xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision c04a76c1761d5eefd37aa1971cbd79cf9af29e02)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/FastISel.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/GCMetadata.h"
30 #include "llvm/CodeGen/GCStrategy.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/StackMaps.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Statepoint.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MathExtras.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetFrameLowering.h"
63 #include "llvm/Target/TargetInstrInfo.h"
64 #include "llvm/Target/TargetIntrinsicInfo.h"
65 #include "llvm/Target/TargetLowering.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include "llvm/Target/TargetSubtargetInfo.h"
68 #include <algorithm>
69 #include <utility>
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "isel"
73 
74 /// LimitFloatPrecision - Generate low-precision inline sequences for
75 /// some float libcalls (6, 8 or 12 bits).
76 static unsigned LimitFloatPrecision;
77 
78 static cl::opt<unsigned, true>
79 LimitFPPrecision("limit-float-precision",
80                  cl::desc("Generate low-precision inline sequences "
81                           "for some float libcalls"),
82                  cl::location(LimitFloatPrecision),
83                  cl::init(0));
84 
85 static cl::opt<bool>
86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
87                 cl::desc("Enable fast-math-flags for DAG nodes"));
88 
89 /// Minimum jump table density for normal functions.
90 static cl::opt<unsigned>
91 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
92                  cl::desc("Minimum density for building a jump table in "
93                           "a normal function"));
94 
95 /// Minimum jump table density for -Os or -Oz functions.
96 static cl::opt<unsigned>
97 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
98                         cl::desc("Minimum density for building a jump table in "
99                                  "an optsize function"));
100 
101 
102 // Limit the width of DAG chains. This is important in general to prevent
103 // DAG-based analysis from blowing up. For example, alias analysis and
104 // load clustering may not complete in reasonable time. It is difficult to
105 // recognize and avoid this situation within each individual analysis, and
106 // future analyses are likely to have the same behavior. Limiting DAG width is
107 // the safe approach and will be especially important with global DAGs.
108 //
109 // MaxParallelChains default is arbitrarily high to avoid affecting
110 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
111 // sequence over this should have been converted to llvm.memcpy by the
112 // frontend. It is easy to induce this behavior with .ll code such as:
113 // %buffer = alloca [4096 x i8]
114 // %data = load [4096 x i8]* %argPtr
115 // store [4096 x i8] %data, [4096 x i8]* %buffer
116 static const unsigned MaxParallelChains = 64;
117 
118 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
119                                       const SDValue *Parts, unsigned NumParts,
120                                       MVT PartVT, EVT ValueVT, const Value *V);
121 
122 /// getCopyFromParts - Create a value that contains the specified legal parts
123 /// combined into the value they represent.  If the parts combine to a type
124 /// larger than ValueVT then AssertOp can be used to specify whether the extra
125 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
126 /// (ISD::AssertSext).
127 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
128                                 const SDValue *Parts,
129                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
130                                 const Value *V,
131                                 Optional<ISD::NodeType> AssertOp = None) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp.hasValue())
237         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger than ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
383                            SDValue Val, SDValue *Parts, unsigned NumParts,
384                            MVT PartVT, const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT)
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452 
453     Parts[0] = Val;
454     return;
455   }
456 
457   // Expand the value into multiple parts.
458   if (NumParts & (NumParts - 1)) {
459     // The number of parts is not a power of 2.  Split off and copy the tail.
460     assert(PartVT.isInteger() && ValueVT.isInteger() &&
461            "Do not know what to expand to!");
462     unsigned RoundParts = 1 << Log2_32(NumParts);
463     unsigned RoundBits = RoundParts * PartBits;
464     unsigned OddParts = NumParts - RoundParts;
465     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
466                                  DAG.getIntPtrConstant(RoundBits, DL));
467     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
468 
469     if (DAG.getDataLayout().isBigEndian())
470       // The odd parts were reversed by getCopyToParts - unreverse them.
471       std::reverse(Parts + RoundParts, Parts + NumParts);
472 
473     NumParts = RoundParts;
474     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
475     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
476   }
477 
478   // The number of parts is a power of 2.  Repeatedly bisect the value using
479   // EXTRACT_ELEMENT.
480   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
481                          EVT::getIntegerVT(*DAG.getContext(),
482                                            ValueVT.getSizeInBits()),
483                          Val);
484 
485   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
486     for (unsigned i = 0; i < NumParts; i += StepSize) {
487       unsigned ThisBits = StepSize * PartBits / 2;
488       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
489       SDValue &Part0 = Parts[i];
490       SDValue &Part1 = Parts[i+StepSize/2];
491 
492       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
493                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
494       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
496 
497       if (ThisBits == PartBits && ThisVT != PartVT) {
498         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
499         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
500       }
501     }
502   }
503 
504   if (DAG.getDataLayout().isBigEndian())
505     std::reverse(Parts, Parts + OrigNumParts);
506 }
507 
508 
509 /// getCopyToPartsVector - Create a series of nodes that contain the specified
510 /// value split into legal parts.
511 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
512                                  SDValue Val, SDValue *Parts, unsigned NumParts,
513                                  MVT PartVT, const Value *V) {
514   EVT ValueVT = Val.getValueType();
515   assert(ValueVT.isVector() && "Not a vector");
516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
517 
518   if (NumParts == 1) {
519     EVT PartEVT = PartVT;
520     if (PartEVT == ValueVT) {
521       // Nothing to do.
522     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
523       // Bitconvert vector->vector case.
524       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     } else if (PartVT.isVector() &&
526                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
527                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
528       EVT ElementVT = PartVT.getVectorElementType();
529       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
530       // undef elements.
531       SmallVector<SDValue, 16> Ops;
532       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
533         Ops.push_back(DAG.getNode(
534             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
535             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
536 
537       for (unsigned i = ValueVT.getVectorNumElements(),
538            e = PartVT.getVectorNumElements(); i != e; ++i)
539         Ops.push_back(DAG.getUNDEF(ElementVT));
540 
541       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
542 
543       // FIXME: Use CONCAT for 2x -> 4x.
544 
545       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
546       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
547     } else if (PartVT.isVector() &&
548                PartEVT.getVectorElementType().bitsGE(
549                  ValueVT.getVectorElementType()) &&
550                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
551 
552       // Promoted vector extract
553       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
554     } else{
555       // Vector -> scalar conversion.
556       assert(ValueVT.getVectorNumElements() == 1 &&
557              "Only trivial vector-to-scalar conversions should get here!");
558       Val = DAG.getNode(
559           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
560           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
561 
562       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
563     }
564 
565     Parts[0] = Val;
566     return;
567   }
568 
569   // Handle a multi-element vector.
570   EVT IntermediateVT;
571   MVT RegisterVT;
572   unsigned NumIntermediates;
573   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
574                                                 IntermediateVT,
575                                                 NumIntermediates, RegisterVT);
576   unsigned NumElements = ValueVT.getVectorNumElements();
577 
578   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
579   NumParts = NumRegs; // Silence a compiler warning.
580   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
581 
582   // Split the vector into intermediate operands.
583   SmallVector<SDValue, 8> Ops(NumIntermediates);
584   for (unsigned i = 0; i != NumIntermediates; ++i) {
585     if (IntermediateVT.isVector())
586       Ops[i] =
587           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
588                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
589                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
590     else
591       Ops[i] = DAG.getNode(
592           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
593           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
594   }
595 
596   // Split the intermediate operands into legal parts.
597   if (NumParts == NumIntermediates) {
598     // If the register was not expanded, promote or copy the value,
599     // as appropriate.
600     for (unsigned i = 0; i != NumParts; ++i)
601       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
602   } else if (NumParts > 0) {
603     // If the intermediate type was expanded, split each the value into
604     // legal parts.
605     assert(NumIntermediates != 0 && "division by zero");
606     assert(NumParts % NumIntermediates == 0 &&
607            "Must expand into a divisible number of parts!");
608     unsigned Factor = NumParts / NumIntermediates;
609     for (unsigned i = 0; i != NumIntermediates; ++i)
610       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
611   }
612 }
613 
614 RegsForValue::RegsForValue() {}
615 
616 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
617                            EVT valuevt)
618     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
619 
620 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
621                            const DataLayout &DL, unsigned Reg, Type *Ty) {
622   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
623 
624   for (EVT ValueVT : ValueVTs) {
625     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
626     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
627     for (unsigned i = 0; i != NumRegs; ++i)
628       Regs.push_back(Reg + i);
629     RegVTs.push_back(RegisterVT);
630     Reg += NumRegs;
631   }
632 }
633 
634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
635 /// this value and returns the result as a ValueVT value.  This uses
636 /// Chain/Flag as the input and updates them for the output Chain/Flag.
637 /// If the Flag pointer is NULL, no flag is used.
638 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
639                                       FunctionLoweringInfo &FuncInfo,
640                                       SDLoc dl,
641                                       SDValue &Chain, SDValue *Flag,
642                                       const Value *V) const {
643   // A Value with type {} or [0 x %t] needs no registers.
644   if (ValueVTs.empty())
645     return SDValue();
646 
647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648 
649   // Assemble the legal parts into the final values.
650   SmallVector<SDValue, 4> Values(ValueVTs.size());
651   SmallVector<SDValue, 8> Parts;
652   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
653     // Copy the legal parts from the registers.
654     EVT ValueVT = ValueVTs[Value];
655     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
656     MVT RegisterVT = RegVTs[Value];
657 
658     Parts.resize(NumRegs);
659     for (unsigned i = 0; i != NumRegs; ++i) {
660       SDValue P;
661       if (!Flag) {
662         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
663       } else {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
665         *Flag = P.getValue(2);
666       }
667 
668       Chain = P.getValue(1);
669       Parts[i] = P;
670 
671       // If the source register was virtual and if we know something about it,
672       // add an assert node.
673       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
674           !RegisterVT.isInteger() || RegisterVT.isVector())
675         continue;
676 
677       const FunctionLoweringInfo::LiveOutInfo *LOI =
678         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
679       if (!LOI)
680         continue;
681 
682       unsigned RegSize = RegisterVT.getSizeInBits();
683       unsigned NumSignBits = LOI->NumSignBits;
684       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
685 
686       if (NumZeroBits == RegSize) {
687         // The current value is a zero.
688         // Explicitly express that as it would be easier for
689         // optimizations to kick in.
690         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
691         continue;
692       }
693 
694       // FIXME: We capture more information than the dag can represent.  For
695       // now, just use the tightest assertzext/assertsext possible.
696       bool isSExt = true;
697       EVT FromVT(MVT::Other);
698       if (NumSignBits == RegSize) {
699         isSExt = true;   // ASSERT SEXT 1
700         FromVT = MVT::i1;
701       } else if (NumZeroBits >= RegSize - 1) {
702         isSExt = false;  // ASSERT ZEXT 1
703         FromVT = MVT::i1;
704       } else if (NumSignBits > RegSize - 8) {
705         isSExt = true;   // ASSERT SEXT 8
706         FromVT = MVT::i8;
707       } else if (NumZeroBits >= RegSize - 8) {
708         isSExt = false;  // ASSERT ZEXT 8
709         FromVT = MVT::i8;
710       } else if (NumSignBits > RegSize - 16) {
711         isSExt = true;   // ASSERT SEXT 16
712         FromVT = MVT::i16;
713       } else if (NumZeroBits >= RegSize - 16) {
714         isSExt = false;  // ASSERT ZEXT 16
715         FromVT = MVT::i16;
716       } else if (NumSignBits > RegSize - 32) {
717         isSExt = true;   // ASSERT SEXT 32
718         FromVT = MVT::i32;
719       } else if (NumZeroBits >= RegSize - 32) {
720         isSExt = false;  // ASSERT ZEXT 32
721         FromVT = MVT::i32;
722       } else {
723         continue;
724       }
725       // Add an assertion node.
726       assert(FromVT != MVT::Other);
727       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
728                              RegisterVT, P, DAG.getValueType(FromVT));
729     }
730 
731     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
732                                      NumRegs, RegisterVT, ValueVT, V);
733     Part += NumRegs;
734     Parts.clear();
735   }
736 
737   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
738 }
739 
740 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
741 /// specified value into the registers specified by this object.  This uses
742 /// Chain/Flag as the input and updates them for the output Chain/Flag.
743 /// If the Flag pointer is NULL, no flag is used.
744 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
745                                  SDValue &Chain, SDValue *Flag, const Value *V,
746                                  ISD::NodeType PreferredExtendType) const {
747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
748   ISD::NodeType ExtendKind = PreferredExtendType;
749 
750   // Get the list of the values's legal parts.
751   unsigned NumRegs = Regs.size();
752   SmallVector<SDValue, 8> Parts(NumRegs);
753   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
754     EVT ValueVT = ValueVTs[Value];
755     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
756     MVT RegisterVT = RegVTs[Value];
757 
758     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
759       ExtendKind = ISD::ZERO_EXTEND;
760 
761     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
762                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
763     Part += NumParts;
764   }
765 
766   // Copy the parts into the registers.
767   SmallVector<SDValue, 8> Chains(NumRegs);
768   for (unsigned i = 0; i != NumRegs; ++i) {
769     SDValue Part;
770     if (!Flag) {
771       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
772     } else {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
774       *Flag = Part.getValue(1);
775     }
776 
777     Chains[i] = Part.getValue(0);
778   }
779 
780   if (NumRegs == 1 || Flag)
781     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
782     // flagged to it. That is the CopyToReg nodes and the user are considered
783     // a single scheduling unit. If we create a TokenFactor and return it as
784     // chain, then the TokenFactor is both a predecessor (operand) of the
785     // user as well as a successor (the TF operands are flagged to the user).
786     // c1, f1 = CopyToReg
787     // c2, f2 = CopyToReg
788     // c3     = TokenFactor c1, c2
789     // ...
790     //        = op c3, ..., f2
791     Chain = Chains[NumRegs-1];
792   else
793     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
794 }
795 
796 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
797 /// operand list.  This adds the code marker and includes the number of
798 /// values added into it.
799 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
800                                         unsigned MatchingIdx, SDLoc dl,
801                                         SelectionDAG &DAG,
802                                         std::vector<SDValue> &Ops) const {
803   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
804 
805   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
806   if (HasMatching)
807     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
808   else if (!Regs.empty() &&
809            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
810     // Put the register class of the virtual registers in the flag word.  That
811     // way, later passes can recompute register class constraints for inline
812     // assembly as well as normal instructions.
813     // Don't do this for tied operands that can use the regclass information
814     // from the def.
815     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
816     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
817     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
818   }
819 
820   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
821   Ops.push_back(Res);
822 
823   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
824   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
825     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
826     MVT RegisterVT = RegVTs[Value];
827     for (unsigned i = 0; i != NumRegs; ++i) {
828       assert(Reg < Regs.size() && "Mismatch in # registers expected");
829       unsigned TheReg = Regs[Reg++];
830       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
831 
832       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
833         // If we clobbered the stack pointer, MFI should know about it.
834         assert(DAG.getMachineFunction().getFrameInfo()->
835             hasOpaqueSPAdjustment());
836       }
837     }
838   }
839 }
840 
841 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
842                                const TargetLibraryInfo *li) {
843   AA = &aa;
844   GFI = gfi;
845   LibInfo = li;
846   DL = &DAG.getDataLayout();
847   Context = DAG.getContext();
848   LPadToCallSiteMap.clear();
849 }
850 
851 /// clear - Clear out the current SelectionDAG and the associated
852 /// state and prepare this SelectionDAGBuilder object to be used
853 /// for a new block. This doesn't clear out information about
854 /// additional blocks that are needed to complete switch lowering
855 /// or PHI node updating; that information is cleared out as it is
856 /// consumed.
857 void SelectionDAGBuilder::clear() {
858   NodeMap.clear();
859   UnusedArgNodeMap.clear();
860   PendingLoads.clear();
861   PendingExports.clear();
862   CurInst = nullptr;
863   HasTailCall = false;
864   SDNodeOrder = LowestSDNodeOrder;
865   StatepointLowering.clear();
866 }
867 
868 /// clearDanglingDebugInfo - Clear the dangling debug information
869 /// map. This function is separated from the clear so that debug
870 /// information that is dangling in a basic block can be properly
871 /// resolved in a different basic block. This allows the
872 /// SelectionDAG to resolve dangling debug information attached
873 /// to PHI nodes.
874 void SelectionDAGBuilder::clearDanglingDebugInfo() {
875   DanglingDebugInfoMap.clear();
876 }
877 
878 /// getRoot - Return the current virtual root of the Selection DAG,
879 /// flushing any PendingLoad items. This must be done before emitting
880 /// a store or any other node that may need to be ordered after any
881 /// prior load instructions.
882 ///
883 SDValue SelectionDAGBuilder::getRoot() {
884   if (PendingLoads.empty())
885     return DAG.getRoot();
886 
887   if (PendingLoads.size() == 1) {
888     SDValue Root = PendingLoads[0];
889     DAG.setRoot(Root);
890     PendingLoads.clear();
891     return Root;
892   }
893 
894   // Otherwise, we have to make a token factor node.
895   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
896                              PendingLoads);
897   PendingLoads.clear();
898   DAG.setRoot(Root);
899   return Root;
900 }
901 
902 /// getControlRoot - Similar to getRoot, but instead of flushing all the
903 /// PendingLoad items, flush all the PendingExports items. It is necessary
904 /// to do this before emitting a terminator instruction.
905 ///
906 SDValue SelectionDAGBuilder::getControlRoot() {
907   SDValue Root = DAG.getRoot();
908 
909   if (PendingExports.empty())
910     return Root;
911 
912   // Turn all of the CopyToReg chains into one factored node.
