1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugInfo.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetFrameLowering.h" 56 #include "llvm/Target/TargetInstrInfo.h" 57 #include "llvm/Target/TargetIntrinsicInfo.h" 58 #include "llvm/Target/TargetLibraryInfo.h" 59 #include "llvm/Target/TargetLowering.h" 60 #include "llvm/Target/TargetOptions.h" 61 #include "llvm/Target/TargetSelectionDAGInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 /// LimitFloatPrecision - Generate low-precision inline sequences for 66 /// some float libcalls (6, 8 or 12 bits). 67 static unsigned LimitFloatPrecision; 68 69 static cl::opt<unsigned, true> 70 LimitFPPrecision("limit-float-precision", 71 cl::desc("Generate low-precision inline sequences " 72 "for some float libcalls"), 73 cl::location(LimitFloatPrecision), 74 cl::init(0)); 75 76 // Limit the width of DAG chains. This is important in general to prevent 77 // prevent DAG-based analysis from blowing up. For example, alias analysis and 78 // load clustering may not complete in reasonable time. It is difficult to 79 // recognize and avoid this situation within each individual analysis, and 80 // future analyses are likely to have the same behavior. Limiting DAG width is 81 // the safe approach, and will be especially important with global DAGs. 82 // 83 // MaxParallelChains default is arbitrarily high to avoid affecting 84 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 85 // sequence over this should have been converted to llvm.memcpy by the 86 // frontend. It easy to induce this behavior with .ll code such as: 87 // %buffer = alloca [4096 x i8] 88 // %data = load [4096 x i8]* %argPtr 89 // store [4096 x i8] %data, [4096 x i8]* %buffer 90 static const unsigned MaxParallelChains = 64; 91 92 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 93 const SDValue *Parts, unsigned NumParts, 94 MVT PartVT, EVT ValueVT, const Value *V); 95 96 /// getCopyFromParts - Create a value that contains the specified legal parts 97 /// combined into the value they represent. If the parts combine to a type 98 /// larger then ValueVT then AssertOp can be used to specify whether the extra 99 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 100 /// (ISD::AssertSext). 101 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, 103 unsigned NumParts, MVT PartVT, EVT ValueVT, 104 const Value *V, 105 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 106 if (ValueVT.isVector()) 107 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 108 PartVT, ValueVT, V); 109 110 assert(NumParts > 0 && "No parts to assemble!"); 111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 112 SDValue Val = Parts[0]; 113 114 if (NumParts > 1) { 115 // Assemble the value from multiple parts. 116 if (ValueVT.isInteger()) { 117 unsigned PartBits = PartVT.getSizeInBits(); 118 unsigned ValueBits = ValueVT.getSizeInBits(); 119 120 // Assemble the power of 2 part. 121 unsigned RoundParts = NumParts & (NumParts - 1) ? 122 1 << Log2_32(NumParts) : NumParts; 123 unsigned RoundBits = PartBits * RoundParts; 124 EVT RoundVT = RoundBits == ValueBits ? 125 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 126 SDValue Lo, Hi; 127 128 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 129 130 if (RoundParts > 2) { 131 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 132 PartVT, HalfVT, V); 133 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 134 RoundParts / 2, PartVT, HalfVT, V); 135 } else { 136 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 137 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 138 } 139 140 if (TLI.isBigEndian()) 141 std::swap(Lo, Hi); 142 143 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 144 145 if (RoundParts < NumParts) { 146 // Assemble the trailing non-power-of-2 part. 147 unsigned OddParts = NumParts - RoundParts; 148 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 149 Hi = getCopyFromParts(DAG, DL, 150 Parts + RoundParts, OddParts, PartVT, OddVT, V); 151 152 // Combine the round and odd parts. 153 Lo = Val; 154 if (TLI.isBigEndian()) 155 std::swap(Lo, Hi); 156 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 157 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 158 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 159 DAG.getConstant(Lo.getValueType().getSizeInBits(), 160 TLI.getPointerTy())); 161 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 162 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 163 } 164 } else if (PartVT.isFloatingPoint()) { 165 // FP split into multiple FP parts (for ppcf128) 166 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 167 "Unexpected split"); 168 SDValue Lo, Hi; 169 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 170 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 171 if (TLI.isBigEndian()) 172 std::swap(Lo, Hi); 173 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 174 } else { 175 // FP split into integer parts (soft fp) 176 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 177 !PartVT.isVector() && "Unexpected split"); 178 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 179 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 180 } 181 } 182 183 // There is now one part, held in Val. Correct it to match ValueVT. 184 EVT PartEVT = Val.getValueType(); 185 186 if (PartEVT == ValueVT) 187 return Val; 188 189 if (PartEVT.isInteger() && ValueVT.isInteger()) { 190 if (ValueVT.bitsLT(PartEVT)) { 191 // For a truncate, see if we have any information to 192 // indicate whether the truncated bits will always be 193 // zero or sign-extension. 194 if (AssertOp != ISD::DELETED_NODE) 195 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 196 DAG.getValueType(ValueVT)); 197 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 198 } 199 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 200 } 201 202 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 203 // FP_ROUND's are always exact here. 204 if (ValueVT.bitsLT(Val.getValueType())) 205 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 206 DAG.getTargetConstant(1, TLI.getPointerTy())); 207 208 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 209 } 210 211 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 212 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 213 214 llvm_unreachable("Unknown mismatch!"); 215 } 216 217 /// getCopyFromPartsVector - Create a value that contains the specified legal 218 /// parts combined into the value they represent. If the parts combine to a 219 /// type larger then ValueVT then AssertOp can be used to specify whether the 220 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 221 /// ValueVT (ISD::AssertSext). 222 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 223 const SDValue *Parts, unsigned NumParts, 224 MVT PartVT, EVT ValueVT, const Value *V) { 225 assert(ValueVT.isVector() && "Not a vector value"); 226 assert(NumParts > 0 && "No parts to assemble!"); 227 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 228 SDValue Val = Parts[0]; 229 230 // Handle a multi-element vector. 231 if (NumParts > 1) { 232 EVT IntermediateVT; 233 MVT RegisterVT; 234 unsigned NumIntermediates; 235 unsigned NumRegs = 236 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 237 NumIntermediates, RegisterVT); 238 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 239 NumParts = NumRegs; // Silence a compiler warning. 240 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 241 assert(RegisterVT == Parts[0].getSimpleValueType() && 242 "Part type doesn't match part!"); 243 244 // Assemble the parts into intermediate operands. 245 SmallVector<SDValue, 8> Ops(NumIntermediates); 246 if (NumIntermediates == NumParts) { 247 // If the register was not expanded, truncate or copy the value, 248 // as appropriate. 249 for (unsigned i = 0; i != NumParts; ++i) 250 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 251 PartVT, IntermediateVT, V); 252 } else if (NumParts > 0) { 253 // If the intermediate type was expanded, build the intermediate 254 // operands from the parts. 255 assert(NumParts % NumIntermediates == 0 && 256 "Must expand into a divisible number of parts!"); 257 unsigned Factor = NumParts / NumIntermediates; 258 for (unsigned i = 0; i != NumIntermediates; ++i) 259 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 260 PartVT, IntermediateVT, V); 261 } 262 263 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 264 // intermediate operands. 265 Val = DAG.getNode(IntermediateVT.isVector() ? 266 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 267 ValueVT, &Ops[0], NumIntermediates); 268 } 269 270 // There is now one part, held in Val. Correct it to match ValueVT. 271 EVT PartEVT = Val.getValueType(); 272 273 if (PartEVT == ValueVT) 274 return Val; 275 276 if (PartEVT.isVector()) { 277 // If the element type of the source/dest vectors are the same, but the 278 // parts vector has more elements than the value vector, then we have a 279 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 280 // elements we want. 281 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 282 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 283 "Cannot narrow, it would be a lossy transformation"); 284 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 285 DAG.getConstant(0, TLI.getVectorIdxTy())); 286 } 287 288 // Vector/Vector bitcast. 289 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 290 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 291 292 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 293 "Cannot handle this kind of promotion"); 294 // Promoted vector extract 295 bool Smaller = ValueVT.bitsLE(PartEVT); 296 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 297 DL, ValueVT, Val); 298 299 } 300 301 // Trivial bitcast if the types are the same size and the destination 302 // vector type is legal. 303 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 304 TLI.isTypeLegal(ValueVT)) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle cases such as i8 -> <1 x i1> 308 if (ValueVT.getVectorNumElements() != 1) { 309 LLVMContext &Ctx = *DAG.getContext(); 310 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 311 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 312 if (const CallInst *CI = dyn_cast<CallInst>(I)) 313 if (isa<InlineAsm>(CI->getCalledValue())) 314 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 315 Ctx.emitError(I, ErrMsg); 316 } else { 317 Ctx.emitError(ErrMsg); 318 } 319 return DAG.getUNDEF(ValueVT); 320 } 321 322 if (ValueVT.getVectorNumElements() == 1 && 323 ValueVT.getVectorElementType() != PartEVT) { 324 bool Smaller = ValueVT.bitsLE(PartEVT); 325 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 326 DL, ValueVT.getScalarType(), Val); 327 } 328 329 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 330 } 331 332 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 333 SDValue Val, SDValue *Parts, unsigned NumParts, 334 MVT PartVT, const Value *V); 335 336 /// getCopyToParts - Create a series of nodes that contain the specified value 337 /// split into legal parts. If the parts contain more bits than Val, then, for 338 /// integers, ExtendKind can be used to specify how to generate the extra bits. 339 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V, 342 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 343 EVT ValueVT = Val.getValueType(); 344 345 // Handle the vector case separately. 346 if (ValueVT.isVector()) 347 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 348 349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 350 unsigned PartBits = PartVT.getSizeInBits(); 351 unsigned OrigNumParts = NumParts; 352 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 353 354 if (NumParts == 0) 355 return; 356 357 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 358 EVT PartEVT = PartVT; 359 if (PartEVT == ValueVT) { 360 assert(NumParts == 1 && "No-op copy with multiple parts!"); 361 Parts[0] = Val; 362 return; 363 } 364 365 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 366 // If the parts cover more bits than the value has, promote the value. 367 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 368 assert(NumParts == 1 && "Do not know what to promote to!"); 369 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 370 } else { 371 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 372 ValueVT.isInteger() && 373 "Unknown mismatch!"); 374 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 375 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 376 if (PartVT == MVT::x86mmx) 377 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 378 } 379 } else if (PartBits == ValueVT.getSizeInBits()) { 380 // Different types of the same size. 381 assert(NumParts == 1 && PartEVT != ValueVT); 382 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 383 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 384 // If the parts cover less bits than value has, truncate the value. 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 394 // The value may have changed - recompute ValueVT. 395 ValueVT = Val.getValueType(); 396 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 397 "Failed to tile the value with PartVT!"); 398 399 if (NumParts == 1) { 400 if (PartEVT != ValueVT) { 401 LLVMContext &Ctx = *DAG.getContext(); 402 Twine ErrMsg("scalar-to-vector conversion failed"); 403 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 404 if (const CallInst *CI = dyn_cast<CallInst>(I)) 405 if (isa<InlineAsm>(CI->getCalledValue())) 406 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 407 Ctx.emitError(I, ErrMsg); 408 } else { 409 Ctx.emitError(ErrMsg); 410 } 411 } 412 413 Parts[0] = Val; 414 return; 415 } 416 417 // Expand the value into multiple parts. 418 if (NumParts & (NumParts - 1)) { 419 // The number of parts is not a power of 2. Split off and copy the tail. 420 assert(PartVT.isInteger() && ValueVT.isInteger() && 421 "Do not know what to expand to!"); 422 unsigned RoundParts = 1 << Log2_32(NumParts); 423 unsigned RoundBits = RoundParts * PartBits; 424 unsigned OddParts = NumParts - RoundParts; 425 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 426 DAG.getIntPtrConstant(RoundBits)); 427 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 428 429 if (TLI.isBigEndian()) 430 // The odd parts were reversed by getCopyToParts - unreverse them. 431 std::reverse(Parts + RoundParts, Parts + NumParts); 432 433 NumParts = RoundParts; 434 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 435 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 436 } 437 438 // The number of parts is a power of 2. Repeatedly bisect the value using 439 // EXTRACT_ELEMENT. 440 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 441 EVT::getIntegerVT(*DAG.getContext(), 442 ValueVT.getSizeInBits()), 443 Val); 444 445 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 446 for (unsigned i = 0; i < NumParts; i += StepSize) { 447 unsigned ThisBits = StepSize * PartBits / 2; 448 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 449 SDValue &Part0 = Parts[i]; 450 SDValue &Part1 = Parts[i+StepSize/2]; 451 452 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(1)); 454 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(0)); 456 457 if (ThisBits == PartBits && ThisVT != PartVT) { 458 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 459 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 460 } 461 } 462 } 463 464 if (TLI.isBigEndian()) 465 std::reverse(Parts, Parts + OrigNumParts); 466 } 467 468 469 /// getCopyToPartsVector - Create a series of nodes that contain the specified 470 /// value split into legal parts. 471 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V) { 474 EVT ValueVT = Val.getValueType(); 475 assert(ValueVT.isVector() && "Not a vector"); 476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 477 478 if (NumParts == 1) { 479 EVT PartEVT = PartVT; 480 if (PartEVT == ValueVT) { 481 // Nothing to do. 482 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 483 // Bitconvert vector->vector case. 484 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 485 } else if (PartVT.isVector() && 486 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 487 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 488 EVT ElementVT = PartVT.getVectorElementType(); 489 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 490 // undef elements. 491 SmallVector<SDValue, 16> Ops; 492 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 493 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 494 ElementVT, Val, DAG.getConstant(i, 495 TLI.getVectorIdxTy()))); 496 497 for (unsigned i = ValueVT.getVectorNumElements(), 498 e = PartVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getUNDEF(ElementVT)); 500 501 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 502 503 // FIXME: Use CONCAT for 2x -> 4x. 504 505 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 506 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 507 } else if (PartVT.isVector() && 508 PartEVT.getVectorElementType().bitsGE( 509 ValueVT.getVectorElementType()) && 510 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 511 512 // Promoted vector extract 513 bool Smaller = PartEVT.bitsLE(ValueVT); 514 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 515 DL, PartVT, Val); 516 } else{ 517 // Vector -> scalar conversion. 518 assert(ValueVT.getVectorNumElements() == 1 && 519 "Only trivial vector-to-scalar conversions should get here!"); 520 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 521 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 522 523 bool Smaller = ValueVT.bitsLE(PartVT); 524 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 525 DL, PartVT, Val); 526 } 527 528 Parts[0] = Val; 529 return; 530 } 531 532 // Handle a multi-element vector. 533 EVT IntermediateVT; 534 MVT RegisterVT; 535 unsigned NumIntermediates; 536 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 537 IntermediateVT, 538 NumIntermediates, RegisterVT); 539 unsigned NumElements = ValueVT.getVectorNumElements(); 540 541 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 542 NumParts = NumRegs; // Silence a compiler warning. 543 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 544 545 // Split the vector into intermediate operands. 546 SmallVector<SDValue, 8> Ops(NumIntermediates); 547 for (unsigned i = 0; i != NumIntermediates; ++i) { 548 if (IntermediateVT.isVector()) 549 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 550 IntermediateVT, Val, 551 DAG.getConstant(i * (NumElements / NumIntermediates), 552 TLI.getVectorIdxTy())); 553 else 554 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 555 IntermediateVT, Val, 556 DAG.getConstant(i, TLI.getVectorIdxTy())); 557 } 558 559 // Split the intermediate operands into legal parts. 560 if (NumParts == NumIntermediates) { 561 // If the register was not expanded, promote or copy the value, 562 // as appropriate. 563 for (unsigned i = 0; i != NumParts; ++i) 564 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 565 } else if (NumParts > 0) { 566 // If the intermediate type was expanded, split each the value into 567 // legal parts. 568 assert(NumParts % NumIntermediates == 0 && 569 "Must expand into a divisible number of parts!"); 570 unsigned Factor = NumParts / NumIntermediates; 571 for (unsigned i = 0; i != NumIntermediates; ++i) 572 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 573 } 574 } 575 576 namespace { 577 /// RegsForValue - This struct represents the registers (physical or virtual) 578 /// that a particular set of values is assigned, and the type information 579 /// about the value. The most common situation is to represent one value at a 580 /// time, but struct or array values are handled element-wise as multiple 581 /// values. The splitting of aggregates is performed recursively, so that we 582 /// never have aggregate-typed registers. The values at this point do not 583 /// necessarily have legal types, so each value may require one or more 584 /// registers of some legal type. 585 /// 586 struct RegsForValue { 587 /// ValueVTs - The value types of the values, which may not be legal, and 588 /// may need be promoted or synthesized from one or more registers. 589 /// 590 SmallVector<EVT, 4> ValueVTs; 591 592 /// RegVTs - The value types of the registers. This is the same size as 593 /// ValueVTs and it records, for each value, what the type of the assigned 594 /// register or registers are. (Individual values are never synthesized 595 /// from more than one type of register.) 596 /// 597 /// With virtual registers, the contents of RegVTs is redundant with TLI's 598 /// getRegisterType member function, however when with physical registers 599 /// it is necessary to have a separate record of the types. 600 /// 601 SmallVector<MVT, 4> RegVTs; 602 603 /// Regs - This list holds the registers assigned to the values. 604 /// Each legal or promoted value requires one register, and each 605 /// expanded value requires multiple registers. 606 /// 607 SmallVector<unsigned, 4> Regs; 608 609 RegsForValue() {} 610 611 RegsForValue(const SmallVector<unsigned, 4> ®s, 612 MVT regvt, EVT valuevt) 613 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 614 615 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 616 unsigned Reg, Type *Ty) { 617 ComputeValueVTs(tli, Ty, ValueVTs); 618 619 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 622 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 623 for (unsigned i = 0; i != NumRegs; ++i) 624 Regs.push_back(Reg + i); 625 RegVTs.push_back(RegisterVT); 626 Reg += NumRegs; 627 } 628 } 629 630 /// append - Add the specified values to this one. 631 void append(const RegsForValue &RHS) { 632 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 633 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 634 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVTs value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 642 SDLoc dl, 643 SDValue &Chain, SDValue *Flag, 644 const Value *V = 0) const; 645 646 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 647 /// specified value into the registers specified by this object. This uses 648 /// Chain/Flag as the input and updates them for the output Chain/Flag. 649 /// If the Flag pointer is NULL, no flag is used. 650 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 651 SDValue &Chain, SDValue *Flag, const Value *V) const; 652 653 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 654 /// operand list. This adds the code marker, matching input operand index 655 /// (if applicable), and includes the number of values added into it. 656 void AddInlineAsmOperands(unsigned Kind, 657 bool HasMatching, unsigned MatchingIdx, 658 SelectionDAG &DAG, 659 std::vector<SDValue> &Ops) const; 660 }; 661 } 662 663 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 664 /// this value and returns the result as a ValueVT value. This uses 665 /// Chain/Flag as the input and updates them for the output Chain/Flag. 666 /// If the Flag pointer is NULL, no flag is used. 667 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 668 FunctionLoweringInfo &FuncInfo, 669 SDLoc dl, 670 SDValue &Chain, SDValue *Flag, 671 const Value *V) const { 672 // A Value with type {} or [0 x %t] needs no registers. 673 if (ValueVTs.empty()) 674 return SDValue(); 675 676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 677 678 // Assemble the legal parts into the final values. 679 SmallVector<SDValue, 4> Values(ValueVTs.size()); 680 SmallVector<SDValue, 8> Parts; 681 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 682 // Copy the legal parts from the registers. 683 EVT ValueVT = ValueVTs[Value]; 684 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 685 MVT RegisterVT = RegVTs[Value]; 686 687 Parts.resize(NumRegs); 688 for (unsigned i = 0; i != NumRegs; ++i) { 689 SDValue P; 690 if (Flag == 0) { 691 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 692 } else { 693 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 694 *Flag = P.getValue(2); 695 } 696 697 Chain = P.getValue(1); 698 Parts[i] = P; 699 700 // If the source register was virtual and if we know something about it, 701 // add an assert node. 702 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 703 !RegisterVT.isInteger() || RegisterVT.isVector()) 704 continue; 705 706 const FunctionLoweringInfo::LiveOutInfo *LOI = 707 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 708 if (!LOI) 709 continue; 710 711 unsigned RegSize = RegisterVT.getSizeInBits(); 712 unsigned NumSignBits = LOI->NumSignBits; 713 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 714 715 if (NumZeroBits == RegSize) { 716 // The current value is a zero. 717 // Explicitly express that as it would be easier for 718 // optimizations to kick in. 719 Parts[i] = DAG.getConstant(0, RegisterVT); 720 continue; 721 } 722 723 // FIXME: We capture more information than the dag can represent. For 724 // now, just use the tightest assertzext/assertsext possible. 725 bool isSExt = true; 726 EVT FromVT(MVT::Other); 727 if (NumSignBits == RegSize) 728 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 729 else if (NumZeroBits >= RegSize-1) 730 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 731 else if (NumSignBits > RegSize-8) 732 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 733 else if (NumZeroBits >= RegSize-8) 734 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 735 else if (NumSignBits > RegSize-16) 736 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 737 else if (NumZeroBits >= RegSize-16) 738 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 739 else if (NumSignBits > RegSize-32) 740 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 741 else if (NumZeroBits >= RegSize-32) 742 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 743 else 744 continue; 745 746 // Add an assertion node. 747 assert(FromVT != MVT::Other); 748 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 749 RegisterVT, P, DAG.getValueType(FromVT)); 750 } 751 752 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 753 NumRegs, RegisterVT, ValueVT, V); 754 Part += NumRegs; 755 Parts.clear(); 756 } 757 758 return DAG.getNode(ISD::MERGE_VALUES, dl, 759 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 760 &Values[0], ValueVTs.size()); 761 } 762 763 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 764 /// specified value into the registers specified by this object. This uses 765 /// Chain/Flag as the input and updates them for the output Chain/Flag. 766 /// If the Flag pointer is NULL, no flag is used. 767 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 768 SDValue &Chain, SDValue *Flag, 769 const Value *V) const { 770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 771 772 // Get the list of the values's legal parts. 773 unsigned NumRegs = Regs.size(); 774 SmallVector<SDValue, 8> Parts(NumRegs); 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 EVT ValueVT = ValueVTs[Value]; 777 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 778 MVT RegisterVT = RegVTs[Value]; 779 ISD::NodeType ExtendKind = 780 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 781 782 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 783 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 784 Part += NumParts; 785 } 786 787 // Copy the parts into the registers. 788 SmallVector<SDValue, 8> Chains(NumRegs); 789 for (unsigned i = 0; i != NumRegs; ++i) { 790 SDValue Part; 791 if (Flag == 0) { 792 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 793 } else { 794 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 795 *Flag = Part.getValue(1); 796 } 797 798 Chains[i] = Part.getValue(0); 799 } 800 801 if (NumRegs == 1 || Flag) 802 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 803 // flagged to it. That is the CopyToReg nodes and the user are considered 804 // a single scheduling unit. If we create a TokenFactor and return it as 805 // chain, then the TokenFactor is both a predecessor (operand) of the 806 // user as well as a successor (the TF operands are flagged to the user). 807 // c1, f1 = CopyToReg 808 // c2, f2 = CopyToReg 809 // c3 = TokenFactor c1, c2 810 // ... 811 // = op c3, ..., f2 812 Chain = Chains[NumRegs-1]; 813 else 814 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 815 } 816 817 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 818 /// operand list. This adds the code marker and includes the number of 819 /// values added into it. 820 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 821 unsigned MatchingIdx, 822 SelectionDAG &DAG, 823 std::vector<SDValue> &Ops) const { 824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 825 826 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 827 if (HasMatching) 828 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 829 else if (!Regs.empty() && 830 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 831 // Put the register class of the virtual registers in the flag word. That 832 // way, later passes can recompute register class constraints for inline 833 // assembly as well as normal instructions. 834 // Don't do this for tied operands that can use the regclass information 835 // from the def. 836 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 837 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 838 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 839 } 840 841 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 842 Ops.push_back(Res); 843 844 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 845 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 846 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 847 MVT RegisterVT = RegVTs[Value]; 848 for (unsigned i = 0; i != NumRegs; ++i) { 849 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 850 unsigned TheReg = Regs[Reg++]; 851 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 852 853 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 854 // If we clobbered the stack pointer, MFI should know about it. 855 assert(DAG.getMachineFunction().getFrameInfo()-> 856 hasInlineAsmWithSPAdjust()); 857 } 858 } 859 } 860 } 861 862 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 863 const TargetLibraryInfo *li) { 864 AA = &aa; 865 GFI = gfi; 866 LibInfo = li; 867 DL = DAG.getTarget().getDataLayout(); 868 Context = DAG.getContext(); 869 LPadToCallSiteMap.clear(); 870 } 871 872 /// clear - Clear out the current SelectionDAG and the associated 873 /// state and prepare this SelectionDAGBuilder object to be used 874 /// for a new block. This doesn't clear out information about 875 /// additional blocks that are needed to complete switch lowering 876 /// or PHI node updating; that information is cleared out as it is 877 /// consumed. 878 void SelectionDAGBuilder::clear() { 879 NodeMap.clear(); 880 UnusedArgNodeMap.clear(); 881 PendingLoads.clear(); 882 PendingExports.clear(); 883 CurInst = NULL; 884 HasTailCall = false; 885 SDNodeOrder = LowestSDNodeOrder; 886 } 887 888 /// clearDanglingDebugInfo - Clear the dangling debug information 889 /// map. This function is separated from the clear so that debug 890 /// information that is dangling in a basic block can be properly 891 /// resolved in a different basic block. This allows the 892 /// SelectionDAG to resolve dangling debug information attached 893 /// to PHI nodes. 894 void SelectionDAGBuilder::clearDanglingDebugInfo() { 895 DanglingDebugInfoMap.clear(); 896 } 897 898 /// getRoot - Return the current virtual root of the Selection DAG, 899 /// flushing any PendingLoad items. This must be done before emitting 900 /// a store or any other node that may need to be ordered after any 901 /// prior load instructions. 902 /// 903 SDValue SelectionDAGBuilder::getRoot() { 904 if (PendingLoads.empty()) 905 return DAG.getRoot(); 906 907 if (PendingLoads.size() == 1) { 908 SDValue Root = PendingLoads[0]; 909 DAG.setRoot(Root); 910 PendingLoads.clear(); 911 return Root; 912 } 913 914 // Otherwise, we have to make a token factor node. 915 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 916 &PendingLoads[0], PendingLoads.size()); 917 PendingLoads.clear(); 918 DAG.setRoot(Root); 919 return Root; 920 } 921 922 /// getControlRoot - Similar to getRoot, but instead of flushing all the 923 /// PendingLoad items, flush all the PendingExports items. It is necessary 924 /// to do this before emitting a terminator instruction. 925 /// 926 SDValue SelectionDAGBuilder::getControlRoot() { 927 SDValue Root = DAG.getRoot(); 928 929 if (PendingExports.empty()) 930 return Root; 931 932 // Turn all of the CopyToReg chains into one factored node. 933 if (Root.getOpcode() != ISD::EntryToken) { 934 unsigned i = 0, e = PendingExports.size(); 935 for (; i != e; ++i) { 936 assert(PendingExports[i].getNode()->getNumOperands() > 1); 937 if (PendingExports[i].getNode()->getOperand(0) == Root) 938 break; // Don't add the root if we already indirectly depend on it. 939 } 940 941 if (i == e) 942 PendingExports.push_back(Root); 943 } 944 945 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 946 &PendingExports[0], 947 PendingExports.size()); 948 PendingExports.clear(); 949 DAG.setRoot(Root); 950 return Root; 951 } 952 953 void SelectionDAGBuilder::visit(const Instruction &I) { 954 // Set up outgoing PHI node register values before emitting the terminator. 955 if (isa<TerminatorInst>(&I)) 956 HandlePHINodesInSuccessorBlocks(I.getParent()); 957 958 ++SDNodeOrder; 959 960 CurInst = &I; 961 962 visit(I.getOpcode(), I); 963 964 if (!isa<TerminatorInst>(&I) && !HasTailCall) 965 CopyToExportRegsIfNeeded(&I); 966 967 CurInst = NULL; 968 } 969 970 void SelectionDAGBuilder::visitPHI(const PHINode &) { 971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 972 } 973 974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 975 // Note: this doesn't use InstVisitor, because it has to work with 976 // ConstantExpr's in addition to instructions. 977 switch (Opcode) { 978 default: llvm_unreachable("Unknown instruction type encountered!"); 979 // Build the switch statement using the Instruction.def file. 980 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 982 #include "llvm/IR/Instruction.def" 983 } 984 } 985 986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 987 // generate the debug data structures now that we've seen its definition. 988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 989 SDValue Val) { 990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 991 if (DDI.getDI()) { 992 const DbgValueInst *DI = DDI.getDI(); 993 DebugLoc dl = DDI.getdl(); 994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 995 MDNode *Variable = DI->getVariable(); 996 uint64_t Offset = DI->getOffset(); 997 SDDbgValue *SDV; 998 if (Val.getNode()) { 999 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 1000 SDV = DAG.getDbgValue(Variable, Val.getNode(), 1001 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 1002 DAG.AddDbgValue(SDV, Val.getNode(), false); 1003 } 1004 } else 1005 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1006 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1007 } 1008 } 1009 1010 /// getValue - Return an SDValue for the given Value. 