GFI) {
5026       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5027       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5028 
5029       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5030       GFI->addStackRoot(FI->getIndex(), TypeMap);
5031     }
5032     return nullptr;
5033   case Intrinsic::gcread:
5034   case Intrinsic::gcwrite:
5035     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5036   case Intrinsic::flt_rounds:
5037     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5038     return nullptr;
5039 
5040   case Intrinsic::expect: {
5041     // Just replace __builtin_expect(exp, c) with EXP.
5042     setValue(&I, getValue(I.getArgOperand(0)));
5043     return nullptr;
5044   }
5045 
5046   case Intrinsic::debugtrap:
5047   case Intrinsic::trap: {
5048     StringRef TrapFuncName =
5049         I.getAttributes()
5050             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5051             .getValueAsString();
5052     if (TrapFuncName.empty()) {
5053       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5054         ISD::TRAP : ISD::DEBUGTRAP;
5055       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5056       return nullptr;
5057     }
5058     TargetLowering::ArgListTy Args;
5059 
5060     TargetLowering::CallLoweringInfo CLI(DAG);
5061     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5062         CallingConv::C, I.getType(),
5063         DAG.getExternalSymbol(TrapFuncName.data(),
5064                               TLI.getPointerTy(DAG.getDataLayout())),
5065         std::move(Args), 0);
5066 
5067     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5068     DAG.setRoot(Result.second);
5069     return nullptr;
5070   }
5071 
5072   case Intrinsic::uadd_with_overflow:
5073   case Intrinsic::sadd_with_overflow:
5074   case Intrinsic::usub_with_overflow:
5075   case Intrinsic::ssub_with_overflow:
5076   case Intrinsic::umul_with_overflow:
5077   case Intrinsic::smul_with_overflow: {
5078     ISD::NodeType Op;
5079     switch (Intrinsic) {
5080     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5081     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5082     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5083     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5084     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5085     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5086     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5087     }
5088     SDValue Op1 = getValue(I.getArgOperand(0));
5089     SDValue Op2 = getValue(I.getArgOperand(1));
5090 
5091     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5092     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5093     return nullptr;
5094   }
5095   case Intrinsic::prefetch: {
5096     SDValue Ops[5];
5097     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5098     Ops[0] = getRoot();
5099     Ops[1] = getValue(I.getArgOperand(0));
5100     Ops[2] = getValue(I.getArgOperand(1));
5101     Ops[3] = getValue(I.getArgOperand(2));
5102     Ops[4] = getValue(I.getArgOperand(3));
5103     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5104                                         DAG.getVTList(MVT::Other), Ops,
5105                                         EVT::getIntegerVT(*Context, 8),
5106                                         MachinePointerInfo(I.getArgOperand(0)),
5107                                         0, /* align */
5108                                         false, /* volatile */
5109                                         rw==0, /* read */
5110                                         rw==1)); /* write */
5111     return nullptr;
5112   }
5113   case Intrinsic::lifetime_start:
5114   case Intrinsic::lifetime_end: {
5115     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5116     // Stack coloring is not enabled in O0, discard region information.
5117     if (TM.getOptLevel() == CodeGenOpt::None)
5118       return nullptr;
5119 
5120     SmallVector<Value *, 4> Allocas;
5121     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5122 
5123     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5124            E = Allocas.end(); Object != E; ++Object) {
5125       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5126 
5127       // Could not find an Alloca.
5128       if (!LifetimeObject)
5129         continue;
5130 
5131       // First check that the Alloca is static, otherwise it won't have a
5132       // valid frame index.
5133       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5134       if (SI == FuncInfo.StaticAllocaMap.end())
5135         return nullptr;
5136 
5137       int FI = SI->second;
5138 
5139       SDValue Ops[2];
5140       Ops[0] = getRoot();
5141       Ops[1] =
5142           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5143       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5144 
5145       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5146       DAG.setRoot(Res);
5147     }
5148     return nullptr;
5149   }
5150   case Intrinsic::invariant_start:
5151     // Discard region information.
5152     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5153     return nullptr;
5154   case Intrinsic::invariant_end:
5155     // Discard region information.
5156     return nullptr;
5157   case Intrinsic::stackprotectorcheck: {
5158     // Do not actually emit anything for this basic block. Instead we initialize
5159     // the stack protector descriptor and export the guard variable so we can
5160     // access it in FinishBasicBlock.
5161     const BasicBlock *BB = I.getParent();
5162     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5163     ExportFromCurrentBlock(SPDescriptor.getGuard());
5164 
5165     // Flush our exports since we are going to process a terminator.
5166     (void)getControlRoot();
5167     return nullptr;
5168   }
5169   case Intrinsic::clear_cache:
5170     return TLI.getClearCacheBuiltinName();
5171   case Intrinsic::donothing:
5172     // ignore
5173     return nullptr;
5174   case Intrinsic::experimental_stackmap: {
5175     visitStackmap(I);
5176     return nullptr;
5177   }
5178   case Intrinsic::experimental_patchpoint_void:
5179   case Intrinsic::experimental_patchpoint_i64: {
5180     visitPatchpoint(&I);
5181     return nullptr;
5182   }
5183   case Intrinsic::experimental_gc_statepoint: {
5184     visitStatepoint(I);
5185     return nullptr;
5186   }
5187   case Intrinsic::experimental_gc_result_int:
5188   case Intrinsic::experimental_gc_result_float:
5189   case Intrinsic::experimental_gc_result_ptr:
5190   case Intrinsic::experimental_gc_result: {
5191     visitGCResult(I);
5192     return nullptr;
5193   }
5194   case Intrinsic::experimental_gc_relocate: {
5195     visitGCRelocate(I);
5196     return nullptr;
5197   }
5198   case Intrinsic::instrprof_increment:
5199     llvm_unreachable("instrprof failed to lower an increment");
5200   case Intrinsic::instrprof_value_profile:
5201     llvm_unreachable("instrprof failed to lower a value profiling call");
5202   case Intrinsic::localescape: {
5203     MachineFunction &MF = DAG.getMachineFunction();
5204     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5205 
5206     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5207     // is the same on all targets.
5208     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5209       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5210       if (isa<ConstantPointerNull>(Arg))
5211         continue; // Skip null pointers. They represent a hole in index space.
5212       AllocaInst *Slot = cast<AllocaInst>(Arg);
5213       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5214              "can only escape static allocas");
5215       int FI = FuncInfo.StaticAllocaMap[Slot];
5216       MCSymbol *FrameAllocSym =
5217           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5218               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5219       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5220               TII->get(TargetOpcode::LOCAL_ESCAPE))
5221           .addSym(FrameAllocSym)
5222           .addFrameIndex(FI);
5223     }
5224 
5225     return nullptr;
5226   }
5227 
5228   case Intrinsic::localrecover: {
5229     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5230     MachineFunction &MF = DAG.getMachineFunction();
5231     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5232 
5233     // Get the symbol that defines the frame offset.
5234     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5235     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5236     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5237     MCSymbol *FrameAllocSym =
5238         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5239             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5240 
5241     // Create a MCSymbol for the label to avoid any target lowering
5242     // that would make this PC relative.
5243     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5244     SDValue OffsetVal =
5245         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5246 
5247     // Add the offset to the FP.
5248     Value *FP = I.getArgOperand(1);
5249     SDValue FPVal = getValue(FP);
5250     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5251     setValue(&I, Add);
5252 
5253     return nullptr;
5254   }
5255 
5256   case Intrinsic::eh_exceptionpointer:
5257   case Intrinsic::eh_exceptioncode: {
5258     // Get the exception pointer vreg, copy from it, and resize it to fit.
5259     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5260     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5261     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5262     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5263     SDValue N =
5264         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5265     if (Intrinsic == Intrinsic::eh_exceptioncode)
5266       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5267     setValue(&I, N);
5268     return nullptr;
5269   }
5270   }
5271 }
5272 
5273 std::pair<SDValue, SDValue>
5274 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5275                                     const BasicBlock *EHPadBB) {
5276   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5277   MCSymbol *BeginLabel = nullptr;
5278 
5279   if (EHPadBB) {
5280     // Insert a label before the invoke call to mark the try range.  This can be
5281     // used to detect deletion of the invoke via the MachineModuleInfo.
5282     BeginLabel = MMI.getContext().createTempSymbol();
5283 
5284     // For SjLj, keep track of which landing pads go with which invokes
5285     // so as to maintain the ordering of pads in the LSDA.
5286     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5287     if (CallSiteIndex) {
5288       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5289       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5290 
5291       // Now that the call site is handled, stop tracking it.
5292       MMI.setCurrentCallSite(0);
5293     }
5294 
5295     // Both PendingLoads and PendingExports must be flushed here;
5296     // this call might not return.
5297     (void)getRoot();
5298     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5299 
5300     CLI.setChain(getRoot());
5301   }
5302   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5303   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5304 
5305   assert((CLI.IsTailCall || Result.second.getNode()) &&
5306          "Non-null chain expected with non-tail call!");
5307   assert((Result.second.getNode() || !Result.first.getNode()) &&
5308          "Null value expected with tail call!");
5309 
5310   if (!Result.second.getNode()) {
5311     // As a special case, a null chain means that a tail call has been emitted
5312     // and the DAG root is already updated.
5313     HasTailCall = true;
5314 
5315     // Since there's no actual continuation from this block, nothing can be
5316     // relying on us setting vregs for them.
5317     PendingExports.clear();
5318   } else {
5319     DAG.setRoot(Result.second);
5320   }
5321 
5322   if (EHPadBB) {
5323     // Insert a label at the end of the invoke call to mark the try range.  This
5324     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5325     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5326     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5327 
5328     // Inform MachineModuleInfo of range.
5329     if (MMI.hasEHFunclets()) {
5330       assert(CLI.CS);
5331       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5332       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5333                                 BeginLabel, EndLabel);
5334     } else {
5335       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5336     }
5337   }
5338 
5339   return Result;
5340 }
5341 
5342 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5343                                       bool isTailCall,
5344                                       const BasicBlock *EHPadBB) {
5345   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5346   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5347   Type *RetTy = FTy->getReturnType();
5348 
5349   TargetLowering::ArgListTy Args;
5350   TargetLowering::ArgListEntry Entry;
5351   Args.reserve(CS.arg_size());
5352 
5353   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5354        i != e; ++i) {
5355     const Value *V = *i;
5356 
5357     // Skip empty types
5358     if (V->getType()->isEmptyTy())
5359       continue;
5360 
5361     SDValue ArgNode = getValue(V);
5362     Entry.Node = ArgNode; Entry.Ty = V->getType();
5363 
5364     // Skip the first return-type Attribute to get to params.
5365     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5366     Args.push_back(Entry);
5367 
5368     // If we have an explicit sret argument that is an Instruction, (i.e., it
5369     // might point to function-local memory), we can't meaningfully tail-call.
5370     if (Entry.isSRet && isa<Instruction>(V))
5371       isTailCall = false;
5372   }
5373 
5374   // Check if target-independent constraints permit a tail call here.
5375   // Target-dependent constraints are checked within TLI->LowerCallTo.
5376   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5377     isTailCall = false;
5378 
5379   TargetLowering::CallLoweringInfo CLI(DAG);
5380   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5381     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5382     .setTailCall(isTailCall);
5383   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5384 
5385   if (Result.first.getNode())
5386     setValue(CS.getInstruction(), Result.first);
5387 }
5388 
5389 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5390 /// value is equal or not-equal to zero.
5391 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5392   for (const User *U : V->users()) {
5393     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5394       if (IC->isEquality())
5395         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5396           if (C->isNullValue())
5397             continue;
5398     // Unknown instruction.
5399     return false;
5400   }
5401   return true;
5402 }
5403 
5404 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5405                              Type *LoadTy,
5406                              SelectionDAGBuilder &Builder) {
5407 
5408   // Check to see if this load can be trivially constant folded, e.g. if the
5409   // input is from a string literal.
5410   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5411     // Cast pointer to the type we really want to load.
5412     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5413                                          PointerType::getUnqual(LoadTy));
5414 
5415     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5416             const_cast<Constant *>(LoadInput), *Builder.DL))
5417       return Builder.getValue(LoadCst);
5418   }
5419 
5420   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5421   // still constant memory, the input chain can be the entry node.
5422   SDValue Root;
5423   bool ConstantMemory = false;
5424 
5425   // Do not serialize (non-volatile) loads of constant memory with anything.
5426   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5427     Root = Builder.DAG.getEntryNode();
5428     ConstantMemory = true;
5429   } else {
5430     // Do not serialize non-volatile loads against each other.
5431     Root = Builder.DAG.getRoot();
5432   }
5433 
5434   SDValue Ptr = Builder.getValue(PtrVal);
5435   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5436                                         Ptr, MachinePointerInfo(PtrVal),
5437                                         false /*volatile*/,
5438                                         false /*nontemporal*/,
5439                                         false /*isinvariant*/, 1 /* align=1 */);
5440 
5441   if (!ConstantMemory)
5442     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5443   return LoadVal;
5444 }
5445 
5446 /// processIntegerCallValue - Record the value for an instruction that
5447 /// produces an integer result, converting the type where necessary.
5448 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5449                                                   SDValue Value,
5450                                                   bool IsSigned) {
5451   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5452                                                     I.getType(), true);
5453   if (IsSigned)
5454     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5455   else
5456     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5457   setValue(&I, Value);
5458 }
5459 
5460 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5461 /// If so, return true and lower it, otherwise return false and it will be
5462 /// lowered like a normal call.