913   if (Root.getOpcode() != ISD::EntryToken) {
914     unsigned i = 0, e = PendingExports.size();
915     for (; i != e; ++i) {
916       assert(PendingExports[i].getNode()->getNumOperands() > 1);
917       if (PendingExports[i].getNode()->getOperand(0) == Root)
918         break;  // Don't add the root if we already indirectly depend on it.
919     }
920 
921     if (i == e)
922       PendingExports.push_back(Root);
923   }
924 
925   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
926                      PendingExports);
927   PendingExports.clear();
928   DAG.setRoot(Root);
929   return Root;
930 }
931 
932 /// Copy swift error to the final virtual register at end of a basic block, as
933 /// specified by SwiftErrorWorklist, if necessary.
934 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) {
935   const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo();
936   if (!TLI.supportSwiftError())
937     return;
938 
939   if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB))
940     return;
941 
942   // Go through entries in SwiftErrorWorklist, and create copy as necessary.
943   FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry =
944       SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB];
945   FunctionLoweringInfo::SwiftErrorVRegs &MapEntry =
946       SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB];
947   for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) {
948     unsigned WorkReg = WorklistEntry[I];
949 
950     // Find the swifterror virtual register for the value in SwiftErrorMap.
951     unsigned MapReg = MapEntry[I];
952     assert(TargetRegisterInfo::isVirtualRegister(MapReg) &&
953            "Entries in SwiftErrorMap should be virtual registers");
954 
955     if (WorkReg == MapReg)
956       continue;
957 
958     // Create copy from SwiftErrorMap to SwiftWorklist.
959     auto &DL = SDB.DAG.getDataLayout();
960     SDValue CopyNode = SDB.DAG.getCopyToReg(
961         SDB.getRoot(), SDB.getCurSDLoc(), WorkReg,
962         SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL))));
963     MapEntry[I] = WorkReg;
964     SDB.DAG.setRoot(CopyNode);
965   }
966 }
967 
968 void SelectionDAGBuilder::visit(const Instruction &I) {
969   // Set up outgoing PHI node register values before emitting the terminator.
970   if (isa<TerminatorInst>(&I)) {
971     copySwiftErrorsToFinalVRegs(*this);
972     HandlePHINodesInSuccessorBlocks(I.getParent());
973   }
974 
975   ++SDNodeOrder;
976 
977   CurInst = &I;
978 
979   visit(I.getOpcode(), I);
980 
981   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
982       !isStatepoint(&I)) // statepoints handle their exports internally
983     CopyToExportRegsIfNeeded(&I);
984 
985   CurInst = nullptr;
986 }
987 
988 void SelectionDAGBuilder::visitPHI(const PHINode &) {
989   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
990 }
991 
992 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
993   // Note: this doesn't use InstVisitor, because it has to work with
994   // ConstantExpr's in addition to instructions.
995   switch (Opcode) {
996   default: llvm_unreachable("Unknown instruction type encountered!");
997     // Build the switch statement using the Instruction.def file.
998 #define HANDLE_INST(NUM, OPCODE, CLASS) \
999     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1000 #include "llvm/IR/Instruction.def"
1001   }
1002 }
1003 
1004 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1005 // generate the debug data structures now that we've seen its definition.
1006 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1007                                                    SDValue Val) {
1008   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1009   if (DDI.getDI()) {
1010     const DbgValueInst *DI = DDI.getDI();
1011     DebugLoc dl = DDI.getdl();
1012     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1013     DILocalVariable *Variable = DI->getVariable();
1014     DIExpression *Expr = DI->getExpression();
1015     assert(Variable->isValidLocationForIntrinsic(dl) &&
1016            "Expected inlined-at fields to agree");
1017     uint64_t Offset = DI->getOffset();
1018     SDDbgValue *SDV;
1019     if (Val.getNode()) {
1020       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1021                                     Val)) {
1022         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1023                               false, Offset, dl, DbgSDNodeOrder);
1024         DAG.AddDbgValue(SDV, Val.getNode(), false);
1025       }
1026     } else
1027       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1028     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1029   }
1030 }
1031 
1032 /// getCopyFromRegs - If there was virtual register allocated for the value V
1033 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1034 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1035   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1036   SDValue Result;
1037 
1038   if (It != FuncInfo.ValueMap.end()) {
1039     unsigned InReg = It->second;
1040     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1041                      DAG.getDataLayout(), InReg, Ty);
1042     SDValue Chain = DAG.getEntryNode();
1043     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1044     resolveDanglingDebugInfo(V, Result);
1045   }
1046 
1047   return Result;
1048 }
1049 
1050 /// getValue - Return an SDValue for the given Value.
1051 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1052   // If we already have an SDValue for this value, use it. It's important
1053   // to do this first, so that we don't create a CopyFromReg if we already
1054   // have a regular SDValue.
1055   SDValue &N = NodeMap[V];
1056   if (N.getNode()) return N;
1057 
1058   // If there's a virtual register allocated and initialized for this
1059   // value, use it.
1060   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1061     return copyFromReg;
1062 
1063   // Otherwise create a new SDValue and remember it.
1064   SDValue Val = getValueImpl(V);
1065   NodeMap[V] = Val;
1066   resolveDanglingDebugInfo(V, Val);
1067   return Val;
1068 }
1069 
1070 // Return true if SDValue exists for the given Value
1071 bool SelectionDAGBuilder::findValue(const Value *V) const {
1072   return (NodeMap.find(V) != NodeMap.end()) ||
1073     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1074 }
1075 
1076 /// getNonRegisterValue - Return an SDValue for the given Value, but
1077 /// don't look in FuncInfo.ValueMap for a virtual register.
1078 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1079   // If we already have an SDValue for this value, use it.
1080   SDValue &N = NodeMap[V];
1081   if (N.getNode()) {
1082     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1083       // Remove the debug location from the node as the node is about to be used
1084       // in a location which may differ from the original debug location.  This
1085       // is relevant to Constant and ConstantFP nodes because they can appear
1086       // as constant expressions inside PHI nodes.
1087       N->setDebugLoc(DebugLoc());
1088     }
1089     return N;
1090   }
1091 
1092   // Otherwise create a new SDValue and remember it.
1093   SDValue Val = getValueImpl(V);
1094   NodeMap[V] = Val;
1095   resolveDanglingDebugInfo(V, Val);
1096   return Val;
1097 }
1098 
1099 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1100 /// Create an SDValue for the given value.
1101 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1103 
1104   if (const Constant *C = dyn_cast<Constant>(V)) {
1105     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1106 
1107     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1108       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1109 
1110     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1111       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1112 
1113     if (isa<ConstantPointerNull>(C)) {
1114       unsigned AS = V->getType()->getPointerAddressSpace();
1115       return DAG.getConstant(0, getCurSDLoc(),
1116                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1117     }
1118 
1119     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1120       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1121 
1122     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1123       return DAG.getUNDEF(VT);
1124 
1125     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1126       visit(CE->getOpcode(), *CE);
1127       SDValue N1 = NodeMap[V];
1128       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1129       return N1;
1130     }
1131 
1132     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1133       SmallVector<SDValue, 4> Constants;
1134       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1135            OI != OE; ++OI) {
1136         SDNode *Val = getValue(*OI).getNode();
1137         // If the operand is an empty aggregate, there are no values.
1138         if (!Val) continue;
1139         // Add each leaf value from the operand to the Constants list
1140         // to form a flattened list of all the values.
1141         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1142           Constants.push_back(SDValue(Val, i));
1143       }
1144 
1145       return DAG.getMergeValues(Constants, getCurSDLoc());
1146     }
1147 
1148     if (const ConstantDataSequential *CDS =
1149           dyn_cast<ConstantDataSequential>(C)) {
1150       SmallVector<SDValue, 4> Ops;
1151       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1152         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1153         // Add each leaf value from the operand to the Constants list
1154         // to form a flattened list of all the values.
1155         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1156           Ops.push_back(SDValue(Val, i));
1157       }
1158 
1159       if (isa<ArrayType>(CDS->getType()))
1160         return DAG.getMergeValues(Ops, getCurSDLoc());
1161       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1162                                       VT, Ops);
1163     }
1164 
1165     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1166       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1167              "Unknown struct or array constant!");
1168 
1169       SmallVector<EVT, 4> ValueVTs;
1170       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1171       unsigned NumElts = ValueVTs.size();
1172       if (NumElts == 0)
1173         return SDValue(); // empty struct
1174       SmallVector<SDValue, 4> Constants(NumElts);
1175       for (unsigned i = 0; i != NumElts; ++i) {
1176         EVT EltVT = ValueVTs[i];
1177         if (isa<UndefValue>(C))
1178           Constants[i] = DAG.getUNDEF(EltVT);
1179         else if (EltVT.isFloatingPoint())
1180           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1181         else
1182           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1183       }
1184 
1185       return DAG.getMergeValues(Constants, getCurSDLoc());
1186     }
1187 
1188     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1189       return DAG.getBlockAddress(BA, VT);
1190 
1191     VectorType *VecTy = cast<VectorType>(V->getType());
1192     unsigned NumElements = VecTy->getNumElements();
1193 
1194     // Now that we know the number and type of the elements, get that number of
1195     // elements into the Ops array based on what kind of constant it is.
1196     SmallVector<SDValue, 16> Ops;
1197     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1198       for (unsigned i = 0; i != NumElements; ++i)
1199         Ops.push_back(getValue(CV->getOperand(i)));
1200     } else {
1201       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1202       EVT EltVT =
1203           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1204 
1205       SDValue Op;
1206       if (EltVT.isFloatingPoint())
1207         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1208       else
1209         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1210       Ops.assign(NumElements, Op);
1211     }
1212 
1213     // Create a BUILD_VECTOR node.
1214     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1215   }
1216 
1217   // If this is a static alloca, generate it as the frameindex instead of
1218   // computation.
1219   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1220     DenseMap<const AllocaInst*, int>::iterator SI =
1221       FuncInfo.StaticAllocaMap.find(AI);
1222     if (SI != FuncInfo.StaticAllocaMap.end())
1223       return DAG.getFrameIndex(SI->second,
1224                                TLI.getPointerTy(DAG.getDataLayout()));
1225   }
1226 
1227   // If this is an instruction which fast-isel has deferred, select it now.
1228   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1229     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1230     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1231                      Inst->getType());
1232     SDValue Chain = DAG.getEntryNode();
1233     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1234   }
1235 
1236   llvm_unreachable("Can't get register for value!");
1237 }
1238 
1239 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1240   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1241   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1242   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1243   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1244   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1245   if (IsMSVCCXX || IsCoreCLR)
1246     CatchPadMBB->setIsEHFuncletEntry();
1247 
1248   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1249 }
1250 
1251 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1252   // Update machine-CFG edge.
1253   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1254   FuncInfo.MBB->addSuccessor(TargetMBB);
1255 
1256   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1257   bool IsSEH = isAsynchronousEHPersonality(Pers);
1258   if (IsSEH) {
1259     // If this is not a fall-through branch or optimizations are switched off,
1260     // emit the branch.
1261     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1262         TM.getOptLevel() == CodeGenOpt::None)
1263       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1264                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1265     return;
1266   }
1267 
1268   // Figure out the funclet membership for the catchret's successor.
1269   // This will be used by the FuncletLayout pass to determine how to order the
1270   // BB's.
1271   // A 'catchret' returns to the outer scope's color.
1272   Value *ParentPad = I.getCatchSwitchParentPad();
1273   const BasicBlock *SuccessorColor;
1274   if (isa<ConstantTokenNone>(ParentPad))
1275     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1276   else
1277     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1278   assert(SuccessorColor && "No parent funclet for catchret!");
1279   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1280   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1281 
1282   // Create the terminator node.
1283   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1284                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1285                             DAG.getBasicBlock(SuccessorColorMBB));
1286   DAG.setRoot(Ret);
1287 }
1288 
1289 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1290   // Don't emit any special code for the cleanuppad instruction. It just marks
1291   // the start of a funclet.
1292   FuncInfo.MBB->setIsEHFuncletEntry();
1293   FuncInfo.MBB->setIsCleanupFuncletEntry();
1294 }
1295 
1296 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1297 /// many places it could ultimately go. In the IR, we have a single unwind
1298 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1299 /// This function skips over imaginary basic blocks that hold catchswitch
1300 /// instructions, and finds all the "real" machine
1301 /// basic block destinations. As those destinations may not be successors of
1302 /// EHPadBB, here we also calculate the edge probability to those destinations.
1303 /// The passed-in Prob is the edge probability to EHPadBB.
1304 static void findUnwindDestinations(
1305     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1306     BranchProbability Prob,
1307     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1308         &UnwindDests) {
1309   EHPersonality Personality =
1310     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1311   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1312   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1313 
1314   while (EHPadBB) {
1315     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1316     BasicBlock *NewEHPadBB = nullptr;
1317     if (isa<LandingPadInst>(Pad)) {
1318       // Stop on landingpads. They are not funclets.
1319       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1320       break;
1321     } else if (isa<CleanupPadInst>(Pad)) {
1322       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1323       // personalities.
1324       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1325       UnwindDests.back().first->setIsEHFuncletEntry();
1326       break;
1327     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1328       // Add the catchpad handlers to the possible destinations.
1329       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1330         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1331         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1332         if (IsMSVCCXX || IsCoreCLR)
1333           UnwindDests.back().first->setIsEHFuncletEntry();
1334       }
1335       NewEHPadBB = CatchSwitch->getUnwindDest();
1336     } else {
1337       continue;
1338     }
1339 
1340     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1341     if (BPI && NewEHPadBB)
1342       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1343     EHPadBB = NewEHPadBB;
1344   }
1345 }
1346 
1347 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1348   // Update successor info.
1349   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1350   auto UnwindDest = I.getUnwindDest();
1351   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1352   BranchProbability UnwindDestProb =
1353       (BPI && UnwindDest)
1354           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1355           : BranchProbability::getZero();
1356   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1357   for (auto &UnwindDest : UnwindDests) {
1358     UnwindDest.first->setIsEHPad();
1359     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1360   }
1361   FuncInfo.MBB->normalizeSuccProbs();
1362 
1363   // Create the terminator node.
1364   SDValue Ret =
1365       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1366   DAG.setRoot(Ret);
1367 }
1368 
1369 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1370   report_fatal_error("visitCatchSwitch not yet implemented!");
1371 }
1372 
1373 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1374   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1375   auto &DL = DAG.getDataLayout();
1376   SDValue Chain = getControlRoot();
1377   SmallVector<ISD::OutputArg, 8> Outs;
1378   SmallVector<SDValue, 8> OutVals;
1379 
1380   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1381   // lower
1382   //
1383   //   %val = call <ty> @llvm.experimental.deoptimize()
1384   //   ret <ty> %val
1385   //
1386   // differently.
1387   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1388     LowerDeoptimizingReturn();
1389     return;
1390   }
1391 
1392   if (!FuncInfo.CanLowerReturn) {
1393     unsigned DemoteReg = FuncInfo.DemoteRegister;
1394     const Function *F = I.getParent()->getParent();
1395 
1396     // Emit a store of the return value through the virtual register.
1397     // Leave Outs empty so that LowerReturn won't try to load return
1398     // registers the usual way.
1399     SmallVector<EVT, 1> PtrValueVTs;
1400     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1401                     PtrValueVTs);
1402 
1403     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1404                                         DemoteReg, PtrValueVTs[0]);
1405     SDValue RetOp = getValue(I.getOperand(0));
1406 
1407     SmallVector<EVT, 4> ValueVTs;
1408     SmallVector<uint64_t, 4> Offsets;
1409     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1410     unsigned NumValues = ValueVTs.size();
1411 
1412     // An aggregate return value cannot wrap around the address space, so
1413     // offsets to its parts don't wrap either.
1414     SDNodeFlags Flags;
1415     Flags.setNoUnsignedWrap(true);
1416 
1417     SmallVector<SDValue, 4> Chains(NumValues);
1418     for (unsigned i = 0; i != NumValues; ++i) {
1419       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1420                                 RetPtr.getValueType(), RetPtr,
1421                                 DAG.getIntPtrConstant(Offsets[i],
1422                                                       getCurSDLoc()),
1423                                 &Flags);
1424       Chains[i] =
1425         DAG.getStore(Chain, getCurSDLoc(),
1426                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1427                      // FIXME: better loc info would be nice.
1428                      Add, MachinePointerInfo(), false, false, 0);
1429     }
1430 
1431     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1432                         MVT::Other, Chains);
1433   } else if (I.getNumOperands() != 0) {
1434     SmallVector<EVT, 4> ValueVTs;
1435     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1436     unsigned NumValues = ValueVTs.size();
1437     if (NumValues) {
1438       SDValue RetOp = getValue(I.getOperand(0));
1439 
1440       const Function *F = I.getParent()->getParent();
1441 
1442       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1443       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1444                                           Attribute::SExt))
1445         ExtendKind = ISD::SIGN_EXTEND;
1446       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1447                                                Attribute::ZExt))
1448         ExtendKind = ISD::ZERO_EXTEND;
1449 
1450       LLVMContext &Context = F->getContext();
1451       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1452                                                       Attribute::InReg);
1453 
1454       for (unsigned j = 0; j != NumValues; ++j) {
1455         EVT VT = ValueVTs[j];
1456 
1457         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1458           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1459 
1460         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1461         MVT PartVT = TLI.getRegisterType(Context, VT);
1462         SmallVector<SDValue, 4> Parts(NumParts);
1463         getCopyToParts(DAG, getCurSDLoc(),
1464                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1465                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1466 
1467         // 'inreg' on function refers to return value
1468         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1469         if (RetInReg)
1470           Flags.setInReg();
1471 
1472         // Propagate extension type if any
1473         if (ExtendKind == ISD::SIGN_EXTEND)
1474           Flags.setSExt();
1475         else if (ExtendKind == ISD::ZERO_EXTEND)
1476           Flags.setZExt();
1477 
1478         for (unsigned i = 0; i < NumParts; ++i) {
1479           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1480                                         VT, /*isfixed=*/true, 0, 0));
1481           OutVals.push_back(Parts[i]);
1482         }
1483       }
1484     }
1485   }
1486 
1487   // Push in swifterror virtual register as the last element of Outs. This makes
1488   // sure swifterror virtual register will be returned in the swifterror
1489   // physical register.