1011 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1012 // If we already have an SDValue for this value, use it. It's important 1013 // to do this first, so that we don't create a CopyFromReg if we already 1014 // have a regular SDValue. 1015 SDValue &N = NodeMap[V]; 1016 if (N.getNode()) return N; 1017 1018 // If there's a virtual register allocated and initialized for this 1019 // value, use it. 1020 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1021 if (It != FuncInfo.ValueMap.end()) { 1022 unsigned InReg = It->second; 1023 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1024 InReg, V->getType()); 1025 SDValue Chain = DAG.getEntryNode(); 1026 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1027 resolveDanglingDebugInfo(V, N); 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getNonRegisterValue - Return an SDValue for the given Value, but 1039 /// don't look in FuncInfo.ValueMap for a virtual register. 1040 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1041 // If we already have an SDValue for this value, use it. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) return N; 1044 1045 // Otherwise create a new SDValue and remember it. 1046 SDValue Val = getValueImpl(V); 1047 NodeMap[V] = Val; 1048 resolveDanglingDebugInfo(V, Val); 1049 return Val; 1050 } 1051 1052 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1053 /// Create an SDValue for the given value. 1054 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1055 const TargetLowering *TLI = TM.getTargetLowering(); 1056 1057 if (const Constant *C = dyn_cast<Constant>(V)) { 1058 EVT VT = TLI->getValueType(V->getType(), true); 1059 1060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1061 return DAG.getConstant(*CI, VT); 1062 1063 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1064 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1065 1066 if (isa<ConstantPointerNull>(C)) { 1067 unsigned AS = V->getType()->getPointerAddressSpace(); 1068 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1069 } 1070 1071 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1072 return DAG.getConstantFP(*CFP, VT); 1073 1074 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1075 return DAG.getUNDEF(VT); 1076 1077 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1078 visit(CE->getOpcode(), *CE); 1079 SDValue N1 = NodeMap[V]; 1080 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1081 return N1; 1082 } 1083 1084 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1085 SmallVector<SDValue, 4> Constants; 1086 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1087 OI != OE; ++OI) { 1088 SDNode *Val = getValue(*OI).getNode(); 1089 // If the operand is an empty aggregate, there are no values. 1090 if (!Val) continue; 1091 // Add each leaf value from the operand to the Constants list 1092 // to form a flattened list of all the values. 1093 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1094 Constants.push_back(SDValue(Val, i)); 1095 } 1096 1097 return DAG.getMergeValues(&Constants[0], Constants.size(), 1098 getCurSDLoc()); 1099 } 1100 1101 if (const ConstantDataSequential *CDS = 1102 dyn_cast<ConstantDataSequential>(C)) { 1103 SmallVector<SDValue, 4> Ops; 1104 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1105 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1106 // Add each leaf value from the operand to the Constants list 1107 // to form a flattened list of all the values. 1108 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1109 Ops.push_back(SDValue(Val, i)); 1110 } 1111 1112 if (isa<ArrayType>(CDS->getType())) 1113 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1114 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1115 VT, &Ops[0], Ops.size()); 1116 } 1117 1118 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1119 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1120 "Unknown struct or array constant!"); 1121 1122 SmallVector<EVT, 4> ValueVTs; 1123 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1124 unsigned NumElts = ValueVTs.size(); 1125 if (NumElts == 0) 1126 return SDValue(); // empty struct 1127 SmallVector<SDValue, 4> Constants(NumElts); 1128 for (unsigned i = 0; i != NumElts; ++i) { 1129 EVT EltVT = ValueVTs[i]; 1130 if (isa<UndefValue>(C)) 1131 Constants[i] = DAG.getUNDEF(EltVT); 1132 else if (EltVT.isFloatingPoint()) 1133 Constants[i] = DAG.getConstantFP(0, EltVT); 1134 else 1135 Constants[i] = DAG.getConstant(0, EltVT); 1136 } 1137 1138 return DAG.getMergeValues(&Constants[0], NumElts, 1139 getCurSDLoc()); 1140 } 1141 1142 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1143 return DAG.getBlockAddress(BA, VT); 1144 1145 VectorType *VecTy = cast<VectorType>(V->getType()); 1146 unsigned NumElements = VecTy->getNumElements(); 1147 1148 // Now that we know the number and type of the elements, get that number of 1149 // elements into the Ops array based on what kind of constant it is. 1150 SmallVector<SDValue, 16> Ops; 1151 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1152 for (unsigned i = 0; i != NumElements; ++i) 1153 Ops.push_back(getValue(CV->getOperand(i))); 1154 } else { 1155 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1156 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1157 1158 SDValue Op; 1159 if (EltVT.isFloatingPoint()) 1160 Op = DAG.getConstantFP(0, EltVT); 1161 else 1162 Op = DAG.getConstant(0, EltVT); 1163 Ops.assign(NumElements, Op); 1164 } 1165 1166 // Create a BUILD_VECTOR node. 1167 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1168 VT, &Ops[0], Ops.size()); 1169 } 1170 1171 // If this is a static alloca, generate it as the frameindex instead of 1172 // computation. 1173 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1174 DenseMap<const AllocaInst*, int>::iterator SI = 1175 FuncInfo.StaticAllocaMap.find(AI); 1176 if (SI != FuncInfo.StaticAllocaMap.end()) 1177 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1178 } 1179 1180 // If this is an instruction which fast-isel has deferred, select it now. 1181 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1182 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1183 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1184 SDValue Chain = DAG.getEntryNode(); 1185 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1186 } 1187 1188 llvm_unreachable("Can't get register for value!"); 1189 } 1190 1191 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1192 const TargetLowering *TLI = TM.getTargetLowering(); 1193 SDValue Chain = getControlRoot(); 1194 SmallVector<ISD::OutputArg, 8> Outs; 1195 SmallVector<SDValue, 8> OutVals; 1196 1197 if (!FuncInfo.CanLowerReturn) { 1198 unsigned DemoteReg = FuncInfo.DemoteRegister; 1199 const Function *F = I.getParent()->getParent(); 1200 1201 // Emit a store of the return value through the virtual register. 1202 // Leave Outs empty so that LowerReturn won't try to load return 1203 // registers the usual way. 1204 SmallVector<EVT, 1> PtrValueVTs; 1205 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1206 PtrValueVTs); 1207 1208 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1209 SDValue RetOp = getValue(I.getOperand(0)); 1210 1211 SmallVector<EVT, 4> ValueVTs; 1212 SmallVector<uint64_t, 4> Offsets; 1213 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1214 unsigned NumValues = ValueVTs.size(); 1215 1216 SmallVector<SDValue, 4> Chains(NumValues); 1217 for (unsigned i = 0; i != NumValues; ++i) { 1218 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1219 RetPtr.getValueType(), RetPtr, 1220 DAG.getIntPtrConstant(Offsets[i])); 1221 Chains[i] = 1222 DAG.getStore(Chain, getCurSDLoc(), 1223 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1224 // FIXME: better loc info would be nice. 1225 Add, MachinePointerInfo(), false, false, 0); 1226 } 1227 1228 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1229 MVT::Other, &Chains[0], NumValues); 1230 } else if (I.getNumOperands() != 0) { 1231 SmallVector<EVT, 4> ValueVTs; 1232 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1233 unsigned NumValues = ValueVTs.size(); 1234 if (NumValues) { 1235 SDValue RetOp = getValue(I.getOperand(0)); 1236 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1237 EVT VT = ValueVTs[j]; 1238 1239 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1240 1241 const Function *F = I.getParent()->getParent(); 1242 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1243 Attribute::SExt)) 1244 ExtendKind = ISD::SIGN_EXTEND; 1245 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1246 Attribute::ZExt)) 1247 ExtendKind = ISD::ZERO_EXTEND; 1248 1249 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1250 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1251 1252 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1253 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1254 SmallVector<SDValue, 4> Parts(NumParts); 1255 getCopyToParts(DAG, getCurSDLoc(), 1256 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1257 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1258 1259 // 'inreg' on function refers to return value 1260 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1261 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1262 Attribute::InReg)) 1263 Flags.setInReg(); 1264 1265 // Propagate extension type if any 1266 if (ExtendKind == ISD::SIGN_EXTEND) 1267 Flags.setSExt(); 1268 else if (ExtendKind == ISD::ZERO_EXTEND) 1269 Flags.setZExt(); 1270 1271 for (unsigned i = 0; i < NumParts; ++i) { 1272 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1273 VT, /*isfixed=*/true, 0, 0)); 1274 OutVals.push_back(Parts[i]); 1275 } 1276 } 1277 } 1278 } 1279 1280 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1281 CallingConv::ID CallConv = 1282 DAG.getMachineFunction().getFunction()->getCallingConv(); 1283 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1284 Outs, OutVals, getCurSDLoc(), 1285 DAG); 1286 1287 // Verify that the target's LowerReturn behaved as expected. 1288 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1289 "LowerReturn didn't return a valid chain!"); 1290 1291 // Update the DAG with the new chain value resulting from return lowering. 1292 DAG.setRoot(Chain); 1293 } 1294 1295 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1296 /// created for it, emit nodes to copy the value into the virtual 1297 /// registers. 1298 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1299 // Skip empty types 1300 if (V->getType()->isEmptyTy()) 1301 return; 1302 1303 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1304 if (VMI != FuncInfo.ValueMap.end()) { 1305 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1306 CopyValueToVirtualRegister(V, VMI->second); 1307 } 1308 } 1309 1310 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1311 /// the current basic block, add it to ValueMap now so that we'll get a 1312 /// CopyTo/FromReg. 1313 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1314 // No need to export constants. 1315 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1316 1317 // Already exported? 1318 if (FuncInfo.isExportedInst(V)) return; 1319 1320 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1321 CopyValueToVirtualRegister(V, Reg); 1322 } 1323 1324 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1325 const BasicBlock *FromBB) { 1326 // The operands of the setcc have to be in this block. We don't know 1327 // how to export them from some other block. 1328 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1329 // Can export from current BB. 1330 if (VI->getParent() == FromBB) 1331 return true; 1332 1333 // Is already exported, noop. 1334 return FuncInfo.isExportedInst(V); 1335 } 1336 1337 // If this is an argument, we can export it if the BB is the entry block or 1338 // if it is already exported. 1339 if (isa<Argument>(V)) { 1340 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1341 return true; 1342 1343 // Otherwise, can only export this if it is already exported. 1344 return FuncInfo.isExportedInst(V); 1345 } 1346 1347 // Otherwise, constants can always be exported. 1348 return true; 1349 } 1350 1351 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1352 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1353 const MachineBasicBlock *Dst) const { 1354 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1355 if (!BPI) 1356 return 0; 1357 const BasicBlock *SrcBB = Src->getBasicBlock(); 1358 const BasicBlock *DstBB = Dst->getBasicBlock(); 1359 return BPI->getEdgeWeight(SrcBB, DstBB); 1360 } 1361 1362 void SelectionDAGBuilder:: 1363 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1364 uint32_t Weight /* = 0 */) { 1365 if (!Weight) 1366 Weight = getEdgeWeight(Src, Dst); 1367 Src->addSuccessor(Dst, Weight); 1368 } 1369 1370 1371 static bool InBlock(const Value *V, const BasicBlock *BB) { 1372 if (const Instruction *I = dyn_cast<Instruction>(V)) 1373 return I->getParent() == BB; 1374 return true; 1375 } 1376 1377 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1378 /// This function emits a branch and is used at the leaves of an OR or an 1379 /// AND operator tree. 1380 /// 1381 void 1382 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1383 MachineBasicBlock *TBB, 1384 MachineBasicBlock *FBB, 1385 MachineBasicBlock *CurBB, 1386 MachineBasicBlock *SwitchBB, 1387 uint32_t TWeight, 1388 uint32_t FWeight) { 1389 const BasicBlock *BB = CurBB->getBasicBlock(); 1390 1391 // If the leaf of the tree is a comparison, merge the condition into 1392 // the caseblock. 1393 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1394 // The operands of the cmp have to be in this block. We don't know 1395 // how to export them from some other block. If this is the first block 1396 // of the sequence, no exporting is needed. 1397 if (CurBB == SwitchBB || 1398 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1399 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1400 ISD::CondCode Condition; 1401 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1402 Condition = getICmpCondCode(IC->getPredicate()); 1403 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } else { 1408 Condition = ISD::SETEQ; // silence warning. 1409 llvm_unreachable("Unknown compare instruction"); 1410 } 1411 1412 CaseBlock CB(Condition, BOp->getOperand(0), 1413 BOp->getOperand(1), NULL, TBB, FBB, CurBB, TWeight, FWeight); 1414 SwitchCases.push_back(CB); 1415 return; 1416 } 1417 } 1418 1419 // Create a CaseBlock record representing this branch. 1420 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1421 NULL, TBB, FBB, CurBB, TWeight, FWeight); 1422 SwitchCases.push_back(CB); 1423 } 1424 1425 /// Scale down both weights to fit into uint32_t. 1426 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1427 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1428 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1429 NewTrue = NewTrue / Scale; 1430 NewFalse = NewFalse / Scale; 1431 } 1432 1433 /// FindMergedConditions - If Cond is an expression like 1434 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1435 MachineBasicBlock *TBB, 1436 MachineBasicBlock *FBB, 1437 MachineBasicBlock *CurBB, 1438 MachineBasicBlock *SwitchBB, 1439 unsigned Opc, uint32_t TWeight, 1440 uint32_t FWeight) { 1441 // If this node is not part of the or/and tree, emit it as a branch. 1442 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1443 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1444 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1445 BOp->getParent() != CurBB->getBasicBlock() || 1446 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1447 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1448 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1449 TWeight, FWeight); 1450 return; 1451 } 1452 1453 // Create TmpBB after CurBB. 1454 MachineFunction::iterator BBI = CurBB; 1455 MachineFunction &MF = DAG.getMachineFunction(); 1456 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1457 CurBB->getParent()->insert(++BBI, TmpBB); 1458 1459 if (Opc == Instruction::Or) { 1460 // Codegen X | Y as: 1461 // BB1: 1462 // jmp_if_X TBB 1463 // jmp TmpBB 1464 // TmpBB: 1465 // jmp_if_Y TBB 1466 // jmp FBB 1467 // 1468 1469 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1470 // The requirement is that 1471 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1472 // = TrueProb for orignal BB. 1473 // Assuming the orignal weights are A and B, one choice is to set BB1's 1474 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1475 // assumes that 1476 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1477 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1478 // TmpBB, but the math is more complicated. 1479 1480 uint64_t NewTrueWeight = TWeight; 1481 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1482 ScaleWeights(NewTrueWeight, NewFalseWeight); 1483 // Emit the LHS condition. 1484 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1485 NewTrueWeight, NewFalseWeight); 1486 1487 NewTrueWeight = TWeight; 1488 NewFalseWeight = 2 * (uint64_t)FWeight; 1489 ScaleWeights(NewTrueWeight, NewFalseWeight); 1490 // Emit the RHS condition into TmpBB. 1491 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1492 NewTrueWeight, NewFalseWeight); 1493 } else { 1494 assert(Opc == Instruction::And && "Unknown merge op!"); 1495 // Codegen X & Y as: 1496 // BB1: 1497 // jmp_if_X TmpBB 1498 // jmp FBB 1499 // TmpBB: 1500 // jmp_if_Y TBB 1501 // jmp FBB 1502 // 1503 // This requires creation of TmpBB after CurBB. 1504 1505 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1506 // The requirement is that 1507 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1508 // = FalseProb for orignal BB. 1509 // Assuming the orignal weights are A and B, one choice is to set BB1's 1510 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1511 // assumes that 1512 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1513 1514 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1515 uint64_t NewFalseWeight = FWeight; 1516 ScaleWeights(NewTrueWeight, NewFalseWeight); 1517 // Emit the LHS condition. 1518 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1519 NewTrueWeight, NewFalseWeight); 1520 1521 NewTrueWeight = 2 * (uint64_t)TWeight; 1522 NewFalseWeight = FWeight; 1523 ScaleWeights(NewTrueWeight, NewFalseWeight); 1524 // Emit the RHS condition into TmpBB. 1525 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1526 NewTrueWeight, NewFalseWeight); 1527 } 1528 } 1529 1530 /// If the set of cases should be emitted as a series of branches, return true. 1531 /// If we should emit this as a bunch of and/or'd together conditions, return 1532 /// false. 1533 bool 1534 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1535 if (Cases.size() != 2) return true; 1536 1537 // If this is two comparisons of the same values or'd or and'd together, they 1538 // will get folded into a single comparison, so don't emit two blocks. 1539 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1540 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1541 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1542 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1543 return false; 1544 } 1545 1546 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1547 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1548 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1549 Cases[0].CC == Cases[1].CC && 1550 isa<Constant>(Cases[0].CmpRHS) && 1551 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1552 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1553 return false; 1554 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1555 return false; 1556 } 1557 1558 return true; 1559 } 1560 1561 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1562 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1563 1564 // Update machine-CFG edges. 1565 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1566 1567 // Figure out which block is immediately after the current one. 1568 MachineBasicBlock *NextBlock = 0; 1569 MachineFunction::iterator BBI = BrMBB; 1570 if (++BBI != FuncInfo.MF->end()) 1571 NextBlock = BBI; 1572 1573 if (I.isUnconditional()) { 1574 // Update machine-CFG edges. 1575 BrMBB->addSuccessor(Succ0MBB); 1576 1577 // If this is not a fall-through branch, emit the branch. 1578 if (Succ0MBB != NextBlock) 1579 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1580 MVT::Other, getControlRoot(), 1581 DAG.getBasicBlock(Succ0MBB))); 1582 1583 return; 1584 } 1585 1586 // If this condition is one of the special cases we handle, do special stuff 1587 // now. 1588 const Value *CondVal = I.getCondition(); 1589 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1590 1591 // If this is a series of conditions that are or'd or and'd together, emit 1592 // this as a sequence of branches instead of setcc's with and/or operations. 1593 // As long as jumps are not expensive, this should improve performance. 1594 // For example, instead of something like: 1595 // cmp A, B 1596 // C = seteq 1597 // cmp D, E 1598 // F = setle 1599 // or C, F 1600 // jnz foo 1601 // Emit: 1602 // cmp A, B 1603 // je foo 1604 // cmp D, E 1605 // jle foo 1606 // 1607 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1608 if (!TM.getTargetLowering()->isJumpExpensive() && 1609 BOp->hasOneUse() && 1610 (BOp->getOpcode() == Instruction::And || 1611 BOp->getOpcode() == Instruction::Or)) { 1612 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1613 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1614 getEdgeWeight(BrMBB, Succ1MBB)); 1615 // If the compares in later blocks need to use values not currently 1616 // exported from this block, export them now. This block should always 1617 // be the first entry. 1618 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1619 1620 // Allow some cases to be rejected. 1621 if (ShouldEmitAsBranches(SwitchCases)) { 1622 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1623 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1624 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1625 } 1626 1627 // Emit the branch for this block. 1628 visitSwitchCase(SwitchCases[0], BrMBB); 1629 SwitchCases.erase(SwitchCases.begin()); 1630 return; 1631 } 1632 1633 // Okay, we decided not to do this, remove any inserted MBB's and clear 1634 // SwitchCases. 1635 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1636 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1637 1638 SwitchCases.clear(); 1639 } 1640 } 1641 1642 // Create a CaseBlock record representing this branch. 1643 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1644 NULL, Succ0MBB, Succ1MBB, BrMBB); 1645 1646 // Use visitSwitchCase to actually insert the fast branch sequence for this 1647 // cond branch. 1648 visitSwitchCase(CB, BrMBB); 1649 } 1650 1651 /// visitSwitchCase - Emits the necessary code to represent a single node in 1652 /// the binary search tree resulting from lowering a switch instruction. 1653 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1654 MachineBasicBlock *SwitchBB) { 1655 SDValue Cond; 1656 SDValue CondLHS = getValue(CB.CmpLHS); 1657 SDLoc dl = getCurSDLoc(); 1658 1659 // Build the setcc now. 1660 if (CB.CmpMHS == NULL) { 1661 // Fold "(X == true)" to X and "(X == false)" to !X to 1662 // handle common cases produced by branch lowering. 1663 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1664 CB.CC == ISD::SETEQ) 1665 Cond = CondLHS; 1666 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1667 CB.CC == ISD::SETEQ) { 1668 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1669 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1670 } else 1671 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1672 } else { 1673 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1674 1675 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1676 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1677 1678 SDValue CmpOp = getValue(CB.CmpMHS); 1679 EVT VT = CmpOp.getValueType(); 1680 1681 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1682 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1683 ISD::SETLE); 1684 } else { 1685 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1686 VT, CmpOp, DAG.getConstant(Low, VT)); 1687 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1688 DAG.getConstant(High-Low, VT), ISD::SETULE); 1689 } 1690 } 1691 1692 // Update successor info 1693 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1694 // TrueBB and FalseBB are always different unless the incoming IR is 1695 // degenerate. This only happens when running llc on weird IR. 1696 if (CB.TrueBB != CB.FalseBB) 1697 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1698 1699 // Set NextBlock to be the MBB immediately after the current one, if any. 1700 // This is used to avoid emitting unnecessary branches to the next block. 1701 MachineBasicBlock *NextBlock = 0; 1702 MachineFunction::iterator BBI = SwitchBB; 1703 if (++BBI != FuncInfo.MF->end()) 1704 NextBlock = BBI; 1705 1706 // If the lhs block is the next block, invert the condition so that we can 1707 // fall through to the lhs instead of the rhs block. 1708 if (CB.TrueBB == NextBlock) { 1709 std::swap(CB.TrueBB, CB.FalseBB); 1710 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1711 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1712 } 1713 1714 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1715 MVT::Other, getControlRoot(), Cond, 1716 DAG.getBasicBlock(CB.TrueBB)); 1717 1718 // Insert the false branch. Do this even if it's a fall through branch, 1719 // this makes it easier to do DAG optimizations which require inverting 1720 // the branch condition. 1721 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1722 DAG.getBasicBlock(CB.FalseBB)); 1723 1724 DAG.setRoot(BrCond); 1725 } 1726 1727 /// visitJumpTable - Emit JumpTable node in the current MBB 1728 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1729 // Emit the code for the jump table 1730 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1731 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1732 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1733 JT.Reg, PTy); 1734 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1735 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1736 MVT::Other, Index.getValue(1), 1737 Table, Index); 1738 DAG.setRoot(BrJumpTable); 1739 } 1740 1741 /// visitJumpTableHeader - This function emits necessary code to produce index 1742 /// in the JumpTable from switch case. 1743 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1744 JumpTableHeader &JTH, 1745 MachineBasicBlock *SwitchBB) { 1746 // Subtract the lowest switch case value from the value being switched on and 1747 // conditional branch to default mbb if the result is greater than the 1748 // difference between smallest and largest cases. 1749 SDValue SwitchOp = getValue(JTH.SValue); 1750 EVT VT = SwitchOp.getValueType(); 1751 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1752 DAG.getConstant(JTH.First, VT)); 1753 1754 // The SDNode we just created, which holds the value being switched on minus 1755 // the smallest case value, needs to be copied to a virtual register so it 1756 // can be used as an index into the jump table in a subsequent basic block. 1757 // This value may be smaller or larger than the target's pointer type, and 1758 // therefore require extension or truncating. 1759 const TargetLowering *TLI = TM.getTargetLowering(); 1760 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1761 1762 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1763 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1764 JumpTableReg, SwitchOp); 1765 JT.Reg = JumpTableReg; 1766 1767 // Emit the range check for the jump table, and branch to the default block 1768 // for the switch statement if the value being switched on exceeds the largest 1769 // case in the switch. 1770 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1771 TLI->getSetCCResultType(*DAG.getContext(), 1772 Sub.getValueType()), 1773 Sub, 1774 DAG.getConstant(JTH.Last - JTH.First,VT), 1775 ISD::SETUGT); 1776 1777 // Set NextBlock to be the MBB immediately after the current one, if any. 1778 // This is used to avoid emitting unnecessary branches to the next block. 1779 MachineBasicBlock *NextBlock = 0; 1780 MachineFunction::iterator BBI = SwitchBB; 1781 1782 if (++BBI != FuncInfo.MF->end()) 1783 NextBlock = BBI; 1784 1785 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1786 MVT::Other, CopyTo, CMP, 1787 DAG.getBasicBlock(JT.Default)); 1788 1789 if (JT.MBB != NextBlock) 1790 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1791 DAG.getBasicBlock(JT.MBB)); 1792 1793 DAG.setRoot(BrCond); 1794 } 1795 1796 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1797 /// tail spliced into a stack protector check success bb. 1798 /// 1799 /// For a high level explanation of how this fits into the stack protector 1800 /// generation see the comment on the declaration of class 1801 /// StackProtectorDescriptor. 1802 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1803 MachineBasicBlock *ParentBB) { 1804 1805 // First create the loads to the guard/stack slot for the comparison. 1806 const TargetLowering *TLI = TM.getTargetLowering(); 1807 EVT PtrTy = TLI->getPointerTy(); 1808 1809 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1810 int FI = MFI->getStackProtectorIndex(); 1811 1812 const Value *IRGuard = SPD.getGuard(); 1813 SDValue GuardPtr = getValue(IRGuard); 1814 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1815 1816 unsigned Align = 1817 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1818 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1819 GuardPtr, MachinePointerInfo(IRGuard, 0), 1820 true, false, false, Align); 1821 1822 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1823 StackSlotPtr, 1824 MachinePointerInfo::getFixedStack(FI), 1825 true, false, false, Align); 1826 1827 // Perform the comparison via a subtract/getsetcc. 1828 EVT VT = Guard.getValueType(); 1829 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1830 1831 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1832 TLI->getSetCCResultType(*DAG.getContext(), 1833 Sub.getValueType()), 1834 Sub, DAG.getConstant(0, VT), 1835 ISD::SETNE); 1836 1837 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1838 // branch to failure MBB. 1839 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1840 MVT::Other, StackSlot.getOperand(0), 1841 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1842 // Otherwise branch to success MBB. 1843 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1844 MVT::Other, BrCond, 1845 DAG.getBasicBlock(SPD.getSuccessMBB())); 1846 1847 DAG.setRoot(Br); 1848 } 1849 1850 /// Codegen the failure basic block for a stack protector check. 1851 /// 1852 /// A failure stack protector machine basic block consists simply of a call to 1853 /// __stack_chk_fail(). 1854 /// 1855 /// For a high level explanation of how this fits into the stack protector 1856 /// generation see the comment on the declaration of class 1857 /// StackProtectorDescriptor. 1858 void 1859 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1860 const TargetLowering *TLI = TM.getTargetLowering(); 1861 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1862 MVT::isVoid, 0, 0, false, getCurSDLoc(), 1863 false, false).second; 1864 DAG.setRoot(Chain); 1865 } 1866 1867 /// visitBitTestHeader - This function emits necessary code to produce value 1868 /// suitable for "bit tests" 1869 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1870 MachineBasicBlock *SwitchBB) { 1871 // Subtract the minimum value 1872 SDValue SwitchOp = getValue(B.SValue); 1873 EVT VT = SwitchOp.getValueType(); 1874 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1875 DAG.getConstant(B.First, VT)); 1876 1877 // Check range 1878 const TargetLowering *TLI = TM.getTargetLowering(); 1879 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1880 TLI->getSetCCResultType(*DAG.getContext(), 1881 Sub.getValueType()), 1882 Sub, DAG.getConstant(B.Range, VT), 1883 ISD::SETUGT); 1884 1885 // Determine the type of the test operands. 1886 bool UsePtrType = false; 1887 if (!TLI->isTypeLegal(VT)) 1888 UsePtrType = true; 1889 else { 1890 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1891 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1892 // Switch table case range are encoded into series of masks. 1893 // Just use pointer type, it's guaranteed to fit. 1894 UsePtrType = true; 1895 break; 1896 } 1897 } 1898 if (UsePtrType) { 1899 VT = TLI->getPointerTy(); 1900 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1901 } 1902 1903 B.RegVT = VT.getSimpleVT(); 1904 B.Reg = FuncInfo.CreateReg(B.RegVT); 1905 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1906 B.Reg, Sub); 1907 1908 // Set NextBlock to be the MBB immediately after the current one, if any. 1909 // This is used to avoid emitting unnecessary branches to the next block. 1910 MachineBasicBlock *NextBlock = 0; 1911 MachineFunction::iterator BBI = SwitchBB; 1912 if (++BBI != FuncInfo.MF->end()) 1913 NextBlock = BBI; 1914 1915 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1916 1917 addSuccessorWithWeight(SwitchBB, B.Default); 1918 addSuccessorWithWeight(SwitchBB, MBB); 1919 1920 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1921 MVT::Other, CopyTo, RangeCmp, 1922 DAG.getBasicBlock(B.Default)); 1923 1924 if (MBB != NextBlock) 1925 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1926 DAG.getBasicBlock(MBB)); 1927 1928 DAG.setRoot(BrRange); 1929 } 1930 1931 /// visitBitTestCase - this function produces one "bit test" 1932 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1933 MachineBasicBlock* NextMBB, 1934 uint32_t BranchWeightToNext, 1935 unsigned Reg, 1936 BitTestCase &B, 1937 MachineBasicBlock *SwitchBB) { 1938 MVT VT = BB.RegVT; 1939 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1940 Reg, VT); 1941 SDValue Cmp; 1942 unsigned PopCount = CountPopulation_64(B.Mask); 1943 const TargetLowering *TLI = TM.getTargetLowering(); 1944 if (PopCount == 1) { 1945 // Testing for a single bit; just compare the shift count with what it 1946 // would need to be to shift a 1 bit in that position. 1947 Cmp = DAG.getSetCC(getCurSDLoc(), 1948 TLI->getSetCCResultType(*DAG.getContext(), VT), 1949 ShiftOp, 1950 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1951 ISD::SETEQ); 1952 } else if (PopCount == BB.Range) { 1953 // There is only one zero bit in the range, test for it directly. 