5463 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5464   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5465   if (I.getNumArgOperands() != 3)
5466     return false;
5467 
5468   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5469   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5470       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5471       !I.getType()->isIntegerTy())
5472     return false;
5473 
5474   const Value *Size = I.getArgOperand(2);
5475   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5476   if (CSize && CSize->getZExtValue() == 0) {
5477     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5478                                                           I.getType(), true);
5479     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5480     return true;
5481   }
5482 
5483   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5484   std::pair<SDValue, SDValue> Res =
5485     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5486                                 getValue(LHS), getValue(RHS), getValue(Size),
5487                                 MachinePointerInfo(LHS),
5488                                 MachinePointerInfo(RHS));
5489   if (Res.first.getNode()) {
5490     processIntegerCallValue(I, Res.first, true);
5491     PendingLoads.push_back(Res.second);
5492     return true;
5493   }
5494 
5495   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5496   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5497   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5498     bool ActuallyDoIt = true;
5499     MVT LoadVT;
5500     Type *LoadTy;
5501     switch (CSize->getZExtValue()) {
5502     default:
5503       LoadVT = MVT::Other;
5504       LoadTy = nullptr;
5505       ActuallyDoIt = false;
5506       break;
5507     case 2:
5508       LoadVT = MVT::i16;
5509       LoadTy = Type::getInt16Ty(CSize->getContext());
5510       break;
5511     case 4:
5512       LoadVT = MVT::i32;
5513       LoadTy = Type::getInt32Ty(CSize->getContext());
5514       break;
5515     case 8:
5516       LoadVT = MVT::i64;
5517       LoadTy = Type::getInt64Ty(CSize->getContext());
5518       break;
5519         /*
5520     case 16:
5521       LoadVT = MVT::v4i32;
5522       LoadTy = Type::getInt32Ty(CSize->getContext());
5523       LoadTy = VectorType::get(LoadTy, 4);
5524       break;
5525          */
5526     }
5527 
5528     // This turns into unaligned loads.  We only do this if the target natively
5529     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5530     // we'll only produce a small number of byte loads.
5531 
5532     // Require that we can find a legal MVT, and only do this if the target
5533     // supports unaligned loads of that type.  Expanding into byte loads would
5534     // bloat the code.
5535     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5536     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5537       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5538       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5539       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5540       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5541       // TODO: Check alignment of src and dest ptrs.
5542       if (!TLI.isTypeLegal(LoadVT) ||
5543           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5544           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5545         ActuallyDoIt = false;
5546     }
5547 
5548     if (ActuallyDoIt) {
5549       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5550       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5551 
5552       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5553                                  ISD::SETNE);
5554       processIntegerCallValue(I, Res, false);
5555       return true;
5556     }
5557   }
5558 
5559 
5560   return false;
5561 }
5562 
5563 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5564 /// form.  If so, return true and lower it, otherwise return false and it
5565 /// will be lowered like a normal call.
5566 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5567   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5568   if (I.getNumArgOperands() != 3)
5569     return false;
5570 
5571   const Value *Src = I.getArgOperand(0);
5572   const Value *Char = I.getArgOperand(1);
5573   const Value *Length = I.getArgOperand(2);
5574   if (!Src->getType()->isPointerTy() ||
5575       !Char->getType()->isIntegerTy() ||
5576       !Length->getType()->isIntegerTy() ||
5577       !I.getType()->isPointerTy())
5578     return false;
5579 
5580   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5581   std::pair<SDValue, SDValue> Res =
5582     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5583                                 getValue(Src), getValue(Char), getValue(Length),
5584                                 MachinePointerInfo(Src));
5585   if (Res.first.getNode()) {
5586     setValue(&I, Res.first);
5587     PendingLoads.push_back(Res.second);
5588     return true;
5589   }
5590 
5591   return false;
5592 }
5593 
5594 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5595 /// optimized form.  If so, return true and lower it, otherwise return false
5596 /// and it will be lowered like a normal call.
5597 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5598   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5599   if (I.getNumArgOperands() != 2)
5600     return false;
5601 
5602   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5603   if (!Arg0->getType()->isPointerTy() ||
5604       !Arg1->getType()->isPointerTy() ||
5605       !I.getType()->isPointerTy())
5606     return false;
5607 
5608   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5609   std::pair<SDValue, SDValue> Res =
5610     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5611                                 getValue(Arg0), getValue(Arg1),
5612                                 MachinePointerInfo(Arg0),
5613                                 MachinePointerInfo(Arg1), isStpcpy);
5614   if (Res.first.getNode()) {
5615     setValue(&I, Res.first);
5616     DAG.setRoot(Res.second);
5617     return true;
5618   }
5619 
5620   return false;
5621 }
5622 
5623 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5624 /// If so, return true and lower it, otherwise return false and it will be
5625 /// lowered like a normal call.
5626 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5627   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5628   if (I.getNumArgOperands() != 2)
5629     return false;
5630 
5631   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5632   if (!Arg0->getType()->isPointerTy() ||
5633       !Arg1->getType()->isPointerTy() ||
5634       !I.getType()->isIntegerTy())
5635     return false;
5636 
5637   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5638   std::pair<SDValue, SDValue> Res =
5639     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5640                                 getValue(Arg0), getValue(Arg1),
5641                                 MachinePointerInfo(Arg0),
5642                                 MachinePointerInfo(Arg1));
5643   if (Res.first.getNode()) {
5644     processIntegerCallValue(I, Res.first, true);
5645     PendingLoads.push_back(Res.second);
5646     return true;
5647   }
5648 
5649   return false;
5650 }
5651 
5652 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5653 /// form.  If so, return true and lower it, otherwise return false and it
5654 /// will be lowered like a normal call.
5655 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5656   // Verify that the prototype makes sense.  size_t strlen(char *)
5657   if (I.getNumArgOperands() != 1)
5658     return false;
5659 
5660   const Value *Arg0 = I.getArgOperand(0);
5661   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5662     return false;
5663 
5664   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5665   std::pair<SDValue, SDValue> Res =
5666     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5667                                 getValue(Arg0), MachinePointerInfo(Arg0));
5668   if (Res.first.getNode()) {
5669     processIntegerCallValue(I, Res.first, false);
5670     PendingLoads.push_back(Res.second);
5671     return true;
5672   }
5673 
5674   return false;
5675 }
5676 
5677 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5678 /// form.  If so, return true and lower it, otherwise return false and it
5679 /// will be lowered like a normal call.
5680 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5681   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5682   if (I.getNumArgOperands() != 2)
5683     return false;
5684 
5685   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5686   if (!Arg0->getType()->isPointerTy() ||
5687       !Arg1->getType()->isIntegerTy() ||
5688       !I.getType()->isIntegerTy())
5689     return false;
5690 
5691   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5692   std::pair<SDValue, SDValue> Res =
5693     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5694                                  getValue(Arg0), getValue(Arg1),
5695                                  MachinePointerInfo(Arg0));
5696   if (Res.first.getNode()) {
5697     processIntegerCallValue(I, Res.first, false);
5698     PendingLoads.push_back(Res.second);
5699     return true;
5700   }
5701 
5702   return false;
5703 }
5704 
5705 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5706 /// operation (as expected), translate it to an SDNode with the specified opcode
5707 /// and return true.
5708 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5709                                               unsigned Opcode) {
5710   // Sanity check that it really is a unary floating-point call.
5711   if (I.getNumArgOperands() != 1 ||
5712       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5713       I.getType() != I.getArgOperand(0)->getType() ||
5714       !I.onlyReadsMemory())
5715     return false;
5716 
5717   SDValue Tmp = getValue(I.getArgOperand(0));
5718   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5719   return true;
5720 }
5721 
5722 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5723 /// operation (as expected), translate it to an SDNode with the specified opcode
5724 /// and return true.
5725 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5726                                                unsigned Opcode) {
5727   // Sanity check that it really is a binary floating-point call.
5728   if (I.getNumArgOperands() != 2 ||
5729       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5730       I.getType() != I.getArgOperand(0)->getType() ||
5731       I.getType() != I.getArgOperand(1)->getType() ||
5732       !I.onlyReadsMemory())
5733     return false;
5734 
5735   SDValue Tmp0 = getValue(I.getArgOperand(0));
5736   SDValue Tmp1 = getValue(I.getArgOperand(1));
5737   EVT VT = Tmp0.getValueType();
5738   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5739   return true;
5740 }
5741 
5742 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5743   // Handle inline assembly differently.
5744   if (isa<InlineAsm>(I.getCalledValue())) {
5745     visitInlineAsm(&I);
5746     return;
5747   }
5748 
5749   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5750   ComputeUsesVAFloatArgument(I, &MMI);
5751 
5752   const char *RenameFn = nullptr;
5753   if (Function *F = I.getCalledFunction()) {
5754     if (F->isDeclaration()) {
5755       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5756         if (unsigned IID = II->getIntrinsicID(F)) {
5757           RenameFn = visitIntrinsicCall(I, IID);
5758           if (!RenameFn)
5759             return;
5760         }
5761       }
5762       if (Intrinsic::ID IID = F->getIntrinsicID()) {
5763         RenameFn = visitIntrinsicCall(I, IID);
5764         if (!RenameFn)
5765           return;
5766       }
5767     }
5768 
5769     // Check for well-known libc/libm calls.  If the function is internal, it
5770     // can't be a library call.
5771     LibFunc::Func Func;
5772     if (!F->hasLocalLinkage() && F->hasName() &&
5773         LibInfo->getLibFunc(F->getName(), Func) &&
5774         LibInfo->hasOptimizedCodeGen(Func)) {
5775       switch (Func) {
5776       default: break;
5777       case LibFunc::copysign:
5778       case LibFunc::copysignf:
5779       case LibFunc::copysignl:
5780         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5781             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5782             I.getType() == I.getArgOperand(0)->getType() &&
5783             I.getType() == I.getArgOperand(1)->getType() &&
5784             I.onlyReadsMemory()) {
5785           SDValue LHS = getValue(I.getArgOperand(0));
5786           SDValue RHS = getValue(I.getArgOperand(1));
5787           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5788                                    LHS.getValueType(), LHS, RHS));
5789           return;
5790         }
5791         break;
5792       case LibFunc::fabs:
5793       case LibFunc::fabsf:
5794       case LibFunc::fabsl:
5795         if (visitUnaryFloatCall(I, ISD::FABS))
5796           return;
5797         break;
5798       case LibFunc::fmin:
5799       case LibFunc::fminf:
5800       case LibFunc::fminl:
5801         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5802           return;
5803         break;
5804       case LibFunc::fmax:
5805       case LibFunc::fmaxf:
5806       case LibFunc::fmaxl:
5807         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5808           return;
5809         break;
5810       case LibFunc::sin:
5811       case LibFunc::sinf:
5812       case LibFunc::sinl:
5813         if (visitUnaryFloatCall(I, ISD::FSIN))
5814           return;
5815         break;
5816       case LibFunc::cos:
5817       case LibFunc::cosf:
5818       case LibFunc::cosl:
5819         if (visitUnaryFloatCall(I, ISD::FCOS))
5820           return;
5821         break;
5822       case LibFunc::sqrt:
5823       case LibFunc::sqrtf:
5824       case LibFunc::sqrtl:
5825       case LibFunc::sqrt_finite:
5826       case LibFunc::sqrtf_finite:
5827       case LibFunc::sqrtl_finite:
5828         if (visitUnaryFloatCall(I, ISD::FSQRT))
5829           return;
5830         break;
5831       case LibFunc::floor:
5832       case LibFunc::floorf:
5833       case LibFunc::floorl:
5834         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5835           return;
5836         break;
5837       case LibFunc::nearbyint:
5838       case LibFunc::nearbyintf:
5839       case LibFunc::nearbyintl:
5840         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5841           return;
5842         break;
5843       case LibFunc::ceil:
5844       case LibFunc::ceilf:
5845       case LibFunc::ceill:
5846         if (visitUnaryFloatCall(I, ISD::FCEIL))
5847           return;
5848         break;
5849       case LibFunc::rint:
5850       case LibFunc::rintf:
5851       case LibFunc::rintl:
5852         if (visitUnaryFloatCall(I, ISD::FRINT))
5853           return;
5854         break;
5855       case LibFunc::round:
5856       case LibFunc::roundf:
5857       case LibFunc::roundl:
5858         if (visitUnaryFloatCall(I, ISD::FROUND))
5859           return;
5860         break;
5861       case LibFunc::trunc:
5862       case LibFunc::truncf:
5863       case LibFunc::truncl:
5864         if (visitUnaryFloatCall(I, ISD::FTRUNC))
5865           return;
5866         break;
5867       case LibFunc::log2:
5868       case LibFunc::log2f:
5869       case LibFunc::log2l:
5870         if (visitUnaryFloatCall(I, ISD::FLOG2))
5871           return;
5872         break;
5873       case LibFunc::exp2:
5874       case LibFunc::exp2f:
5875       case LibFunc::exp2l:
5876         if (visitUnaryFloatCall(I, ISD::FEXP2))
5877           return;
5878         break;
5879       case LibFunc::memcmp:
5880         if (visitMemCmpCall(I))
5881           return;
5882         break;
5883       case LibFunc::memchr:
5884         if (visitMemChrCall(I))
5885           return;
5886         break;
5887       case LibFunc::strcpy:
5888         if (visitStrCpyCall(I, false))
5889           return;
5890         break;
5891       case LibFunc::stpcpy:
5892         if (visitStrCpyCall(I, true))
5893           return;
5894         break;
5895       case LibFunc::strcmp:
5896         if (visitStrCmpCall(I))
5897           return;
5898         break;
5899       case LibFunc::strlen:
5900         if (visitStrLenCall(I))
5901           return;
5902         break;
5903       case LibFunc::strnlen:
5904         if (visitStrNLenCall(I))
5905           return;
5906         break;
5907       }
5908     }
5909   }
5910 
5911   SDValue Callee;
5912   if (!RenameFn)
5913     Callee = getValue(I.getCalledValue());
5914   else
5915     Callee = DAG.getExternalSymbol(
5916         RenameFn,
5917         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5918 
5919   // Check if we can potentially perform a tail call. More detailed checking is
5920   // be done within LowerCallTo, after more information about the call is known.
5921   LowerCallTo(&I, Callee, I.isTailCall());
5922 }
5923 
5924 namespace {
5925 
5926 /// AsmOperandInfo - This contains information for each constraint that we are
5927 /// lowering.
5928 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5929 public:
5930   /// CallOperand - If this is the result output operand or a clobber
5931   /// this is null, otherwise it is the incoming operand to the CallInst.
5932   /// This gets modified as the asm is processed.
5933   SDValue CallOperand;
5934 
5935   /// AssignedRegs - If this is a register or register class operand, this
5936   /// contains the set of register corresponding to the operand.
5937   RegsForValue AssignedRegs;
5938 
5939   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5940     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
5941   }
5942 
5943   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5944   /// corresponds to.  If there is no Value* for this operand, it returns
5945   /// MVT::Other.
