1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1182 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1183 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1184 if (IsMSVCCXX || IsCoreCLR) 1185 CatchPadMBB->setIsEHFuncletEntry(); 1186 1187 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1188 } 1189 1190 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1191 // Update machine-CFG edge. 1192 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1193 FuncInfo.MBB->addSuccessor(TargetMBB); 1194 1195 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1196 bool IsSEH = isAsynchronousEHPersonality(Pers); 1197 if (IsSEH) { 1198 // If this is not a fall-through branch or optimizations are switched off, 1199 // emit the branch. 1200 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1201 TM.getOptLevel() == CodeGenOpt::None) 1202 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1203 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1204 return; 1205 } 1206 1207 // Figure out the funclet membership for the catchret's successor. 1208 // This will be used by the FuncletLayout pass to determine how to order the 1209 // BB's. 1210 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 1211 const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I]; 1212 assert(SuccessorColor && "No parent funclet for catchret!"); 1213 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1214 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1215 1216 // Create the terminator node. 1217 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1218 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1219 DAG.getBasicBlock(SuccessorColorMBB)); 1220 DAG.setRoot(Ret); 1221 } 1222 1223 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1224 // Don't emit any special code for the cleanuppad instruction. It just marks 1225 // the start of a funclet. 1226 FuncInfo.MBB->setIsEHFuncletEntry(); 1227 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1228 } 1229 1230 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1231 /// many places it could ultimately go. In the IR, we have a single unwind 1232 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1233 /// This function skips over imaginary basic blocks that hold catchswitch or 1234 /// terminatepad instructions, and finds all the "real" machine 1235 /// basic block destinations. As those destinations may not be successors of 1236 /// EHPadBB, here we also calculate the edge probability to those destinations. 1237 /// The passed-in Prob is the edge probability to EHPadBB. 1238 static void findUnwindDestinations( 1239 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1240 BranchProbability Prob, 1241 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1242 &UnwindDests) { 1243 EHPersonality Personality = 1244 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1245 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1246 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1247 1248 while (EHPadBB) { 1249 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1250 BasicBlock *NewEHPadBB = nullptr; 1251 if (isa<LandingPadInst>(Pad)) { 1252 // Stop on landingpads. They are not funclets. 1253 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1254 break; 1255 } else if (isa<CleanupPadInst>(Pad)) { 1256 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1257 // personalities. 1258 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1259 UnwindDests.back().first->setIsEHFuncletEntry(); 1260 break; 1261 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1262 // Add the catchpad handlers to the possible destinations. 1263 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1264 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1265 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1266 if (IsMSVCCXX || IsCoreCLR) 1267 UnwindDests.back().first->setIsEHFuncletEntry(); 1268 } 1269 NewEHPadBB = CatchSwitch->getUnwindDest(); 1270 } else { 1271 continue; 1272 } 1273 1274 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1275 if (BPI && NewEHPadBB) 1276 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1277 EHPadBB = NewEHPadBB; 1278 } 1279 } 1280 1281 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1282 // Update successor info. 1283 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1284 auto UnwindDest = I.getUnwindDest(); 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 BranchProbability UnwindDestProb = 1287 (BPI && UnwindDest) 1288 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1289 : BranchProbability::getZero(); 1290 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1291 for (auto &UnwindDest : UnwindDests) { 1292 UnwindDest.first->setIsEHPad(); 1293 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1294 } 1295 FuncInfo.MBB->normalizeSuccProbs(); 1296 1297 // Create the terminator node. 1298 SDValue Ret = 1299 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1300 DAG.setRoot(Ret); 1301 } 1302 1303 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1304 report_fatal_error("visitTerminatePad not yet implemented!"); 1305 } 1306 1307 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1308 report_fatal_error("visitCatchSwitch not yet implemented!"); 1309 } 1310 1311 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1312 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1313 auto &DL = DAG.getDataLayout(); 1314 SDValue Chain = getControlRoot(); 1315 SmallVector<ISD::OutputArg, 8> Outs; 1316 SmallVector<SDValue, 8> OutVals; 1317 1318 if (!FuncInfo.CanLowerReturn) { 1319 unsigned DemoteReg = FuncInfo.DemoteRegister; 1320 const Function *F = I.getParent()->getParent(); 1321 1322 // Emit a store of the return value through the virtual register. 1323 // Leave Outs empty so that LowerReturn won't try to load return 1324 // registers the usual way. 1325 SmallVector<EVT, 1> PtrValueVTs; 1326 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1327 PtrValueVTs); 1328 1329 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1330 DemoteReg, PtrValueVTs[0]); 1331 SDValue RetOp = getValue(I.getOperand(0)); 1332 1333 SmallVector<EVT, 4> ValueVTs; 1334 SmallVector<uint64_t, 4> Offsets; 1335 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1336 unsigned NumValues = ValueVTs.size(); 1337 1338 SmallVector<SDValue, 4> Chains(NumValues); 1339 for (unsigned i = 0; i != NumValues; ++i) { 1340 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1341 RetPtr.getValueType(), RetPtr, 1342 DAG.getIntPtrConstant(Offsets[i], 1343 getCurSDLoc())); 1344 Chains[i] = 1345 DAG.getStore(Chain, getCurSDLoc(), 1346 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1347 // FIXME: better loc info would be nice. 1348 Add, MachinePointerInfo(), false, false, 0); 1349 } 1350 1351 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1352 MVT::Other, Chains); 1353 } else if (I.getNumOperands() != 0) { 1354 SmallVector<EVT, 4> ValueVTs; 1355 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1356 unsigned NumValues = ValueVTs.size(); 1357 if (NumValues) { 1358 SDValue RetOp = getValue(I.getOperand(0)); 1359 1360 const Function *F = I.getParent()->getParent(); 1361 1362 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1363 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1364 Attribute::SExt)) 1365 ExtendKind = ISD::SIGN_EXTEND; 1366 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1367 Attribute::ZExt)) 1368 ExtendKind = ISD::ZERO_EXTEND; 1369 1370 LLVMContext &Context = F->getContext(); 1371 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1372 Attribute::InReg); 1373 1374 for (unsigned j = 0; j != NumValues; ++j) { 1375 EVT VT = ValueVTs[j]; 1376 1377 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1378 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1379 1380 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1381 MVT PartVT = TLI.getRegisterType(Context, VT); 1382 SmallVector<SDValue, 4> Parts(NumParts); 1383 getCopyToParts(DAG, getCurSDLoc(), 1384 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1385 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1386 1387 // 'inreg' on function refers to return value 1388 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1389 if (RetInReg) 1390 Flags.setInReg(); 1391 1392 // Propagate extension type if any 1393 if (ExtendKind == ISD::SIGN_EXTEND) 1394 Flags.setSExt(); 1395 else if (ExtendKind == ISD::ZERO_EXTEND) 1396 Flags.setZExt(); 1397 1398 for (unsigned i = 0; i < NumParts; ++i) { 1399 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1400 VT, /*isfixed=*/true, 0, 0)); 1401 OutVals.push_back(Parts[i]); 1402 } 1403 } 1404 } 1405 } 1406 1407 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1408 CallingConv::ID CallConv = 1409 DAG.getMachineFunction().getFunction()->getCallingConv(); 1410 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1411 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1412 1413 // Verify that the target's LowerReturn behaved as expected. 1414 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1415 "LowerReturn didn't return a valid chain!"); 1416 1417 // Update the DAG with the new chain value resulting from return lowering. 1418 DAG.setRoot(Chain); 1419 } 1420 1421 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1422 /// created for it, emit nodes to copy the value into the virtual 1423 /// registers. 1424 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1425 // Skip empty types 1426 if (V->getType()->isEmptyTy()) 1427 return; 1428 1429 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1430 if (VMI != FuncInfo.ValueMap.end()) { 1431 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1432 CopyValueToVirtualRegister(V, VMI->second); 1433 } 1434 } 1435 1436 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1437 /// the current basic block, add it to ValueMap now so that we'll get a 1438 /// CopyTo/FromReg. 1439 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1440 // No need to export constants. 1441 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1442 1443 // Already exported? 1444 if (FuncInfo.isExportedInst(V)) return; 1445 1446 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1447 CopyValueToVirtualRegister(V, Reg); 1448 } 1449 1450 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1451 const BasicBlock *FromBB) { 1452 // The operands of the setcc have to be in this block. We don't know 1453 // how to export them from some other block. 1454 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1455 // Can export from current BB. 1456 if (VI->getParent() == FromBB) 1457 return true; 1458 1459 // Is already exported, noop. 1460 return FuncInfo.isExportedInst(V); 1461 } 1462 1463 // If this is an argument, we can export it if the BB is the entry block or 1464 // if it is already exported. 1465 if (isa<Argument>(V)) { 1466 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1467 return true; 1468 1469 // Otherwise, can only export this if it is already exported. 1470 return FuncInfo.isExportedInst(V); 1471 } 1472 1473 // Otherwise, constants can always be exported. 1474 return true; 1475 } 1476 1477 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1478 BranchProbability 1479 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1480 const MachineBasicBlock *Dst) const { 1481 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1482 const BasicBlock *SrcBB = Src->getBasicBlock(); 1483 const BasicBlock *DstBB = Dst->getBasicBlock(); 1484 if (!BPI) { 1485 // If BPI is not available, set the default probability as 1 / N, where N is 1486 // the number of successors. 1487 auto SuccSize = std::max<uint32_t>( 1488 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1489 return BranchProbability(1, SuccSize); 1490 } 1491 return BPI->getEdgeProbability(SrcBB, DstBB); 1492 } 1493 1494 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1495 MachineBasicBlock *Dst, 1496 BranchProbability Prob) { 1497 if (!FuncInfo.BPI) 1498 Src->addSuccessorWithoutProb(Dst); 1499 else { 1500 if (Prob.isUnknown()) 1501 Prob = getEdgeProbability(Src, Dst); 1502 Src->addSuccessor(Dst, Prob); 1503 } 1504 } 1505 1506 static bool InBlock(const Value *V, const BasicBlock *BB) { 1507 if (const Instruction *I = dyn_cast<Instruction>(V)) 1508 return I->getParent() == BB; 1509 return true; 1510 } 1511 1512 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1513 /// This function emits a branch and is used at the leaves of an OR or an 1514 /// AND operator tree. 1515 /// 1516 void 1517 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1518 MachineBasicBlock *TBB, 1519 MachineBasicBlock *FBB, 1520 MachineBasicBlock *CurBB, 1521 MachineBasicBlock *SwitchBB, 1522 BranchProbability TProb, 1523 BranchProbability FProb) { 1524 const BasicBlock *BB = CurBB->getBasicBlock(); 1525 1526 // If the leaf of the tree is a comparison, merge the condition into 1527 // the caseblock. 1528 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1529 // The operands of the cmp have to be in this block. We don't know 1530 // how to export them from some other block. If this is the first block 1531 // of the sequence, no exporting is needed. 1532 if (CurBB == SwitchBB || 1533 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1534 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1535 ISD::CondCode Condition; 1536 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1537 Condition = getICmpCondCode(IC->getPredicate()); 1538 } else { 1539 const FCmpInst *FC = cast<FCmpInst>(Cond); 1540 Condition = getFCmpCondCode(FC->getPredicate()); 1541 if (TM.Options.NoNaNsFPMath) 1542 Condition = getFCmpCodeWithoutNaN(Condition); 1543 } 1544 1545 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1546 TBB, FBB, CurBB, TProb, FProb); 1547 SwitchCases.push_back(CB); 1548 return; 1549 } 1550 } 1551 1552 // Create a CaseBlock record representing this branch. 1553 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1554 nullptr, TBB, FBB, CurBB, TProb, FProb); 1555 SwitchCases.push_back(CB); 1556 } 1557 1558 /// FindMergedConditions - If Cond is an expression like 1559 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1560 MachineBasicBlock *TBB, 1561 MachineBasicBlock *FBB, 1562 MachineBasicBlock *CurBB, 1563 MachineBasicBlock *SwitchBB, 1564 Instruction::BinaryOps Opc, 1565 BranchProbability TProb, 1566 BranchProbability FProb) { 1567 // If this node is not part of the or/and tree, emit it as a branch. 1568 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1569 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1570 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1571 BOp->getParent() != CurBB->getBasicBlock() || 1572 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1573 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1574 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1575 TProb, FProb); 1576 return; 1577 } 1578 1579 // Create TmpBB after CurBB. 1580 MachineFunction::iterator BBI(CurBB); 1581 MachineFunction &MF = DAG.getMachineFunction(); 1582 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1583 CurBB->getParent()->insert(++BBI, TmpBB); 1584 1585 if (Opc == Instruction::Or) { 1586 // Codegen X | Y as: 1587 // BB1: 1588 // jmp_if_X TBB 1589 // jmp TmpBB 1590 // TmpBB: 1591 // jmp_if_Y TBB 1592 // jmp FBB 1593 // 1594 1595 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1596 // The requirement is that 1597 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1598 // = TrueProb for original BB. 1599 // Assuming the original probabilities are A and B, one choice is to set 1600 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1601 // A/(1+B) and 2B/(1+B). This choice assumes that 1602 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1603 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1604 // TmpBB, but the math is more complicated. 1605 1606 auto NewTrueProb = TProb / 2; 1607 auto NewFalseProb = TProb / 2 + FProb; 1608 // Emit the LHS condition. 1609 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1610 NewTrueProb, NewFalseProb); 1611 1612 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1613 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1614 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1615 // Emit the RHS condition into TmpBB. 1616 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1617 Probs[0], Probs[1]); 1618 } else { 1619 assert(Opc == Instruction::And && "Unknown merge op!"); 1620 // Codegen X & Y as: 1621 // BB1: 1622 // jmp_if_X TmpBB 1623 // jmp FBB 1624 // TmpBB: 1625 // jmp_if_Y TBB 1626 // jmp FBB 1627 // 1628 // This requires creation of TmpBB after CurBB. 1629 1630 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1631 // The requirement is that 1632 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1633 // = FalseProb for original BB. 1634 // Assuming the original probabilities are A and B, one choice is to set 1635 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1636 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1637 // TrueProb for BB1 * FalseProb for TmpBB. 1638 1639 auto NewTrueProb = TProb + FProb / 2; 1640 auto NewFalseProb = FProb / 2; 1641 // Emit the LHS condition. 1642 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1643 NewTrueProb, NewFalseProb); 1644 1645 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1646 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1647 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1648 // Emit the RHS condition into TmpBB. 1649 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1650 Probs[0], Probs[1]); 1651 } 1652 } 1653 1654 /// If the set of cases should be emitted as a series of branches, return true. 1655 /// If we should emit this as a bunch of and/or'd together conditions, return 1656 /// false. 1657 bool 1658 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1659 if (Cases.size() != 2) return true; 1660 1661 // If this is two comparisons of the same values or'd or and'd together, they 1662 // will get folded into a single comparison, so don't emit two blocks. 1663 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1664 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1665 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1666 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1667 return false; 1668 } 1669 1670 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1671 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1672 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1673 Cases[0].CC == Cases[1].CC && 1674 isa<Constant>(Cases[0].CmpRHS) && 1675 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1676 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1677 return false; 1678 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1679 return false; 1680 } 1681 1682 return true; 1683 } 1684 1685 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1686 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1687 1688 // Update machine-CFG edges. 1689 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1690 1691 if (I.isUnconditional()) { 1692 // Update machine-CFG edges. 1693 BrMBB->addSuccessor(Succ0MBB); 1694 1695 // If this is not a fall-through branch or optimizations are switched off, 1696 // emit the branch. 1697 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1698 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1699 MVT::Other, getControlRoot(), 1700 DAG.getBasicBlock(Succ0MBB))); 1701 1702 return; 1703 } 1704 1705 // If this condition is one of the special cases we handle, do special stuff 1706 // now. 1707 const Value *CondVal = I.getCondition(); 1708 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1709 1710 // If this is a series of conditions that are or'd or and'd together, emit 1711 // this as a sequence of branches instead of setcc's with and/or operations. 1712 // As long as jumps are not expensive, this should improve performance. 1713 // For example, instead of something like: 1714 // cmp A, B 1715 // C = seteq 1716 // cmp D, E 1717 // F = setle 1718 // or C, F 1719 // jnz foo 1720 // Emit: 1721 // cmp A, B 1722 // je foo 1723 // cmp D, E 1724 // jle foo 1725 // 1726 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1727 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1728 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1729 !I.getMetadata(LLVMContext::MD_unpredictable) && 1730 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1731 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1732 Opcode, 1733 getEdgeProbability(BrMBB, Succ0MBB), 1734 getEdgeProbability(BrMBB, Succ1MBB)); 1735 // If the compares in later blocks need to use values not currently 1736 // exported from this block, export them now. This block should always 1737 // be the first entry. 1738 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1739 1740 // Allow some cases to be rejected. 1741 if (ShouldEmitAsBranches(SwitchCases)) { 1742 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1743 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1744 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1745 } 1746 1747 // Emit the branch for this block. 1748 visitSwitchCase(SwitchCases[0], BrMBB); 1749 SwitchCases.erase(SwitchCases.begin()); 1750 return; 1751 } 1752 1753 // Okay, we decided not to do this, remove any inserted MBB's and clear 1754 // SwitchCases. 1755 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1756 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1757 1758 SwitchCases.clear(); 1759 } 1760 } 1761 1762 // Create a CaseBlock record representing this branch. 1763 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1764 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1765 1766 // Use visitSwitchCase to actually insert the fast branch sequence for this 1767 // cond branch. 1768 visitSwitchCase(CB, BrMBB); 1769 } 1770 1771 /// visitSwitchCase - Emits the necessary code to represent a single node in 1772 /// the binary search tree resulting from lowering a switch instruction. 1773 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1774 MachineBasicBlock *SwitchBB) { 1775 SDValue Cond; 1776 SDValue CondLHS = getValue(CB.CmpLHS); 1777 SDLoc dl = getCurSDLoc(); 1778 1779 // Build the setcc now. 1780 if (!CB.CmpMHS) { 1781 // Fold "(X == true)" to X and "(X == false)" to !X to 1782 // handle common cases produced by branch lowering. 1783 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1784 CB.CC == ISD::SETEQ) 1785 Cond = CondLHS; 1786 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1787 CB.CC == ISD::SETEQ) { 1788 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1789 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1790 } else 1791 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1792 } else { 1793 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1794 1795 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1796 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1797 1798 SDValue CmpOp = getValue(CB.CmpMHS); 1799 EVT VT = CmpOp.getValueType(); 1800 1801 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1802 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1803 ISD::SETLE); 1804 } else { 1805 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1806 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1807 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1808 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1809 } 1810 } 1811 1812 // Update successor info 1813 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1814 // TrueBB and FalseBB are always different unless the incoming IR is 1815 // degenerate. This only happens when running llc on weird IR. 1816 if (CB.TrueBB != CB.FalseBB) 1817 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1818 SwitchBB->normalizeSuccProbs(); 1819 1820 // If the lhs block is the next block, invert the condition so that we can 1821 // fall through to the lhs instead of the rhs block. 1822 if (CB.TrueBB == NextBlock(SwitchBB)) { 1823 std::swap(CB.TrueBB, CB.FalseBB); 1824 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1825 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1826 } 1827 1828 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1829 MVT::Other, getControlRoot(), Cond, 1830 DAG.getBasicBlock(CB.TrueBB)); 1831 1832 // Insert the false branch. Do this even if it's a fall through branch, 1833 // this makes it easier to do DAG optimizations which require inverting 1834 // the branch condition. 1835 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1836 DAG.getBasicBlock(CB.FalseBB)); 1837 1838 DAG.setRoot(BrCond); 1839 } 1840 1841 /// visitJumpTable - Emit JumpTable node in the current MBB 1842 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1843 // Emit the code for the jump table 1844 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1845 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1846 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1847 JT.Reg, PTy); 1848 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1849 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1850 MVT::Other, Index.getValue(1), 1851 Table, Index); 1852 DAG.setRoot(BrJumpTable); 1853 } 1854 1855 /// visitJumpTableHeader - This function emits necessary code to produce index 1856 /// in the JumpTable from switch case. 1857 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1858 JumpTableHeader &JTH, 1859 MachineBasicBlock *SwitchBB) { 1860 SDLoc dl = getCurSDLoc(); 1861 1862 // Subtract the lowest switch case value from the value being switched on and 1863 // conditional branch to default mbb if the result is greater than the 1864 // difference between smallest and largest cases. 1865 SDValue SwitchOp = getValue(JTH.SValue); 1866 EVT VT = SwitchOp.getValueType(); 1867 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1868 DAG.getConstant(JTH.First, dl, VT)); 1869 1870 // The SDNode we just created, which holds the value being switched on minus 1871 // the smallest case value, needs to be copied to a virtual register so it 1872 // can be used as an index into the jump table in a subsequent basic block. 1873 // This value may be smaller or larger than the target's pointer type, and 1874 // therefore require extension or truncating. 1875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1876 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1877 1878 unsigned JumpTableReg = 1879 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1880 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1881 JumpTableReg, SwitchOp); 1882 JT.Reg = JumpTableReg; 1883 1884 // Emit the range check for the jump table, and branch to the default block 1885 // for the switch statement if the value being switched on exceeds the largest 1886 // case in the switch. 1887 SDValue CMP = DAG.getSetCC( 1888 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1889 Sub.getValueType()), 1890 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1891 1892 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1893 MVT::Other, CopyTo, CMP, 1894 DAG.getBasicBlock(JT.Default)); 1895 1896 // Avoid emitting unnecessary branches to the next block. 1897 if (JT.MBB != NextBlock(SwitchBB)) 1898 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1899 DAG.getBasicBlock(JT.MBB)); 1900 1901 DAG.setRoot(BrCond); 1902 } 1903 1904 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1905 /// tail spliced into a stack protector check success bb. 1906 /// 1907 /// For a high level explanation of how this fits into the stack protector 1908 /// generation see the comment on the declaration of class 1909 /// StackProtectorDescriptor. 1910 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1911 MachineBasicBlock *ParentBB) { 1912 1913 // First create the loads to the guard/stack slot for the comparison. 1914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1915 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1916 1917 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1918 int FI = MFI->getStackProtectorIndex(); 1919 1920 const Value *IRGuard = SPD.getGuard(); 1921 SDValue GuardPtr = getValue(IRGuard); 1922 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1923 1924 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1925 1926 SDValue Guard; 1927 SDLoc dl = getCurSDLoc(); 1928 1929 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1930 // guard value from the virtual register holding the value. Otherwise, emit a 1931 // volatile load to retrieve the stack guard value. 1932 unsigned GuardReg = SPD.getGuardReg(); 1933 1934 if (GuardReg && TLI.useLoadStackGuardNode()) 1935 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1936 PtrTy); 1937 else 1938 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1939 GuardPtr, MachinePointerInfo(IRGuard, 0), 1940 true, false, false, Align); 1941 1942 SDValue StackSlot = DAG.getLoad( 1943 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1944 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1945 false, false, Align); 1946 1947 // Perform the comparison via a subtract/getsetcc. 1948 EVT VT = Guard.getValueType(); 1949 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1950 1951 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1952 *DAG.getContext(), 1953 Sub.getValueType()), 1954 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1955 1956 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1957 // branch to failure MBB. 1958 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1959 MVT::Other, StackSlot.getOperand(0), 1960 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1961 // Otherwise branch to success MBB. 1962 SDValue Br = DAG.getNode(ISD::BR, dl, 1963 MVT::Other, BrCond, 1964 DAG.getBasicBlock(SPD.getSuccessMBB())); 1965 1966 DAG.setRoot(Br); 1967 } 1968 1969 /// Codegen the failure basic block for a stack protector check. 1970 /// 1971 /// A failure stack protector machine basic block consists simply of a call to 1972 /// __stack_chk_fail(). 1973 /// 1974 /// For a high level explanation of how this fits into the stack protector 1975 /// generation see the comment on the declaration of class 1976 /// StackProtectorDescriptor. 1977 void 1978 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1980 SDValue Chain = 1981 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1982 None, false, getCurSDLoc(), false, false).second; 1983 DAG.setRoot(Chain); 1984 } 1985 1986 /// visitBitTestHeader - This function emits necessary code to produce value 1987 /// suitable for "bit tests" 1988 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1989 MachineBasicBlock *SwitchBB) { 1990 SDLoc dl = getCurSDLoc(); 1991 1992 // Subtract the minimum value 1993 SDValue SwitchOp = getValue(B.SValue); 1994 EVT VT = SwitchOp.getValueType(); 1995 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1996 DAG.getConstant(B.First, dl, VT)); 1997 1998 // Check range 1999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2000 SDValue RangeCmp = DAG.getSetCC( 2001 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2002 Sub.getValueType()), 2003 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2004 2005 // Determine the type of the test operands. 2006 bool UsePtrType = false; 2007 if (!TLI.isTypeLegal(VT)) 2008 UsePtrType = true; 2009 else { 2010 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2011 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2012 // Switch table case range are encoded into series of masks. 2013 // Just use pointer type, it's guaranteed to fit. 2014 UsePtrType = true; 2015 break; 2016 } 2017 } 2018 if (UsePtrType) { 2019 VT = TLI.getPointerTy(DAG.getDataLayout()); 2020 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2021 } 2022 2023 B.RegVT = VT.getSimpleVT(); 2024 B.Reg = FuncInfo.CreateReg(B.RegVT); 2025 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2026 2027 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2028 2029 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2030 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2031 SwitchBB->normalizeSuccProbs(); 2032 2033 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2034 MVT::Other, CopyTo, RangeCmp, 2035 DAG.getBasicBlock(B.Default)); 2036 2037 // Avoid emitting unnecessary branches to the next block. 2038 if (MBB != NextBlock(SwitchBB)) 2039 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2040 DAG.getBasicBlock(MBB)); 2041 2042 DAG.setRoot(BrRange); 2043 } 2044 2045 /// visitBitTestCase - this function produces one "bit test" 2046 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2047 MachineBasicBlock* NextMBB, 2048 BranchProbability BranchProbToNext, 2049 unsigned Reg, 2050 BitTestCase &B, 2051 MachineBasicBlock *SwitchBB) { 2052 SDLoc dl = getCurSDLoc(); 2053 MVT VT = BB.RegVT; 2054 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2055 SDValue Cmp; 2056 unsigned PopCount = countPopulation(B.Mask); 2057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2058 if (PopCount == 1) { 2059 // Testing for a single bit; just compare the shift count with what it 2060 // would need to be to shift a 1 bit in that position. 2061 Cmp = DAG.getSetCC( 2062 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2063 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2064 ISD::SETEQ); 2065 } else if (PopCount == BB.Range) { 2066 // There is only one zero bit in the range, test for it directly. 