1954 Cmp = DAG.getSetCC(getCurSDLoc(), 1955 TLI->getSetCCResultType(*DAG.getContext(), VT), 1956 ShiftOp, 1957 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1958 ISD::SETNE); 1959 } else { 1960 // Make desired shift 1961 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1962 DAG.getConstant(1, VT), ShiftOp); 1963 1964 // Emit bit tests and jumps 1965 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1966 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1967 Cmp = DAG.getSetCC(getCurSDLoc(), 1968 TLI->getSetCCResultType(*DAG.getContext(), VT), 1969 AndOp, DAG.getConstant(0, VT), 1970 ISD::SETNE); 1971 } 1972 1973 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1974 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1975 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1976 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1977 1978 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1979 MVT::Other, getControlRoot(), 1980 Cmp, DAG.getBasicBlock(B.TargetBB)); 1981 1982 // Set NextBlock to be the MBB immediately after the current one, if any. 1983 // This is used to avoid emitting unnecessary branches to the next block. 1984 MachineBasicBlock *NextBlock = 0; 1985 MachineFunction::iterator BBI = SwitchBB; 1986 if (++BBI != FuncInfo.MF->end()) 1987 NextBlock = BBI; 1988 1989 if (NextMBB != NextBlock) 1990 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1991 DAG.getBasicBlock(NextMBB)); 1992 1993 DAG.setRoot(BrAnd); 1994 } 1995 1996 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1997 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1998 1999 // Retrieve successors. 2000 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2001 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2002 2003 const Value *Callee(I.getCalledValue()); 2004 const Function *Fn = dyn_cast<Function>(Callee); 2005 if (isa<InlineAsm>(Callee)) 2006 visitInlineAsm(&I); 2007 else if (Fn && Fn->isIntrinsic()) { 2008 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2009 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2010 } else 2011 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2012 2013 // If the value of the invoke is used outside of its defining block, make it 2014 // available as a virtual register. 2015 CopyToExportRegsIfNeeded(&I); 2016 2017 // Update successor info 2018 addSuccessorWithWeight(InvokeMBB, Return); 2019 addSuccessorWithWeight(InvokeMBB, LandingPad); 2020 2021 // Drop into normal successor. 2022 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2023 MVT::Other, getControlRoot(), 2024 DAG.getBasicBlock(Return))); 2025 } 2026 2027 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2028 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2029 } 2030 2031 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2032 assert(FuncInfo.MBB->isLandingPad() && 2033 "Call to landingpad not in landing pad!"); 2034 2035 MachineBasicBlock *MBB = FuncInfo.MBB; 2036 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2037 AddLandingPadInfo(LP, MMI, MBB); 2038 2039 // If there aren't registers to copy the values into (e.g., during SjLj 2040 // exceptions), then don't bother to create these DAG nodes. 2041 const TargetLowering *TLI = TM.getTargetLowering(); 2042 if (TLI->getExceptionPointerRegister() == 0 && 2043 TLI->getExceptionSelectorRegister() == 0) 2044 return; 2045 2046 SmallVector<EVT, 2> ValueVTs; 2047 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2048 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2049 2050 // Get the two live-in registers as SDValues. The physregs have already been 2051 // copied into virtual registers. 2052 SDValue Ops[2]; 2053 Ops[0] = DAG.getZExtOrTrunc( 2054 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2055 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2056 getCurSDLoc(), ValueVTs[0]); 2057 Ops[1] = DAG.getZExtOrTrunc( 2058 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2059 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2060 getCurSDLoc(), ValueVTs[1]); 2061 2062 // Merge into one. 2063 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2064 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 2065 &Ops[0], 2); 2066 setValue(&LP, Res); 2067 } 2068 2069 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2070 /// small case ranges). 2071 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2072 CaseRecVector& WorkList, 2073 const Value* SV, 2074 MachineBasicBlock *Default, 2075 MachineBasicBlock *SwitchBB) { 2076 // Size is the number of Cases represented by this range. 2077 size_t Size = CR.Range.second - CR.Range.first; 2078 if (Size > 3) 2079 return false; 2080 2081 // Get the MachineFunction which holds the current MBB. This is used when 2082 // inserting any additional MBBs necessary to represent the switch. 2083 MachineFunction *CurMF = FuncInfo.MF; 2084 2085 // Figure out which block is immediately after the current one. 2086 MachineBasicBlock *NextBlock = 0; 2087 MachineFunction::iterator BBI = CR.CaseBB; 2088 2089 if (++BBI != FuncInfo.MF->end()) 2090 NextBlock = BBI; 2091 2092 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2093 // If any two of the cases has the same destination, and if one value 2094 // is the same as the other, but has one bit unset that the other has set, 2095 // use bit manipulation to do two compares at once. For example: 2096 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2097 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2098 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2099 if (Size == 2 && CR.CaseBB == SwitchBB) { 2100 Case &Small = *CR.Range.first; 2101 Case &Big = *(CR.Range.second-1); 2102 2103 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2104 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2105 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2106 2107 // Check that there is only one bit different. 2108 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2109 (SmallValue | BigValue) == BigValue) { 2110 // Isolate the common bit. 2111 APInt CommonBit = BigValue & ~SmallValue; 2112 assert((SmallValue | CommonBit) == BigValue && 2113 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2114 2115 SDValue CondLHS = getValue(SV); 2116 EVT VT = CondLHS.getValueType(); 2117 SDLoc DL = getCurSDLoc(); 2118 2119 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2120 DAG.getConstant(CommonBit, VT)); 2121 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2122 Or, DAG.getConstant(BigValue, VT), 2123 ISD::SETEQ); 2124 2125 // Update successor info. 2126 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2127 addSuccessorWithWeight(SwitchBB, Small.BB, 2128 Small.ExtraWeight + Big.ExtraWeight); 2129 addSuccessorWithWeight(SwitchBB, Default, 2130 // The default destination is the first successor in IR. 2131 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2132 2133 // Insert the true branch. 2134 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2135 getControlRoot(), Cond, 2136 DAG.getBasicBlock(Small.BB)); 2137 2138 // Insert the false branch. 2139 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2140 DAG.getBasicBlock(Default)); 2141 2142 DAG.setRoot(BrCond); 2143 return true; 2144 } 2145 } 2146 } 2147 2148 // Order cases by weight so the most likely case will be checked first. 2149 uint32_t UnhandledWeights = 0; 2150 if (BPI) { 2151 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2152 uint32_t IWeight = I->ExtraWeight; 2153 UnhandledWeights += IWeight; 2154 for (CaseItr J = CR.Range.first; J < I; ++J) { 2155 uint32_t JWeight = J->ExtraWeight; 2156 if (IWeight > JWeight) 2157 std::swap(*I, *J); 2158 } 2159 } 2160 } 2161 // Rearrange the case blocks so that the last one falls through if possible. 2162 Case &BackCase = *(CR.Range.second-1); 2163 if (Size > 1 && 2164 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2165 // The last case block won't fall through into 'NextBlock' if we emit the 2166 // branches in this order. See if rearranging a case value would help. 2167 // We start at the bottom as it's the case with the least weight. 2168 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2169 if (I->BB == NextBlock) { 2170 std::swap(*I, BackCase); 2171 break; 2172 } 2173 } 2174 2175 // Create a CaseBlock record representing a conditional branch to 2176 // the Case's target mbb if the value being switched on SV is equal 2177 // to C. 2178 MachineBasicBlock *CurBlock = CR.CaseBB; 2179 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2180 MachineBasicBlock *FallThrough; 2181 if (I != E-1) { 2182 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2183 CurMF->insert(BBI, FallThrough); 2184 2185 // Put SV in a virtual register to make it available from the new blocks. 2186 ExportFromCurrentBlock(SV); 2187 } else { 2188 // If the last case doesn't match, go to the default block. 2189 FallThrough = Default; 2190 } 2191 2192 const Value *RHS, *LHS, *MHS; 2193 ISD::CondCode CC; 2194 if (I->High == I->Low) { 2195 // This is just small small case range :) containing exactly 1 case 2196 CC = ISD::SETEQ; 2197 LHS = SV; RHS = I->High; MHS = NULL; 2198 } else { 2199 CC = ISD::SETLE; 2200 LHS = I->Low; MHS = SV; RHS = I->High; 2201 } 2202 2203 // The false weight should be sum of all un-handled cases. 2204 UnhandledWeights -= I->ExtraWeight; 2205 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2206 /* me */ CurBlock, 2207 /* trueweight */ I->ExtraWeight, 2208 /* falseweight */ UnhandledWeights); 2209 2210 // If emitting the first comparison, just call visitSwitchCase to emit the 2211 // code into the current block. Otherwise, push the CaseBlock onto the 2212 // vector to be later processed by SDISel, and insert the node's MBB 2213 // before the next MBB. 2214 if (CurBlock == SwitchBB) 2215 visitSwitchCase(CB, SwitchBB); 2216 else 2217 SwitchCases.push_back(CB); 2218 2219 CurBlock = FallThrough; 2220 } 2221 2222 return true; 2223 } 2224 2225 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2226 return TLI.supportJumpTables() && 2227 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2228 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2229 } 2230 2231 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2232 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2233 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2234 return (LastExt - FirstExt + 1ULL); 2235 } 2236 2237 /// handleJTSwitchCase - Emit jumptable for current switch case range 2238 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2239 CaseRecVector &WorkList, 2240 const Value *SV, 2241 MachineBasicBlock *Default, 2242 MachineBasicBlock *SwitchBB) { 2243 Case& FrontCase = *CR.Range.first; 2244 Case& BackCase = *(CR.Range.second-1); 2245 2246 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2247 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2248 2249 APInt TSize(First.getBitWidth(), 0); 2250 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2251 TSize += I->size(); 2252 2253 const TargetLowering *TLI = TM.getTargetLowering(); 2254 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2255 return false; 2256 2257 APInt Range = ComputeRange(First, Last); 2258 // The density is TSize / Range. Require at least 40%. 2259 // It should not be possible for IntTSize to saturate for sane code, but make 2260 // sure we handle Range saturation correctly. 2261 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2262 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2263 if (IntTSize * 10 < IntRange * 4) 2264 return false; 2265 2266 DEBUG(dbgs() << "Lowering jump table\n" 2267 << "First entry: " << First << ". Last entry: " << Last << '\n' 2268 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2269 2270 // Get the MachineFunction which holds the current MBB. This is used when 2271 // inserting any additional MBBs necessary to represent the switch. 2272 MachineFunction *CurMF = FuncInfo.MF; 2273 2274 // Figure out which block is immediately after the current one. 2275 MachineFunction::iterator BBI = CR.CaseBB; 2276 ++BBI; 2277 2278 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2279 2280 // Create a new basic block to hold the code for loading the address 2281 // of the jump table, and jumping to it. Update successor information; 2282 // we will either branch to the default case for the switch, or the jump 2283 // table. 2284 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2285 CurMF->insert(BBI, JumpTableBB); 2286 2287 addSuccessorWithWeight(CR.CaseBB, Default); 2288 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2289 2290 // Build a vector of destination BBs, corresponding to each target 2291 // of the jump table. If the value of the jump table slot corresponds to 2292 // a case statement, push the case's BB onto the vector, otherwise, push 2293 // the default BB. 2294 std::vector<MachineBasicBlock*> DestBBs; 2295 APInt TEI = First; 2296 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2297 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2298 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2299 2300 if (Low.sle(TEI) && TEI.sle(High)) { 2301 DestBBs.push_back(I->BB); 2302 if (TEI==High) 2303 ++I; 2304 } else { 2305 DestBBs.push_back(Default); 2306 } 2307 } 2308 2309 // Calculate weight for each unique destination in CR. 2310 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2311 if (FuncInfo.BPI) 2312 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2313 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2314 DestWeights.find(I->BB); 2315 if (Itr != DestWeights.end()) 2316 Itr->second += I->ExtraWeight; 2317 else 2318 DestWeights[I->BB] = I->ExtraWeight; 2319 } 2320 2321 // Update successor info. Add one edge to each unique successor. 2322 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2323 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2324 E = DestBBs.end(); I != E; ++I) { 2325 if (!SuccsHandled[(*I)->getNumber()]) { 2326 SuccsHandled[(*I)->getNumber()] = true; 2327 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2328 DestWeights.find(*I); 2329 addSuccessorWithWeight(JumpTableBB, *I, 2330 Itr != DestWeights.end() ? Itr->second : 0); 2331 } 2332 } 2333 2334 // Create a jump table index for this jump table. 2335 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2336 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2337 ->createJumpTableIndex(DestBBs); 2338 2339 // Set the jump table information so that we can codegen it as a second 2340 // MachineBasicBlock 2341 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2342 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2343 if (CR.CaseBB == SwitchBB) 2344 visitJumpTableHeader(JT, JTH, SwitchBB); 2345 2346 JTCases.push_back(JumpTableBlock(JTH, JT)); 2347 return true; 2348 } 2349 2350 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2351 /// 2 subtrees. 2352 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2353 CaseRecVector& WorkList, 2354 const Value* SV, 2355 MachineBasicBlock* Default, 2356 MachineBasicBlock* SwitchBB) { 2357 // Get the MachineFunction which holds the current MBB. This is used when 2358 // inserting any additional MBBs necessary to represent the switch. 2359 MachineFunction *CurMF = FuncInfo.MF; 2360 2361 // Figure out which block is immediately after the current one. 2362 MachineFunction::iterator BBI = CR.CaseBB; 2363 ++BBI; 2364 2365 Case& FrontCase = *CR.Range.first; 2366 Case& BackCase = *(CR.Range.second-1); 2367 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2368 2369 // Size is the number of Cases represented by this range. 2370 unsigned Size = CR.Range.second - CR.Range.first; 2371 2372 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2373 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2374 double FMetric = 0; 2375 CaseItr Pivot = CR.Range.first + Size/2; 2376 2377 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2378 // (heuristically) allow us to emit JumpTable's later. 2379 APInt TSize(First.getBitWidth(), 0); 2380 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2381 I!=E; ++I) 2382 TSize += I->size(); 2383 2384 APInt LSize = FrontCase.size(); 2385 APInt RSize = TSize-LSize; 2386 DEBUG(dbgs() << "Selecting best pivot: \n" 2387 << "First: " << First << ", Last: " << Last <<'\n' 2388 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2389 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2390 J!=E; ++I, ++J) { 2391 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2392 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2393 APInt Range = ComputeRange(LEnd, RBegin); 2394 assert((Range - 2ULL).isNonNegative() && 2395 "Invalid case distance"); 2396 // Use volatile double here to avoid excess precision issues on some hosts, 2397 // e.g. that use 80-bit X87 registers. 2398 volatile double LDensity = 2399 (double)LSize.roundToDouble() / 2400 (LEnd - First + 1ULL).roundToDouble(); 2401 volatile double RDensity = 2402 (double)RSize.roundToDouble() / 2403 (Last - RBegin + 1ULL).roundToDouble(); 2404 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2405 // Should always split in some non-trivial place 2406 DEBUG(dbgs() <<"=>Step\n" 2407 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2408 << "LDensity: " << LDensity 2409 << ", RDensity: " << RDensity << '\n' 2410 << "Metric: " << Metric << '\n'); 2411 if (FMetric < Metric) { 2412 Pivot = J; 2413 FMetric = Metric; 2414 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2415 } 2416 2417 LSize += J->size(); 2418 RSize -= J->size(); 2419 } 2420 2421 const TargetLowering *TLI = TM.getTargetLowering(); 2422 if (areJTsAllowed(*TLI)) { 2423 // If our case is dense we *really* should handle it earlier! 2424 assert((FMetric > 0) && "Should handle dense range earlier!"); 2425 } else { 2426 Pivot = CR.Range.first + Size/2; 2427 } 2428 2429 CaseRange LHSR(CR.Range.first, Pivot); 2430 CaseRange RHSR(Pivot, CR.Range.second); 2431 const Constant *C = Pivot->Low; 2432 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2433 2434 // We know that we branch to the LHS if the Value being switched on is 2435 // less than the Pivot value, C. We use this to optimize our binary 2436 // tree a bit, by recognizing that if SV is greater than or equal to the 2437 // LHS's Case Value, and that Case Value is exactly one less than the 2438 // Pivot's Value, then we can branch directly to the LHS's Target, 2439 // rather than creating a leaf node for it. 2440 if ((LHSR.second - LHSR.first) == 1 && 2441 LHSR.first->High == CR.GE && 2442 cast<ConstantInt>(C)->getValue() == 2443 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2444 TrueBB = LHSR.first->BB; 2445 } else { 2446 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2447 CurMF->insert(BBI, TrueBB); 2448 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2449 2450 // Put SV in a virtual register to make it available from the new blocks. 2451 ExportFromCurrentBlock(SV); 2452 } 2453 2454 // Similar to the optimization above, if the Value being switched on is 2455 // known to be less than the Constant CR.LT, and the current Case Value 2456 // is CR.LT - 1, then we can branch directly to the target block for 2457 // the current Case Value, rather than emitting a RHS leaf node for it. 2458 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2459 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2460 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2461 FalseBB = RHSR.first->BB; 2462 } else { 2463 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2464 CurMF->insert(BBI, FalseBB); 2465 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2466 2467 // Put SV in a virtual register to make it available from the new blocks. 2468 ExportFromCurrentBlock(SV); 2469 } 2470 2471 // Create a CaseBlock record representing a conditional branch to 2472 // the LHS node if the value being switched on SV is less than C. 2473 // Otherwise, branch to LHS. 2474 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2475 2476 if (CR.CaseBB == SwitchBB) 2477 visitSwitchCase(CB, SwitchBB); 2478 else 2479 SwitchCases.push_back(CB); 2480 2481 return true; 2482 } 2483 2484 /// handleBitTestsSwitchCase - if current case range has few destination and 2485 /// range span less, than machine word bitwidth, encode case range into series 2486 /// of masks and emit bit tests with these masks. 2487 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2488 CaseRecVector& WorkList, 2489 const Value* SV, 2490 MachineBasicBlock* Default, 2491 MachineBasicBlock* SwitchBB) { 2492 const TargetLowering *TLI = TM.getTargetLowering(); 2493 EVT PTy = TLI->getPointerTy(); 2494 unsigned IntPtrBits = PTy.getSizeInBits(); 2495 2496 Case& FrontCase = *CR.Range.first; 2497 Case& BackCase = *(CR.Range.second-1); 2498 2499 // Get the MachineFunction which holds the current MBB. This is used when 2500 // inserting any additional MBBs necessary to represent the switch. 2501 MachineFunction *CurMF = FuncInfo.MF; 2502 2503 // If target does not have legal shift left, do not emit bit tests at all. 2504 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2505 return false; 2506 2507 size_t numCmps = 0; 2508 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2509 I!=E; ++I) { 2510 // Single case counts one, case range - two. 2511 numCmps += (I->Low == I->High ? 1 : 2); 2512 } 2513 2514 // Count unique destinations 2515 SmallSet<MachineBasicBlock*, 4> Dests; 2516 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2517 Dests.insert(I->BB); 2518 if (Dests.size() > 3) 2519 // Don't bother the code below, if there are too much unique destinations 2520 return false; 2521 } 2522 DEBUG(dbgs() << "Total number of unique destinations: " 2523 << Dests.size() << '\n' 2524 << "Total number of comparisons: " << numCmps << '\n'); 2525 2526 // Compute span of values. 2527 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2528 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2529 APInt cmpRange = maxValue - minValue; 2530 2531 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2532 << "Low bound: " << minValue << '\n' 2533 << "High bound: " << maxValue << '\n'); 2534 2535 if (cmpRange.uge(IntPtrBits) || 2536 (!(Dests.size() == 1 && numCmps >= 3) && 2537 !(Dests.size() == 2 && numCmps >= 5) && 2538 !(Dests.size() >= 3 && numCmps >= 6))) 2539 return false; 2540 2541 DEBUG(dbgs() << "Emitting bit tests\n"); 2542 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2543 2544 // Optimize the case where all the case values fit in a 2545 // word without having to subtract minValue. In this case, 2546 // we can optimize away the subtraction. 2547 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2548 cmpRange = maxValue; 2549 } else { 2550 lowBound = minValue; 2551 } 2552 2553 CaseBitsVector CasesBits; 2554 unsigned i, count = 0; 2555 2556 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2557 MachineBasicBlock* Dest = I->BB; 2558 for (i = 0; i < count; ++i) 2559 if (Dest == CasesBits[i].BB) 2560 break; 2561 2562 if (i == count) { 2563 assert((count < 3) && "Too much destinations to test!"); 2564 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2565 count++; 2566 } 2567 2568 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2569 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2570 2571 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2572 uint64_t hi = (highValue - lowBound).getZExtValue(); 2573 CasesBits[i].ExtraWeight += I->ExtraWeight; 2574 2575 for (uint64_t j = lo; j <= hi; j++) { 2576 CasesBits[i].Mask |= 1ULL << j; 2577 CasesBits[i].Bits++; 2578 } 2579 2580 } 2581 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2582 2583 BitTestInfo BTC; 2584 2585 // Figure out which block is immediately after the current one. 2586 MachineFunction::iterator BBI = CR.CaseBB; 2587 ++BBI; 2588 2589 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2590 2591 DEBUG(dbgs() << "Cases:\n"); 2592 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2593 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2594 << ", Bits: " << CasesBits[i].Bits 2595 << ", BB: " << CasesBits[i].BB << '\n'); 2596 2597 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2598 CurMF->insert(BBI, CaseBB); 2599 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2600 CaseBB, 2601 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2602 2603 // Put SV in a virtual register to make it available from the new blocks. 2604 ExportFromCurrentBlock(SV); 2605 } 2606 2607 BitTestBlock BTB(lowBound, cmpRange, SV, 2608 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2609 CR.CaseBB, Default, BTC); 2610 2611 if (CR.CaseBB == SwitchBB) 2612 visitBitTestHeader(BTB, SwitchBB); 2613 2614 BitTestCases.push_back(BTB); 2615 2616 return true; 2617 } 2618 2619 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2620 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2621 const SwitchInst& SI) { 2622 size_t numCmps = 0; 2623 2624 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2625 // Start with "simple" cases 2626 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2627 i != e; ++i) { 2628 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2629 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2630 2631 uint32_t ExtraWeight = 2632 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2633 2634 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2635 SMBB, ExtraWeight)); 2636 } 2637 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2638 2639 // Merge case into clusters 2640 if (Cases.size() >= 2) 2641 // Must recompute end() each iteration because it may be 2642 // invalidated by erase if we hold on to it 2643 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2644 J != Cases.end(); ) { 2645 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2646 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2647 MachineBasicBlock* nextBB = J->BB; 2648 MachineBasicBlock* currentBB = I->BB; 2649 2650 // If the two neighboring cases go to the same destination, merge them 2651 // into a single case. 2652 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2653 I->High = J->High; 2654 I->ExtraWeight += J->ExtraWeight; 2655 J = Cases.erase(J); 2656 } else { 2657 I = J++; 2658 } 2659 } 2660 2661 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2662 if (I->Low != I->High) 2663 // A range counts double, since it requires two compares. 2664 ++numCmps; 2665 } 2666 2667 return numCmps; 2668 } 2669 2670 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2671 MachineBasicBlock *Last) { 2672 // Update JTCases. 2673 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2674 if (JTCases[i].first.HeaderBB == First) 2675 JTCases[i].first.HeaderBB = Last; 2676 2677 // Update BitTestCases. 2678 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2679 if (BitTestCases[i].Parent == First) 2680 BitTestCases[i].Parent = Last; 2681 } 2682 2683 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2684 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2685 2686 // Figure out which block is immediately after the current one. 2687 MachineBasicBlock *NextBlock = 0; 2688 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2689 2690 // If there is only the default destination, branch to it if it is not the 2691 // next basic block. Otherwise, just fall through. 2692 if (!SI.getNumCases()) { 2693 // Update machine-CFG edges. 2694 2695 // If this is not a fall-through branch, emit the branch. 2696 SwitchMBB->addSuccessor(Default); 2697 if (Default != NextBlock) 2698 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2699 MVT::Other, getControlRoot(), 2700 DAG.getBasicBlock(Default))); 2701 2702 return; 2703 } 2704 2705 // If there are any non-default case statements, create a vector of Cases 2706 // representing each one, and sort the vector so that we can efficiently 2707 // create a binary search tree from them. 2708 CaseVector Cases; 2709 size_t numCmps = Clusterify(Cases, SI); 2710 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2711 << ". Total compares: " << numCmps << '\n'); 2712 (void)numCmps; 2713 2714 // Get the Value to be switched on and default basic blocks, which will be 2715 // inserted into CaseBlock records, representing basic blocks in the binary 2716 // search tree. 2717 const Value *SV = SI.getCondition(); 2718 2719 // Push the initial CaseRec onto the worklist 2720 CaseRecVector WorkList; 2721 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2722 CaseRange(Cases.begin(),Cases.end()))); 2723 2724 while (!WorkList.empty()) { 2725 // Grab a record representing a case range to process off the worklist 2726 CaseRec CR = WorkList.back(); 2727 WorkList.pop_back(); 2728 2729 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2730 continue; 2731 2732 // If the range has few cases (two or less) emit a series of specific 2733 // tests. 2734 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2735 continue; 2736 2737 // If the switch has more than N blocks, and is at least 40% dense, and the 2738 // target supports indirect branches, then emit a jump table rather than 2739 // lowering the switch to a binary tree of conditional branches. 2740 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2741 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2742 continue; 2743 2744 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2745 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2746 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2747 } 2748 } 2749 2750 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2751 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2752 2753 // Update machine-CFG edges with unique successors. 2754 SmallSet<BasicBlock*, 32> Done; 2755 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2756 BasicBlock *BB = I.getSuccessor(i); 2757 bool Inserted = Done.insert(BB); 2758 if (!Inserted) 2759 continue; 2760 2761 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2762 addSuccessorWithWeight(IndirectBrMBB, Succ); 2763 } 2764 2765 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2766 MVT::Other, getControlRoot(), 2767 getValue(I.getAddress()))); 2768 } 2769 2770 void SelectionDAGBuilder::visitFSub(const User &I) { 2771 // -0.0 - X --> fneg 2772 Type *Ty = I.getType(); 2773 if (isa<Constant>(I.getOperand(0)) && 2774 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2775 SDValue Op2 = getValue(I.getOperand(1)); 2776 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2777 Op2.getValueType(), Op2)); 2778 return; 2779 } 2780 2781 visitBinary(I, ISD::FSUB); 2782 } 2783 2784 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2785 SDValue Op1 = getValue(I.getOperand(0)); 2786 SDValue Op2 = getValue(I.getOperand(1)); 2787 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2788 Op1.getValueType(), Op1, Op2)); 2789 } 2790 2791 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2792 SDValue Op1 = getValue(I.getOperand(0)); 2793 SDValue Op2 = getValue(I.getOperand(1)); 2794 2795 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2796 2797 // Coerce the shift amount to the right type if we can. 2798 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2799 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2800 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2801 SDLoc DL = getCurSDLoc(); 2802 2803 // If the operand is smaller than the shift count type, promote it. 2804 if (ShiftSize > Op2Size) 2805 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2806 2807 // If the operand is larger than the shift count type but the shift 2808 // count type has enough bits to represent any shift value, truncate 2809 // it now. This is a common case and it exposes the truncate to 2810 // optimization early. 2811 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2812 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2813 // Otherwise we'll need to temporarily settle for some other convenient 2814 // type. Type legalization will make adjustments once the shiftee is split. 2815 else 2816 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2817 } 2818 2819 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2820 Op1.getValueType(), Op1, Op2)); 2821 } 2822 2823 void SelectionDAGBuilder::visitSDiv(const User &I) { 2824 SDValue Op1 = getValue(I.getOperand(0)); 2825 SDValue Op2 = getValue(I.getOperand(1)); 2826 2827 // Turn exact SDivs into multiplications. 