5946   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
5947                            const DataLayout &DL) const {
5948     if (!CallOperandVal) return MVT::Other;
5949 
5950     if (isa<BasicBlock>(CallOperandVal))
5951       return TLI.getPointerTy(DL);
5952 
5953     llvm::Type *OpTy = CallOperandVal->getType();
5954 
5955     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5956     // If this is an indirect operand, the operand is a pointer to the
5957     // accessed type.
5958     if (isIndirect) {
5959       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5960       if (!PtrTy)
5961         report_fatal_error("Indirect operand for inline asm not a pointer!");
5962       OpTy = PtrTy->getElementType();
5963     }
5964 
5965     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5966     if (StructType *STy = dyn_cast<StructType>(OpTy))
5967       if (STy->getNumElements() == 1)
5968         OpTy = STy->getElementType(0);
5969 
5970     // If OpTy is not a single value, it may be a struct/union that we
5971     // can tile with integers.
5972     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5973       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5974       switch (BitSize) {
5975       default: break;
5976       case 1:
5977       case 8:
5978       case 16:
5979       case 32:
5980       case 64:
5981       case 128:
5982         OpTy = IntegerType::get(Context, BitSize);
5983         break;
5984       }
5985     }
5986 
5987     return TLI.getValueType(DL, OpTy, true);
5988   }
5989 };
5990 
5991 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5992 
5993 } // end anonymous namespace
5994 
5995 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5996 /// specified operand.  We prefer to assign virtual registers, to allow the
5997 /// register allocator to handle the assignment process.  However, if the asm
5998 /// uses features that we can't model on machineinstrs, we have SDISel do the
5999 /// allocation.  This produces generally horrible, but correct, code.
6000 ///
6001 ///   OpInfo describes the operand.
6002 ///
6003 static void GetRegistersForValue(SelectionDAG &DAG,
6004                                  const TargetLowering &TLI,
6005                                  SDLoc DL,
6006                                  SDISelAsmOperandInfo &OpInfo) {
6007   LLVMContext &Context = *DAG.getContext();
6008 
6009   MachineFunction &MF = DAG.getMachineFunction();
6010   SmallVector<unsigned, 4> Regs;
6011 
6012   // If this is a constraint for a single physreg, or a constraint for a
6013   // register class, find it.
6014   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6015       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6016                                        OpInfo.ConstraintCode,
6017                                        OpInfo.ConstraintVT);
6018 
6019   unsigned NumRegs = 1;
6020   if (OpInfo.ConstraintVT != MVT::Other) {
6021     // If this is a FP input in an integer register (or visa versa) insert a bit
6022     // cast of the input value.  More generally, handle any case where the input
6023     // value disagrees with the register class we plan to stick this in.
6024     if (OpInfo.Type == InlineAsm::isInput &&
6025         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6026       // Try to convert to the first EVT that the reg class contains.  If the
6027       // types are identical size, use a bitcast to convert (e.g. two differing
6028       // vector types).
6029       MVT RegVT = *PhysReg.second->vt_begin();
6030       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6031         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6032                                          RegVT, OpInfo.CallOperand);
6033         OpInfo.ConstraintVT = RegVT;
6034       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6035         // If the input is a FP value and we want it in FP registers, do a
6036         // bitcast to the corresponding integer type.  This turns an f64 value
6037         // into i64, which can be passed with two i32 values on a 32-bit
6038         // machine.
6039         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6040         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6041                                          RegVT, OpInfo.CallOperand);
6042         OpInfo.ConstraintVT = RegVT;
6043       }
6044     }
6045 
6046     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6047   }
6048 
6049   MVT RegVT;
6050   EVT ValueVT = OpInfo.ConstraintVT;
6051 
6052   // If this is a constraint for a specific physical register, like {r17},
6053   // assign it now.
6054   if (unsigned AssignedReg = PhysReg.first) {
6055     const TargetRegisterClass *RC = PhysReg.second;
6056     if (OpInfo.ConstraintVT == MVT::Other)
6057       ValueVT = *RC->vt_begin();
6058 
6059     // Get the actual register value type.  This is important, because the user
6060     // may have asked for (e.g.) the AX register in i32 type.  We need to
6061     // remember that AX is actually i16 to get the right extension.
6062     RegVT = *RC->vt_begin();
6063 
6064     // This is a explicit reference to a physical register.
6065     Regs.push_back(AssignedReg);
6066 
6067     // If this is an expanded reference, add the rest of the regs to Regs.
6068     if (NumRegs != 1) {
6069       TargetRegisterClass::iterator I = RC->begin();
6070       for (; *I != AssignedReg; ++I)
6071         assert(I != RC->end() && "Didn't find reg!");
6072 
6073       // Already added the first reg.
6074       --NumRegs; ++I;
6075       for (; NumRegs; --NumRegs, ++I) {
6076         assert(I != RC->end() && "Ran out of registers to allocate!");
6077         Regs.push_back(*I);
6078       }
6079     }
6080 
6081     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6082     return;
6083   }
6084 
6085   // Otherwise, if this was a reference to an LLVM register class, create vregs
6086   // for this reference.
6087   if (const TargetRegisterClass *RC = PhysReg.second) {
6088     RegVT = *RC->vt_begin();
6089     if (OpInfo.ConstraintVT == MVT::Other)
6090       ValueVT = RegVT;
6091 
6092     // Create the appropriate number of virtual registers.
6093     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6094     for (; NumRegs; --NumRegs)
6095       Regs.push_back(RegInfo.createVirtualRegister(RC));
6096 
6097     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6098     return;
6099   }
6100 
6101   // Otherwise, we couldn't allocate enough registers for this.
6102 }
6103 
6104 /// visitInlineAsm - Handle a call to an InlineAsm object.
6105 ///
6106 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6107   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6108 
6109   /// ConstraintOperands - Information about all of the constraints.
6110   SDISelAsmOperandInfoVector ConstraintOperands;
6111 
6112   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6113   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6114       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6115 
6116   bool hasMemory = false;
6117 
6118   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6119   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6120   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6121     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6122     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6123 
6124     MVT OpVT = MVT::Other;
6125 
6126     // Compute the value type for each operand.
6127     switch (OpInfo.Type) {
6128     case InlineAsm::isOutput:
6129       // Indirect outputs just consume an argument.
6130       if (OpInfo.isIndirect) {
6131         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6132         break;
6133       }
6134 
6135       // The return value of the call is this value.  As such, there is no
6136       // corresponding argument.
6137       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6138       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6139         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6140                                       STy->getElementType(ResNo));
6141       } else {
6142         assert(ResNo == 0 && "Asm only has one result!");
6143         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6144       }
6145       ++ResNo;
6146       break;
6147     case InlineAsm::isInput:
6148       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6149       break;
6150     case InlineAsm::isClobber:
6151       // Nothing to do.
6152       break;
6153     }
6154 
6155     // If this is an input or an indirect output, process the call argument.
6156     // BasicBlocks are labels, currently appearing only in asm's.
6157     if (OpInfo.CallOperandVal) {
6158       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6159         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6160       } else {
6161         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6162       }
6163 
6164       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6165                                          DAG.getDataLayout()).getSimpleVT();
6166     }
6167 
6168     OpInfo.ConstraintVT = OpVT;
6169 
6170     // Indirect operand accesses access memory.
6171     if (OpInfo.isIndirect)
6172       hasMemory = true;
6173     else {
6174       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6175         TargetLowering::ConstraintType
6176           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6177         if (CType == TargetLowering::C_Memory) {
6178           hasMemory = true;
6179           break;
6180         }
6181       }
6182     }
6183   }
6184 
6185   SDValue Chain, Flag;
6186 
6187   // We won't need to flush pending loads if this asm doesn't touch
6188   // memory and is nonvolatile.
6189   if (hasMemory || IA->hasSideEffects())
6190     Chain = getRoot();
6191   else
6192     Chain = DAG.getRoot();
6193 
6194   // Second pass over the constraints: compute which constraint option to use
6195   // and assign registers to constraints that want a specific physreg.
6196   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6197     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6198 
6199     // If this is an output operand with a matching input operand, look up the
6200     // matching input. If their types mismatch, e.g. one is an integer, the
6201     // other is floating point, or their sizes are different, flag it as an
6202     // error.
6203     if (OpInfo.hasMatchingInput()) {
6204       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6205 
6206       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6207         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6208         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6209             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6210                                              OpInfo.ConstraintVT);
6211         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6212             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6213                                              Input.ConstraintVT);
6214         if ((OpInfo.ConstraintVT.isInteger() !=
6215              Input.ConstraintVT.isInteger()) ||
6216             (MatchRC.second != InputRC.second)) {
6217           report_fatal_error("Unsupported asm: input constraint"
6218                              " with a matching output constraint of"
6219                              " incompatible type!");
6220         }
6221         Input.ConstraintVT = OpInfo.ConstraintVT;
6222       }
6223     }
6224 
6225     // Compute the constraint code and ConstraintType to use.
6226     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6227 
6228     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6229         OpInfo.Type == InlineAsm::isClobber)
6230       continue;
6231 
6232     // If this is a memory input, and if the operand is not indirect, do what we
6233     // need to to provide an address for the memory input.
6234     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6235         !OpInfo.isIndirect) {
6236       assert((OpInfo.isMultipleAlternative ||
6237               (OpInfo.Type == InlineAsm::isInput)) &&
6238              "Can only indirectify direct input operands!");
6239 
6240       // Memory operands really want the address of the value.  If we don't have
6241       // an indirect input, put it in the constpool if we can, otherwise spill
6242       // it to a stack slot.
6243       // TODO: This isn't quite right. We need to handle these according to
6244       // the addressing mode that the constraint wants. Also, this may take
6245       // an additional register for the computation and we don't want that
6246       // either.
6247 
6248       // If the operand is a float, integer, or vector constant, spill to a
6249       // constant pool entry to get its address.
6250       const Value *OpVal = OpInfo.CallOperandVal;
6251       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6252           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6253         OpInfo.CallOperand = DAG.getConstantPool(
6254             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6255       } else {
6256         // Otherwise, create a stack slot and emit a store to it before the
6257         // asm.
6258         Type *Ty = OpVal->getType();
6259         auto &DL = DAG.getDataLayout();
6260         uint64_t TySize = DL.getTypeAllocSize(Ty);
6261         unsigned Align = DL.getPrefTypeAlignment(Ty);
6262         MachineFunction &MF = DAG.getMachineFunction();
6263         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6264         SDValue StackSlot =
6265             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6266         Chain = DAG.getStore(
6267             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6268             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6269             false, false, 0);
6270         OpInfo.CallOperand = StackSlot;
6271       }
6272 
6273       // There is no longer a Value* corresponding to this operand.
6274       OpInfo.CallOperandVal = nullptr;
6275 
6276       // It is now an indirect operand.
6277       OpInfo.isIndirect = true;
6278     }
6279 
6280     // If this constraint is for a specific register, allocate it before
6281     // anything else.
6282     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6283       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6284   }
6285 
6286   // Second pass - Loop over all of the operands, assigning virtual or physregs
6287   // to register class operands.
6288   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6289     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6290 
6291     // C_Register operands have already been allocated, Other/Memory don't need
6292     // to be.
6293     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6294       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6295   }
6296 
6297   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6298   std::vector<SDValue> AsmNodeOperands;
6299   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6300   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6301       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6302 
6303   // If we have a !srcloc metadata node associated with it, we want to attach
6304   // this to the ultimately generated inline asm machineinstr.  To do this, we
6305   // pass in the third operand as this (potentially null) inline asm MDNode.
6306   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6307   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6308 
6309   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6310   // bits as operand 3.
6311   unsigned ExtraInfo = 0;
6312   if (IA->hasSideEffects())
6313     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6314   if (IA->isAlignStack())
6315     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6316   // Set the asm dialect.
6317   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6318 
6319   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6320   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6321     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6322 
6323     // Compute the constraint code and ConstraintType to use.
6324     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6325 
6326     // Ideally, we would only check against memory constraints.  However, the
6327     // meaning of an other constraint can be target-specific and we can't easily
6328     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6329     // for other constriants as well.
6330     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6331         OpInfo.ConstraintType == TargetLowering::C_Other) {
6332       if (OpInfo.Type == InlineAsm::isInput)
6333         ExtraInfo |= InlineAsm::Extra_MayLoad;
6334       else if (OpInfo.Type == InlineAsm::isOutput)
6335         ExtraInfo |= InlineAsm::Extra_MayStore;
6336       else if (OpInfo.Type == InlineAsm::isClobber)
6337         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6338     }
6339   }
6340 
6341   AsmNodeOperands.push_back(DAG.getTargetConstant(
6342       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6343 
6344   // Loop over all of the inputs, copying the operand values into the
6345   // appropriate registers and processing the output regs.
6346   RegsForValue RetValRegs;
6347 
6348   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6349   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6350 
6351   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6352     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6353 
6354     switch (OpInfo.Type) {
6355     case InlineAsm::isOutput: {
6356       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6357           OpInfo.ConstraintType != TargetLowering::C_Register) {
6358         // Memory output, or 'other' output (e.g. 'X' constraint).
6359         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6360 
6361         unsigned ConstraintID =
6362             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6363         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6364                "Failed to convert memory constraint code to constraint id.");
6365 
6366         // Add information to the INLINEASM node to know about this output.
6367         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6368         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6369         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6370                                                         MVT::i32));
6371         AsmNodeOperands.push_back(OpInfo.CallOperand);
6372         break;
6373       }
6374 
6375       // Otherwise, this is a register or register class output.
6376 
6377       // Copy the output from the appropriate register.  Find a register that
6378       // we can use.
6379       if (OpInfo.AssignedRegs.Regs.empty()) {
6380         LLVMContext &Ctx = *DAG.getContext();
6381         Ctx.emitError(CS.getInstruction(),
6382                       "couldn't allocate output register for constraint '" +
6383                           Twine(OpInfo.ConstraintCode) + "'");
6384         return;
6385       }
6386 
6387       // If this is an indirect operand, store through the pointer after the
6388       // asm.
6389       if (OpInfo.isIndirect) {
6390         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6391                                                       OpInfo.CallOperandVal));
6392       } else {
6393         // This is the result value of the call.
6394         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6395         // Concatenate this output onto the outputs list.
6396         RetValRegs.append(OpInfo.AssignedRegs);
6397       }
6398 
6399       // Add information to the INLINEASM node to know that this register is
6400       // set.