2067 Cmp = DAG.getSetCC( 2068 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2069 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2070 ISD::SETNE); 2071 } else { 2072 // Make desired shift 2073 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2074 DAG.getConstant(1, dl, VT), ShiftOp); 2075 2076 // Emit bit tests and jumps 2077 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2078 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2079 Cmp = DAG.getSetCC( 2080 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2081 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2082 } 2083 2084 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2085 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2086 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2087 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2088 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2089 // one as they are relative probabilities (and thus work more like weights), 2090 // and hence we need to normalize them to let the sum of them become one. 2091 SwitchBB->normalizeSuccProbs(); 2092 2093 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2094 MVT::Other, getControlRoot(), 2095 Cmp, DAG.getBasicBlock(B.TargetBB)); 2096 2097 // Avoid emitting unnecessary branches to the next block. 2098 if (NextMBB != NextBlock(SwitchBB)) 2099 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2100 DAG.getBasicBlock(NextMBB)); 2101 2102 DAG.setRoot(BrAnd); 2103 } 2104 2105 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2106 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2107 2108 // Retrieve successors. Look through artificial IR level blocks like 2109 // catchswitch for successors. 2110 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2111 const BasicBlock *EHPadBB = I.getSuccessor(1); 2112 2113 const Value *Callee(I.getCalledValue()); 2114 const Function *Fn = dyn_cast<Function>(Callee); 2115 if (isa<InlineAsm>(Callee)) 2116 visitInlineAsm(&I); 2117 else if (Fn && Fn->isIntrinsic()) { 2118 switch (Fn->getIntrinsicID()) { 2119 default: 2120 llvm_unreachable("Cannot invoke this intrinsic"); 2121 case Intrinsic::donothing: 2122 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2123 break; 2124 case Intrinsic::experimental_patchpoint_void: 2125 case Intrinsic::experimental_patchpoint_i64: 2126 visitPatchpoint(&I, EHPadBB); 2127 break; 2128 case Intrinsic::experimental_gc_statepoint: 2129 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2130 break; 2131 } 2132 } else 2133 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2134 2135 // If the value of the invoke is used outside of its defining block, make it 2136 // available as a virtual register. 2137 // We already took care of the exported value for the statepoint instruction 2138 // during call to the LowerStatepoint. 2139 if (!isStatepoint(I)) { 2140 CopyToExportRegsIfNeeded(&I); 2141 } 2142 2143 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability EHPadBBProb = 2146 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2147 : BranchProbability::getZero(); 2148 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2149 2150 // Update successor info. 2151 addSuccessorWithProb(InvokeMBB, Return); 2152 for (auto &UnwindDest : UnwindDests) { 2153 UnwindDest.first->setIsEHPad(); 2154 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2155 } 2156 InvokeMBB->normalizeSuccProbs(); 2157 2158 // Drop into normal successor. 2159 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2160 MVT::Other, getControlRoot(), 2161 DAG.getBasicBlock(Return))); 2162 } 2163 2164 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2165 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2166 } 2167 2168 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2169 assert(FuncInfo.MBB->isEHPad() && 2170 "Call to landingpad not in landing pad!"); 2171 2172 MachineBasicBlock *MBB = FuncInfo.MBB; 2173 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2174 AddLandingPadInfo(LP, MMI, MBB); 2175 2176 // If there aren't registers to copy the values into (e.g., during SjLj 2177 // exceptions), then don't bother to create these DAG nodes. 2178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2179 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2180 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2181 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2182 return; 2183 2184 SmallVector<EVT, 2> ValueVTs; 2185 SDLoc dl = getCurSDLoc(); 2186 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2187 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2188 2189 // Get the two live-in registers as SDValues. The physregs have already been 2190 // copied into virtual registers. 2191 SDValue Ops[2]; 2192 if (FuncInfo.ExceptionPointerVirtReg) { 2193 Ops[0] = DAG.getZExtOrTrunc( 2194 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2195 FuncInfo.ExceptionPointerVirtReg, 2196 TLI.getPointerTy(DAG.getDataLayout())), 2197 dl, ValueVTs[0]); 2198 } else { 2199 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2200 } 2201 Ops[1] = DAG.getZExtOrTrunc( 2202 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2203 FuncInfo.ExceptionSelectorVirtReg, 2204 TLI.getPointerTy(DAG.getDataLayout())), 2205 dl, ValueVTs[1]); 2206 2207 // Merge into one. 2208 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2209 DAG.getVTList(ValueVTs), Ops); 2210 setValue(&LP, Res); 2211 } 2212 2213 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2214 #ifndef NDEBUG 2215 for (const CaseCluster &CC : Clusters) 2216 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2217 #endif 2218 2219 std::sort(Clusters.begin(), Clusters.end(), 2220 [](const CaseCluster &a, const CaseCluster &b) { 2221 return a.Low->getValue().slt(b.Low->getValue()); 2222 }); 2223 2224 // Merge adjacent clusters with the same destination. 2225 const unsigned N = Clusters.size(); 2226 unsigned DstIndex = 0; 2227 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2228 CaseCluster &CC = Clusters[SrcIndex]; 2229 const ConstantInt *CaseVal = CC.Low; 2230 MachineBasicBlock *Succ = CC.MBB; 2231 2232 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2233 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2234 // If this case has the same successor and is a neighbour, merge it into 2235 // the previous cluster. 2236 Clusters[DstIndex - 1].High = CaseVal; 2237 Clusters[DstIndex - 1].Prob += CC.Prob; 2238 } else { 2239 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2240 sizeof(Clusters[SrcIndex])); 2241 } 2242 } 2243 Clusters.resize(DstIndex); 2244 } 2245 2246 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2247 MachineBasicBlock *Last) { 2248 // Update JTCases. 2249 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2250 if (JTCases[i].first.HeaderBB == First) 2251 JTCases[i].first.HeaderBB = Last; 2252 2253 // Update BitTestCases. 2254 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2255 if (BitTestCases[i].Parent == First) 2256 BitTestCases[i].Parent = Last; 2257 } 2258 2259 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2260 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2261 2262 // Update machine-CFG edges with unique successors. 2263 SmallSet<BasicBlock*, 32> Done; 2264 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2265 BasicBlock *BB = I.getSuccessor(i); 2266 bool Inserted = Done.insert(BB).second; 2267 if (!Inserted) 2268 continue; 2269 2270 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2271 addSuccessorWithProb(IndirectBrMBB, Succ); 2272 } 2273 IndirectBrMBB->normalizeSuccProbs(); 2274 2275 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2276 MVT::Other, getControlRoot(), 2277 getValue(I.getAddress()))); 2278 } 2279 2280 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2281 if (DAG.getTarget().Options.TrapUnreachable) 2282 DAG.setRoot( 2283 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2284 } 2285 2286 void SelectionDAGBuilder::visitFSub(const User &I) { 2287 // -0.0 - X --> fneg 2288 Type *Ty = I.getType(); 2289 if (isa<Constant>(I.getOperand(0)) && 2290 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2291 SDValue Op2 = getValue(I.getOperand(1)); 2292 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2293 Op2.getValueType(), Op2)); 2294 return; 2295 } 2296 2297 visitBinary(I, ISD::FSUB); 2298 } 2299 2300 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2301 SDValue Op1 = getValue(I.getOperand(0)); 2302 SDValue Op2 = getValue(I.getOperand(1)); 2303 2304 bool nuw = false; 2305 bool nsw = false; 2306 bool exact = false; 2307 FastMathFlags FMF; 2308 2309 if (const OverflowingBinaryOperator *OFBinOp = 2310 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2311 nuw = OFBinOp->hasNoUnsignedWrap(); 2312 nsw = OFBinOp->hasNoSignedWrap(); 2313 } 2314 if (const PossiblyExactOperator *ExactOp = 2315 dyn_cast<const PossiblyExactOperator>(&I)) 2316 exact = ExactOp->isExact(); 2317 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2318 FMF = FPOp->getFastMathFlags(); 2319 2320 SDNodeFlags Flags; 2321 Flags.setExact(exact); 2322 Flags.setNoSignedWrap(nsw); 2323 Flags.setNoUnsignedWrap(nuw); 2324 if (EnableFMFInDAG) { 2325 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2326 Flags.setNoInfs(FMF.noInfs()); 2327 Flags.setNoNaNs(FMF.noNaNs()); 2328 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2329 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2330 } 2331 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2332 Op1, Op2, &Flags); 2333 setValue(&I, BinNodeValue); 2334 } 2335 2336 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2337 SDValue Op1 = getValue(I.getOperand(0)); 2338 SDValue Op2 = getValue(I.getOperand(1)); 2339 2340 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2341 Op2.getValueType(), DAG.getDataLayout()); 2342 2343 // Coerce the shift amount to the right type if we can. 2344 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2345 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2346 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2347 SDLoc DL = getCurSDLoc(); 2348 2349 // If the operand is smaller than the shift count type, promote it. 2350 if (ShiftSize > Op2Size) 2351 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2352 2353 // If the operand is larger than the shift count type but the shift 2354 // count type has enough bits to represent any shift value, truncate 2355 // it now. This is a common case and it exposes the truncate to 2356 // optimization early. 2357 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2358 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2359 // Otherwise we'll need to temporarily settle for some other convenient 2360 // type. Type legalization will make adjustments once the shiftee is split. 2361 else 2362 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2363 } 2364 2365 bool nuw = false; 2366 bool nsw = false; 2367 bool exact = false; 2368 2369 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2370 2371 if (const OverflowingBinaryOperator *OFBinOp = 2372 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2373 nuw = OFBinOp->hasNoUnsignedWrap(); 2374 nsw = OFBinOp->hasNoSignedWrap(); 2375 } 2376 if (const PossiblyExactOperator *ExactOp = 2377 dyn_cast<const PossiblyExactOperator>(&I)) 2378 exact = ExactOp->isExact(); 2379 } 2380 SDNodeFlags Flags; 2381 Flags.setExact(exact); 2382 Flags.setNoSignedWrap(nsw); 2383 Flags.setNoUnsignedWrap(nuw); 2384 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2385 &Flags); 2386 setValue(&I, Res); 2387 } 2388 2389 void SelectionDAGBuilder::visitSDiv(const User &I) { 2390 SDValue Op1 = getValue(I.getOperand(0)); 2391 SDValue Op2 = getValue(I.getOperand(1)); 2392 2393 SDNodeFlags Flags; 2394 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2395 cast<PossiblyExactOperator>(&I)->isExact()); 2396 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2397 Op2, &Flags)); 2398 } 2399 2400 void SelectionDAGBuilder::visitICmp(const User &I) { 2401 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2402 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2403 predicate = IC->getPredicate(); 2404 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2405 predicate = ICmpInst::Predicate(IC->getPredicate()); 2406 SDValue Op1 = getValue(I.getOperand(0)); 2407 SDValue Op2 = getValue(I.getOperand(1)); 2408 ISD::CondCode Opcode = getICmpCondCode(predicate); 2409 2410 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2411 I.getType()); 2412 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2413 } 2414 2415 void SelectionDAGBuilder::visitFCmp(const User &I) { 2416 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2417 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2418 predicate = FC->getPredicate(); 2419 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2420 predicate = FCmpInst::Predicate(FC->getPredicate()); 2421 SDValue Op1 = getValue(I.getOperand(0)); 2422 SDValue Op2 = getValue(I.getOperand(1)); 2423 ISD::CondCode Condition = getFCmpCondCode(predicate); 2424 2425 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2426 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2427 // further optimization, but currently FMF is only applicable to binary nodes. 2428 if (TM.Options.NoNaNsFPMath) 2429 Condition = getFCmpCodeWithoutNaN(Condition); 2430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2431 I.getType()); 2432 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2433 } 2434 2435 void SelectionDAGBuilder::visitSelect(const User &I) { 2436 SmallVector<EVT, 4> ValueVTs; 2437 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2438 ValueVTs); 2439 unsigned NumValues = ValueVTs.size(); 2440 if (NumValues == 0) return; 2441 2442 SmallVector<SDValue, 4> Values(NumValues); 2443 SDValue Cond = getValue(I.getOperand(0)); 2444 SDValue LHSVal = getValue(I.getOperand(1)); 2445 SDValue RHSVal = getValue(I.getOperand(2)); 2446 auto BaseOps = {Cond}; 2447 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2448 ISD::VSELECT : ISD::SELECT; 2449 2450 // Min/max matching is only viable if all output VTs are the same. 2451 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2452 EVT VT = ValueVTs[0]; 2453 LLVMContext &Ctx = *DAG.getContext(); 2454 auto &TLI = DAG.getTargetLoweringInfo(); 2455 2456 // We care about the legality of the operation after it has been type 2457 // legalized. 2458 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 2459 VT = TLI.getTypeToTransformTo(Ctx, VT); 2460 2461 // If the vselect is legal, assume we want to leave this as a vector setcc + 2462 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2463 // min/max is legal on the scalar type. 2464 bool UseScalarMinMax = VT.isVector() && 2465 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2466 2467 Value *LHS, *RHS; 2468 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2469 ISD::NodeType Opc = ISD::DELETED_NODE; 2470 switch (SPR.Flavor) { 2471 case SPF_UMAX: Opc = ISD::UMAX; break; 2472 case SPF_UMIN: Opc = ISD::UMIN; break; 2473 case SPF_SMAX: Opc = ISD::SMAX; break; 2474 case SPF_SMIN: Opc = ISD::SMIN; break; 2475 case SPF_FMINNUM: 2476 switch (SPR.NaNBehavior) { 2477 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2478 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2479 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2480 case SPNB_RETURNS_ANY: { 2481 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2482 Opc = ISD::FMINNUM; 2483 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2484 Opc = ISD::FMINNAN; 2485 else if (UseScalarMinMax) 2486 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2487 ISD::FMINNUM : ISD::FMINNAN; 2488 break; 2489 } 2490 } 2491 break; 2492 case SPF_FMAXNUM: 2493 switch (SPR.NaNBehavior) { 2494 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2495 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2496 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2497 case SPNB_RETURNS_ANY: 2498 2499 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2500 Opc = ISD::FMAXNUM; 2501 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2502 Opc = ISD::FMAXNAN; 2503 else if (UseScalarMinMax) 2504 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2505 ISD::FMAXNUM : ISD::FMAXNAN; 2506 break; 2507 } 2508 break; 2509 default: break; 2510 } 2511 2512 if (Opc != ISD::DELETED_NODE && 2513 (TLI.isOperationLegalOrCustom(Opc, VT) || 2514 (UseScalarMinMax && 2515 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2516 // If the underlying comparison instruction is used by any other 2517 // instruction, the consumed instructions won't be destroyed, so it is 2518 // not profitable to convert to a min/max. 2519 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2520 OpCode = Opc; 2521 LHSVal = getValue(LHS); 2522 RHSVal = getValue(RHS); 2523 BaseOps = {}; 2524 } 2525 } 2526 2527 for (unsigned i = 0; i != NumValues; ++i) { 2528 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2529 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2530 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2531 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2532 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2533 Ops); 2534 } 2535 2536 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2537 DAG.getVTList(ValueVTs), Values)); 2538 } 2539 2540 void SelectionDAGBuilder::visitTrunc(const User &I) { 2541 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2542 SDValue N = getValue(I.getOperand(0)); 2543 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2544 I.getType()); 2545 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2546 } 2547 2548 void SelectionDAGBuilder::visitZExt(const User &I) { 2549 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2550 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2551 SDValue N = getValue(I.getOperand(0)); 2552 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2553 I.getType()); 2554 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2555 } 2556 2557 void SelectionDAGBuilder::visitSExt(const User &I) { 2558 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2559 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2560 SDValue N = getValue(I.getOperand(0)); 2561 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2562 I.getType()); 2563 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2564 } 2565 2566 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2567 // FPTrunc is never a no-op cast, no need to check 2568 SDValue N = getValue(I.getOperand(0)); 2569 SDLoc dl = getCurSDLoc(); 2570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2571 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2572 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2573 DAG.getTargetConstant( 2574 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2575 } 2576 2577 void SelectionDAGBuilder::visitFPExt(const User &I) { 2578 // FPExt is never a no-op cast, no need to check 2579 SDValue N = getValue(I.getOperand(0)); 2580 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2581 I.getType()); 2582 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2583 } 2584 2585 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2586 // FPToUI is never a no-op cast, no need to check 2587 SDValue N = getValue(I.getOperand(0)); 2588 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2589 I.getType()); 2590 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2591 } 2592 2593 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2594 // FPToSI is never a no-op cast, no need to check 2595 SDValue N = getValue(I.getOperand(0)); 2596 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2597 I.getType()); 2598 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2599 } 2600 2601 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2602 // UIToFP is never a no-op cast, no need to check 2603 SDValue N = getValue(I.getOperand(0)); 2604 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2605 I.getType()); 2606 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2607 } 2608 2609 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2610 // SIToFP is never a no-op cast, no need to check 2611 SDValue N = getValue(I.getOperand(0)); 2612 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2613 I.getType()); 2614 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2615 } 2616 2617 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2618 // What to do depends on the size of the integer and the size of the pointer. 2619 // We can either truncate, zero extend, or no-op, accordingly. 2620 SDValue N = getValue(I.getOperand(0)); 2621 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2622 I.getType()); 2623 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2624 } 2625 2626 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2627 // What to do depends on the size of the integer and the size of the pointer. 2628 // We can either truncate, zero extend, or no-op, accordingly. 2629 SDValue N = getValue(I.getOperand(0)); 2630 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2631 I.getType()); 2632 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2633 } 2634 2635 void SelectionDAGBuilder::visitBitCast(const User &I) { 2636 SDValue N = getValue(I.getOperand(0)); 2637 SDLoc dl = getCurSDLoc(); 2638 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2639 I.getType()); 2640 2641 // BitCast assures us that source and destination are the same size so this is 2642 // either a BITCAST or a no-op. 2643 if (DestVT != N.getValueType()) 2644 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2645 DestVT, N)); // convert types. 2646 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2647 // might fold any kind of constant expression to an integer constant and that 2648 // is not what we are looking for. Only regcognize a bitcast of a genuine 2649 // constant integer as an opaque constant. 2650 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2651 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2652 /*isOpaque*/true)); 2653 else 2654 setValue(&I, N); // noop cast. 2655 } 2656 2657 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2658 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2659 const Value *SV = I.getOperand(0); 2660 SDValue N = getValue(SV); 2661 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2662 2663 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2664 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2665 2666 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2667 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2668 2669 setValue(&I, N); 2670 } 2671 2672 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2674 SDValue InVec = getValue(I.getOperand(0)); 2675 SDValue InVal = getValue(I.getOperand(1)); 2676 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2677 TLI.getVectorIdxTy(DAG.getDataLayout())); 2678 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2679 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2680 InVec, InVal, InIdx)); 2681 } 2682 2683 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2684 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2685 SDValue InVec = getValue(I.getOperand(0)); 2686 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2687 TLI.getVectorIdxTy(DAG.getDataLayout())); 2688 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2689 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2690 InVec, InIdx)); 2691 } 2692 2693 // Utility for visitShuffleVector - Return true if every element in Mask, 2694 // beginning from position Pos and ending in Pos+Size, falls within the 2695 // specified sequential range [L, L+Pos). or is undef. 2696 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2697 unsigned Pos, unsigned Size, int Low) { 2698 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2699 if (Mask[i] >= 0 && Mask[i] != Low) 2700 return false; 2701 return true; 2702 } 2703 2704 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2705 SDValue Src1 = getValue(I.getOperand(0)); 2706 SDValue Src2 = getValue(I.getOperand(1)); 2707 2708 SmallVector<int, 8> Mask; 2709 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2710 unsigned MaskNumElts = Mask.size(); 2711 2712 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2713 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2714 EVT SrcVT = Src1.getValueType(); 2715 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2716 2717 if (SrcNumElts == MaskNumElts) { 2718 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2719 &Mask[0])); 2720 return; 2721 } 2722 2723 // Normalize the shuffle vector since mask and vector length don't match. 2724 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2725 // Mask is longer than the source vectors and is a multiple of the source 2726 // vectors. We can use concatenate vector to make the mask and vectors 2727 // lengths match. 2728 if (SrcNumElts*2 == MaskNumElts) { 2729 // First check for Src1 in low and Src2 in high 2730 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2731 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2732 // The shuffle is concatenating two vectors together. 2733 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2734 VT, Src1, Src2)); 2735 return; 2736 } 2737 // Then check for Src2 in low and Src1 in high 2738 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2739 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2740 // The shuffle is concatenating two vectors together. 2741 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2742 VT, Src2, Src1)); 2743 return; 2744 } 2745 } 2746 2747 // Pad both vectors with undefs to make them the same length as the mask. 2748 unsigned NumConcat = MaskNumElts / SrcNumElts; 2749 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2750 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2751 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2752 2753 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2754 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2755 MOps1[0] = Src1; 2756 MOps2[0] = Src2; 2757 2758 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2759 getCurSDLoc(), VT, MOps1); 2760 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2761 getCurSDLoc(), VT, MOps2); 2762 2763 // Readjust mask for new input vector length. 2764 SmallVector<int, 8> MappedOps; 2765 for (unsigned i = 0; i != MaskNumElts; ++i) { 2766 int Idx = Mask[i]; 2767 if (Idx >= (int)SrcNumElts) 2768 Idx -= SrcNumElts - MaskNumElts; 2769 MappedOps.push_back(Idx); 2770 } 2771 2772 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2773 &MappedOps[0])); 2774 return; 2775 } 2776 2777 if (SrcNumElts > MaskNumElts) { 2778 // Analyze the access pattern of the vector to see if we can extract 2779 // two subvectors and do the shuffle. The analysis is done by calculating 2780 // the range of elements the mask access on both vectors. 2781 int MinRange[2] = { static_cast<int>(SrcNumElts), 2782 static_cast<int>(SrcNumElts)}; 2783 int MaxRange[2] = {-1, -1}; 2784 2785 for (unsigned i = 0; i != MaskNumElts; ++i) { 2786 int Idx = Mask[i]; 2787 unsigned Input = 0; 2788 if (Idx < 0) 2789 continue; 2790 2791 if (Idx >= (int)SrcNumElts) { 2792 Input = 1; 2793 Idx -= SrcNumElts; 2794 } 2795 if (Idx > MaxRange[Input]) 2796 MaxRange[Input] = Idx; 2797 if (Idx < MinRange[Input]) 2798 MinRange[Input] = Idx; 2799 } 2800 2801 // Check if the access is smaller than the vector size and can we find 2802 // a reasonable extract index. 2803 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2804 // Extract. 2805 int StartIdx[2]; // StartIdx to extract from 2806 for (unsigned Input = 0; Input < 2; ++Input) { 2807 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2808 RangeUse[Input] = 0; // Unused 2809 StartIdx[Input] = 0; 2810 continue; 2811 } 2812 2813 // Find a good start index that is a multiple of the mask length. Then 2814 // see if the rest of the elements are in range. 2815 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2816 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2817 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2818 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2819 } 2820 2821 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2822 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2823 return; 2824 } 2825 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2826 // Extract appropriate subvector and generate a vector shuffle 2827 for (unsigned Input = 0; Input < 2; ++Input) { 2828 SDValue &Src = Input == 0 ? Src1 : Src2; 2829 if (RangeUse[Input] == 0) 2830 Src = DAG.getUNDEF(VT); 2831 else { 2832 SDLoc dl = getCurSDLoc(); 2833 Src = DAG.getNode( 2834 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2835 DAG.getConstant(StartIdx[Input], dl, 2836 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2837 } 2838 } 2839 2840 // Calculate new mask. 2841 SmallVector<int, 8> MappedOps; 2842 for (unsigned i = 0; i != MaskNumElts; ++i) { 2843 int Idx = Mask[i]; 2844 if (Idx >= 0) { 2845 if (Idx < (int)SrcNumElts) 2846 Idx -= StartIdx[0]; 2847 else 2848 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2849 } 2850 MappedOps.push_back(Idx); 2851 } 2852 2853 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2854 &MappedOps[0])); 2855 return; 2856 } 2857 } 2858 2859 // We can't use either concat vectors or extract subvectors so fall back to 2860 // replacing the shuffle with extract and build vector. 2861 // to insert and build vector. 2862 EVT EltVT = VT.getVectorElementType(); 2863 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2864 SDLoc dl = getCurSDLoc(); 2865 SmallVector<SDValue,8> Ops; 2866 for (unsigned i = 0; i != MaskNumElts; ++i) { 2867 int Idx = Mask[i]; 2868 SDValue Res; 2869 2870 if (Idx < 0) { 2871 Res = DAG.getUNDEF(EltVT); 2872 } else { 2873 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2874 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2875 2876 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2877 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2878 } 2879 2880 Ops.push_back(Res); 2881 } 2882 2883 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2884 } 2885 2886 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2887 const Value *Op0 = I.getOperand(0); 2888 const Value *Op1 = I.getOperand(1); 2889 Type *AggTy = I.getType(); 2890 Type *ValTy = Op1->getType(); 2891 bool IntoUndef = isa<UndefValue>(Op0); 2892 bool FromUndef = isa<UndefValue>(Op1); 2893 2894 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2895 2896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2897 SmallVector<EVT, 4> AggValueVTs; 2898 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2899 SmallVector<EVT, 4> ValValueVTs; 2900 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2901 2902 unsigned NumAggValues = AggValueVTs.size(); 2903 unsigned NumValValues = ValValueVTs.size(); 2904 SmallVector<SDValue, 4> Values(NumAggValues); 2905 2906 // Ignore an insertvalue that produces an empty object 2907 if (!NumAggValues) { 2908 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2909 return; 2910 } 2911 2912 SDValue Agg = getValue(Op0); 2913 unsigned i = 0; 2914 // Copy the beginning value(s) from the original aggregate. 2915 for (; i != LinearIndex; ++i) 2916 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2917 SDValue(Agg.getNode(), Agg.getResNo() + i); 2918 // Copy values from the inserted value(s). 2919 if (NumValValues) { 2920 SDValue Val = getValue(Op1); 2921 for (; i != LinearIndex + NumValValues; ++i) 2922 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2923 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2924 } 2925 // Copy remaining value(s) from the original aggregate. 2926 for (; i != NumAggValues; ++i) 2927 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2928 SDValue(Agg.getNode(), Agg.getResNo() + i); 2929 2930 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2931 DAG.getVTList(AggValueVTs), Values)); 2932 } 2933 2934 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2935 const Value *Op0 = I.getOperand(0); 2936 Type *AggTy = Op0->getType(); 2937 Type *ValTy = I.getType(); 2938 bool OutOfUndef = isa<UndefValue>(Op0); 2939 2940 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2941 2942 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2943 SmallVector<EVT, 4> ValValueVTs; 2944 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2945 2946 unsigned NumValValues = ValValueVTs.size(); 2947 2948 // Ignore a extractvalue that produces an empty object 2949 if (!NumValValues) { 2950 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2951 return; 2952 } 2953 2954 SmallVector<SDValue, 4> Values(NumValValues); 2955 2956 SDValue Agg = getValue(Op0); 2957 // Copy out the selected value(s). 2958 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2959 Values[i - LinearIndex] = 2960 OutOfUndef ? 2961 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2962 SDValue(Agg.getNode(), Agg.getResNo() + i); 2963 2964 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2965 DAG.getVTList(ValValueVTs), Values)); 2966 } 2967 2968 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2969 Value *Op0 = I.getOperand(0); 2970 // Note that the pointer operand may be a vector of pointers. Take the scalar 2971 // element which holds a pointer. 2972 Type *Ty = Op0->getType()->getScalarType(); 2973 unsigned AS = Ty->getPointerAddressSpace(); 2974 SDValue N = getValue(Op0); 2975 SDLoc dl = getCurSDLoc(); 2976 2977 // Normalize Vector GEP - all scalar operands should be converted to the 2978 // splat vector. 2979 unsigned VectorWidth = I.getType()->isVectorTy() ? 2980 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2981 2982 if (VectorWidth && !N.getValueType().isVector()) { 2983 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2984 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2985 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2986 } 2987 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2988 OI != E; ++OI) { 2989 const Value *Idx = *OI; 2990 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2991 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2992 if (Field) { 2993 // N = N + Offset 2994 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2995 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2996 DAG.getConstant(Offset, dl, N.getValueType())); 2997 } 2998 2999 Ty = StTy->getElementType(Field); 3000 } else { 3001 Ty = cast<SequentialType>(Ty)->getElementType(); 3002 MVT PtrTy = 3003 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3004 unsigned PtrSize = PtrTy.getSizeInBits(); 3005 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3006 3007 // If this is a scalar constant or a splat vector of constants, 3008 // handle it quickly. 