1490   const Function *F = I.getParent()->getParent();
1491   if (TLI.supportSwiftError() &&
1492       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1493     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1494     Flags.setSwiftError();
1495     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1496                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1497                                   true /*isfixed*/, 1 /*origidx*/,
1498                                   0 /*partOffs*/));
1499     // Create SDNode for the swifterror virtual register.
1500     OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0],
1501                                       EVT(TLI.getPointerTy(DL))));
1502   }
1503 
1504   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1505   CallingConv::ID CallConv =
1506     DAG.getMachineFunction().getFunction()->getCallingConv();
1507   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1508       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1509 
1510   // Verify that the target's LowerReturn behaved as expected.
1511   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1512          "LowerReturn didn't return a valid chain!");
1513 
1514   // Update the DAG with the new chain value resulting from return lowering.
1515   DAG.setRoot(Chain);
1516 }
1517 
1518 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1519 /// created for it, emit nodes to copy the value into the virtual
1520 /// registers.
1521 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1522   // Skip empty types
1523   if (V->getType()->isEmptyTy())
1524     return;
1525 
1526   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1527   if (VMI != FuncInfo.ValueMap.end()) {
1528     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1529     CopyValueToVirtualRegister(V, VMI->second);
1530   }
1531 }
1532 
1533 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1534 /// the current basic block, add it to ValueMap now so that we'll get a
1535 /// CopyTo/FromReg.
1536 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1537   // No need to export constants.
1538   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1539 
1540   // Already exported?
1541   if (FuncInfo.isExportedInst(V)) return;
1542 
1543   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1544   CopyValueToVirtualRegister(V, Reg);
1545 }
1546 
1547 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1548                                                      const BasicBlock *FromBB) {
1549   // The operands of the setcc have to be in this block.  We don't know
1550   // how to export them from some other block.
1551   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1552     // Can export from current BB.
1553     if (VI->getParent() == FromBB)
1554       return true;
1555 
1556     // Is already exported, noop.
1557     return FuncInfo.isExportedInst(V);
1558   }
1559 
1560   // If this is an argument, we can export it if the BB is the entry block or
1561   // if it is already exported.
1562   if (isa<Argument>(V)) {
1563     if (FromBB == &FromBB->getParent()->getEntryBlock())
1564       return true;
1565 
1566     // Otherwise, can only export this if it is already exported.
1567     return FuncInfo.isExportedInst(V);
1568   }
1569 
1570   // Otherwise, constants can always be exported.
1571   return true;
1572 }
1573 
1574 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1575 BranchProbability
1576 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1577                                         const MachineBasicBlock *Dst) const {
1578   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1579   const BasicBlock *SrcBB = Src->getBasicBlock();
1580   const BasicBlock *DstBB = Dst->getBasicBlock();
1581   if (!BPI) {
1582     // If BPI is not available, set the default probability as 1 / N, where N is
1583     // the number of successors.
1584     auto SuccSize = std::max<uint32_t>(
1585         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1586     return BranchProbability(1, SuccSize);
1587   }
1588   return BPI->getEdgeProbability(SrcBB, DstBB);
1589 }
1590 
1591 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1592                                                MachineBasicBlock *Dst,
1593                                                BranchProbability Prob) {
1594   if (!FuncInfo.BPI)
1595     Src->addSuccessorWithoutProb(Dst);
1596   else {
1597     if (Prob.isUnknown())
1598       Prob = getEdgeProbability(Src, Dst);
1599     Src->addSuccessor(Dst, Prob);
1600   }
1601 }
1602 
1603 static bool InBlock(const Value *V, const BasicBlock *BB) {
1604   if (const Instruction *I = dyn_cast<Instruction>(V))
1605     return I->getParent() == BB;
1606   return true;
1607 }
1608 
1609 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1610 /// This function emits a branch and is used at the leaves of an OR or an
1611 /// AND operator tree.
1612 ///
1613 void
1614 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1615                                                   MachineBasicBlock *TBB,
1616                                                   MachineBasicBlock *FBB,
1617                                                   MachineBasicBlock *CurBB,
1618                                                   MachineBasicBlock *SwitchBB,
1619                                                   BranchProbability TProb,
1620                                                   BranchProbability FProb) {
1621   const BasicBlock *BB = CurBB->getBasicBlock();
1622 
1623   // If the leaf of the tree is a comparison, merge the condition into
1624   // the caseblock.
1625   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1626     // The operands of the cmp have to be in this block.  We don't know
1627     // how to export them from some other block.  If this is the first block
1628     // of the sequence, no exporting is needed.
1629     if (CurBB == SwitchBB ||
1630         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1631          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1632       ISD::CondCode Condition;
1633       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1634         Condition = getICmpCondCode(IC->getPredicate());
1635       } else {
1636         const FCmpInst *FC = cast<FCmpInst>(Cond);
1637         Condition = getFCmpCondCode(FC->getPredicate());
1638         if (TM.Options.NoNaNsFPMath)
1639           Condition = getFCmpCodeWithoutNaN(Condition);
1640       }
1641 
1642       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1643                    TBB, FBB, CurBB, TProb, FProb);
1644       SwitchCases.push_back(CB);
1645       return;
1646     }
1647   }
1648 
1649   // Create a CaseBlock record representing this branch.
1650   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1651                nullptr, TBB, FBB, CurBB, TProb, FProb);
1652   SwitchCases.push_back(CB);
1653 }
1654 
1655 /// FindMergedConditions - If Cond is an expression like
1656 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1657                                                MachineBasicBlock *TBB,
1658                                                MachineBasicBlock *FBB,
1659                                                MachineBasicBlock *CurBB,
1660                                                MachineBasicBlock *SwitchBB,
1661                                                Instruction::BinaryOps Opc,
1662                                                BranchProbability TProb,
1663                                                BranchProbability FProb) {
1664   // If this node is not part of the or/and tree, emit it as a branch.
1665   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1666   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1667       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1668       BOp->getParent() != CurBB->getBasicBlock() ||
1669       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1670       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1671     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1672                                  TProb, FProb);
1673     return;
1674   }
1675 
1676   //  Create TmpBB after CurBB.
1677   MachineFunction::iterator BBI(CurBB);
1678   MachineFunction &MF = DAG.getMachineFunction();
1679   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1680   CurBB->getParent()->insert(++BBI, TmpBB);
1681 
1682   if (Opc == Instruction::Or) {
1683     // Codegen X | Y as:
1684     // BB1:
1685     //   jmp_if_X TBB
1686     //   jmp TmpBB
1687     // TmpBB:
1688     //   jmp_if_Y TBB
1689     //   jmp FBB
1690     //
1691 
1692     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1693     // The requirement is that
1694     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1695     //     = TrueProb for original BB.
1696     // Assuming the original probabilities are A and B, one choice is to set
1697     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1698     // A/(1+B) and 2B/(1+B). This choice assumes that
1699     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1700     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1701     // TmpBB, but the math is more complicated.
1702 
1703     auto NewTrueProb = TProb / 2;
1704     auto NewFalseProb = TProb / 2 + FProb;
1705     // Emit the LHS condition.
1706     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1707                          NewTrueProb, NewFalseProb);
1708 
1709     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1710     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1711     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1712     // Emit the RHS condition into TmpBB.
1713     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1714                          Probs[0], Probs[1]);
1715   } else {
1716     assert(Opc == Instruction::And && "Unknown merge op!");
1717     // Codegen X & Y as:
1718     // BB1:
1719     //   jmp_if_X TmpBB
1720     //   jmp FBB
1721     // TmpBB:
1722     //   jmp_if_Y TBB
1723     //   jmp FBB
1724     //
1725     //  This requires creation of TmpBB after CurBB.
1726 
1727     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1728     // The requirement is that
1729     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1730     //     = FalseProb for original BB.
1731     // Assuming the original probabilities are A and B, one choice is to set
1732     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1733     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1734     // TrueProb for BB1 * FalseProb for TmpBB.
1735 
1736     auto NewTrueProb = TProb + FProb / 2;
1737     auto NewFalseProb = FProb / 2;
1738     // Emit the LHS condition.
1739     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1740                          NewTrueProb, NewFalseProb);
1741 
1742     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1743     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1744     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1745     // Emit the RHS condition into TmpBB.
1746     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1747                          Probs[0], Probs[1]);
1748   }
1749 }
1750 
1751 /// If the set of cases should be emitted as a series of branches, return true.
1752 /// If we should emit this as a bunch of and/or'd together conditions, return
1753 /// false.
1754 bool
1755 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1756   if (Cases.size() != 2) return true;
1757 
1758   // If this is two comparisons of the same values or'd or and'd together, they
1759   // will get folded into a single comparison, so don't emit two blocks.
1760   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1761        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1762       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1763        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1764     return false;
1765   }
1766 
1767   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1768   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1769   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1770       Cases[0].CC == Cases[1].CC &&
1771       isa<Constant>(Cases[0].CmpRHS) &&
1772       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1773     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1774       return false;
1775     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1776       return false;
1777   }
1778 
1779   return true;
1780 }
1781 
1782 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1783   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1784 
1785   // Update machine-CFG edges.
1786   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1787 
1788   if (I.isUnconditional()) {
1789     // Update machine-CFG edges.
1790     BrMBB->addSuccessor(Succ0MBB);
1791 
1792     // If this is not a fall-through branch or optimizations are switched off,
1793     // emit the branch.
1794     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1795       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1796                               MVT::Other, getControlRoot(),
1797                               DAG.getBasicBlock(Succ0MBB)));
1798 
1799     return;
1800   }
1801 
1802   // If this condition is one of the special cases we handle, do special stuff
1803   // now.
1804   const Value *CondVal = I.getCondition();
1805   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1806 
1807   // If this is a series of conditions that are or'd or and'd together, emit
1808   // this as a sequence of branches instead of setcc's with and/or operations.
1809   // As long as jumps are not expensive, this should improve performance.
1810   // For example, instead of something like:
1811   //     cmp A, B
1812   //     C = seteq
1813   //     cmp D, E
1814   //     F = setle
1815   //     or C, F
1816   //     jnz foo
1817   // Emit:
1818   //     cmp A, B
1819   //     je foo
1820   //     cmp D, E
1821   //     jle foo
1822   //
1823   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1824     Instruction::BinaryOps Opcode = BOp->getOpcode();
1825     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1826         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1827         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1828       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1829                            Opcode,
1830                            getEdgeProbability(BrMBB, Succ0MBB),
1831                            getEdgeProbability(BrMBB, Succ1MBB));
1832       // If the compares in later blocks need to use values not currently
1833       // exported from this block, export them now.  This block should always
1834       // be the first entry.
1835       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1836 
1837       // Allow some cases to be rejected.
1838       if (ShouldEmitAsBranches(SwitchCases)) {
1839         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1840           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1841           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1842         }
1843 
1844         // Emit the branch for this block.
1845         visitSwitchCase(SwitchCases[0], BrMBB);
1846         SwitchCases.erase(SwitchCases.begin());
1847         return;
1848       }
1849 
1850       // Okay, we decided not to do this, remove any inserted MBB's and clear
1851       // SwitchCases.
1852       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1853         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1854 
1855       SwitchCases.clear();
1856     }
1857   }
1858 
1859   // Create a CaseBlock record representing this branch.
1860   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1861                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1862 
1863   // Use visitSwitchCase to actually insert the fast branch sequence for this
1864   // cond branch.
1865   visitSwitchCase(CB, BrMBB);
1866 }
1867 
1868 /// visitSwitchCase - Emits the necessary code to represent a single node in
1869 /// the binary search tree resulting from lowering a switch instruction.
1870 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1871                                           MachineBasicBlock *SwitchBB) {
1872   SDValue Cond;
1873   SDValue CondLHS = getValue(CB.CmpLHS);
1874   SDLoc dl = getCurSDLoc();
1875 
1876   // Build the setcc now.
1877   if (!CB.CmpMHS) {
1878     // Fold "(X == true)" to X and "(X == false)" to !X to
1879     // handle common cases produced by branch lowering.
1880     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1881         CB.CC == ISD::SETEQ)
1882       Cond = CondLHS;
1883     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1884              CB.CC == ISD::SETEQ) {
1885       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1886       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1887     } else
1888       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1889   } else {
1890     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1891 
1892     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1893     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1894 
1895     SDValue CmpOp = getValue(CB.CmpMHS);
1896     EVT VT = CmpOp.getValueType();
1897 
1898     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1899       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1900                           ISD::SETLE);
1901     } else {
1902       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1903                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1904       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1905                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1906     }
1907   }
1908 
1909   // Update successor info
1910   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1911   // TrueBB and FalseBB are always different unless the incoming IR is
1912   // degenerate. This only happens when running llc on weird IR.
1913   if (CB.TrueBB != CB.FalseBB)
1914     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1915   SwitchBB->normalizeSuccProbs();
1916 
1917   // If the lhs block is the next block, invert the condition so that we can
1918   // fall through to the lhs instead of the rhs block.
1919   if (CB.TrueBB == NextBlock(SwitchBB)) {
1920     std::swap(CB.TrueBB, CB.FalseBB);
1921     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1922     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1923   }
1924 
1925   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1926                                MVT::Other, getControlRoot(), Cond,
1927                                DAG.getBasicBlock(CB.TrueBB));
1928 
1929   // Insert the false branch. Do this even if it's a fall through branch,
1930   // this makes it easier to do DAG optimizations which require inverting
1931   // the branch condition.
1932   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1933                        DAG.getBasicBlock(CB.FalseBB));
1934 
1935   DAG.setRoot(BrCond);
1936 }
1937 
1938 /// visitJumpTable - Emit JumpTable node in the current MBB
1939 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1940   // Emit the code for the jump table
1941   assert(JT.Reg != -1U && "Should lower JT Header first!");
1942   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1943   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1944                                      JT.Reg, PTy);
1945   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1946   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1947                                     MVT::Other, Index.getValue(1),
1948                                     Table, Index);
1949   DAG.setRoot(BrJumpTable);
1950 }
1951 
1952 /// visitJumpTableHeader - This function emits necessary code to produce index
1953 /// in the JumpTable from switch case.
1954 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1955                                                JumpTableHeader &JTH,
1956                                                MachineBasicBlock *SwitchBB) {
1957   SDLoc dl = getCurSDLoc();
1958 
1959   // Subtract the lowest switch case value from the value being switched on and
1960   // conditional branch to default mbb if the result is greater than the
1961   // difference between smallest and largest cases.
1962   SDValue SwitchOp = getValue(JTH.SValue);
1963   EVT VT = SwitchOp.getValueType();
1964   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1965                             DAG.getConstant(JTH.First, dl, VT));
1966 
1967   // The SDNode we just created, which holds the value being switched on minus
1968   // the smallest case value, needs to be copied to a virtual register so it
1969   // can be used as an index into the jump table in a subsequent basic block.
1970   // This value may be smaller or larger than the target's pointer type, and
1971   // therefore require extension or truncating.
1972   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1973   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1974 
1975   unsigned JumpTableReg =
1976       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1977   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1978                                     JumpTableReg, SwitchOp);
1979   JT.Reg = JumpTableReg;
1980 
1981   // Emit the range check for the jump table, and branch to the default block
1982   // for the switch statement if the value being switched on exceeds the largest
1983   // case in the switch.
1984   SDValue CMP = DAG.getSetCC(
1985       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1986                                  Sub.getValueType()),
1987       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1988 
1989   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1990                                MVT::Other, CopyTo, CMP,
1991                                DAG.getBasicBlock(JT.Default));
1992 
1993   // Avoid emitting unnecessary branches to the next block.
1994   if (JT.MBB != NextBlock(SwitchBB))
1995     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1996                          DAG.getBasicBlock(JT.MBB));
1997 
1998   DAG.setRoot(BrCond);
1999 }
2000 
2001 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2002 /// variable if there exists one.
2003 static SDValue getLoadStackGuard(SelectionDAG &DAG, SDLoc DL, SDValue &Chain) {
2004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2005   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2006   MachineFunction &MF = DAG.getMachineFunction();
2007   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2008   MachineSDNode *Node =
2009       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2010   if (Global) {
2011     MachinePointerInfo MPInfo(Global);
2012     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2013     unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
2014     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2015                                        DAG.getEVTAlignment(PtrTy));
2016     Node->setMemRefs(MemRefs, MemRefs + 1);
2017   }
2018   return SDValue(Node, 0);
2019 }
2020 
2021 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2022 /// tail spliced into a stack protector check success bb.
2023 ///
2024 /// For a high level explanation of how this fits into the stack protector
2025 /// generation see the comment on the declaration of class
2026 /// StackProtectorDescriptor.
2027 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2028                                                   MachineBasicBlock *ParentBB) {
2029 
2030   // First create the loads to the guard/stack slot for the comparison.
2031   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2032   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2033 
2034   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
2035   int FI = MFI->getStackProtectorIndex();
2036 
2037   SDValue Guard;
2038   SDLoc dl = getCurSDLoc();
2039   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2040   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2041   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2042 
2043   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2044   // Otherwise, emit a volatile load to retrieve the stack guard value.