6401       OpInfo.AssignedRegs
6402           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6403                                     ? InlineAsm::Kind_RegDefEarlyClobber
6404                                     : InlineAsm::Kind_RegDef,
6405                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6406       break;
6407     }
6408     case InlineAsm::isInput: {
6409       SDValue InOperandVal = OpInfo.CallOperand;
6410 
6411       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6412         // If this is required to match an output register we have already set,
6413         // just use its register.
6414         unsigned OperandNo = OpInfo.getMatchedOperand();
6415 
6416         // Scan until we find the definition we already emitted of this operand.
6417         // When we find it, create a RegsForValue operand.
6418         unsigned CurOp = InlineAsm::Op_FirstOperand;
6419         for (; OperandNo; --OperandNo) {
6420           // Advance to the next operand.
6421           unsigned OpFlag =
6422             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6423           assert((InlineAsm::isRegDefKind(OpFlag) ||
6424                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6425                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6426           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6427         }
6428 
6429         unsigned OpFlag =
6430           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6431         if (InlineAsm::isRegDefKind(OpFlag) ||
6432             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6433           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6434           if (OpInfo.isIndirect) {
6435             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6436             LLVMContext &Ctx = *DAG.getContext();
6437             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6438                                                " don't know how to handle tied "
6439                                                "indirect register inputs");
6440             return;
6441           }
6442 
6443           RegsForValue MatchedRegs;
6444           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6445           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6446           MatchedRegs.RegVTs.push_back(RegVT);
6447           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6448           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6449                i != e; ++i) {
6450             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6451               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6452             else {
6453               LLVMContext &Ctx = *DAG.getContext();
6454               Ctx.emitError(CS.getInstruction(),
6455                             "inline asm error: This value"
6456                             " type register class is not natively supported!");
6457               return;
6458             }
6459           }
6460           SDLoc dl = getCurSDLoc();
6461           // Use the produced MatchedRegs object to
6462           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6463                                     Chain, &Flag, CS.getInstruction());
6464           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6465                                            true, OpInfo.getMatchedOperand(), dl,
6466                                            DAG, AsmNodeOperands);
6467           break;
6468         }
6469 
6470         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6471         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6472                "Unexpected number of operands");
6473         // Add information to the INLINEASM node to know about this input.
6474         // See InlineAsm.h isUseOperandTiedToDef.
6475         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6476         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6477                                                     OpInfo.getMatchedOperand());
6478         AsmNodeOperands.push_back(DAG.getTargetConstant(
6479             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6480         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6481         break;
6482       }
6483 
6484       // Treat indirect 'X' constraint as memory.
6485       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6486           OpInfo.isIndirect)
6487         OpInfo.ConstraintType = TargetLowering::C_Memory;
6488 
6489       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6490         std::vector<SDValue> Ops;
6491         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6492                                           Ops, DAG);
6493         if (Ops.empty()) {
6494           LLVMContext &Ctx = *DAG.getContext();
6495           Ctx.emitError(CS.getInstruction(),
6496                         "invalid operand for inline asm constraint '" +
6497                             Twine(OpInfo.ConstraintCode) + "'");
6498           return;
6499         }
6500 
6501         // Add information to the INLINEASM node to know about this input.
6502         unsigned ResOpType =
6503           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6504         AsmNodeOperands.push_back(DAG.getTargetConstant(
6505             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6506         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6507         break;
6508       }
6509 
6510       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6511         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6512         assert(InOperandVal.getValueType() ==
6513                    TLI.getPointerTy(DAG.getDataLayout()) &&
6514                "Memory operands expect pointer values");
6515 
6516         unsigned ConstraintID =
6517             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6518         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6519                "Failed to convert memory constraint code to constraint id.");
6520 
6521         // Add information to the INLINEASM node to know about this input.
6522         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6523         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6524         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6525                                                         getCurSDLoc(),
6526                                                         MVT::i32));
6527         AsmNodeOperands.push_back(InOperandVal);
6528         break;
6529       }
6530 
6531       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6532               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6533              "Unknown constraint type!");
6534 
6535       // TODO: Support this.
6536       if (OpInfo.isIndirect) {
6537         LLVMContext &Ctx = *DAG.getContext();
6538         Ctx.emitError(CS.getInstruction(),
6539                       "Don't know how to handle indirect register inputs yet "
6540                       "for constraint '" +
6541                           Twine(OpInfo.ConstraintCode) + "'");
6542         return;
6543       }
6544 
6545       // Copy the input into the appropriate registers.
6546       if (OpInfo.AssignedRegs.Regs.empty()) {
6547         LLVMContext &Ctx = *DAG.getContext();
6548         Ctx.emitError(CS.getInstruction(),
6549                       "couldn't allocate input reg for constraint '" +
6550                           Twine(OpInfo.ConstraintCode) + "'");
6551         return;
6552       }
6553 
6554       SDLoc dl = getCurSDLoc();
6555 
6556       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6557                                         Chain, &Flag, CS.getInstruction());
6558 
6559       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6560                                                dl, DAG, AsmNodeOperands);
6561       break;
6562     }
6563     case InlineAsm::isClobber: {
6564       // Add the clobbered value to the operand list, so that the register
6565       // allocator is aware that the physreg got clobbered.
6566       if (!OpInfo.AssignedRegs.Regs.empty())
6567         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6568                                                  false, 0, getCurSDLoc(), DAG,
6569                                                  AsmNodeOperands);
6570       break;
6571     }
6572     }
6573   }
6574 
6575   // Finish up input operands.  Set the input chain and add the flag last.
6576   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6577   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6578 
6579   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6580                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6581   Flag = Chain.getValue(1);
6582 
6583   // If this asm returns a register value, copy the result from that register
6584   // and set it as the value of the call.
6585   if (!RetValRegs.Regs.empty()) {
6586     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6587                                              Chain, &Flag, CS.getInstruction());
6588 
6589     // FIXME: Why don't we do this for inline asms with MRVs?
6590     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6591       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6592 
6593       // If any of the results of the inline asm is a vector, it may have the
6594       // wrong width/num elts.  This can happen for register classes that can
6595       // contain multiple different value types.  The preg or vreg allocated may
6596       // not have the same VT as was expected.  Convert it to the right type
6597       // with bit_convert.
6598       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6599         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6600                           ResultType, Val);
6601 
6602       } else if (ResultType != Val.getValueType() &&
6603                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6604         // If a result value was tied to an input value, the computed result may
6605         // have a wider width than the expected result.  Extract the relevant
6606         // portion.
6607         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6608       }
6609 
6610       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6611     }
6612 
6613     setValue(CS.getInstruction(), Val);
6614     // Don't need to use this as a chain in this case.
6615     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6616       return;
6617   }
6618 
6619   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6620 
6621   // Process indirect outputs, first output all of the flagged copies out of
6622   // physregs.
6623   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6624     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6625     const Value *Ptr = IndirectStoresToEmit[i].second;
6626     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6627                                              Chain, &Flag, IA);
6628     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6629   }
6630 
6631   // Emit the non-flagged stores from the physregs.
6632   SmallVector<SDValue, 8> OutChains;
6633   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6634     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6635                                StoresToEmit[i].first,
6636                                getValue(StoresToEmit[i].second),
6637                                MachinePointerInfo(StoresToEmit[i].second),
6638                                false, false, 0);
6639     OutChains.push_back(Val);
6640   }
6641 
6642   if (!OutChains.empty())
6643     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6644 
6645   DAG.setRoot(Chain);
6646 }
6647 
6648 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6649   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6650                           MVT::Other, getRoot(),
6651                           getValue(I.getArgOperand(0)),
6652                           DAG.getSrcValue(I.getArgOperand(0))));
6653 }
6654 
6655 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6657   const DataLayout &DL = DAG.getDataLayout();
6658   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6659                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
6660                            DAG.getSrcValue(I.getOperand(0)),
6661                            DL.getABITypeAlignment(I.getType()));
6662   setValue(&I, V);
6663   DAG.setRoot(V.getValue(1));
6664 }
6665 
6666 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6667   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6668                           MVT::Other, getRoot(),
6669                           getValue(I.getArgOperand(0)),
6670                           DAG.getSrcValue(I.getArgOperand(0))));
6671 }
6672 
6673 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6674   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6675                           MVT::Other, getRoot(),
6676                           getValue(I.getArgOperand(0)),
6677                           getValue(I.getArgOperand(1)),
6678                           DAG.getSrcValue(I.getArgOperand(0)),
6679                           DAG.getSrcValue(I.getArgOperand(1))));
6680 }
6681 
6682 /// \brief Lower an argument list according to the target calling convention.
6683 ///
6684 /// \return A tuple of <return-value, token-chain>
6685 ///
6686 /// This is a helper for lowering intrinsics that follow a target calling
6687 /// convention or require stack pointer adjustment. Only a subset of the
6688 /// intrinsic's operands need to participate in the calling convention.
6689 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands(
6690     ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee,
6691     Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) {
6692   TargetLowering::ArgListTy Args;
6693   Args.reserve(NumArgs);
6694 
6695   // Populate the argument list.
6696   // Attributes for args start at offset 1, after the return attribute.
6697   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6698        ArgI != ArgE; ++ArgI) {
6699     const Value *V = CS->getOperand(ArgI);
6700 
6701     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6702 
6703     TargetLowering::ArgListEntry Entry;
6704     Entry.Node = getValue(V);
6705     Entry.Ty = V->getType();
6706     Entry.setAttributes(&CS, AttrI);
6707     Args.push_back(Entry);
6708   }
6709 
6710   TargetLowering::CallLoweringInfo CLI(DAG);
6711   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6712     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
6713     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6714 
6715   return lowerInvokable(CLI, EHPadBB);
6716 }
6717 
6718 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6719 /// or patchpoint target node's operand list.
6720 ///
6721 /// Constants are converted to TargetConstants purely as an optimization to
6722 /// avoid constant materialization and register allocation.
6723 ///
6724 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6725 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6726 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6727 /// address materialization and register allocation, but may also be required
6728 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6729 /// alloca in the entry block, then the runtime may assume that the alloca's
6730 /// StackMap location can be read immediately after compilation and that the
6731 /// location is valid at any point during execution (this is similar to the
6732 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6733 /// only available in a register, then the runtime would need to trap when
6734 /// execution reaches the StackMap in order to read the alloca's location.
6735 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6736                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
6737                                 SelectionDAGBuilder &Builder) {
6738   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6739     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6740     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6741       Ops.push_back(
6742         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
6743       Ops.push_back(
6744         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
6745     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6746       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6747       Ops.push_back(Builder.DAG.getTargetFrameIndex(
6748           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
6749     } else
6750       Ops.push_back(OpVal);
6751   }
6752 }
6753 
6754 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6755 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6756   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6757   //                                  [live variables...])
6758 
6759   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6760 
6761   SDValue Chain, InFlag, Callee, NullPtr;
6762   SmallVector<SDValue, 32> Ops;
6763 
6764   SDLoc DL = getCurSDLoc();
6765   Callee = getValue(CI.getCalledValue());
6766   NullPtr = DAG.getIntPtrConstant(0, DL, true);
6767 
6768   // The stackmap intrinsic only records the live variables (the arguemnts
6769   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6770   // intrinsic, this won't be lowered to a function call. This means we don't
6771   // have to worry about calling conventions and target specific lowering code.
6772   // Instead we perform the call lowering right here.
6773   //
6774   // chain, flag = CALLSEQ_START(chain, 0)
6775   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6776   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6777   //
6778   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6779   InFlag = Chain.getValue(1);
6780 
6781   // Add the <id> and <numBytes> constants.
6782   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6783   Ops.push_back(DAG.getTargetConstant(
6784                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
6785   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6786   Ops.push_back(DAG.getTargetConstant(
6787                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
6788                   MVT::i32));
6789 
6790   // Push live variables for the stack map.
6791   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
6792 
6793   // We are not pushing any register mask info here on the operands list,
6794   // because the stackmap doesn't clobber anything.
6795 
6796   // Push the chain and the glue flag.
6797   Ops.push_back(Chain);
6798   Ops.push_back(InFlag);
6799 
6800   // Create the STACKMAP node.
6801   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6802   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6803   Chain = SDValue(SM, 0);
6804   InFlag = Chain.getValue(1);
6805 
6806   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6807 
6808   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6809 
6810   // Set the root to the target-lowered call chain.
6811   DAG.setRoot(Chain);
6812 
6813   // Inform the Frame Information that we have a stackmap in this function.
6814   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6815 }
6816 
6817 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6818 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6819                                           const BasicBlock *EHPadBB) {
6820   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6821   //                                                 i32 <numBytes>,
6822   //                                                 i8* <target>,
6823   //                                                 i32 <numArgs>,
6824   //                                                 [Args...],
6825   //                                                 [live variables...])
6826 
6827   CallingConv::ID CC = CS.getCallingConv();
6828   bool IsAnyRegCC = CC == CallingConv::AnyReg;
6829   bool HasDef = !CS->getType()->isVoidTy();
6830   SDLoc dl = getCurSDLoc();
6831   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
6832 
6833   // Handle immediate and symbolic callees.
6834   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
6835     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
6836                                    /*isTarget=*/true);
6837   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
6838     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
6839                                          SDLoc(SymbolicCallee),
6840                                          SymbolicCallee->getValueType(0));
6841 
6842   // Get the real number of arguments participating in the call <numArgs>
6843   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
6844   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6845 
6846   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6847   // Intrinsics include all meta-operands up to but not including CC.
6848   unsigned NumMetaOpers = PatchPointOpers::CCPos;
6849   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
6850          "Not enough arguments provided to the patchpoint intrinsic");
6851 
6852   // For AnyRegCC the arguments are lowered later on manually.
6853   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
6854   Type *ReturnTy =
6855     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6856   std::pair<SDValue, SDValue> Result = lowerCallOperands(
6857       CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true);
6858 
6859   SDNode *CallEnd = Result.second.getNode();
6860   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6861     CallEnd = CallEnd->getOperand(0).getNode();
6862 
6863   /// Get a call instruction from the call sequence chain.
6864   /// Tail calls are not allowed.
6865   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6866          "Expected a callseq node.");
6867   SDNode *Call = CallEnd->getOperand(0).getNode();
6868   bool HasGlue = Call->getGluedNode();
6869 
6870   // Replace the target specific call node with the patchable intrinsic.
6871   SmallVector<SDValue, 8> Ops;
6872 
6873   // Add the <id> and <numBytes> constants.