3009 const auto *CI = dyn_cast<ConstantInt>(Idx); 3010 if (!CI && isa<ConstantDataVector>(Idx) && 3011 cast<ConstantDataVector>(Idx)->getSplatValue()) 3012 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3013 3014 if (CI) { 3015 if (CI->isZero()) 3016 continue; 3017 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3018 SDValue OffsVal = VectorWidth ? 3019 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3020 DAG.getConstant(Offs, dl, PtrTy); 3021 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3022 continue; 3023 } 3024 3025 // N = N + Idx * ElementSize; 3026 SDValue IdxN = getValue(Idx); 3027 3028 if (!IdxN.getValueType().isVector() && VectorWidth) { 3029 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3030 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3031 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3032 } 3033 // If the index is smaller or larger than intptr_t, truncate or extend 3034 // it. 3035 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3036 3037 // If this is a multiply by a power of two, turn it into a shl 3038 // immediately. This is a very common case. 3039 if (ElementSize != 1) { 3040 if (ElementSize.isPowerOf2()) { 3041 unsigned Amt = ElementSize.logBase2(); 3042 IdxN = DAG.getNode(ISD::SHL, dl, 3043 N.getValueType(), IdxN, 3044 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3045 } else { 3046 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3047 IdxN = DAG.getNode(ISD::MUL, dl, 3048 N.getValueType(), IdxN, Scale); 3049 } 3050 } 3051 3052 N = DAG.getNode(ISD::ADD, dl, 3053 N.getValueType(), N, IdxN); 3054 } 3055 } 3056 3057 setValue(&I, N); 3058 } 3059 3060 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3061 // If this is a fixed sized alloca in the entry block of the function, 3062 // allocate it statically on the stack. 3063 if (FuncInfo.StaticAllocaMap.count(&I)) 3064 return; // getValue will auto-populate this. 3065 3066 SDLoc dl = getCurSDLoc(); 3067 Type *Ty = I.getAllocatedType(); 3068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3069 auto &DL = DAG.getDataLayout(); 3070 uint64_t TySize = DL.getTypeAllocSize(Ty); 3071 unsigned Align = 3072 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3073 3074 SDValue AllocSize = getValue(I.getArraySize()); 3075 3076 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3077 if (AllocSize.getValueType() != IntPtr) 3078 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3079 3080 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3081 AllocSize, 3082 DAG.getConstant(TySize, dl, IntPtr)); 3083 3084 // Handle alignment. If the requested alignment is less than or equal to 3085 // the stack alignment, ignore it. If the size is greater than or equal to 3086 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3087 unsigned StackAlign = 3088 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3089 if (Align <= StackAlign) 3090 Align = 0; 3091 3092 // Round the size of the allocation up to the stack alignment size 3093 // by add SA-1 to the size. 3094 AllocSize = DAG.getNode(ISD::ADD, dl, 3095 AllocSize.getValueType(), AllocSize, 3096 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3097 3098 // Mask out the low bits for alignment purposes. 3099 AllocSize = DAG.getNode(ISD::AND, dl, 3100 AllocSize.getValueType(), AllocSize, 3101 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3102 dl)); 3103 3104 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3105 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3106 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3107 setValue(&I, DSA); 3108 DAG.setRoot(DSA.getValue(1)); 3109 3110 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3111 } 3112 3113 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3114 if (I.isAtomic()) 3115 return visitAtomicLoad(I); 3116 3117 const Value *SV = I.getOperand(0); 3118 SDValue Ptr = getValue(SV); 3119 3120 Type *Ty = I.getType(); 3121 3122 bool isVolatile = I.isVolatile(); 3123 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3124 3125 // The IR notion of invariant_load only guarantees that all *non-faulting* 3126 // invariant loads result in the same value. The MI notion of invariant load 3127 // guarantees that the load can be legally moved to any location within its 3128 // containing function. The MI notion of invariant_load is stronger than the 3129 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3130 // with a guarantee that the location being loaded from is dereferenceable 3131 // throughout the function's lifetime. 3132 3133 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3134 isDereferenceablePointer(SV, DAG.getDataLayout()); 3135 unsigned Alignment = I.getAlignment(); 3136 3137 AAMDNodes AAInfo; 3138 I.getAAMetadata(AAInfo); 3139 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3140 3141 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3142 SmallVector<EVT, 4> ValueVTs; 3143 SmallVector<uint64_t, 4> Offsets; 3144 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3145 unsigned NumValues = ValueVTs.size(); 3146 if (NumValues == 0) 3147 return; 3148 3149 SDValue Root; 3150 bool ConstantMemory = false; 3151 if (isVolatile || NumValues > MaxParallelChains) 3152 // Serialize volatile loads with other side effects. 3153 Root = getRoot(); 3154 else if (AA->pointsToConstantMemory(MemoryLocation( 3155 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3156 // Do not serialize (non-volatile) loads of constant memory with anything. 3157 Root = DAG.getEntryNode(); 3158 ConstantMemory = true; 3159 } else { 3160 // Do not serialize non-volatile loads against each other. 3161 Root = DAG.getRoot(); 3162 } 3163 3164 SDLoc dl = getCurSDLoc(); 3165 3166 if (isVolatile) 3167 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3168 3169 SmallVector<SDValue, 4> Values(NumValues); 3170 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3171 EVT PtrVT = Ptr.getValueType(); 3172 unsigned ChainI = 0; 3173 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3174 // Serializing loads here may result in excessive register pressure, and 3175 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3176 // could recover a bit by hoisting nodes upward in the chain by recognizing 3177 // they are side-effect free or do not alias. The optimizer should really 3178 // avoid this case by converting large object/array copies to llvm.memcpy 3179 // (MaxParallelChains should always remain as failsafe). 3180 if (ChainI == MaxParallelChains) { 3181 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3182 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3183 makeArrayRef(Chains.data(), ChainI)); 3184 Root = Chain; 3185 ChainI = 0; 3186 } 3187 SDValue A = DAG.getNode(ISD::ADD, dl, 3188 PtrVT, Ptr, 3189 DAG.getConstant(Offsets[i], dl, PtrVT)); 3190 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3191 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3192 isNonTemporal, isInvariant, Alignment, AAInfo, 3193 Ranges); 3194 3195 Values[i] = L; 3196 Chains[ChainI] = L.getValue(1); 3197 } 3198 3199 if (!ConstantMemory) { 3200 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3201 makeArrayRef(Chains.data(), ChainI)); 3202 if (isVolatile) 3203 DAG.setRoot(Chain); 3204 else 3205 PendingLoads.push_back(Chain); 3206 } 3207 3208 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3209 DAG.getVTList(ValueVTs), Values)); 3210 } 3211 3212 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3213 if (I.isAtomic()) 3214 return visitAtomicStore(I); 3215 3216 const Value *SrcV = I.getOperand(0); 3217 const Value *PtrV = I.getOperand(1); 3218 3219 SmallVector<EVT, 4> ValueVTs; 3220 SmallVector<uint64_t, 4> Offsets; 3221 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3222 SrcV->getType(), ValueVTs, &Offsets); 3223 unsigned NumValues = ValueVTs.size(); 3224 if (NumValues == 0) 3225 return; 3226 3227 // Get the lowered operands. Note that we do this after 3228 // checking if NumResults is zero, because with zero results 3229 // the operands won't have values in the map. 3230 SDValue Src = getValue(SrcV); 3231 SDValue Ptr = getValue(PtrV); 3232 3233 SDValue Root = getRoot(); 3234 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3235 EVT PtrVT = Ptr.getValueType(); 3236 bool isVolatile = I.isVolatile(); 3237 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3238 unsigned Alignment = I.getAlignment(); 3239 SDLoc dl = getCurSDLoc(); 3240 3241 AAMDNodes AAInfo; 3242 I.getAAMetadata(AAInfo); 3243 3244 unsigned ChainI = 0; 3245 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3246 // See visitLoad comments. 3247 if (ChainI == MaxParallelChains) { 3248 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3249 makeArrayRef(Chains.data(), ChainI)); 3250 Root = Chain; 3251 ChainI = 0; 3252 } 3253 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3254 DAG.getConstant(Offsets[i], dl, PtrVT)); 3255 SDValue St = DAG.getStore(Root, dl, 3256 SDValue(Src.getNode(), Src.getResNo() + i), 3257 Add, MachinePointerInfo(PtrV, Offsets[i]), 3258 isVolatile, isNonTemporal, Alignment, AAInfo); 3259 Chains[ChainI] = St; 3260 } 3261 3262 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3263 makeArrayRef(Chains.data(), ChainI)); 3264 DAG.setRoot(StoreNode); 3265 } 3266 3267 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3268 SDLoc sdl = getCurSDLoc(); 3269 3270 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3271 Value *PtrOperand = I.getArgOperand(1); 3272 SDValue Ptr = getValue(PtrOperand); 3273 SDValue Src0 = getValue(I.getArgOperand(0)); 3274 SDValue Mask = getValue(I.getArgOperand(3)); 3275 EVT VT = Src0.getValueType(); 3276 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3277 if (!Alignment) 3278 Alignment = DAG.getEVTAlignment(VT); 3279 3280 AAMDNodes AAInfo; 3281 I.getAAMetadata(AAInfo); 3282 3283 MachineMemOperand *MMO = 3284 DAG.getMachineFunction(). 3285 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3286 MachineMemOperand::MOStore, VT.getStoreSize(), 3287 Alignment, AAInfo); 3288 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3289 MMO, false); 3290 DAG.setRoot(StoreNode); 3291 setValue(&I, StoreNode); 3292 } 3293 3294 // Get a uniform base for the Gather/Scatter intrinsic. 3295 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3296 // We try to represent it as a base pointer + vector of indices. 3297 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3298 // The first operand of the GEP may be a single pointer or a vector of pointers 3299 // Example: 3300 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3301 // or 3302 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3303 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3304 // 3305 // When the first GEP operand is a single pointer - it is the uniform base we 3306 // are looking for. If first operand of the GEP is a splat vector - we 3307 // extract the spalt value and use it as a uniform base. 3308 // In all other cases the function returns 'false'. 3309 // 3310 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3311 SelectionDAGBuilder* SDB) { 3312 3313 SelectionDAG& DAG = SDB->DAG; 3314 LLVMContext &Context = *DAG.getContext(); 3315 3316 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3317 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3318 if (!GEP || GEP->getNumOperands() > 2) 3319 return false; 3320 3321 const Value *GEPPtr = GEP->getPointerOperand(); 3322 if (!GEPPtr->getType()->isVectorTy()) 3323 Ptr = GEPPtr; 3324 else if (!(Ptr = getSplatValue(GEPPtr))) 3325 return false; 3326 3327 Value *IndexVal = GEP->getOperand(1); 3328 3329 // The operands of the GEP may be defined in another basic block. 3330 // In this case we'll not find nodes for the operands. 3331 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3332 return false; 3333 3334 Base = SDB->getValue(Ptr); 3335 Index = SDB->getValue(IndexVal); 3336 3337 // Suppress sign extension. 3338 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3339 if (SDB->findValue(Sext->getOperand(0))) { 3340 IndexVal = Sext->getOperand(0); 3341 Index = SDB->getValue(IndexVal); 3342 } 3343 } 3344 if (!Index.getValueType().isVector()) { 3345 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3346 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3347 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3348 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3349 } 3350 return true; 3351 } 3352 3353 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3354 SDLoc sdl = getCurSDLoc(); 3355 3356 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3357 const Value *Ptr = I.getArgOperand(1); 3358 SDValue Src0 = getValue(I.getArgOperand(0)); 3359 SDValue Mask = getValue(I.getArgOperand(3)); 3360 EVT VT = Src0.getValueType(); 3361 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3362 if (!Alignment) 3363 Alignment = DAG.getEVTAlignment(VT); 3364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3365 3366 AAMDNodes AAInfo; 3367 I.getAAMetadata(AAInfo); 3368 3369 SDValue Base; 3370 SDValue Index; 3371 const Value *BasePtr = Ptr; 3372 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3373 3374 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3375 MachineMemOperand *MMO = DAG.getMachineFunction(). 3376 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3377 MachineMemOperand::MOStore, VT.getStoreSize(), 3378 Alignment, AAInfo); 3379 if (!UniformBase) { 3380 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3381 Index = getValue(Ptr); 3382 } 3383 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3384 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3385 Ops, MMO); 3386 DAG.setRoot(Scatter); 3387 setValue(&I, Scatter); 3388 } 3389 3390 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3391 SDLoc sdl = getCurSDLoc(); 3392 3393 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3394 Value *PtrOperand = I.getArgOperand(0); 3395 SDValue Ptr = getValue(PtrOperand); 3396 SDValue Src0 = getValue(I.getArgOperand(3)); 3397 SDValue Mask = getValue(I.getArgOperand(2)); 3398 3399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3400 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3401 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3402 if (!Alignment) 3403 Alignment = DAG.getEVTAlignment(VT); 3404 3405 AAMDNodes AAInfo; 3406 I.getAAMetadata(AAInfo); 3407 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3408 3409 SDValue InChain = DAG.getRoot(); 3410 if (AA->pointsToConstantMemory(MemoryLocation( 3411 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3412 AAInfo))) { 3413 // Do not serialize (non-volatile) loads of constant memory with anything. 3414 InChain = DAG.getEntryNode(); 3415 } 3416 3417 MachineMemOperand *MMO = 3418 DAG.getMachineFunction(). 3419 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3420 MachineMemOperand::MOLoad, VT.getStoreSize(), 3421 Alignment, AAInfo, Ranges); 3422 3423 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3424 ISD::NON_EXTLOAD); 3425 SDValue OutChain = Load.getValue(1); 3426 DAG.setRoot(OutChain); 3427 setValue(&I, Load); 3428 } 3429 3430 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3431 SDLoc sdl = getCurSDLoc(); 3432 3433 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3434 const Value *Ptr = I.getArgOperand(0); 3435 SDValue Src0 = getValue(I.getArgOperand(3)); 3436 SDValue Mask = getValue(I.getArgOperand(2)); 3437 3438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3439 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3440 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3441 if (!Alignment) 3442 Alignment = DAG.getEVTAlignment(VT); 3443 3444 AAMDNodes AAInfo; 3445 I.getAAMetadata(AAInfo); 3446 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3447 3448 SDValue Root = DAG.getRoot(); 3449 SDValue Base; 3450 SDValue Index; 3451 const Value *BasePtr = Ptr; 3452 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3453 bool ConstantMemory = false; 3454 if (UniformBase && 3455 AA->pointsToConstantMemory(MemoryLocation( 3456 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3457 AAInfo))) { 3458 // Do not serialize (non-volatile) loads of constant memory with anything. 3459 Root = DAG.getEntryNode(); 3460 ConstantMemory = true; 3461 } 3462 3463 MachineMemOperand *MMO = 3464 DAG.getMachineFunction(). 3465 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3466 MachineMemOperand::MOLoad, VT.getStoreSize(), 3467 Alignment, AAInfo, Ranges); 3468 3469 if (!UniformBase) { 3470 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3471 Index = getValue(Ptr); 3472 } 3473 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3474 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3475 Ops, MMO); 3476 3477 SDValue OutChain = Gather.getValue(1); 3478 if (!ConstantMemory) 3479 PendingLoads.push_back(OutChain); 3480 setValue(&I, Gather); 3481 } 3482 3483 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3484 SDLoc dl = getCurSDLoc(); 3485 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3486 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3487 SynchronizationScope Scope = I.getSynchScope(); 3488 3489 SDValue InChain = getRoot(); 3490 3491 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3492 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3493 SDValue L = DAG.getAtomicCmpSwap( 3494 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3495 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3496 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3497 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3498 3499 SDValue OutChain = L.getValue(2); 3500 3501 setValue(&I, L); 3502 DAG.setRoot(OutChain); 3503 } 3504 3505 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3506 SDLoc dl = getCurSDLoc(); 3507 ISD::NodeType NT; 3508 switch (I.getOperation()) { 3509 default: llvm_unreachable("Unknown atomicrmw operation"); 3510 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3511 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3512 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3513 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3514 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3515 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3516 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3517 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3518 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3519 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3520 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3521 } 3522 AtomicOrdering Order = I.getOrdering(); 3523 SynchronizationScope Scope = I.getSynchScope(); 3524 3525 SDValue InChain = getRoot(); 3526 3527 SDValue L = 3528 DAG.getAtomic(NT, dl, 3529 getValue(I.getValOperand()).getSimpleValueType(), 3530 InChain, 3531 getValue(I.getPointerOperand()), 3532 getValue(I.getValOperand()), 3533 I.getPointerOperand(), 3534 /* Alignment=*/ 0, Order, Scope); 3535 3536 SDValue OutChain = L.getValue(1); 3537 3538 setValue(&I, L); 3539 DAG.setRoot(OutChain); 3540 } 3541 3542 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3543 SDLoc dl = getCurSDLoc(); 3544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3545 SDValue Ops[3]; 3546 Ops[0] = getRoot(); 3547 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3548 TLI.getPointerTy(DAG.getDataLayout())); 3549 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3550 TLI.getPointerTy(DAG.getDataLayout())); 3551 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3552 } 3553 3554 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3555 SDLoc dl = getCurSDLoc(); 3556 AtomicOrdering Order = I.getOrdering(); 3557 SynchronizationScope Scope = I.getSynchScope(); 3558 3559 SDValue InChain = getRoot(); 3560 3561 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3562 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3563 3564 if (I.getAlignment() < VT.getSizeInBits() / 8) 3565 report_fatal_error("Cannot generate unaligned atomic load"); 3566 3567 MachineMemOperand *MMO = 3568 DAG.getMachineFunction(). 3569 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3570 MachineMemOperand::MOVolatile | 3571 MachineMemOperand::MOLoad, 3572 VT.getStoreSize(), 3573 I.getAlignment() ? I.getAlignment() : 3574 DAG.getEVTAlignment(VT)); 3575 3576 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3577 SDValue L = 3578 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3579 getValue(I.getPointerOperand()), MMO, 3580 Order, Scope); 3581 3582 SDValue OutChain = L.getValue(1); 3583 3584 setValue(&I, L); 3585 DAG.setRoot(OutChain); 3586 } 3587 3588 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3589 SDLoc dl = getCurSDLoc(); 3590 3591 AtomicOrdering Order = I.getOrdering(); 3592 SynchronizationScope Scope = I.getSynchScope(); 3593 3594 SDValue InChain = getRoot(); 3595 3596 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3597 EVT VT = 3598 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3599 3600 if (I.getAlignment() < VT.getSizeInBits() / 8) 3601 report_fatal_error("Cannot generate unaligned atomic store"); 3602 3603 SDValue OutChain = 3604 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3605 InChain, 3606 getValue(I.getPointerOperand()), 3607 getValue(I.getValueOperand()), 3608 I.getPointerOperand(), I.getAlignment(), 3609 Order, Scope); 3610 3611 DAG.setRoot(OutChain); 3612 } 3613 3614 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3615 /// node. 3616 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3617 unsigned Intrinsic) { 3618 bool HasChain = !I.doesNotAccessMemory(); 3619 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3620 3621 // Build the operand list. 3622 SmallVector<SDValue, 8> Ops; 3623 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3624 if (OnlyLoad) { 3625 // We don't need to serialize loads against other loads. 3626 Ops.push_back(DAG.getRoot()); 3627 } else { 3628 Ops.push_back(getRoot()); 3629 } 3630 } 3631 3632 // Info is set by getTgtMemInstrinsic 3633 TargetLowering::IntrinsicInfo Info; 3634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3635 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3636 3637 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3638 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3639 Info.opc == ISD::INTRINSIC_W_CHAIN) 3640 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3641 TLI.getPointerTy(DAG.getDataLayout()))); 3642 3643 // Add all operands of the call to the operand list. 3644 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3645 SDValue Op = getValue(I.getArgOperand(i)); 3646 Ops.push_back(Op); 3647 } 3648 3649 SmallVector<EVT, 4> ValueVTs; 3650 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3651 3652 if (HasChain) 3653 ValueVTs.push_back(MVT::Other); 3654 3655 SDVTList VTs = DAG.getVTList(ValueVTs); 3656 3657 // Create the node. 3658 SDValue Result; 3659 if (IsTgtIntrinsic) { 3660 // This is target intrinsic that touches memory 3661 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3662 VTs, Ops, Info.memVT, 3663 MachinePointerInfo(Info.ptrVal, Info.offset), 3664 Info.align, Info.vol, 3665 Info.readMem, Info.writeMem, Info.size); 3666 } else if (!HasChain) { 3667 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3668 } else if (!I.getType()->isVoidTy()) { 3669 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3670 } else { 3671 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3672 } 3673 3674 if (HasChain) { 3675 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3676 if (OnlyLoad) 3677 PendingLoads.push_back(Chain); 3678 else 3679 DAG.setRoot(Chain); 3680 } 3681 3682 if (!I.getType()->isVoidTy()) { 3683 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3684 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3685 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3686 } 3687 3688 setValue(&I, Result); 3689 } 3690 } 3691 3692 /// GetSignificand - Get the significand and build it into a floating-point 3693 /// number with exponent of 1: 3694 /// 3695 /// Op = (Op & 0x007fffff) | 0x3f800000; 3696 /// 3697 /// where Op is the hexadecimal representation of floating point value. 3698 static SDValue 3699 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3700 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3701 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3702 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3703 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3704 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3705 } 3706 3707 /// GetExponent - Get the exponent: 3708 /// 3709 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3710 /// 3711 /// where Op is the hexadecimal representation of floating point value. 3712 static SDValue 3713 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3714 SDLoc dl) { 3715 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3716 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3717 SDValue t1 = DAG.getNode( 3718 ISD::SRL, dl, MVT::i32, t0, 3719 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3720 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3721 DAG.getConstant(127, dl, MVT::i32)); 3722 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3723 } 3724 3725 /// getF32Constant - Get 32-bit floating point constant. 3726 static SDValue 3727 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3728 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3729 MVT::f32); 3730 } 3731 3732 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3733 SelectionDAG &DAG) { 3734 // TODO: What fast-math-flags should be set on the floating-point nodes? 3735 3736 // IntegerPartOfX = ((int32_t)(t0); 3737 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3738 3739 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3740 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3741 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3742 3743 // IntegerPartOfX <<= 23; 3744 IntegerPartOfX = DAG.getNode( 3745 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3746 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3747 DAG.getDataLayout()))); 3748 3749 SDValue TwoToFractionalPartOfX; 3750 if (LimitFloatPrecision <= 6) { 3751 // For floating-point precision of 6: 3752 // 3753 // TwoToFractionalPartOfX = 3754 // 0.997535578f + 3755 // (0.735607626f + 0.252464424f * x) * x; 3756 // 3757 // error 0.0144103317, which is 6 bits 3758 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3759 getF32Constant(DAG, 0x3e814304, dl)); 3760 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3761 getF32Constant(DAG, 0x3f3c50c8, dl)); 3762 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3763 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3764 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3765 } else if (LimitFloatPrecision <= 12) { 3766 // For floating-point precision of 12: 3767 // 3768 // TwoToFractionalPartOfX = 3769 // 0.999892986f + 3770 // (0.696457318f + 3771 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3772 // 3773 // error 0.000107046256, which is 13 to 14 bits 3774 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3775 getF32Constant(DAG, 0x3da235e3, dl)); 3776 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3777 getF32Constant(DAG, 0x3e65b8f3, dl)); 3778 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3779 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3780 getF32Constant(DAG, 0x3f324b07, dl)); 3781 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3782 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3783 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3784 } else { // LimitFloatPrecision <= 18 3785 // For floating-point precision of 18: 3786 // 3787 // TwoToFractionalPartOfX = 3788 // 0.999999982f + 3789 // (0.693148872f + 3790 // (0.240227044f + 3791 // (0.554906021e-1f + 3792 // (0.961591928e-2f + 3793 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3794 // error 2.47208000*10^(-7), which is better than 18 bits 3795 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3796 getF32Constant(DAG, 0x3924b03e, dl)); 3797 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3798 getF32Constant(DAG, 0x3ab24b87, dl)); 3799 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3800 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3801 getF32Constant(DAG, 0x3c1d8c17, dl)); 3802 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3803 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3804 getF32Constant(DAG, 0x3d634a1d, dl)); 3805 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3806 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3807 getF32Constant(DAG, 0x3e75fe14, dl)); 3808 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3809 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3810 getF32Constant(DAG, 0x3f317234, dl)); 3811 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3812 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3813 getF32Constant(DAG, 0x3f800000, dl)); 3814 } 3815 3816 // Add the exponent into the result in integer domain. 3817 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3818 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3819 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3820 } 3821 3822 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3823 /// limited-precision mode. 3824 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3825 const TargetLowering &TLI) { 3826 if (Op.getValueType() == MVT::f32 && 3827 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3828 3829 // Put the exponent in the right bit position for later addition to the 3830 // final result: 3831 // 3832 // #define LOG2OFe 1.4426950f 3833 // t0 = Op * LOG2OFe 3834 3835 // TODO: What fast-math-flags should be set here? 3836 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3837 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3838 return getLimitedPrecisionExp2(t0, dl, DAG); 3839 } 3840 3841 // No special expansion. 3842 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3843 } 3844 3845 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3846 /// limited-precision mode. 3847 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3848 const TargetLowering &TLI) { 3849 3850 // TODO: What fast-math-flags should be set on the floating-point nodes? 3851 3852 if (Op.getValueType() == MVT::f32 && 3853 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3854 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3855 3856 // Scale the exponent by log(2) [0.69314718f]. 3857 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3858 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3859 getF32Constant(DAG, 0x3f317218, dl)); 3860 3861 // Get the significand and build it into a floating-point number with 3862 // exponent of 1. 3863 SDValue X = GetSignificand(DAG, Op1, dl); 3864 3865 SDValue LogOfMantissa; 3866 if (LimitFloatPrecision <= 6) { 3867 // For floating-point precision of 6: 3868 // 3869 // LogofMantissa = 3870 // -1.1609546f + 3871 // (1.4034025f - 0.23903021f * x) * x; 3872 // 3873 // error 0.0034276066, which is better than 8 bits 3874 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3875 getF32Constant(DAG, 0xbe74c456, dl)); 3876 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3877 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3878 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3879 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3880 getF32Constant(DAG, 0x3f949a29, dl)); 3881 } else if (LimitFloatPrecision <= 12) { 3882 // For floating-point precision of 12: 3883 // 3884 // LogOfMantissa = 3885 // -1.7417939f + 3886 // (2.8212026f + 3887 // (-1.4699568f + 3888 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3889 // 3890 // error 0.000061011436, which is 14 bits 3891 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3892 getF32Constant(DAG, 0xbd67b6d6, dl)); 3893 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3894 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3895 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3896 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3897 getF32Constant(DAG, 0x3fbc278b, dl)); 3898 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3899 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3900 getF32Constant(DAG, 0x40348e95, dl)); 3901 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3902 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3903 getF32Constant(DAG, 0x3fdef31a, dl)); 3904 } else { // LimitFloatPrecision <= 18 3905 // For floating-point precision of 18: 3906 // 3907 // LogOfMantissa = 3908 // -2.1072184f + 3909 // (4.2372794f + 3910 // (-3.7029485f + 3911 // (2.2781945f + 3912 // (-0.87823314f + 3913 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3914 // 3915 // error 0.0000023660568, which is better than 18 bits 3916 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3917 getF32Constant(DAG, 0xbc91e5ac, dl)); 3918 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3919 getF32Constant(DAG, 0x3e4350aa, dl)); 3920 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3921 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3922 getF32Constant(DAG, 0x3f60d3e3, dl)); 3923 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3924 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3925 getF32Constant(DAG, 0x4011cdf0, dl)); 3926 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3927 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3928 getF32Constant(DAG, 0x406cfd1c, dl)); 3929 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3930 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3931 getF32Constant(DAG, 0x408797cb, dl)); 3932 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3933 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3934 getF32Constant(DAG, 0x4006dcab, dl)); 3935 } 3936 3937 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3938 } 3939 3940 // No special expansion. 