2045   SDValue Chain = DAG.getEntryNode();
2046   if (TLI.useLoadStackGuardNode()) {
2047     Guard = getLoadStackGuard(DAG, dl, Chain);
2048   } else {
2049     const Value *IRGuard = TLI.getSDagStackGuard(M);
2050     SDValue GuardPtr = getValue(IRGuard);
2051 
2052     Guard =
2053         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2054                     true, false, false, Align);
2055   }
2056 
2057   SDValue StackSlot = DAG.getLoad(
2058       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2059       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
2060       false, false, Align);
2061 
2062   // Perform the comparison via a subtract/getsetcc.
2063   EVT VT = Guard.getValueType();
2064   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2065 
2066   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2067                                                         *DAG.getContext(),
2068                                                         Sub.getValueType()),
2069                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2070 
2071   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2072   // branch to failure MBB.
2073   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2074                                MVT::Other, StackSlot.getOperand(0),
2075                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2076   // Otherwise branch to success MBB.
2077   SDValue Br = DAG.getNode(ISD::BR, dl,
2078                            MVT::Other, BrCond,
2079                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2080 
2081   DAG.setRoot(Br);
2082 }
2083 
2084 /// Codegen the failure basic block for a stack protector check.
2085 ///
2086 /// A failure stack protector machine basic block consists simply of a call to
2087 /// __stack_chk_fail().
2088 ///
2089 /// For a high level explanation of how this fits into the stack protector
2090 /// generation see the comment on the declaration of class
2091 /// StackProtectorDescriptor.
2092 void
2093 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2094   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2095   SDValue Chain =
2096       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2097                       None, false, getCurSDLoc(), false, false).second;
2098   DAG.setRoot(Chain);
2099 }
2100 
2101 /// visitBitTestHeader - This function emits necessary code to produce value
2102 /// suitable for "bit tests"
2103 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2104                                              MachineBasicBlock *SwitchBB) {
2105   SDLoc dl = getCurSDLoc();
2106 
2107   // Subtract the minimum value
2108   SDValue SwitchOp = getValue(B.SValue);
2109   EVT VT = SwitchOp.getValueType();
2110   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2111                             DAG.getConstant(B.First, dl, VT));
2112 
2113   // Check range
2114   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2115   SDValue RangeCmp = DAG.getSetCC(
2116       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2117                                  Sub.getValueType()),
2118       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2119 
2120   // Determine the type of the test operands.
2121   bool UsePtrType = false;
2122   if (!TLI.isTypeLegal(VT))
2123     UsePtrType = true;
2124   else {
2125     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2126       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2127         // Switch table case range are encoded into series of masks.
2128         // Just use pointer type, it's guaranteed to fit.
2129         UsePtrType = true;
2130         break;
2131       }
2132   }
2133   if (UsePtrType) {
2134     VT = TLI.getPointerTy(DAG.getDataLayout());
2135     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2136   }
2137 
2138   B.RegVT = VT.getSimpleVT();
2139   B.Reg = FuncInfo.CreateReg(B.RegVT);
2140   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2141 
2142   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2143 
2144   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2145   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2146   SwitchBB->normalizeSuccProbs();
2147 
2148   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2149                                 MVT::Other, CopyTo, RangeCmp,
2150                                 DAG.getBasicBlock(B.Default));
2151 
2152   // Avoid emitting unnecessary branches to the next block.
2153   if (MBB != NextBlock(SwitchBB))
2154     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2155                           DAG.getBasicBlock(MBB));
2156 
2157   DAG.setRoot(BrRange);
2158 }
2159 
2160 /// visitBitTestCase - this function produces one "bit test"
2161 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2162                                            MachineBasicBlock* NextMBB,
2163                                            BranchProbability BranchProbToNext,
2164                                            unsigned Reg,
2165                                            BitTestCase &B,
2166                                            MachineBasicBlock *SwitchBB) {
2167   SDLoc dl = getCurSDLoc();
2168   MVT VT = BB.RegVT;
2169   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2170   SDValue Cmp;
2171   unsigned PopCount = countPopulation(B.Mask);
2172   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2173   if (PopCount == 1) {
2174     // Testing for a single bit; just compare the shift count with what it
2175     // would need to be to shift a 1 bit in that position.
2176     Cmp = DAG.getSetCC(
2177         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2178         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2179         ISD::SETEQ);
2180   } else if (PopCount == BB.Range) {
2181     // There is only one zero bit in the range, test for it directly.
2182     Cmp = DAG.getSetCC(
2183         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2184         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2185         ISD::SETNE);
2186   } else {
2187     // Make desired shift
2188     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2189                                     DAG.getConstant(1, dl, VT), ShiftOp);
2190 
2191     // Emit bit tests and jumps
2192     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2193                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2194     Cmp = DAG.getSetCC(
2195         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2196         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2197   }
2198 
2199   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2200   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2201   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2202   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2203   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2204   // one as they are relative probabilities (and thus work more like weights),
2205   // and hence we need to normalize them to let the sum of them become one.
2206   SwitchBB->normalizeSuccProbs();
2207 
2208   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2209                               MVT::Other, getControlRoot(),
2210                               Cmp, DAG.getBasicBlock(B.TargetBB));
2211 
2212   // Avoid emitting unnecessary branches to the next block.
2213   if (NextMBB != NextBlock(SwitchBB))
2214     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2215                         DAG.getBasicBlock(NextMBB));
2216 
2217   DAG.setRoot(BrAnd);
2218 }
2219 
2220 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2221   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2222 
2223   // Retrieve successors. Look through artificial IR level blocks like
2224   // catchswitch for successors.
2225   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2226   const BasicBlock *EHPadBB = I.getSuccessor(1);
2227 
2228   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2229   // have to do anything here to lower funclet bundles.
2230   assert(!I.hasOperandBundlesOtherThan(
2231              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2232          "Cannot lower invokes with arbitrary operand bundles yet!");
2233 
2234   const Value *Callee(I.getCalledValue());
2235   const Function *Fn = dyn_cast<Function>(Callee);
2236   if (isa<InlineAsm>(Callee))
2237     visitInlineAsm(&I);
2238   else if (Fn && Fn->isIntrinsic()) {
2239     switch (Fn->getIntrinsicID()) {
2240     default:
2241       llvm_unreachable("Cannot invoke this intrinsic");
2242     case Intrinsic::donothing:
2243       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2244       break;
2245     case Intrinsic::experimental_patchpoint_void:
2246     case Intrinsic::experimental_patchpoint_i64:
2247       visitPatchpoint(&I, EHPadBB);
2248       break;
2249     case Intrinsic::experimental_gc_statepoint:
2250       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2251       break;
2252     }
2253   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2254     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2255     // Eventually we will support lowering the @llvm.experimental.deoptimize
2256     // intrinsic, and right now there are no plans to support other intrinsics
2257     // with deopt state.
2258     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2259   } else {
2260     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2261   }
2262 
2263   // If the value of the invoke is used outside of its defining block, make it
2264   // available as a virtual register.
2265   // We already took care of the exported value for the statepoint instruction
2266   // during call to the LowerStatepoint.
2267   if (!isStatepoint(I)) {
2268     CopyToExportRegsIfNeeded(&I);
2269   }
2270 
2271   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2272   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2273   BranchProbability EHPadBBProb =
2274       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2275           : BranchProbability::getZero();
2276   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2277 
2278   // Update successor info.
2279   addSuccessorWithProb(InvokeMBB, Return);
2280   for (auto &UnwindDest : UnwindDests) {
2281     UnwindDest.first->setIsEHPad();
2282     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2283   }
2284   InvokeMBB->normalizeSuccProbs();
2285 
2286   // Drop into normal successor.
2287   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2288                           MVT::Other, getControlRoot(),
2289                           DAG.getBasicBlock(Return)));
2290 }
2291 
2292 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2293   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2294 }
2295 
2296 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2297   assert(FuncInfo.MBB->isEHPad() &&
2298          "Call to landingpad not in landing pad!");
2299 
2300   MachineBasicBlock *MBB = FuncInfo.MBB;
2301   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2302   AddLandingPadInfo(LP, MMI, MBB);
2303 
2304   // If there aren't registers to copy the values into (e.g., during SjLj
2305   // exceptions), then don't bother to create these DAG nodes.
2306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2307   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2308   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2309       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2310     return;
2311 
2312   // If landingpad's return type is token type, we don't create DAG nodes
2313   // for its exception pointer and selector value. The extraction of exception
2314   // pointer or selector value from token type landingpads is not currently
2315   // supported.
2316   if (LP.getType()->isTokenTy())
2317     return;
2318 
2319   SmallVector<EVT, 2> ValueVTs;
2320   SDLoc dl = getCurSDLoc();
2321   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2322   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2323 
2324   // Get the two live-in registers as SDValues. The physregs have already been
2325   // copied into virtual registers.
2326   SDValue Ops[2];
2327   if (FuncInfo.ExceptionPointerVirtReg) {
2328     Ops[0] = DAG.getZExtOrTrunc(
2329         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2330                            FuncInfo.ExceptionPointerVirtReg,
2331                            TLI.getPointerTy(DAG.getDataLayout())),
2332         dl, ValueVTs[0]);
2333   } else {
2334     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2335   }
2336   Ops[1] = DAG.getZExtOrTrunc(
2337       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2338                          FuncInfo.ExceptionSelectorVirtReg,
2339                          TLI.getPointerTy(DAG.getDataLayout())),
2340       dl, ValueVTs[1]);
2341 
2342   // Merge into one.
2343   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2344                             DAG.getVTList(ValueVTs), Ops);
2345   setValue(&LP, Res);
2346 }
2347 
2348 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2349 #ifndef NDEBUG
2350   for (const CaseCluster &CC : Clusters)
2351     assert(CC.Low == CC.High && "Input clusters must be single-case");
2352 #endif
2353 
2354   std::sort(Clusters.begin(), Clusters.end(),
2355             [](const CaseCluster &a, const CaseCluster &b) {
2356     return a.Low->getValue().slt(b.Low->getValue());
2357   });
2358 
2359   // Merge adjacent clusters with the same destination.
2360   const unsigned N = Clusters.size();
2361   unsigned DstIndex = 0;
2362   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2363     CaseCluster &CC = Clusters[SrcIndex];
2364     const ConstantInt *CaseVal = CC.Low;
2365     MachineBasicBlock *Succ = CC.MBB;
2366 
2367     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2368         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2369       // If this case has the same successor and is a neighbour, merge it into
2370       // the previous cluster.
2371       Clusters[DstIndex - 1].High = CaseVal;
2372       Clusters[DstIndex - 1].Prob += CC.Prob;
2373     } else {
2374       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2375                    sizeof(Clusters[SrcIndex]));
2376     }
2377   }
2378   Clusters.resize(DstIndex);
2379 }
2380 
2381 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2382                                            MachineBasicBlock *Last) {
2383   // Update JTCases.
2384   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2385     if (JTCases[i].first.HeaderBB == First)
2386       JTCases[i].first.HeaderBB = Last;
2387 
2388   // Update BitTestCases.
2389   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2390     if (BitTestCases[i].Parent == First)
2391       BitTestCases[i].Parent = Last;
2392 }
2393 
2394 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2395   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2396 
2397   // Update machine-CFG edges with unique successors.
2398   SmallSet<BasicBlock*, 32> Done;
2399   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2400     BasicBlock *BB = I.getSuccessor(i);
2401     bool Inserted = Done.insert(BB).second;
2402     if (!Inserted)
2403         continue;
2404 
2405     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2406     addSuccessorWithProb(IndirectBrMBB, Succ);
2407   }
2408   IndirectBrMBB->normalizeSuccProbs();
2409 
2410   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2411                           MVT::Other, getControlRoot(),
2412                           getValue(I.getAddress())));
2413 }
2414 
2415 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2416   if (DAG.getTarget().Options.TrapUnreachable)
2417     DAG.setRoot(
2418         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2419 }
2420 
2421 void SelectionDAGBuilder::visitFSub(const User &I) {
2422   // -0.0 - X --> fneg
2423   Type *Ty = I.getType();
2424   if (isa<Constant>(I.getOperand(0)) &&
2425       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2426     SDValue Op2 = getValue(I.getOperand(1));
2427     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2428                              Op2.getValueType(), Op2));
2429     return;
2430   }
2431 
2432   visitBinary(I, ISD::FSUB);
2433 }
2434 
2435 /// Checks if the given instruction performs a vector reduction, in which case
2436 /// we have the freedom to alter the elements in the result as long as the
2437 /// reduction of them stays unchanged.
2438 static bool isVectorReductionOp(const User *I) {
2439   const Instruction *Inst = dyn_cast<Instruction>(I);
2440   if (!Inst || !Inst->getType()->isVectorTy())
2441     return false;
2442 
2443   auto OpCode = Inst->getOpcode();
2444   switch (OpCode) {
2445   case Instruction::Add:
2446   case Instruction::Mul:
2447   case Instruction::And:
2448   case Instruction::Or:
2449   case Instruction::Xor:
2450     break;
2451   case Instruction::FAdd:
2452   case Instruction::FMul:
2453     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2454       if (FPOp->getFastMathFlags().unsafeAlgebra())
2455         break;
2456     // Fall through.
2457   default:
2458     return false;
2459   }
2460 
2461   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2462   unsigned ElemNumToReduce = ElemNum;
2463 
2464   // Do DFS search on the def-use chain from the given instruction. We only
2465   // allow four kinds of operations during the search until we reach the
2466   // instruction that extracts the first element from the vector:
2467   //
2468   //   1. The reduction operation of the same opcode as the given instruction.
2469   //
2470   //   2. PHI node.
2471   //
2472   //   3. ShuffleVector instruction together with a reduction operation that
2473   //      does a partial reduction.
2474   //
2475   //   4. ExtractElement that extracts the first element from the vector, and we
2476   //      stop searching the def-use chain here.
2477   //
2478   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2479   // from 1-3 to the stack to continue the DFS. The given instruction is not
2480   // a reduction operation if we meet any other instructions other than those
2481   // listed above.
2482 
2483   SmallVector<const User *, 16> UsersToVisit{Inst};
2484   SmallPtrSet<const User *, 16> Visited;
2485   bool ReduxExtracted = false;
2486 
2487   while (!UsersToVisit.empty()) {
2488     auto User = UsersToVisit.back();
2489     UsersToVisit.pop_back();
2490     if (!Visited.insert(User).second)
2491       continue;
2492 
2493     for (const auto &U : User->users()) {
2494       auto Inst = dyn_cast<Instruction>(U);
2495       if (!Inst)
2496         return false;
2497 
2498       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2499         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2500           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2501             return false;
2502         UsersToVisit.push_back(U);
2503       } else if (const ShuffleVectorInst *ShufInst =
2504                      dyn_cast<ShuffleVectorInst>(U)) {
2505         // Detect the following pattern: A ShuffleVector instruction together
2506         // with a reduction that do partial reduction on the first and second
2507         // ElemNumToReduce / 2 elements, and store the result in
2508         // ElemNumToReduce / 2 elements in another vector.
2509 
2510         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2511         if (ResultElements < ElemNum)
2512           return false;
2513 
2514         if (ElemNumToReduce == 1)
2515           return false;
2516         if (!isa<UndefValue>(U->getOperand(1)))
2517           return false;
2518         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2519           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2520             return false;
2521         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2522           if (ShufInst->getMaskValue(i) != -1)
2523             return false;
2524 
2525         // There is only one user of this ShuffleVector instruction, which
2526         // must be a reduction operation.
2527         if (!U->hasOneUse())
2528           return false;
2529 
2530         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2531         if (!U2 || U2->getOpcode() != OpCode)
2532           return false;
2533 
2534         // Check operands of the reduction operation.
2535         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2536             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2537           UsersToVisit.push_back(U2);
2538           ElemNumToReduce /= 2;
2539         } else
2540           return false;
2541       } else if (isa<ExtractElementInst>(U)) {
2542         // At this moment we should have reduced all elements in the vector.
2543         if (ElemNumToReduce != 1)
2544           return false;
2545 
2546         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2547         if (!Val || Val->getZExtValue() != 0)
2548           return false;
2549 
2550         ReduxExtracted = true;
2551       } else
2552         return false;
2553     }
2554   }
2555   return ReduxExtracted;
2556 }
2557 
2558 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2559   SDValue Op1 = getValue(I.getOperand(0));
2560   SDValue Op2 = getValue(I.getOperand(1));
2561 
2562   bool nuw = false;
2563   bool nsw = false;
2564   bool exact = false;
2565   bool vec_redux = false;
2566   FastMathFlags FMF;
2567 
2568   if (const OverflowingBinaryOperator *OFBinOp =
2569           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2570     nuw = OFBinOp->hasNoUnsignedWrap();
2571     nsw = OFBinOp->hasNoSignedWrap();
2572   }
2573   if (const PossiblyExactOperator *ExactOp =
2574           dyn_cast<const PossiblyExactOperator>(&I))
2575     exact = ExactOp->isExact();
2576   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2577     FMF = FPOp->getFastMathFlags();
2578 
2579   if (isVectorReductionOp(&I)) {
2580     vec_redux = true;
2581     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2582   }
2583 
2584   SDNodeFlags Flags;
2585   Flags.setExact(exact);
2586   Flags.setNoSignedWrap(nsw);
2587   Flags.setNoUnsignedWrap(nuw);
2588   Flags.setVectorReduction(vec_redux);
2589   if (EnableFMFInDAG) {
2590     Flags.setAllowReciprocal(FMF.allowReciprocal());
2591     Flags.setNoInfs(FMF.noInfs());
2592     Flags.setNoNaNs(FMF.noNaNs());
2593     Flags.setNoSignedZeros(FMF.noSignedZeros());
2594     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2595   }
2596   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2597                                      Op1, Op2, &Flags);
2598   setValue(&I, BinNodeValue);
2599 }
2600 
2601 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2602   SDValue Op1 = getValue(I.getOperand(0));
2603   SDValue Op2 = getValue(I.getOperand(1));
2604 
2605   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2606       Op2.getValueType(), DAG.getDataLayout());
2607 
2608   // Coerce the shift amount to the right type if we can.