6874   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
6875   Ops.push_back(DAG.getTargetConstant(
6876                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
6877   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
6878   Ops.push_back(DAG.getTargetConstant(
6879                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
6880                   MVT::i32));
6881 
6882   // Add the callee.
6883   Ops.push_back(Callee);
6884 
6885   // Adjust <numArgs> to account for any arguments that have been passed on the
6886   // stack instead.
6887   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6888   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
6889   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
6890   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
6891 
6892   // Add the calling convention
6893   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
6894 
6895   // Add the arguments we omitted previously. The register allocator should
6896   // place these in any free register.
6897   if (IsAnyRegCC)
6898     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
6899       Ops.push_back(getValue(CS.getArgument(i)));
6900 
6901   // Push the arguments from the call instruction up to the register mask.
6902   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
6903   Ops.append(Call->op_begin() + 2, e);
6904 
6905   // Push live variables for the stack map.
6906   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
6907 
6908   // Push the register mask info.
6909   if (HasGlue)
6910     Ops.push_back(*(Call->op_end()-2));
6911   else
6912     Ops.push_back(*(Call->op_end()-1));
6913 
6914   // Push the chain (this is originally the first operand of the call, but
6915   // becomes now the last or second to last operand).
6916   Ops.push_back(*(Call->op_begin()));
6917 
6918   // Push the glue flag (last operand).
6919   if (HasGlue)
6920     Ops.push_back(*(Call->op_end()-1));
6921 
6922   SDVTList NodeTys;
6923   if (IsAnyRegCC && HasDef) {
6924     // Create the return types based on the intrinsic definition
6925     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6926     SmallVector<EVT, 3> ValueVTs;
6927     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
6928     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
6929 
6930     // There is always a chain and a glue type at the end
6931     ValueVTs.push_back(MVT::Other);
6932     ValueVTs.push_back(MVT::Glue);
6933     NodeTys = DAG.getVTList(ValueVTs);
6934   } else
6935     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6936 
6937   // Replace the target specific call node with a PATCHPOINT node.
6938   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
6939                                          dl, NodeTys, Ops);
6940 
6941   // Update the NodeMap.
6942   if (HasDef) {
6943     if (IsAnyRegCC)
6944       setValue(CS.getInstruction(), SDValue(MN, 0));
6945     else
6946       setValue(CS.getInstruction(), Result.first);
6947   }
6948 
6949   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6950   // call sequence. Furthermore the location of the chain and glue can change
6951   // when the AnyReg calling convention is used and the intrinsic returns a
6952   // value.
6953   if (IsAnyRegCC && HasDef) {
6954     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
6955     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
6956     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
6957   } else
6958     DAG.ReplaceAllUsesWith(Call, MN);
6959   DAG.DeleteNode(Call);
6960 
6961   // Inform the Frame Information that we have a patchpoint in this function.
6962   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
6963 }
6964 
6965 /// Returns an AttributeSet representing the attributes applied to the return
6966 /// value of the given call.
6967 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
6968   SmallVector<Attribute::AttrKind, 2> Attrs;
6969   if (CLI.RetSExt)
6970     Attrs.push_back(Attribute::SExt);
6971   if (CLI.RetZExt)
6972     Attrs.push_back(Attribute::ZExt);
6973   if (CLI.IsInReg)
6974     Attrs.push_back(Attribute::InReg);
6975 
6976   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
6977                            Attrs);
6978 }
6979 
6980 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6981 /// implementation, which just calls LowerCall.
6982 /// FIXME: When all targets are
6983 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6984 std::pair<SDValue, SDValue>
6985 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6986   // Handle the incoming return values from the call.
6987   CLI.Ins.clear();
6988   Type *OrigRetTy = CLI.RetTy;
6989   SmallVector<EVT, 4> RetTys;
6990   SmallVector<uint64_t, 4> Offsets;
6991   auto &DL = CLI.DAG.getDataLayout();
6992   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
6993 
6994   SmallVector<ISD::OutputArg, 4> Outs;
6995   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
6996 
6997   bool CanLowerReturn =
6998       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
6999                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7000 
7001   SDValue DemoteStackSlot;
7002   int DemoteStackIdx = -100;
7003   if (!CanLowerReturn) {
7004     // FIXME: equivalent assert?
7005     // assert(!CS.hasInAllocaArgument() &&
7006     //        "sret demotion is incompatible with inalloca");
7007     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7008     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7009     MachineFunction &MF = CLI.DAG.getMachineFunction();
7010     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7011     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7012 
7013     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7014     ArgListEntry Entry;
7015     Entry.Node = DemoteStackSlot;
7016     Entry.Ty = StackSlotPtrType;
7017     Entry.isSExt = false;
7018     Entry.isZExt = false;
7019     Entry.isInReg = false;
7020     Entry.isSRet = true;
7021     Entry.isNest = false;
7022     Entry.isByVal = false;
7023     Entry.isReturned = false;
7024     Entry.Alignment = Align;
7025     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7026     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7027 
7028     // sret demotion isn't compatible with tail-calls, since the sret argument
7029     // points into the callers stack frame.
7030     CLI.IsTailCall = false;
7031   } else {
7032     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7033       EVT VT = RetTys[I];
7034       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7035       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7036       for (unsigned i = 0; i != NumRegs; ++i) {
7037         ISD::InputArg MyFlags;
7038         MyFlags.VT = RegisterVT;
7039         MyFlags.ArgVT = VT;
7040         MyFlags.Used = CLI.IsReturnValueUsed;
7041         if (CLI.RetSExt)
7042           MyFlags.Flags.setSExt();
7043         if (CLI.RetZExt)
7044           MyFlags.Flags.setZExt();
7045         if (CLI.IsInReg)
7046           MyFlags.Flags.setInReg();
7047         CLI.Ins.push_back(MyFlags);
7048       }
7049     }
7050   }
7051 
7052   // Handle all of the outgoing arguments.
7053   CLI.Outs.clear();
7054   CLI.OutVals.clear();
7055   ArgListTy &Args = CLI.getArgs();
7056   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7057     SmallVector<EVT, 4> ValueVTs;
7058     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7059     Type *FinalType = Args[i].Ty;
7060     if (Args[i].isByVal)
7061       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7062     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7063         FinalType, CLI.CallConv, CLI.IsVarArg);
7064     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7065          ++Value) {
7066       EVT VT = ValueVTs[Value];
7067       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7068       SDValue Op = SDValue(Args[i].Node.getNode(),
7069                            Args[i].Node.getResNo() + Value);
7070       ISD::ArgFlagsTy Flags;
7071       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7072 
7073       if (Args[i].isZExt)
7074         Flags.setZExt();
7075       if (Args[i].isSExt)
7076         Flags.setSExt();
7077       if (Args[i].isInReg)
7078         Flags.setInReg();
7079       if (Args[i].isSRet)
7080         Flags.setSRet();
7081       if (Args[i].isByVal)
7082         Flags.setByVal();
7083       if (Args[i].isInAlloca) {
7084         Flags.setInAlloca();
7085         // Set the byval flag for CCAssignFn callbacks that don't know about
7086         // inalloca.  This way we can know how many bytes we should've allocated
7087         // and how many bytes a callee cleanup function will pop.  If we port
7088         // inalloca to more targets, we'll have to add custom inalloca handling
7089         // in the various CC lowering callbacks.
7090         Flags.setByVal();
7091       }
7092       if (Args[i].isByVal || Args[i].isInAlloca) {
7093         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7094         Type *ElementTy = Ty->getElementType();
7095         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7096         // For ByVal, alignment should come from FE.  BE will guess if this
7097         // info is not there but there are cases it cannot get right.
7098         unsigned FrameAlign;
7099         if (Args[i].Alignment)
7100           FrameAlign = Args[i].Alignment;
7101         else
7102           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7103         Flags.setByValAlign(FrameAlign);
7104       }
7105       if (Args[i].isNest)
7106         Flags.setNest();
7107       if (NeedsRegBlock)
7108         Flags.setInConsecutiveRegs();
7109       Flags.setOrigAlign(OriginalAlignment);
7110 
7111       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7112       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7113       SmallVector<SDValue, 4> Parts(NumParts);
7114       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7115 
7116       if (Args[i].isSExt)
7117         ExtendKind = ISD::SIGN_EXTEND;
7118       else if (Args[i].isZExt)
7119         ExtendKind = ISD::ZERO_EXTEND;
7120 
7121       // Conservatively only handle 'returned' on non-vectors for now
7122       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7123         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7124                "unexpected use of 'returned'");
7125         // Before passing 'returned' to the target lowering code, ensure that
7126         // either the register MVT and the actual EVT are the same size or that
7127         // the return value and argument are extended in the same way; in these
7128         // cases it's safe to pass the argument register value unchanged as the
7129         // return register value (although it's at the target's option whether
7130         // to do so)
7131         // TODO: allow code generation to take advantage of partially preserved
7132         // registers rather than clobbering the entire register when the
7133         // parameter extension method is not compatible with the return
7134         // extension method
7135         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7136             (ExtendKind != ISD::ANY_EXTEND &&
7137              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7138         Flags.setReturned();
7139       }
7140 
7141       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7142                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7143 
7144       for (unsigned j = 0; j != NumParts; ++j) {
7145         // if it isn't first piece, alignment must be 1
7146         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7147                                i < CLI.NumFixedArgs,
7148                                i, j*Parts[j].getValueType().getStoreSize());
7149         if (NumParts > 1 && j == 0)
7150           MyFlags.Flags.setSplit();
7151         else if (j != 0)
7152           MyFlags.Flags.setOrigAlign(1);
7153 
7154         CLI.Outs.push_back(MyFlags);
7155         CLI.OutVals.push_back(Parts[j]);
7156       }
7157 
7158       if (NeedsRegBlock && Value == NumValues - 1)
7159         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7160     }
7161   }
7162 
7163   SmallVector<SDValue, 4> InVals;
7164   CLI.Chain = LowerCall(CLI, InVals);
7165 
7166   // Verify that the target's LowerCall behaved as expected.
7167   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7168          "LowerCall didn't return a valid chain!");
7169   assert((!CLI.IsTailCall || InVals.empty()) &&
7170          "LowerCall emitted a return value for a tail call!");
7171   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7172          "LowerCall didn't emit the correct number of values!");
7173 
7174   // For a tail call, the return value is merely live-out and there aren't
7175   // any nodes in the DAG representing it. Return a special value to
7176   // indicate that a tail call has been emitted and no more Instructions
7177   // should be processed in the current block.
7178   if (CLI.IsTailCall) {
7179     CLI.DAG.setRoot(CLI.Chain);
7180     return std::make_pair(SDValue(), SDValue());
7181   }
7182 
7183   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7184           assert(InVals[i].getNode() &&
7185                  "LowerCall emitted a null value!");
7186           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7187                  "LowerCall emitted a value with the wrong type!");
7188         });
7189 
7190   SmallVector<SDValue, 4> ReturnValues;
7191   if (!CanLowerReturn) {
7192     // The instruction result is the result of loading from the
7193     // hidden sret parameter.
7194     SmallVector<EVT, 1> PVTs;
7195     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7196 
7197     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7198     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7199     EVT PtrVT = PVTs[0];
7200 
7201     unsigned NumValues = RetTys.size();
7202     ReturnValues.resize(NumValues);
7203     SmallVector<SDValue, 4> Chains(NumValues);
7204 
7205     for (unsigned i = 0; i < NumValues; ++i) {
7206       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7207                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7208                                                         PtrVT));
7209       SDValue L = CLI.DAG.getLoad(
7210           RetTys[i], CLI.DL, CLI.Chain, Add,
7211           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7212                                             DemoteStackIdx, Offsets[i]),
7213           false, false, false, 1);
7214       ReturnValues[i] = L;
7215       Chains[i] = L.getValue(1);
7216     }
7217 
7218     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7219   } else {
7220     // Collect the legal value parts into potentially illegal values
7221     // that correspond to the original function's return values.
7222     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7223     if (CLI.RetSExt)
7224       AssertOp = ISD::AssertSext;
7225     else if (CLI.RetZExt)
7226       AssertOp = ISD::AssertZext;
7227     unsigned CurReg = 0;
7228     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7229       EVT VT = RetTys[I];
7230       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7231       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7232 
7233       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7234                                               NumRegs, RegisterVT, VT, nullptr,
7235                                               AssertOp));
7236       CurReg += NumRegs;
7237     }
7238 
7239     // For a function returning void, there is no return value. We can't create
7240     // such a node, so we just return a null return value in that case. In
7241     // that case, nothing will actually look at the value.
7242     if (ReturnValues.empty())
7243       return std::make_pair(SDValue(), CLI.Chain);
7244   }
7245 
7246   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7247                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7248   return std::make_pair(Res, CLI.Chain);
7249 }
7250 
7251 void TargetLowering::LowerOperationWrapper(SDNode *N,
7252                                            SmallVectorImpl<SDValue> &Results,
7253                                            SelectionDAG &DAG) const {
7254   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7255   if (Res.getNode())
7256     Results.push_back(Res);
7257 }
7258 
7259 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7260   llvm_unreachable("LowerOperation not implemented for this target!");
7261 }
7262 
7263 void
7264 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7265   SDValue Op = getNonRegisterValue(V);
7266   assert((Op.getOpcode() != ISD::CopyFromReg ||
7267           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7268          "Copy from a reg to the same reg!");
7269   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7270 
7271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7272   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7273                    V->getType());
7274   SDValue Chain = DAG.getEntryNode();
7275 
7276   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7277                               FuncInfo.PreferredExtendType.end())
7278                                  ? ISD::ANY_EXTEND
7279                                  : FuncInfo.PreferredExtendType[V];
7280   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7281   PendingExports.push_back(Chain);
7282 }
7283 
7284 #include "llvm/CodeGen/SelectionDAGISel.h"
7285 
7286 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7287 /// entry block, return true.  This includes arguments used by switches, since
7288 /// the switch may expand into multiple basic blocks.
7289 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7290   // With FastISel active, we may be splitting blocks, so force creation
7291   // of virtual registers for all non-dead arguments.
7292   if (FastISel)
7293     return A->use_empty();
7294 
7295   const BasicBlock &Entry = A->getParent()->front();
7296   for (const User *U : A->users())
7297     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7298       return false;  // Use not in entry block.