3941 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3942 } 3943 3944 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3945 /// limited-precision mode. 3946 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3947 const TargetLowering &TLI) { 3948 3949 // TODO: What fast-math-flags should be set on the floating-point nodes? 3950 3951 if (Op.getValueType() == MVT::f32 && 3952 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3953 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3954 3955 // Get the exponent. 3956 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3957 3958 // Get the significand and build it into a floating-point number with 3959 // exponent of 1. 3960 SDValue X = GetSignificand(DAG, Op1, dl); 3961 3962 // Different possible minimax approximations of significand in 3963 // floating-point for various degrees of accuracy over [1,2]. 3964 SDValue Log2ofMantissa; 3965 if (LimitFloatPrecision <= 6) { 3966 // For floating-point precision of 6: 3967 // 3968 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3969 // 3970 // error 0.0049451742, which is more than 7 bits 3971 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3972 getF32Constant(DAG, 0xbeb08fe0, dl)); 3973 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3974 getF32Constant(DAG, 0x40019463, dl)); 3975 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3976 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3977 getF32Constant(DAG, 0x3fd6633d, dl)); 3978 } else if (LimitFloatPrecision <= 12) { 3979 // For floating-point precision of 12: 3980 // 3981 // Log2ofMantissa = 3982 // -2.51285454f + 3983 // (4.07009056f + 3984 // (-2.12067489f + 3985 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3986 // 3987 // error 0.0000876136000, which is better than 13 bits 3988 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3989 getF32Constant(DAG, 0xbda7262e, dl)); 3990 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3991 getF32Constant(DAG, 0x3f25280b, dl)); 3992 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3993 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3994 getF32Constant(DAG, 0x4007b923, dl)); 3995 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3996 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3997 getF32Constant(DAG, 0x40823e2f, dl)); 3998 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3999 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4000 getF32Constant(DAG, 0x4020d29c, dl)); 4001 } else { // LimitFloatPrecision <= 18 4002 // For floating-point precision of 18: 4003 // 4004 // Log2ofMantissa = 4005 // -3.0400495f + 4006 // (6.1129976f + 4007 // (-5.3420409f + 4008 // (3.2865683f + 4009 // (-1.2669343f + 4010 // (0.27515199f - 4011 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4012 // 4013 // error 0.0000018516, which is better than 18 bits 4014 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4015 getF32Constant(DAG, 0xbcd2769e, dl)); 4016 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4017 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4018 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4019 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4020 getF32Constant(DAG, 0x3fa22ae7, dl)); 4021 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4022 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4023 getF32Constant(DAG, 0x40525723, dl)); 4024 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4025 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4026 getF32Constant(DAG, 0x40aaf200, dl)); 4027 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4028 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4029 getF32Constant(DAG, 0x40c39dad, dl)); 4030 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4031 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4032 getF32Constant(DAG, 0x4042902c, dl)); 4033 } 4034 4035 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4036 } 4037 4038 // No special expansion. 4039 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4040 } 4041 4042 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4043 /// limited-precision mode. 4044 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4045 const TargetLowering &TLI) { 4046 4047 // TODO: What fast-math-flags should be set on the floating-point nodes? 4048 4049 if (Op.getValueType() == MVT::f32 && 4050 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4051 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4052 4053 // Scale the exponent by log10(2) [0.30102999f]. 4054 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4055 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4056 getF32Constant(DAG, 0x3e9a209a, dl)); 4057 4058 // Get the significand and build it into a floating-point number with 4059 // exponent of 1. 4060 SDValue X = GetSignificand(DAG, Op1, dl); 4061 4062 SDValue Log10ofMantissa; 4063 if (LimitFloatPrecision <= 6) { 4064 // For floating-point precision of 6: 4065 // 4066 // Log10ofMantissa = 4067 // -0.50419619f + 4068 // (0.60948995f - 0.10380950f * x) * x; 4069 // 4070 // error 0.0014886165, which is 6 bits 4071 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4072 getF32Constant(DAG, 0xbdd49a13, dl)); 4073 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4074 getF32Constant(DAG, 0x3f1c0789, dl)); 4075 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4076 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4077 getF32Constant(DAG, 0x3f011300, dl)); 4078 } else if (LimitFloatPrecision <= 12) { 4079 // For floating-point precision of 12: 4080 // 4081 // Log10ofMantissa = 4082 // -0.64831180f + 4083 // (0.91751397f + 4084 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4085 // 4086 // error 0.00019228036, which is better than 12 bits 4087 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4088 getF32Constant(DAG, 0x3d431f31, dl)); 4089 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4090 getF32Constant(DAG, 0x3ea21fb2, dl)); 4091 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4092 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4093 getF32Constant(DAG, 0x3f6ae232, dl)); 4094 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4095 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4096 getF32Constant(DAG, 0x3f25f7c3, dl)); 4097 } else { // LimitFloatPrecision <= 18 4098 // For floating-point precision of 18: 4099 // 4100 // Log10ofMantissa = 4101 // -0.84299375f + 4102 // (1.5327582f + 4103 // (-1.0688956f + 4104 // (0.49102474f + 4105 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4106 // 4107 // error 0.0000037995730, which is better than 18 bits 4108 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4109 getF32Constant(DAG, 0x3c5d51ce, dl)); 4110 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4111 getF32Constant(DAG, 0x3e00685a, dl)); 4112 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4113 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4114 getF32Constant(DAG, 0x3efb6798, dl)); 4115 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4116 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4117 getF32Constant(DAG, 0x3f88d192, dl)); 4118 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4119 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4120 getF32Constant(DAG, 0x3fc4316c, dl)); 4121 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4122 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4123 getF32Constant(DAG, 0x3f57ce70, dl)); 4124 } 4125 4126 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4127 } 4128 4129 // No special expansion. 4130 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4131 } 4132 4133 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4134 /// limited-precision mode. 4135 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4136 const TargetLowering &TLI) { 4137 if (Op.getValueType() == MVT::f32 && 4138 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4139 return getLimitedPrecisionExp2(Op, dl, DAG); 4140 4141 // No special expansion. 4142 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4143 } 4144 4145 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4146 /// limited-precision mode with x == 10.0f. 4147 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4148 SelectionDAG &DAG, const TargetLowering &TLI) { 4149 bool IsExp10 = false; 4150 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4151 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4152 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4153 APFloat Ten(10.0f); 4154 IsExp10 = LHSC->isExactlyValue(Ten); 4155 } 4156 } 4157 4158 // TODO: What fast-math-flags should be set on the FMUL node? 4159 if (IsExp10) { 4160 // Put the exponent in the right bit position for later addition to the 4161 // final result: 4162 // 4163 // #define LOG2OF10 3.3219281f 4164 // t0 = Op * LOG2OF10; 4165 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4166 getF32Constant(DAG, 0x40549a78, dl)); 4167 return getLimitedPrecisionExp2(t0, dl, DAG); 4168 } 4169 4170 // No special expansion. 4171 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4172 } 4173 4174 4175 /// ExpandPowI - Expand a llvm.powi intrinsic. 4176 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4177 SelectionDAG &DAG) { 4178 // If RHS is a constant, we can expand this out to a multiplication tree, 4179 // otherwise we end up lowering to a call to __powidf2 (for example). When 4180 // optimizing for size, we only want to do this if the expansion would produce 4181 // a small number of multiplies, otherwise we do the full expansion. 4182 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4183 // Get the exponent as a positive value. 4184 unsigned Val = RHSC->getSExtValue(); 4185 if ((int)Val < 0) Val = -Val; 4186 4187 // powi(x, 0) -> 1.0 4188 if (Val == 0) 4189 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4190 4191 const Function *F = DAG.getMachineFunction().getFunction(); 4192 if (!F->optForSize() || 4193 // If optimizing for size, don't insert too many multiplies. 4194 // This inserts up to 5 multiplies. 4195 countPopulation(Val) + Log2_32(Val) < 7) { 4196 // We use the simple binary decomposition method to generate the multiply 4197 // sequence. There are more optimal ways to do this (for example, 4198 // powi(x,15) generates one more multiply than it should), but this has 4199 // the benefit of being both really simple and much better than a libcall. 4200 SDValue Res; // Logically starts equal to 1.0 4201 SDValue CurSquare = LHS; 4202 // TODO: Intrinsics should have fast-math-flags that propagate to these 4203 // nodes. 4204 while (Val) { 4205 if (Val & 1) { 4206 if (Res.getNode()) 4207 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4208 else 4209 Res = CurSquare; // 1.0*CurSquare. 4210 } 4211 4212 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4213 CurSquare, CurSquare); 4214 Val >>= 1; 4215 } 4216 4217 // If the original was negative, invert the result, producing 1/(x*x*x). 4218 if (RHSC->getSExtValue() < 0) 4219 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4220 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4221 return Res; 4222 } 4223 } 4224 4225 // Otherwise, expand to a libcall. 4226 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4227 } 4228 4229 // getUnderlyingArgReg - Find underlying register used for a truncated or 4230 // bitcasted argument. 4231 static unsigned getUnderlyingArgReg(const SDValue &N) { 4232 switch (N.getOpcode()) { 4233 case ISD::CopyFromReg: 4234 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4235 case ISD::BITCAST: 4236 case ISD::AssertZext: 4237 case ISD::AssertSext: 4238 case ISD::TRUNCATE: 4239 return getUnderlyingArgReg(N.getOperand(0)); 4240 default: 4241 return 0; 4242 } 4243 } 4244 4245 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4246 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4247 /// At the end of instruction selection, they will be inserted to the entry BB. 4248 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4249 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4250 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4251 const Argument *Arg = dyn_cast<Argument>(V); 4252 if (!Arg) 4253 return false; 4254 4255 MachineFunction &MF = DAG.getMachineFunction(); 4256 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4257 4258 // Ignore inlined function arguments here. 4259 // 4260 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4261 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4262 return false; 4263 4264 Optional<MachineOperand> Op; 4265 // Some arguments' frame index is recorded during argument lowering. 4266 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4267 Op = MachineOperand::CreateFI(FI); 4268 4269 if (!Op && N.getNode()) { 4270 unsigned Reg = getUnderlyingArgReg(N); 4271 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4272 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4273 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4274 if (PR) 4275 Reg = PR; 4276 } 4277 if (Reg) 4278 Op = MachineOperand::CreateReg(Reg, false); 4279 } 4280 4281 if (!Op) { 4282 // Check if ValueMap has reg number. 4283 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4284 if (VMI != FuncInfo.ValueMap.end()) 4285 Op = MachineOperand::CreateReg(VMI->second, false); 4286 } 4287 4288 if (!Op && N.getNode()) 4289 // Check if frame index is available. 4290 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4291 if (FrameIndexSDNode *FINode = 4292 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4293 Op = MachineOperand::CreateFI(FINode->getIndex()); 4294 4295 if (!Op) 4296 return false; 4297 4298 assert(Variable->isValidLocationForIntrinsic(DL) && 4299 "Expected inlined-at fields to agree"); 4300 if (Op->isReg()) 4301 FuncInfo.ArgDbgValues.push_back( 4302 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4303 Op->getReg(), Offset, Variable, Expr)); 4304 else 4305 FuncInfo.ArgDbgValues.push_back( 4306 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4307 .addOperand(*Op) 4308 .addImm(Offset) 4309 .addMetadata(Variable) 4310 .addMetadata(Expr)); 4311 4312 return true; 4313 } 4314 4315 // VisualStudio defines setjmp as _setjmp 4316 #if defined(_MSC_VER) && defined(setjmp) && \ 4317 !defined(setjmp_undefined_for_msvc) 4318 # pragma push_macro("setjmp") 4319 # undef setjmp 4320 # define setjmp_undefined_for_msvc 4321 #endif 4322 4323 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4324 /// we want to emit this as a call to a named external function, return the name 4325 /// otherwise lower it and return null. 4326 const char * 4327 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4328 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4329 SDLoc sdl = getCurSDLoc(); 4330 DebugLoc dl = getCurDebugLoc(); 4331 SDValue Res; 4332 4333 switch (Intrinsic) { 4334 default: 4335 // By default, turn this into a target intrinsic node. 4336 visitTargetIntrinsic(I, Intrinsic); 4337 return nullptr; 4338 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4339 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4340 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4341 case Intrinsic::returnaddress: 4342 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4343 TLI.getPointerTy(DAG.getDataLayout()), 4344 getValue(I.getArgOperand(0)))); 4345 return nullptr; 4346 case Intrinsic::frameaddress: 4347 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4348 TLI.getPointerTy(DAG.getDataLayout()), 4349 getValue(I.getArgOperand(0)))); 4350 return nullptr; 4351 case Intrinsic::read_register: { 4352 Value *Reg = I.getArgOperand(0); 4353 SDValue Chain = getRoot(); 4354 SDValue RegName = 4355 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4356 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4357 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4358 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4359 setValue(&I, Res); 4360 DAG.setRoot(Res.getValue(1)); 4361 return nullptr; 4362 } 4363 case Intrinsic::write_register: { 4364 Value *Reg = I.getArgOperand(0); 4365 Value *RegValue = I.getArgOperand(1); 4366 SDValue Chain = getRoot(); 4367 SDValue RegName = 4368 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4369 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4370 RegName, getValue(RegValue))); 4371 return nullptr; 4372 } 4373 case Intrinsic::setjmp: 4374 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4375 case Intrinsic::longjmp: 4376 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4377 case Intrinsic::memcpy: { 4378 SDValue Op1 = getValue(I.getArgOperand(0)); 4379 SDValue Op2 = getValue(I.getArgOperand(1)); 4380 SDValue Op3 = getValue(I.getArgOperand(2)); 4381 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4382 if (!Align) 4383 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4384 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4385 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4386 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4387 false, isTC, 4388 MachinePointerInfo(I.getArgOperand(0)), 4389 MachinePointerInfo(I.getArgOperand(1))); 4390 updateDAGForMaybeTailCall(MC); 4391 return nullptr; 4392 } 4393 case Intrinsic::memset: { 4394 SDValue Op1 = getValue(I.getArgOperand(0)); 4395 SDValue Op2 = getValue(I.getArgOperand(1)); 4396 SDValue Op3 = getValue(I.getArgOperand(2)); 4397 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4398 if (!Align) 4399 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4400 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4401 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4402 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4403 isTC, MachinePointerInfo(I.getArgOperand(0))); 4404 updateDAGForMaybeTailCall(MS); 4405 return nullptr; 4406 } 4407 case Intrinsic::memmove: { 4408 SDValue Op1 = getValue(I.getArgOperand(0)); 4409 SDValue Op2 = getValue(I.getArgOperand(1)); 4410 SDValue Op3 = getValue(I.getArgOperand(2)); 4411 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4412 if (!Align) 4413 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4414 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4415 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4416 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4417 isTC, MachinePointerInfo(I.getArgOperand(0)), 4418 MachinePointerInfo(I.getArgOperand(1))); 4419 updateDAGForMaybeTailCall(MM); 4420 return nullptr; 4421 } 4422 case Intrinsic::dbg_declare: { 4423 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4424 DILocalVariable *Variable = DI.getVariable(); 4425 DIExpression *Expression = DI.getExpression(); 4426 const Value *Address = DI.getAddress(); 4427 assert(Variable && "Missing variable"); 4428 if (!Address) { 4429 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4430 return nullptr; 4431 } 4432 4433 // Check if address has undef value. 4434 if (isa<UndefValue>(Address) || 4435 (Address->use_empty() && !isa<Argument>(Address))) { 4436 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4437 return nullptr; 4438 } 4439 4440 SDValue &N = NodeMap[Address]; 4441 if (!N.getNode() && isa<Argument>(Address)) 4442 // Check unused arguments map. 4443 N = UnusedArgNodeMap[Address]; 4444 SDDbgValue *SDV; 4445 if (N.getNode()) { 4446 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4447 Address = BCI->getOperand(0); 4448 // Parameters are handled specially. 4449 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4450 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4451 if (isParameter && FINode) { 4452 // Byval parameter. We have a frame index at this point. 4453 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4454 FINode->getIndex(), 0, dl, SDNodeOrder); 4455 } else if (isa<Argument>(Address)) { 4456 // Address is an argument, so try to emit its dbg value using 4457 // virtual register info from the FuncInfo.ValueMap. 4458 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4459 N); 4460 return nullptr; 4461 } else { 4462 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4463 true, 0, dl, SDNodeOrder); 4464 } 4465 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4466 } else { 4467 // If Address is an argument then try to emit its dbg value using 4468 // virtual register info from the FuncInfo.ValueMap. 4469 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4470 N)) { 4471 // If variable is pinned by a alloca in dominating bb then 4472 // use StaticAllocaMap. 4473 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4474 if (AI->getParent() != DI.getParent()) { 4475 DenseMap<const AllocaInst*, int>::iterator SI = 4476 FuncInfo.StaticAllocaMap.find(AI); 4477 if (SI != FuncInfo.StaticAllocaMap.end()) { 4478 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4479 0, dl, SDNodeOrder); 4480 DAG.AddDbgValue(SDV, nullptr, false); 4481 return nullptr; 4482 } 4483 } 4484 } 4485 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4486 } 4487 } 4488 return nullptr; 4489 } 4490 case Intrinsic::dbg_value: { 4491 const DbgValueInst &DI = cast<DbgValueInst>(I); 4492 assert(DI.getVariable() && "Missing variable"); 4493 4494 DILocalVariable *Variable = DI.getVariable(); 4495 DIExpression *Expression = DI.getExpression(); 4496 uint64_t Offset = DI.getOffset(); 4497 const Value *V = DI.getValue(); 4498 if (!V) 4499 return nullptr; 4500 4501 SDDbgValue *SDV; 4502 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4503 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4504 SDNodeOrder); 4505 DAG.AddDbgValue(SDV, nullptr, false); 4506 } else { 4507 // Do not use getValue() in here; we don't want to generate code at 4508 // this point if it hasn't been done yet. 4509 SDValue N = NodeMap[V]; 4510 if (!N.getNode() && isa<Argument>(V)) 4511 // Check unused arguments map. 4512 N = UnusedArgNodeMap[V]; 4513 if (N.getNode()) { 4514 // A dbg.value for an alloca is always indirect. 4515 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4516 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4517 IsIndirect, N)) { 4518 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4519 IsIndirect, Offset, dl, SDNodeOrder); 4520 DAG.AddDbgValue(SDV, N.getNode(), false); 4521 } 4522 } else if (!V->use_empty() ) { 4523 // Do not call getValue(V) yet, as we don't want to generate code. 4524 // Remember it for later. 4525 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4526 DanglingDebugInfoMap[V] = DDI; 4527 } else { 4528 // We may expand this to cover more cases. One case where we have no 4529 // data available is an unreferenced parameter. 4530 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4531 } 4532 } 4533 4534 // Build a debug info table entry. 4535 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4536 V = BCI->getOperand(0); 4537 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4538 // Don't handle byval struct arguments or VLAs, for example. 4539 if (!AI) { 4540 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4541 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4542 return nullptr; 4543 } 4544 DenseMap<const AllocaInst*, int>::iterator SI = 4545 FuncInfo.StaticAllocaMap.find(AI); 4546 if (SI == FuncInfo.StaticAllocaMap.end()) 4547 return nullptr; // VLAs. 4548 return nullptr; 4549 } 4550 4551 case Intrinsic::eh_typeid_for: { 4552 // Find the type id for the given typeinfo. 4553 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4554 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4555 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4556 setValue(&I, Res); 4557 return nullptr; 4558 } 4559 4560 case Intrinsic::eh_return_i32: 4561 case Intrinsic::eh_return_i64: 4562 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4563 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4564 MVT::Other, 4565 getControlRoot(), 4566 getValue(I.getArgOperand(0)), 4567 getValue(I.getArgOperand(1)))); 4568 return nullptr; 4569 case Intrinsic::eh_unwind_init: 4570 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4571 return nullptr; 4572 case Intrinsic::eh_dwarf_cfa: { 4573 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4574 TLI.getPointerTy(DAG.getDataLayout())); 4575 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4576 CfaArg.getValueType(), 4577 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4578 CfaArg.getValueType()), 4579 CfaArg); 4580 SDValue FA = DAG.getNode( 4581 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4582 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4583 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4584 FA, Offset)); 4585 return nullptr; 4586 } 4587 case Intrinsic::eh_sjlj_callsite: { 4588 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4589 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4590 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4591 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4592 4593 MMI.setCurrentCallSite(CI->getZExtValue()); 4594 return nullptr; 4595 } 4596 case Intrinsic::eh_sjlj_functioncontext: { 4597 // Get and store the index of the function context. 4598 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4599 AllocaInst *FnCtx = 4600 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4601 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4602 MFI->setFunctionContextIndex(FI); 4603 return nullptr; 4604 } 4605 case Intrinsic::eh_sjlj_setjmp: { 4606 SDValue Ops[2]; 4607 Ops[0] = getRoot(); 4608 Ops[1] = getValue(I.getArgOperand(0)); 4609 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4610 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4611 setValue(&I, Op.getValue(0)); 4612 DAG.setRoot(Op.getValue(1)); 4613 return nullptr; 4614 } 4615 case Intrinsic::eh_sjlj_longjmp: { 4616 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4617 getRoot(), getValue(I.getArgOperand(0)))); 4618 return nullptr; 4619 } 4620 case Intrinsic::eh_sjlj_setup_dispatch: { 4621 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4622 getRoot())); 4623 return nullptr; 4624 } 4625 4626 case Intrinsic::masked_gather: 4627 visitMaskedGather(I); 4628 return nullptr; 4629 case Intrinsic::masked_load: 4630 visitMaskedLoad(I); 4631 return nullptr; 4632 case Intrinsic::masked_scatter: 4633 visitMaskedScatter(I); 4634 return nullptr; 4635 case Intrinsic::masked_store: 4636 visitMaskedStore(I); 4637 return nullptr; 4638 case Intrinsic::x86_mmx_pslli_w: 4639 case Intrinsic::x86_mmx_pslli_d: 4640 case Intrinsic::x86_mmx_pslli_q: 4641 case Intrinsic::x86_mmx_psrli_w: 4642 case Intrinsic::x86_mmx_psrli_d: 4643 case Intrinsic::x86_mmx_psrli_q: 4644 case Intrinsic::x86_mmx_psrai_w: 4645 case Intrinsic::x86_mmx_psrai_d: { 4646 SDValue ShAmt = getValue(I.getArgOperand(1)); 4647 if (isa<ConstantSDNode>(ShAmt)) { 4648 visitTargetIntrinsic(I, Intrinsic); 4649 return nullptr; 4650 } 4651 unsigned NewIntrinsic = 0; 4652 EVT ShAmtVT = MVT::v2i32; 4653 switch (Intrinsic) { 4654 case Intrinsic::x86_mmx_pslli_w: 4655 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4656 break; 4657 case Intrinsic::x86_mmx_pslli_d: 4658 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4659 break; 4660 case Intrinsic::x86_mmx_pslli_q: 4661 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4662 break; 4663 case Intrinsic::x86_mmx_psrli_w: 4664 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4665 break; 4666 case Intrinsic::x86_mmx_psrli_d: 4667 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4668 break; 4669 case Intrinsic::x86_mmx_psrli_q: 4670 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4671 break; 4672 case Intrinsic::x86_mmx_psrai_w: 4673 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4674 break; 4675 case Intrinsic::x86_mmx_psrai_d: 4676 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4677 break; 4678 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4679 } 4680 4681 // The vector shift intrinsics with scalars uses 32b shift amounts but 4682 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4683 // to be zero. 4684 // We must do this early because v2i32 is not a legal type. 4685 SDValue ShOps[2]; 4686 ShOps[0] = ShAmt; 4687 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4688 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4689 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4690 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4691 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4692 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4693 getValue(I.getArgOperand(0)), ShAmt); 4694 setValue(&I, Res); 4695 return nullptr; 4696 } 4697 case Intrinsic::convertff: 4698 case Intrinsic::convertfsi: 4699 case Intrinsic::convertfui: 4700 case Intrinsic::convertsif: 4701 case Intrinsic::convertuif: 4702 case Intrinsic::convertss: 4703 case Intrinsic::convertsu: 4704 case Intrinsic::convertus: 4705 case Intrinsic::convertuu: { 4706 ISD::CvtCode Code = ISD::CVT_INVALID; 4707 switch (Intrinsic) { 4708 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4709 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4710 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4711 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4712 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4713 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4714 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4715 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4716 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4717 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4718 } 4719 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4720 const Value *Op1 = I.getArgOperand(0); 4721 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4722 DAG.getValueType(DestVT), 4723 DAG.getValueType(getValue(Op1).getValueType()), 4724 getValue(I.getArgOperand(1)), 4725 getValue(I.getArgOperand(2)), 4726 Code); 4727 setValue(&I, Res); 4728 return nullptr; 4729 } 4730 case Intrinsic::powi: 4731 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4732 getValue(I.getArgOperand(1)), DAG)); 4733 return nullptr; 4734 case Intrinsic::log: 4735 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4736 return nullptr; 4737 case Intrinsic::log2: 4738 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4739 return nullptr; 4740 case Intrinsic::log10: 4741 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4742 return nullptr; 4743 case Intrinsic::exp: 4744 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4745 return nullptr; 4746 case Intrinsic::exp2: 4747 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4748 return nullptr; 4749 case Intrinsic::pow: 4750 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4751 getValue(I.getArgOperand(1)), DAG, TLI)); 4752 return nullptr; 4753 case Intrinsic::sqrt: 4754 case Intrinsic::fabs: 4755 case Intrinsic::sin: 4756 case Intrinsic::cos: 4757 case Intrinsic::floor: 4758 case Intrinsic::ceil: 4759 case Intrinsic::trunc: 4760 case Intrinsic::rint: 4761 case Intrinsic::nearbyint: 4762 case Intrinsic::round: { 4763 unsigned Opcode; 4764 switch (Intrinsic) { 4765 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4766 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4767 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4768 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4769 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4770 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4771 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4772 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4773 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4774 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4775 case Intrinsic::round: Opcode = ISD::FROUND; break; 4776 } 4777 4778 setValue(&I, DAG.getNode(Opcode, sdl, 4779 getValue(I.getArgOperand(0)).getValueType(), 4780 getValue(I.getArgOperand(0)))); 4781 return nullptr; 4782 } 4783 case Intrinsic::minnum: 4784 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4785 getValue(I.getArgOperand(0)).getValueType(), 4786 getValue(I.getArgOperand(0)), 4787 getValue(I.getArgOperand(1)))); 4788 return nullptr; 4789 case Intrinsic::maxnum: 4790 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4791 getValue(I.getArgOperand(0)).getValueType(), 4792 getValue(I.getArgOperand(0)), 4793 getValue(I.getArgOperand(1)))); 4794 return nullptr; 4795 case Intrinsic::copysign: 4796 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4797 getValue(I.getArgOperand(0)).getValueType(), 4798 getValue(I.getArgOperand(0)), 4799 getValue(I.getArgOperand(1)))); 4800 return nullptr; 4801 case Intrinsic::fma: 4802 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4803 getValue(I.getArgOperand(0)).getValueType(), 4804 getValue(I.getArgOperand(0)), 4805 getValue(I.getArgOperand(1)), 4806 getValue(I.getArgOperand(2)))); 4807 return nullptr; 4808 case Intrinsic::fmuladd: { 4809 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4810 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4811 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4812 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4813 getValue(I.getArgOperand(0)).getValueType(), 4814 getValue(I.getArgOperand(0)), 4815 getValue(I.getArgOperand(1)), 4816 getValue(I.getArgOperand(2)))); 4817 } else { 4818 // TODO: Intrinsic calls should have fast-math-flags. 