2609   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2610     unsigned ShiftSize = ShiftTy.getSizeInBits();
2611     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2612     SDLoc DL = getCurSDLoc();
2613 
2614     // If the operand is smaller than the shift count type, promote it.
2615     if (ShiftSize > Op2Size)
2616       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2617 
2618     // If the operand is larger than the shift count type but the shift
2619     // count type has enough bits to represent any shift value, truncate
2620     // it now. This is a common case and it exposes the truncate to
2621     // optimization early.
2622     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2623       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2624     // Otherwise we'll need to temporarily settle for some other convenient
2625     // type.  Type legalization will make adjustments once the shiftee is split.
2626     else
2627       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2628   }
2629 
2630   bool nuw = false;
2631   bool nsw = false;
2632   bool exact = false;
2633 
2634   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2635 
2636     if (const OverflowingBinaryOperator *OFBinOp =
2637             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2638       nuw = OFBinOp->hasNoUnsignedWrap();
2639       nsw = OFBinOp->hasNoSignedWrap();
2640     }
2641     if (const PossiblyExactOperator *ExactOp =
2642             dyn_cast<const PossiblyExactOperator>(&I))
2643       exact = ExactOp->isExact();
2644   }
2645   SDNodeFlags Flags;
2646   Flags.setExact(exact);
2647   Flags.setNoSignedWrap(nsw);
2648   Flags.setNoUnsignedWrap(nuw);
2649   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2650                             &Flags);
2651   setValue(&I, Res);
2652 }
2653 
2654 void SelectionDAGBuilder::visitSDiv(const User &I) {
2655   SDValue Op1 = getValue(I.getOperand(0));
2656   SDValue Op2 = getValue(I.getOperand(1));
2657 
2658   SDNodeFlags Flags;
2659   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2660                  cast<PossiblyExactOperator>(&I)->isExact());
2661   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2662                            Op2, &Flags));
2663 }
2664 
2665 void SelectionDAGBuilder::visitICmp(const User &I) {
2666   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2667   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2668     predicate = IC->getPredicate();
2669   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2670     predicate = ICmpInst::Predicate(IC->getPredicate());
2671   SDValue Op1 = getValue(I.getOperand(0));
2672   SDValue Op2 = getValue(I.getOperand(1));
2673   ISD::CondCode Opcode = getICmpCondCode(predicate);
2674 
2675   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2676                                                         I.getType());
2677   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2678 }
2679 
2680 void SelectionDAGBuilder::visitFCmp(const User &I) {
2681   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2682   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2683     predicate = FC->getPredicate();
2684   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2685     predicate = FCmpInst::Predicate(FC->getPredicate());
2686   SDValue Op1 = getValue(I.getOperand(0));
2687   SDValue Op2 = getValue(I.getOperand(1));
2688   ISD::CondCode Condition = getFCmpCondCode(predicate);
2689 
2690   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2691   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2692   // further optimization, but currently FMF is only applicable to binary nodes.
2693   if (TM.Options.NoNaNsFPMath)
2694     Condition = getFCmpCodeWithoutNaN(Condition);
2695   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2696                                                         I.getType());
2697   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2698 }
2699 
2700 // Check if the condition of the select has one use or two users that are both
2701 // selects with the same condition.
2702 bool hasOnlySelectUsers(const Value *Cond) {
2703   return std::all_of(Cond->user_begin(), Cond->user_end(), [](const Value *V) {
2704     return isa<SelectInst>(V);
2705   });
2706 }
2707 
2708 void SelectionDAGBuilder::visitSelect(const User &I) {
2709   SmallVector<EVT, 4> ValueVTs;
2710   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2711                   ValueVTs);
2712   unsigned NumValues = ValueVTs.size();
2713   if (NumValues == 0) return;
2714 
2715   SmallVector<SDValue, 4> Values(NumValues);
2716   SDValue Cond     = getValue(I.getOperand(0));
2717   SDValue LHSVal   = getValue(I.getOperand(1));
2718   SDValue RHSVal   = getValue(I.getOperand(2));
2719   auto BaseOps = {Cond};
2720   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2721     ISD::VSELECT : ISD::SELECT;
2722 
2723   // Min/max matching is only viable if all output VTs are the same.
2724   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2725     EVT VT = ValueVTs[0];
2726     LLVMContext &Ctx = *DAG.getContext();
2727     auto &TLI = DAG.getTargetLoweringInfo();
2728 
2729     // We care about the legality of the operation after it has been type
2730     // legalized.
2731     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2732            VT != TLI.getTypeToTransformTo(Ctx, VT))
2733       VT = TLI.getTypeToTransformTo(Ctx, VT);
2734 
2735     // If the vselect is legal, assume we want to leave this as a vector setcc +
2736     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2737     // min/max is legal on the scalar type.
2738     bool UseScalarMinMax = VT.isVector() &&
2739       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2740 
2741     Value *LHS, *RHS;
2742     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2743     ISD::NodeType Opc = ISD::DELETED_NODE;
2744     switch (SPR.Flavor) {
2745     case SPF_UMAX:    Opc = ISD::UMAX; break;
2746     case SPF_UMIN:    Opc = ISD::UMIN; break;
2747     case SPF_SMAX:    Opc = ISD::SMAX; break;
2748     case SPF_SMIN:    Opc = ISD::SMIN; break;
2749     case SPF_FMINNUM:
2750       switch (SPR.NaNBehavior) {
2751       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2752       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2753       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2754       case SPNB_RETURNS_ANY: {
2755         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2756           Opc = ISD::FMINNUM;
2757         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2758           Opc = ISD::FMINNAN;
2759         else if (UseScalarMinMax)
2760           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2761             ISD::FMINNUM : ISD::FMINNAN;
2762         break;
2763       }
2764       }
2765       break;
2766     case SPF_FMAXNUM:
2767       switch (SPR.NaNBehavior) {
2768       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2769       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2770       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2771       case SPNB_RETURNS_ANY:
2772 
2773         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2774           Opc = ISD::FMAXNUM;
2775         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2776           Opc = ISD::FMAXNAN;
2777         else if (UseScalarMinMax)
2778           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2779             ISD::FMAXNUM : ISD::FMAXNAN;
2780         break;
2781       }
2782       break;
2783     default: break;
2784     }
2785 
2786     if (Opc != ISD::DELETED_NODE &&
2787         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2788          (UseScalarMinMax &&
2789           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2790         // If the underlying comparison instruction is used by any other
2791         // instruction, the consumed instructions won't be destroyed, so it is
2792         // not profitable to convert to a min/max.
2793         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2794       OpCode = Opc;
2795       LHSVal = getValue(LHS);
2796       RHSVal = getValue(RHS);
2797       BaseOps = {};
2798     }
2799   }
2800 
2801   for (unsigned i = 0; i != NumValues; ++i) {
2802     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2803     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2804     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2805     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2806                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2807                             Ops);
2808   }
2809 
2810   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2811                            DAG.getVTList(ValueVTs), Values));
2812 }
2813 
2814 void SelectionDAGBuilder::visitTrunc(const User &I) {
2815   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2816   SDValue N = getValue(I.getOperand(0));
2817   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2818                                                         I.getType());
2819   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2820 }
2821 
2822 void SelectionDAGBuilder::visitZExt(const User &I) {
2823   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2824   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2825   SDValue N = getValue(I.getOperand(0));
2826   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2827                                                         I.getType());
2828   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2829 }
2830 
2831 void SelectionDAGBuilder::visitSExt(const User &I) {
2832   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2833   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2834   SDValue N = getValue(I.getOperand(0));
2835   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2836                                                         I.getType());
2837   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2838 }
2839 
2840 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2841   // FPTrunc is never a no-op cast, no need to check
2842   SDValue N = getValue(I.getOperand(0));
2843   SDLoc dl = getCurSDLoc();
2844   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2845   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2846   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2847                            DAG.getTargetConstant(
2848                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2849 }
2850 
2851 void SelectionDAGBuilder::visitFPExt(const User &I) {
2852   // FPExt is never a no-op cast, no need to check
2853   SDValue N = getValue(I.getOperand(0));
2854   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2855                                                         I.getType());
2856   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2857 }
2858 
2859 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2860   // FPToUI is never a no-op cast, no need to check
2861   SDValue N = getValue(I.getOperand(0));
2862   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2863                                                         I.getType());
2864   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2865 }
2866 
2867 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2868   // FPToSI is never a no-op cast, no need to check
2869   SDValue N = getValue(I.getOperand(0));
2870   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2871                                                         I.getType());
2872   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2873 }
2874 
2875 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2876   // UIToFP is never a no-op cast, no need to check
2877   SDValue N = getValue(I.getOperand(0));
2878   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2879                                                         I.getType());
2880   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2881 }
2882 
2883 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2884   // SIToFP is never a no-op cast, no need to check
2885   SDValue N = getValue(I.getOperand(0));
2886   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2887                                                         I.getType());
2888   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2889 }
2890 
2891 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2892   // What to do depends on the size of the integer and the size of the pointer.
2893   // We can either truncate, zero extend, or no-op, accordingly.
2894   SDValue N = getValue(I.getOperand(0));
2895   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2896                                                         I.getType());
2897   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2898 }
2899 
2900 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2901   // What to do depends on the size of the integer and the size of the pointer.
2902   // We can either truncate, zero extend, or no-op, accordingly.
2903   SDValue N = getValue(I.getOperand(0));
2904   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2905                                                         I.getType());
2906   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2907 }
2908 
2909 void SelectionDAGBuilder::visitBitCast(const User &I) {
2910   SDValue N = getValue(I.getOperand(0));
2911   SDLoc dl = getCurSDLoc();
2912   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2913                                                         I.getType());
2914 
2915   // BitCast assures us that source and destination are the same size so this is
2916   // either a BITCAST or a no-op.
2917   if (DestVT != N.getValueType())
2918     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2919                              DestVT, N)); // convert types.
2920   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2921   // might fold any kind of constant expression to an integer constant and that
2922   // is not what we are looking for. Only regcognize a bitcast of a genuine
2923   // constant integer as an opaque constant.
2924   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2925     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2926                                  /*isOpaque*/true));
2927   else
2928     setValue(&I, N);            // noop cast.
2929 }
2930 
2931 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2932   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2933   const Value *SV = I.getOperand(0);
2934   SDValue N = getValue(SV);
2935   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2936 
2937   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2938   unsigned DestAS = I.getType()->getPointerAddressSpace();
2939 
2940   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2941     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2942 
2943   setValue(&I, N);
2944 }
2945 
2946 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2948   SDValue InVec = getValue(I.getOperand(0));
2949   SDValue InVal = getValue(I.getOperand(1));
2950   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2951                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2952   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2953                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2954                            InVec, InVal, InIdx));
2955 }
2956 
2957 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2959   SDValue InVec = getValue(I.getOperand(0));
2960   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2961                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2962   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2963                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2964                            InVec, InIdx));
2965 }
2966 
2967 // Utility for visitShuffleVector - Return true if every element in Mask,
2968 // beginning from position Pos and ending in Pos+Size, falls within the
2969 // specified sequential range [L, L+Pos). or is undef.
2970 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2971                                 unsigned Pos, unsigned Size, int Low) {
2972   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2973     if (Mask[i] >= 0 && Mask[i] != Low)
2974       return false;
2975   return true;
2976 }
2977 
2978 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2979   SDValue Src1 = getValue(I.getOperand(0));
2980   SDValue Src2 = getValue(I.getOperand(1));
2981 
2982   SmallVector<int, 8> Mask;
2983   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2984   unsigned MaskNumElts = Mask.size();
2985 
2986   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2987   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2988   EVT SrcVT = Src1.getValueType();
2989   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2990 
2991   if (SrcNumElts == MaskNumElts) {
2992     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2993                                       &Mask[0]));
2994     return;
2995   }
2996 
2997   // Normalize the shuffle vector since mask and vector length don't match.
2998   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2999     // Mask is longer than the source vectors and is a multiple of the source
3000     // vectors.  We can use concatenate vector to make the mask and vectors
3001     // lengths match.
3002     if (SrcNumElts*2 == MaskNumElts) {
3003       // First check for Src1 in low and Src2 in high
3004       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3005           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3006         // The shuffle is concatenating two vectors together.
3007         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3008                                  VT, Src1, Src2));
3009         return;
3010       }
3011       // Then check for Src2 in low and Src1 in high
3012       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3013           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3014         // The shuffle is concatenating two vectors together.
3015         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3016                                  VT, Src2, Src1));
3017         return;
3018       }
3019     }
3020 
3021     // Pad both vectors with undefs to make them the same length as the mask.
3022     unsigned NumConcat = MaskNumElts / SrcNumElts;
3023     bool Src1U = Src1.isUndef();
3024     bool Src2U = Src2.isUndef();
3025     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3026 
3027     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3028     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3029     MOps1[0] = Src1;
3030     MOps2[0] = Src2;
3031 
3032     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3033                                                   getCurSDLoc(), VT, MOps1);
3034     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3035                                                   getCurSDLoc(), VT, MOps2);
3036 
3037     // Readjust mask for new input vector length.
3038     SmallVector<int, 8> MappedOps;
3039     for (unsigned i = 0; i != MaskNumElts; ++i) {
3040       int Idx = Mask[i];
3041       if (Idx >= (int)SrcNumElts)
3042         Idx -= SrcNumElts - MaskNumElts;
3043       MappedOps.push_back(Idx);
3044     }
3045 
3046     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3047                                       &MappedOps[0]));
3048     return;
3049   }
3050 
3051   if (SrcNumElts > MaskNumElts) {
3052     // Analyze the access pattern of the vector to see if we can extract
3053     // two subvectors and do the shuffle. The analysis is done by calculating
3054     // the range of elements the mask access on both vectors.
3055     int MinRange[2] = { static_cast<int>(SrcNumElts),
3056                         static_cast<int>(SrcNumElts)};
3057     int MaxRange[2] = {-1, -1};
3058 
3059     for (unsigned i = 0; i != MaskNumElts; ++i) {
3060       int Idx = Mask[i];
3061       unsigned Input = 0;
3062       if (Idx < 0)
3063         continue;
3064 
3065       if (Idx >= (int)SrcNumElts) {
3066         Input = 1;
3067         Idx -= SrcNumElts;
3068       }
3069       if (Idx > MaxRange[Input])
3070         MaxRange[Input] = Idx;
3071       if (Idx < MinRange[Input])
3072         MinRange[Input] = Idx;
3073     }
3074 
3075     // Check if the access is smaller than the vector size and can we find
3076     // a reasonable extract index.
3077     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3078                                    // Extract.
3079     int StartIdx[2];  // StartIdx to extract from
3080     for (unsigned Input = 0; Input < 2; ++Input) {
3081       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3082         RangeUse[Input] = 0; // Unused
3083         StartIdx[Input] = 0;
3084         continue;
3085       }
3086 
3087       // Find a good start index that is a multiple of the mask length. Then
3088       // see if the rest of the elements are in range.
3089       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3090       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3091           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3092         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3093     }
3094 
3095     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3096       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3097       return;
3098     }
3099     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3100       // Extract appropriate subvector and generate a vector shuffle
3101       for (unsigned Input = 0; Input < 2; ++Input) {
3102         SDValue &Src = Input == 0 ? Src1 : Src2;
3103         if (RangeUse[Input] == 0)
3104           Src = DAG.getUNDEF(VT);
3105         else {
3106           SDLoc dl = getCurSDLoc();
3107           Src = DAG.getNode(
3108               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
3109               DAG.getConstant(StartIdx[Input], dl,
3110                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3111         }
3112       }
3113 
3114       // Calculate new mask.
3115       SmallVector<int, 8> MappedOps;
3116       for (unsigned i = 0; i != MaskNumElts; ++i) {
3117         int Idx = Mask[i];
3118         if (Idx >= 0) {
3119           if (Idx < (int)SrcNumElts)
3120             Idx -= StartIdx[0];
3121           else
3122             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3123         }
3124         MappedOps.push_back(Idx);
3125       }
3126 
3127       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3128                                         &MappedOps[0]));
3129       return;
3130     }
3131   }
3132 
3133   // We can't use either concat vectors or extract subvectors so fall back to
3134   // replacing the shuffle with extract and build vector.
3135   // to insert and build vector.