2828 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2829 // exact bit. 2830 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2831 !isa<ConstantSDNode>(Op1) && 2832 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2833 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2834 getCurSDLoc(), DAG)); 2835 else 2836 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2837 Op1, Op2)); 2838 } 2839 2840 void SelectionDAGBuilder::visitICmp(const User &I) { 2841 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2842 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2843 predicate = IC->getPredicate(); 2844 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2845 predicate = ICmpInst::Predicate(IC->getPredicate()); 2846 SDValue Op1 = getValue(I.getOperand(0)); 2847 SDValue Op2 = getValue(I.getOperand(1)); 2848 ISD::CondCode Opcode = getICmpCondCode(predicate); 2849 2850 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2851 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2852 } 2853 2854 void SelectionDAGBuilder::visitFCmp(const User &I) { 2855 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2856 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2857 predicate = FC->getPredicate(); 2858 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2859 predicate = FCmpInst::Predicate(FC->getPredicate()); 2860 SDValue Op1 = getValue(I.getOperand(0)); 2861 SDValue Op2 = getValue(I.getOperand(1)); 2862 ISD::CondCode Condition = getFCmpCondCode(predicate); 2863 if (TM.Options.NoNaNsFPMath) 2864 Condition = getFCmpCodeWithoutNaN(Condition); 2865 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2866 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2867 } 2868 2869 void SelectionDAGBuilder::visitSelect(const User &I) { 2870 SmallVector<EVT, 4> ValueVTs; 2871 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2872 unsigned NumValues = ValueVTs.size(); 2873 if (NumValues == 0) return; 2874 2875 SmallVector<SDValue, 4> Values(NumValues); 2876 SDValue Cond = getValue(I.getOperand(0)); 2877 SDValue TrueVal = getValue(I.getOperand(1)); 2878 SDValue FalseVal = getValue(I.getOperand(2)); 2879 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2880 ISD::VSELECT : ISD::SELECT; 2881 2882 for (unsigned i = 0; i != NumValues; ++i) 2883 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2884 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2885 Cond, 2886 SDValue(TrueVal.getNode(), 2887 TrueVal.getResNo() + i), 2888 SDValue(FalseVal.getNode(), 2889 FalseVal.getResNo() + i)); 2890 2891 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2892 DAG.getVTList(&ValueVTs[0], NumValues), 2893 &Values[0], NumValues)); 2894 } 2895 2896 void SelectionDAGBuilder::visitTrunc(const User &I) { 2897 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2898 SDValue N = getValue(I.getOperand(0)); 2899 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2900 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2901 } 2902 2903 void SelectionDAGBuilder::visitZExt(const User &I) { 2904 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2905 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2906 SDValue N = getValue(I.getOperand(0)); 2907 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2908 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2909 } 2910 2911 void SelectionDAGBuilder::visitSExt(const User &I) { 2912 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2913 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2914 SDValue N = getValue(I.getOperand(0)); 2915 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2916 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2917 } 2918 2919 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2920 // FPTrunc is never a no-op cast, no need to check 2921 SDValue N = getValue(I.getOperand(0)); 2922 const TargetLowering *TLI = TM.getTargetLowering(); 2923 EVT DestVT = TLI->getValueType(I.getType()); 2924 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2925 DestVT, N, 2926 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2927 } 2928 2929 void SelectionDAGBuilder::visitFPExt(const User &I) { 2930 // FPExt is never a no-op cast, no need to check 2931 SDValue N = getValue(I.getOperand(0)); 2932 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2933 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2934 } 2935 2936 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2937 // FPToUI is never a no-op cast, no need to check 2938 SDValue N = getValue(I.getOperand(0)); 2939 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2940 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2941 } 2942 2943 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2944 // FPToSI is never a no-op cast, no need to check 2945 SDValue N = getValue(I.getOperand(0)); 2946 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2947 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2948 } 2949 2950 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2951 // UIToFP is never a no-op cast, no need to check 2952 SDValue N = getValue(I.getOperand(0)); 2953 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2954 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2955 } 2956 2957 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2958 // SIToFP is never a no-op cast, no need to check 2959 SDValue N = getValue(I.getOperand(0)); 2960 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2961 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2962 } 2963 2964 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2965 // What to do depends on the size of the integer and the size of the pointer. 2966 // We can either truncate, zero extend, or no-op, accordingly. 2967 SDValue N = getValue(I.getOperand(0)); 2968 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2969 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2970 } 2971 2972 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2973 // What to do depends on the size of the integer and the size of the pointer. 2974 // We can either truncate, zero extend, or no-op, accordingly. 2975 SDValue N = getValue(I.getOperand(0)); 2976 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2977 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2978 } 2979 2980 void SelectionDAGBuilder::visitBitCast(const User &I) { 2981 SDValue N = getValue(I.getOperand(0)); 2982 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2983 2984 // BitCast assures us that source and destination are the same size so this is 2985 // either a BITCAST or a no-op. 2986 if (DestVT != N.getValueType()) 2987 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2988 DestVT, N)); // convert types. 2989 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2990 // might fold any kind of constant expression to an integer constant and that 2991 // is not what we are looking for. Only regcognize a bitcast of a genuine 2992 // constant integer as an opaque constant. 2993 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2994 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 2995 /*isOpaque*/true)); 2996 else 2997 setValue(&I, N); // noop cast. 2998 } 2999 3000 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3002 const Value *SV = I.getOperand(0); 3003 SDValue N = getValue(SV); 3004 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3005 3006 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3007 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3008 3009 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3010 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3011 3012 setValue(&I, N); 3013 } 3014 3015 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3017 SDValue InVec = getValue(I.getOperand(0)); 3018 SDValue InVal = getValue(I.getOperand(1)); 3019 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3020 getCurSDLoc(), TLI.getVectorIdxTy()); 3021 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3022 TM.getTargetLowering()->getValueType(I.getType()), 3023 InVec, InVal, InIdx)); 3024 } 3025 3026 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3027 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3028 SDValue InVec = getValue(I.getOperand(0)); 3029 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3030 getCurSDLoc(), TLI.getVectorIdxTy()); 3031 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3032 TM.getTargetLowering()->getValueType(I.getType()), 3033 InVec, InIdx)); 3034 } 3035 3036 // Utility for visitShuffleVector - Return true if every element in Mask, 3037 // beginning from position Pos and ending in Pos+Size, falls within the 3038 // specified sequential range [L, L+Pos). or is undef. 3039 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3040 unsigned Pos, unsigned Size, int Low) { 3041 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3042 if (Mask[i] >= 0 && Mask[i] != Low) 3043 return false; 3044 return true; 3045 } 3046 3047 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3048 SDValue Src1 = getValue(I.getOperand(0)); 3049 SDValue Src2 = getValue(I.getOperand(1)); 3050 3051 SmallVector<int, 8> Mask; 3052 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3053 unsigned MaskNumElts = Mask.size(); 3054 3055 const TargetLowering *TLI = TM.getTargetLowering(); 3056 EVT VT = TLI->getValueType(I.getType()); 3057 EVT SrcVT = Src1.getValueType(); 3058 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3059 3060 if (SrcNumElts == MaskNumElts) { 3061 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3062 &Mask[0])); 3063 return; 3064 } 3065 3066 // Normalize the shuffle vector since mask and vector length don't match. 3067 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3068 // Mask is longer than the source vectors and is a multiple of the source 3069 // vectors. We can use concatenate vector to make the mask and vectors 3070 // lengths match. 3071 if (SrcNumElts*2 == MaskNumElts) { 3072 // First check for Src1 in low and Src2 in high 3073 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3074 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3075 // The shuffle is concatenating two vectors together. 3076 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3077 VT, Src1, Src2)); 3078 return; 3079 } 3080 // Then check for Src2 in low and Src1 in high 3081 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3082 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3083 // The shuffle is concatenating two vectors together. 3084 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3085 VT, Src2, Src1)); 3086 return; 3087 } 3088 } 3089 3090 // Pad both vectors with undefs to make them the same length as the mask. 3091 unsigned NumConcat = MaskNumElts / SrcNumElts; 3092 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3093 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3094 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3095 3096 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3097 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3098 MOps1[0] = Src1; 3099 MOps2[0] = Src2; 3100 3101 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3102 getCurSDLoc(), VT, 3103 &MOps1[0], NumConcat); 3104 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3105 getCurSDLoc(), VT, 3106 &MOps2[0], NumConcat); 3107 3108 // Readjust mask for new input vector length. 3109 SmallVector<int, 8> MappedOps; 3110 for (unsigned i = 0; i != MaskNumElts; ++i) { 3111 int Idx = Mask[i]; 3112 if (Idx >= (int)SrcNumElts) 3113 Idx -= SrcNumElts - MaskNumElts; 3114 MappedOps.push_back(Idx); 3115 } 3116 3117 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3118 &MappedOps[0])); 3119 return; 3120 } 3121 3122 if (SrcNumElts > MaskNumElts) { 3123 // Analyze the access pattern of the vector to see if we can extract 3124 // two subvectors and do the shuffle. The analysis is done by calculating 3125 // the range of elements the mask access on both vectors. 3126 int MinRange[2] = { static_cast<int>(SrcNumElts), 3127 static_cast<int>(SrcNumElts)}; 3128 int MaxRange[2] = {-1, -1}; 3129 3130 for (unsigned i = 0; i != MaskNumElts; ++i) { 3131 int Idx = Mask[i]; 3132 unsigned Input = 0; 3133 if (Idx < 0) 3134 continue; 3135 3136 if (Idx >= (int)SrcNumElts) { 3137 Input = 1; 3138 Idx -= SrcNumElts; 3139 } 3140 if (Idx > MaxRange[Input]) 3141 MaxRange[Input] = Idx; 3142 if (Idx < MinRange[Input]) 3143 MinRange[Input] = Idx; 3144 } 3145 3146 // Check if the access is smaller than the vector size and can we find 3147 // a reasonable extract index. 3148 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3149 // Extract. 3150 int StartIdx[2]; // StartIdx to extract from 3151 for (unsigned Input = 0; Input < 2; ++Input) { 3152 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3153 RangeUse[Input] = 0; // Unused 3154 StartIdx[Input] = 0; 3155 continue; 3156 } 3157 3158 // Find a good start index that is a multiple of the mask length. Then 3159 // see if the rest of the elements are in range. 3160 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3161 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3162 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3163 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3164 } 3165 3166 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3167 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3168 return; 3169 } 3170 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3171 // Extract appropriate subvector and generate a vector shuffle 3172 for (unsigned Input = 0; Input < 2; ++Input) { 3173 SDValue &Src = Input == 0 ? Src1 : Src2; 3174 if (RangeUse[Input] == 0) 3175 Src = DAG.getUNDEF(VT); 3176 else 3177 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3178 Src, DAG.getConstant(StartIdx[Input], 3179 TLI->getVectorIdxTy())); 3180 } 3181 3182 // Calculate new mask. 3183 SmallVector<int, 8> MappedOps; 3184 for (unsigned i = 0; i != MaskNumElts; ++i) { 3185 int Idx = Mask[i]; 3186 if (Idx >= 0) { 3187 if (Idx < (int)SrcNumElts) 3188 Idx -= StartIdx[0]; 3189 else 3190 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3191 } 3192 MappedOps.push_back(Idx); 3193 } 3194 3195 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3196 &MappedOps[0])); 3197 return; 3198 } 3199 } 3200 3201 // We can't use either concat vectors or extract subvectors so fall back to 3202 // replacing the shuffle with extract and build vector. 3203 // to insert and build vector. 3204 EVT EltVT = VT.getVectorElementType(); 3205 EVT IdxVT = TLI->getVectorIdxTy(); 3206 SmallVector<SDValue,8> Ops; 3207 for (unsigned i = 0; i != MaskNumElts; ++i) { 3208 int Idx = Mask[i]; 3209 SDValue Res; 3210 3211 if (Idx < 0) { 3212 Res = DAG.getUNDEF(EltVT); 3213 } else { 3214 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3215 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3216 3217 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3218 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3219 } 3220 3221 Ops.push_back(Res); 3222 } 3223 3224 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3225 VT, &Ops[0], Ops.size())); 3226 } 3227 3228 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3229 const Value *Op0 = I.getOperand(0); 3230 const Value *Op1 = I.getOperand(1); 3231 Type *AggTy = I.getType(); 3232 Type *ValTy = Op1->getType(); 3233 bool IntoUndef = isa<UndefValue>(Op0); 3234 bool FromUndef = isa<UndefValue>(Op1); 3235 3236 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3237 3238 const TargetLowering *TLI = TM.getTargetLowering(); 3239 SmallVector<EVT, 4> AggValueVTs; 3240 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3241 SmallVector<EVT, 4> ValValueVTs; 3242 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3243 3244 unsigned NumAggValues = AggValueVTs.size(); 3245 unsigned NumValValues = ValValueVTs.size(); 3246 SmallVector<SDValue, 4> Values(NumAggValues); 3247 3248 SDValue Agg = getValue(Op0); 3249 unsigned i = 0; 3250 // Copy the beginning value(s) from the original aggregate. 3251 for (; i != LinearIndex; ++i) 3252 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3253 SDValue(Agg.getNode(), Agg.getResNo() + i); 3254 // Copy values from the inserted value(s). 3255 if (NumValValues) { 3256 SDValue Val = getValue(Op1); 3257 for (; i != LinearIndex + NumValValues; ++i) 3258 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3259 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3260 } 3261 // Copy remaining value(s) from the original aggregate. 3262 for (; i != NumAggValues; ++i) 3263 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3264 SDValue(Agg.getNode(), Agg.getResNo() + i); 3265 3266 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3267 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3268 &Values[0], NumAggValues)); 3269 } 3270 3271 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3272 const Value *Op0 = I.getOperand(0); 3273 Type *AggTy = Op0->getType(); 3274 Type *ValTy = I.getType(); 3275 bool OutOfUndef = isa<UndefValue>(Op0); 3276 3277 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3278 3279 const TargetLowering *TLI = TM.getTargetLowering(); 3280 SmallVector<EVT, 4> ValValueVTs; 3281 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3282 3283 unsigned NumValValues = ValValueVTs.size(); 3284 3285 // Ignore a extractvalue that produces an empty object 3286 if (!NumValValues) { 3287 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3288 return; 3289 } 3290 3291 SmallVector<SDValue, 4> Values(NumValValues); 3292 3293 SDValue Agg = getValue(Op0); 3294 // Copy out the selected value(s). 3295 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3296 Values[i - LinearIndex] = 3297 OutOfUndef ? 3298 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3299 SDValue(Agg.getNode(), Agg.getResNo() + i); 3300 3301 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3302 DAG.getVTList(&ValValueVTs[0], NumValValues), 3303 &Values[0], NumValValues)); 3304 } 3305 3306 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3307 Value *Op0 = I.getOperand(0); 3308 // Note that the pointer operand may be a vector of pointers. Take the scalar 3309 // element which holds a pointer. 3310 Type *Ty = Op0->getType()->getScalarType(); 3311 unsigned AS = Ty->getPointerAddressSpace(); 3312 SDValue N = getValue(Op0); 3313 3314 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3315 OI != E; ++OI) { 3316 const Value *Idx = *OI; 3317 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3318 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3319 if (Field) { 3320 // N = N + Offset 3321 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3322 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3323 DAG.getConstant(Offset, N.getValueType())); 3324 } 3325 3326 Ty = StTy->getElementType(Field); 3327 } else { 3328 Ty = cast<SequentialType>(Ty)->getElementType(); 3329 3330 // If this is a constant subscript, handle it quickly. 3331 const TargetLowering *TLI = TM.getTargetLowering(); 3332 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3333 if (CI->isZero()) continue; 3334 uint64_t Offs = 3335 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3336 SDValue OffsVal; 3337 EVT PTy = TLI->getPointerTy(AS); 3338 unsigned PtrBits = PTy.getSizeInBits(); 3339 if (PtrBits < 64) 3340 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3341 DAG.getConstant(Offs, MVT::i64)); 3342 else 3343 OffsVal = DAG.getConstant(Offs, PTy); 3344 3345 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3346 OffsVal); 3347 continue; 3348 } 3349 3350 // N = N + Idx * ElementSize; 3351 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3352 DL->getTypeAllocSize(Ty)); 3353 SDValue IdxN = getValue(Idx); 3354 3355 // If the index is smaller or larger than intptr_t, truncate or extend 3356 // it. 3357 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3358 3359 // If this is a multiply by a power of two, turn it into a shl 3360 // immediately. This is a very common case. 3361 if (ElementSize != 1) { 3362 if (ElementSize.isPowerOf2()) { 3363 unsigned Amt = ElementSize.logBase2(); 3364 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3365 N.getValueType(), IdxN, 3366 DAG.getConstant(Amt, IdxN.getValueType())); 3367 } else { 3368 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3369 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3370 N.getValueType(), IdxN, Scale); 3371 } 3372 } 3373 3374 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3375 N.getValueType(), N, IdxN); 3376 } 3377 } 3378 3379 setValue(&I, N); 3380 } 3381 3382 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3383 // If this is a fixed sized alloca in the entry block of the function, 3384 // allocate it statically on the stack. 3385 if (FuncInfo.StaticAllocaMap.count(&I)) 3386 return; // getValue will auto-populate this. 3387 3388 Type *Ty = I.getAllocatedType(); 3389 const TargetLowering *TLI = TM.getTargetLowering(); 3390 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3391 unsigned Align = 3392 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3393 I.getAlignment()); 3394 3395 SDValue AllocSize = getValue(I.getArraySize()); 3396 3397 EVT IntPtr = TLI->getPointerTy(); 3398 if (AllocSize.getValueType() != IntPtr) 3399 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3400 3401 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3402 AllocSize, 3403 DAG.getConstant(TySize, IntPtr)); 3404 3405 // Handle alignment. If the requested alignment is less than or equal to 3406 // the stack alignment, ignore it. If the size is greater than or equal to 3407 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3408 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3409 if (Align <= StackAlign) 3410 Align = 0; 3411 3412 // Round the size of the allocation up to the stack alignment size 3413 // by add SA-1 to the size. 3414 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3415 AllocSize.getValueType(), AllocSize, 3416 DAG.getIntPtrConstant(StackAlign-1)); 3417 3418 // Mask out the low bits for alignment purposes. 3419 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3420 AllocSize.getValueType(), AllocSize, 3421 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3422 3423 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3424 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3425 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3426 VTs, Ops, 3); 3427 setValue(&I, DSA); 3428 DAG.setRoot(DSA.getValue(1)); 3429 3430 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3431 } 3432 3433 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3434 if (I.isAtomic()) 3435 return visitAtomicLoad(I); 3436 3437 const Value *SV = I.getOperand(0); 3438 SDValue Ptr = getValue(SV); 3439 3440 Type *Ty = I.getType(); 3441 3442 bool isVolatile = I.isVolatile(); 3443 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3444 bool isInvariant = I.getMetadata("invariant.load") != 0; 3445 unsigned Alignment = I.getAlignment(); 3446 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3447 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3448 3449 SmallVector<EVT, 4> ValueVTs; 3450 SmallVector<uint64_t, 4> Offsets; 3451 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3452 unsigned NumValues = ValueVTs.size(); 3453 if (NumValues == 0) 3454 return; 3455 3456 SDValue Root; 3457 bool ConstantMemory = false; 3458 if (isVolatile || NumValues > MaxParallelChains) 3459 // Serialize volatile loads with other side effects. 3460 Root = getRoot(); 3461 else if (AA->pointsToConstantMemory( 3462 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3463 // Do not serialize (non-volatile) loads of constant memory with anything. 3464 Root = DAG.getEntryNode(); 3465 ConstantMemory = true; 3466 } else { 3467 // Do not serialize non-volatile loads against each other. 3468 Root = DAG.getRoot(); 3469 } 3470 3471 const TargetLowering *TLI = TM.getTargetLowering(); 3472 if (isVolatile) 3473 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3474 3475 SmallVector<SDValue, 4> Values(NumValues); 3476 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3477 NumValues)); 3478 EVT PtrVT = Ptr.getValueType(); 3479 unsigned ChainI = 0; 3480 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3481 // Serializing loads here may result in excessive register pressure, and 3482 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3483 // could recover a bit by hoisting nodes upward in the chain by recognizing 3484 // they are side-effect free or do not alias. The optimizer should really 3485 // avoid this case by converting large object/array copies to llvm.memcpy 3486 // (MaxParallelChains should always remain as failsafe). 3487 if (ChainI == MaxParallelChains) { 3488 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3489 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3490 MVT::Other, &Chains[0], ChainI); 3491 Root = Chain; 3492 ChainI = 0; 3493 } 3494 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3495 PtrVT, Ptr, 3496 DAG.getConstant(Offsets[i], PtrVT)); 3497 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3498 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3499 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3500 Ranges); 3501 3502 Values[i] = L; 3503 Chains[ChainI] = L.getValue(1); 3504 } 3505 3506 if (!ConstantMemory) { 3507 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3508 MVT::Other, &Chains[0], ChainI); 3509 if (isVolatile) 3510 DAG.setRoot(Chain); 3511 else 3512 PendingLoads.push_back(Chain); 3513 } 3514 3515 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3516 DAG.getVTList(&ValueVTs[0], NumValues), 3517 &Values[0], NumValues)); 3518 } 3519 3520 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3521 if (I.isAtomic()) 3522 return visitAtomicStore(I); 3523 3524 const Value *SrcV = I.getOperand(0); 3525 const Value *PtrV = I.getOperand(1); 3526 3527 SmallVector<EVT, 4> ValueVTs; 3528 SmallVector<uint64_t, 4> Offsets; 3529 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3530 unsigned NumValues = ValueVTs.size(); 3531 if (NumValues == 0) 3532 return; 3533 3534 // Get the lowered operands. Note that we do this after 3535 // checking if NumResults is zero, because with zero results 3536 // the operands won't have values in the map. 3537 SDValue Src = getValue(SrcV); 3538 SDValue Ptr = getValue(PtrV); 3539 3540 SDValue Root = getRoot(); 3541 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3542 NumValues)); 3543 EVT PtrVT = Ptr.getValueType(); 3544 bool isVolatile = I.isVolatile(); 3545 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3546 unsigned Alignment = I.getAlignment(); 3547 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3548 3549 unsigned ChainI = 0; 3550 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3551 // See visitLoad comments. 3552 if (ChainI == MaxParallelChains) { 3553 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3554 MVT::Other, &Chains[0], ChainI); 3555 Root = Chain; 3556 ChainI = 0; 3557 } 3558 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3559 DAG.getConstant(Offsets[i], PtrVT)); 3560 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3561 SDValue(Src.getNode(), Src.getResNo() + i), 3562 Add, MachinePointerInfo(PtrV, Offsets[i]), 3563 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3564 Chains[ChainI] = St; 3565 } 3566 3567 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3568 MVT::Other, &Chains[0], ChainI); 3569 DAG.setRoot(StoreNode); 3570 } 3571 3572 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3573 SynchronizationScope Scope, 3574 bool Before, SDLoc dl, 3575 SelectionDAG &DAG, 3576 const TargetLowering &TLI) { 3577 // Fence, if necessary 3578 if (Before) { 3579 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3580 Order = Release; 3581 else if (Order == Acquire || Order == Monotonic) 3582 return Chain; 3583 } else { 3584 if (Order == AcquireRelease) 3585 Order = Acquire; 3586 else if (Order == Release || Order == Monotonic) 3587 return Chain; 3588 } 3589 SDValue Ops[3]; 3590 Ops[0] = Chain; 3591 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3592 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3593 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3594 } 3595 3596 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3597 SDLoc dl = getCurSDLoc(); 3598 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3599 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3600 SynchronizationScope Scope = I.getSynchScope(); 3601 3602 SDValue InChain = getRoot(); 3603 3604 const TargetLowering *TLI = TM.getTargetLowering(); 3605 if (TLI->getInsertFencesForAtomic()) 3606 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3607 DAG, *TLI); 3608 3609 SDValue L = 3610 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3611 getValue(I.getCompareOperand()).getSimpleValueType(), 3612 InChain, 3613 getValue(I.getPointerOperand()), 3614 getValue(I.getCompareOperand()), 3615 getValue(I.getNewValOperand()), 3616 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3617 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3618 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, 3619 Scope); 3620 3621 SDValue OutChain = L.getValue(1); 3622 3623 if (TLI->getInsertFencesForAtomic()) 3624 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3625 DAG, *TLI); 3626 3627 setValue(&I, L); 3628 DAG.setRoot(OutChain); 3629 } 3630 3631 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3632 SDLoc dl = getCurSDLoc(); 3633 ISD::NodeType NT; 3634 switch (I.getOperation()) { 3635 default: llvm_unreachable("Unknown atomicrmw operation"); 3636 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3637 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3638 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3639 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3640 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3641 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3642 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3643 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3644 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3645 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3646 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3647 } 3648 AtomicOrdering Order = I.getOrdering(); 3649 SynchronizationScope Scope = I.getSynchScope(); 3650 3651 SDValue InChain = getRoot(); 3652 3653 const TargetLowering *TLI = TM.getTargetLowering(); 3654 if (TLI->getInsertFencesForAtomic()) 3655 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3656 DAG, *TLI); 3657 3658 SDValue L = 3659 DAG.getAtomic(NT, dl, 3660 getValue(I.getValOperand()).getSimpleValueType(), 3661 InChain, 3662 getValue(I.getPointerOperand()), 3663 getValue(I.getValOperand()), 3664 I.getPointerOperand(), 0 /* Alignment */, 3665 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3666 Scope); 3667 3668 SDValue OutChain = L.getValue(1); 3669 3670 if (TLI->getInsertFencesForAtomic()) 3671 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3672 DAG, *TLI); 3673 3674 setValue(&I, L); 3675 DAG.setRoot(OutChain); 3676 } 3677 3678 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3679 SDLoc dl = getCurSDLoc(); 3680 const TargetLowering *TLI = TM.getTargetLowering(); 3681 SDValue Ops[3]; 3682 Ops[0] = getRoot(); 3683 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3684 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3685 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3686 } 3687 3688 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3689 SDLoc dl = getCurSDLoc(); 3690 AtomicOrdering Order = I.getOrdering(); 3691 SynchronizationScope Scope = I.getSynchScope(); 3692 3693 SDValue InChain = getRoot(); 3694 3695 const TargetLowering *TLI = TM.getTargetLowering(); 3696 EVT VT = TLI->getValueType(I.getType()); 3697 3698 if (I.getAlignment() < VT.getSizeInBits() / 8) 3699 report_fatal_error("Cannot generate unaligned atomic load"); 3700 3701 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3702 SDValue L = 3703 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3704 getValue(I.getPointerOperand()), 3705 I.getPointerOperand(), I.getAlignment(), 3706 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3707 Scope); 3708 3709 SDValue OutChain = L.getValue(1); 3710 3711 if (TLI->getInsertFencesForAtomic()) 3712 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3713 DAG, *TLI); 3714 3715 setValue(&I, L); 3716 DAG.setRoot(OutChain); 3717 } 3718 3719 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3720 SDLoc dl = getCurSDLoc(); 3721 3722 AtomicOrdering Order = I.getOrdering(); 3723 SynchronizationScope Scope = I.getSynchScope(); 3724 3725 SDValue InChain = getRoot(); 3726 3727 const TargetLowering *TLI = TM.getTargetLowering(); 3728 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3729 3730 if (I.getAlignment() < VT.getSizeInBits() / 8) 3731 report_fatal_error("Cannot generate unaligned atomic store"); 3732 3733 if (TLI->getInsertFencesForAtomic()) 3734 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3735 DAG, *TLI); 3736 3737 SDValue OutChain = 3738 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3739 InChain, 3740 getValue(I.getPointerOperand()), 3741 getValue(I.getValueOperand()), 3742 I.getPointerOperand(), I.getAlignment(), 3743 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3744 Scope); 3745 3746 if (TLI->getInsertFencesForAtomic()) 3747 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3748 DAG, *TLI); 3749 3750 DAG.setRoot(OutChain); 3751 } 3752 3753 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3754 /// node. 3755 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3756 unsigned Intrinsic) { 3757 bool HasChain = !I.doesNotAccessMemory(); 3758 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3759 3760 // Build the operand list. 3761 SmallVector<SDValue, 8> Ops; 3762 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3763 if (OnlyLoad) { 3764 // We don't need to serialize loads against other loads. 3765 Ops.push_back(DAG.getRoot()); 3766 } else { 3767 Ops.push_back(getRoot()); 3768 } 3769 } 3770 3771 // Info is set by getTgtMemInstrinsic 3772 TargetLowering::IntrinsicInfo Info; 3773 const TargetLowering *TLI = TM.getTargetLowering(); 3774 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3775 3776 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3777 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3778 Info.opc == ISD::INTRINSIC_W_CHAIN) 3779 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3780 3781 // Add all operands of the call to the operand list. 3782 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3783 SDValue Op = getValue(I.getArgOperand(i)); 3784 Ops.push_back(Op); 3785 } 3786 3787 SmallVector<EVT, 4> ValueVTs; 3788 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3789 3790 if (HasChain) 3791 ValueVTs.push_back(MVT::Other); 3792 3793 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3794 3795 // Create the node. 3796 SDValue Result; 3797 if (IsTgtIntrinsic) { 3798 // This is target intrinsic that touches memory 3799 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3800 VTs, &Ops[0], Ops.size(), 3801 Info.memVT, 3802 MachinePointerInfo(Info.ptrVal, Info.offset), 3803 Info.align, Info.vol, 3804 Info.readMem, Info.writeMem); 3805 } else if (!HasChain) { 3806 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3807 VTs, &Ops[0], Ops.size()); 3808 } else if (!I.getType()->isVoidTy()) { 3809 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3810 VTs, &Ops[0], Ops.size()); 3811 } else { 3812 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3813 VTs, &Ops[0], Ops.size()); 3814 } 3815 3816 if (HasChain) { 3817 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3818 if (OnlyLoad) 3819 PendingLoads.push_back(Chain); 3820 else 3821 DAG.setRoot(Chain); 3822 } 3823 3824 if (!I.getType()->isVoidTy()) { 3825 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3826 EVT VT = TLI->getValueType(PTy); 3827 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3828 } 3829 3830 setValue(&I, Result); 3831 } 3832 } 3833 3834 /// GetSignificand - Get the significand and build it into a floating-point 3835 /// number with exponent of 1: 3836 /// 3837 /// Op = (Op & 0x007fffff) | 0x3f800000; 3838 /// 3839 /// where Op is the hexadecimal representation of floating point value. 3840 static SDValue 3841 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3842 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3843 DAG.getConstant(0x007fffff, MVT::i32)); 3844 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3845 DAG.getConstant(0x3f800000, MVT::i32)); 3846 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3847 } 3848 3849 /// GetExponent - Get the exponent: 3850 /// 3851 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3852 /// 3853 /// where Op is the hexadecimal representation of floating point value. 3854 static SDValue 3855 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3856 SDLoc dl) { 3857 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3858 DAG.getConstant(0x7f800000, MVT::i32)); 3859 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3860 DAG.getConstant(23, TLI.getPointerTy())); 3861 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3862 DAG.getConstant(127, MVT::i32)); 3863 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3864 } 3865 3866 /// getF32Constant - Get 32-bit floating point constant. 