4819 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4820 getValue(I.getArgOperand(0)).getValueType(), 4821 getValue(I.getArgOperand(0)), 4822 getValue(I.getArgOperand(1))); 4823 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4824 getValue(I.getArgOperand(0)).getValueType(), 4825 Mul, 4826 getValue(I.getArgOperand(2))); 4827 setValue(&I, Add); 4828 } 4829 return nullptr; 4830 } 4831 case Intrinsic::convert_to_fp16: 4832 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4833 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4834 getValue(I.getArgOperand(0)), 4835 DAG.getTargetConstant(0, sdl, 4836 MVT::i32)))); 4837 return nullptr; 4838 case Intrinsic::convert_from_fp16: 4839 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4840 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4841 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4842 getValue(I.getArgOperand(0))))); 4843 return nullptr; 4844 case Intrinsic::pcmarker: { 4845 SDValue Tmp = getValue(I.getArgOperand(0)); 4846 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4847 return nullptr; 4848 } 4849 case Intrinsic::readcyclecounter: { 4850 SDValue Op = getRoot(); 4851 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4852 DAG.getVTList(MVT::i64, MVT::Other), Op); 4853 setValue(&I, Res); 4854 DAG.setRoot(Res.getValue(1)); 4855 return nullptr; 4856 } 4857 case Intrinsic::bitreverse: 4858 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4859 getValue(I.getArgOperand(0)).getValueType(), 4860 getValue(I.getArgOperand(0)))); 4861 return nullptr; 4862 case Intrinsic::bswap: 4863 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4864 getValue(I.getArgOperand(0)).getValueType(), 4865 getValue(I.getArgOperand(0)))); 4866 return nullptr; 4867 case Intrinsic::cttz: { 4868 SDValue Arg = getValue(I.getArgOperand(0)); 4869 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4870 EVT Ty = Arg.getValueType(); 4871 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4872 sdl, Ty, Arg)); 4873 return nullptr; 4874 } 4875 case Intrinsic::ctlz: { 4876 SDValue Arg = getValue(I.getArgOperand(0)); 4877 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4878 EVT Ty = Arg.getValueType(); 4879 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4880 sdl, Ty, Arg)); 4881 return nullptr; 4882 } 4883 case Intrinsic::ctpop: { 4884 SDValue Arg = getValue(I.getArgOperand(0)); 4885 EVT Ty = Arg.getValueType(); 4886 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4887 return nullptr; 4888 } 4889 case Intrinsic::stacksave: { 4890 SDValue Op = getRoot(); 4891 Res = DAG.getNode( 4892 ISD::STACKSAVE, sdl, 4893 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4894 setValue(&I, Res); 4895 DAG.setRoot(Res.getValue(1)); 4896 return nullptr; 4897 } 4898 case Intrinsic::stackrestore: { 4899 Res = getValue(I.getArgOperand(0)); 4900 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4901 return nullptr; 4902 } 4903 case Intrinsic::get_dynamic_area_offset: { 4904 SDValue Op = getRoot(); 4905 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4906 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4907 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4908 // target. 4909 if (PtrTy != ResTy) 4910 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4911 " intrinsic!"); 4912 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4913 Op); 4914 DAG.setRoot(Op); 4915 setValue(&I, Res); 4916 return nullptr; 4917 } 4918 case Intrinsic::stackprotector: { 4919 // Emit code into the DAG to store the stack guard onto the stack. 4920 MachineFunction &MF = DAG.getMachineFunction(); 4921 MachineFrameInfo *MFI = MF.getFrameInfo(); 4922 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4923 SDValue Src, Chain = getRoot(); 4924 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4925 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4926 4927 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4928 // global variable __stack_chk_guard. 4929 if (!GV) 4930 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4931 if (BC->getOpcode() == Instruction::BitCast) 4932 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4933 4934 if (GV && TLI.useLoadStackGuardNode()) { 4935 // Emit a LOAD_STACK_GUARD node. 4936 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4937 sdl, PtrTy, Chain); 4938 MachinePointerInfo MPInfo(GV); 4939 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4940 unsigned Flags = MachineMemOperand::MOLoad | 4941 MachineMemOperand::MOInvariant; 4942 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4943 PtrTy.getSizeInBits() / 8, 4944 DAG.getEVTAlignment(PtrTy)); 4945 Node->setMemRefs(MemRefs, MemRefs + 1); 4946 4947 // Copy the guard value to a virtual register so that it can be 4948 // retrieved in the epilogue. 4949 Src = SDValue(Node, 0); 4950 const TargetRegisterClass *RC = 4951 TLI.getRegClassFor(Src.getSimpleValueType()); 4952 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4953 4954 SPDescriptor.setGuardReg(Reg); 4955 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4956 } else { 4957 Src = getValue(I.getArgOperand(0)); // The guard's value. 4958 } 4959 4960 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4961 4962 int FI = FuncInfo.StaticAllocaMap[Slot]; 4963 MFI->setStackProtectorIndex(FI); 4964 4965 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4966 4967 // Store the stack protector onto the stack. 4968 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4969 DAG.getMachineFunction(), FI), 4970 true, false, 0); 4971 setValue(&I, Res); 4972 DAG.setRoot(Res); 4973 return nullptr; 4974 } 4975 case Intrinsic::objectsize: { 4976 // If we don't know by now, we're never going to know. 4977 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4978 4979 assert(CI && "Non-constant type in __builtin_object_size?"); 4980 4981 SDValue Arg = getValue(I.getCalledValue()); 4982 EVT Ty = Arg.getValueType(); 4983 4984 if (CI->isZero()) 4985 Res = DAG.getConstant(-1ULL, sdl, Ty); 4986 else 4987 Res = DAG.getConstant(0, sdl, Ty); 4988 4989 setValue(&I, Res); 4990 return nullptr; 4991 } 4992 case Intrinsic::annotation: 4993 case Intrinsic::ptr_annotation: 4994 // Drop the intrinsic, but forward the value 4995 setValue(&I, getValue(I.getOperand(0))); 4996 return nullptr; 4997 case Intrinsic::assume: 4998 case Intrinsic::var_annotation: 4999 // Discard annotate attributes and assumptions 5000 return nullptr; 5001 5002 case Intrinsic::init_trampoline: { 5003 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5004 5005 SDValue Ops[6]; 5006 Ops[0] = getRoot(); 5007 Ops[1] = getValue(I.getArgOperand(0)); 5008 Ops[2] = getValue(I.getArgOperand(1)); 5009 Ops[3] = getValue(I.getArgOperand(2)); 5010 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5011 Ops[5] = DAG.getSrcValue(F); 5012 5013 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5014 5015 DAG.setRoot(Res); 5016 return nullptr; 5017 } 5018 case Intrinsic::adjust_trampoline: { 5019 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5020 TLI.getPointerTy(DAG.getDataLayout()), 5021 getValue(I.getArgOperand(0)))); 5022 return nullptr; 5023 } 5024 case Intrinsic::gcroot: 5025 if (GFI) { 5026 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5027 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5028 5029 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5030 GFI->addStackRoot(FI->getIndex(), TypeMap); 5031 } 5032 return nullptr; 5033 case Intrinsic::gcread: 5034 case Intrinsic::gcwrite: 5035 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5036 case Intrinsic::flt_rounds: 5037 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5038 return nullptr; 5039 5040 case Intrinsic::expect: { 5041 // Just replace __builtin_expect(exp, c) with EXP. 5042 setValue(&I, getValue(I.getArgOperand(0))); 5043 return nullptr; 5044 } 5045 5046 case Intrinsic::debugtrap: 5047 case Intrinsic::trap: { 5048 StringRef TrapFuncName = 5049 I.getAttributes() 5050 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5051 .getValueAsString(); 5052 if (TrapFuncName.empty()) { 5053 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5054 ISD::TRAP : ISD::DEBUGTRAP; 5055 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5056 return nullptr; 5057 } 5058 TargetLowering::ArgListTy Args; 5059 5060 TargetLowering::CallLoweringInfo CLI(DAG); 5061 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5062 CallingConv::C, I.getType(), 5063 DAG.getExternalSymbol(TrapFuncName.data(), 5064 TLI.getPointerTy(DAG.getDataLayout())), 5065 std::move(Args), 0); 5066 5067 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5068 DAG.setRoot(Result.second); 5069 return nullptr; 5070 } 5071 5072 case Intrinsic::uadd_with_overflow: 5073 case Intrinsic::sadd_with_overflow: 5074 case Intrinsic::usub_with_overflow: 5075 case Intrinsic::ssub_with_overflow: 5076 case Intrinsic::umul_with_overflow: 5077 case Intrinsic::smul_with_overflow: { 5078 ISD::NodeType Op; 5079 switch (Intrinsic) { 5080 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5081 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5082 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5083 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5084 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5085 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5086 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5087 } 5088 SDValue Op1 = getValue(I.getArgOperand(0)); 5089 SDValue Op2 = getValue(I.getArgOperand(1)); 5090 5091 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5092 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5093 return nullptr; 5094 } 5095 case Intrinsic::prefetch: { 5096 SDValue Ops[5]; 5097 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5098 Ops[0] = getRoot(); 5099 Ops[1] = getValue(I.getArgOperand(0)); 5100 Ops[2] = getValue(I.getArgOperand(1)); 5101 Ops[3] = getValue(I.getArgOperand(2)); 5102 Ops[4] = getValue(I.getArgOperand(3)); 5103 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5104 DAG.getVTList(MVT::Other), Ops, 5105 EVT::getIntegerVT(*Context, 8), 5106 MachinePointerInfo(I.getArgOperand(0)), 5107 0, /* align */ 5108 false, /* volatile */ 5109 rw==0, /* read */ 5110 rw==1)); /* write */ 5111 return nullptr; 5112 } 5113 case Intrinsic::lifetime_start: 5114 case Intrinsic::lifetime_end: { 5115 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5116 // Stack coloring is not enabled in O0, discard region information. 5117 if (TM.getOptLevel() == CodeGenOpt::None) 5118 return nullptr; 5119 5120 SmallVector<Value *, 4> Allocas; 5121 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5122 5123 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5124 E = Allocas.end(); Object != E; ++Object) { 5125 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5126 5127 // Could not find an Alloca. 5128 if (!LifetimeObject) 5129 continue; 5130 5131 // First check that the Alloca is static, otherwise it won't have a 5132 // valid frame index. 5133 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5134 if (SI == FuncInfo.StaticAllocaMap.end()) 5135 return nullptr; 5136 5137 int FI = SI->second; 5138 5139 SDValue Ops[2]; 5140 Ops[0] = getRoot(); 5141 Ops[1] = 5142 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5143 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5144 5145 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5146 DAG.setRoot(Res); 5147 } 5148 return nullptr; 5149 } 5150 case Intrinsic::invariant_start: 5151 // Discard region information. 5152 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5153 return nullptr; 5154 case Intrinsic::invariant_end: 5155 // Discard region information. 5156 return nullptr; 5157 case Intrinsic::stackprotectorcheck: { 5158 // Do not actually emit anything for this basic block. Instead we initialize 5159 // the stack protector descriptor and export the guard variable so we can 5160 // access it in FinishBasicBlock. 5161 const BasicBlock *BB = I.getParent(); 5162 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5163 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5164 5165 // Flush our exports since we are going to process a terminator. 5166 (void)getControlRoot(); 5167 return nullptr; 5168 } 5169 case Intrinsic::clear_cache: 5170 return TLI.getClearCacheBuiltinName(); 5171 case Intrinsic::donothing: 5172 // ignore 5173 return nullptr; 5174 case Intrinsic::experimental_stackmap: { 5175 visitStackmap(I); 5176 return nullptr; 5177 } 5178 case Intrinsic::experimental_patchpoint_void: 5179 case Intrinsic::experimental_patchpoint_i64: { 5180 visitPatchpoint(&I); 5181 return nullptr; 5182 } 5183 case Intrinsic::experimental_gc_statepoint: { 5184 visitStatepoint(I); 5185 return nullptr; 5186 } 5187 case Intrinsic::experimental_gc_result_int: 5188 case Intrinsic::experimental_gc_result_float: 5189 case Intrinsic::experimental_gc_result_ptr: 5190 case Intrinsic::experimental_gc_result: { 5191 visitGCResult(I); 5192 return nullptr; 5193 } 5194 case Intrinsic::experimental_gc_relocate: { 5195 visitGCRelocate(I); 5196 return nullptr; 5197 } 5198 case Intrinsic::instrprof_increment: 5199 llvm_unreachable("instrprof failed to lower an increment"); 5200 case Intrinsic::instrprof_value_profile: 5201 llvm_unreachable("instrprof failed to lower a value profiling call"); 5202 case Intrinsic::localescape: { 5203 MachineFunction &MF = DAG.getMachineFunction(); 5204 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5205 5206 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5207 // is the same on all targets. 5208 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5209 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5210 if (isa<ConstantPointerNull>(Arg)) 5211 continue; // Skip null pointers. They represent a hole in index space. 5212 AllocaInst *Slot = cast<AllocaInst>(Arg); 5213 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5214 "can only escape static allocas"); 5215 int FI = FuncInfo.StaticAllocaMap[Slot]; 5216 MCSymbol *FrameAllocSym = 5217 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5218 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5219 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5220 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5221 .addSym(FrameAllocSym) 5222 .addFrameIndex(FI); 5223 } 5224 5225 return nullptr; 5226 } 5227 5228 case Intrinsic::localrecover: { 5229 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5230 MachineFunction &MF = DAG.getMachineFunction(); 5231 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5232 5233 // Get the symbol that defines the frame offset. 5234 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5235 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5236 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5237 MCSymbol *FrameAllocSym = 5238 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5239 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5240 5241 // Create a MCSymbol for the label to avoid any target lowering 5242 // that would make this PC relative. 5243 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5244 SDValue OffsetVal = 5245 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5246 5247 // Add the offset to the FP. 5248 Value *FP = I.getArgOperand(1); 5249 SDValue FPVal = getValue(FP); 5250 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5251 setValue(&I, Add); 5252 5253 return nullptr; 5254 } 5255 5256 case Intrinsic::eh_exceptionpointer: 5257 case Intrinsic::eh_exceptioncode: { 5258 // Get the exception pointer vreg, copy from it, and resize it to fit. 5259 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5260 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5261 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5262 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5263 SDValue N = 5264 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5265 if (Intrinsic == Intrinsic::eh_exceptioncode) 5266 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5267 setValue(&I, N); 5268 return nullptr; 5269 } 5270 } 5271 } 5272 5273 std::pair<SDValue, SDValue> 5274 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5275 const BasicBlock *EHPadBB) { 5276 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5277 MCSymbol *BeginLabel = nullptr; 5278 5279 if (EHPadBB) { 5280 // Insert a label before the invoke call to mark the try range. This can be 5281 // used to detect deletion of the invoke via the MachineModuleInfo. 5282 BeginLabel = MMI.getContext().createTempSymbol(); 5283 5284 // For SjLj, keep track of which landing pads go with which invokes 5285 // so as to maintain the ordering of pads in the LSDA. 5286 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5287 if (CallSiteIndex) { 5288 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5289 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5290 5291 // Now that the call site is handled, stop tracking it. 5292 MMI.setCurrentCallSite(0); 5293 } 5294 5295 // Both PendingLoads and PendingExports must be flushed here; 5296 // this call might not return. 5297 (void)getRoot(); 5298 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5299 5300 CLI.setChain(getRoot()); 5301 } 5302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5303 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5304 5305 assert((CLI.IsTailCall || Result.second.getNode()) && 5306 "Non-null chain expected with non-tail call!"); 5307 assert((Result.second.getNode() || !Result.first.getNode()) && 5308 "Null value expected with tail call!"); 5309 5310 if (!Result.second.getNode()) { 5311 // As a special case, a null chain means that a tail call has been emitted 5312 // and the DAG root is already updated. 5313 HasTailCall = true; 5314 5315 // Since there's no actual continuation from this block, nothing can be 5316 // relying on us setting vregs for them. 5317 PendingExports.clear(); 5318 } else { 5319 DAG.setRoot(Result.second); 5320 } 5321 5322 if (EHPadBB) { 5323 // Insert a label at the end of the invoke call to mark the try range. This 5324 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5325 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5326 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5327 5328 // Inform MachineModuleInfo of range. 5329 if (MMI.hasEHFunclets()) { 5330 assert(CLI.CS); 5331 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5332 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5333 BeginLabel, EndLabel); 5334 } else { 5335 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5336 } 5337 } 5338 5339 return Result; 5340 } 5341 5342 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5343 bool isTailCall, 5344 const BasicBlock *EHPadBB) { 5345 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5346 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5347 Type *RetTy = FTy->getReturnType(); 5348 5349 TargetLowering::ArgListTy Args; 5350 TargetLowering::ArgListEntry Entry; 5351 Args.reserve(CS.arg_size()); 5352 5353 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5354 i != e; ++i) { 5355 const Value *V = *i; 5356 5357 // Skip empty types 5358 if (V->getType()->isEmptyTy()) 5359 continue; 5360 5361 SDValue ArgNode = getValue(V); 5362 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5363 5364 // Skip the first return-type Attribute to get to params. 5365 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5366 Args.push_back(Entry); 5367 5368 // If we have an explicit sret argument that is an Instruction, (i.e., it 5369 // might point to function-local memory), we can't meaningfully tail-call. 5370 if (Entry.isSRet && isa<Instruction>(V)) 5371 isTailCall = false; 5372 } 5373 5374 // Check if target-independent constraints permit a tail call here. 5375 // Target-dependent constraints are checked within TLI->LowerCallTo. 5376 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5377 isTailCall = false; 5378 5379 TargetLowering::CallLoweringInfo CLI(DAG); 5380 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5381 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5382 .setTailCall(isTailCall); 5383 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5384 5385 if (Result.first.getNode()) 5386 setValue(CS.getInstruction(), Result.first); 5387 } 5388 5389 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5390 /// value is equal or not-equal to zero. 5391 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5392 for (const User *U : V->users()) { 5393 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5394 if (IC->isEquality()) 5395 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5396 if (C->isNullValue()) 5397 continue; 5398 // Unknown instruction. 5399 return false; 5400 } 5401 return true; 5402 } 5403 5404 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5405 Type *LoadTy, 5406 SelectionDAGBuilder &Builder) { 5407 5408 // Check to see if this load can be trivially constant folded, e.g. if the 5409 // input is from a string literal. 5410 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5411 // Cast pointer to the type we really want to load. 5412 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5413 PointerType::getUnqual(LoadTy)); 5414 5415 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5416 const_cast<Constant *>(LoadInput), *Builder.DL)) 5417 return Builder.getValue(LoadCst); 5418 } 5419 5420 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5421 // still constant memory, the input chain can be the entry node. 5422 SDValue Root; 5423 bool ConstantMemory = false; 5424 5425 // Do not serialize (non-volatile) loads of constant memory with anything. 5426 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5427 Root = Builder.DAG.getEntryNode(); 5428 ConstantMemory = true; 5429 } else { 5430 // Do not serialize non-volatile loads against each other. 5431 Root = Builder.DAG.getRoot(); 5432 } 5433 5434 SDValue Ptr = Builder.getValue(PtrVal); 5435 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5436 Ptr, MachinePointerInfo(PtrVal), 5437 false /*volatile*/, 5438 false /*nontemporal*/, 5439 false /*isinvariant*/, 1 /* align=1 */); 5440 5441 if (!ConstantMemory) 5442 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5443 return LoadVal; 5444 } 5445 5446 /// processIntegerCallValue - Record the value for an instruction that 5447 /// produces an integer result, converting the type where necessary. 5448 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5449 SDValue Value, 5450 bool IsSigned) { 5451 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5452 I.getType(), true); 5453 if (IsSigned) 5454 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5455 else 5456 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5457 setValue(&I, Value); 5458 } 5459 5460 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5461 /// If so, return true and lower it, otherwise return false and it will be 5462 /// lowered like a normal call. 5463 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5464 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5465 if (I.getNumArgOperands() != 3) 5466 return false; 5467 5468 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5469 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5470 !I.getArgOperand(2)->getType()->isIntegerTy() || 5471 !I.getType()->isIntegerTy()) 5472 return false; 5473 5474 const Value *Size = I.getArgOperand(2); 5475 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5476 if (CSize && CSize->getZExtValue() == 0) { 5477 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5478 I.getType(), true); 5479 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5480 return true; 5481 } 5482 5483 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5484 std::pair<SDValue, SDValue> Res = 5485 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5486 getValue(LHS), getValue(RHS), getValue(Size), 5487 MachinePointerInfo(LHS), 5488 MachinePointerInfo(RHS)); 5489 if (Res.first.getNode()) { 5490 processIntegerCallValue(I, Res.first, true); 5491 PendingLoads.push_back(Res.second); 5492 return true; 5493 } 5494 5495 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5496 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5497 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5498 bool ActuallyDoIt = true; 5499 MVT LoadVT; 5500 Type *LoadTy; 5501 switch (CSize->getZExtValue()) { 5502 default: 5503 LoadVT = MVT::Other; 5504 LoadTy = nullptr; 5505 ActuallyDoIt = false; 5506 break; 5507 case 2: 5508 LoadVT = MVT::i16; 5509 LoadTy = Type::getInt16Ty(CSize->getContext()); 5510 break; 5511 case 4: 5512 LoadVT = MVT::i32; 5513 LoadTy = Type::getInt32Ty(CSize->getContext()); 5514 break; 5515 case 8: 5516 LoadVT = MVT::i64; 5517 LoadTy = Type::getInt64Ty(CSize->getContext()); 5518 break; 5519 /* 5520 case 16: 5521 LoadVT = MVT::v4i32; 5522 LoadTy = Type::getInt32Ty(CSize->getContext()); 5523 LoadTy = VectorType::get(LoadTy, 4); 5524 break; 5525 */ 5526 } 5527 5528 // This turns into unaligned loads. We only do this if the target natively 5529 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5530 // we'll only produce a small number of byte loads. 5531 5532 // Require that we can find a legal MVT, and only do this if the target 5533 // supports unaligned loads of that type. Expanding into byte loads would 5534 // bloat the code. 5535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5536 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5537 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5538 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5539 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5540 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5541 // TODO: Check alignment of src and dest ptrs. 5542 if (!TLI.isTypeLegal(LoadVT) || 5543 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5544 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5545 ActuallyDoIt = false; 5546 } 5547 5548 if (ActuallyDoIt) { 5549 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5550 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5551 5552 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5553 ISD::SETNE); 5554 processIntegerCallValue(I, Res, false); 5555 return true; 5556 } 5557 } 5558 5559 5560 return false; 5561 } 5562 5563 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5564 /// form. If so, return true and lower it, otherwise return false and it 5565 /// will be lowered like a normal call. 5566 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5567 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5568 if (I.getNumArgOperands() != 3) 5569 return false; 5570 5571 const Value *Src = I.getArgOperand(0); 5572 const Value *Char = I.getArgOperand(1); 5573 const Value *Length = I.getArgOperand(2); 5574 if (!Src->getType()->isPointerTy() || 5575 !Char->getType()->isIntegerTy() || 5576 !Length->getType()->isIntegerTy() || 5577 !I.getType()->isPointerTy()) 5578 return false; 5579 5580 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5581 std::pair<SDValue, SDValue> Res = 5582 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5583 getValue(Src), getValue(Char), getValue(Length), 5584 MachinePointerInfo(Src)); 5585 if (Res.first.getNode()) { 5586 setValue(&I, Res.first); 5587 PendingLoads.push_back(Res.second); 5588 return true; 5589 } 5590 5591 return false; 5592 } 5593 5594 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5595 /// optimized form. If so, return true and lower it, otherwise return false 5596 /// and it will be lowered like a normal call. 5597 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5598 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5599 if (I.getNumArgOperands() != 2) 5600 return false; 5601 5602 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5603 if (!Arg0->getType()->isPointerTy() || 5604 !Arg1->getType()->isPointerTy() || 5605 !I.getType()->isPointerTy()) 5606 return false; 5607 5608 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5609 std::pair<SDValue, SDValue> Res = 5610 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5611 getValue(Arg0), getValue(Arg1), 5612 MachinePointerInfo(Arg0), 5613 MachinePointerInfo(Arg1), isStpcpy); 5614 if (Res.first.getNode()) { 5615 setValue(&I, Res.first); 5616 DAG.setRoot(Res.second); 5617 return true; 5618 } 5619 5620 return false; 5621 } 5622 5623 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5624 /// If so, return true and lower it, otherwise return false and it will be 5625 /// lowered like a normal call. 5626 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5627 // Verify that the prototype makes sense. int strcmp(void*,void*) 5628 if (I.getNumArgOperands() != 2) 5629 return false; 5630 5631 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5632 if (!Arg0->getType()->isPointerTy() || 5633 !Arg1->getType()->isPointerTy() || 5634 !I.getType()->isIntegerTy()) 5635 return false; 5636 5637 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5638 std::pair<SDValue, SDValue> Res = 5639 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5640 getValue(Arg0), getValue(Arg1), 5641 MachinePointerInfo(Arg0), 5642 MachinePointerInfo(Arg1)); 5643 if (Res.first.getNode()) { 5644 processIntegerCallValue(I, Res.first, true); 5645 PendingLoads.push_back(Res.second); 5646 return true; 5647 } 5648 5649 return false; 5650 } 5651 5652 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5653 /// form. If so, return true and lower it, otherwise return false and it 5654 /// will be lowered like a normal call. 5655 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5656 // Verify that the prototype makes sense. size_t strlen(char *) 5657 if (I.getNumArgOperands() != 1) 5658 return false; 5659 5660 const Value *Arg0 = I.getArgOperand(0); 5661 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5662 return false; 5663 5664 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5665 std::pair<SDValue, SDValue> Res = 5666 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5667 getValue(Arg0), MachinePointerInfo(Arg0)); 5668 if (Res.first.getNode()) { 5669 processIntegerCallValue(I, Res.first, false); 5670 PendingLoads.push_back(Res.second); 5671 return true; 5672 } 5673 5674 return false; 5675 } 5676 5677 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5678 /// form. If so, return true and lower it, otherwise return false and it 5679 /// will be lowered like a normal call. 5680 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5681 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5682 if (I.getNumArgOperands() != 2) 5683 return false; 5684 5685 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5686 if (!Arg0->getType()->isPointerTy() || 5687 !Arg1->getType()->isIntegerTy() || 5688 !I.getType()->isIntegerTy()) 5689 return false; 5690 5691 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5692 std::pair<SDValue, SDValue> Res = 5693 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5694 getValue(Arg0), getValue(Arg1), 5695 MachinePointerInfo(Arg0)); 5696 if (Res.first.getNode()) { 5697 processIntegerCallValue(I, Res.first, false); 5698 PendingLoads.push_back(Res.second); 5699 return true; 5700 } 5701 5702 return false; 5703 } 5704 5705 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5706 /// operation (as expected), translate it to an SDNode with the specified opcode 5707 /// and return true. 5708 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5709 unsigned Opcode) { 5710 // Sanity check that it really is a unary floating-point call. 5711 if (I.getNumArgOperands() != 1 || 5712 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5713 I.getType() != I.getArgOperand(0)->getType() || 5714 !I.onlyReadsMemory()) 5715 return false; 5716 5717 SDValue Tmp = getValue(I.getArgOperand(0)); 5718 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5719 return true; 5720 } 5721 5722 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5723 /// operation (as expected), translate it to an SDNode with the specified opcode 5724 /// and return true. 5725 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5726 unsigned Opcode) { 5727 // Sanity check that it really is a binary floating-point call. 5728 if (I.getNumArgOperands() != 2 || 5729 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5730 I.getType() != I.getArgOperand(0)->getType() || 5731 I.getType() != I.getArgOperand(1)->getType() || 5732 !I.onlyReadsMemory()) 5733 return false; 5734 5735 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5736 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5737 EVT VT = Tmp0.getValueType(); 5738 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5739 return true; 5740 } 5741 5742 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5743 // Handle inline assembly differently. 