7299 
7300   return true;
7301 }
7302 
7303 void SelectionDAGISel::LowerArguments(const Function &F) {
7304   SelectionDAG &DAG = SDB->DAG;
7305   SDLoc dl = SDB->getCurSDLoc();
7306   const DataLayout &DL = DAG.getDataLayout();
7307   SmallVector<ISD::InputArg, 16> Ins;
7308 
7309   if (!FuncInfo->CanLowerReturn) {
7310     // Put in an sret pointer parameter before all the other parameters.
7311     SmallVector<EVT, 1> ValueVTs;
7312     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7313                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7314 
7315     // NOTE: Assuming that a pointer will never break down to more than one VT
7316     // or one register.
7317     ISD::ArgFlagsTy Flags;
7318     Flags.setSRet();
7319     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7320     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7321                          ISD::InputArg::NoArgIndex, 0);
7322     Ins.push_back(RetArg);
7323   }
7324 
7325   // Set up the incoming argument description vector.
7326   unsigned Idx = 1;
7327   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7328        I != E; ++I, ++Idx) {
7329     SmallVector<EVT, 4> ValueVTs;
7330     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7331     bool isArgValueUsed = !I->use_empty();
7332     unsigned PartBase = 0;
7333     Type *FinalType = I->getType();
7334     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7335       FinalType = cast<PointerType>(FinalType)->getElementType();
7336     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7337         FinalType, F.getCallingConv(), F.isVarArg());
7338     for (unsigned Value = 0, NumValues = ValueVTs.size();
7339          Value != NumValues; ++Value) {
7340       EVT VT = ValueVTs[Value];
7341       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7342       ISD::ArgFlagsTy Flags;
7343       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7344 
7345       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7346         Flags.setZExt();
7347       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7348         Flags.setSExt();
7349       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7350         Flags.setInReg();
7351       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7352         Flags.setSRet();
7353       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7354         Flags.setByVal();
7355       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7356         Flags.setInAlloca();
7357         // Set the byval flag for CCAssignFn callbacks that don't know about
7358         // inalloca.  This way we can know how many bytes we should've allocated
7359         // and how many bytes a callee cleanup function will pop.  If we port
7360         // inalloca to more targets, we'll have to add custom inalloca handling
7361         // in the various CC lowering callbacks.
7362         Flags.setByVal();
7363       }
7364       if (Flags.isByVal() || Flags.isInAlloca()) {
7365         PointerType *Ty = cast<PointerType>(I->getType());
7366         Type *ElementTy = Ty->getElementType();
7367         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7368         // For ByVal, alignment should be passed from FE.  BE will guess if
7369         // this info is not there but there are cases it cannot get right.
7370         unsigned FrameAlign;
7371         if (F.getParamAlignment(Idx))
7372           FrameAlign = F.getParamAlignment(Idx);
7373         else
7374           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7375         Flags.setByValAlign(FrameAlign);
7376       }
7377       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7378         Flags.setNest();
7379       if (NeedsRegBlock)
7380         Flags.setInConsecutiveRegs();
7381       Flags.setOrigAlign(OriginalAlignment);
7382 
7383       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7384       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7385       for (unsigned i = 0; i != NumRegs; ++i) {
7386         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7387                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7388         if (NumRegs > 1 && i == 0)
7389           MyFlags.Flags.setSplit();
7390         // if it isn't first piece, alignment must be 1
7391         else if (i > 0)
7392           MyFlags.Flags.setOrigAlign(1);
7393         Ins.push_back(MyFlags);
7394       }
7395       if (NeedsRegBlock && Value == NumValues - 1)
7396         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7397       PartBase += VT.getStoreSize();
7398     }
7399   }
7400 
7401   // Call the target to set up the argument values.
7402   SmallVector<SDValue, 8> InVals;
7403   SDValue NewRoot = TLI->LowerFormalArguments(
7404       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7405 
7406   // Verify that the target's LowerFormalArguments behaved as expected.
7407   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7408          "LowerFormalArguments didn't return a valid chain!");
7409   assert(InVals.size() == Ins.size() &&
7410          "LowerFormalArguments didn't emit the correct number of values!");
7411   DEBUG({
7412       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7413         assert(InVals[i].getNode() &&
7414                "LowerFormalArguments emitted a null value!");
7415         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7416                "LowerFormalArguments emitted a value with the wrong type!");
7417       }
7418     });
7419 
7420   // Update the DAG with the new chain value resulting from argument lowering.
7421   DAG.setRoot(NewRoot);
7422 
7423   // Set up the argument values.
7424   unsigned i = 0;
7425   Idx = 1;
7426   if (!FuncInfo->CanLowerReturn) {
7427     // Create a virtual register for the sret pointer, and put in a copy
7428     // from the sret argument into it.
7429     SmallVector<EVT, 1> ValueVTs;
7430     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7431                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7432     MVT VT = ValueVTs[0].getSimpleVT();
7433     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7434     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7435     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7436                                         RegVT, VT, nullptr, AssertOp);
7437 
7438     MachineFunction& MF = SDB->DAG.getMachineFunction();
7439     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7440     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7441     FuncInfo->DemoteRegister = SRetReg;
7442     NewRoot =
7443         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7444     DAG.setRoot(NewRoot);
7445 
7446     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7447     // Idx indexes LLVM arguments.  Don't touch it.
7448     ++i;
7449   }
7450 
7451   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7452       ++I, ++Idx) {
7453     SmallVector<SDValue, 4> ArgValues;
7454     SmallVector<EVT, 4> ValueVTs;
7455     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7456     unsigned NumValues = ValueVTs.size();
7457 
7458     // If this argument is unused then remember its value. It is used to generate
7459     // debugging information.
7460     if (I->use_empty() && NumValues) {
7461       SDB->setUnusedArgValue(&*I, InVals[i]);
7462 
7463       // Also remember any frame index for use in FastISel.
7464       if (FrameIndexSDNode *FI =
7465           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7466         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7467     }
7468 
7469     for (unsigned Val = 0; Val != NumValues; ++Val) {
7470       EVT VT = ValueVTs[Val];
7471       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7472       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7473 
7474       if (!I->use_empty()) {
7475         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7476         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7477           AssertOp = ISD::AssertSext;
7478         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7479           AssertOp = ISD::AssertZext;
7480 
7481         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7482                                              NumParts, PartVT, VT,
7483                                              nullptr, AssertOp));
7484       }
7485 
7486       i += NumParts;
7487     }
7488 
7489     // We don't need to do anything else for unused arguments.
7490     if (ArgValues.empty())
7491       continue;
7492 
7493     // Note down frame index.
7494     if (FrameIndexSDNode *FI =
7495         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7496       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7497 
7498     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7499                                      SDB->getCurSDLoc());
7500 
7501     SDB->setValue(&*I, Res);
7502     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7503       if (LoadSDNode *LNode =
7504           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7505         if (FrameIndexSDNode *FI =
7506             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7507         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7508     }
7509 
7510     // If this argument is live outside of the entry block, insert a copy from
7511     // wherever we got it to the vreg that other BB's will reference it as.
7512     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7513       // If we can, though, try to skip creating an unnecessary vreg.
7514       // FIXME: This isn't very clean... it would be nice to make this more
7515       // general.  It's also subtly incompatible with the hacks FastISel
7516       // uses with vregs.
7517       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7518       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7519         FuncInfo->ValueMap[&*I] = Reg;
7520         continue;
7521       }
7522     }
7523     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
7524       FuncInfo->InitializeRegForValue(&*I);
7525       SDB->CopyToExportRegsIfNeeded(&*I);
7526     }
7527   }
7528 
7529   assert(i == InVals.size() && "Argument register count mismatch!");
7530 
7531   // Finally, if the target has anything special to do, allow it to do so.
7532   EmitFunctionEntryCode();
7533 }
7534 
7535 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7536 /// ensure constants are generated when needed.  Remember the virtual registers
7537 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7538 /// directly add them, because expansion might result in multiple MBB's for one
7539 /// BB.  As such, the start of the BB might correspond to a different MBB than
7540 /// the end.
7541 ///
7542 void
7543 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7544   const TerminatorInst *TI = LLVMBB->getTerminator();
7545 
7546   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7547 
7548   // Check PHI nodes in successors that expect a value to be available from this
7549   // block.
7550   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7551     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7552     if (!isa<PHINode>(SuccBB->begin())) continue;
7553     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7554 
7555     // If this terminator has multiple identical successors (common for
7556     // switches), only handle each succ once.
7557     if (!SuccsHandled.insert(SuccMBB).second)
7558       continue;
7559 
7560     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7561 
7562     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7563     // nodes and Machine PHI nodes, but the incoming operands have not been
7564     // emitted yet.
7565     for (BasicBlock::const_iterator I = SuccBB->begin();
7566          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7567       // Ignore dead phi's.
7568       if (PN->use_empty()) continue;
7569 
7570       // Skip empty types
7571       if (PN->getType()->isEmptyTy())
7572         continue;
7573 
7574       unsigned Reg;
7575       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7576 
7577       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7578         unsigned &RegOut = ConstantsOut[C];
7579         if (RegOut == 0) {
7580           RegOut = FuncInfo.CreateRegs(C->getType());
7581           CopyValueToVirtualRegister(C, RegOut);
7582         }
7583         Reg = RegOut;
7584       } else {
7585         DenseMap<const Value *, unsigned>::iterator I =
7586           FuncInfo.ValueMap.find(PHIOp);
7587         if (I != FuncInfo.ValueMap.end())
7588           Reg = I->second;
7589         else {
7590           assert(isa<AllocaInst>(PHIOp) &&
7591                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7592                  "Didn't codegen value into a register!??");
7593           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7594           CopyValueToVirtualRegister(PHIOp, Reg);
7595         }
7596       }
7597 
7598       // Remember that this register needs to added to the machine PHI node as
7599       // the input for this MBB.
7600       SmallVector<EVT, 4> ValueVTs;
7601       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7602       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
7603       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7604         EVT VT = ValueVTs[vti];
7605         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7606         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7607           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7608         Reg += NumRegisters;
7609       }
7610     }
7611   }
7612 
7613   ConstantsOut.clear();
7614 }
7615 
7616 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7617 /// is 0.
7618 MachineBasicBlock *
7619 SelectionDAGBuilder::StackProtectorDescriptor::
7620 AddSuccessorMBB(const BasicBlock *BB,
7621                 MachineBasicBlock *ParentMBB,
7622                 bool IsLikely,
7623                 MachineBasicBlock *SuccMBB) {
7624   // If SuccBB has not been created yet, create it.
7625   if (!SuccMBB) {
7626     MachineFunction *MF = ParentMBB->getParent();
7627     MachineFunction::iterator BBI(ParentMBB);
7628     SuccMBB = MF->CreateMachineBasicBlock(BB);
7629     MF->insert(++BBI, SuccMBB);
7630   }
7631   // Add it as a successor of ParentMBB.
7632   ParentMBB->addSuccessor(
7633       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
7634   return SuccMBB;
7635 }
7636 
7637 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7638   MachineFunction::iterator I(MBB);
7639   if (++I == FuncInfo.MF->end())
7640     return nullptr;
7641   return &*I;
7642 }
7643 
7644 /// During lowering new call nodes can be created (such as memset, etc.).
7645 /// Those will become new roots of the current DAG, but complications arise
7646 /// when they are tail calls. In such cases, the call lowering will update
7647 /// the root, but the builder still needs to know that a tail call has been
7648 /// lowered in order to avoid generating an additional return.
7649 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7650   // If the node is null, we do have a tail call.
7651   if (MaybeTC.getNode() != nullptr)
7652     DAG.setRoot(MaybeTC);
7653   else
7654     HasTailCall = true;
7655 }
7656 
7657 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
7658                                   unsigned *TotalCases, unsigned First,
7659                                   unsigned Last) {
7660   assert(Last >= First);
7661   assert(TotalCases[Last] >= TotalCases[First]);
7662 
7663   APInt LowCase = Clusters[First].Low->getValue();
7664   APInt HighCase = Clusters[Last].High->getValue();
7665   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
7666 
7667   // FIXME: A range of consecutive cases has 100% density, but only requires one
7668   // comparison to lower. We should discriminate against such consecutive ranges
7669   // in jump tables.
7670 
7671   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
7672   uint64_t Range = Diff + 1;
7673 
7674   uint64_t NumCases =
7675       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
7676 
7677   assert(NumCases < UINT64_MAX / 100);
7678   assert(Range >= NumCases);
7679 
7680   return NumCases * 100 >= Range * MinJumpTableDensity;
7681 }
7682 
7683 static inline bool areJTsAllowed(const TargetLowering &TLI) {
7684   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
7685          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
7686 }
7687 
7688 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
7689                                          unsigned First, unsigned Last,
7690                                          const SwitchInst *SI,
7691                                          MachineBasicBlock *DefaultMBB,
7692                                          CaseCluster &JTCluster) {
7693   assert(First <= Last);
7694 
7695   auto Prob = BranchProbability::getZero();
7696   unsigned NumCmps = 0;
7697   std::vector<MachineBasicBlock*> Table;
7698   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
7699 
7700   // Initialize probabilities in JTProbs.
7701   for (unsigned I = First; I <= Last; ++I)
7702     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
7703 
7704   for (unsigned I = First; I <= Last; ++I) {
7705     assert(Clusters[I].Kind == CC_Range);
7706     Prob += Clusters[I].Prob;
7707     APInt Low = Clusters[I].Low->getValue();
7708     APInt High = Clusters[I].High->getValue();
7709     NumCmps += (Low == High) ? 1 : 2;
7710     if (I != First) {
7711       // Fill the gap between this and the previous cluster.
7712       APInt PreviousHigh = Clusters[I - 1].High->getValue();
7713       assert(PreviousHigh.slt(Low));
7714       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
7715       for (uint64_t J = 0; J < Gap; J++)
7716         Table.push_back(DefaultMBB);
7717     }
7718     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
7719     for (uint64_t J = 0; J < ClusterSize; ++J)
7720       Table.push_back(Clusters[I].MBB);
7721     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
7722   }
7723 
7724   unsigned NumDests = JTProbs.size();
7725   if (isSuitableForBitTests(NumDests, NumCmps,
7726                             Clusters[First].Low->getValue(),
7727                             Clusters[Last].High->getValue())) {
7728     // Clusters[First..Last] should be lowered as bit tests instead.
7729     return false;
7730   }
7731 
7732   // Create the MBB that will load from and jump through the table.