3867 static SDValue 3868 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3869 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3870 MVT::f32); 3871 } 3872 3873 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3874 /// limited-precision mode. 3875 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3876 const TargetLowering &TLI) { 3877 if (Op.getValueType() == MVT::f32 && 3878 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3879 3880 // Put the exponent in the right bit position for later addition to the 3881 // final result: 3882 // 3883 // #define LOG2OFe 1.4426950f 3884 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3885 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3886 getF32Constant(DAG, 0x3fb8aa3b)); 3887 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3888 3889 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3890 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3891 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3892 3893 // IntegerPartOfX <<= 23; 3894 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3895 DAG.getConstant(23, TLI.getPointerTy())); 3896 3897 SDValue TwoToFracPartOfX; 3898 if (LimitFloatPrecision <= 6) { 3899 // For floating-point precision of 6: 3900 // 3901 // TwoToFractionalPartOfX = 3902 // 0.997535578f + 3903 // (0.735607626f + 0.252464424f * x) * x; 3904 // 3905 // error 0.0144103317, which is 6 bits 3906 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3907 getF32Constant(DAG, 0x3e814304)); 3908 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3909 getF32Constant(DAG, 0x3f3c50c8)); 3910 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3911 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3912 getF32Constant(DAG, 0x3f7f5e7e)); 3913 } else if (LimitFloatPrecision <= 12) { 3914 // For floating-point precision of 12: 3915 // 3916 // TwoToFractionalPartOfX = 3917 // 0.999892986f + 3918 // (0.696457318f + 3919 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3920 // 3921 // 0.000107046256 error, which is 13 to 14 bits 3922 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3923 getF32Constant(DAG, 0x3da235e3)); 3924 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3925 getF32Constant(DAG, 0x3e65b8f3)); 3926 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3927 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3928 getF32Constant(DAG, 0x3f324b07)); 3929 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3930 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3931 getF32Constant(DAG, 0x3f7ff8fd)); 3932 } else { // LimitFloatPrecision <= 18 3933 // For floating-point precision of 18: 3934 // 3935 // TwoToFractionalPartOfX = 3936 // 0.999999982f + 3937 // (0.693148872f + 3938 // (0.240227044f + 3939 // (0.554906021e-1f + 3940 // (0.961591928e-2f + 3941 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3942 // 3943 // error 2.47208000*10^(-7), which is better than 18 bits 3944 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3945 getF32Constant(DAG, 0x3924b03e)); 3946 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3947 getF32Constant(DAG, 0x3ab24b87)); 3948 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3949 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3950 getF32Constant(DAG, 0x3c1d8c17)); 3951 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3952 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3953 getF32Constant(DAG, 0x3d634a1d)); 3954 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3955 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3956 getF32Constant(DAG, 0x3e75fe14)); 3957 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3958 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3959 getF32Constant(DAG, 0x3f317234)); 3960 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3961 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3962 getF32Constant(DAG, 0x3f800000)); 3963 } 3964 3965 // Add the exponent into the result in integer domain. 3966 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3967 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3968 DAG.getNode(ISD::ADD, dl, MVT::i32, 3969 t13, IntegerPartOfX)); 3970 } 3971 3972 // No special expansion. 3973 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3974 } 3975 3976 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3977 /// limited-precision mode. 3978 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3979 const TargetLowering &TLI) { 3980 if (Op.getValueType() == MVT::f32 && 3981 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3982 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3983 3984 // Scale the exponent by log(2) [0.69314718f]. 3985 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3986 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3987 getF32Constant(DAG, 0x3f317218)); 3988 3989 // Get the significand and build it into a floating-point number with 3990 // exponent of 1. 3991 SDValue X = GetSignificand(DAG, Op1, dl); 3992 3993 SDValue LogOfMantissa; 3994 if (LimitFloatPrecision <= 6) { 3995 // For floating-point precision of 6: 3996 // 3997 // LogofMantissa = 3998 // -1.1609546f + 3999 // (1.4034025f - 0.23903021f * x) * x; 4000 // 4001 // error 0.0034276066, which is better than 8 bits 4002 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4003 getF32Constant(DAG, 0xbe74c456)); 4004 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4005 getF32Constant(DAG, 0x3fb3a2b1)); 4006 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4007 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4008 getF32Constant(DAG, 0x3f949a29)); 4009 } else if (LimitFloatPrecision <= 12) { 4010 // For floating-point precision of 12: 4011 // 4012 // LogOfMantissa = 4013 // -1.7417939f + 4014 // (2.8212026f + 4015 // (-1.4699568f + 4016 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4017 // 4018 // error 0.000061011436, which is 14 bits 4019 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4020 getF32Constant(DAG, 0xbd67b6d6)); 4021 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4022 getF32Constant(DAG, 0x3ee4f4b8)); 4023 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4024 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4025 getF32Constant(DAG, 0x3fbc278b)); 4026 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4027 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4028 getF32Constant(DAG, 0x40348e95)); 4029 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4030 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4031 getF32Constant(DAG, 0x3fdef31a)); 4032 } else { // LimitFloatPrecision <= 18 4033 // For floating-point precision of 18: 4034 // 4035 // LogOfMantissa = 4036 // -2.1072184f + 4037 // (4.2372794f + 4038 // (-3.7029485f + 4039 // (2.2781945f + 4040 // (-0.87823314f + 4041 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4042 // 4043 // error 0.0000023660568, which is better than 18 bits 4044 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4045 getF32Constant(DAG, 0xbc91e5ac)); 4046 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4047 getF32Constant(DAG, 0x3e4350aa)); 4048 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4049 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4050 getF32Constant(DAG, 0x3f60d3e3)); 4051 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4052 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4053 getF32Constant(DAG, 0x4011cdf0)); 4054 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4055 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4056 getF32Constant(DAG, 0x406cfd1c)); 4057 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4058 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4059 getF32Constant(DAG, 0x408797cb)); 4060 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4061 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4062 getF32Constant(DAG, 0x4006dcab)); 4063 } 4064 4065 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4066 } 4067 4068 // No special expansion. 4069 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4070 } 4071 4072 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4073 /// limited-precision mode. 4074 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4075 const TargetLowering &TLI) { 4076 if (Op.getValueType() == MVT::f32 && 4077 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4078 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4079 4080 // Get the exponent. 4081 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4082 4083 // Get the significand and build it into a floating-point number with 4084 // exponent of 1. 4085 SDValue X = GetSignificand(DAG, Op1, dl); 4086 4087 // Different possible minimax approximations of significand in 4088 // floating-point for various degrees of accuracy over [1,2]. 4089 SDValue Log2ofMantissa; 4090 if (LimitFloatPrecision <= 6) { 4091 // For floating-point precision of 6: 4092 // 4093 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4094 // 4095 // error 0.0049451742, which is more than 7 bits 4096 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4097 getF32Constant(DAG, 0xbeb08fe0)); 4098 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4099 getF32Constant(DAG, 0x40019463)); 4100 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4101 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4102 getF32Constant(DAG, 0x3fd6633d)); 4103 } else if (LimitFloatPrecision <= 12) { 4104 // For floating-point precision of 12: 4105 // 4106 // Log2ofMantissa = 4107 // -2.51285454f + 4108 // (4.07009056f + 4109 // (-2.12067489f + 4110 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4111 // 4112 // error 0.0000876136000, which is better than 13 bits 4113 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4114 getF32Constant(DAG, 0xbda7262e)); 4115 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4116 getF32Constant(DAG, 0x3f25280b)); 4117 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4118 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4119 getF32Constant(DAG, 0x4007b923)); 4120 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4121 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4122 getF32Constant(DAG, 0x40823e2f)); 4123 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4124 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4125 getF32Constant(DAG, 0x4020d29c)); 4126 } else { // LimitFloatPrecision <= 18 4127 // For floating-point precision of 18: 4128 // 4129 // Log2ofMantissa = 4130 // -3.0400495f + 4131 // (6.1129976f + 4132 // (-5.3420409f + 4133 // (3.2865683f + 4134 // (-1.2669343f + 4135 // (0.27515199f - 4136 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4137 // 4138 // error 0.0000018516, which is better than 18 bits 4139 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4140 getF32Constant(DAG, 0xbcd2769e)); 4141 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4142 getF32Constant(DAG, 0x3e8ce0b9)); 4143 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4144 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4145 getF32Constant(DAG, 0x3fa22ae7)); 4146 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4147 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4148 getF32Constant(DAG, 0x40525723)); 4149 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4150 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4151 getF32Constant(DAG, 0x40aaf200)); 4152 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4153 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4154 getF32Constant(DAG, 0x40c39dad)); 4155 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4156 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4157 getF32Constant(DAG, 0x4042902c)); 4158 } 4159 4160 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4161 } 4162 4163 // No special expansion. 4164 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4165 } 4166 4167 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4168 /// limited-precision mode. 4169 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4170 const TargetLowering &TLI) { 4171 if (Op.getValueType() == MVT::f32 && 4172 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4173 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4174 4175 // Scale the exponent by log10(2) [0.30102999f]. 4176 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4177 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4178 getF32Constant(DAG, 0x3e9a209a)); 4179 4180 // Get the significand and build it into a floating-point number with 4181 // exponent of 1. 4182 SDValue X = GetSignificand(DAG, Op1, dl); 4183 4184 SDValue Log10ofMantissa; 4185 if (LimitFloatPrecision <= 6) { 4186 // For floating-point precision of 6: 4187 // 4188 // Log10ofMantissa = 4189 // -0.50419619f + 4190 // (0.60948995f - 0.10380950f * x) * x; 4191 // 4192 // error 0.0014886165, which is 6 bits 4193 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4194 getF32Constant(DAG, 0xbdd49a13)); 4195 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4196 getF32Constant(DAG, 0x3f1c0789)); 4197 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4198 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4199 getF32Constant(DAG, 0x3f011300)); 4200 } else if (LimitFloatPrecision <= 12) { 4201 // For floating-point precision of 12: 4202 // 4203 // Log10ofMantissa = 4204 // -0.64831180f + 4205 // (0.91751397f + 4206 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4207 // 4208 // error 0.00019228036, which is better than 12 bits 4209 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4210 getF32Constant(DAG, 0x3d431f31)); 4211 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4212 getF32Constant(DAG, 0x3ea21fb2)); 4213 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4214 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4215 getF32Constant(DAG, 0x3f6ae232)); 4216 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4217 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4218 getF32Constant(DAG, 0x3f25f7c3)); 4219 } else { // LimitFloatPrecision <= 18 4220 // For floating-point precision of 18: 4221 // 4222 // Log10ofMantissa = 4223 // -0.84299375f + 4224 // (1.5327582f + 4225 // (-1.0688956f + 4226 // (0.49102474f + 4227 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4228 // 4229 // error 0.0000037995730, which is better than 18 bits 4230 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4231 getF32Constant(DAG, 0x3c5d51ce)); 4232 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4233 getF32Constant(DAG, 0x3e00685a)); 4234 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4235 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4236 getF32Constant(DAG, 0x3efb6798)); 4237 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4238 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4239 getF32Constant(DAG, 0x3f88d192)); 4240 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4241 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4242 getF32Constant(DAG, 0x3fc4316c)); 4243 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4244 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4245 getF32Constant(DAG, 0x3f57ce70)); 4246 } 4247 4248 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4249 } 4250 4251 // No special expansion. 4252 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4253 } 4254 4255 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4256 /// limited-precision mode. 4257 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4258 const TargetLowering &TLI) { 4259 if (Op.getValueType() == MVT::f32 && 4260 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4261 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4262 4263 // FractionalPartOfX = x - (float)IntegerPartOfX; 4264 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4265 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4266 4267 // IntegerPartOfX <<= 23; 4268 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4269 DAG.getConstant(23, TLI.getPointerTy())); 4270 4271 SDValue TwoToFractionalPartOfX; 4272 if (LimitFloatPrecision <= 6) { 4273 // For floating-point precision of 6: 4274 // 4275 // TwoToFractionalPartOfX = 4276 // 0.997535578f + 4277 // (0.735607626f + 0.252464424f * x) * x; 4278 // 4279 // error 0.0144103317, which is 6 bits 4280 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4281 getF32Constant(DAG, 0x3e814304)); 4282 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4283 getF32Constant(DAG, 0x3f3c50c8)); 4284 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4285 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4286 getF32Constant(DAG, 0x3f7f5e7e)); 4287 } else if (LimitFloatPrecision <= 12) { 4288 // For floating-point precision of 12: 4289 // 4290 // TwoToFractionalPartOfX = 4291 // 0.999892986f + 4292 // (0.696457318f + 4293 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4294 // 4295 // error 0.000107046256, which is 13 to 14 bits 4296 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4297 getF32Constant(DAG, 0x3da235e3)); 4298 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4299 getF32Constant(DAG, 0x3e65b8f3)); 4300 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4301 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4302 getF32Constant(DAG, 0x3f324b07)); 4303 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4304 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4305 getF32Constant(DAG, 0x3f7ff8fd)); 4306 } else { // LimitFloatPrecision <= 18 4307 // For floating-point precision of 18: 4308 // 4309 // TwoToFractionalPartOfX = 4310 // 0.999999982f + 4311 // (0.693148872f + 4312 // (0.240227044f + 4313 // (0.554906021e-1f + 4314 // (0.961591928e-2f + 4315 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4316 // error 2.47208000*10^(-7), which is better than 18 bits 4317 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4318 getF32Constant(DAG, 0x3924b03e)); 4319 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4320 getF32Constant(DAG, 0x3ab24b87)); 4321 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4322 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4323 getF32Constant(DAG, 0x3c1d8c17)); 4324 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4325 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4326 getF32Constant(DAG, 0x3d634a1d)); 4327 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4328 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4329 getF32Constant(DAG, 0x3e75fe14)); 4330 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4331 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4332 getF32Constant(DAG, 0x3f317234)); 4333 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4334 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4335 getF32Constant(DAG, 0x3f800000)); 4336 } 4337 4338 // Add the exponent into the result in integer domain. 4339 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4340 TwoToFractionalPartOfX); 4341 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4342 DAG.getNode(ISD::ADD, dl, MVT::i32, 4343 t13, IntegerPartOfX)); 4344 } 4345 4346 // No special expansion. 4347 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4348 } 4349 4350 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4351 /// limited-precision mode with x == 10.0f. 4352 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4353 SelectionDAG &DAG, const TargetLowering &TLI) { 4354 bool IsExp10 = false; 4355 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4356 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4357 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4358 APFloat Ten(10.0f); 4359 IsExp10 = LHSC->isExactlyValue(Ten); 4360 } 4361 } 4362 4363 if (IsExp10) { 4364 // Put the exponent in the right bit position for later addition to the 4365 // final result: 4366 // 4367 // #define LOG2OF10 3.3219281f 4368 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4369 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4370 getF32Constant(DAG, 0x40549a78)); 4371 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4372 4373 // FractionalPartOfX = x - (float)IntegerPartOfX; 4374 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4375 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4376 4377 // IntegerPartOfX <<= 23; 4378 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4379 DAG.getConstant(23, TLI.getPointerTy())); 4380 4381 SDValue TwoToFractionalPartOfX; 4382 if (LimitFloatPrecision <= 6) { 4383 // For floating-point precision of 6: 4384 // 4385 // twoToFractionalPartOfX = 4386 // 0.997535578f + 4387 // (0.735607626f + 0.252464424f * x) * x; 4388 // 4389 // error 0.0144103317, which is 6 bits 4390 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4391 getF32Constant(DAG, 0x3e814304)); 4392 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4393 getF32Constant(DAG, 0x3f3c50c8)); 4394 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4395 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4396 getF32Constant(DAG, 0x3f7f5e7e)); 4397 } else if (LimitFloatPrecision <= 12) { 4398 // For floating-point precision of 12: 4399 // 4400 // TwoToFractionalPartOfX = 4401 // 0.999892986f + 4402 // (0.696457318f + 4403 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4404 // 4405 // error 0.000107046256, which is 13 to 14 bits 4406 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4407 getF32Constant(DAG, 0x3da235e3)); 4408 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4409 getF32Constant(DAG, 0x3e65b8f3)); 4410 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4411 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4412 getF32Constant(DAG, 0x3f324b07)); 4413 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4414 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4415 getF32Constant(DAG, 0x3f7ff8fd)); 4416 } else { // LimitFloatPrecision <= 18 4417 // For floating-point precision of 18: 4418 // 4419 // TwoToFractionalPartOfX = 4420 // 0.999999982f + 4421 // (0.693148872f + 4422 // (0.240227044f + 4423 // (0.554906021e-1f + 4424 // (0.961591928e-2f + 4425 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4426 // error 2.47208000*10^(-7), which is better than 18 bits 4427 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4428 getF32Constant(DAG, 0x3924b03e)); 4429 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4430 getF32Constant(DAG, 0x3ab24b87)); 4431 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4432 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4433 getF32Constant(DAG, 0x3c1d8c17)); 4434 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4435 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4436 getF32Constant(DAG, 0x3d634a1d)); 4437 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4438 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4439 getF32Constant(DAG, 0x3e75fe14)); 4440 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4441 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4442 getF32Constant(DAG, 0x3f317234)); 4443 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4444 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4445 getF32Constant(DAG, 0x3f800000)); 4446 } 4447 4448 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4449 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4450 DAG.getNode(ISD::ADD, dl, MVT::i32, 4451 t13, IntegerPartOfX)); 4452 } 4453 4454 // No special expansion. 4455 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4456 } 4457 4458 4459 /// ExpandPowI - Expand a llvm.powi intrinsic. 4460 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4461 SelectionDAG &DAG) { 4462 // If RHS is a constant, we can expand this out to a multiplication tree, 4463 // otherwise we end up lowering to a call to __powidf2 (for example). When 4464 // optimizing for size, we only want to do this if the expansion would produce 4465 // a small number of multiplies, otherwise we do the full expansion. 4466 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4467 // Get the exponent as a positive value. 4468 unsigned Val = RHSC->getSExtValue(); 4469 if ((int)Val < 0) Val = -Val; 4470 4471 // powi(x, 0) -> 1.0 4472 if (Val == 0) 4473 return DAG.getConstantFP(1.0, LHS.getValueType()); 4474 4475 const Function *F = DAG.getMachineFunction().getFunction(); 4476 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4477 Attribute::OptimizeForSize) || 4478 // If optimizing for size, don't insert too many multiplies. This 4479 // inserts up to 5 multiplies. 4480 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4481 // We use the simple binary decomposition method to generate the multiply 4482 // sequence. There are more optimal ways to do this (for example, 4483 // powi(x,15) generates one more multiply than it should), but this has 4484 // the benefit of being both really simple and much better than a libcall. 4485 SDValue Res; // Logically starts equal to 1.0 4486 SDValue CurSquare = LHS; 4487 while (Val) { 4488 if (Val & 1) { 4489 if (Res.getNode()) 4490 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4491 else 4492 Res = CurSquare; // 1.0*CurSquare. 4493 } 4494 4495 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4496 CurSquare, CurSquare); 4497 Val >>= 1; 4498 } 4499 4500 // If the original was negative, invert the result, producing 1/(x*x*x). 4501 if (RHSC->getSExtValue() < 0) 4502 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4503 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4504 return Res; 4505 } 4506 } 4507 4508 // Otherwise, expand to a libcall. 4509 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4510 } 4511 4512 // getTruncatedArgReg - Find underlying register used for an truncated 4513 // argument. 4514 static unsigned getTruncatedArgReg(const SDValue &N) { 4515 if (N.getOpcode() != ISD::TRUNCATE) 4516 return 0; 4517 4518 const SDValue &Ext = N.getOperand(0); 4519 if (Ext.getOpcode() == ISD::AssertZext || 4520 Ext.getOpcode() == ISD::AssertSext) { 4521 const SDValue &CFR = Ext.getOperand(0); 4522 if (CFR.getOpcode() == ISD::CopyFromReg) 4523 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4524 if (CFR.getOpcode() == ISD::TRUNCATE) 4525 return getTruncatedArgReg(CFR); 4526 } 4527 return 0; 4528 } 4529 4530 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4531 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4532 /// At the end of instruction selection, they will be inserted to the entry BB. 4533 bool 4534 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4535 int64_t Offset, 4536 const SDValue &N) { 4537 const Argument *Arg = dyn_cast<Argument>(V); 4538 if (!Arg) 4539 return false; 4540 4541 MachineFunction &MF = DAG.getMachineFunction(); 4542 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4543 4544 // Ignore inlined function arguments here. 4545 DIVariable DV(Variable); 4546 if (DV.isInlinedFnArgument(MF.getFunction())) 4547 return false; 4548 4549 Optional<MachineOperand> Op; 4550 // Some arguments' frame index is recorded during argument lowering. 4551 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4552 Op = MachineOperand::CreateFI(FI); 4553 4554 if (!Op && N.getNode()) { 4555 unsigned Reg; 4556 if (N.getOpcode() == ISD::CopyFromReg) 4557 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4558 else 4559 Reg = getTruncatedArgReg(N); 4560 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4561 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4562 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4563 if (PR) 4564 Reg = PR; 4565 } 4566 if (Reg) 4567 Op = MachineOperand::CreateReg(Reg, false); 4568 } 4569 4570 if (!Op) { 4571 // Check if ValueMap has reg number. 4572 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4573 if (VMI != FuncInfo.ValueMap.end()) 4574 Op = MachineOperand::CreateReg(VMI->second, false); 4575 } 4576 4577 if (!Op && N.getNode()) 4578 // Check if frame index is available. 4579 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4580 if (FrameIndexSDNode *FINode = 4581 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4582 Op = MachineOperand::CreateFI(FINode->getIndex()); 4583 4584 if (!Op) 4585 return false; 4586 4587 // FIXME: This does not handle register-indirect values at offset 0. 4588 bool IsIndirect = Offset != 0; 4589 if (Op->isReg()) 4590 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4591 TII->get(TargetOpcode::DBG_VALUE), 4592 IsIndirect, 4593 Op->getReg(), Offset, Variable)); 4594 else 4595 FuncInfo.ArgDbgValues.push_back( 4596 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4597 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4598 4599 return true; 4600 } 4601 4602 // VisualStudio defines setjmp as _setjmp 4603 #if defined(_MSC_VER) && defined(setjmp) && \ 4604 !defined(setjmp_undefined_for_msvc) 4605 # pragma push_macro("setjmp") 4606 # undef setjmp 4607 # define setjmp_undefined_for_msvc 4608 #endif 4609 4610 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4611 /// we want to emit this as a call to a named external function, return the name 4612 /// otherwise lower it and return null. 4613 const char * 4614 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4615 const TargetLowering *TLI = TM.getTargetLowering(); 4616 SDLoc sdl = getCurSDLoc(); 4617 DebugLoc dl = getCurDebugLoc(); 4618 SDValue Res; 4619 4620 switch (Intrinsic) { 4621 default: 4622 // By default, turn this into a target intrinsic node. 4623 visitTargetIntrinsic(I, Intrinsic); 4624 return 0; 4625 case Intrinsic::vastart: visitVAStart(I); return 0; 4626 case Intrinsic::vaend: visitVAEnd(I); return 0; 4627 case Intrinsic::vacopy: visitVACopy(I); return 0; 4628 case Intrinsic::returnaddress: 4629 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4630 getValue(I.getArgOperand(0)))); 4631 return 0; 4632 case Intrinsic::frameaddress: 4633 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4634 getValue(I.getArgOperand(0)))); 4635 return 0; 4636 case Intrinsic::setjmp: 4637 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4638 case Intrinsic::longjmp: 4639 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4640 case Intrinsic::memcpy: { 4641 // Assert for address < 256 since we support only user defined address 4642 // spaces. 4643 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4644 < 256 && 4645 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4646 < 256 && 4647 "Unknown address space"); 4648 SDValue Op1 = getValue(I.getArgOperand(0)); 4649 SDValue Op2 = getValue(I.getArgOperand(1)); 4650 SDValue Op3 = getValue(I.getArgOperand(2)); 4651 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4652 if (!Align) 4653 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4654 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4655 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4656 MachinePointerInfo(I.getArgOperand(0)), 4657 MachinePointerInfo(I.getArgOperand(1)))); 4658 return 0; 4659 } 4660 case Intrinsic::memset: { 4661 // Assert for address < 256 since we support only user defined address 4662 // spaces. 4663 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4664 < 256 && 4665 "Unknown address space"); 4666 SDValue Op1 = getValue(I.getArgOperand(0)); 4667 SDValue Op2 = getValue(I.getArgOperand(1)); 4668 SDValue Op3 = getValue(I.getArgOperand(2)); 4669 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4670 if (!Align) 4671 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4672 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4673 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4674 MachinePointerInfo(I.getArgOperand(0)))); 4675 return 0; 4676 } 4677 case Intrinsic::memmove: { 4678 // Assert for address < 256 since we support only user defined address 4679 // spaces. 4680 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4681 < 256 && 4682 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4683 < 256 && 4684 "Unknown address space"); 4685 SDValue Op1 = getValue(I.getArgOperand(0)); 4686 SDValue Op2 = getValue(I.getArgOperand(1)); 4687 SDValue Op3 = getValue(I.getArgOperand(2)); 4688 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4689 if (!Align) 4690 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4691 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4692 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4693 MachinePointerInfo(I.getArgOperand(0)), 4694 MachinePointerInfo(I.getArgOperand(1)))); 4695 return 0; 4696 } 4697 case Intrinsic::dbg_declare: { 4698 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4699 MDNode *Variable = DI.getVariable(); 4700 const Value *Address = DI.getAddress(); 4701 DIVariable DIVar(Variable); 4702 assert((!DIVar || DIVar.isVariable()) && 4703 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4704 if (!Address || !DIVar) { 4705 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4706 return 0; 4707 } 4708 4709 // Check if address has undef value. 4710 if (isa<UndefValue>(Address) || 4711 (Address->use_empty() && !isa<Argument>(Address))) { 4712 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4713 return 0; 4714 } 4715 4716 SDValue &N = NodeMap[Address]; 4717 if (!N.getNode() && isa<Argument>(Address)) 4718 // Check unused arguments map. 4719 N = UnusedArgNodeMap[Address]; 4720 SDDbgValue *SDV; 4721 if (N.getNode()) { 4722 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4723 Address = BCI->getOperand(0); 4724 // Parameters are handled specially. 4725 bool isParameter = 4726 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4727 isa<Argument>(Address)); 4728 4729 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4730 4731 if (isParameter && !AI) { 4732 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4733 if (FINode) 4734 // Byval parameter. We have a frame index at this point. 4735 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4736 0, dl, SDNodeOrder); 4737 else { 4738 // Address is an argument, so try to emit its dbg value using 4739 // virtual register info from the FuncInfo.ValueMap. 4740 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4741 return 0; 4742 } 4743 } else if (AI) 4744 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4745 0, dl, SDNodeOrder); 4746 else { 4747 // Can't do anything with other non-AI cases yet. 4748 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4749 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4750 DEBUG(Address->dump()); 4751 return 0; 4752 } 4753 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4754 } else { 4755 // If Address is an argument then try to emit its dbg value using 4756 // virtual register info from the FuncInfo.ValueMap. 4757 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4758 // If variable is pinned by a alloca in dominating bb then 4759 // use StaticAllocaMap. 