5744 if (isa<InlineAsm>(I.getCalledValue())) { 5745 visitInlineAsm(&I); 5746 return; 5747 } 5748 5749 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5750 ComputeUsesVAFloatArgument(I, &MMI); 5751 5752 const char *RenameFn = nullptr; 5753 if (Function *F = I.getCalledFunction()) { 5754 if (F->isDeclaration()) { 5755 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5756 if (unsigned IID = II->getIntrinsicID(F)) { 5757 RenameFn = visitIntrinsicCall(I, IID); 5758 if (!RenameFn) 5759 return; 5760 } 5761 } 5762 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5763 RenameFn = visitIntrinsicCall(I, IID); 5764 if (!RenameFn) 5765 return; 5766 } 5767 } 5768 5769 // Check for well-known libc/libm calls. If the function is internal, it 5770 // can't be a library call. 5771 LibFunc::Func Func; 5772 if (!F->hasLocalLinkage() && F->hasName() && 5773 LibInfo->getLibFunc(F->getName(), Func) && 5774 LibInfo->hasOptimizedCodeGen(Func)) { 5775 switch (Func) { 5776 default: break; 5777 case LibFunc::copysign: 5778 case LibFunc::copysignf: 5779 case LibFunc::copysignl: 5780 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5781 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5782 I.getType() == I.getArgOperand(0)->getType() && 5783 I.getType() == I.getArgOperand(1)->getType() && 5784 I.onlyReadsMemory()) { 5785 SDValue LHS = getValue(I.getArgOperand(0)); 5786 SDValue RHS = getValue(I.getArgOperand(1)); 5787 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5788 LHS.getValueType(), LHS, RHS)); 5789 return; 5790 } 5791 break; 5792 case LibFunc::fabs: 5793 case LibFunc::fabsf: 5794 case LibFunc::fabsl: 5795 if (visitUnaryFloatCall(I, ISD::FABS)) 5796 return; 5797 break; 5798 case LibFunc::fmin: 5799 case LibFunc::fminf: 5800 case LibFunc::fminl: 5801 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5802 return; 5803 break; 5804 case LibFunc::fmax: 5805 case LibFunc::fmaxf: 5806 case LibFunc::fmaxl: 5807 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5808 return; 5809 break; 5810 case LibFunc::sin: 5811 case LibFunc::sinf: 5812 case LibFunc::sinl: 5813 if (visitUnaryFloatCall(I, ISD::FSIN)) 5814 return; 5815 break; 5816 case LibFunc::cos: 5817 case LibFunc::cosf: 5818 case LibFunc::cosl: 5819 if (visitUnaryFloatCall(I, ISD::FCOS)) 5820 return; 5821 break; 5822 case LibFunc::sqrt: 5823 case LibFunc::sqrtf: 5824 case LibFunc::sqrtl: 5825 case LibFunc::sqrt_finite: 5826 case LibFunc::sqrtf_finite: 5827 case LibFunc::sqrtl_finite: 5828 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5829 return; 5830 break; 5831 case LibFunc::floor: 5832 case LibFunc::floorf: 5833 case LibFunc::floorl: 5834 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5835 return; 5836 break; 5837 case LibFunc::nearbyint: 5838 case LibFunc::nearbyintf: 5839 case LibFunc::nearbyintl: 5840 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5841 return; 5842 break; 5843 case LibFunc::ceil: 5844 case LibFunc::ceilf: 5845 case LibFunc::ceill: 5846 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5847 return; 5848 break; 5849 case LibFunc::rint: 5850 case LibFunc::rintf: 5851 case LibFunc::rintl: 5852 if (visitUnaryFloatCall(I, ISD::FRINT)) 5853 return; 5854 break; 5855 case LibFunc::round: 5856 case LibFunc::roundf: 5857 case LibFunc::roundl: 5858 if (visitUnaryFloatCall(I, ISD::FROUND)) 5859 return; 5860 break; 5861 case LibFunc::trunc: 5862 case LibFunc::truncf: 5863 case LibFunc::truncl: 5864 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5865 return; 5866 break; 5867 case LibFunc::log2: 5868 case LibFunc::log2f: 5869 case LibFunc::log2l: 5870 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5871 return; 5872 break; 5873 case LibFunc::exp2: 5874 case LibFunc::exp2f: 5875 case LibFunc::exp2l: 5876 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5877 return; 5878 break; 5879 case LibFunc::memcmp: 5880 if (visitMemCmpCall(I)) 5881 return; 5882 break; 5883 case LibFunc::memchr: 5884 if (visitMemChrCall(I)) 5885 return; 5886 break; 5887 case LibFunc::strcpy: 5888 if (visitStrCpyCall(I, false)) 5889 return; 5890 break; 5891 case LibFunc::stpcpy: 5892 if (visitStrCpyCall(I, true)) 5893 return; 5894 break; 5895 case LibFunc::strcmp: 5896 if (visitStrCmpCall(I)) 5897 return; 5898 break; 5899 case LibFunc::strlen: 5900 if (visitStrLenCall(I)) 5901 return; 5902 break; 5903 case LibFunc::strnlen: 5904 if (visitStrNLenCall(I)) 5905 return; 5906 break; 5907 } 5908 } 5909 } 5910 5911 SDValue Callee; 5912 if (!RenameFn) 5913 Callee = getValue(I.getCalledValue()); 5914 else 5915 Callee = DAG.getExternalSymbol( 5916 RenameFn, 5917 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5918 5919 // Check if we can potentially perform a tail call. More detailed checking is 5920 // be done within LowerCallTo, after more information about the call is known. 5921 LowerCallTo(&I, Callee, I.isTailCall()); 5922 } 5923 5924 namespace { 5925 5926 /// AsmOperandInfo - This contains information for each constraint that we are 5927 /// lowering. 5928 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5929 public: 5930 /// CallOperand - If this is the result output operand or a clobber 5931 /// this is null, otherwise it is the incoming operand to the CallInst. 5932 /// This gets modified as the asm is processed. 5933 SDValue CallOperand; 5934 5935 /// AssignedRegs - If this is a register or register class operand, this 5936 /// contains the set of register corresponding to the operand. 5937 RegsForValue AssignedRegs; 5938 5939 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5940 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5941 } 5942 5943 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5944 /// corresponds to. If there is no Value* for this operand, it returns 5945 /// MVT::Other. 5946 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5947 const DataLayout &DL) const { 5948 if (!CallOperandVal) return MVT::Other; 5949 5950 if (isa<BasicBlock>(CallOperandVal)) 5951 return TLI.getPointerTy(DL); 5952 5953 llvm::Type *OpTy = CallOperandVal->getType(); 5954 5955 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5956 // If this is an indirect operand, the operand is a pointer to the 5957 // accessed type. 5958 if (isIndirect) { 5959 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5960 if (!PtrTy) 5961 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5962 OpTy = PtrTy->getElementType(); 5963 } 5964 5965 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5966 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5967 if (STy->getNumElements() == 1) 5968 OpTy = STy->getElementType(0); 5969 5970 // If OpTy is not a single value, it may be a struct/union that we 5971 // can tile with integers. 5972 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5973 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5974 switch (BitSize) { 5975 default: break; 5976 case 1: 5977 case 8: 5978 case 16: 5979 case 32: 5980 case 64: 5981 case 128: 5982 OpTy = IntegerType::get(Context, BitSize); 5983 break; 5984 } 5985 } 5986 5987 return TLI.getValueType(DL, OpTy, true); 5988 } 5989 }; 5990 5991 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5992 5993 } // end anonymous namespace 5994 5995 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5996 /// specified operand. We prefer to assign virtual registers, to allow the 5997 /// register allocator to handle the assignment process. However, if the asm 5998 /// uses features that we can't model on machineinstrs, we have SDISel do the 5999 /// allocation. This produces generally horrible, but correct, code. 6000 /// 6001 /// OpInfo describes the operand. 6002 /// 6003 static void GetRegistersForValue(SelectionDAG &DAG, 6004 const TargetLowering &TLI, 6005 SDLoc DL, 6006 SDISelAsmOperandInfo &OpInfo) { 6007 LLVMContext &Context = *DAG.getContext(); 6008 6009 MachineFunction &MF = DAG.getMachineFunction(); 6010 SmallVector<unsigned, 4> Regs; 6011 6012 // If this is a constraint for a single physreg, or a constraint for a 6013 // register class, find it. 6014 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6015 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6016 OpInfo.ConstraintCode, 6017 OpInfo.ConstraintVT); 6018 6019 unsigned NumRegs = 1; 6020 if (OpInfo.ConstraintVT != MVT::Other) { 6021 // If this is a FP input in an integer register (or visa versa) insert a bit 6022 // cast of the input value. More generally, handle any case where the input 6023 // value disagrees with the register class we plan to stick this in. 6024 if (OpInfo.Type == InlineAsm::isInput && 6025 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6026 // Try to convert to the first EVT that the reg class contains. If the 6027 // types are identical size, use a bitcast to convert (e.g. two differing 6028 // vector types). 6029 MVT RegVT = *PhysReg.second->vt_begin(); 6030 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6031 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6032 RegVT, OpInfo.CallOperand); 6033 OpInfo.ConstraintVT = RegVT; 6034 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6035 // If the input is a FP value and we want it in FP registers, do a 6036 // bitcast to the corresponding integer type. This turns an f64 value 6037 // into i64, which can be passed with two i32 values on a 32-bit 6038 // machine. 6039 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6040 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6041 RegVT, OpInfo.CallOperand); 6042 OpInfo.ConstraintVT = RegVT; 6043 } 6044 } 6045 6046 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6047 } 6048 6049 MVT RegVT; 6050 EVT ValueVT = OpInfo.ConstraintVT; 6051 6052 // If this is a constraint for a specific physical register, like {r17}, 6053 // assign it now. 6054 if (unsigned AssignedReg = PhysReg.first) { 6055 const TargetRegisterClass *RC = PhysReg.second; 6056 if (OpInfo.ConstraintVT == MVT::Other) 6057 ValueVT = *RC->vt_begin(); 6058 6059 // Get the actual register value type. This is important, because the user 6060 // may have asked for (e.g.) the AX register in i32 type. We need to 6061 // remember that AX is actually i16 to get the right extension. 6062 RegVT = *RC->vt_begin(); 6063 6064 // This is a explicit reference to a physical register. 6065 Regs.push_back(AssignedReg); 6066 6067 // If this is an expanded reference, add the rest of the regs to Regs. 6068 if (NumRegs != 1) { 6069 TargetRegisterClass::iterator I = RC->begin(); 6070 for (; *I != AssignedReg; ++I) 6071 assert(I != RC->end() && "Didn't find reg!"); 6072 6073 // Already added the first reg. 6074 --NumRegs; ++I; 6075 for (; NumRegs; --NumRegs, ++I) { 6076 assert(I != RC->end() && "Ran out of registers to allocate!"); 6077 Regs.push_back(*I); 6078 } 6079 } 6080 6081 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6082 return; 6083 } 6084 6085 // Otherwise, if this was a reference to an LLVM register class, create vregs 6086 // for this reference. 6087 if (const TargetRegisterClass *RC = PhysReg.second) { 6088 RegVT = *RC->vt_begin(); 6089 if (OpInfo.ConstraintVT == MVT::Other) 6090 ValueVT = RegVT; 6091 6092 // Create the appropriate number of virtual registers. 6093 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6094 for (; NumRegs; --NumRegs) 6095 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6096 6097 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6098 return; 6099 } 6100 6101 // Otherwise, we couldn't allocate enough registers for this. 6102 } 6103 6104 /// visitInlineAsm - Handle a call to an InlineAsm object. 6105 /// 6106 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6107 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6108 6109 /// ConstraintOperands - Information about all of the constraints. 6110 SDISelAsmOperandInfoVector ConstraintOperands; 6111 6112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6113 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6114 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6115 6116 bool hasMemory = false; 6117 6118 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6119 unsigned ResNo = 0; // ResNo - The result number of the next output. 6120 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6121 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6122 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6123 6124 MVT OpVT = MVT::Other; 6125 6126 // Compute the value type for each operand. 6127 switch (OpInfo.Type) { 6128 case InlineAsm::isOutput: 6129 // Indirect outputs just consume an argument. 6130 if (OpInfo.isIndirect) { 6131 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6132 break; 6133 } 6134 6135 // The return value of the call is this value. As such, there is no 6136 // corresponding argument. 6137 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6138 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6139 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6140 STy->getElementType(ResNo)); 6141 } else { 6142 assert(ResNo == 0 && "Asm only has one result!"); 6143 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6144 } 6145 ++ResNo; 6146 break; 6147 case InlineAsm::isInput: 6148 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6149 break; 6150 case InlineAsm::isClobber: 6151 // Nothing to do. 6152 break; 6153 } 6154 6155 // If this is an input or an indirect output, process the call argument. 6156 // BasicBlocks are labels, currently appearing only in asm's. 6157 if (OpInfo.CallOperandVal) { 6158 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6159 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6160 } else { 6161 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6162 } 6163 6164 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6165 DAG.getDataLayout()).getSimpleVT(); 6166 } 6167 6168 OpInfo.ConstraintVT = OpVT; 6169 6170 // Indirect operand accesses access memory. 6171 if (OpInfo.isIndirect) 6172 hasMemory = true; 6173 else { 6174 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6175 TargetLowering::ConstraintType 6176 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6177 if (CType == TargetLowering::C_Memory) { 6178 hasMemory = true; 6179 break; 6180 } 6181 } 6182 } 6183 } 6184 6185 SDValue Chain, Flag; 6186 6187 // We won't need to flush pending loads if this asm doesn't touch 6188 // memory and is nonvolatile. 6189 if (hasMemory || IA->hasSideEffects()) 6190 Chain = getRoot(); 6191 else 6192 Chain = DAG.getRoot(); 6193 6194 // Second pass over the constraints: compute which constraint option to use 6195 // and assign registers to constraints that want a specific physreg. 6196 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6197 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6198 6199 // If this is an output operand with a matching input operand, look up the 6200 // matching input. If their types mismatch, e.g. one is an integer, the 6201 // other is floating point, or their sizes are different, flag it as an 6202 // error. 6203 if (OpInfo.hasMatchingInput()) { 6204 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6205 6206 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6207 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6208 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6209 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6210 OpInfo.ConstraintVT); 6211 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6212 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6213 Input.ConstraintVT); 6214 if ((OpInfo.ConstraintVT.isInteger() != 6215 Input.ConstraintVT.isInteger()) || 6216 (MatchRC.second != InputRC.second)) { 6217 report_fatal_error("Unsupported asm: input constraint" 6218 " with a matching output constraint of" 6219 " incompatible type!"); 6220 } 6221 Input.ConstraintVT = OpInfo.ConstraintVT; 6222 } 6223 } 6224 6225 // Compute the constraint code and ConstraintType to use. 6226 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6227 6228 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6229 OpInfo.Type == InlineAsm::isClobber) 6230 continue; 6231 6232 // If this is a memory input, and if the operand is not indirect, do what we 6233 // need to to provide an address for the memory input. 6234 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6235 !OpInfo.isIndirect) { 6236 assert((OpInfo.isMultipleAlternative || 6237 (OpInfo.Type == InlineAsm::isInput)) && 6238 "Can only indirectify direct input operands!"); 6239 6240 // Memory operands really want the address of the value. If we don't have 6241 // an indirect input, put it in the constpool if we can, otherwise spill 6242 // it to a stack slot. 6243 // TODO: This isn't quite right. We need to handle these according to 6244 // the addressing mode that the constraint wants. Also, this may take 6245 // an additional register for the computation and we don't want that 6246 // either. 6247 6248 // If the operand is a float, integer, or vector constant, spill to a 6249 // constant pool entry to get its address. 6250 const Value *OpVal = OpInfo.CallOperandVal; 6251 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6252 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6253 OpInfo.CallOperand = DAG.getConstantPool( 6254 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6255 } else { 6256 // Otherwise, create a stack slot and emit a store to it before the 6257 // asm. 6258 Type *Ty = OpVal->getType(); 6259 auto &DL = DAG.getDataLayout(); 6260 uint64_t TySize = DL.getTypeAllocSize(Ty); 6261 unsigned Align = DL.getPrefTypeAlignment(Ty); 6262 MachineFunction &MF = DAG.getMachineFunction(); 6263 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6264 SDValue StackSlot = 6265 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6266 Chain = DAG.getStore( 6267 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6268 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6269 false, false, 0); 6270 OpInfo.CallOperand = StackSlot; 6271 } 6272 6273 // There is no longer a Value* corresponding to this operand. 6274 OpInfo.CallOperandVal = nullptr; 6275 6276 // It is now an indirect operand. 6277 OpInfo.isIndirect = true; 6278 } 6279 6280 // If this constraint is for a specific register, allocate it before 6281 // anything else. 6282 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6283 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6284 } 6285 6286 // Second pass - Loop over all of the operands, assigning virtual or physregs 6287 // to register class operands. 6288 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6289 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6290 6291 // C_Register operands have already been allocated, Other/Memory don't need 6292 // to be. 6293 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6294 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6295 } 6296 6297 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6298 std::vector<SDValue> AsmNodeOperands; 6299 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6300 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6301 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6302 6303 // If we have a !srcloc metadata node associated with it, we want to attach 6304 // this to the ultimately generated inline asm machineinstr. To do this, we 6305 // pass in the third operand as this (potentially null) inline asm MDNode. 6306 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6307 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6308 6309 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6310 // bits as operand 3. 6311 unsigned ExtraInfo = 0; 6312 if (IA->hasSideEffects()) 6313 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6314 if (IA->isAlignStack()) 6315 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6316 // Set the asm dialect. 6317 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6318 6319 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6320 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6321 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6322 6323 // Compute the constraint code and ConstraintType to use. 6324 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6325 6326 // Ideally, we would only check against memory constraints. However, the 6327 // meaning of an other constraint can be target-specific and we can't easily 6328 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6329 // for other constriants as well. 6330 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6331 OpInfo.ConstraintType == TargetLowering::C_Other) { 6332 if (OpInfo.Type == InlineAsm::isInput) 6333 ExtraInfo |= InlineAsm::Extra_MayLoad; 6334 else if (OpInfo.Type == InlineAsm::isOutput) 6335 ExtraInfo |= InlineAsm::Extra_MayStore; 6336 else if (OpInfo.Type == InlineAsm::isClobber) 6337 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6338 } 6339 } 6340 6341 AsmNodeOperands.push_back(DAG.getTargetConstant( 6342 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6343 6344 // Loop over all of the inputs, copying the operand values into the 6345 // appropriate registers and processing the output regs. 6346 RegsForValue RetValRegs; 6347 6348 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6349 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6350 6351 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6352 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6353 6354 switch (OpInfo.Type) { 6355 case InlineAsm::isOutput: { 6356 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6357 OpInfo.ConstraintType != TargetLowering::C_Register) { 6358 // Memory output, or 'other' output (e.g. 'X' constraint). 6359 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6360 6361 unsigned ConstraintID = 6362 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6363 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6364 "Failed to convert memory constraint code to constraint id."); 6365 6366 // Add information to the INLINEASM node to know about this output. 6367 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6368 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6369 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6370 MVT::i32)); 6371 AsmNodeOperands.push_back(OpInfo.CallOperand); 6372 break; 6373 } 6374 6375 // Otherwise, this is a register or register class output. 6376 6377 // Copy the output from the appropriate register. Find a register that 6378 // we can use. 6379 if (OpInfo.AssignedRegs.Regs.empty()) { 6380 LLVMContext &Ctx = *DAG.getContext(); 6381 Ctx.emitError(CS.getInstruction(), 6382 "couldn't allocate output register for constraint '" + 6383 Twine(OpInfo.ConstraintCode) + "'"); 6384 return; 6385 } 6386 6387 // If this is an indirect operand, store through the pointer after the 6388 // asm. 6389 if (OpInfo.isIndirect) { 6390 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6391 OpInfo.CallOperandVal)); 6392 } else { 6393 // This is the result value of the call. 6394 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6395 // Concatenate this output onto the outputs list. 6396 RetValRegs.append(OpInfo.AssignedRegs); 6397 } 6398 6399 // Add information to the INLINEASM node to know that this register is 6400 // set. 6401 OpInfo.AssignedRegs 6402 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6403 ? InlineAsm::Kind_RegDefEarlyClobber 6404 : InlineAsm::Kind_RegDef, 6405 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6406 break; 6407 } 6408 case InlineAsm::isInput: { 6409 SDValue InOperandVal = OpInfo.CallOperand; 6410 6411 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6412 // If this is required to match an output register we have already set, 6413 // just use its register. 6414 unsigned OperandNo = OpInfo.getMatchedOperand(); 6415 6416 // Scan until we find the definition we already emitted of this operand. 6417 // When we find it, create a RegsForValue operand. 6418 unsigned CurOp = InlineAsm::Op_FirstOperand; 6419 for (; OperandNo; --OperandNo) { 6420 // Advance to the next operand. 6421 unsigned OpFlag = 6422 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6423 assert((InlineAsm::isRegDefKind(OpFlag) || 6424 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6425 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6426 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6427 } 6428 6429 unsigned OpFlag = 6430 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6431 if (InlineAsm::isRegDefKind(OpFlag) || 6432 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6433 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6434 if (OpInfo.isIndirect) { 6435 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6436 LLVMContext &Ctx = *DAG.getContext(); 6437 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6438 " don't know how to handle tied " 6439 "indirect register inputs"); 6440 return; 6441 } 6442 6443 RegsForValue MatchedRegs; 6444 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6445 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6446 MatchedRegs.RegVTs.push_back(RegVT); 6447 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6448 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6449 i != e; ++i) { 6450 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6451 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6452 else { 6453 LLVMContext &Ctx = *DAG.getContext(); 6454 Ctx.emitError(CS.getInstruction(), 6455 "inline asm error: This value" 6456 " type register class is not natively supported!"); 6457 return; 6458 } 6459 } 6460 SDLoc dl = getCurSDLoc(); 6461 // Use the produced MatchedRegs object to 6462 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6463 Chain, &Flag, CS.getInstruction()); 6464 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6465 true, OpInfo.getMatchedOperand(), dl, 6466 DAG, AsmNodeOperands); 6467 break; 6468 } 6469 6470 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6471 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6472 "Unexpected number of operands"); 6473 // Add information to the INLINEASM node to know about this input. 6474 // See InlineAsm.h isUseOperandTiedToDef. 6475 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6476 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6477 OpInfo.getMatchedOperand()); 6478 AsmNodeOperands.push_back(DAG.getTargetConstant( 6479 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6480 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6481 break; 6482 } 6483 6484 // Treat indirect 'X' constraint as memory. 6485 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6486 OpInfo.isIndirect) 6487 OpInfo.ConstraintType = TargetLowering::C_Memory; 6488 6489 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6490 std::vector<SDValue> Ops; 6491 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6492 Ops, DAG); 6493 if (Ops.empty()) { 6494 LLVMContext &Ctx = *DAG.getContext(); 6495 Ctx.emitError(CS.getInstruction(), 6496 "invalid operand for inline asm constraint '" + 6497 Twine(OpInfo.ConstraintCode) + "'"); 6498 return; 6499 } 6500 6501 // Add information to the INLINEASM node to know about this input. 6502 unsigned ResOpType = 6503 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6504 AsmNodeOperands.push_back(DAG.getTargetConstant( 6505 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6506 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6507 break; 6508 } 6509 6510 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6511 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6512 assert(InOperandVal.getValueType() == 6513 TLI.getPointerTy(DAG.getDataLayout()) && 6514 "Memory operands expect pointer values"); 6515 6516 unsigned ConstraintID = 6517 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6518 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6519 "Failed to convert memory constraint code to constraint id."); 6520 6521 // Add information to the INLINEASM node to know about this input. 6522 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6523 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6524 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6525 getCurSDLoc(), 6526 MVT::i32)); 6527 AsmNodeOperands.push_back(InOperandVal); 6528 break; 6529 } 6530 6531 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6532 OpInfo.ConstraintType == TargetLowering::C_Register) && 6533 "Unknown constraint type!"); 6534 6535 // TODO: Support this. 6536 if (OpInfo.isIndirect) { 6537 LLVMContext &Ctx = *DAG.getContext(); 6538 Ctx.emitError(CS.getInstruction(), 6539 "Don't know how to handle indirect register inputs yet " 6540 "for constraint '" + 6541 Twine(OpInfo.ConstraintCode) + "'"); 6542 return; 6543 } 6544 6545 // Copy the input into the appropriate registers. 6546 if (OpInfo.AssignedRegs.Regs.empty()) { 6547 LLVMContext &Ctx = *DAG.getContext(); 6548 Ctx.emitError(CS.getInstruction(), 6549 "couldn't allocate input reg for constraint '" + 6550 Twine(OpInfo.ConstraintCode) + "'"); 6551 return; 6552 } 6553 6554 SDLoc dl = getCurSDLoc(); 6555 6556 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6557 Chain, &Flag, CS.getInstruction()); 6558 6559 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6560 dl, DAG, AsmNodeOperands); 6561 break; 6562 } 6563 case InlineAsm::isClobber: { 6564 // Add the clobbered value to the operand list, so that the register 6565 // allocator is aware that the physreg got clobbered. 6566 if (!OpInfo.AssignedRegs.Regs.empty()) 6567 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6568 false, 0, getCurSDLoc(), DAG, 6569 AsmNodeOperands); 6570 break; 6571 } 6572 } 6573 } 6574 6575 // Finish up input operands. Set the input chain and add the flag last. 6576 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6577 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6578 6579 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6580 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6581 Flag = Chain.getValue(1); 6582 6583 // If this asm returns a register value, copy the result from that register 6584 // and set it as the value of the call. 6585 if (!RetValRegs.Regs.empty()) { 6586 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6587 Chain, &Flag, CS.getInstruction()); 6588 6589 // FIXME: Why don't we do this for inline asms with MRVs? 6590 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6591 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6592 6593 // If any of the results of the inline asm is a vector, it may have the 6594 // wrong width/num elts. This can happen for register classes that can 6595 // contain multiple different value types. The preg or vreg allocated may 6596 // not have the same VT as was expected. Convert it to the right type 6597 // with bit_convert. 6598 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6599 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6600 ResultType, Val); 6601 6602 } else if (ResultType != Val.getValueType() && 6603 ResultType.isInteger() && Val.getValueType().isInteger()) { 6604 // If a result value was tied to an input value, the computed result may 6605 // have a wider width than the expected result. Extract the relevant 6606 // portion. 6607 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6608 } 6609 6610 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6611 } 6612 6613 setValue(CS.getInstruction(), Val); 6614 // Don't need to use this as a chain in this case. 6615 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6616 return; 6617 } 6618 6619 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6620 6621 // Process indirect outputs, first output all of the flagged copies out of 6622 // physregs. 6623 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6624 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6625 const Value *Ptr = IndirectStoresToEmit[i].second; 6626 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6627 Chain, &Flag, IA); 6628 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6629 } 6630 6631 // Emit the non-flagged stores from the physregs. 6632 SmallVector<SDValue, 8> OutChains; 6633 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6634 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6635 StoresToEmit[i].first, 6636 getValue(StoresToEmit[i].second), 6637 MachinePointerInfo(StoresToEmit[i].second), 6638 false, false, 0); 6639 OutChains.push_back(Val); 6640 } 6641 6642 if (!OutChains.empty()) 6643 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6644 6645 DAG.setRoot(Chain); 6646 } 6647 6648 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6649 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6650 MVT::Other, getRoot(), 6651 getValue(I.getArgOperand(0)), 6652 DAG.getSrcValue(I.getArgOperand(0)))); 6653 } 6654 6655 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6657 const DataLayout &DL = DAG.getDataLayout(); 6658 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6659 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6660 DAG.getSrcValue(I.getOperand(0)), 6661 DL.getABITypeAlignment(I.getType())); 6662 setValue(&I, V); 6663 DAG.setRoot(V.getValue(1)); 6664 } 6665 6666 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6667 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6668 MVT::Other, getRoot(), 6669 getValue(I.getArgOperand(0)), 6670 DAG.getSrcValue(I.getArgOperand(0)))); 6671 } 6672 6673 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6674 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6675 MVT::Other, getRoot(), 6676 getValue(I.getArgOperand(0)), 6677 getValue(I.getArgOperand(1)), 6678 DAG.getSrcValue(I.getArgOperand(0)), 6679 DAG.getSrcValue(I.getArgOperand(1)))); 6680 } 6681 6682 /// \brief Lower an argument list according to the target calling convention. 6683 /// 6684 /// \return A tuple of <return-value, token-chain> 6685 /// 6686 /// This is a helper for lowering intrinsics that follow a target calling 6687 /// convention or require stack pointer adjustment. Only a subset of the 6688 /// intrinsic's operands need to participate in the calling convention. 6689 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6690 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6691 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6692 TargetLowering::ArgListTy Args; 6693 Args.reserve(NumArgs); 6694 6695 // Populate the argument list. 6696 // Attributes for args start at offset 1, after the return attribute. 6697 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6698 ArgI != ArgE; ++ArgI) { 6699 const Value *V = CS->getOperand(ArgI); 6700 6701 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6702 6703 TargetLowering::ArgListEntry Entry; 6704 Entry.Node = getValue(V); 6705 Entry.Ty = V->getType(); 6706 Entry.setAttributes(&CS, AttrI); 6707 Args.push_back(Entry); 6708 } 6709 6710 TargetLowering::CallLoweringInfo CLI(DAG); 6711 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6712 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6713 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6714 6715 return lowerInvokable(CLI, EHPadBB); 6716 } 6717 6718 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6719 /// or patchpoint target node's operand list. 6720 /// 6721 /// Constants are converted to TargetConstants purely as an optimization to 6722 /// avoid constant materialization and register allocation. 6723 /// 6724 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6725 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6726 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6727 /// address materialization and register allocation, but may also be required 6728 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6729 /// alloca in the entry block, then the runtime may assume that the alloca's 6730 /// StackMap location can be read immediately after compilation and that the 6731 /// location is valid at any point during execution (this is similar to the 6732 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6733 /// only available in a register, then the runtime would need to trap when 6734 /// execution reaches the StackMap in order to read the alloca's location. 