3136   EVT EltVT = VT.getVectorElementType();
3137   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3138   SDLoc dl = getCurSDLoc();
3139   SmallVector<SDValue,8> Ops;
3140   for (unsigned i = 0; i != MaskNumElts; ++i) {
3141     int Idx = Mask[i];
3142     SDValue Res;
3143 
3144     if (Idx < 0) {
3145       Res = DAG.getUNDEF(EltVT);
3146     } else {
3147       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3148       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3149 
3150       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3151                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
3152     }
3153 
3154     Ops.push_back(Res);
3155   }
3156 
3157   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
3158 }
3159 
3160 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3161   const Value *Op0 = I.getOperand(0);
3162   const Value *Op1 = I.getOperand(1);
3163   Type *AggTy = I.getType();
3164   Type *ValTy = Op1->getType();
3165   bool IntoUndef = isa<UndefValue>(Op0);
3166   bool FromUndef = isa<UndefValue>(Op1);
3167 
3168   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3169 
3170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3171   SmallVector<EVT, 4> AggValueVTs;
3172   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3173   SmallVector<EVT, 4> ValValueVTs;
3174   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3175 
3176   unsigned NumAggValues = AggValueVTs.size();
3177   unsigned NumValValues = ValValueVTs.size();
3178   SmallVector<SDValue, 4> Values(NumAggValues);
3179 
3180   // Ignore an insertvalue that produces an empty object
3181   if (!NumAggValues) {
3182     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3183     return;
3184   }
3185 
3186   SDValue Agg = getValue(Op0);
3187   unsigned i = 0;
3188   // Copy the beginning value(s) from the original aggregate.
3189   for (; i != LinearIndex; ++i)
3190     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3191                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3192   // Copy values from the inserted value(s).
3193   if (NumValValues) {
3194     SDValue Val = getValue(Op1);
3195     for (; i != LinearIndex + NumValValues; ++i)
3196       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3197                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3198   }
3199   // Copy remaining value(s) from the original aggregate.
3200   for (; i != NumAggValues; ++i)
3201     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3202                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3203 
3204   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3205                            DAG.getVTList(AggValueVTs), Values));
3206 }
3207 
3208 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3209   const Value *Op0 = I.getOperand(0);
3210   Type *AggTy = Op0->getType();
3211   Type *ValTy = I.getType();
3212   bool OutOfUndef = isa<UndefValue>(Op0);
3213 
3214   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3215 
3216   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3217   SmallVector<EVT, 4> ValValueVTs;
3218   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3219 
3220   unsigned NumValValues = ValValueVTs.size();
3221 
3222   // Ignore a extractvalue that produces an empty object
3223   if (!NumValValues) {
3224     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3225     return;
3226   }
3227 
3228   SmallVector<SDValue, 4> Values(NumValValues);
3229 
3230   SDValue Agg = getValue(Op0);
3231   // Copy out the selected value(s).
3232   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3233     Values[i - LinearIndex] =
3234       OutOfUndef ?
3235         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3236         SDValue(Agg.getNode(), Agg.getResNo() + i);
3237 
3238   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3239                            DAG.getVTList(ValValueVTs), Values));
3240 }
3241 
3242 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3243   Value *Op0 = I.getOperand(0);
3244   // Note that the pointer operand may be a vector of pointers. Take the scalar
3245   // element which holds a pointer.
3246   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3247   SDValue N = getValue(Op0);
3248   SDLoc dl = getCurSDLoc();
3249 
3250   // Normalize Vector GEP - all scalar operands should be converted to the
3251   // splat vector.
3252   unsigned VectorWidth = I.getType()->isVectorTy() ?
3253     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3254 
3255   if (VectorWidth && !N.getValueType().isVector()) {
3256     LLVMContext &Context = *DAG.getContext();
3257     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3258     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3259     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3260   }
3261   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3262        GTI != E; ++GTI) {
3263     const Value *Idx = GTI.getOperand();
3264     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3265       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3266       if (Field) {
3267         // N = N + Offset
3268         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3269 
3270         // In an inbouds GEP with an offset that is nonnegative even when
3271         // interpreted as signed, assume there is no unsigned overflow.
3272         SDNodeFlags Flags;
3273         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3274           Flags.setNoUnsignedWrap(true);
3275 
3276         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3277                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3278       }
3279     } else {
3280       MVT PtrTy =
3281           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3282       unsigned PtrSize = PtrTy.getSizeInBits();
3283       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3284 
3285       // If this is a scalar constant or a splat vector of constants,
3286       // handle it quickly.
3287       const auto *CI = dyn_cast<ConstantInt>(Idx);
3288       if (!CI && isa<ConstantDataVector>(Idx) &&
3289           cast<ConstantDataVector>(Idx)->getSplatValue())
3290         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3291 
3292       if (CI) {
3293         if (CI->isZero())
3294           continue;
3295         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3296         SDValue OffsVal = VectorWidth ?
3297           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3298           DAG.getConstant(Offs, dl, PtrTy);
3299 
3300         // In an inbouds GEP with an offset that is nonnegative even when
3301         // interpreted as signed, assume there is no unsigned overflow.
3302         SDNodeFlags Flags;
3303         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3304           Flags.setNoUnsignedWrap(true);
3305 
3306         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3307         continue;
3308       }
3309 
3310       // N = N + Idx * ElementSize;
3311       SDValue IdxN = getValue(Idx);
3312 
3313       if (!IdxN.getValueType().isVector() && VectorWidth) {
3314         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3315         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3316         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3317       }
3318       // If the index is smaller or larger than intptr_t, truncate or extend
3319       // it.
3320       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3321 
3322       // If this is a multiply by a power of two, turn it into a shl
3323       // immediately.  This is a very common case.
3324       if (ElementSize != 1) {
3325         if (ElementSize.isPowerOf2()) {
3326           unsigned Amt = ElementSize.logBase2();
3327           IdxN = DAG.getNode(ISD::SHL, dl,
3328                              N.getValueType(), IdxN,
3329                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3330         } else {
3331           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3332           IdxN = DAG.getNode(ISD::MUL, dl,
3333                              N.getValueType(), IdxN, Scale);
3334         }
3335       }
3336 
3337       N = DAG.getNode(ISD::ADD, dl,
3338                       N.getValueType(), N, IdxN);
3339     }
3340   }
3341 
3342   setValue(&I, N);
3343 }
3344 
3345 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3346   // If this is a fixed sized alloca in the entry block of the function,
3347   // allocate it statically on the stack.
3348   if (FuncInfo.StaticAllocaMap.count(&I))
3349     return;   // getValue will auto-populate this.
3350 
3351   SDLoc dl = getCurSDLoc();
3352   Type *Ty = I.getAllocatedType();
3353   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3354   auto &DL = DAG.getDataLayout();
3355   uint64_t TySize = DL.getTypeAllocSize(Ty);
3356   unsigned Align =
3357       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3358 
3359   SDValue AllocSize = getValue(I.getArraySize());
3360 
3361   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3362   if (AllocSize.getValueType() != IntPtr)
3363     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3364 
3365   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3366                           AllocSize,
3367                           DAG.getConstant(TySize, dl, IntPtr));
3368 
3369   // Handle alignment.  If the requested alignment is less than or equal to
3370   // the stack alignment, ignore it.  If the size is greater than or equal to
3371   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3372   unsigned StackAlign =
3373       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3374   if (Align <= StackAlign)
3375     Align = 0;
3376 
3377   // Round the size of the allocation up to the stack alignment size
3378   // by add SA-1 to the size. This doesn't overflow because we're computing
3379   // an address inside an alloca.
3380   SDNodeFlags Flags;
3381   Flags.setNoUnsignedWrap(true);
3382   AllocSize = DAG.getNode(ISD::ADD, dl,
3383                           AllocSize.getValueType(), AllocSize,
3384                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3385 
3386   // Mask out the low bits for alignment purposes.
3387   AllocSize = DAG.getNode(ISD::AND, dl,
3388                           AllocSize.getValueType(), AllocSize,
3389                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3390                                                 dl));
3391 
3392   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3393   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3394   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3395   setValue(&I, DSA);
3396   DAG.setRoot(DSA.getValue(1));
3397 
3398   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3399 }
3400 
3401 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3402   if (I.isAtomic())
3403     return visitAtomicLoad(I);
3404 
3405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3406   const Value *SV = I.getOperand(0);
3407   if (TLI.supportSwiftError()) {
3408     // Swifterror values can come from either a function parameter with
3409     // swifterror attribute or an alloca with swifterror attribute.
3410     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3411       if (Arg->hasSwiftErrorAttr())
3412         return visitLoadFromSwiftError(I);
3413     }
3414 
3415     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3416       if (Alloca->isSwiftError())
3417         return visitLoadFromSwiftError(I);
3418     }
3419   }
3420 
3421   SDValue Ptr = getValue(SV);
3422 
3423   Type *Ty = I.getType();
3424 
3425   bool isVolatile = I.isVolatile();
3426   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3427 
3428   // The IR notion of invariant_load only guarantees that all *non-faulting*
3429   // invariant loads result in the same value.  The MI notion of invariant load
3430   // guarantees that the load can be legally moved to any location within its
3431   // containing function.  The MI notion of invariant_load is stronger than the
3432   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3433   // with a guarantee that the location being loaded from is dereferenceable
3434   // throughout the function's lifetime.
3435 
3436   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3437                      isDereferenceablePointer(SV, DAG.getDataLayout());
3438   unsigned Alignment = I.getAlignment();
3439 
3440   AAMDNodes AAInfo;
3441   I.getAAMetadata(AAInfo);
3442   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3443 
3444   SmallVector<EVT, 4> ValueVTs;
3445   SmallVector<uint64_t, 4> Offsets;
3446   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3447   unsigned NumValues = ValueVTs.size();
3448   if (NumValues == 0)
3449     return;
3450 
3451   SDValue Root;
3452   bool ConstantMemory = false;
3453   if (isVolatile || NumValues > MaxParallelChains)
3454     // Serialize volatile loads with other side effects.
3455     Root = getRoot();
3456   else if (AA->pointsToConstantMemory(MemoryLocation(
3457                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3458     // Do not serialize (non-volatile) loads of constant memory with anything.
3459     Root = DAG.getEntryNode();
3460     ConstantMemory = true;
3461   } else {
3462     // Do not serialize non-volatile loads against each other.
3463     Root = DAG.getRoot();
3464   }
3465 
3466   SDLoc dl = getCurSDLoc();
3467 
3468   if (isVolatile)
3469     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3470 
3471   // An aggregate load cannot wrap around the address space, so offsets to its
3472   // parts don't wrap either.
3473   SDNodeFlags Flags;
3474   Flags.setNoUnsignedWrap(true);
3475 
3476   SmallVector<SDValue, 4> Values(NumValues);
3477   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3478   EVT PtrVT = Ptr.getValueType();
3479   unsigned ChainI = 0;
3480   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3481     // Serializing loads here may result in excessive register pressure, and
3482     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3483     // could recover a bit by hoisting nodes upward in the chain by recognizing
3484     // they are side-effect free or do not alias. The optimizer should really
3485     // avoid this case by converting large object/array copies to llvm.memcpy
3486     // (MaxParallelChains should always remain as failsafe).
3487     if (ChainI == MaxParallelChains) {
3488       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3489       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3490                                   makeArrayRef(Chains.data(), ChainI));
3491       Root = Chain;
3492       ChainI = 0;
3493     }
3494     SDValue A = DAG.getNode(ISD::ADD, dl,
3495                             PtrVT, Ptr,
3496                             DAG.getConstant(Offsets[i], dl, PtrVT),
3497                             &Flags);
3498     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3499                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3500                             isNonTemporal, isInvariant, Alignment, AAInfo,
3501                             Ranges);
3502 
3503     Values[i] = L;
3504     Chains[ChainI] = L.getValue(1);
3505   }
3506 
3507   if (!ConstantMemory) {
3508     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3509                                 makeArrayRef(Chains.data(), ChainI));
3510     if (isVolatile)
3511       DAG.setRoot(Chain);
3512     else
3513       PendingLoads.push_back(Chain);
3514   }
3515 
3516   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3517                            DAG.getVTList(ValueVTs), Values));
3518 }
3519 
3520 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3521   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3522   assert(TLI.supportSwiftError() &&
3523          "call visitStoreToSwiftError when backend supports swifterror");
3524 
3525   SmallVector<EVT, 4> ValueVTs;
3526   SmallVector<uint64_t, 4> Offsets;
3527   const Value *SrcV = I.getOperand(0);
3528   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3529                   SrcV->getType(), ValueVTs, &Offsets);
3530   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3531          "expect a single EVT for swifterror");
3532 
3533   SDValue Src = getValue(SrcV);
3534   // Create a virtual register, then update the virtual register.
3535   auto &DL = DAG.getDataLayout();
3536   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3537   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3538   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3539   // Chain can be getRoot or getControlRoot.
3540   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3541                                       SDValue(Src.getNode(), Src.getResNo()));
3542   DAG.setRoot(CopyNode);
3543   FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3544 }
3545 
3546 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3547   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3548          "call visitLoadFromSwiftError when backend supports swifterror");
3549 
3550   assert(!I.isVolatile() &&
3551          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3552          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3553          "Support volatile, non temporal, invariant for load_from_swift_error");
3554 
3555   const Value *SV = I.getOperand(0);
3556   Type *Ty = I.getType();
3557   AAMDNodes AAInfo;
3558   I.getAAMetadata(AAInfo);
3559   assert(!AA->pointsToConstantMemory(MemoryLocation(
3560              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3561          "load_from_swift_error should not be constant memory");
3562 
3563   SmallVector<EVT, 4> ValueVTs;
3564   SmallVector<uint64_t, 4> Offsets;
3565   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3566                   ValueVTs, &Offsets);
3567   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3568          "expect a single EVT for swifterror");
3569 
3570   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3571   SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(),
3572                                  FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV),
3573                                  ValueVTs[0]);
3574 
3575   setValue(&I, L);
3576 }
3577 
3578 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3579   if (I.isAtomic())
3580     return visitAtomicStore(I);
3581 
3582   const Value *SrcV = I.getOperand(0);
3583   const Value *PtrV = I.getOperand(1);
3584 
3585   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3586   if (TLI.supportSwiftError()) {
3587     // Swifterror values can come from either a function parameter with
3588     // swifterror attribute or an alloca with swifterror attribute.
3589     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3590       if (Arg->hasSwiftErrorAttr())
3591         return visitStoreToSwiftError(I);
3592     }
3593 
3594     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3595       if (Alloca->isSwiftError())
3596         return visitStoreToSwiftError(I);
3597     }
3598   }
3599 
3600   SmallVector<EVT, 4> ValueVTs;
3601   SmallVector<uint64_t, 4> Offsets;
3602   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3603                   SrcV->getType(), ValueVTs, &Offsets);
3604   unsigned NumValues = ValueVTs.size();
3605   if (NumValues == 0)
3606     return;
3607 
3608   // Get the lowered operands. Note that we do this after
3609   // checking if NumResults is zero, because with zero results
3610   // the operands won't have values in the map.
3611   SDValue Src = getValue(SrcV);
3612   SDValue Ptr = getValue(PtrV);
3613 
3614   SDValue Root = getRoot();
3615   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3616   EVT PtrVT = Ptr.getValueType();
3617   bool isVolatile = I.isVolatile();
3618   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3619   unsigned Alignment = I.getAlignment();
3620   SDLoc dl = getCurSDLoc();
3621 
3622   AAMDNodes AAInfo;
3623   I.getAAMetadata(AAInfo);
3624 
3625   // An aggregate load cannot wrap around the address space, so offsets to its
3626   // parts don't wrap either.
3627   SDNodeFlags Flags;
3628   Flags.setNoUnsignedWrap(true);
3629 
3630   unsigned ChainI = 0;
3631   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3632     // See visitLoad comments.
3633     if (ChainI == MaxParallelChains) {
3634       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3635                                   makeArrayRef(Chains.data(), ChainI));
3636       Root = Chain;
3637       ChainI = 0;
3638     }
3639     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3640                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3641     SDValue St = DAG.getStore(Root, dl,
3642                               SDValue(Src.getNode(), Src.getResNo() + i),
3643                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3644                               isVolatile, isNonTemporal, Alignment, AAInfo);
3645     Chains[ChainI] = St;
3646   }
3647 
3648   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3649                                   makeArrayRef(Chains.data(), ChainI));
3650   DAG.setRoot(StoreNode);
3651 }
3652 
3653 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3654   SDLoc sdl = getCurSDLoc();
3655 
3656   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3657   Value  *PtrOperand = I.getArgOperand(1);
3658   SDValue Ptr = getValue(PtrOperand);
3659   SDValue Src0 = getValue(I.getArgOperand(0));
3660   SDValue Mask = getValue(I.getArgOperand(3));
3661   EVT VT = Src0.getValueType();
3662   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3663   if (!Alignment)
3664     Alignment = DAG.getEVTAlignment(VT);
3665 
3666   AAMDNodes AAInfo;
3667   I.getAAMetadata(AAInfo);
3668 
3669   MachineMemOperand *MMO =
3670     DAG.getMachineFunction().
3671     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3672                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3673                           Alignment, AAInfo);
3674   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3675                                          MMO, false);
3676   DAG.setRoot(StoreNode);
3677   setValue(&I, StoreNode);
3678 }
3679 
3680 // Get a uniform base for the Gather/Scatter intrinsic.
3681 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3682 // We try to represent it as a base pointer + vector of indices.
3683 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3684 // The first operand of the GEP may be a single pointer or a vector of pointers
3685 // Example:
3686 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3687 //  or
3688 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3689 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3690 //
3691 // When the first GEP operand is a single pointer - it is the uniform base we
3692 // are looking for. If first operand of the GEP is a splat vector - we
3693 // extract the spalt value and use it as a uniform base.
3694 // In all other cases the function returns 'false'.
3695 //
3696 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3697                            SelectionDAGBuilder* SDB) {
3698 
3699   SelectionDAG& DAG = SDB->DAG;
3700   LLVMContext &Context = *DAG.getContext();
3701 
3702   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3703   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3704   if (!GEP || GEP->getNumOperands() > 2)
3705     return false;
3706 
3707   const Value *GEPPtr = GEP->getPointerOperand();
3708   if (!GEPPtr->getType()->isVectorTy())
3709     Ptr = GEPPtr;
3710   else if (!(Ptr = getSplatValue(GEPPtr)))
3711     return false;
3712 
3713   Value *IndexVal = GEP->getOperand(1);
3714 
3715   // The operands of the GEP may be defined in another basic block.