4760 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4761 if (AI->getParent() != DI.getParent()) { 4762 DenseMap<const AllocaInst*, int>::iterator SI = 4763 FuncInfo.StaticAllocaMap.find(AI); 4764 if (SI != FuncInfo.StaticAllocaMap.end()) { 4765 SDV = DAG.getDbgValue(Variable, SI->second, 4766 0, dl, SDNodeOrder); 4767 DAG.AddDbgValue(SDV, 0, false); 4768 return 0; 4769 } 4770 } 4771 } 4772 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4773 } 4774 } 4775 return 0; 4776 } 4777 case Intrinsic::dbg_value: { 4778 const DbgValueInst &DI = cast<DbgValueInst>(I); 4779 DIVariable DIVar(DI.getVariable()); 4780 assert((!DIVar || DIVar.isVariable()) && 4781 "Variable in DbgValueInst should be either null or a DIVariable."); 4782 if (!DIVar) 4783 return 0; 4784 4785 MDNode *Variable = DI.getVariable(); 4786 uint64_t Offset = DI.getOffset(); 4787 const Value *V = DI.getValue(); 4788 if (!V) 4789 return 0; 4790 4791 SDDbgValue *SDV; 4792 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4793 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4794 DAG.AddDbgValue(SDV, 0, false); 4795 } else { 4796 // Do not use getValue() in here; we don't want to generate code at 4797 // this point if it hasn't been done yet. 4798 SDValue N = NodeMap[V]; 4799 if (!N.getNode() && isa<Argument>(V)) 4800 // Check unused arguments map. 4801 N = UnusedArgNodeMap[V]; 4802 if (N.getNode()) { 4803 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4804 SDV = DAG.getDbgValue(Variable, N.getNode(), 4805 N.getResNo(), Offset, dl, SDNodeOrder); 4806 DAG.AddDbgValue(SDV, N.getNode(), false); 4807 } 4808 } else if (!V->use_empty() ) { 4809 // Do not call getValue(V) yet, as we don't want to generate code. 4810 // Remember it for later. 4811 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4812 DanglingDebugInfoMap[V] = DDI; 4813 } else { 4814 // We may expand this to cover more cases. One case where we have no 4815 // data available is an unreferenced parameter. 4816 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4817 } 4818 } 4819 4820 // Build a debug info table entry. 4821 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4822 V = BCI->getOperand(0); 4823 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4824 // Don't handle byval struct arguments or VLAs, for example. 4825 if (!AI) { 4826 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4827 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4828 return 0; 4829 } 4830 DenseMap<const AllocaInst*, int>::iterator SI = 4831 FuncInfo.StaticAllocaMap.find(AI); 4832 if (SI == FuncInfo.StaticAllocaMap.end()) 4833 return 0; // VLAs. 4834 int FI = SI->second; 4835 4836 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4837 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4838 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4839 return 0; 4840 } 4841 4842 case Intrinsic::eh_typeid_for: { 4843 // Find the type id for the given typeinfo. 4844 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4845 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4846 Res = DAG.getConstant(TypeID, MVT::i32); 4847 setValue(&I, Res); 4848 return 0; 4849 } 4850 4851 case Intrinsic::eh_return_i32: 4852 case Intrinsic::eh_return_i64: 4853 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4854 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4855 MVT::Other, 4856 getControlRoot(), 4857 getValue(I.getArgOperand(0)), 4858 getValue(I.getArgOperand(1)))); 4859 return 0; 4860 case Intrinsic::eh_unwind_init: 4861 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4862 return 0; 4863 case Intrinsic::eh_dwarf_cfa: { 4864 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4865 TLI->getPointerTy()); 4866 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4867 CfaArg.getValueType(), 4868 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4869 CfaArg.getValueType()), 4870 CfaArg); 4871 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4872 TLI->getPointerTy(), 4873 DAG.getConstant(0, TLI->getPointerTy())); 4874 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4875 FA, Offset)); 4876 return 0; 4877 } 4878 case Intrinsic::eh_sjlj_callsite: { 4879 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4880 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4881 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4882 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4883 4884 MMI.setCurrentCallSite(CI->getZExtValue()); 4885 return 0; 4886 } 4887 case Intrinsic::eh_sjlj_functioncontext: { 4888 // Get and store the index of the function context. 4889 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4890 AllocaInst *FnCtx = 4891 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4892 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4893 MFI->setFunctionContextIndex(FI); 4894 return 0; 4895 } 4896 case Intrinsic::eh_sjlj_setjmp: { 4897 SDValue Ops[2]; 4898 Ops[0] = getRoot(); 4899 Ops[1] = getValue(I.getArgOperand(0)); 4900 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4901 DAG.getVTList(MVT::i32, MVT::Other), 4902 Ops, 2); 4903 setValue(&I, Op.getValue(0)); 4904 DAG.setRoot(Op.getValue(1)); 4905 return 0; 4906 } 4907 case Intrinsic::eh_sjlj_longjmp: { 4908 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4909 getRoot(), getValue(I.getArgOperand(0)))); 4910 return 0; 4911 } 4912 4913 case Intrinsic::x86_mmx_pslli_w: 4914 case Intrinsic::x86_mmx_pslli_d: 4915 case Intrinsic::x86_mmx_pslli_q: 4916 case Intrinsic::x86_mmx_psrli_w: 4917 case Intrinsic::x86_mmx_psrli_d: 4918 case Intrinsic::x86_mmx_psrli_q: 4919 case Intrinsic::x86_mmx_psrai_w: 4920 case Intrinsic::x86_mmx_psrai_d: { 4921 SDValue ShAmt = getValue(I.getArgOperand(1)); 4922 if (isa<ConstantSDNode>(ShAmt)) { 4923 visitTargetIntrinsic(I, Intrinsic); 4924 return 0; 4925 } 4926 unsigned NewIntrinsic = 0; 4927 EVT ShAmtVT = MVT::v2i32; 4928 switch (Intrinsic) { 4929 case Intrinsic::x86_mmx_pslli_w: 4930 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4931 break; 4932 case Intrinsic::x86_mmx_pslli_d: 4933 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4934 break; 4935 case Intrinsic::x86_mmx_pslli_q: 4936 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4937 break; 4938 case Intrinsic::x86_mmx_psrli_w: 4939 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4940 break; 4941 case Intrinsic::x86_mmx_psrli_d: 4942 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4943 break; 4944 case Intrinsic::x86_mmx_psrli_q: 4945 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4946 break; 4947 case Intrinsic::x86_mmx_psrai_w: 4948 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4949 break; 4950 case Intrinsic::x86_mmx_psrai_d: 4951 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4952 break; 4953 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4954 } 4955 4956 // The vector shift intrinsics with scalars uses 32b shift amounts but 4957 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4958 // to be zero. 4959 // We must do this early because v2i32 is not a legal type. 4960 SDValue ShOps[2]; 4961 ShOps[0] = ShAmt; 4962 ShOps[1] = DAG.getConstant(0, MVT::i32); 4963 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4964 EVT DestVT = TLI->getValueType(I.getType()); 4965 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4966 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4967 DAG.getConstant(NewIntrinsic, MVT::i32), 4968 getValue(I.getArgOperand(0)), ShAmt); 4969 setValue(&I, Res); 4970 return 0; 4971 } 4972 case Intrinsic::x86_avx_vinsertf128_pd_256: 4973 case Intrinsic::x86_avx_vinsertf128_ps_256: 4974 case Intrinsic::x86_avx_vinsertf128_si_256: 4975 case Intrinsic::x86_avx2_vinserti128: { 4976 EVT DestVT = TLI->getValueType(I.getType()); 4977 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4978 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4979 ElVT.getVectorNumElements(); 4980 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4981 getValue(I.getArgOperand(0)), 4982 getValue(I.getArgOperand(1)), 4983 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4984 setValue(&I, Res); 4985 return 0; 4986 } 4987 case Intrinsic::x86_avx_vextractf128_pd_256: 4988 case Intrinsic::x86_avx_vextractf128_ps_256: 4989 case Intrinsic::x86_avx_vextractf128_si_256: 4990 case Intrinsic::x86_avx2_vextracti128: { 4991 EVT DestVT = TLI->getValueType(I.getType()); 4992 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4993 DestVT.getVectorNumElements(); 4994 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4995 getValue(I.getArgOperand(0)), 4996 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4997 setValue(&I, Res); 4998 return 0; 4999 } 5000 case Intrinsic::convertff: 5001 case Intrinsic::convertfsi: 5002 case Intrinsic::convertfui: 5003 case Intrinsic::convertsif: 5004 case Intrinsic::convertuif: 5005 case Intrinsic::convertss: 5006 case Intrinsic::convertsu: 5007 case Intrinsic::convertus: 5008 case Intrinsic::convertuu: { 5009 ISD::CvtCode Code = ISD::CVT_INVALID; 5010 switch (Intrinsic) { 5011 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5012 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5013 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5014 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5015 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5016 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5017 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5018 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5019 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5020 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5021 } 5022 EVT DestVT = TLI->getValueType(I.getType()); 5023 const Value *Op1 = I.getArgOperand(0); 5024 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5025 DAG.getValueType(DestVT), 5026 DAG.getValueType(getValue(Op1).getValueType()), 5027 getValue(I.getArgOperand(1)), 5028 getValue(I.getArgOperand(2)), 5029 Code); 5030 setValue(&I, Res); 5031 return 0; 5032 } 5033 case Intrinsic::powi: 5034 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5035 getValue(I.getArgOperand(1)), DAG)); 5036 return 0; 5037 case Intrinsic::log: 5038 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5039 return 0; 5040 case Intrinsic::log2: 5041 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5042 return 0; 5043 case Intrinsic::log10: 5044 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5045 return 0; 5046 case Intrinsic::exp: 5047 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5048 return 0; 5049 case Intrinsic::exp2: 5050 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5051 return 0; 5052 case Intrinsic::pow: 5053 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5054 getValue(I.getArgOperand(1)), DAG, *TLI)); 5055 return 0; 5056 case Intrinsic::sqrt: 5057 case Intrinsic::fabs: 5058 case Intrinsic::sin: 5059 case Intrinsic::cos: 5060 case Intrinsic::floor: 5061 case Intrinsic::ceil: 5062 case Intrinsic::trunc: 5063 case Intrinsic::rint: 5064 case Intrinsic::nearbyint: 5065 case Intrinsic::round: { 5066 unsigned Opcode; 5067 switch (Intrinsic) { 5068 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5069 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5070 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5071 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5072 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5073 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5074 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5075 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5076 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5077 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5078 case Intrinsic::round: Opcode = ISD::FROUND; break; 5079 } 5080 5081 setValue(&I, DAG.getNode(Opcode, sdl, 5082 getValue(I.getArgOperand(0)).getValueType(), 5083 getValue(I.getArgOperand(0)))); 5084 return 0; 5085 } 5086 case Intrinsic::copysign: 5087 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5088 getValue(I.getArgOperand(0)).getValueType(), 5089 getValue(I.getArgOperand(0)), 5090 getValue(I.getArgOperand(1)))); 5091 return 0; 5092 case Intrinsic::fma: 5093 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5094 getValue(I.getArgOperand(0)).getValueType(), 5095 getValue(I.getArgOperand(0)), 5096 getValue(I.getArgOperand(1)), 5097 getValue(I.getArgOperand(2)))); 5098 return 0; 5099 case Intrinsic::fmuladd: { 5100 EVT VT = TLI->getValueType(I.getType()); 5101 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5102 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5103 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5104 getValue(I.getArgOperand(0)).getValueType(), 5105 getValue(I.getArgOperand(0)), 5106 getValue(I.getArgOperand(1)), 5107 getValue(I.getArgOperand(2)))); 5108 } else { 5109 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5110 getValue(I.getArgOperand(0)).getValueType(), 5111 getValue(I.getArgOperand(0)), 5112 getValue(I.getArgOperand(1))); 5113 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5114 getValue(I.getArgOperand(0)).getValueType(), 5115 Mul, 5116 getValue(I.getArgOperand(2))); 5117 setValue(&I, Add); 5118 } 5119 return 0; 5120 } 5121 case Intrinsic::convert_to_fp16: 5122 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5123 MVT::i16, getValue(I.getArgOperand(0)))); 5124 return 0; 5125 case Intrinsic::convert_from_fp16: 5126 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5127 MVT::f32, getValue(I.getArgOperand(0)))); 5128 return 0; 5129 case Intrinsic::pcmarker: { 5130 SDValue Tmp = getValue(I.getArgOperand(0)); 5131 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5132 return 0; 5133 } 5134 case Intrinsic::readcyclecounter: { 5135 SDValue Op = getRoot(); 5136 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5137 DAG.getVTList(MVT::i64, MVT::Other), 5138 &Op, 1); 5139 setValue(&I, Res); 5140 DAG.setRoot(Res.getValue(1)); 5141 return 0; 5142 } 5143 case Intrinsic::bswap: 5144 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5145 getValue(I.getArgOperand(0)).getValueType(), 5146 getValue(I.getArgOperand(0)))); 5147 return 0; 5148 case Intrinsic::cttz: { 5149 SDValue Arg = getValue(I.getArgOperand(0)); 5150 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5151 EVT Ty = Arg.getValueType(); 5152 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5153 sdl, Ty, Arg)); 5154 return 0; 5155 } 5156 case Intrinsic::ctlz: { 5157 SDValue Arg = getValue(I.getArgOperand(0)); 5158 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5159 EVT Ty = Arg.getValueType(); 5160 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5161 sdl, Ty, Arg)); 5162 return 0; 5163 } 5164 case Intrinsic::ctpop: { 5165 SDValue Arg = getValue(I.getArgOperand(0)); 5166 EVT Ty = Arg.getValueType(); 5167 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5168 return 0; 5169 } 5170 case Intrinsic::stacksave: { 5171 SDValue Op = getRoot(); 5172 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5173 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); 5174 setValue(&I, Res); 5175 DAG.setRoot(Res.getValue(1)); 5176 return 0; 5177 } 5178 case Intrinsic::stackrestore: { 5179 Res = getValue(I.getArgOperand(0)); 5180 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5181 return 0; 5182 } 5183 case Intrinsic::stackprotector: { 5184 // Emit code into the DAG to store the stack guard onto the stack. 5185 MachineFunction &MF = DAG.getMachineFunction(); 5186 MachineFrameInfo *MFI = MF.getFrameInfo(); 5187 EVT PtrTy = TLI->getPointerTy(); 5188 5189 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5190 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5191 5192 int FI = FuncInfo.StaticAllocaMap[Slot]; 5193 MFI->setStackProtectorIndex(FI); 5194 5195 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5196 5197 // Store the stack protector onto the stack. 5198 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5199 MachinePointerInfo::getFixedStack(FI), 5200 true, false, 0); 5201 setValue(&I, Res); 5202 DAG.setRoot(Res); 5203 return 0; 5204 } 5205 case Intrinsic::objectsize: { 5206 // If we don't know by now, we're never going to know. 5207 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5208 5209 assert(CI && "Non-constant type in __builtin_object_size?"); 5210 5211 SDValue Arg = getValue(I.getCalledValue()); 5212 EVT Ty = Arg.getValueType(); 5213 5214 if (CI->isZero()) 5215 Res = DAG.getConstant(-1ULL, Ty); 5216 else 5217 Res = DAG.getConstant(0, Ty); 5218 5219 setValue(&I, Res); 5220 return 0; 5221 } 5222 case Intrinsic::annotation: 5223 case Intrinsic::ptr_annotation: 5224 // Drop the intrinsic, but forward the value 5225 setValue(&I, getValue(I.getOperand(0))); 5226 return 0; 5227 case Intrinsic::var_annotation: 5228 // Discard annotate attributes 5229 return 0; 5230 5231 case Intrinsic::init_trampoline: { 5232 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5233 5234 SDValue Ops[6]; 5235 Ops[0] = getRoot(); 5236 Ops[1] = getValue(I.getArgOperand(0)); 5237 Ops[2] = getValue(I.getArgOperand(1)); 5238 Ops[3] = getValue(I.getArgOperand(2)); 5239 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5240 Ops[5] = DAG.getSrcValue(F); 5241 5242 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5243 5244 DAG.setRoot(Res); 5245 return 0; 5246 } 5247 case Intrinsic::adjust_trampoline: { 5248 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5249 TLI->getPointerTy(), 5250 getValue(I.getArgOperand(0)))); 5251 return 0; 5252 } 5253 case Intrinsic::gcroot: 5254 if (GFI) { 5255 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5256 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5257 5258 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5259 GFI->addStackRoot(FI->getIndex(), TypeMap); 5260 } 5261 return 0; 5262 case Intrinsic::gcread: 5263 case Intrinsic::gcwrite: 5264 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5265 case Intrinsic::flt_rounds: 5266 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5267 return 0; 5268 5269 case Intrinsic::expect: { 5270 // Just replace __builtin_expect(exp, c) with EXP. 5271 setValue(&I, getValue(I.getArgOperand(0))); 5272 return 0; 5273 } 5274 5275 case Intrinsic::debugtrap: 5276 case Intrinsic::trap: { 5277 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5278 if (TrapFuncName.empty()) { 5279 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5280 ISD::TRAP : ISD::DEBUGTRAP; 5281 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5282 return 0; 5283 } 5284 TargetLowering::ArgListTy Args; 5285 TargetLowering:: 5286 CallLoweringInfo CLI(getRoot(), I.getType(), 5287 false, false, false, false, 0, CallingConv::C, 5288 /*isTailCall=*/false, 5289 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5290 DAG.getExternalSymbol(TrapFuncName.data(), 5291 TLI->getPointerTy()), 5292 Args, DAG, sdl); 5293 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5294 DAG.setRoot(Result.second); 5295 return 0; 5296 } 5297 5298 case Intrinsic::uadd_with_overflow: 5299 case Intrinsic::sadd_with_overflow: 5300 case Intrinsic::usub_with_overflow: 5301 case Intrinsic::ssub_with_overflow: 5302 case Intrinsic::umul_with_overflow: 5303 case Intrinsic::smul_with_overflow: { 5304 ISD::NodeType Op; 5305 switch (Intrinsic) { 5306 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5307 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5308 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5309 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5310 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5311 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5312 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5313 } 5314 SDValue Op1 = getValue(I.getArgOperand(0)); 5315 SDValue Op2 = getValue(I.getArgOperand(1)); 5316 5317 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5318 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5319 return 0; 5320 } 5321 case Intrinsic::prefetch: { 5322 SDValue Ops[5]; 5323 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5324 Ops[0] = getRoot(); 5325 Ops[1] = getValue(I.getArgOperand(0)); 5326 Ops[2] = getValue(I.getArgOperand(1)); 5327 Ops[3] = getValue(I.getArgOperand(2)); 5328 Ops[4] = getValue(I.getArgOperand(3)); 5329 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5330 DAG.getVTList(MVT::Other), 5331 &Ops[0], 5, 5332 EVT::getIntegerVT(*Context, 8), 5333 MachinePointerInfo(I.getArgOperand(0)), 5334 0, /* align */ 5335 false, /* volatile */ 5336 rw==0, /* read */ 5337 rw==1)); /* write */ 5338 return 0; 5339 } 5340 case Intrinsic::lifetime_start: 5341 case Intrinsic::lifetime_end: { 5342 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5343 // Stack coloring is not enabled in O0, discard region information. 5344 if (TM.getOptLevel() == CodeGenOpt::None) 5345 return 0; 5346 5347 SmallVector<Value *, 4> Allocas; 5348 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5349 5350 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5351 E = Allocas.end(); Object != E; ++Object) { 5352 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5353 5354 // Could not find an Alloca. 5355 if (!LifetimeObject) 5356 continue; 5357 5358 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5359 5360 SDValue Ops[2]; 5361 Ops[0] = getRoot(); 5362 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5363 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5364 5365 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5366 DAG.setRoot(Res); 5367 } 5368 return 0; 5369 } 5370 case Intrinsic::invariant_start: 5371 // Discard region information. 5372 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5373 return 0; 5374 case Intrinsic::invariant_end: 5375 // Discard region information. 5376 return 0; 5377 case Intrinsic::stackprotectorcheck: { 5378 // Do not actually emit anything for this basic block. Instead we initialize 5379 // the stack protector descriptor and export the guard variable so we can 5380 // access it in FinishBasicBlock. 5381 const BasicBlock *BB = I.getParent(); 5382 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5383 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5384 5385 // Flush our exports since we are going to process a terminator. 5386 (void)getControlRoot(); 5387 return 0; 5388 } 5389 case Intrinsic::clear_cache: 5390 return TLI->getClearCacheBuiltinName(); 5391 case Intrinsic::donothing: 5392 // ignore 5393 return 0; 5394 case Intrinsic::experimental_stackmap: { 5395 visitStackmap(I); 5396 return 0; 5397 } 5398 case Intrinsic::experimental_patchpoint_void: 5399 case Intrinsic::experimental_patchpoint_i64: { 5400 visitPatchpoint(I); 5401 return 0; 5402 } 5403 } 5404 } 5405 5406 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5407 bool isTailCall, 5408 MachineBasicBlock *LandingPad) { 5409 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5410 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5411 Type *RetTy = FTy->getReturnType(); 5412 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5413 MCSymbol *BeginLabel = 0; 5414 5415 TargetLowering::ArgListTy Args; 5416 TargetLowering::ArgListEntry Entry; 5417 Args.reserve(CS.arg_size()); 5418 5419 // Check whether the function can return without sret-demotion. 5420 SmallVector<ISD::OutputArg, 4> Outs; 5421 const TargetLowering *TLI = TM.getTargetLowering(); 5422 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5423 5424 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5425 DAG.getMachineFunction(), 5426 FTy->isVarArg(), Outs, 5427 FTy->getContext()); 5428 5429 SDValue DemoteStackSlot; 5430 int DemoteStackIdx = -100; 5431 5432 if (!CanLowerReturn) { 5433 assert(!CS.hasInAllocaArgument() && 5434 "sret demotion is incompatible with inalloca"); 5435 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5436 FTy->getReturnType()); 5437 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5438 FTy->getReturnType()); 5439 MachineFunction &MF = DAG.getMachineFunction(); 5440 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5441 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5442 5443 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5444 Entry.Node = DemoteStackSlot; 5445 Entry.Ty = StackSlotPtrType; 5446 Entry.isSExt = false; 5447 Entry.isZExt = false; 5448 Entry.isInReg = false; 5449 Entry.isSRet = true; 5450 Entry.isNest = false; 5451 Entry.isByVal = false; 5452 Entry.isReturned = false; 5453 Entry.Alignment = Align; 5454 Args.push_back(Entry); 5455 RetTy = Type::getVoidTy(FTy->getContext()); 5456 } 5457 5458 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5459 i != e; ++i) { 5460 const Value *V = *i; 5461 5462 // Skip empty types 5463 if (V->getType()->isEmptyTy()) 5464 continue; 5465 5466 SDValue ArgNode = getValue(V); 5467 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5468 5469 // Skip the first return-type Attribute to get to params. 5470 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5471 Args.push_back(Entry); 5472 } 5473 5474 if (LandingPad) { 5475 // Insert a label before the invoke call to mark the try range. This can be 5476 // used to detect deletion of the invoke via the MachineModuleInfo. 5477 BeginLabel = MMI.getContext().CreateTempSymbol(); 5478 5479 // For SjLj, keep track of which landing pads go with which invokes 5480 // so as to maintain the ordering of pads in the LSDA. 5481 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5482 if (CallSiteIndex) { 5483 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5484 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5485 5486 // Now that the call site is handled, stop tracking it. 5487 MMI.setCurrentCallSite(0); 5488 } 5489 5490 // Both PendingLoads and PendingExports must be flushed here; 5491 // this call might not return. 5492 (void)getRoot(); 5493 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5494 } 5495 5496 // Check if target-independent constraints permit a tail call here. 5497 // Target-dependent constraints are checked within TLI->LowerCallTo. 5498 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5499 isTailCall = false; 5500 5501 TargetLowering:: 5502 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5503 getCurSDLoc(), CS); 5504 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5505 assert((isTailCall || Result.second.getNode()) && 5506 "Non-null chain expected with non-tail call!"); 5507 assert((Result.second.getNode() || !Result.first.getNode()) && 5508 "Null value expected with tail call!"); 5509 if (Result.first.getNode()) { 5510 setValue(CS.getInstruction(), Result.first); 5511 } else if (!CanLowerReturn && Result.second.getNode()) { 5512 // The instruction result is the result of loading from the 5513 // hidden sret parameter. 5514 SmallVector<EVT, 1> PVTs; 5515 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5516 5517 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5518 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5519 EVT PtrVT = PVTs[0]; 5520 5521 SmallVector<EVT, 4> RetTys; 5522 SmallVector<uint64_t, 4> Offsets; 5523 RetTy = FTy->getReturnType(); 5524 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5525 5526 unsigned NumValues = RetTys.size(); 5527 SmallVector<SDValue, 4> Values(NumValues); 5528 SmallVector<SDValue, 4> Chains(NumValues); 5529 5530 for (unsigned i = 0; i < NumValues; ++i) { 5531 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5532 DemoteStackSlot, 5533 DAG.getConstant(Offsets[i], PtrVT)); 5534 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5535 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5536 false, false, false, 1); 5537 Values[i] = L; 5538 Chains[i] = L.getValue(1); 5539 } 5540 5541 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5542 MVT::Other, &Chains[0], NumValues); 5543 PendingLoads.push_back(Chain); 5544 5545 setValue(CS.getInstruction(), 5546 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5547 DAG.getVTList(&RetTys[0], RetTys.size()), 5548 &Values[0], Values.size())); 5549 } 5550 5551 if (!Result.second.getNode()) { 5552 // As a special case, a null chain means that a tail call has been emitted 5553 // and the DAG root is already updated. 5554 HasTailCall = true; 5555 5556 // Since there's no actual continuation from this block, nothing can be 5557 // relying on us setting vregs for them. 5558 PendingExports.clear(); 5559 } else { 5560 DAG.setRoot(Result.second); 5561 } 5562 5563 if (LandingPad) { 5564 // Insert a label at the end of the invoke call to mark the try range. This 5565 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5566 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5567 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5568 5569 // Inform MachineModuleInfo of range. 5570 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5571 } 5572 } 5573 5574 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5575 /// value is equal or not-equal to zero. 5576 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5577 for (const User *U : V->users()) { 5578 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5579 if (IC->isEquality()) 5580 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5581 if (C->isNullValue()) 5582 continue; 5583 // Unknown instruction. 5584 return false; 5585 } 5586 return true; 5587 } 5588 5589 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5590 Type *LoadTy, 5591 SelectionDAGBuilder &Builder) { 5592 5593 // Check to see if this load can be trivially constant folded, e.g. if the 5594 // input is from a string literal. 5595 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5596 // Cast pointer to the type we really want to load. 5597 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5598 PointerType::getUnqual(LoadTy)); 5599 5600 if (const Constant *LoadCst = 5601 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5602 Builder.DL)) 5603 return Builder.getValue(LoadCst); 5604 } 5605 5606 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5607 // still constant memory, the input chain can be the entry node. 5608 SDValue Root; 5609 bool ConstantMemory = false; 5610 5611 // Do not serialize (non-volatile) loads of constant memory with anything. 5612 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5613 Root = Builder.DAG.getEntryNode(); 5614 ConstantMemory = true; 5615 } else { 5616 // Do not serialize non-volatile loads against each other. 5617 Root = Builder.DAG.getRoot(); 5618 } 5619 5620 SDValue Ptr = Builder.getValue(PtrVal); 5621 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5622 Ptr, MachinePointerInfo(PtrVal), 5623 false /*volatile*/, 5624 false /*nontemporal*/, 5625 false /*isinvariant*/, 1 /* align=1 */); 5626 5627 if (!ConstantMemory) 5628 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5629 return LoadVal; 5630 } 5631 5632 /// processIntegerCallValue - Record the value for an instruction that 5633 /// produces an integer result, converting the type where necessary. 5634 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5635 SDValue Value, 5636 bool IsSigned) { 5637 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5638 if (IsSigned) 5639 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5640 else 5641 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5642 setValue(&I, Value); 5643 } 5644 5645 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5646 /// If so, return true and lower it, otherwise return false and it will be 5647 /// lowered like a normal call. 5648 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5649 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5650 if (I.getNumArgOperands() != 3) 5651 return false; 5652 5653 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5654 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5655 !I.getArgOperand(2)->getType()->isIntegerTy() || 5656 !I.getType()->isIntegerTy()) 5657 return false; 5658 5659 const Value *Size = I.getArgOperand(2); 5660 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5661 if (CSize && CSize->getZExtValue() == 0) { 5662 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5663 setValue(&I, DAG.getConstant(0, CallVT)); 5664 return true; 5665 } 5666 5667 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5668 std::pair<SDValue, SDValue> Res = 5669 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5670 getValue(LHS), getValue(RHS), getValue(Size), 5671 MachinePointerInfo(LHS), 5672 MachinePointerInfo(RHS)); 5673 if (Res.first.getNode()) { 5674 processIntegerCallValue(I, Res.first, true); 5675 PendingLoads.push_back(Res.second); 5676 return true; 5677 } 5678 5679 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5680 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5681 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5682 bool ActuallyDoIt = true; 5683 MVT LoadVT; 5684 Type *LoadTy; 5685 switch (CSize->getZExtValue()) { 5686 default: 5687 LoadVT = MVT::Other; 5688 LoadTy = 0; 5689 ActuallyDoIt = false; 5690 break; 5691 case 2: 5692 LoadVT = MVT::i16; 5693 LoadTy = Type::getInt16Ty(CSize->getContext()); 5694 break; 5695 case 4: 5696 LoadVT = MVT::i32; 5697 LoadTy = Type::getInt32Ty(CSize->getContext()); 5698 break; 5699 case 8: 5700 LoadVT = MVT::i64; 5701 LoadTy = Type::getInt64Ty(CSize->getContext()); 5702 break; 5703 /* 5704 case 16: 5705 LoadVT = MVT::v4i32; 5706 LoadTy = Type::getInt32Ty(CSize->getContext()); 5707 LoadTy = VectorType::get(LoadTy, 4); 5708 break; 5709 */ 5710 } 5711 5712 // This turns into unaligned loads. We only do this if the target natively 5713 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5714 // we'll only produce a small number of byte loads. 