6735 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6736 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6737 SelectionDAGBuilder &Builder) { 6738 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6739 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6740 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6741 Ops.push_back( 6742 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6743 Ops.push_back( 6744 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6745 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6746 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6747 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6748 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6749 } else 6750 Ops.push_back(OpVal); 6751 } 6752 } 6753 6754 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6755 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6756 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6757 // [live variables...]) 6758 6759 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6760 6761 SDValue Chain, InFlag, Callee, NullPtr; 6762 SmallVector<SDValue, 32> Ops; 6763 6764 SDLoc DL = getCurSDLoc(); 6765 Callee = getValue(CI.getCalledValue()); 6766 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6767 6768 // The stackmap intrinsic only records the live variables (the arguemnts 6769 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6770 // intrinsic, this won't be lowered to a function call. This means we don't 6771 // have to worry about calling conventions and target specific lowering code. 6772 // Instead we perform the call lowering right here. 6773 // 6774 // chain, flag = CALLSEQ_START(chain, 0) 6775 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6776 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6777 // 6778 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6779 InFlag = Chain.getValue(1); 6780 6781 // Add the <id> and <numBytes> constants. 6782 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6783 Ops.push_back(DAG.getTargetConstant( 6784 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6785 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6786 Ops.push_back(DAG.getTargetConstant( 6787 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6788 MVT::i32)); 6789 6790 // Push live variables for the stack map. 6791 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6792 6793 // We are not pushing any register mask info here on the operands list, 6794 // because the stackmap doesn't clobber anything. 6795 6796 // Push the chain and the glue flag. 6797 Ops.push_back(Chain); 6798 Ops.push_back(InFlag); 6799 6800 // Create the STACKMAP node. 6801 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6802 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6803 Chain = SDValue(SM, 0); 6804 InFlag = Chain.getValue(1); 6805 6806 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6807 6808 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6809 6810 // Set the root to the target-lowered call chain. 6811 DAG.setRoot(Chain); 6812 6813 // Inform the Frame Information that we have a stackmap in this function. 6814 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6815 } 6816 6817 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6818 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6819 const BasicBlock *EHPadBB) { 6820 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6821 // i32 <numBytes>, 6822 // i8* <target>, 6823 // i32 <numArgs>, 6824 // [Args...], 6825 // [live variables...]) 6826 6827 CallingConv::ID CC = CS.getCallingConv(); 6828 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6829 bool HasDef = !CS->getType()->isVoidTy(); 6830 SDLoc dl = getCurSDLoc(); 6831 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6832 6833 // Handle immediate and symbolic callees. 6834 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6835 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6836 /*isTarget=*/true); 6837 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6838 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6839 SDLoc(SymbolicCallee), 6840 SymbolicCallee->getValueType(0)); 6841 6842 // Get the real number of arguments participating in the call <numArgs> 6843 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6844 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6845 6846 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6847 // Intrinsics include all meta-operands up to but not including CC. 6848 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6849 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6850 "Not enough arguments provided to the patchpoint intrinsic"); 6851 6852 // For AnyRegCC the arguments are lowered later on manually. 6853 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6854 Type *ReturnTy = 6855 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6856 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6857 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6858 6859 SDNode *CallEnd = Result.second.getNode(); 6860 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6861 CallEnd = CallEnd->getOperand(0).getNode(); 6862 6863 /// Get a call instruction from the call sequence chain. 6864 /// Tail calls are not allowed. 6865 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6866 "Expected a callseq node."); 6867 SDNode *Call = CallEnd->getOperand(0).getNode(); 6868 bool HasGlue = Call->getGluedNode(); 6869 6870 // Replace the target specific call node with the patchable intrinsic. 6871 SmallVector<SDValue, 8> Ops; 6872 6873 // Add the <id> and <numBytes> constants. 6874 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6875 Ops.push_back(DAG.getTargetConstant( 6876 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6877 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6878 Ops.push_back(DAG.getTargetConstant( 6879 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6880 MVT::i32)); 6881 6882 // Add the callee. 6883 Ops.push_back(Callee); 6884 6885 // Adjust <numArgs> to account for any arguments that have been passed on the 6886 // stack instead. 6887 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6888 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6889 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6890 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6891 6892 // Add the calling convention 6893 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6894 6895 // Add the arguments we omitted previously. The register allocator should 6896 // place these in any free register. 6897 if (IsAnyRegCC) 6898 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6899 Ops.push_back(getValue(CS.getArgument(i))); 6900 6901 // Push the arguments from the call instruction up to the register mask. 6902 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6903 Ops.append(Call->op_begin() + 2, e); 6904 6905 // Push live variables for the stack map. 6906 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6907 6908 // Push the register mask info. 6909 if (HasGlue) 6910 Ops.push_back(*(Call->op_end()-2)); 6911 else 6912 Ops.push_back(*(Call->op_end()-1)); 6913 6914 // Push the chain (this is originally the first operand of the call, but 6915 // becomes now the last or second to last operand). 6916 Ops.push_back(*(Call->op_begin())); 6917 6918 // Push the glue flag (last operand). 6919 if (HasGlue) 6920 Ops.push_back(*(Call->op_end()-1)); 6921 6922 SDVTList NodeTys; 6923 if (IsAnyRegCC && HasDef) { 6924 // Create the return types based on the intrinsic definition 6925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6926 SmallVector<EVT, 3> ValueVTs; 6927 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6928 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6929 6930 // There is always a chain and a glue type at the end 6931 ValueVTs.push_back(MVT::Other); 6932 ValueVTs.push_back(MVT::Glue); 6933 NodeTys = DAG.getVTList(ValueVTs); 6934 } else 6935 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6936 6937 // Replace the target specific call node with a PATCHPOINT node. 6938 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6939 dl, NodeTys, Ops); 6940 6941 // Update the NodeMap. 6942 if (HasDef) { 6943 if (IsAnyRegCC) 6944 setValue(CS.getInstruction(), SDValue(MN, 0)); 6945 else 6946 setValue(CS.getInstruction(), Result.first); 6947 } 6948 6949 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6950 // call sequence. Furthermore the location of the chain and glue can change 6951 // when the AnyReg calling convention is used and the intrinsic returns a 6952 // value. 6953 if (IsAnyRegCC && HasDef) { 6954 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6955 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6956 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6957 } else 6958 DAG.ReplaceAllUsesWith(Call, MN); 6959 DAG.DeleteNode(Call); 6960 6961 // Inform the Frame Information that we have a patchpoint in this function. 6962 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6963 } 6964 6965 /// Returns an AttributeSet representing the attributes applied to the return 6966 /// value of the given call. 6967 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6968 SmallVector<Attribute::AttrKind, 2> Attrs; 6969 if (CLI.RetSExt) 6970 Attrs.push_back(Attribute::SExt); 6971 if (CLI.RetZExt) 6972 Attrs.push_back(Attribute::ZExt); 6973 if (CLI.IsInReg) 6974 Attrs.push_back(Attribute::InReg); 6975 6976 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6977 Attrs); 6978 } 6979 6980 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6981 /// implementation, which just calls LowerCall. 6982 /// FIXME: When all targets are 6983 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6984 std::pair<SDValue, SDValue> 6985 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6986 // Handle the incoming return values from the call. 6987 CLI.Ins.clear(); 6988 Type *OrigRetTy = CLI.RetTy; 6989 SmallVector<EVT, 4> RetTys; 6990 SmallVector<uint64_t, 4> Offsets; 6991 auto &DL = CLI.DAG.getDataLayout(); 6992 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6993 6994 SmallVector<ISD::OutputArg, 4> Outs; 6995 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6996 6997 bool CanLowerReturn = 6998 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6999 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7000 7001 SDValue DemoteStackSlot; 7002 int DemoteStackIdx = -100; 7003 if (!CanLowerReturn) { 7004 // FIXME: equivalent assert? 7005 // assert(!CS.hasInAllocaArgument() && 7006 // "sret demotion is incompatible with inalloca"); 7007 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7008 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7009 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7010 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7011 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7012 7013 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7014 ArgListEntry Entry; 7015 Entry.Node = DemoteStackSlot; 7016 Entry.Ty = StackSlotPtrType; 7017 Entry.isSExt = false; 7018 Entry.isZExt = false; 7019 Entry.isInReg = false; 7020 Entry.isSRet = true; 7021 Entry.isNest = false; 7022 Entry.isByVal = false; 7023 Entry.isReturned = false; 7024 Entry.Alignment = Align; 7025 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7026 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7027 7028 // sret demotion isn't compatible with tail-calls, since the sret argument 7029 // points into the callers stack frame. 7030 CLI.IsTailCall = false; 7031 } else { 7032 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7033 EVT VT = RetTys[I]; 7034 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7035 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7036 for (unsigned i = 0; i != NumRegs; ++i) { 7037 ISD::InputArg MyFlags; 7038 MyFlags.VT = RegisterVT; 7039 MyFlags.ArgVT = VT; 7040 MyFlags.Used = CLI.IsReturnValueUsed; 7041 if (CLI.RetSExt) 7042 MyFlags.Flags.setSExt(); 7043 if (CLI.RetZExt) 7044 MyFlags.Flags.setZExt(); 7045 if (CLI.IsInReg) 7046 MyFlags.Flags.setInReg(); 7047 CLI.Ins.push_back(MyFlags); 7048 } 7049 } 7050 } 7051 7052 // Handle all of the outgoing arguments. 7053 CLI.Outs.clear(); 7054 CLI.OutVals.clear(); 7055 ArgListTy &Args = CLI.getArgs(); 7056 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7057 SmallVector<EVT, 4> ValueVTs; 7058 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7059 Type *FinalType = Args[i].Ty; 7060 if (Args[i].isByVal) 7061 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7062 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7063 FinalType, CLI.CallConv, CLI.IsVarArg); 7064 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7065 ++Value) { 7066 EVT VT = ValueVTs[Value]; 7067 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7068 SDValue Op = SDValue(Args[i].Node.getNode(), 7069 Args[i].Node.getResNo() + Value); 7070 ISD::ArgFlagsTy Flags; 7071 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7072 7073 if (Args[i].isZExt) 7074 Flags.setZExt(); 7075 if (Args[i].isSExt) 7076 Flags.setSExt(); 7077 if (Args[i].isInReg) 7078 Flags.setInReg(); 7079 if (Args[i].isSRet) 7080 Flags.setSRet(); 7081 if (Args[i].isByVal) 7082 Flags.setByVal(); 7083 if (Args[i].isInAlloca) { 7084 Flags.setInAlloca(); 7085 // Set the byval flag for CCAssignFn callbacks that don't know about 7086 // inalloca. This way we can know how many bytes we should've allocated 7087 // and how many bytes a callee cleanup function will pop. If we port 7088 // inalloca to more targets, we'll have to add custom inalloca handling 7089 // in the various CC lowering callbacks. 7090 Flags.setByVal(); 7091 } 7092 if (Args[i].isByVal || Args[i].isInAlloca) { 7093 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7094 Type *ElementTy = Ty->getElementType(); 7095 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7096 // For ByVal, alignment should come from FE. BE will guess if this 7097 // info is not there but there are cases it cannot get right. 7098 unsigned FrameAlign; 7099 if (Args[i].Alignment) 7100 FrameAlign = Args[i].Alignment; 7101 else 7102 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7103 Flags.setByValAlign(FrameAlign); 7104 } 7105 if (Args[i].isNest) 7106 Flags.setNest(); 7107 if (NeedsRegBlock) 7108 Flags.setInConsecutiveRegs(); 7109 Flags.setOrigAlign(OriginalAlignment); 7110 7111 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7112 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7113 SmallVector<SDValue, 4> Parts(NumParts); 7114 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7115 7116 if (Args[i].isSExt) 7117 ExtendKind = ISD::SIGN_EXTEND; 7118 else if (Args[i].isZExt) 7119 ExtendKind = ISD::ZERO_EXTEND; 7120 7121 // Conservatively only handle 'returned' on non-vectors for now 7122 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7123 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7124 "unexpected use of 'returned'"); 7125 // Before passing 'returned' to the target lowering code, ensure that 7126 // either the register MVT and the actual EVT are the same size or that 7127 // the return value and argument are extended in the same way; in these 7128 // cases it's safe to pass the argument register value unchanged as the 7129 // return register value (although it's at the target's option whether 7130 // to do so) 7131 // TODO: allow code generation to take advantage of partially preserved 7132 // registers rather than clobbering the entire register when the 7133 // parameter extension method is not compatible with the return 7134 // extension method 7135 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7136 (ExtendKind != ISD::ANY_EXTEND && 7137 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7138 Flags.setReturned(); 7139 } 7140 7141 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7142 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7143 7144 for (unsigned j = 0; j != NumParts; ++j) { 7145 // if it isn't first piece, alignment must be 1 7146 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7147 i < CLI.NumFixedArgs, 7148 i, j*Parts[j].getValueType().getStoreSize()); 7149 if (NumParts > 1 && j == 0) 7150 MyFlags.Flags.setSplit(); 7151 else if (j != 0) 7152 MyFlags.Flags.setOrigAlign(1); 7153 7154 CLI.Outs.push_back(MyFlags); 7155 CLI.OutVals.push_back(Parts[j]); 7156 } 7157 7158 if (NeedsRegBlock && Value == NumValues - 1) 7159 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7160 } 7161 } 7162 7163 SmallVector<SDValue, 4> InVals; 7164 CLI.Chain = LowerCall(CLI, InVals); 7165 7166 // Verify that the target's LowerCall behaved as expected. 7167 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7168 "LowerCall didn't return a valid chain!"); 7169 assert((!CLI.IsTailCall || InVals.empty()) && 7170 "LowerCall emitted a return value for a tail call!"); 7171 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7172 "LowerCall didn't emit the correct number of values!"); 7173 7174 // For a tail call, the return value is merely live-out and there aren't 7175 // any nodes in the DAG representing it. Return a special value to 7176 // indicate that a tail call has been emitted and no more Instructions 7177 // should be processed in the current block. 7178 if (CLI.IsTailCall) { 7179 CLI.DAG.setRoot(CLI.Chain); 7180 return std::make_pair(SDValue(), SDValue()); 7181 } 7182 7183 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7184 assert(InVals[i].getNode() && 7185 "LowerCall emitted a null value!"); 7186 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7187 "LowerCall emitted a value with the wrong type!"); 7188 }); 7189 7190 SmallVector<SDValue, 4> ReturnValues; 7191 if (!CanLowerReturn) { 7192 // The instruction result is the result of loading from the 7193 // hidden sret parameter. 7194 SmallVector<EVT, 1> PVTs; 7195 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7196 7197 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7198 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7199 EVT PtrVT = PVTs[0]; 7200 7201 unsigned NumValues = RetTys.size(); 7202 ReturnValues.resize(NumValues); 7203 SmallVector<SDValue, 4> Chains(NumValues); 7204 7205 for (unsigned i = 0; i < NumValues; ++i) { 7206 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7207 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7208 PtrVT)); 7209 SDValue L = CLI.DAG.getLoad( 7210 RetTys[i], CLI.DL, CLI.Chain, Add, 7211 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7212 DemoteStackIdx, Offsets[i]), 7213 false, false, false, 1); 7214 ReturnValues[i] = L; 7215 Chains[i] = L.getValue(1); 7216 } 7217 7218 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7219 } else { 7220 // Collect the legal value parts into potentially illegal values 7221 // that correspond to the original function's return values. 7222 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7223 if (CLI.RetSExt) 7224 AssertOp = ISD::AssertSext; 7225 else if (CLI.RetZExt) 7226 AssertOp = ISD::AssertZext; 7227 unsigned CurReg = 0; 7228 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7229 EVT VT = RetTys[I]; 7230 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7231 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7232 7233 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7234 NumRegs, RegisterVT, VT, nullptr, 7235 AssertOp)); 7236 CurReg += NumRegs; 7237 } 7238 7239 // For a function returning void, there is no return value. We can't create 7240 // such a node, so we just return a null return value in that case. In 7241 // that case, nothing will actually look at the value. 7242 if (ReturnValues.empty()) 7243 return std::make_pair(SDValue(), CLI.Chain); 7244 } 7245 7246 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7247 CLI.DAG.getVTList(RetTys), ReturnValues); 7248 return std::make_pair(Res, CLI.Chain); 7249 } 7250 7251 void TargetLowering::LowerOperationWrapper(SDNode *N, 7252 SmallVectorImpl<SDValue> &Results, 7253 SelectionDAG &DAG) const { 7254 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7255 if (Res.getNode()) 7256 Results.push_back(Res); 7257 } 7258 7259 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7260 llvm_unreachable("LowerOperation not implemented for this target!"); 7261 } 7262 7263 void 7264 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7265 SDValue Op = getNonRegisterValue(V); 7266 assert((Op.getOpcode() != ISD::CopyFromReg || 7267 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7268 "Copy from a reg to the same reg!"); 7269 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7270 7271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7272 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7273 V->getType()); 7274 SDValue Chain = DAG.getEntryNode(); 7275 7276 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7277 FuncInfo.PreferredExtendType.end()) 7278 ? ISD::ANY_EXTEND 7279 : FuncInfo.PreferredExtendType[V]; 7280 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7281 PendingExports.push_back(Chain); 7282 } 7283 7284 #include "llvm/CodeGen/SelectionDAGISel.h" 7285 7286 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7287 /// entry block, return true. This includes arguments used by switches, since 7288 /// the switch may expand into multiple basic blocks. 7289 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7290 // With FastISel active, we may be splitting blocks, so force creation 7291 // of virtual registers for all non-dead arguments. 7292 if (FastISel) 7293 return A->use_empty(); 7294 7295 const BasicBlock &Entry = A->getParent()->front(); 7296 for (const User *U : A->users()) 7297 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7298 return false; // Use not in entry block. 7299 7300 return true; 7301 } 7302 7303 void SelectionDAGISel::LowerArguments(const Function &F) { 7304 SelectionDAG &DAG = SDB->DAG; 7305 SDLoc dl = SDB->getCurSDLoc(); 7306 const DataLayout &DL = DAG.getDataLayout(); 7307 SmallVector<ISD::InputArg, 16> Ins; 7308 7309 if (!FuncInfo->CanLowerReturn) { 7310 // Put in an sret pointer parameter before all the other parameters. 7311 SmallVector<EVT, 1> ValueVTs; 7312 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7313 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7314 7315 // NOTE: Assuming that a pointer will never break down to more than one VT 7316 // or one register. 7317 ISD::ArgFlagsTy Flags; 7318 Flags.setSRet(); 7319 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7320 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7321 ISD::InputArg::NoArgIndex, 0); 7322 Ins.push_back(RetArg); 7323 } 7324 7325 // Set up the incoming argument description vector. 7326 unsigned Idx = 1; 7327 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7328 I != E; ++I, ++Idx) { 7329 SmallVector<EVT, 4> ValueVTs; 7330 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7331 bool isArgValueUsed = !I->use_empty(); 7332 unsigned PartBase = 0; 7333 Type *FinalType = I->getType(); 7334 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7335 FinalType = cast<PointerType>(FinalType)->getElementType(); 7336 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7337 FinalType, F.getCallingConv(), F.isVarArg()); 7338 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7339 Value != NumValues; ++Value) { 7340 EVT VT = ValueVTs[Value]; 7341 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7342 ISD::ArgFlagsTy Flags; 7343 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7344 7345 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7346 Flags.setZExt(); 7347 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7348 Flags.setSExt(); 7349 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7350 Flags.setInReg(); 7351 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7352 Flags.setSRet(); 7353 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7354 Flags.setByVal(); 7355 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7356 Flags.setInAlloca(); 7357 // Set the byval flag for CCAssignFn callbacks that don't know about 7358 // inalloca. This way we can know how many bytes we should've allocated 7359 // and how many bytes a callee cleanup function will pop. If we port 7360 // inalloca to more targets, we'll have to add custom inalloca handling 7361 // in the various CC lowering callbacks. 7362 Flags.setByVal(); 7363 } 7364 if (Flags.isByVal() || Flags.isInAlloca()) { 7365 PointerType *Ty = cast<PointerType>(I->getType()); 7366 Type *ElementTy = Ty->getElementType(); 7367 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7368 // For ByVal, alignment should be passed from FE. BE will guess if 7369 // this info is not there but there are cases it cannot get right. 7370 unsigned FrameAlign; 7371 if (F.getParamAlignment(Idx)) 7372 FrameAlign = F.getParamAlignment(Idx); 7373 else 7374 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7375 Flags.setByValAlign(FrameAlign); 7376 } 7377 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7378 Flags.setNest(); 7379 if (NeedsRegBlock) 7380 Flags.setInConsecutiveRegs(); 7381 Flags.setOrigAlign(OriginalAlignment); 7382 7383 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7384 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7385 for (unsigned i = 0; i != NumRegs; ++i) { 7386 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7387 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7388 if (NumRegs > 1 && i == 0) 7389 MyFlags.Flags.setSplit(); 7390 // if it isn't first piece, alignment must be 1 7391 else if (i > 0) 7392 MyFlags.Flags.setOrigAlign(1); 7393 Ins.push_back(MyFlags); 7394 } 7395 if (NeedsRegBlock && Value == NumValues - 1) 7396 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7397 PartBase += VT.getStoreSize(); 7398 } 7399 } 7400 7401 // Call the target to set up the argument values. 7402 SmallVector<SDValue, 8> InVals; 7403 SDValue NewRoot = TLI->LowerFormalArguments( 7404 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7405 7406 // Verify that the target's LowerFormalArguments behaved as expected. 7407 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7408 "LowerFormalArguments didn't return a valid chain!"); 7409 assert(InVals.size() == Ins.size() && 7410 "LowerFormalArguments didn't emit the correct number of values!"); 7411 DEBUG({ 7412 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7413 assert(InVals[i].getNode() && 7414 "LowerFormalArguments emitted a null value!"); 7415 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7416 "LowerFormalArguments emitted a value with the wrong type!"); 7417 } 7418 }); 7419 7420 // Update the DAG with the new chain value resulting from argument lowering. 7421 DAG.setRoot(NewRoot); 7422 7423 // Set up the argument values. 7424 unsigned i = 0; 7425 Idx = 1; 7426 if (!FuncInfo->CanLowerReturn) { 7427 // Create a virtual register for the sret pointer, and put in a copy 7428 // from the sret argument into it. 7429 SmallVector<EVT, 1> ValueVTs; 7430 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7431 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7432 MVT VT = ValueVTs[0].getSimpleVT(); 7433 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7434 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7435 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7436 RegVT, VT, nullptr, AssertOp); 7437 7438 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7439 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7440 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7441 FuncInfo->DemoteRegister = SRetReg; 7442 NewRoot = 7443 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7444 DAG.setRoot(NewRoot); 7445 7446 // i indexes lowered arguments. Bump it past the hidden sret argument. 7447 // Idx indexes LLVM arguments. Don't touch it. 7448 ++i; 7449 } 7450 7451 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7452 ++I, ++Idx) { 7453 SmallVector<SDValue, 4> ArgValues; 7454 SmallVector<EVT, 4> ValueVTs; 7455 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7456 unsigned NumValues = ValueVTs.size(); 7457 7458 // If this argument is unused then remember its value. It is used to generate 7459 // debugging information. 7460 if (I->use_empty() && NumValues) { 7461 SDB->setUnusedArgValue(&*I, InVals[i]); 7462 7463 // Also remember any frame index for use in FastISel. 7464 if (FrameIndexSDNode *FI = 7465 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7466 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7467 } 7468 7469 for (unsigned Val = 0; Val != NumValues; ++Val) { 7470 EVT VT = ValueVTs[Val]; 7471 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7472 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7473 7474 if (!I->use_empty()) { 7475 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7476 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7477 AssertOp = ISD::AssertSext; 7478 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7479 AssertOp = ISD::AssertZext; 7480 7481 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7482 NumParts, PartVT, VT, 7483 nullptr, AssertOp)); 7484 } 7485 7486 i += NumParts; 7487 } 7488 7489 // We don't need to do anything else for unused arguments. 7490 if (ArgValues.empty()) 7491 continue; 7492 7493 // Note down frame index. 7494 if (FrameIndexSDNode *FI = 7495 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7496 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7497 7498 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7499 SDB->getCurSDLoc()); 7500 7501 SDB->setValue(&*I, Res); 7502 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7503 if (LoadSDNode *LNode = 7504 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7505 if (FrameIndexSDNode *FI = 7506 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7507 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7508 } 7509 7510 // If this argument is live outside of the entry block, insert a copy from 7511 // wherever we got it to the vreg that other BB's will reference it as. 7512 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7513 // If we can, though, try to skip creating an unnecessary vreg. 7514 // FIXME: This isn't very clean... it would be nice to make this more 7515 // general. It's also subtly incompatible with the hacks FastISel 7516 // uses with vregs. 7517 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7518 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7519 FuncInfo->ValueMap[&*I] = Reg; 7520 continue; 7521 } 7522 } 7523 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7524 FuncInfo->InitializeRegForValue(&*I); 7525 SDB->CopyToExportRegsIfNeeded(&*I); 7526 } 7527 } 7528 7529 assert(i == InVals.size() && "Argument register count mismatch!"); 7530 7531 // Finally, if the target has anything special to do, allow it to do so. 7532 EmitFunctionEntryCode(); 7533 } 7534 7535 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7536 /// ensure constants are generated when needed. Remember the virtual registers 7537 /// that need to be added to the Machine PHI nodes as input. We cannot just 7538 /// directly add them, because expansion might result in multiple MBB's for one 7539 /// BB. As such, the start of the BB might correspond to a different MBB than 7540 /// the end. 7541 /// 7542 void 7543 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7544 const TerminatorInst *TI = LLVMBB->getTerminator(); 7545 7546 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7547 7548 // Check PHI nodes in successors that expect a value to be available from this 7549 // block. 7550 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7551 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7552 if (!isa<PHINode>(SuccBB->begin())) continue; 7553 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7554 7555 // If this terminator has multiple identical successors (common for 7556 // switches), only handle each succ once. 7557 if (!SuccsHandled.insert(SuccMBB).second) 7558 continue; 7559 7560 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7561 7562 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7563 // nodes and Machine PHI nodes, but the incoming operands have not been 7564 // emitted yet. 7565 for (BasicBlock::const_iterator I = SuccBB->begin(); 7566 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7567 // Ignore dead phi's. 7568 if (PN->use_empty()) continue; 7569 7570 // Skip empty types 7571 if (PN->getType()->isEmptyTy()) 7572 continue; 7573 7574 unsigned Reg; 7575 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7576 7577 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7578 unsigned &RegOut = ConstantsOut[C]; 7579 if (RegOut == 0) { 7580 RegOut = FuncInfo.CreateRegs(C->getType()); 7581 CopyValueToVirtualRegister(C, RegOut); 7582 } 7583 Reg = RegOut; 7584 } else { 7585 DenseMap<const Value *, unsigned>::iterator I = 7586 FuncInfo.ValueMap.find(PHIOp); 7587 if (I != FuncInfo.ValueMap.end()) 7588 Reg = I->second; 7589 else { 7590 assert(isa<AllocaInst>(PHIOp) && 7591 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7592 "Didn't codegen value into a register!??"); 7593 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7594 CopyValueToVirtualRegister(PHIOp, Reg); 7595 } 7596 } 7597 7598 // Remember that this register needs to added to the machine PHI node as 7599 // the input for this MBB. 7600 SmallVector<EVT, 4> ValueVTs; 7601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7602 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7603 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7604 EVT VT = ValueVTs[vti]; 7605 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7606 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7607 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7608 Reg += NumRegisters; 7609 } 7610 } 7611 } 7612 7613 ConstantsOut.clear(); 7614 } 7615 7616 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7617 /// is 0. 