3716   // In this case we'll not find nodes for the operands.
3717   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3718     return false;
3719 
3720   Base = SDB->getValue(Ptr);
3721   Index = SDB->getValue(IndexVal);
3722 
3723   // Suppress sign extension.
3724   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3725     if (SDB->findValue(Sext->getOperand(0))) {
3726       IndexVal = Sext->getOperand(0);
3727       Index = SDB->getValue(IndexVal);
3728     }
3729   }
3730   if (!Index.getValueType().isVector()) {
3731     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3732     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3733     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3734     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3735   }
3736   return true;
3737 }
3738 
3739 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3740   SDLoc sdl = getCurSDLoc();
3741 
3742   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3743   const Value *Ptr = I.getArgOperand(1);
3744   SDValue Src0 = getValue(I.getArgOperand(0));
3745   SDValue Mask = getValue(I.getArgOperand(3));
3746   EVT VT = Src0.getValueType();
3747   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3748   if (!Alignment)
3749     Alignment = DAG.getEVTAlignment(VT);
3750   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3751 
3752   AAMDNodes AAInfo;
3753   I.getAAMetadata(AAInfo);
3754 
3755   SDValue Base;
3756   SDValue Index;
3757   const Value *BasePtr = Ptr;
3758   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3759 
3760   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3761   MachineMemOperand *MMO = DAG.getMachineFunction().
3762     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3763                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3764                          Alignment, AAInfo);
3765   if (!UniformBase) {
3766     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3767     Index = getValue(Ptr);
3768   }
3769   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3770   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3771                                          Ops, MMO);
3772   DAG.setRoot(Scatter);
3773   setValue(&I, Scatter);
3774 }
3775 
3776 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3777   SDLoc sdl = getCurSDLoc();
3778 
3779   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3780   Value  *PtrOperand = I.getArgOperand(0);
3781   SDValue Ptr = getValue(PtrOperand);
3782   SDValue Src0 = getValue(I.getArgOperand(3));
3783   SDValue Mask = getValue(I.getArgOperand(2));
3784 
3785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3786   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3787   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3788   if (!Alignment)
3789     Alignment = DAG.getEVTAlignment(VT);
3790 
3791   AAMDNodes AAInfo;
3792   I.getAAMetadata(AAInfo);
3793   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3794 
3795   SDValue InChain = DAG.getRoot();
3796   if (AA->pointsToConstantMemory(MemoryLocation(
3797           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3798           AAInfo))) {
3799     // Do not serialize (non-volatile) loads of constant memory with anything.
3800     InChain = DAG.getEntryNode();
3801   }
3802 
3803   MachineMemOperand *MMO =
3804     DAG.getMachineFunction().
3805     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3806                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3807                           Alignment, AAInfo, Ranges);
3808 
3809   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3810                                    ISD::NON_EXTLOAD);
3811   SDValue OutChain = Load.getValue(1);
3812   DAG.setRoot(OutChain);
3813   setValue(&I, Load);
3814 }
3815 
3816 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3817   SDLoc sdl = getCurSDLoc();
3818 
3819   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3820   const Value *Ptr = I.getArgOperand(0);
3821   SDValue Src0 = getValue(I.getArgOperand(3));
3822   SDValue Mask = getValue(I.getArgOperand(2));
3823 
3824   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3825   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3826   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3827   if (!Alignment)
3828     Alignment = DAG.getEVTAlignment(VT);
3829 
3830   AAMDNodes AAInfo;
3831   I.getAAMetadata(AAInfo);
3832   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3833 
3834   SDValue Root = DAG.getRoot();
3835   SDValue Base;
3836   SDValue Index;
3837   const Value *BasePtr = Ptr;
3838   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3839   bool ConstantMemory = false;
3840   if (UniformBase &&
3841       AA->pointsToConstantMemory(MemoryLocation(
3842           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3843           AAInfo))) {
3844     // Do not serialize (non-volatile) loads of constant memory with anything.
3845     Root = DAG.getEntryNode();
3846     ConstantMemory = true;
3847   }
3848 
3849   MachineMemOperand *MMO =
3850     DAG.getMachineFunction().
3851     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3852                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3853                          Alignment, AAInfo, Ranges);
3854 
3855   if (!UniformBase) {
3856     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3857     Index = getValue(Ptr);
3858   }
3859   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3860   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3861                                        Ops, MMO);
3862 
3863   SDValue OutChain = Gather.getValue(1);
3864   if (!ConstantMemory)
3865     PendingLoads.push_back(OutChain);
3866   setValue(&I, Gather);
3867 }
3868 
3869 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3870   SDLoc dl = getCurSDLoc();
3871   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3872   AtomicOrdering FailureOrder = I.getFailureOrdering();
3873   SynchronizationScope Scope = I.getSynchScope();
3874 
3875   SDValue InChain = getRoot();
3876 
3877   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3878   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3879   SDValue L = DAG.getAtomicCmpSwap(
3880       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3881       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3882       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3883       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3884 
3885   SDValue OutChain = L.getValue(2);
3886 
3887   setValue(&I, L);
3888   DAG.setRoot(OutChain);
3889 }
3890 
3891 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3892   SDLoc dl = getCurSDLoc();
3893   ISD::NodeType NT;
3894   switch (I.getOperation()) {
3895   default: llvm_unreachable("Unknown atomicrmw operation");
3896   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3897   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3898   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3899   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3900   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3901   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3902   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3903   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3904   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3905   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3906   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3907   }
3908   AtomicOrdering Order = I.getOrdering();
3909   SynchronizationScope Scope = I.getSynchScope();
3910 
3911   SDValue InChain = getRoot();
3912 
3913   SDValue L =
3914     DAG.getAtomic(NT, dl,
3915                   getValue(I.getValOperand()).getSimpleValueType(),
3916                   InChain,
3917                   getValue(I.getPointerOperand()),
3918                   getValue(I.getValOperand()),
3919                   I.getPointerOperand(),
3920                   /* Alignment=*/ 0, Order, Scope);
3921 
3922   SDValue OutChain = L.getValue(1);
3923 
3924   setValue(&I, L);
3925   DAG.setRoot(OutChain);
3926 }
3927 
3928 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3929   SDLoc dl = getCurSDLoc();
3930   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3931   SDValue Ops[3];
3932   Ops[0] = getRoot();
3933   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3934                            TLI.getPointerTy(DAG.getDataLayout()));
3935   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3936                            TLI.getPointerTy(DAG.getDataLayout()));
3937   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3938 }
3939 
3940 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3941   SDLoc dl = getCurSDLoc();
3942   AtomicOrdering Order = I.getOrdering();
3943   SynchronizationScope Scope = I.getSynchScope();
3944 
3945   SDValue InChain = getRoot();
3946 
3947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3948   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3949 
3950   if (I.getAlignment() < VT.getSizeInBits() / 8)
3951     report_fatal_error("Cannot generate unaligned atomic load");
3952 
3953   MachineMemOperand *MMO =
3954       DAG.getMachineFunction().
3955       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3956                            MachineMemOperand::MOVolatile |
3957                            MachineMemOperand::MOLoad,
3958                            VT.getStoreSize(),
3959                            I.getAlignment() ? I.getAlignment() :
3960                                               DAG.getEVTAlignment(VT));
3961 
3962   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3963   SDValue L =
3964       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3965                     getValue(I.getPointerOperand()), MMO,
3966                     Order, Scope);
3967 
3968   SDValue OutChain = L.getValue(1);
3969 
3970   setValue(&I, L);
3971   DAG.setRoot(OutChain);
3972 }
3973 
3974 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3975   SDLoc dl = getCurSDLoc();
3976 
3977   AtomicOrdering Order = I.getOrdering();
3978   SynchronizationScope Scope = I.getSynchScope();
3979 
3980   SDValue InChain = getRoot();
3981 
3982   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3983   EVT VT =
3984       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3985 
3986   if (I.getAlignment() < VT.getSizeInBits() / 8)
3987     report_fatal_error("Cannot generate unaligned atomic store");
3988 
3989   SDValue OutChain =
3990     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3991                   InChain,
3992                   getValue(I.getPointerOperand()),
3993                   getValue(I.getValueOperand()),
3994                   I.getPointerOperand(), I.getAlignment(),
3995                   Order, Scope);
3996 
3997   DAG.setRoot(OutChain);
3998 }
3999 
4000 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4001 /// node.
4002 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4003                                                unsigned Intrinsic) {
4004   bool HasChain = !I.doesNotAccessMemory();
4005   bool OnlyLoad = HasChain && I.onlyReadsMemory();
4006 
4007   // Build the operand list.
4008   SmallVector<SDValue, 8> Ops;
4009   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4010     if (OnlyLoad) {
4011       // We don't need to serialize loads against other loads.
4012       Ops.push_back(DAG.getRoot());
4013     } else {
4014       Ops.push_back(getRoot());
4015     }
4016   }
4017 
4018   // Info is set by getTgtMemInstrinsic
4019   TargetLowering::IntrinsicInfo Info;
4020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4021   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4022 
4023   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4024   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4025       Info.opc == ISD::INTRINSIC_W_CHAIN)
4026     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4027                                         TLI.getPointerTy(DAG.getDataLayout())));
4028 
4029   // Add all operands of the call to the operand list.
4030   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4031     SDValue Op = getValue(I.getArgOperand(i));
4032     Ops.push_back(Op);
4033   }
4034 
4035   SmallVector<EVT, 4> ValueVTs;
4036   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4037 
4038   if (HasChain)
4039     ValueVTs.push_back(MVT::Other);
4040 
4041   SDVTList VTs = DAG.getVTList(ValueVTs);
4042 
4043   // Create the node.
4044   SDValue Result;
4045   if (IsTgtIntrinsic) {
4046     // This is target intrinsic that touches memory
4047     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4048                                      VTs, Ops, Info.memVT,
4049                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4050                                      Info.align, Info.vol,
4051                                      Info.readMem, Info.writeMem, Info.size);
4052   } else if (!HasChain) {
4053     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4054   } else if (!I.getType()->isVoidTy()) {
4055     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4056   } else {
4057     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4058   }
4059 
4060   if (HasChain) {
4061     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4062     if (OnlyLoad)
4063       PendingLoads.push_back(Chain);
4064     else
4065       DAG.setRoot(Chain);
4066   }
4067 
4068   if (!I.getType()->isVoidTy()) {
4069     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4070       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4071       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4072     } else
4073       Result = lowerRangeToAssertZExt(DAG, I, Result);
4074 
4075     setValue(&I, Result);
4076   }
4077 }
4078 
4079 /// GetSignificand - Get the significand and build it into a floating-point
4080 /// number with exponent of 1:
4081 ///
4082 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4083 ///
4084 /// where Op is the hexadecimal representation of floating point value.
4085 static SDValue
4086 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
4087   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4088                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4089   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4090                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4091   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4092 }
4093 
4094 /// GetExponent - Get the exponent:
4095 ///
4096 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4097 ///
4098 /// where Op is the hexadecimal representation of floating point value.
4099 static SDValue
4100 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
4101             SDLoc dl) {
4102   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4103                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4104   SDValue t1 = DAG.getNode(
4105       ISD::SRL, dl, MVT::i32, t0,
4106       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4107   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4108                            DAG.getConstant(127, dl, MVT::i32));
4109   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4110 }
4111 
4112 /// getF32Constant - Get 32-bit floating point constant.
4113 static SDValue
4114 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
4115   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4116                            MVT::f32);
4117 }
4118 
4119 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
4120                                        SelectionDAG &DAG) {
4121   // TODO: What fast-math-flags should be set on the floating-point nodes?
4122 
4123   //   IntegerPartOfX = ((int32_t)(t0);
4124   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4125 
4126   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4127   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4128   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4129 
4130   //   IntegerPartOfX <<= 23;
4131   IntegerPartOfX = DAG.getNode(
4132       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4133       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4134                                   DAG.getDataLayout())));
4135 
4136   SDValue TwoToFractionalPartOfX;
4137   if (LimitFloatPrecision <= 6) {
4138     // For floating-point precision of 6:
4139     //
4140     //   TwoToFractionalPartOfX =
4141     //     0.997535578f +
4142     //       (0.735607626f + 0.252464424f * x) * x;
4143     //
4144     // error 0.0144103317, which is 6 bits
4145     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4146                              getF32Constant(DAG, 0x3e814304, dl));
4147     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4148                              getF32Constant(DAG, 0x3f3c50c8, dl));
4149     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4150     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4151                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4152   } else if (LimitFloatPrecision <= 12) {
4153     // For floating-point precision of 12:
4154     //
4155     //   TwoToFractionalPartOfX =
4156     //     0.999892986f +
4157     //       (0.696457318f +
4158     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4159     //
4160     // error 0.000107046256, which is 13 to 14 bits
4161     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4162                              getF32Constant(DAG, 0x3da235e3, dl));
4163     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4164                              getF32Constant(DAG, 0x3e65b8f3, dl));
4165     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4166     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4167                              getF32Constant(DAG, 0x3f324b07, dl));
4168     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4169     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4170                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4171   } else { // LimitFloatPrecision <= 18
4172     // For floating-point precision of 18:
4173     //
4174     //   TwoToFractionalPartOfX =
4175     //     0.999999982f +
4176     //       (0.693148872f +
4177     //         (0.240227044f +
4178     //           (0.554906021e-1f +
4179     //             (0.961591928e-2f +
4180     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4181     // error 2.47208000*10^(-7), which is better than 18 bits
4182     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4183                              getF32Constant(DAG, 0x3924b03e, dl));
4184     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4185                              getF32Constant(DAG, 0x3ab24b87, dl));
4186     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4187     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4188                              getF32Constant(DAG, 0x3c1d8c17, dl));
4189     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4190     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4191                              getF32Constant(DAG, 0x3d634a1d, dl));
4192     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4193     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4194                              getF32Constant(DAG, 0x3e75fe14, dl));
4195     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4196     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4197                               getF32Constant(DAG, 0x3f317234, dl));
4198     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4199     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4200                                          getF32Constant(DAG, 0x3f800000, dl));
4201   }
4202 
4203   // Add the exponent into the result in integer domain.
4204   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4205   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4206                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4207 }
4208 
4209 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4210 /// limited-precision mode.
4211 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4212                          const TargetLowering &TLI) {
4213   if (Op.getValueType() == MVT::f32 &&
4214       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4215 
4216     // Put the exponent in the right bit position for later addition to the
4217     // final result:
4218     //
4219     //   #define LOG2OFe 1.4426950f
4220     //   t0 = Op * LOG2OFe
4221 
4222     // TODO: What fast-math-flags should be set here?
4223     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4224                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4225     return getLimitedPrecisionExp2(t0, dl, DAG);
4226   }
4227 
4228   // No special expansion.
4229   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4230 }
4231 
4232 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4233 /// limited-precision mode.
4234 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4235                          const TargetLowering &TLI) {
4236 
4237   // TODO: What fast-math-flags should be set on the floating-point nodes?
4238 
4239   if (Op.getValueType() == MVT::f32 &&
4240       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4241     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4242 
4243     // Scale the exponent by log(2) [0.69314718f].
4244     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4245     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4246                                         getF32Constant(DAG, 0x3f317218, dl));
4247 
4248     // Get the significand and build it into a floating-point number with
4249     // exponent of 1.
4250     SDValue X = GetSignificand(DAG, Op1, dl);
4251 
4252     SDValue LogOfMantissa;
4253     if (LimitFloatPrecision <= 6) {
4254       // For floating-point precision of 6:
4255       //
4256       //   LogofMantissa =
4257       //     -1.1609546f +
4258       //       (1.4034025f - 0.23903021f * x) * x;
4259       //
4260       // error 0.0034276066, which is better than 8 bits
4261       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4262                                getF32Constant(DAG, 0xbe74c456, dl));
4263       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4264                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4265       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4266       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4267                                   getF32Constant(DAG, 0x3f949a29, dl));
4268     } else if (LimitFloatPrecision <= 12) {
4269       // For floating-point precision of 12:
4270       //
4271       //   LogOfMantissa =
4272       //     -1.7417939f +
4273       //       (2.8212026f +
4274       //         (-1.4699568f +
4275       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4276       //
4277       // error 0.000061011436, which is 14 bits
4278       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4279                                getF32Constant(DAG, 0xbd67b6d6, dl));
4280       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4281                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4282       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4283       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4284                                getF32Constant(DAG, 0x3fbc278b, dl));
4285       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4286       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4287                                getF32Constant(DAG, 0x40348e95, dl));
4288       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4289       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4290                                   getF32Constant(DAG, 0x3fdef31a, dl));
4291     } else { // LimitFloatPrecision <= 18
4292       // For floating-point precision of 18:
4293       //
4294       //   LogOfMantissa =
4295       //     -2.1072184f +
4296       //       (4.2372794f +
4297       //         (-3.7029485f +
4298       //           (2.2781945f +
4299       //             (-0.87823314f +
4300       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4301       //
4302       // error 0.0000023660568, which is better than 18 bits
4303       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4304                                getF32Constant(DAG, 0xbc91e5ac, dl));
4305       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4306                                getF32Constant(DAG, 0x3e4350aa, dl));
4307       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4308       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4309                                getF32Constant(DAG, 0x3f60d3e3, dl));
4310       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4311       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4312                                getF32Constant(DAG, 0x4011cdf0, dl));
4313       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4314       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4315                                getF32Constant(DAG, 0x406cfd1c, dl));
4316       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4317       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4318                                getF32Constant(DAG, 0x408797cb, dl));
4319       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4320       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4321                                   getF32Constant(DAG, 0x4006dcab, dl));
4322     }
4323 
4324     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4325   }
4326 
4327   // No special expansion.