5715 5716 // Require that we can find a legal MVT, and only do this if the target 5717 // supports unaligned loads of that type. Expanding into byte loads would 5718 // bloat the code. 5719 const TargetLowering *TLI = TM.getTargetLowering(); 5720 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5721 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5722 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5723 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5724 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5725 if (!TLI->isTypeLegal(LoadVT) || 5726 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5727 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5728 ActuallyDoIt = false; 5729 } 5730 5731 if (ActuallyDoIt) { 5732 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5733 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5734 5735 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5736 ISD::SETNE); 5737 processIntegerCallValue(I, Res, false); 5738 return true; 5739 } 5740 } 5741 5742 5743 return false; 5744 } 5745 5746 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5747 /// form. If so, return true and lower it, otherwise return false and it 5748 /// will be lowered like a normal call. 5749 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5750 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5751 if (I.getNumArgOperands() != 3) 5752 return false; 5753 5754 const Value *Src = I.getArgOperand(0); 5755 const Value *Char = I.getArgOperand(1); 5756 const Value *Length = I.getArgOperand(2); 5757 if (!Src->getType()->isPointerTy() || 5758 !Char->getType()->isIntegerTy() || 5759 !Length->getType()->isIntegerTy() || 5760 !I.getType()->isPointerTy()) 5761 return false; 5762 5763 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5764 std::pair<SDValue, SDValue> Res = 5765 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5766 getValue(Src), getValue(Char), getValue(Length), 5767 MachinePointerInfo(Src)); 5768 if (Res.first.getNode()) { 5769 setValue(&I, Res.first); 5770 PendingLoads.push_back(Res.second); 5771 return true; 5772 } 5773 5774 return false; 5775 } 5776 5777 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5778 /// optimized form. If so, return true and lower it, otherwise return false 5779 /// and it will be lowered like a normal call. 5780 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5781 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5782 if (I.getNumArgOperands() != 2) 5783 return false; 5784 5785 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5786 if (!Arg0->getType()->isPointerTy() || 5787 !Arg1->getType()->isPointerTy() || 5788 !I.getType()->isPointerTy()) 5789 return false; 5790 5791 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5792 std::pair<SDValue, SDValue> Res = 5793 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5794 getValue(Arg0), getValue(Arg1), 5795 MachinePointerInfo(Arg0), 5796 MachinePointerInfo(Arg1), isStpcpy); 5797 if (Res.first.getNode()) { 5798 setValue(&I, Res.first); 5799 DAG.setRoot(Res.second); 5800 return true; 5801 } 5802 5803 return false; 5804 } 5805 5806 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5807 /// If so, return true and lower it, otherwise return false and it will be 5808 /// lowered like a normal call. 5809 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5810 // Verify that the prototype makes sense. int strcmp(void*,void*) 5811 if (I.getNumArgOperands() != 2) 5812 return false; 5813 5814 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5815 if (!Arg0->getType()->isPointerTy() || 5816 !Arg1->getType()->isPointerTy() || 5817 !I.getType()->isIntegerTy()) 5818 return false; 5819 5820 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5821 std::pair<SDValue, SDValue> Res = 5822 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5823 getValue(Arg0), getValue(Arg1), 5824 MachinePointerInfo(Arg0), 5825 MachinePointerInfo(Arg1)); 5826 if (Res.first.getNode()) { 5827 processIntegerCallValue(I, Res.first, true); 5828 PendingLoads.push_back(Res.second); 5829 return true; 5830 } 5831 5832 return false; 5833 } 5834 5835 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5836 /// form. If so, return true and lower it, otherwise return false and it 5837 /// will be lowered like a normal call. 5838 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5839 // Verify that the prototype makes sense. size_t strlen(char *) 5840 if (I.getNumArgOperands() != 1) 5841 return false; 5842 5843 const Value *Arg0 = I.getArgOperand(0); 5844 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5845 return false; 5846 5847 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5848 std::pair<SDValue, SDValue> Res = 5849 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5850 getValue(Arg0), MachinePointerInfo(Arg0)); 5851 if (Res.first.getNode()) { 5852 processIntegerCallValue(I, Res.first, false); 5853 PendingLoads.push_back(Res.second); 5854 return true; 5855 } 5856 5857 return false; 5858 } 5859 5860 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5861 /// form. If so, return true and lower it, otherwise return false and it 5862 /// will be lowered like a normal call. 5863 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5864 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5865 if (I.getNumArgOperands() != 2) 5866 return false; 5867 5868 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5869 if (!Arg0->getType()->isPointerTy() || 5870 !Arg1->getType()->isIntegerTy() || 5871 !I.getType()->isIntegerTy()) 5872 return false; 5873 5874 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5875 std::pair<SDValue, SDValue> Res = 5876 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5877 getValue(Arg0), getValue(Arg1), 5878 MachinePointerInfo(Arg0)); 5879 if (Res.first.getNode()) { 5880 processIntegerCallValue(I, Res.first, false); 5881 PendingLoads.push_back(Res.second); 5882 return true; 5883 } 5884 5885 return false; 5886 } 5887 5888 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5889 /// operation (as expected), translate it to an SDNode with the specified opcode 5890 /// and return true. 5891 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5892 unsigned Opcode) { 5893 // Sanity check that it really is a unary floating-point call. 5894 if (I.getNumArgOperands() != 1 || 5895 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5896 I.getType() != I.getArgOperand(0)->getType() || 5897 !I.onlyReadsMemory()) 5898 return false; 5899 5900 SDValue Tmp = getValue(I.getArgOperand(0)); 5901 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5902 return true; 5903 } 5904 5905 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5906 // Handle inline assembly differently. 5907 if (isa<InlineAsm>(I.getCalledValue())) { 5908 visitInlineAsm(&I); 5909 return; 5910 } 5911 5912 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5913 ComputeUsesVAFloatArgument(I, &MMI); 5914 5915 const char *RenameFn = 0; 5916 if (Function *F = I.getCalledFunction()) { 5917 if (F->isDeclaration()) { 5918 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5919 if (unsigned IID = II->getIntrinsicID(F)) { 5920 RenameFn = visitIntrinsicCall(I, IID); 5921 if (!RenameFn) 5922 return; 5923 } 5924 } 5925 if (unsigned IID = F->getIntrinsicID()) { 5926 RenameFn = visitIntrinsicCall(I, IID); 5927 if (!RenameFn) 5928 return; 5929 } 5930 } 5931 5932 // Check for well-known libc/libm calls. If the function is internal, it 5933 // can't be a library call. 5934 LibFunc::Func Func; 5935 if (!F->hasLocalLinkage() && F->hasName() && 5936 LibInfo->getLibFunc(F->getName(), Func) && 5937 LibInfo->hasOptimizedCodeGen(Func)) { 5938 switch (Func) { 5939 default: break; 5940 case LibFunc::copysign: 5941 case LibFunc::copysignf: 5942 case LibFunc::copysignl: 5943 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5944 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5945 I.getType() == I.getArgOperand(0)->getType() && 5946 I.getType() == I.getArgOperand(1)->getType() && 5947 I.onlyReadsMemory()) { 5948 SDValue LHS = getValue(I.getArgOperand(0)); 5949 SDValue RHS = getValue(I.getArgOperand(1)); 5950 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5951 LHS.getValueType(), LHS, RHS)); 5952 return; 5953 } 5954 break; 5955 case LibFunc::fabs: 5956 case LibFunc::fabsf: 5957 case LibFunc::fabsl: 5958 if (visitUnaryFloatCall(I, ISD::FABS)) 5959 return; 5960 break; 5961 case LibFunc::sin: 5962 case LibFunc::sinf: 5963 case LibFunc::sinl: 5964 if (visitUnaryFloatCall(I, ISD::FSIN)) 5965 return; 5966 break; 5967 case LibFunc::cos: 5968 case LibFunc::cosf: 5969 case LibFunc::cosl: 5970 if (visitUnaryFloatCall(I, ISD::FCOS)) 5971 return; 5972 break; 5973 case LibFunc::sqrt: 5974 case LibFunc::sqrtf: 5975 case LibFunc::sqrtl: 5976 case LibFunc::sqrt_finite: 5977 case LibFunc::sqrtf_finite: 5978 case LibFunc::sqrtl_finite: 5979 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5980 return; 5981 break; 5982 case LibFunc::floor: 5983 case LibFunc::floorf: 5984 case LibFunc::floorl: 5985 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5986 return; 5987 break; 5988 case LibFunc::nearbyint: 5989 case LibFunc::nearbyintf: 5990 case LibFunc::nearbyintl: 5991 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5992 return; 5993 break; 5994 case LibFunc::ceil: 5995 case LibFunc::ceilf: 5996 case LibFunc::ceill: 5997 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5998 return; 5999 break; 6000 case LibFunc::rint: 6001 case LibFunc::rintf: 6002 case LibFunc::rintl: 6003 if (visitUnaryFloatCall(I, ISD::FRINT)) 6004 return; 6005 break; 6006 case LibFunc::round: 6007 case LibFunc::roundf: 6008 case LibFunc::roundl: 6009 if (visitUnaryFloatCall(I, ISD::FROUND)) 6010 return; 6011 break; 6012 case LibFunc::trunc: 6013 case LibFunc::truncf: 6014 case LibFunc::truncl: 6015 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6016 return; 6017 break; 6018 case LibFunc::log2: 6019 case LibFunc::log2f: 6020 case LibFunc::log2l: 6021 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6022 return; 6023 break; 6024 case LibFunc::exp2: 6025 case LibFunc::exp2f: 6026 case LibFunc::exp2l: 6027 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6028 return; 6029 break; 6030 case LibFunc::memcmp: 6031 if (visitMemCmpCall(I)) 6032 return; 6033 break; 6034 case LibFunc::memchr: 6035 if (visitMemChrCall(I)) 6036 return; 6037 break; 6038 case LibFunc::strcpy: 6039 if (visitStrCpyCall(I, false)) 6040 return; 6041 break; 6042 case LibFunc::stpcpy: 6043 if (visitStrCpyCall(I, true)) 6044 return; 6045 break; 6046 case LibFunc::strcmp: 6047 if (visitStrCmpCall(I)) 6048 return; 6049 break; 6050 case LibFunc::strlen: 6051 if (visitStrLenCall(I)) 6052 return; 6053 break; 6054 case LibFunc::strnlen: 6055 if (visitStrNLenCall(I)) 6056 return; 6057 break; 6058 } 6059 } 6060 } 6061 6062 SDValue Callee; 6063 if (!RenameFn) 6064 Callee = getValue(I.getCalledValue()); 6065 else 6066 Callee = DAG.getExternalSymbol(RenameFn, 6067 TM.getTargetLowering()->getPointerTy()); 6068 6069 // Check if we can potentially perform a tail call. More detailed checking is 6070 // be done within LowerCallTo, after more information about the call is known. 6071 LowerCallTo(&I, Callee, I.isTailCall()); 6072 } 6073 6074 namespace { 6075 6076 /// AsmOperandInfo - This contains information for each constraint that we are 6077 /// lowering. 6078 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6079 public: 6080 /// CallOperand - If this is the result output operand or a clobber 6081 /// this is null, otherwise it is the incoming operand to the CallInst. 6082 /// This gets modified as the asm is processed. 6083 SDValue CallOperand; 6084 6085 /// AssignedRegs - If this is a register or register class operand, this 6086 /// contains the set of register corresponding to the operand. 6087 RegsForValue AssignedRegs; 6088 6089 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6090 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 6091 } 6092 6093 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6094 /// corresponds to. If there is no Value* for this operand, it returns 6095 /// MVT::Other. 6096 EVT getCallOperandValEVT(LLVMContext &Context, 6097 const TargetLowering &TLI, 6098 const DataLayout *DL) const { 6099 if (CallOperandVal == 0) return MVT::Other; 6100 6101 if (isa<BasicBlock>(CallOperandVal)) 6102 return TLI.getPointerTy(); 6103 6104 llvm::Type *OpTy = CallOperandVal->getType(); 6105 6106 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6107 // If this is an indirect operand, the operand is a pointer to the 6108 // accessed type. 6109 if (isIndirect) { 6110 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6111 if (!PtrTy) 6112 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6113 OpTy = PtrTy->getElementType(); 6114 } 6115 6116 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6117 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6118 if (STy->getNumElements() == 1) 6119 OpTy = STy->getElementType(0); 6120 6121 // If OpTy is not a single value, it may be a struct/union that we 6122 // can tile with integers. 6123 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6124 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6125 switch (BitSize) { 6126 default: break; 6127 case 1: 6128 case 8: 6129 case 16: 6130 case 32: 6131 case 64: 6132 case 128: 6133 OpTy = IntegerType::get(Context, BitSize); 6134 break; 6135 } 6136 } 6137 6138 return TLI.getValueType(OpTy, true); 6139 } 6140 }; 6141 6142 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6143 6144 } // end anonymous namespace 6145 6146 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6147 /// specified operand. We prefer to assign virtual registers, to allow the 6148 /// register allocator to handle the assignment process. However, if the asm 6149 /// uses features that we can't model on machineinstrs, we have SDISel do the 6150 /// allocation. This produces generally horrible, but correct, code. 6151 /// 6152 /// OpInfo describes the operand. 6153 /// 6154 static void GetRegistersForValue(SelectionDAG &DAG, 6155 const TargetLowering &TLI, 6156 SDLoc DL, 6157 SDISelAsmOperandInfo &OpInfo) { 6158 LLVMContext &Context = *DAG.getContext(); 6159 6160 MachineFunction &MF = DAG.getMachineFunction(); 6161 SmallVector<unsigned, 4> Regs; 6162 6163 // If this is a constraint for a single physreg, or a constraint for a 6164 // register class, find it. 6165 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6166 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6167 OpInfo.ConstraintVT); 6168 6169 unsigned NumRegs = 1; 6170 if (OpInfo.ConstraintVT != MVT::Other) { 6171 // If this is a FP input in an integer register (or visa versa) insert a bit 6172 // cast of the input value. More generally, handle any case where the input 6173 // value disagrees with the register class we plan to stick this in. 6174 if (OpInfo.Type == InlineAsm::isInput && 6175 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6176 // Try to convert to the first EVT that the reg class contains. If the 6177 // types are identical size, use a bitcast to convert (e.g. two differing 6178 // vector types). 6179 MVT RegVT = *PhysReg.second->vt_begin(); 6180 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6181 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6182 RegVT, OpInfo.CallOperand); 6183 OpInfo.ConstraintVT = RegVT; 6184 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6185 // If the input is a FP value and we want it in FP registers, do a 6186 // bitcast to the corresponding integer type. This turns an f64 value 6187 // into i64, which can be passed with two i32 values on a 32-bit 6188 // machine. 6189 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6190 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6191 RegVT, OpInfo.CallOperand); 6192 OpInfo.ConstraintVT = RegVT; 6193 } 6194 } 6195 6196 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6197 } 6198 6199 MVT RegVT; 6200 EVT ValueVT = OpInfo.ConstraintVT; 6201 6202 // If this is a constraint for a specific physical register, like {r17}, 6203 // assign it now. 6204 if (unsigned AssignedReg = PhysReg.first) { 6205 const TargetRegisterClass *RC = PhysReg.second; 6206 if (OpInfo.ConstraintVT == MVT::Other) 6207 ValueVT = *RC->vt_begin(); 6208 6209 // Get the actual register value type. This is important, because the user 6210 // may have asked for (e.g.) the AX register in i32 type. We need to 6211 // remember that AX is actually i16 to get the right extension. 6212 RegVT = *RC->vt_begin(); 6213 6214 // This is a explicit reference to a physical register. 6215 Regs.push_back(AssignedReg); 6216 6217 // If this is an expanded reference, add the rest of the regs to Regs. 6218 if (NumRegs != 1) { 6219 TargetRegisterClass::iterator I = RC->begin(); 6220 for (; *I != AssignedReg; ++I) 6221 assert(I != RC->end() && "Didn't find reg!"); 6222 6223 // Already added the first reg. 6224 --NumRegs; ++I; 6225 for (; NumRegs; --NumRegs, ++I) { 6226 assert(I != RC->end() && "Ran out of registers to allocate!"); 6227 Regs.push_back(*I); 6228 } 6229 } 6230 6231 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6232 return; 6233 } 6234 6235 // Otherwise, if this was a reference to an LLVM register class, create vregs 6236 // for this reference. 6237 if (const TargetRegisterClass *RC = PhysReg.second) { 6238 RegVT = *RC->vt_begin(); 6239 if (OpInfo.ConstraintVT == MVT::Other) 6240 ValueVT = RegVT; 6241 6242 // Create the appropriate number of virtual registers. 6243 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6244 for (; NumRegs; --NumRegs) 6245 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6246 6247 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6248 return; 6249 } 6250 6251 // Otherwise, we couldn't allocate enough registers for this. 6252 } 6253 6254 /// visitInlineAsm - Handle a call to an InlineAsm object. 6255 /// 6256 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6257 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6258 6259 /// ConstraintOperands - Information about all of the constraints. 6260 SDISelAsmOperandInfoVector ConstraintOperands; 6261 6262 const TargetLowering *TLI = TM.getTargetLowering(); 6263 TargetLowering::AsmOperandInfoVector 6264 TargetConstraints = TLI->ParseConstraints(CS); 6265 6266 bool hasMemory = false; 6267 6268 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6269 unsigned ResNo = 0; // ResNo - The result number of the next output. 6270 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6271 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6272 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6273 6274 MVT OpVT = MVT::Other; 6275 6276 // Compute the value type for each operand. 6277 switch (OpInfo.Type) { 6278 case InlineAsm::isOutput: 6279 // Indirect outputs just consume an argument. 6280 if (OpInfo.isIndirect) { 6281 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6282 break; 6283 } 6284 6285 // The return value of the call is this value. As such, there is no 6286 // corresponding argument. 6287 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6288 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6289 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6290 } else { 6291 assert(ResNo == 0 && "Asm only has one result!"); 6292 OpVT = TLI->getSimpleValueType(CS.getType()); 6293 } 6294 ++ResNo; 6295 break; 6296 case InlineAsm::isInput: 6297 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6298 break; 6299 case InlineAsm::isClobber: 6300 // Nothing to do. 6301 break; 6302 } 6303 6304 // If this is an input or an indirect output, process the call argument. 6305 // BasicBlocks are labels, currently appearing only in asm's. 6306 if (OpInfo.CallOperandVal) { 6307 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6308 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6309 } else { 6310 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6311 } 6312 6313 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6314 getSimpleVT(); 6315 } 6316 6317 OpInfo.ConstraintVT = OpVT; 6318 6319 // Indirect operand accesses access memory. 6320 if (OpInfo.isIndirect) 6321 hasMemory = true; 6322 else { 6323 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6324 TargetLowering::ConstraintType 6325 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6326 if (CType == TargetLowering::C_Memory) { 6327 hasMemory = true; 6328 break; 6329 } 6330 } 6331 } 6332 } 6333 6334 SDValue Chain, Flag; 6335 6336 // We won't need to flush pending loads if this asm doesn't touch 6337 // memory and is nonvolatile. 6338 if (hasMemory || IA->hasSideEffects()) 6339 Chain = getRoot(); 6340 else 6341 Chain = DAG.getRoot(); 6342 6343 // Second pass over the constraints: compute which constraint option to use 6344 // and assign registers to constraints that want a specific physreg. 6345 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6346 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6347 6348 // If this is an output operand with a matching input operand, look up the 6349 // matching input. If their types mismatch, e.g. one is an integer, the 6350 // other is floating point, or their sizes are different, flag it as an 6351 // error. 6352 if (OpInfo.hasMatchingInput()) { 6353 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6354 6355 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6356 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6357 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6358 OpInfo.ConstraintVT); 6359 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6360 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6361 Input.ConstraintVT); 6362 if ((OpInfo.ConstraintVT.isInteger() != 6363 Input.ConstraintVT.isInteger()) || 6364 (MatchRC.second != InputRC.second)) { 6365 report_fatal_error("Unsupported asm: input constraint" 6366 " with a matching output constraint of" 6367 " incompatible type!"); 6368 } 6369 Input.ConstraintVT = OpInfo.ConstraintVT; 6370 } 6371 } 6372 6373 // Compute the constraint code and ConstraintType to use. 6374 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6375 6376 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6377 OpInfo.Type == InlineAsm::isClobber) 6378 continue; 6379 6380 // If this is a memory input, and if the operand is not indirect, do what we 6381 // need to to provide an address for the memory input. 6382 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6383 !OpInfo.isIndirect) { 6384 assert((OpInfo.isMultipleAlternative || 6385 (OpInfo.Type == InlineAsm::isInput)) && 6386 "Can only indirectify direct input operands!"); 6387 6388 // Memory operands really want the address of the value. If we don't have 6389 // an indirect input, put it in the constpool if we can, otherwise spill 6390 // it to a stack slot. 6391 // TODO: This isn't quite right. We need to handle these according to 6392 // the addressing mode that the constraint wants. Also, this may take 6393 // an additional register for the computation and we don't want that 6394 // either. 6395 6396 // If the operand is a float, integer, or vector constant, spill to a 6397 // constant pool entry to get its address. 6398 const Value *OpVal = OpInfo.CallOperandVal; 6399 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6400 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6401 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6402 TLI->getPointerTy()); 6403 } else { 6404 // Otherwise, create a stack slot and emit a store to it before the 6405 // asm. 6406 Type *Ty = OpVal->getType(); 6407 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6408 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6409 MachineFunction &MF = DAG.getMachineFunction(); 6410 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6411 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6412 Chain = DAG.getStore(Chain, getCurSDLoc(), 6413 OpInfo.CallOperand, StackSlot, 6414 MachinePointerInfo::getFixedStack(SSFI), 6415 false, false, 0); 6416 OpInfo.CallOperand = StackSlot; 6417 } 6418 6419 // There is no longer a Value* corresponding to this operand. 6420 OpInfo.CallOperandVal = 0; 6421 6422 // It is now an indirect operand. 6423 OpInfo.isIndirect = true; 6424 } 6425 6426 // If this constraint is for a specific register, allocate it before 6427 // anything else. 6428 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6429 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6430 } 6431 6432 // Second pass - Loop over all of the operands, assigning virtual or physregs 6433 // to register class operands. 6434 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6435 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6436 6437 // C_Register operands have already been allocated, Other/Memory don't need 6438 // to be. 6439 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6440 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6441 } 6442 6443 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6444 std::vector<SDValue> AsmNodeOperands; 6445 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6446 AsmNodeOperands.push_back( 6447 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6448 TLI->getPointerTy())); 6449 6450 // If we have a !srcloc metadata node associated with it, we want to attach 6451 // this to the ultimately generated inline asm machineinstr. To do this, we 6452 // pass in the third operand as this (potentially null) inline asm MDNode. 6453 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6454 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6455 6456 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6457 // bits as operand 3. 6458 unsigned ExtraInfo = 0; 6459 if (IA->hasSideEffects()) 6460 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6461 if (IA->isAlignStack()) 6462 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6463 // Set the asm dialect. 6464 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6465 6466 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6467 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6468 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6469 6470 // Compute the constraint code and ConstraintType to use. 6471 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6472 6473 // Ideally, we would only check against memory constraints. However, the 6474 // meaning of an other constraint can be target-specific and we can't easily 6475 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6476 // for other constriants as well. 6477 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6478 OpInfo.ConstraintType == TargetLowering::C_Other) { 6479 if (OpInfo.Type == InlineAsm::isInput) 6480 ExtraInfo |= InlineAsm::Extra_MayLoad; 6481 else if (OpInfo.Type == InlineAsm::isOutput) 6482 ExtraInfo |= InlineAsm::Extra_MayStore; 6483 else if (OpInfo.Type == InlineAsm::isClobber) 6484 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6485 } 6486 } 6487 6488 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6489 TLI->getPointerTy())); 6490 6491 // Loop over all of the inputs, copying the operand values into the 6492 // appropriate registers and processing the output regs. 6493 RegsForValue RetValRegs; 6494 6495 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6496 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6497 6498 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6499 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6500 6501 switch (OpInfo.Type) { 6502 case InlineAsm::isOutput: { 6503 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6504 OpInfo.ConstraintType != TargetLowering::C_Register) { 6505 // Memory output, or 'other' output (e.g. 'X' constraint). 6506 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6507 6508 // Add information to the INLINEASM node to know about this output. 6509 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6510 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6511 TLI->getPointerTy())); 6512 AsmNodeOperands.push_back(OpInfo.CallOperand); 6513 break; 6514 } 6515 6516 // Otherwise, this is a register or register class output. 6517 6518 // Copy the output from the appropriate register. Find a register that 6519 // we can use. 6520 if (OpInfo.AssignedRegs.Regs.empty()) { 6521 LLVMContext &Ctx = *DAG.getContext(); 6522 Ctx.emitError(CS.getInstruction(), 6523 "couldn't allocate output register for constraint '" + 6524 Twine(OpInfo.ConstraintCode) + "'"); 6525 return; 6526 } 6527 6528 // If this is an indirect operand, store through the pointer after the 6529 // asm. 6530 if (OpInfo.isIndirect) { 6531 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6532 OpInfo.CallOperandVal)); 6533 } else { 6534 // This is the result value of the call. 6535 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6536 // Concatenate this output onto the outputs list. 6537 RetValRegs.append(OpInfo.AssignedRegs); 6538 } 6539 6540 // Add information to the INLINEASM node to know that this register is 6541 // set. 6542 OpInfo.AssignedRegs 6543 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6544 ? InlineAsm::Kind_RegDefEarlyClobber 6545 : InlineAsm::Kind_RegDef, 6546 false, 0, DAG, AsmNodeOperands); 6547 break; 6548 } 6549 case InlineAsm::isInput: { 6550 SDValue InOperandVal = OpInfo.CallOperand; 6551 6552 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6553 // If this is required to match an output register we have already set, 6554 // just use its register. 6555 unsigned OperandNo = OpInfo.getMatchedOperand(); 6556 6557 // Scan until we find the definition we already emitted of this operand. 6558 // When we find it, create a RegsForValue operand. 6559 unsigned CurOp = InlineAsm::Op_FirstOperand; 6560 for (; OperandNo; --OperandNo) { 6561 // Advance to the next operand. 6562 unsigned OpFlag = 6563 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6564 assert((InlineAsm::isRegDefKind(OpFlag) || 6565 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6566 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6567 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6568 } 6569 6570 unsigned OpFlag = 6571 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6572 if (InlineAsm::isRegDefKind(OpFlag) || 6573 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6574 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6575 if (OpInfo.isIndirect) { 6576 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6577 LLVMContext &Ctx = *DAG.getContext(); 6578 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6579 " don't know how to handle tied " 6580 "indirect register inputs"); 6581 return; 6582 } 6583 6584 RegsForValue MatchedRegs; 6585 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6586 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6587 MatchedRegs.RegVTs.push_back(RegVT); 6588 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6589 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6590 i != e; ++i) { 6591 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6592 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6593 else { 6594 LLVMContext &Ctx = *DAG.getContext(); 6595 Ctx.emitError(CS.getInstruction(), 6596 "inline asm error: This value" 6597 " type register class is not natively supported!"); 6598 return; 6599 } 6600 } 6601 // Use the produced MatchedRegs object to 6602 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6603 Chain, &Flag, CS.getInstruction()); 6604 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6605 true, OpInfo.getMatchedOperand(), 6606 DAG, AsmNodeOperands); 6607 break; 6608 } 6609 6610 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6611 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6612 "Unexpected number of operands"); 6613 // Add information to the INLINEASM node to know about this input. 6614 // See InlineAsm.h isUseOperandTiedToDef. 6615 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6616 OpInfo.getMatchedOperand()); 6617 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6618 TLI->getPointerTy())); 6619 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6620 break; 6621 } 6622 6623 // Treat indirect 'X' constraint as memory. 6624 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6625 OpInfo.isIndirect) 6626 OpInfo.ConstraintType = TargetLowering::C_Memory; 6627 6628 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6629 std::vector<SDValue> Ops; 6630 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6631 Ops, DAG); 6632 if (Ops.empty()) { 6633 LLVMContext &Ctx = *DAG.getContext(); 6634 Ctx.emitError(CS.getInstruction(), 6635 "invalid operand for inline asm constraint '" + 6636 Twine(OpInfo.ConstraintCode) + "'"); 6637 return; 6638 } 6639 6640 // Add information to the INLINEASM node to know about this input. 6641 unsigned ResOpType = 6642 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6643 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6644 TLI->getPointerTy())); 6645 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6646 break; 6647 } 6648 6649 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6650 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6651 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6652 "Memory operands expect pointer values"); 6653 6654 // Add information to the INLINEASM node to know about this input. 6655 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6656 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6657 TLI->getPointerTy())); 6658 AsmNodeOperands.push_back(InOperandVal); 6659 break; 6660 } 6661 6662 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6663 OpInfo.ConstraintType == TargetLowering::C_Register) && 6664 "Unknown constraint type!"); 6665 6666 // TODO: Support this. 6667 if (OpInfo.isIndirect) { 6668 LLVMContext &Ctx = *DAG.getContext(); 6669 Ctx.emitError(CS.getInstruction(), 6670 "Don't know how to handle indirect register inputs yet " 6671 "for constraint '" + 6672 Twine(OpInfo.ConstraintCode) + "'"); 6673 return; 6674 } 6675 6676 // Copy the input into the appropriate registers. 6677 if (OpInfo.AssignedRegs.Regs.empty()) { 6678 LLVMContext &Ctx = *DAG.getContext(); 6679 Ctx.emitError(CS.getInstruction(), 6680 "couldn't allocate input reg for constraint '" + 6681 Twine(OpInfo.ConstraintCode) + "'"); 6682 return; 6683 } 6684 6685 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6686 Chain, &Flag, CS.getInstruction()); 6687 6688 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6689 DAG, AsmNodeOperands); 6690 break; 6691 } 6692 case InlineAsm::isClobber: { 6693 // Add the clobbered value to the operand list, so that the register 6694 // allocator is aware that the physreg got clobbered. 6695 if (!OpInfo.AssignedRegs.Regs.empty()) 6696 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6697 false, 0, DAG, 6698 AsmNodeOperands); 6699 break; 6700 } 6701 } 6702 } 6703 6704 // Finish up input operands. Set the input chain and add the flag last. 6705 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6706 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6707 6708 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6709 DAG.getVTList(MVT::Other, MVT::Glue), 6710 &AsmNodeOperands[0], AsmNodeOperands.size()); 6711 Flag = Chain.getValue(1); 6712 6713 // If this asm returns a register value, copy the result from that register 6714 // and set it as the value of the call. 6715 if (!RetValRegs.Regs.empty()) { 6716 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6717 Chain, &Flag, CS.getInstruction()); 6718 6719 // FIXME: Why don't we do this for inline asms with MRVs? 6720 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6721 EVT ResultType = TLI->getValueType(CS.getType()); 6722 6723 // If any of the results of the inline asm is a vector, it may have the 6724 // wrong width/num elts. This can happen for register classes that can 6725 // contain multiple different value types. The preg or vreg allocated may 6726 // not have the same VT as was expected. Convert it to the right type 6727 // with bit_convert. 6728 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6729 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6730 ResultType, Val); 6731 6732 } else if (ResultType != Val.getValueType() && 6733 ResultType.isInteger() && Val.getValueType().isInteger()) { 6734 // If a result value was tied to an input value, the computed result may 6735 // have a wider width than the expected result. Extract the relevant 6736 // portion. 6737 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6738 } 6739 6740 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6741 } 6742 6743 setValue(CS.getInstruction(), Val); 6744 // Don't need to use this as a chain in this case. 6745 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6746 return; 6747 } 6748 6749 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6750 6751 // Process indirect outputs, first output all of the flagged copies out of 6752 // physregs. 