7618 MachineBasicBlock * 7619 SelectionDAGBuilder::StackProtectorDescriptor:: 7620 AddSuccessorMBB(const BasicBlock *BB, 7621 MachineBasicBlock *ParentMBB, 7622 bool IsLikely, 7623 MachineBasicBlock *SuccMBB) { 7624 // If SuccBB has not been created yet, create it. 7625 if (!SuccMBB) { 7626 MachineFunction *MF = ParentMBB->getParent(); 7627 MachineFunction::iterator BBI(ParentMBB); 7628 SuccMBB = MF->CreateMachineBasicBlock(BB); 7629 MF->insert(++BBI, SuccMBB); 7630 } 7631 // Add it as a successor of ParentMBB. 7632 ParentMBB->addSuccessor( 7633 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7634 return SuccMBB; 7635 } 7636 7637 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7638 MachineFunction::iterator I(MBB); 7639 if (++I == FuncInfo.MF->end()) 7640 return nullptr; 7641 return &*I; 7642 } 7643 7644 /// During lowering new call nodes can be created (such as memset, etc.). 7645 /// Those will become new roots of the current DAG, but complications arise 7646 /// when they are tail calls. In such cases, the call lowering will update 7647 /// the root, but the builder still needs to know that a tail call has been 7648 /// lowered in order to avoid generating an additional return. 7649 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7650 // If the node is null, we do have a tail call. 7651 if (MaybeTC.getNode() != nullptr) 7652 DAG.setRoot(MaybeTC); 7653 else 7654 HasTailCall = true; 7655 } 7656 7657 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7658 unsigned *TotalCases, unsigned First, 7659 unsigned Last) { 7660 assert(Last >= First); 7661 assert(TotalCases[Last] >= TotalCases[First]); 7662 7663 APInt LowCase = Clusters[First].Low->getValue(); 7664 APInt HighCase = Clusters[Last].High->getValue(); 7665 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7666 7667 // FIXME: A range of consecutive cases has 100% density, but only requires one 7668 // comparison to lower. We should discriminate against such consecutive ranges 7669 // in jump tables. 7670 7671 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7672 uint64_t Range = Diff + 1; 7673 7674 uint64_t NumCases = 7675 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7676 7677 assert(NumCases < UINT64_MAX / 100); 7678 assert(Range >= NumCases); 7679 7680 return NumCases * 100 >= Range * MinJumpTableDensity; 7681 } 7682 7683 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7684 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7685 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7686 } 7687 7688 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7689 unsigned First, unsigned Last, 7690 const SwitchInst *SI, 7691 MachineBasicBlock *DefaultMBB, 7692 CaseCluster &JTCluster) { 7693 assert(First <= Last); 7694 7695 auto Prob = BranchProbability::getZero(); 7696 unsigned NumCmps = 0; 7697 std::vector<MachineBasicBlock*> Table; 7698 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7699 7700 // Initialize probabilities in JTProbs. 7701 for (unsigned I = First; I <= Last; ++I) 7702 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7703 7704 for (unsigned I = First; I <= Last; ++I) { 7705 assert(Clusters[I].Kind == CC_Range); 7706 Prob += Clusters[I].Prob; 7707 APInt Low = Clusters[I].Low->getValue(); 7708 APInt High = Clusters[I].High->getValue(); 7709 NumCmps += (Low == High) ? 1 : 2; 7710 if (I != First) { 7711 // Fill the gap between this and the previous cluster. 7712 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7713 assert(PreviousHigh.slt(Low)); 7714 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7715 for (uint64_t J = 0; J < Gap; J++) 7716 Table.push_back(DefaultMBB); 7717 } 7718 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7719 for (uint64_t J = 0; J < ClusterSize; ++J) 7720 Table.push_back(Clusters[I].MBB); 7721 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7722 } 7723 7724 unsigned NumDests = JTProbs.size(); 7725 if (isSuitableForBitTests(NumDests, NumCmps, 7726 Clusters[First].Low->getValue(), 7727 Clusters[Last].High->getValue())) { 7728 // Clusters[First..Last] should be lowered as bit tests instead. 7729 return false; 7730 } 7731 7732 // Create the MBB that will load from and jump through the table. 7733 // Note: We create it here, but it's not inserted into the function yet. 7734 MachineFunction *CurMF = FuncInfo.MF; 7735 MachineBasicBlock *JumpTableMBB = 7736 CurMF->CreateMachineBasicBlock(SI->getParent()); 7737 7738 // Add successors. Note: use table order for determinism. 7739 SmallPtrSet<MachineBasicBlock *, 8> Done; 7740 for (MachineBasicBlock *Succ : Table) { 7741 if (Done.count(Succ)) 7742 continue; 7743 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7744 Done.insert(Succ); 7745 } 7746 JumpTableMBB->normalizeSuccProbs(); 7747 7748 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7749 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7750 ->createJumpTableIndex(Table); 7751 7752 // Set up the jump table info. 7753 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7754 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7755 Clusters[Last].High->getValue(), SI->getCondition(), 7756 nullptr, false); 7757 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7758 7759 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7760 JTCases.size() - 1, Prob); 7761 return true; 7762 } 7763 7764 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7765 const SwitchInst *SI, 7766 MachineBasicBlock *DefaultMBB) { 7767 #ifndef NDEBUG 7768 // Clusters must be non-empty, sorted, and only contain Range clusters. 7769 assert(!Clusters.empty()); 7770 for (CaseCluster &C : Clusters) 7771 assert(C.Kind == CC_Range); 7772 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7773 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7774 #endif 7775 7776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7777 if (!areJTsAllowed(TLI)) 7778 return; 7779 7780 const int64_t N = Clusters.size(); 7781 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7782 7783 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7784 SmallVector<unsigned, 8> TotalCases(N); 7785 7786 for (unsigned i = 0; i < N; ++i) { 7787 APInt Hi = Clusters[i].High->getValue(); 7788 APInt Lo = Clusters[i].Low->getValue(); 7789 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7790 if (i != 0) 7791 TotalCases[i] += TotalCases[i - 1]; 7792 } 7793 7794 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7795 // Cheap case: the whole range might be suitable for jump table. 7796 CaseCluster JTCluster; 7797 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7798 Clusters[0] = JTCluster; 7799 Clusters.resize(1); 7800 return; 7801 } 7802 } 7803 7804 // The algorithm below is not suitable for -O0. 7805 if (TM.getOptLevel() == CodeGenOpt::None) 7806 return; 7807 7808 // Split Clusters into minimum number of dense partitions. The algorithm uses 7809 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7810 // for the Case Statement'" (1994), but builds the MinPartitions array in 7811 // reverse order to make it easier to reconstruct the partitions in ascending 7812 // order. In the choice between two optimal partitionings, it picks the one 7813 // which yields more jump tables. 7814 7815 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7816 SmallVector<unsigned, 8> MinPartitions(N); 7817 // LastElement[i] is the last element of the partition starting at i. 7818 SmallVector<unsigned, 8> LastElement(N); 7819 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7820 SmallVector<unsigned, 8> NumTables(N); 7821 7822 // Base case: There is only one way to partition Clusters[N-1]. 7823 MinPartitions[N - 1] = 1; 7824 LastElement[N - 1] = N - 1; 7825 assert(MinJumpTableSize > 1); 7826 NumTables[N - 1] = 0; 7827 7828 // Note: loop indexes are signed to avoid underflow. 7829 for (int64_t i = N - 2; i >= 0; i--) { 7830 // Find optimal partitioning of Clusters[i..N-1]. 7831 // Baseline: Put Clusters[i] into a partition on its own. 7832 MinPartitions[i] = MinPartitions[i + 1] + 1; 7833 LastElement[i] = i; 7834 NumTables[i] = NumTables[i + 1]; 7835 7836 // Search for a solution that results in fewer partitions. 7837 for (int64_t j = N - 1; j > i; j--) { 7838 // Try building a partition from Clusters[i..j]. 7839 if (isDense(Clusters, &TotalCases[0], i, j)) { 7840 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7841 bool IsTable = j - i + 1 >= MinJumpTableSize; 7842 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7843 7844 // If this j leads to fewer partitions, or same number of partitions 7845 // with more lookup tables, it is a better partitioning. 7846 if (NumPartitions < MinPartitions[i] || 7847 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7848 MinPartitions[i] = NumPartitions; 7849 LastElement[i] = j; 7850 NumTables[i] = Tables; 7851 } 7852 } 7853 } 7854 } 7855 7856 // Iterate over the partitions, replacing some with jump tables in-place. 7857 unsigned DstIndex = 0; 7858 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7859 Last = LastElement[First]; 7860 assert(Last >= First); 7861 assert(DstIndex <= First); 7862 unsigned NumClusters = Last - First + 1; 7863 7864 CaseCluster JTCluster; 7865 if (NumClusters >= MinJumpTableSize && 7866 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7867 Clusters[DstIndex++] = JTCluster; 7868 } else { 7869 for (unsigned I = First; I <= Last; ++I) 7870 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7871 } 7872 } 7873 Clusters.resize(DstIndex); 7874 } 7875 7876 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7877 // FIXME: Using the pointer type doesn't seem ideal. 7878 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7879 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7880 return Range <= BW; 7881 } 7882 7883 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7884 unsigned NumCmps, 7885 const APInt &Low, 7886 const APInt &High) { 7887 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7888 // range of cases both require only one branch to lower. Just looking at the 7889 // number of clusters and destinations should be enough to decide whether to 7890 // build bit tests. 7891 7892 // To lower a range with bit tests, the range must fit the bitwidth of a 7893 // machine word. 7894 if (!rangeFitsInWord(Low, High)) 7895 return false; 7896 7897 // Decide whether it's profitable to lower this range with bit tests. Each 7898 // destination requires a bit test and branch, and there is an overall range 7899 // check branch. For a small number of clusters, separate comparisons might be 7900 // cheaper, and for many destinations, splitting the range might be better. 7901 return (NumDests == 1 && NumCmps >= 3) || 7902 (NumDests == 2 && NumCmps >= 5) || 7903 (NumDests == 3 && NumCmps >= 6); 7904 } 7905 7906 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7907 unsigned First, unsigned Last, 7908 const SwitchInst *SI, 7909 CaseCluster &BTCluster) { 7910 assert(First <= Last); 7911 if (First == Last) 7912 return false; 7913 7914 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7915 unsigned NumCmps = 0; 7916 for (int64_t I = First; I <= Last; ++I) { 7917 assert(Clusters[I].Kind == CC_Range); 7918 Dests.set(Clusters[I].MBB->getNumber()); 7919 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7920 } 7921 unsigned NumDests = Dests.count(); 7922 7923 APInt Low = Clusters[First].Low->getValue(); 7924 APInt High = Clusters[Last].High->getValue(); 7925 assert(Low.slt(High)); 7926 7927 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7928 return false; 7929 7930 APInt LowBound; 7931 APInt CmpRange; 7932 7933 const int BitWidth = DAG.getTargetLoweringInfo() 7934 .getPointerTy(DAG.getDataLayout()) 7935 .getSizeInBits(); 7936 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7937 7938 // Check if the clusters cover a contiguous range such that no value in the 7939 // range will jump to the default statement. 7940 bool ContiguousRange = true; 7941 for (int64_t I = First + 1; I <= Last; ++I) { 7942 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7943 ContiguousRange = false; 7944 break; 7945 } 7946 } 7947 7948 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7949 // Optimize the case where all the case values fit in a word without having 7950 // to subtract minValue. In this case, we can optimize away the subtraction. 7951 LowBound = APInt::getNullValue(Low.getBitWidth()); 7952 CmpRange = High; 7953 ContiguousRange = false; 7954 } else { 7955 LowBound = Low; 7956 CmpRange = High - Low; 7957 } 7958 7959 CaseBitsVector CBV; 7960 auto TotalProb = BranchProbability::getZero(); 7961 for (unsigned i = First; i <= Last; ++i) { 7962 // Find the CaseBits for this destination. 7963 unsigned j; 7964 for (j = 0; j < CBV.size(); ++j) 7965 if (CBV[j].BB == Clusters[i].MBB) 7966 break; 7967 if (j == CBV.size()) 7968 CBV.push_back( 7969 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 7970 CaseBits *CB = &CBV[j]; 7971 7972 // Update Mask, Bits and ExtraProb. 7973 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7974 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7975 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7976 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7977 CB->Bits += Hi - Lo + 1; 7978 CB->ExtraProb += Clusters[i].Prob; 7979 TotalProb += Clusters[i].Prob; 7980 } 7981 7982 BitTestInfo BTI; 7983 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7984 // Sort by probability first, number of bits second. 7985 if (a.ExtraProb != b.ExtraProb) 7986 return a.ExtraProb > b.ExtraProb; 7987 return a.Bits > b.Bits; 7988 }); 7989 7990 for (auto &CB : CBV) { 7991 MachineBasicBlock *BitTestBB = 7992 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7993 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 7994 } 7995 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7996 SI->getCondition(), -1U, MVT::Other, false, 7997 ContiguousRange, nullptr, nullptr, std::move(BTI), 7998 TotalProb); 7999 8000 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8001 BitTestCases.size() - 1, TotalProb); 8002 return true; 8003 } 8004 8005 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8006 const SwitchInst *SI) { 8007 // Partition Clusters into as few subsets as possible, where each subset has a 8008 // range that fits in a machine word and has <= 3 unique destinations. 8009 8010 #ifndef NDEBUG 8011 // Clusters must be sorted and contain Range or JumpTable clusters. 8012 assert(!Clusters.empty()); 8013 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8014 for (const CaseCluster &C : Clusters) 8015 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8016 for (unsigned i = 1; i < Clusters.size(); ++i) 8017 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8018 #endif 8019 8020 // The algorithm below is not suitable for -O0. 8021 if (TM.getOptLevel() == CodeGenOpt::None) 8022 return; 8023 8024 // If target does not have legal shift left, do not emit bit tests at all. 8025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8026 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8027 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8028 return; 8029 8030 int BitWidth = PTy.getSizeInBits(); 8031 const int64_t N = Clusters.size(); 8032 8033 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8034 SmallVector<unsigned, 8> MinPartitions(N); 8035 // LastElement[i] is the last element of the partition starting at i. 8036 SmallVector<unsigned, 8> LastElement(N); 8037 8038 // FIXME: This might not be the best algorithm for finding bit test clusters. 8039 8040 // Base case: There is only one way to partition Clusters[N-1]. 8041 MinPartitions[N - 1] = 1; 8042 LastElement[N - 1] = N - 1; 8043 8044 // Note: loop indexes are signed to avoid underflow. 8045 for (int64_t i = N - 2; i >= 0; --i) { 8046 // Find optimal partitioning of Clusters[i..N-1]. 8047 // Baseline: Put Clusters[i] into a partition on its own. 8048 MinPartitions[i] = MinPartitions[i + 1] + 1; 8049 LastElement[i] = i; 8050 8051 // Search for a solution that results in fewer partitions. 8052 // Note: the search is limited by BitWidth, reducing time complexity. 8053 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8054 // Try building a partition from Clusters[i..j]. 8055 8056 // Check the range. 8057 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8058 Clusters[j].High->getValue())) 8059 continue; 8060 8061 // Check nbr of destinations and cluster types. 8062 // FIXME: This works, but doesn't seem very efficient. 8063 bool RangesOnly = true; 8064 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8065 for (int64_t k = i; k <= j; k++) { 8066 if (Clusters[k].Kind != CC_Range) { 8067 RangesOnly = false; 8068 break; 8069 } 8070 Dests.set(Clusters[k].MBB->getNumber()); 8071 } 8072 if (!RangesOnly || Dests.count() > 3) 8073 break; 8074 8075 // Check if it's a better partition. 8076 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8077 if (NumPartitions < MinPartitions[i]) { 8078 // Found a better partition. 8079 MinPartitions[i] = NumPartitions; 8080 LastElement[i] = j; 8081 } 8082 } 8083 } 8084 8085 // Iterate over the partitions, replacing with bit-test clusters in-place. 8086 unsigned DstIndex = 0; 8087 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8088 Last = LastElement[First]; 8089 assert(First <= Last); 8090 assert(DstIndex <= First); 8091 8092 CaseCluster BitTestCluster; 8093 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8094 Clusters[DstIndex++] = BitTestCluster; 8095 } else { 8096 size_t NumClusters = Last - First + 1; 8097 std::memmove(&Clusters[DstIndex], &Clusters[First], 8098 sizeof(Clusters[0]) * NumClusters); 8099 DstIndex += NumClusters; 8100 } 8101 } 8102 Clusters.resize(DstIndex); 8103 } 8104 8105 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8106 MachineBasicBlock *SwitchMBB, 8107 MachineBasicBlock *DefaultMBB) { 8108 MachineFunction *CurMF = FuncInfo.MF; 8109 MachineBasicBlock *NextMBB = nullptr; 8110 MachineFunction::iterator BBI(W.MBB); 8111 if (++BBI != FuncInfo.MF->end()) 8112 NextMBB = &*BBI; 8113 8114 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8115 8116 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8117 8118 if (Size == 2 && W.MBB == SwitchMBB) { 8119 // If any two of the cases has the same destination, and if one value 8120 // is the same as the other, but has one bit unset that the other has set, 8121 // use bit manipulation to do two compares at once. For example: 8122 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8123 // TODO: This could be extended to merge any 2 cases in switches with 3 8124 // cases. 8125 // TODO: Handle cases where W.CaseBB != SwitchBB. 8126 CaseCluster &Small = *W.FirstCluster; 8127 CaseCluster &Big = *W.LastCluster; 8128 8129 if (Small.Low == Small.High && Big.Low == Big.High && 8130 Small.MBB == Big.MBB) { 8131 const APInt &SmallValue = Small.Low->getValue(); 8132 const APInt &BigValue = Big.Low->getValue(); 8133 8134 // Check that there is only one bit different. 8135 APInt CommonBit = BigValue ^ SmallValue; 8136 if (CommonBit.isPowerOf2()) { 8137 SDValue CondLHS = getValue(Cond); 8138 EVT VT = CondLHS.getValueType(); 8139 SDLoc DL = getCurSDLoc(); 8140 8141 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8142 DAG.getConstant(CommonBit, DL, VT)); 8143 SDValue Cond = DAG.getSetCC( 8144 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8145 ISD::SETEQ); 8146 8147 // Update successor info. 8148 // Both Small and Big will jump to Small.BB, so we sum up the 8149 // probabilities. 8150 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8151 if (BPI) 8152 addSuccessorWithProb( 8153 SwitchMBB, DefaultMBB, 8154 // The default destination is the first successor in IR. 8155 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8156 else 8157 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8158 8159 // Insert the true branch. 8160 SDValue BrCond = 8161 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8162 DAG.getBasicBlock(Small.MBB)); 8163 // Insert the false branch. 8164 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8165 DAG.getBasicBlock(DefaultMBB)); 8166 8167 DAG.setRoot(BrCond); 8168 return; 8169 } 8170 } 8171 } 8172 8173 if (TM.getOptLevel() != CodeGenOpt::None) { 8174 // Order cases by probability so the most likely case will be checked first. 8175 std::sort(W.FirstCluster, W.LastCluster + 1, 8176 [](const CaseCluster &a, const CaseCluster &b) { 8177 return a.Prob > b.Prob; 8178 }); 8179 8180 // Rearrange the case blocks so that the last one falls through if possible 8181 // without without changing the order of probabilities. 8182 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8183 --I; 8184 if (I->Prob > W.LastCluster->Prob) 8185 break; 8186 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8187 std::swap(*I, *W.LastCluster); 8188 break; 8189 } 8190 } 8191 } 8192 8193 // Compute total probability. 8194 BranchProbability DefaultProb = W.DefaultProb; 8195 BranchProbability UnhandledProbs = DefaultProb; 8196 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8197 UnhandledProbs += I->Prob; 8198 8199 MachineBasicBlock *CurMBB = W.MBB; 8200 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8201 MachineBasicBlock *Fallthrough; 8202 if (I == W.LastCluster) { 8203 // For the last cluster, fall through to the default destination. 8204 Fallthrough = DefaultMBB; 8205 } else { 8206 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8207 CurMF->insert(BBI, Fallthrough); 8208 // Put Cond in a virtual register to make it available from the new blocks. 8209 ExportFromCurrentBlock(Cond); 8210 } 8211 UnhandledProbs -= I->Prob; 8212 8213 switch (I->Kind) { 8214 case CC_JumpTable: { 8215 // FIXME: Optimize away range check based on pivot comparisons. 8216 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8217 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8218 8219 // The jump block hasn't been inserted yet; insert it here. 8220 MachineBasicBlock *JumpMBB = JT->MBB; 8221 CurMF->insert(BBI, JumpMBB); 8222 8223 auto JumpProb = I->Prob; 8224 auto FallthroughProb = UnhandledProbs; 8225 8226 // If the default statement is a target of the jump table, we evenly 8227 // distribute the default probability to successors of CurMBB. Also 8228 // update the probability on the edge from JumpMBB to Fallthrough. 8229 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8230 SE = JumpMBB->succ_end(); 8231 SI != SE; ++SI) { 8232 if (*SI == DefaultMBB) { 8233 JumpProb += DefaultProb / 2; 8234 FallthroughProb -= DefaultProb / 2; 8235 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8236 JumpMBB->normalizeSuccProbs(); 8237 break; 8238 } 8239 } 8240 8241 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8242 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8243 CurMBB->normalizeSuccProbs(); 8244 8245 // The jump table header will be inserted in our current block, do the 8246 // range check, and fall through to our fallthrough block. 8247 JTH->HeaderBB = CurMBB; 8248 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8249 8250 // If we're in the right place, emit the jump table header right now. 8251 if (CurMBB == SwitchMBB) { 8252 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8253 JTH->Emitted = true; 8254 } 8255 break; 8256 } 8257 case CC_BitTests: { 8258 // FIXME: Optimize away range check based on pivot comparisons. 8259 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8260 8261 // The bit test blocks haven't been inserted yet; insert them here. 8262 for (BitTestCase &BTC : BTB->Cases) 8263 CurMF->insert(BBI, BTC.ThisBB); 8264 8265 // Fill in fields of the BitTestBlock. 8266 BTB->Parent = CurMBB; 8267 BTB->Default = Fallthrough; 8268 8269 BTB->DefaultProb = UnhandledProbs; 8270 // If the cases in bit test don't form a contiguous range, we evenly 8271 // distribute the probability on the edge to Fallthrough to two 8272 // successors of CurMBB. 8273 if (!BTB->ContiguousRange) { 8274 BTB->Prob += DefaultProb / 2; 8275 BTB->DefaultProb -= DefaultProb / 2; 8276 } 8277 8278 // If we're in the right place, emit the bit test header right now. 8279 if (CurMBB == SwitchMBB) { 8280 visitBitTestHeader(*BTB, SwitchMBB); 8281 BTB->Emitted = true; 8282 } 8283 break; 8284 } 8285 case CC_Range: { 8286 const Value *RHS, *LHS, *MHS; 8287 ISD::CondCode CC; 8288 if (I->Low == I->High) { 8289 // Check Cond == I->Low. 8290 CC = ISD::SETEQ; 8291 LHS = Cond; 8292 RHS=I->Low; 8293 MHS = nullptr; 8294 } else { 8295 // Check I->Low <= Cond <= I->High. 8296 CC = ISD::SETLE; 8297 LHS = I->Low; 8298 MHS = Cond; 8299 RHS = I->High; 8300 } 8301 8302 // The false probability is the sum of all unhandled cases. 8303 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8304 UnhandledProbs); 8305 8306 if (CurMBB == SwitchMBB) 8307 visitSwitchCase(CB, SwitchMBB); 8308 else 8309 SwitchCases.push_back(CB); 8310 8311 break; 8312 } 8313 } 8314 CurMBB = Fallthrough; 8315 } 8316 } 8317 8318 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8319 CaseClusterIt First, 8320 CaseClusterIt Last) { 8321 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8322 if (X.Prob != CC.Prob) 8323 return X.Prob > CC.Prob; 8324 8325 // Ties are broken by comparing the case value. 8326 return X.Low->getValue().slt(CC.Low->getValue()); 8327 }); 8328 } 8329 8330 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8331 const SwitchWorkListItem &W, 8332 Value *Cond, 8333 MachineBasicBlock *SwitchMBB) { 8334 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8335 "Clusters not sorted?"); 8336 8337 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8338 8339 // Balance the tree based on branch probabilities to create a near-optimal (in 8340 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8341 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8342 CaseClusterIt LastLeft = W.FirstCluster; 8343 CaseClusterIt FirstRight = W.LastCluster; 8344 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8345 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8346 8347 // Move LastLeft and FirstRight towards each other from opposite directions to 8348 // find a partitioning of the clusters which balances the probability on both 8349 // sides. If LeftProb and RightProb are equal, alternate which side is 8350 // taken to ensure 0-probability nodes are distributed evenly. 8351 unsigned I = 0; 8352 while (LastLeft + 1 < FirstRight) { 8353 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8354 LeftProb += (++LastLeft)->Prob; 8355 else 8356 RightProb += (--FirstRight)->Prob; 8357 I++; 8358 } 8359 8360 for (;;) { 8361 // Our binary search tree differs from a typical BST in that ours can have up 8362 // to three values in each leaf. The pivot selection above doesn't take that 8363 // into account, which means the tree might require more nodes and be less 8364 // efficient. We compensate for this here. 8365 8366 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8367 unsigned NumRight = W.LastCluster - FirstRight + 1; 8368 8369 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8370 // If one side has less than 3 clusters, and the other has more than 3, 8371 // consider taking a cluster from the other side. 8372 8373 if (NumLeft < NumRight) { 8374 // Consider moving the first cluster on the right to the left side. 8375 CaseCluster &CC = *FirstRight; 8376 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8377 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8378 if (LeftSideRank <= RightSideRank) { 8379 // Moving the cluster to the left does not demote it. 8380 ++LastLeft; 8381 ++FirstRight; 8382 continue; 8383 } 8384 } else { 8385 assert(NumRight < NumLeft); 8386 // Consider moving the last element on the left to the right side. 8387 CaseCluster &CC = *LastLeft; 8388 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8389 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8390 if (RightSideRank <= LeftSideRank) { 8391 // Moving the cluster to the right does not demot it. 8392 --LastLeft; 8393 --FirstRight; 8394 continue; 8395 } 8396 } 8397 } 8398 break; 8399 } 8400 8401 assert(LastLeft + 1 == FirstRight); 8402 assert(LastLeft >= W.FirstCluster); 8403 assert(FirstRight <= W.LastCluster); 8404 8405 // Use the first element on the right as pivot since we will make less-than 8406 // comparisons against it. 8407 CaseClusterIt PivotCluster = FirstRight; 8408 assert(PivotCluster > W.FirstCluster); 8409 assert(PivotCluster <= W.LastCluster); 8410 8411 CaseClusterIt FirstLeft = W.FirstCluster; 8412 CaseClusterIt LastRight = W.LastCluster; 8413 8414 const ConstantInt *Pivot = PivotCluster->Low; 8415 8416 // New blocks will be inserted immediately after the current one. 8417 MachineFunction::iterator BBI(W.MBB); 8418 ++BBI; 8419 8420 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8421 // we can branch to its destination directly if it's squeezed exactly in 8422 // between the known lower bound and Pivot - 1. 8423 MachineBasicBlock *LeftMBB; 8424 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8425 FirstLeft->Low == W.GE && 8426 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8427 LeftMBB = FirstLeft->MBB; 8428 } else { 8429 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8430 FuncInfo.MF->insert(BBI, LeftMBB); 8431 WorkList.push_back( 8432 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8433 // Put Cond in a virtual register to make it available from the new blocks. 8434 ExportFromCurrentBlock(Cond); 8435 } 8436 8437 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8438 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8439 // directly if RHS.High equals the current upper bound. 8440 MachineBasicBlock *RightMBB; 8441 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8442 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8443 RightMBB = FirstRight->MBB; 8444 } else { 8445 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8446 FuncInfo.MF->insert(BBI, RightMBB); 8447 WorkList.push_back( 8448 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8449 // Put Cond in a virtual register to make it available from the new blocks. 8450 ExportFromCurrentBlock(Cond); 8451 } 8452 8453 // Create the CaseBlock record that will be used to lower the branch. 8454 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8455 LeftProb, RightProb); 8456 8457 if (W.MBB == SwitchMBB) 8458 visitSwitchCase(CB, SwitchMBB); 8459 else 8460 SwitchCases.push_back(CB); 8461 } 8462 8463 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8464 // Extract cases from the switch. 8465 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8466 CaseClusterVector Clusters; 8467 Clusters.reserve(SI.getNumCases()); 8468 for (auto I : SI.cases()) { 8469 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8470 const ConstantInt *CaseVal = I.getCaseValue(); 8471 BranchProbability Prob = 8472 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8473 : BranchProbability(1, SI.getNumCases() + 1); 8474 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8475 } 8476 8477 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8478 8479 // Cluster adjacent cases with the same destination. We do this at all 8480 // optimization levels because it's cheap to do and will make codegen faster 8481 // if there are many clusters. 8482 sortAndRangeify(Clusters); 8483 8484 if (TM.getOptLevel() != CodeGenOpt::None) { 8485 // Replace an unreachable default with the most popular destination. 8486 // FIXME: Exploit unreachable default more aggressively. 8487 bool UnreachableDefault = 8488 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8489 if (UnreachableDefault && !Clusters.empty()) { 8490 DenseMap<const BasicBlock *, unsigned> Popularity; 8491 unsigned MaxPop = 0; 8492 const BasicBlock *MaxBB = nullptr; 8493 for (auto I : SI.cases()) { 8494 const BasicBlock *BB = I.getCaseSuccessor(); 8495 if (++Popularity[BB] > MaxPop) { 8496 MaxPop = Popularity[BB]; 8497 MaxBB = BB; 8498 } 8499 } 8500 // Set new default. 8501 assert(MaxPop > 0 && MaxBB); 8502 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8503 8504 // Remove cases that were pointing to the destination that is now the 8505 // default. 8506 CaseClusterVector New; 8507 New.reserve(Clusters.size()); 8508 for (CaseCluster &CC : Clusters) { 8509 if (CC.MBB != DefaultMBB) 8510 New.push_back(CC); 8511 } 8512 Clusters = std::move(New); 8513 } 8514 } 8515 8516 // If there is only the default destination, jump there directly. 8517 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8518 if (Clusters.empty()) { 8519 SwitchMBB->addSuccessor(DefaultMBB); 8520 if (DefaultMBB != NextBlock(SwitchMBB)) { 8521 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8522 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8523 } 8524 return; 8525 } 8526 8527 findJumpTables(Clusters, &SI, DefaultMBB); 8528 findBitTestClusters(Clusters, &SI); 8529 8530 DEBUG({ 8531 dbgs() << "Case clusters: "; 8532 for (const CaseCluster &C : Clusters) { 8533 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8534 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8535 8536 C.Low->getValue().print(dbgs(), true); 8537 if (C.Low != C.High) { 8538 dbgs() << '-'; 8539 C.High->getValue().print(dbgs(), true); 8540 } 8541 dbgs() << ' '; 8542 } 8543 dbgs() << '\n'; 8544 }); 8545 8546 assert(!Clusters.empty()); 8547 SwitchWorkList WorkList; 8548 CaseClusterIt First = Clusters.begin(); 8549 CaseClusterIt Last = Clusters.end() - 1; 8550 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8551 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8552 8553 while (!WorkList.empty()) { 8554 SwitchWorkListItem W = WorkList.back(); 8555 WorkList.pop_back(); 8556 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8557 8558 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8559 // For optimized builds, lower large range as a balanced binary tree. 8560 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8561 continue; 8562 } 8563 8564 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8565 } 8566 } 8567