7733   // Note: We create it here, but it's not inserted into the function yet.
7734   MachineFunction *CurMF = FuncInfo.MF;
7735   MachineBasicBlock *JumpTableMBB =
7736       CurMF->CreateMachineBasicBlock(SI->getParent());
7737 
7738   // Add successors. Note: use table order for determinism.
7739   SmallPtrSet<MachineBasicBlock *, 8> Done;
7740   for (MachineBasicBlock *Succ : Table) {
7741     if (Done.count(Succ))
7742       continue;
7743     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
7744     Done.insert(Succ);
7745   }
7746   JumpTableMBB->normalizeSuccProbs();
7747 
7748   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7749   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
7750                      ->createJumpTableIndex(Table);
7751 
7752   // Set up the jump table info.
7753   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
7754   JumpTableHeader JTH(Clusters[First].Low->getValue(),
7755                       Clusters[Last].High->getValue(), SI->getCondition(),
7756                       nullptr, false);
7757   JTCases.emplace_back(std::move(JTH), std::move(JT));
7758 
7759   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
7760                                      JTCases.size() - 1, Prob);
7761   return true;
7762 }
7763 
7764 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
7765                                          const SwitchInst *SI,
7766                                          MachineBasicBlock *DefaultMBB) {
7767 #ifndef NDEBUG
7768   // Clusters must be non-empty, sorted, and only contain Range clusters.
7769   assert(!Clusters.empty());
7770   for (CaseCluster &C : Clusters)
7771     assert(C.Kind == CC_Range);
7772   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
7773     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
7774 #endif
7775 
7776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7777   if (!areJTsAllowed(TLI))
7778     return;
7779 
7780   const int64_t N = Clusters.size();
7781   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
7782 
7783   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
7784   SmallVector<unsigned, 8> TotalCases(N);
7785 
7786   for (unsigned i = 0; i < N; ++i) {
7787     APInt Hi = Clusters[i].High->getValue();
7788     APInt Lo = Clusters[i].Low->getValue();
7789     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
7790     if (i != 0)
7791       TotalCases[i] += TotalCases[i - 1];
7792   }
7793 
7794   if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
7795     // Cheap case: the whole range might be suitable for jump table.
7796     CaseCluster JTCluster;
7797     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
7798       Clusters[0] = JTCluster;
7799       Clusters.resize(1);
7800       return;
7801     }
7802   }
7803 
7804   // The algorithm below is not suitable for -O0.
7805   if (TM.getOptLevel() == CodeGenOpt::None)
7806     return;
7807 
7808   // Split Clusters into minimum number of dense partitions. The algorithm uses
7809   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
7810   // for the Case Statement'" (1994), but builds the MinPartitions array in
7811   // reverse order to make it easier to reconstruct the partitions in ascending
7812   // order. In the choice between two optimal partitionings, it picks the one
7813   // which yields more jump tables.
7814 
7815   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
7816   SmallVector<unsigned, 8> MinPartitions(N);
7817   // LastElement[i] is the last element of the partition starting at i.
7818   SmallVector<unsigned, 8> LastElement(N);
7819   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
7820   SmallVector<unsigned, 8> NumTables(N);
7821 
7822   // Base case: There is only one way to partition Clusters[N-1].
7823   MinPartitions[N - 1] = 1;
7824   LastElement[N - 1] = N - 1;
7825   assert(MinJumpTableSize > 1);
7826   NumTables[N - 1] = 0;
7827 
7828   // Note: loop indexes are signed to avoid underflow.
7829   for (int64_t i = N - 2; i >= 0; i--) {
7830     // Find optimal partitioning of Clusters[i..N-1].
7831     // Baseline: Put Clusters[i] into a partition on its own.
7832     MinPartitions[i] = MinPartitions[i + 1] + 1;
7833     LastElement[i] = i;
7834     NumTables[i] = NumTables[i + 1];
7835 
7836     // Search for a solution that results in fewer partitions.
7837     for (int64_t j = N - 1; j > i; j--) {
7838       // Try building a partition from Clusters[i..j].
7839       if (isDense(Clusters, &TotalCases[0], i, j)) {
7840         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
7841         bool IsTable = j - i + 1 >= MinJumpTableSize;
7842         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
7843 
7844         // If this j leads to fewer partitions, or same number of partitions
7845         // with more lookup tables, it is a better partitioning.
7846         if (NumPartitions < MinPartitions[i] ||
7847             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
7848           MinPartitions[i] = NumPartitions;
7849           LastElement[i] = j;
7850           NumTables[i] = Tables;
7851         }
7852       }
7853     }
7854   }
7855 
7856   // Iterate over the partitions, replacing some with jump tables in-place.
7857   unsigned DstIndex = 0;
7858   for (unsigned First = 0, Last; First < N; First = Last + 1) {
7859     Last = LastElement[First];
7860     assert(Last >= First);
7861     assert(DstIndex <= First);
7862     unsigned NumClusters = Last - First + 1;
7863 
7864     CaseCluster JTCluster;
7865     if (NumClusters >= MinJumpTableSize &&
7866         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
7867       Clusters[DstIndex++] = JTCluster;
7868     } else {
7869       for (unsigned I = First; I <= Last; ++I)
7870         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
7871     }
7872   }
7873   Clusters.resize(DstIndex);
7874 }
7875 
7876 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
7877   // FIXME: Using the pointer type doesn't seem ideal.
7878   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
7879   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
7880   return Range <= BW;
7881 }
7882 
7883 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
7884                                                 unsigned NumCmps,
7885                                                 const APInt &Low,
7886                                                 const APInt &High) {
7887   // FIXME: I don't think NumCmps is the correct metric: a single case and a
7888   // range of cases both require only one branch to lower. Just looking at the
7889   // number of clusters and destinations should be enough to decide whether to
7890   // build bit tests.
7891 
7892   // To lower a range with bit tests, the range must fit the bitwidth of a
7893   // machine word.
7894   if (!rangeFitsInWord(Low, High))
7895     return false;
7896 
7897   // Decide whether it's profitable to lower this range with bit tests. Each
7898   // destination requires a bit test and branch, and there is an overall range
7899   // check branch. For a small number of clusters, separate comparisons might be
7900   // cheaper, and for many destinations, splitting the range might be better.
7901   return (NumDests == 1 && NumCmps >= 3) ||
7902          (NumDests == 2 && NumCmps >= 5) ||
7903          (NumDests == 3 && NumCmps >= 6);
7904 }
7905 
7906 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
7907                                         unsigned First, unsigned Last,
7908                                         const SwitchInst *SI,
7909                                         CaseCluster &BTCluster) {
7910   assert(First <= Last);
7911   if (First == Last)
7912     return false;
7913 
7914   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
7915   unsigned NumCmps = 0;
7916   for (int64_t I = First; I <= Last; ++I) {
7917     assert(Clusters[I].Kind == CC_Range);
7918     Dests.set(Clusters[I].MBB->getNumber());
7919     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
7920   }
7921   unsigned NumDests = Dests.count();
7922 
7923   APInt Low = Clusters[First].Low->getValue();
7924   APInt High = Clusters[Last].High->getValue();
7925   assert(Low.slt(High));
7926 
7927   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
7928     return false;
7929 
7930   APInt LowBound;
7931   APInt CmpRange;
7932 
7933   const int BitWidth = DAG.getTargetLoweringInfo()
7934                            .getPointerTy(DAG.getDataLayout())
7935                            .getSizeInBits();
7936   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
7937 
7938   // Check if the clusters cover a contiguous range such that no value in the
7939   // range will jump to the default statement.
7940   bool ContiguousRange = true;
7941   for (int64_t I = First + 1; I <= Last; ++I) {
7942     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
7943       ContiguousRange = false;
7944       break;
7945     }
7946   }
7947 
7948   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
7949     // Optimize the case where all the case values fit in a word without having
7950     // to subtract minValue. In this case, we can optimize away the subtraction.
7951     LowBound = APInt::getNullValue(Low.getBitWidth());
7952     CmpRange = High;
7953     ContiguousRange = false;
7954   } else {
7955     LowBound = Low;
7956     CmpRange = High - Low;
7957   }
7958 
7959   CaseBitsVector CBV;
7960   auto TotalProb = BranchProbability::getZero();
7961   for (unsigned i = First; i <= Last; ++i) {
7962     // Find the CaseBits for this destination.
7963     unsigned j;
7964     for (j = 0; j < CBV.size(); ++j)
7965       if (CBV[j].BB == Clusters[i].MBB)
7966         break;
7967     if (j == CBV.size())
7968       CBV.push_back(
7969           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
7970     CaseBits *CB = &CBV[j];
7971 
7972     // Update Mask, Bits and ExtraProb.
7973     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
7974     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
7975     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
7976     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
7977     CB->Bits += Hi - Lo + 1;
7978     CB->ExtraProb += Clusters[i].Prob;
7979     TotalProb += Clusters[i].Prob;
7980   }
7981 
7982   BitTestInfo BTI;
7983   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
7984     // Sort by probability first, number of bits second.
7985     if (a.ExtraProb != b.ExtraProb)
7986       return a.ExtraProb > b.ExtraProb;
7987     return a.Bits > b.Bits;
7988   });
7989 
7990   for (auto &CB : CBV) {
7991     MachineBasicBlock *BitTestBB =
7992         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
7993     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
7994   }
7995   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
7996                             SI->getCondition(), -1U, MVT::Other, false,
7997                             ContiguousRange, nullptr, nullptr, std::move(BTI),
7998                             TotalProb);
7999 
8000   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8001                                     BitTestCases.size() - 1, TotalProb);
8002   return true;
8003 }
8004 
8005 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8006                                               const SwitchInst *SI) {
8007 // Partition Clusters into as few subsets as possible, where each subset has a
8008 // range that fits in a machine word and has <= 3 unique destinations.
8009 
8010 #ifndef NDEBUG
8011   // Clusters must be sorted and contain Range or JumpTable clusters.
8012   assert(!Clusters.empty());
8013   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8014   for (const CaseCluster &C : Clusters)
8015     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8016   for (unsigned i = 1; i < Clusters.size(); ++i)
8017     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8018 #endif
8019 
8020   // The algorithm below is not suitable for -O0.
8021   if (TM.getOptLevel() == CodeGenOpt::None)
8022     return;
8023 
8024   // If target does not have legal shift left, do not emit bit tests at all.
8025   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8026   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8027   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8028     return;
8029 
8030   int BitWidth = PTy.getSizeInBits();
8031   const int64_t N = Clusters.size();
8032 
8033   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8034   SmallVector<unsigned, 8> MinPartitions(N);
8035   // LastElement[i] is the last element of the partition starting at i.
8036   SmallVector<unsigned, 8> LastElement(N);
8037 
8038   // FIXME: This might not be the best algorithm for finding bit test clusters.
8039 
8040   // Base case: There is only one way to partition Clusters[N-1].
8041   MinPartitions[N - 1] = 1;
8042   LastElement[N - 1] = N - 1;
8043 
8044   // Note: loop indexes are signed to avoid underflow.
8045   for (int64_t i = N - 2; i >= 0; --i) {
8046     // Find optimal partitioning of Clusters[i..N-1].
8047     // Baseline: Put Clusters[i] into a partition on its own.
8048     MinPartitions[i] = MinPartitions[i + 1] + 1;
8049     LastElement[i] = i;
8050 
8051     // Search for a solution that results in fewer partitions.
8052     // Note: the search is limited by BitWidth, reducing time complexity.
8053     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8054       // Try building a partition from Clusters[i..j].
8055 
8056       // Check the range.
8057       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8058                            Clusters[j].High->getValue()))
8059         continue;
8060 
8061       // Check nbr of destinations and cluster types.
8062       // FIXME: This works, but doesn't seem very efficient.
8063       bool RangesOnly = true;
8064       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8065       for (int64_t k = i; k <= j; k++) {
8066         if (Clusters[k].Kind != CC_Range) {
8067           RangesOnly = false;
8068           break;
8069         }
8070         Dests.set(Clusters[k].MBB->getNumber());
8071       }
8072       if (!RangesOnly || Dests.count() > 3)
8073         break;
8074 
8075       // Check if it's a better partition.
8076       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8077       if (NumPartitions < MinPartitions[i]) {
8078         // Found a better partition.
8079         MinPartitions[i] = NumPartitions;
8080         LastElement[i] = j;
8081       }
8082     }
8083   }
8084 
8085   // Iterate over the partitions, replacing with bit-test clusters in-place.
8086   unsigned DstIndex = 0;
8087   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8088     Last = LastElement[First];
8089     assert(First <= Last);
8090     assert(DstIndex <= First);
8091 
8092     CaseCluster BitTestCluster;
8093     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8094       Clusters[DstIndex++] = BitTestCluster;
8095     } else {
8096       size_t NumClusters = Last - First + 1;
8097       std::memmove(&Clusters[DstIndex], &Clusters[First],
8098                    sizeof(Clusters[0]) * NumClusters);
8099       DstIndex += NumClusters;
8100     }
8101   }
8102   Clusters.resize(DstIndex);
8103 }
8104 
8105 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8106                                         MachineBasicBlock *SwitchMBB,
8107                                         MachineBasicBlock *DefaultMBB) {
8108   MachineFunction *CurMF = FuncInfo.MF;
8109   MachineBasicBlock *NextMBB = nullptr;
8110   MachineFunction::iterator BBI(W.MBB);
8111   if (++BBI != FuncInfo.MF->end())
8112     NextMBB = &*BBI;
8113 
8114   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8115 
8116   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8117 
8118   if (Size == 2 && W.MBB == SwitchMBB) {
8119     // If any two of the cases has the same destination, and if one value
8120     // is the same as the other, but has one bit unset that the other has set,
8121     // use bit manipulation to do two compares at once.  For example:
8122     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8123     // TODO: This could be extended to merge any 2 cases in switches with 3
8124     // cases.
8125     // TODO: Handle cases where W.CaseBB != SwitchBB.
8126     CaseCluster &Small = *W.FirstCluster;
8127     CaseCluster &Big = *W.LastCluster;
8128 
8129     if (Small.Low == Small.High && Big.Low == Big.High &&
8130         Small.MBB == Big.MBB) {
8131       const APInt &SmallValue = Small.Low->getValue();
8132       const APInt &BigValue = Big.Low->getValue();
8133 
8134       // Check that there is only one bit different.