6753 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6754 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6755 const Value *Ptr = IndirectStoresToEmit[i].second; 6756 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6757 Chain, &Flag, IA); 6758 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6759 } 6760 6761 // Emit the non-flagged stores from the physregs. 6762 SmallVector<SDValue, 8> OutChains; 6763 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6764 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6765 StoresToEmit[i].first, 6766 getValue(StoresToEmit[i].second), 6767 MachinePointerInfo(StoresToEmit[i].second), 6768 false, false, 0); 6769 OutChains.push_back(Val); 6770 } 6771 6772 if (!OutChains.empty()) 6773 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6774 &OutChains[0], OutChains.size()); 6775 6776 DAG.setRoot(Chain); 6777 } 6778 6779 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6780 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6781 MVT::Other, getRoot(), 6782 getValue(I.getArgOperand(0)), 6783 DAG.getSrcValue(I.getArgOperand(0)))); 6784 } 6785 6786 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6787 const TargetLowering *TLI = TM.getTargetLowering(); 6788 const DataLayout &DL = *TLI->getDataLayout(); 6789 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6790 getRoot(), getValue(I.getOperand(0)), 6791 DAG.getSrcValue(I.getOperand(0)), 6792 DL.getABITypeAlignment(I.getType())); 6793 setValue(&I, V); 6794 DAG.setRoot(V.getValue(1)); 6795 } 6796 6797 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6798 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6799 MVT::Other, getRoot(), 6800 getValue(I.getArgOperand(0)), 6801 DAG.getSrcValue(I.getArgOperand(0)))); 6802 } 6803 6804 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6805 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6806 MVT::Other, getRoot(), 6807 getValue(I.getArgOperand(0)), 6808 getValue(I.getArgOperand(1)), 6809 DAG.getSrcValue(I.getArgOperand(0)), 6810 DAG.getSrcValue(I.getArgOperand(1)))); 6811 } 6812 6813 /// \brief Lower an argument list according to the target calling convention. 6814 /// 6815 /// \return A tuple of <return-value, token-chain> 6816 /// 6817 /// This is a helper for lowering intrinsics that follow a target calling 6818 /// convention or require stack pointer adjustment. Only a subset of the 6819 /// intrinsic's operands need to participate in the calling convention. 6820 std::pair<SDValue, SDValue> 6821 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6822 unsigned NumArgs, SDValue Callee, 6823 bool useVoidTy) { 6824 TargetLowering::ArgListTy Args; 6825 Args.reserve(NumArgs); 6826 6827 // Populate the argument list. 6828 // Attributes for args start at offset 1, after the return attribute. 6829 ImmutableCallSite CS(&CI); 6830 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6831 ArgI != ArgE; ++ArgI) { 6832 const Value *V = CI.getOperand(ArgI); 6833 6834 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6835 6836 TargetLowering::ArgListEntry Entry; 6837 Entry.Node = getValue(V); 6838 Entry.Ty = V->getType(); 6839 Entry.setAttributes(&CS, AttrI); 6840 Args.push_back(Entry); 6841 } 6842 6843 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6844 TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, 6845 /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, 6846 CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, 6847 /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); 6848 6849 const TargetLowering *TLI = TM.getTargetLowering(); 6850 return TLI->LowerCallTo(CLI); 6851 } 6852 6853 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6854 /// or patchpoint target node's operand list. 6855 /// 6856 /// Constants are converted to TargetConstants purely as an optimization to 6857 /// avoid constant materialization and register allocation. 6858 /// 6859 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6860 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6861 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6862 /// address materialization and register allocation, but may also be required 6863 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6864 /// alloca in the entry block, then the runtime may assume that the alloca's 6865 /// StackMap location can be read immediately after compilation and that the 6866 /// location is valid at any point during execution (this is similar to the 6867 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6868 /// only available in a register, then the runtime would need to trap when 6869 /// execution reaches the StackMap in order to read the alloca's location. 6870 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6871 SmallVectorImpl<SDValue> &Ops, 6872 SelectionDAGBuilder &Builder) { 6873 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6874 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6875 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6876 Ops.push_back( 6877 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6878 Ops.push_back( 6879 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6880 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6881 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6882 Ops.push_back( 6883 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6884 } else 6885 Ops.push_back(OpVal); 6886 } 6887 } 6888 6889 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6890 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6891 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6892 // [live variables...]) 6893 6894 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6895 6896 SDValue Chain, InFlag, Callee, NullPtr; 6897 SmallVector<SDValue, 32> Ops; 6898 6899 SDLoc DL = getCurSDLoc(); 6900 Callee = getValue(CI.getCalledValue()); 6901 NullPtr = DAG.getIntPtrConstant(0, true); 6902 6903 // The stackmap intrinsic only records the live variables (the arguemnts 6904 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6905 // intrinsic, this won't be lowered to a function call. This means we don't 6906 // have to worry about calling conventions and target specific lowering code. 6907 // Instead we perform the call lowering right here. 6908 // 6909 // chain, flag = CALLSEQ_START(chain, 0) 6910 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6911 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6912 // 6913 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6914 InFlag = Chain.getValue(1); 6915 6916 // Add the <id> and <numBytes> constants. 6917 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6918 Ops.push_back(DAG.getTargetConstant( 6919 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6920 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6921 Ops.push_back(DAG.getTargetConstant( 6922 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6923 6924 // Push live variables for the stack map. 6925 addStackMapLiveVars(CI, 2, Ops, *this); 6926 6927 // We are not pushing any register mask info here on the operands list, 6928 // because the stackmap doesn't clobber anything. 6929 6930 // Push the chain and the glue flag. 6931 Ops.push_back(Chain); 6932 Ops.push_back(InFlag); 6933 6934 // Create the STACKMAP node. 6935 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6936 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6937 Chain = SDValue(SM, 0); 6938 InFlag = Chain.getValue(1); 6939 6940 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6941 6942 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6943 6944 // Set the root to the target-lowered call chain. 6945 DAG.setRoot(Chain); 6946 6947 // Inform the Frame Information that we have a stackmap in this function. 6948 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6949 } 6950 6951 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6952 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6953 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6954 // i32 <numBytes>, 6955 // i8* <target>, 6956 // i32 <numArgs>, 6957 // [Args...], 6958 // [live variables...]) 6959 6960 CallingConv::ID CC = CI.getCallingConv(); 6961 bool isAnyRegCC = CC == CallingConv::AnyReg; 6962 bool hasDef = !CI.getType()->isVoidTy(); 6963 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6964 6965 // Get the real number of arguments participating in the call <numArgs> 6966 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6967 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6968 6969 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6970 // Intrinsics include all meta-operands up to but not including CC. 6971 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6972 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6973 "Not enough arguments provided to the patchpoint intrinsic"); 6974 6975 // For AnyRegCC the arguments are lowered later on manually. 6976 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6977 std::pair<SDValue, SDValue> Result = 6978 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6979 6980 // Set the root to the target-lowered call chain. 6981 SDValue Chain = Result.second; 6982 DAG.setRoot(Chain); 6983 6984 SDNode *CallEnd = Chain.getNode(); 6985 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6986 CallEnd = CallEnd->getOperand(0).getNode(); 6987 6988 /// Get a call instruction from the call sequence chain. 6989 /// Tail calls are not allowed. 6990 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6991 "Expected a callseq node."); 6992 SDNode *Call = CallEnd->getOperand(0).getNode(); 6993 bool hasGlue = Call->getGluedNode(); 6994 6995 // Replace the target specific call node with the patchable intrinsic. 6996 SmallVector<SDValue, 8> Ops; 6997 6998 // Add the <id> and <numBytes> constants. 6999 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7000 Ops.push_back(DAG.getTargetConstant( 7001 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7002 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7003 Ops.push_back(DAG.getTargetConstant( 7004 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7005 7006 // Assume that the Callee is a constant address. 7007 // FIXME: handle function symbols in the future. 7008 Ops.push_back( 7009 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7010 /*isTarget=*/true)); 7011 7012 // Adjust <numArgs> to account for any arguments that have been passed on the 7013 // stack instead. 7014 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7015 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7016 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7017 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7018 7019 // Add the calling convention 7020 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7021 7022 // Add the arguments we omitted previously. The register allocator should 7023 // place these in any free register. 7024 if (isAnyRegCC) 7025 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7026 Ops.push_back(getValue(CI.getArgOperand(i))); 7027 7028 // Push the arguments from the call instruction up to the register mask. 7029 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7030 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7031 Ops.push_back(*i); 7032 7033 // Push live variables for the stack map. 7034 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7035 7036 // Push the register mask info. 7037 if (hasGlue) 7038 Ops.push_back(*(Call->op_end()-2)); 7039 else 7040 Ops.push_back(*(Call->op_end()-1)); 7041 7042 // Push the chain (this is originally the first operand of the call, but 7043 // becomes now the last or second to last operand). 7044 Ops.push_back(*(Call->op_begin())); 7045 7046 // Push the glue flag (last operand). 7047 if (hasGlue) 7048 Ops.push_back(*(Call->op_end()-1)); 7049 7050 SDVTList NodeTys; 7051 if (isAnyRegCC && hasDef) { 7052 // Create the return types based on the intrinsic definition 7053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7054 SmallVector<EVT, 3> ValueVTs; 7055 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7056 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7057 7058 // There is always a chain and a glue type at the end 7059 ValueVTs.push_back(MVT::Other); 7060 ValueVTs.push_back(MVT::Glue); 7061 NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 7062 } else 7063 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7064 7065 // Replace the target specific call node with a PATCHPOINT node. 7066 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7067 getCurSDLoc(), NodeTys, Ops); 7068 7069 // Update the NodeMap. 7070 if (hasDef) { 7071 if (isAnyRegCC) 7072 setValue(&CI, SDValue(MN, 0)); 7073 else 7074 setValue(&CI, Result.first); 7075 } 7076 7077 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7078 // call sequence. Furthermore the location of the chain and glue can change 7079 // when the AnyReg calling convention is used and the intrinsic returns a 7080 // value. 7081 if (isAnyRegCC && hasDef) { 7082 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7083 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7084 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7085 } else 7086 DAG.ReplaceAllUsesWith(Call, MN); 7087 DAG.DeleteNode(Call); 7088 7089 // Inform the Frame Information that we have a patchpoint in this function. 7090 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7091 } 7092 7093 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7094 /// implementation, which just calls LowerCall. 7095 /// FIXME: When all targets are 7096 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7097 std::pair<SDValue, SDValue> 7098 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7099 // Handle the incoming return values from the call. 7100 CLI.Ins.clear(); 7101 SmallVector<EVT, 4> RetTys; 7102 ComputeValueVTs(*this, CLI.RetTy, RetTys); 7103 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7104 EVT VT = RetTys[I]; 7105 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7106 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7107 for (unsigned i = 0; i != NumRegs; ++i) { 7108 ISD::InputArg MyFlags; 7109 MyFlags.VT = RegisterVT; 7110 MyFlags.ArgVT = VT; 7111 MyFlags.Used = CLI.IsReturnValueUsed; 7112 if (CLI.RetSExt) 7113 MyFlags.Flags.setSExt(); 7114 if (CLI.RetZExt) 7115 MyFlags.Flags.setZExt(); 7116 if (CLI.IsInReg) 7117 MyFlags.Flags.setInReg(); 7118 CLI.Ins.push_back(MyFlags); 7119 } 7120 } 7121 7122 // Handle all of the outgoing arguments. 7123 CLI.Outs.clear(); 7124 CLI.OutVals.clear(); 7125 ArgListTy &Args = CLI.Args; 7126 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7127 SmallVector<EVT, 4> ValueVTs; 7128 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7129 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7130 Value != NumValues; ++Value) { 7131 EVT VT = ValueVTs[Value]; 7132 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7133 SDValue Op = SDValue(Args[i].Node.getNode(), 7134 Args[i].Node.getResNo() + Value); 7135 ISD::ArgFlagsTy Flags; 7136 unsigned OriginalAlignment = 7137 getDataLayout()->getABITypeAlignment(ArgTy); 7138 7139 if (Args[i].isZExt) 7140 Flags.setZExt(); 7141 if (Args[i].isSExt) 7142 Flags.setSExt(); 7143 if (Args[i].isInReg) 7144 Flags.setInReg(); 7145 if (Args[i].isSRet) 7146 Flags.setSRet(); 7147 if (Args[i].isByVal) 7148 Flags.setByVal(); 7149 if (Args[i].isInAlloca) { 7150 Flags.setInAlloca(); 7151 // Set the byval flag for CCAssignFn callbacks that don't know about 7152 // inalloca. This way we can know how many bytes we should've allocated 7153 // and how many bytes a callee cleanup function will pop. If we port 7154 // inalloca to more targets, we'll have to add custom inalloca handling 7155 // in the various CC lowering callbacks. 7156 Flags.setByVal(); 7157 } 7158 if (Args[i].isByVal || Args[i].isInAlloca) { 7159 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7160 Type *ElementTy = Ty->getElementType(); 7161 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7162 // For ByVal, alignment should come from FE. BE will guess if this 7163 // info is not there but there are cases it cannot get right. 7164 unsigned FrameAlign; 7165 if (Args[i].Alignment) 7166 FrameAlign = Args[i].Alignment; 7167 else 7168 FrameAlign = getByValTypeAlignment(ElementTy); 7169 Flags.setByValAlign(FrameAlign); 7170 } 7171 if (Args[i].isNest) 7172 Flags.setNest(); 7173 Flags.setOrigAlign(OriginalAlignment); 7174 7175 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7176 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7177 SmallVector<SDValue, 4> Parts(NumParts); 7178 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7179 7180 if (Args[i].isSExt) 7181 ExtendKind = ISD::SIGN_EXTEND; 7182 else if (Args[i].isZExt) 7183 ExtendKind = ISD::ZERO_EXTEND; 7184 7185 // Conservatively only handle 'returned' on non-vectors for now 7186 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7187 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7188 "unexpected use of 'returned'"); 7189 // Before passing 'returned' to the target lowering code, ensure that 7190 // either the register MVT and the actual EVT are the same size or that 7191 // the return value and argument are extended in the same way; in these 7192 // cases it's safe to pass the argument register value unchanged as the 7193 // return register value (although it's at the target's option whether 7194 // to do so) 7195 // TODO: allow code generation to take advantage of partially preserved 7196 // registers rather than clobbering the entire register when the 7197 // parameter extension method is not compatible with the return 7198 // extension method 7199 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7200 (ExtendKind != ISD::ANY_EXTEND && 7201 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7202 Flags.setReturned(); 7203 } 7204 7205 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 7206 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 7207 7208 for (unsigned j = 0; j != NumParts; ++j) { 7209 // if it isn't first piece, alignment must be 1 7210 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7211 i < CLI.NumFixedArgs, 7212 i, j*Parts[j].getValueType().getStoreSize()); 7213 if (NumParts > 1 && j == 0) 7214 MyFlags.Flags.setSplit(); 7215 else if (j != 0) 7216 MyFlags.Flags.setOrigAlign(1); 7217 7218 CLI.Outs.push_back(MyFlags); 7219 CLI.OutVals.push_back(Parts[j]); 7220 } 7221 } 7222 } 7223 7224 SmallVector<SDValue, 4> InVals; 7225 CLI.Chain = LowerCall(CLI, InVals); 7226 7227 // Verify that the target's LowerCall behaved as expected. 7228 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7229 "LowerCall didn't return a valid chain!"); 7230 assert((!CLI.IsTailCall || InVals.empty()) && 7231 "LowerCall emitted a return value for a tail call!"); 7232 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7233 "LowerCall didn't emit the correct number of values!"); 7234 7235 // For a tail call, the return value is merely live-out and there aren't 7236 // any nodes in the DAG representing it. Return a special value to 7237 // indicate that a tail call has been emitted and no more Instructions 7238 // should be processed in the current block. 7239 if (CLI.IsTailCall) { 7240 CLI.DAG.setRoot(CLI.Chain); 7241 return std::make_pair(SDValue(), SDValue()); 7242 } 7243 7244 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7245 assert(InVals[i].getNode() && 7246 "LowerCall emitted a null value!"); 7247 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7248 "LowerCall emitted a value with the wrong type!"); 7249 }); 7250 7251 // Collect the legal value parts into potentially illegal values 7252 // that correspond to the original function's return values. 7253 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7254 if (CLI.RetSExt) 7255 AssertOp = ISD::AssertSext; 7256 else if (CLI.RetZExt) 7257 AssertOp = ISD::AssertZext; 7258 SmallVector<SDValue, 4> ReturnValues; 7259 unsigned CurReg = 0; 7260 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7261 EVT VT = RetTys[I]; 7262 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7263 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7264 7265 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7266 NumRegs, RegisterVT, VT, NULL, 7267 AssertOp)); 7268 CurReg += NumRegs; 7269 } 7270 7271 // For a function returning void, there is no return value. We can't create 7272 // such a node, so we just return a null return value in that case. In 7273 // that case, nothing will actually look at the value. 7274 if (ReturnValues.empty()) 7275 return std::make_pair(SDValue(), CLI.Chain); 7276 7277 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7278 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 7279 &ReturnValues[0], ReturnValues.size()); 7280 return std::make_pair(Res, CLI.Chain); 7281 } 7282 7283 void TargetLowering::LowerOperationWrapper(SDNode *N, 7284 SmallVectorImpl<SDValue> &Results, 7285 SelectionDAG &DAG) const { 7286 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7287 if (Res.getNode()) 7288 Results.push_back(Res); 7289 } 7290 7291 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7292 llvm_unreachable("LowerOperation not implemented for this target!"); 7293 } 7294 7295 void 7296 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7297 SDValue Op = getNonRegisterValue(V); 7298 assert((Op.getOpcode() != ISD::CopyFromReg || 7299 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7300 "Copy from a reg to the same reg!"); 7301 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7302 7303 const TargetLowering *TLI = TM.getTargetLowering(); 7304 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7305 SDValue Chain = DAG.getEntryNode(); 7306 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V); 7307 PendingExports.push_back(Chain); 7308 } 7309 7310 #include "llvm/CodeGen/SelectionDAGISel.h" 7311 7312 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7313 /// entry block, return true. This includes arguments used by switches, since 7314 /// the switch may expand into multiple basic blocks. 7315 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7316 // With FastISel active, we may be splitting blocks, so force creation 7317 // of virtual registers for all non-dead arguments. 7318 if (FastISel) 7319 return A->use_empty(); 7320 7321 const BasicBlock *Entry = A->getParent()->begin(); 7322 for (const User *U : A->users()) 7323 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7324 return false; // Use not in entry block. 7325 7326 return true; 7327 } 7328 7329 void SelectionDAGISel::LowerArguments(const Function &F) { 7330 SelectionDAG &DAG = SDB->DAG; 7331 SDLoc dl = SDB->getCurSDLoc(); 7332 const TargetLowering *TLI = getTargetLowering(); 7333 const DataLayout *DL = TLI->getDataLayout(); 7334 SmallVector<ISD::InputArg, 16> Ins; 7335 7336 if (!FuncInfo->CanLowerReturn) { 7337 // Put in an sret pointer parameter before all the other parameters. 7338 SmallVector<EVT, 1> ValueVTs; 7339 ComputeValueVTs(*getTargetLowering(), 7340 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7341 7342 // NOTE: Assuming that a pointer will never break down to more than one VT 7343 // or one register. 7344 ISD::ArgFlagsTy Flags; 7345 Flags.setSRet(); 7346 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7347 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7348 Ins.push_back(RetArg); 7349 } 7350 7351 // Set up the incoming argument description vector. 7352 unsigned Idx = 1; 7353 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7354 I != E; ++I, ++Idx) { 7355 SmallVector<EVT, 4> ValueVTs; 7356 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7357 bool isArgValueUsed = !I->use_empty(); 7358 unsigned PartBase = 0; 7359 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7360 Value != NumValues; ++Value) { 7361 EVT VT = ValueVTs[Value]; 7362 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7363 ISD::ArgFlagsTy Flags; 7364 unsigned OriginalAlignment = 7365 DL->getABITypeAlignment(ArgTy); 7366 7367 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7368 Flags.setZExt(); 7369 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7370 Flags.setSExt(); 7371 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7372 Flags.setInReg(); 7373 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7374 Flags.setSRet(); 7375 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7376 Flags.setByVal(); 7377 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7378 Flags.setInAlloca(); 7379 // Set the byval flag for CCAssignFn callbacks that don't know about 7380 // inalloca. This way we can know how many bytes we should've allocated 7381 // and how many bytes a callee cleanup function will pop. If we port 7382 // inalloca to more targets, we'll have to add custom inalloca handling 7383 // in the various CC lowering callbacks. 7384 Flags.setByVal(); 7385 } 7386 if (Flags.isByVal() || Flags.isInAlloca()) { 7387 PointerType *Ty = cast<PointerType>(I->getType()); 7388 Type *ElementTy = Ty->getElementType(); 7389 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7390 // For ByVal, alignment should be passed from FE. BE will guess if 7391 // this info is not there but there are cases it cannot get right. 7392 unsigned FrameAlign; 7393 if (F.getParamAlignment(Idx)) 7394 FrameAlign = F.getParamAlignment(Idx); 7395 else 7396 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7397 Flags.setByValAlign(FrameAlign); 7398 } 7399 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7400 Flags.setNest(); 7401 Flags.setOrigAlign(OriginalAlignment); 7402 7403 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7404 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7405 for (unsigned i = 0; i != NumRegs; ++i) { 7406 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7407 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7408 if (NumRegs > 1 && i == 0) 7409 MyFlags.Flags.setSplit(); 7410 // if it isn't first piece, alignment must be 1 7411 else if (i > 0) 7412 MyFlags.Flags.setOrigAlign(1); 7413 Ins.push_back(MyFlags); 7414 } 7415 PartBase += VT.getStoreSize(); 7416 } 7417 } 7418 7419 // Call the target to set up the argument values. 7420 SmallVector<SDValue, 8> InVals; 7421 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7422 F.isVarArg(), Ins, 7423 dl, DAG, InVals); 7424 7425 // Verify that the target's LowerFormalArguments behaved as expected. 7426 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7427 "LowerFormalArguments didn't return a valid chain!"); 7428 assert(InVals.size() == Ins.size() && 7429 "LowerFormalArguments didn't emit the correct number of values!"); 7430 DEBUG({ 7431 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7432 assert(InVals[i].getNode() && 7433 "LowerFormalArguments emitted a null value!"); 7434 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7435 "LowerFormalArguments emitted a value with the wrong type!"); 7436 } 7437 }); 7438 7439 // Update the DAG with the new chain value resulting from argument lowering. 7440 DAG.setRoot(NewRoot); 7441 7442 // Set up the argument values. 7443 unsigned i = 0; 7444 Idx = 1; 7445 if (!FuncInfo->CanLowerReturn) { 7446 // Create a virtual register for the sret pointer, and put in a copy 7447 // from the sret argument into it. 7448 SmallVector<EVT, 1> ValueVTs; 7449 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7450 MVT VT = ValueVTs[0].getSimpleVT(); 7451 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7452 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7453 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7454 RegVT, VT, NULL, AssertOp); 7455 7456 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7457 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7458 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7459 FuncInfo->DemoteRegister = SRetReg; 7460 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7461 SRetReg, ArgValue); 7462 DAG.setRoot(NewRoot); 7463 7464 // i indexes lowered arguments. Bump it past the hidden sret argument. 7465 // Idx indexes LLVM arguments. Don't touch it. 7466 ++i; 7467 } 7468 7469 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7470 ++I, ++Idx) { 7471 SmallVector<SDValue, 4> ArgValues; 7472 SmallVector<EVT, 4> ValueVTs; 7473 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7474 unsigned NumValues = ValueVTs.size(); 7475 7476 // If this argument is unused then remember its value. It is used to generate 7477 // debugging information. 7478 if (I->use_empty() && NumValues) { 7479 SDB->setUnusedArgValue(I, InVals[i]); 7480 7481 // Also remember any frame index for use in FastISel. 7482 if (FrameIndexSDNode *FI = 7483 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7484 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7485 } 7486 7487 for (unsigned Val = 0; Val != NumValues; ++Val) { 7488 EVT VT = ValueVTs[Val]; 7489 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7490 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7491 7492 if (!I->use_empty()) { 7493 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7494 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7495 AssertOp = ISD::AssertSext; 7496 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7497 AssertOp = ISD::AssertZext; 7498 7499 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7500 NumParts, PartVT, VT, 7501 NULL, AssertOp)); 7502 } 7503 7504 i += NumParts; 7505 } 7506 7507 // We don't need to do anything else for unused arguments. 7508 if (ArgValues.empty()) 7509 continue; 7510 7511 // Note down frame index. 7512 if (FrameIndexSDNode *FI = 7513 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7514 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7515 7516 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 7517 SDB->getCurSDLoc()); 7518 7519 SDB->setValue(I, Res); 7520 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7521 if (LoadSDNode *LNode = 7522 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7523 if (FrameIndexSDNode *FI = 7524 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7525 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7526 } 7527 7528 // If this argument is live outside of the entry block, insert a copy from 7529 // wherever we got it to the vreg that other BB's will reference it as. 7530 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7531 // If we can, though, try to skip creating an unnecessary vreg. 7532 // FIXME: This isn't very clean... it would be nice to make this more 7533 // general. It's also subtly incompatible with the hacks FastISel 7534 // uses with vregs. 7535 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7536 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7537 FuncInfo->ValueMap[I] = Reg; 7538 continue; 7539 } 7540 } 7541 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7542 FuncInfo->InitializeRegForValue(I); 7543 SDB->CopyToExportRegsIfNeeded(I); 7544 } 7545 } 7546 7547 assert(i == InVals.size() && "Argument register count mismatch!"); 7548 7549 // Finally, if the target has anything special to do, allow it to do so. 7550 // FIXME: this should insert code into the DAG! 7551 EmitFunctionEntryCode(); 7552 } 7553 7554 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7555 /// ensure constants are generated when needed. Remember the virtual registers 7556 /// that need to be added to the Machine PHI nodes as input. We cannot just 7557 /// directly add them, because expansion might result in multiple MBB's for one 7558 /// BB. As such, the start of the BB might correspond to a different MBB than 7559 /// the end. 7560 /// 7561 void 7562 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7563 const TerminatorInst *TI = LLVMBB->getTerminator(); 7564 7565 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7566 7567 // Check successor nodes' PHI nodes that expect a constant to be available 7568 // from this block. 7569 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7570 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7571 if (!isa<PHINode>(SuccBB->begin())) continue; 7572 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7573 7574 // If this terminator has multiple identical successors (common for 7575 // switches), only handle each succ once. 7576 if (!SuccsHandled.insert(SuccMBB)) continue; 7577 7578 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7579 7580 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7581 // nodes and Machine PHI nodes, but the incoming operands have not been 7582 // emitted yet. 7583 for (BasicBlock::const_iterator I = SuccBB->begin(); 7584 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7585 // Ignore dead phi's. 7586 if (PN->use_empty()) continue; 7587 7588 // Skip empty types 7589 if (PN->getType()->isEmptyTy()) 7590 continue; 7591 7592 unsigned Reg; 7593 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7594 7595 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7596 unsigned &RegOut = ConstantsOut[C]; 7597 if (RegOut == 0) { 7598 RegOut = FuncInfo.CreateRegs(C->getType()); 7599 CopyValueToVirtualRegister(C, RegOut); 7600 } 7601 Reg = RegOut; 7602 } else { 7603 DenseMap<const Value *, unsigned>::iterator I = 7604 FuncInfo.ValueMap.find(PHIOp); 7605 if (I != FuncInfo.ValueMap.end()) 7606 Reg = I->second; 7607 else { 7608 assert(isa<AllocaInst>(PHIOp) && 7609 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7610 "Didn't codegen value into a register!??"); 7611 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7612 CopyValueToVirtualRegister(PHIOp, Reg); 7613 } 7614 } 7615 7616 // Remember that this register needs to added to the machine PHI node as 7617 // the input for this MBB. 7618 SmallVector<EVT, 4> ValueVTs; 7619 const TargetLowering *TLI = TM.getTargetLowering(); 7620 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7621 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7622 EVT VT = ValueVTs[vti]; 7623 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7624 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7625 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7626 Reg += NumRegisters; 7627 } 7628 } 7629 } 7630 7631 ConstantsOut.clear(); 7632 } 7633 7634 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7635 /// is 0. 7636 MachineBasicBlock * 7637 SelectionDAGBuilder::StackProtectorDescriptor:: 7638 AddSuccessorMBB(const BasicBlock *BB, 7639 MachineBasicBlock *ParentMBB, 7640 MachineBasicBlock *SuccMBB) { 7641 // If SuccBB has not been created yet, create it. 7642 if (!SuccMBB) { 7643 MachineFunction *MF = ParentMBB->getParent(); 7644 MachineFunction::iterator BBI = ParentMBB; 7645 SuccMBB = MF->CreateMachineBasicBlock(BB); 7646 MF->insert(++BBI, SuccMBB); 7647 } 7648 // Add it as a successor of ParentMBB. 7649 ParentMBB->addSuccessor(SuccMBB); 7650 return SuccMBB; 7651 } 7652