8135       APInt CommonBit = BigValue ^ SmallValue;
8136       if (CommonBit.isPowerOf2()) {
8137         SDValue CondLHS = getValue(Cond);
8138         EVT VT = CondLHS.getValueType();
8139         SDLoc DL = getCurSDLoc();
8140 
8141         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8142                                  DAG.getConstant(CommonBit, DL, VT));
8143         SDValue Cond = DAG.getSetCC(
8144             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8145             ISD::SETEQ);
8146 
8147         // Update successor info.
8148         // Both Small and Big will jump to Small.BB, so we sum up the
8149         // probabilities.
8150         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8151         if (BPI)
8152           addSuccessorWithProb(
8153               SwitchMBB, DefaultMBB,
8154               // The default destination is the first successor in IR.
8155               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8156         else
8157           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8158 
8159         // Insert the true branch.
8160         SDValue BrCond =
8161             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8162                         DAG.getBasicBlock(Small.MBB));
8163         // Insert the false branch.
8164         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8165                              DAG.getBasicBlock(DefaultMBB));
8166 
8167         DAG.setRoot(BrCond);
8168         return;
8169       }
8170     }
8171   }
8172 
8173   if (TM.getOptLevel() != CodeGenOpt::None) {
8174     // Order cases by probability so the most likely case will be checked first.
8175     std::sort(W.FirstCluster, W.LastCluster + 1,
8176               [](const CaseCluster &a, const CaseCluster &b) {
8177       return a.Prob > b.Prob;
8178     });
8179 
8180     // Rearrange the case blocks so that the last one falls through if possible
8181     // without without changing the order of probabilities.
8182     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8183       --I;
8184       if (I->Prob > W.LastCluster->Prob)
8185         break;
8186       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8187         std::swap(*I, *W.LastCluster);
8188         break;
8189       }
8190     }
8191   }
8192 
8193   // Compute total probability.
8194   BranchProbability DefaultProb = W.DefaultProb;
8195   BranchProbability UnhandledProbs = DefaultProb;
8196   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8197     UnhandledProbs += I->Prob;
8198 
8199   MachineBasicBlock *CurMBB = W.MBB;
8200   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8201     MachineBasicBlock *Fallthrough;
8202     if (I == W.LastCluster) {
8203       // For the last cluster, fall through to the default destination.
8204       Fallthrough = DefaultMBB;
8205     } else {
8206       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8207       CurMF->insert(BBI, Fallthrough);
8208       // Put Cond in a virtual register to make it available from the new blocks.
8209       ExportFromCurrentBlock(Cond);
8210     }
8211     UnhandledProbs -= I->Prob;
8212 
8213     switch (I->Kind) {
8214       case CC_JumpTable: {
8215         // FIXME: Optimize away range check based on pivot comparisons.
8216         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8217         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8218 
8219         // The jump block hasn't been inserted yet; insert it here.
8220         MachineBasicBlock *JumpMBB = JT->MBB;
8221         CurMF->insert(BBI, JumpMBB);
8222 
8223         auto JumpProb = I->Prob;
8224         auto FallthroughProb = UnhandledProbs;
8225 
8226         // If the default statement is a target of the jump table, we evenly
8227         // distribute the default probability to successors of CurMBB. Also
8228         // update the probability on the edge from JumpMBB to Fallthrough.
8229         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8230                                               SE = JumpMBB->succ_end();
8231              SI != SE; ++SI) {
8232           if (*SI == DefaultMBB) {
8233             JumpProb += DefaultProb / 2;
8234             FallthroughProb -= DefaultProb / 2;
8235             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8236             JumpMBB->normalizeSuccProbs();
8237             break;
8238           }
8239         }
8240 
8241         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8242         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8243         CurMBB->normalizeSuccProbs();
8244 
8245         // The jump table header will be inserted in our current block, do the
8246         // range check, and fall through to our fallthrough block.
8247         JTH->HeaderBB = CurMBB;
8248         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8249 
8250         // If we're in the right place, emit the jump table header right now.
8251         if (CurMBB == SwitchMBB) {
8252           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8253           JTH->Emitted = true;
8254         }
8255         break;
8256       }
8257       case CC_BitTests: {
8258         // FIXME: Optimize away range check based on pivot comparisons.
8259         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8260 
8261         // The bit test blocks haven't been inserted yet; insert them here.
8262         for (BitTestCase &BTC : BTB->Cases)
8263           CurMF->insert(BBI, BTC.ThisBB);
8264 
8265         // Fill in fields of the BitTestBlock.
8266         BTB->Parent = CurMBB;
8267         BTB->Default = Fallthrough;
8268 
8269         BTB->DefaultProb = UnhandledProbs;
8270         // If the cases in bit test don't form a contiguous range, we evenly
8271         // distribute the probability on the edge to Fallthrough to two
8272         // successors of CurMBB.
8273         if (!BTB->ContiguousRange) {
8274           BTB->Prob += DefaultProb / 2;
8275           BTB->DefaultProb -= DefaultProb / 2;
8276         }
8277 
8278         // If we're in the right place, emit the bit test header right now.
8279         if (CurMBB == SwitchMBB) {
8280           visitBitTestHeader(*BTB, SwitchMBB);
8281           BTB->Emitted = true;
8282         }
8283         break;
8284       }
8285       case CC_Range: {
8286         const Value *RHS, *LHS, *MHS;
8287         ISD::CondCode CC;
8288         if (I->Low == I->High) {
8289           // Check Cond == I->Low.
8290           CC = ISD::SETEQ;
8291           LHS = Cond;
8292           RHS=I->Low;
8293           MHS = nullptr;
8294         } else {
8295           // Check I->Low <= Cond <= I->High.
8296           CC = ISD::SETLE;
8297           LHS = I->Low;
8298           MHS = Cond;
8299           RHS = I->High;
8300         }
8301 
8302         // The false probability is the sum of all unhandled cases.
8303         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8304                      UnhandledProbs);
8305 
8306         if (CurMBB == SwitchMBB)
8307           visitSwitchCase(CB, SwitchMBB);
8308         else
8309           SwitchCases.push_back(CB);
8310 
8311         break;
8312       }
8313     }
8314     CurMBB = Fallthrough;
8315   }
8316 }
8317 
8318 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8319                                               CaseClusterIt First,
8320                                               CaseClusterIt Last) {
8321   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8322     if (X.Prob != CC.Prob)
8323       return X.Prob > CC.Prob;
8324 
8325     // Ties are broken by comparing the case value.
8326     return X.Low->getValue().slt(CC.Low->getValue());
8327   });
8328 }
8329 
8330 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8331                                         const SwitchWorkListItem &W,
8332                                         Value *Cond,
8333                                         MachineBasicBlock *SwitchMBB) {
8334   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8335          "Clusters not sorted?");
8336 
8337   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8338 
8339   // Balance the tree based on branch probabilities to create a near-optimal (in
8340   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8341   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8342   CaseClusterIt LastLeft = W.FirstCluster;
8343   CaseClusterIt FirstRight = W.LastCluster;
8344   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8345   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8346 
8347   // Move LastLeft and FirstRight towards each other from opposite directions to
8348   // find a partitioning of the clusters which balances the probability on both
8349   // sides. If LeftProb and RightProb are equal, alternate which side is
8350   // taken to ensure 0-probability nodes are distributed evenly.
8351   unsigned I = 0;
8352   while (LastLeft + 1 < FirstRight) {
8353     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8354       LeftProb += (++LastLeft)->Prob;
8355     else
8356       RightProb += (--FirstRight)->Prob;
8357     I++;
8358   }
8359 
8360   for (;;) {
8361     // Our binary search tree differs from a typical BST in that ours can have up
8362     // to three values in each leaf. The pivot selection above doesn't take that
8363     // into account, which means the tree might require more nodes and be less
8364     // efficient. We compensate for this here.
8365 
8366     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8367     unsigned NumRight = W.LastCluster - FirstRight + 1;
8368 
8369     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8370       // If one side has less than 3 clusters, and the other has more than 3,
8371       // consider taking a cluster from the other side.
8372 
8373       if (NumLeft < NumRight) {
8374         // Consider moving the first cluster on the right to the left side.
8375         CaseCluster &CC = *FirstRight;
8376         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8377         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8378         if (LeftSideRank <= RightSideRank) {
8379           // Moving the cluster to the left does not demote it.
8380           ++LastLeft;
8381           ++FirstRight;
8382           continue;
8383         }
8384       } else {
8385         assert(NumRight < NumLeft);
8386         // Consider moving the last element on the left to the right side.
8387         CaseCluster &CC = *LastLeft;
8388         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8389         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8390         if (RightSideRank <= LeftSideRank) {
8391           // Moving the cluster to the right does not demot it.
8392           --LastLeft;
8393           --FirstRight;
8394           continue;
8395         }
8396       }
8397     }
8398     break;
8399   }
8400 
8401   assert(LastLeft + 1 == FirstRight);
8402   assert(LastLeft >= W.FirstCluster);
8403   assert(FirstRight <= W.LastCluster);
8404 
8405   // Use the first element on the right as pivot since we will make less-than
8406   // comparisons against it.
8407   CaseClusterIt PivotCluster = FirstRight;
8408   assert(PivotCluster > W.FirstCluster);
8409   assert(PivotCluster <= W.LastCluster);
8410 
8411   CaseClusterIt FirstLeft = W.FirstCluster;
8412   CaseClusterIt LastRight = W.LastCluster;
8413 
8414   const ConstantInt *Pivot = PivotCluster->Low;
8415 
8416   // New blocks will be inserted immediately after the current one.
8417   MachineFunction::iterator BBI(W.MBB);
8418   ++BBI;
8419 
8420   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8421   // we can branch to its destination directly if it's squeezed exactly in
8422   // between the known lower bound and Pivot - 1.
8423   MachineBasicBlock *LeftMBB;
8424   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8425       FirstLeft->Low == W.GE &&
8426       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8427     LeftMBB = FirstLeft->MBB;
8428   } else {
8429     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8430     FuncInfo.MF->insert(BBI, LeftMBB);
8431     WorkList.push_back(
8432         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8433     // Put Cond in a virtual register to make it available from the new blocks.
8434     ExportFromCurrentBlock(Cond);
8435   }
8436 
8437   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8438   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8439   // directly if RHS.High equals the current upper bound.
8440   MachineBasicBlock *RightMBB;
8441   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8442       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8443     RightMBB = FirstRight->MBB;
8444   } else {
8445     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8446     FuncInfo.MF->insert(BBI, RightMBB);
8447     WorkList.push_back(
8448         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8449     // Put Cond in a virtual register to make it available from the new blocks.
8450     ExportFromCurrentBlock(Cond);
8451   }
8452 
8453   // Create the CaseBlock record that will be used to lower the branch.
8454   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8455                LeftProb, RightProb);
8456 
8457   if (W.MBB == SwitchMBB)
8458     visitSwitchCase(CB, SwitchMBB);
8459   else
8460     SwitchCases.push_back(CB);
8461 }
8462 
8463 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8464   // Extract cases from the switch.
8465   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8466   CaseClusterVector Clusters;
8467   Clusters.reserve(SI.getNumCases());
8468   for (auto I : SI.cases()) {
8469     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8470     const ConstantInt *CaseVal = I.getCaseValue();
8471     BranchProbability Prob =
8472         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8473             : BranchProbability(1, SI.getNumCases() + 1);
8474     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8475   }
8476 
8477   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8478 
8479   // Cluster adjacent cases with the same destination. We do this at all
8480   // optimization levels because it's cheap to do and will make codegen faster
8481   // if there are many clusters.
8482   sortAndRangeify(Clusters);
8483 
8484   if (TM.getOptLevel() != CodeGenOpt::None) {
8485     // Replace an unreachable default with the most popular destination.
8486     // FIXME: Exploit unreachable default more aggressively.
8487     bool UnreachableDefault =
8488         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8489     if (UnreachableDefault && !Clusters.empty()) {
8490       DenseMap<const BasicBlock *, unsigned> Popularity;
8491       unsigned MaxPop = 0;
8492       const BasicBlock *MaxBB = nullptr;
8493       for (auto I : SI.cases()) {
8494         const BasicBlock *BB = I.getCaseSuccessor();
8495         if (++Popularity[BB] > MaxPop) {
8496           MaxPop = Popularity[BB];
8497           MaxBB = BB;
8498         }
8499       }
8500       // Set new default.
8501       assert(MaxPop > 0 && MaxBB);
8502       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8503 
8504       // Remove cases that were pointing to the destination that is now the
8505       // default.
8506       CaseClusterVector New;
8507       New.reserve(Clusters.size());
8508       for (CaseCluster &CC : Clusters) {
8509         if (CC.MBB != DefaultMBB)
8510           New.push_back(CC);
8511       }
8512       Clusters = std::move(New);
8513     }
8514   }
8515 
8516   // If there is only the default destination, jump there directly.
8517   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
8518   if (Clusters.empty()) {
8519     SwitchMBB->addSuccessor(DefaultMBB);
8520     if (DefaultMBB != NextBlock(SwitchMBB)) {
8521       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
8522                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
8523     }
8524     return;
8525   }
8526 
8527   findJumpTables(Clusters, &SI, DefaultMBB);
8528   findBitTestClusters(Clusters, &SI);
8529 
8530   DEBUG({
8531     dbgs() << "Case clusters: ";
8532     for (const CaseCluster &C : Clusters) {
8533       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
8534       if (C.Kind == CC_BitTests) dbgs() << "BT:";
8535 
8536       C.Low->getValue().print(dbgs(), true);
8537       if (C.Low != C.High) {
8538         dbgs() << '-';
8539         C.High->getValue().print(dbgs(), true);
8540       }
8541       dbgs() << ' ';
8542     }
8543     dbgs() << '\n';
8544   });
8545 
8546   assert(!Clusters.empty());
8547   SwitchWorkList WorkList;
8548   CaseClusterIt First = Clusters.begin();
8549   CaseClusterIt Last = Clusters.end() - 1;
8550   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
8551   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
8552 
8553   while (!WorkList.empty()) {
8554     SwitchWorkListItem W = WorkList.back();
8555     WorkList.pop_back();
8556     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
8557 
8558     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
8559       // For optimized builds, lower large range as a balanced binary tree.
8560       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
8561       continue;
8562     }
8563 
8564     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
8565   }
8566 }
8567