4328   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4329 }
4330 
4331 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4332 /// limited-precision mode.
4333 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4334                           const TargetLowering &TLI) {
4335 
4336   // TODO: What fast-math-flags should be set on the floating-point nodes?
4337 
4338   if (Op.getValueType() == MVT::f32 &&
4339       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4340     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4341 
4342     // Get the exponent.
4343     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4344 
4345     // Get the significand and build it into a floating-point number with
4346     // exponent of 1.
4347     SDValue X = GetSignificand(DAG, Op1, dl);
4348 
4349     // Different possible minimax approximations of significand in
4350     // floating-point for various degrees of accuracy over [1,2].
4351     SDValue Log2ofMantissa;
4352     if (LimitFloatPrecision <= 6) {
4353       // For floating-point precision of 6:
4354       //
4355       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4356       //
4357       // error 0.0049451742, which is more than 7 bits
4358       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4359                                getF32Constant(DAG, 0xbeb08fe0, dl));
4360       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4361                                getF32Constant(DAG, 0x40019463, dl));
4362       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4363       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4364                                    getF32Constant(DAG, 0x3fd6633d, dl));
4365     } else if (LimitFloatPrecision <= 12) {
4366       // For floating-point precision of 12:
4367       //
4368       //   Log2ofMantissa =
4369       //     -2.51285454f +
4370       //       (4.07009056f +
4371       //         (-2.12067489f +
4372       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4373       //
4374       // error 0.0000876136000, which is better than 13 bits
4375       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4376                                getF32Constant(DAG, 0xbda7262e, dl));
4377       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4378                                getF32Constant(DAG, 0x3f25280b, dl));
4379       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4380       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4381                                getF32Constant(DAG, 0x4007b923, dl));
4382       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4383       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4384                                getF32Constant(DAG, 0x40823e2f, dl));
4385       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4386       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4387                                    getF32Constant(DAG, 0x4020d29c, dl));
4388     } else { // LimitFloatPrecision <= 18
4389       // For floating-point precision of 18:
4390       //
4391       //   Log2ofMantissa =
4392       //     -3.0400495f +
4393       //       (6.1129976f +
4394       //         (-5.3420409f +
4395       //           (3.2865683f +
4396       //             (-1.2669343f +
4397       //               (0.27515199f -
4398       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4399       //
4400       // error 0.0000018516, which is better than 18 bits
4401       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4402                                getF32Constant(DAG, 0xbcd2769e, dl));
4403       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4404                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4405       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4406       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4407                                getF32Constant(DAG, 0x3fa22ae7, dl));
4408       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4409       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4410                                getF32Constant(DAG, 0x40525723, dl));
4411       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4412       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4413                                getF32Constant(DAG, 0x40aaf200, dl));
4414       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4415       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4416                                getF32Constant(DAG, 0x40c39dad, dl));
4417       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4418       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4419                                    getF32Constant(DAG, 0x4042902c, dl));
4420     }
4421 
4422     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4423   }
4424 
4425   // No special expansion.
4426   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4427 }
4428 
4429 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4430 /// limited-precision mode.
4431 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4432                            const TargetLowering &TLI) {
4433 
4434   // TODO: What fast-math-flags should be set on the floating-point nodes?
4435 
4436   if (Op.getValueType() == MVT::f32 &&
4437       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4438     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4439 
4440     // Scale the exponent by log10(2) [0.30102999f].
4441     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4442     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4443                                         getF32Constant(DAG, 0x3e9a209a, dl));
4444 
4445     // Get the significand and build it into a floating-point number with
4446     // exponent of 1.
4447     SDValue X = GetSignificand(DAG, Op1, dl);
4448 
4449     SDValue Log10ofMantissa;
4450     if (LimitFloatPrecision <= 6) {
4451       // For floating-point precision of 6:
4452       //
4453       //   Log10ofMantissa =
4454       //     -0.50419619f +
4455       //       (0.60948995f - 0.10380950f * x) * x;
4456       //
4457       // error 0.0014886165, which is 6 bits
4458       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4459                                getF32Constant(DAG, 0xbdd49a13, dl));
4460       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4461                                getF32Constant(DAG, 0x3f1c0789, dl));
4462       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4463       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4464                                     getF32Constant(DAG, 0x3f011300, dl));
4465     } else if (LimitFloatPrecision <= 12) {
4466       // For floating-point precision of 12:
4467       //
4468       //   Log10ofMantissa =
4469       //     -0.64831180f +
4470       //       (0.91751397f +
4471       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4472       //
4473       // error 0.00019228036, which is better than 12 bits
4474       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4475                                getF32Constant(DAG, 0x3d431f31, dl));
4476       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4477                                getF32Constant(DAG, 0x3ea21fb2, dl));
4478       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4479       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4480                                getF32Constant(DAG, 0x3f6ae232, dl));
4481       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4482       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4483                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4484     } else { // LimitFloatPrecision <= 18
4485       // For floating-point precision of 18:
4486       //
4487       //   Log10ofMantissa =
4488       //     -0.84299375f +
4489       //       (1.5327582f +
4490       //         (-1.0688956f +
4491       //           (0.49102474f +
4492       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4493       //
4494       // error 0.0000037995730, which is better than 18 bits
4495       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4496                                getF32Constant(DAG, 0x3c5d51ce, dl));
4497       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4498                                getF32Constant(DAG, 0x3e00685a, dl));
4499       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4500       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4501                                getF32Constant(DAG, 0x3efb6798, dl));
4502       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4503       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4504                                getF32Constant(DAG, 0x3f88d192, dl));
4505       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4506       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4507                                getF32Constant(DAG, 0x3fc4316c, dl));
4508       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4509       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4510                                     getF32Constant(DAG, 0x3f57ce70, dl));
4511     }
4512 
4513     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4514   }
4515 
4516   // No special expansion.
4517   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4518 }
4519 
4520 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4521 /// limited-precision mode.
4522 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4523                           const TargetLowering &TLI) {
4524   if (Op.getValueType() == MVT::f32 &&
4525       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4526     return getLimitedPrecisionExp2(Op, dl, DAG);
4527 
4528   // No special expansion.
4529   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4530 }
4531 
4532 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4533 /// limited-precision mode with x == 10.0f.
4534 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4535                          SelectionDAG &DAG, const TargetLowering &TLI) {
4536   bool IsExp10 = false;
4537   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4538       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4539     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4540       APFloat Ten(10.0f);
4541       IsExp10 = LHSC->isExactlyValue(Ten);
4542     }
4543   }
4544 
4545   // TODO: What fast-math-flags should be set on the FMUL node?
4546   if (IsExp10) {
4547     // Put the exponent in the right bit position for later addition to the
4548     // final result:
4549     //
4550     //   #define LOG2OF10 3.3219281f
4551     //   t0 = Op * LOG2OF10;
4552     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4553                              getF32Constant(DAG, 0x40549a78, dl));
4554     return getLimitedPrecisionExp2(t0, dl, DAG);
4555   }
4556 
4557   // No special expansion.
4558   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4559 }
4560 
4561 
4562 /// ExpandPowI - Expand a llvm.powi intrinsic.
4563 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4564                           SelectionDAG &DAG) {
4565   // If RHS is a constant, we can expand this out to a multiplication tree,
4566   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4567   // optimizing for size, we only want to do this if the expansion would produce
4568   // a small number of multiplies, otherwise we do the full expansion.
4569   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4570     // Get the exponent as a positive value.
4571     unsigned Val = RHSC->getSExtValue();
4572     if ((int)Val < 0) Val = -Val;
4573 
4574     // powi(x, 0) -> 1.0
4575     if (Val == 0)
4576       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4577 
4578     const Function *F = DAG.getMachineFunction().getFunction();
4579     if (!F->optForSize() ||
4580         // If optimizing for size, don't insert too many multiplies.
4581         // This inserts up to 5 multiplies.
4582         countPopulation(Val) + Log2_32(Val) < 7) {
4583       // We use the simple binary decomposition method to generate the multiply
4584       // sequence.  There are more optimal ways to do this (for example,
4585       // powi(x,15) generates one more multiply than it should), but this has
4586       // the benefit of being both really simple and much better than a libcall.
4587       SDValue Res;  // Logically starts equal to 1.0
4588       SDValue CurSquare = LHS;
4589       // TODO: Intrinsics should have fast-math-flags that propagate to these
4590       // nodes.
4591       while (Val) {
4592         if (Val & 1) {
4593           if (Res.getNode())
4594             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4595           else
4596             Res = CurSquare;  // 1.0*CurSquare.
4597         }
4598 
4599         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4600                                 CurSquare, CurSquare);
4601         Val >>= 1;
4602       }
4603 
4604       // If the original was negative, invert the result, producing 1/(x*x*x).
4605       if (RHSC->getSExtValue() < 0)
4606         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4607                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4608       return Res;
4609     }
4610   }
4611 
4612   // Otherwise, expand to a libcall.
4613   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4614 }
4615 
4616 // getUnderlyingArgReg - Find underlying register used for a truncated or
4617 // bitcasted argument.
4618 static unsigned getUnderlyingArgReg(const SDValue &N) {
4619   switch (N.getOpcode()) {
4620   case ISD::CopyFromReg:
4621     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4622   case ISD::BITCAST:
4623   case ISD::AssertZext:
4624   case ISD::AssertSext:
4625   case ISD::TRUNCATE:
4626     return getUnderlyingArgReg(N.getOperand(0));
4627   default:
4628     return 0;
4629   }
4630 }
4631 
4632 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4633 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4634 /// At the end of instruction selection, they will be inserted to the entry BB.
4635 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4636     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4637     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4638   const Argument *Arg = dyn_cast<Argument>(V);
4639   if (!Arg)
4640     return false;
4641 
4642   MachineFunction &MF = DAG.getMachineFunction();
4643   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4644 
4645   // Ignore inlined function arguments here.
4646   //
4647   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4648   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4649     return false;
4650 
4651   Optional<MachineOperand> Op;
4652   // Some arguments' frame index is recorded during argument lowering.
4653   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4654     Op = MachineOperand::CreateFI(FI);
4655 
4656   if (!Op && N.getNode()) {
4657     unsigned Reg = getUnderlyingArgReg(N);
4658     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4659       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4660       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4661       if (PR)
4662         Reg = PR;
4663     }
4664     if (Reg)
4665       Op = MachineOperand::CreateReg(Reg, false);
4666   }
4667 
4668   if (!Op) {
4669     // Check if ValueMap has reg number.
4670     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4671     if (VMI != FuncInfo.ValueMap.end())
4672       Op = MachineOperand::CreateReg(VMI->second, false);
4673   }
4674 
4675   if (!Op && N.getNode())
4676     // Check if frame index is available.
4677     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4678       if (FrameIndexSDNode *FINode =
4679           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4680         Op = MachineOperand::CreateFI(FINode->getIndex());
4681 
4682   if (!Op)
4683     return false;
4684 
4685   assert(Variable->isValidLocationForIntrinsic(DL) &&
4686          "Expected inlined-at fields to agree");
4687   if (Op->isReg())
4688     FuncInfo.ArgDbgValues.push_back(
4689         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4690                 Op->getReg(), Offset, Variable, Expr));
4691   else
4692     FuncInfo.ArgDbgValues.push_back(
4693         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4694             .addOperand(*Op)
4695             .addImm(Offset)
4696             .addMetadata(Variable)
4697             .addMetadata(Expr));
4698 
4699   return true;
4700 }
4701 
4702 // VisualStudio defines setjmp as _setjmp
4703 #if defined(_MSC_VER) && defined(setjmp) && \
4704                          !defined(setjmp_undefined_for_msvc)
4705 #  pragma push_macro("setjmp")
4706 #  undef setjmp
4707 #  define setjmp_undefined_for_msvc
4708 #endif
4709 
4710 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4711 /// we want to emit this as a call to a named external function, return the name
4712 /// otherwise lower it and return null.
4713 const char *
4714 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4715   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4716   SDLoc sdl = getCurSDLoc();
4717   DebugLoc dl = getCurDebugLoc();
4718   SDValue Res;
4719 
4720   switch (Intrinsic) {
4721   default:
4722     // By default, turn this into a target intrinsic node.
4723     visitTargetIntrinsic(I, Intrinsic);
4724     return nullptr;
4725   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4726   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4727   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4728   case Intrinsic::returnaddress:
4729     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4730                              TLI.getPointerTy(DAG.getDataLayout()),
4731                              getValue(I.getArgOperand(0))));
4732     return nullptr;
4733   case Intrinsic::frameaddress:
4734     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4735                              TLI.getPointerTy(DAG.getDataLayout()),
4736                              getValue(I.getArgOperand(0))));
4737     return nullptr;
4738   case Intrinsic::read_register: {
4739     Value *Reg = I.getArgOperand(0);
4740     SDValue Chain = getRoot();
4741     SDValue RegName =
4742         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4743     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4744     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4745       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4746     setValue(&I, Res);
4747     DAG.setRoot(Res.getValue(1));
4748     return nullptr;
4749   }
4750   case Intrinsic::write_register: {
4751     Value *Reg = I.getArgOperand(0);
4752     Value *RegValue = I.getArgOperand(1);
4753     SDValue Chain = getRoot();
4754     SDValue RegName =
4755         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4756     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4757                             RegName, getValue(RegValue)));
4758     return nullptr;
4759   }
4760   case Intrinsic::setjmp:
4761     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4762   case Intrinsic::longjmp:
4763     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4764   case Intrinsic::memcpy: {
4765     SDValue Op1 = getValue(I.getArgOperand(0));
4766     SDValue Op2 = getValue(I.getArgOperand(1));
4767     SDValue Op3 = getValue(I.getArgOperand(2));
4768     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4769     if (!Align)
4770       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4771     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4772     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4773     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4774                                false, isTC,
4775                                MachinePointerInfo(I.getArgOperand(0)),
4776                                MachinePointerInfo(I.getArgOperand(1)));
4777     updateDAGForMaybeTailCall(MC);
4778     return nullptr;
4779   }
4780   case Intrinsic::memset: {
4781     SDValue Op1 = getValue(I.getArgOperand(0));
4782     SDValue Op2 = getValue(I.getArgOperand(1));
4783     SDValue Op3 = getValue(I.getArgOperand(2));
4784     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4785     if (!Align)
4786       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4787     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4788     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4789     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4790                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4791     updateDAGForMaybeTailCall(MS);
4792     return nullptr;
4793   }
4794   case Intrinsic::memmove: {
4795     SDValue Op1 = getValue(I.getArgOperand(0));
4796     SDValue Op2 = getValue(I.getArgOperand(1));
4797     SDValue Op3 = getValue(I.getArgOperand(2));
4798     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4799     if (!Align)
4800       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4801     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4802     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4803     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4804                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4805                                 MachinePointerInfo(I.getArgOperand(1)));
4806     updateDAGForMaybeTailCall(MM);
4807     return nullptr;
4808   }
4809   case Intrinsic::dbg_declare: {
4810     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4811     DILocalVariable *Variable = DI.getVariable();
4812     DIExpression *Expression = DI.getExpression();
4813     const Value *Address = DI.getAddress();
4814     assert(Variable && "Missing variable");
4815     if (!Address) {
4816       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4817       return nullptr;
4818     }
4819 
4820     // Check if address has undef value.
4821     if (isa<UndefValue>(Address) ||
4822         (Address->use_empty() && !isa<Argument>(Address))) {
4823       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4824       return nullptr;
4825     }
4826 
4827     SDValue &N = NodeMap[Address];
4828     if (!N.getNode() && isa<Argument>(Address))
4829       // Check unused arguments map.
4830       N = UnusedArgNodeMap[Address];
4831     SDDbgValue *SDV;
4832     if (N.getNode()) {
4833       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4834         Address = BCI->getOperand(0);
4835       // Parameters are handled specially.
4836       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4837       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4838       if (isParameter && FINode) {
4839         // Byval parameter. We have a frame index at this point.
4840         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4841                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4842       } else if (isa<Argument>(Address)) {
4843         // Address is an argument, so try to emit its dbg value using
4844         // virtual register info from the FuncInfo.ValueMap.
4845         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4846                                  N);
4847         return nullptr;
4848       } else {
4849         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4850                               true, 0, dl, SDNodeOrder);
4851       }
4852       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4853     } else {
4854       // If Address is an argument then try to emit its dbg value using
4855       // virtual register info from the FuncInfo.ValueMap.
4856       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4857                                     N)) {
4858         // If variable is pinned by a alloca in dominating bb then
4859         // use StaticAllocaMap.
4860         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4861           if (AI->getParent() != DI.getParent()) {
4862             DenseMap<const AllocaInst*, int>::iterator SI =
4863               FuncInfo.StaticAllocaMap.find(AI);
4864             if (SI != FuncInfo.StaticAllocaMap.end()) {
4865               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4866                                               0, dl, SDNodeOrder);
4867               DAG.AddDbgValue(SDV, nullptr, false);
4868               return nullptr;
4869             }
4870           }
4871         }
4872         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4873       }
4874     }
4875     return nullptr;
4876   }
4877   case Intrinsic::dbg_value: {
4878     const DbgValueInst &DI = cast<DbgValueInst>(I);
4879     assert(DI.getVariable() && "Missing variable");
4880 
4881     DILocalVariable *Variable = DI.getVariable();
4882     DIExpression *Expression = DI.getExpression();
4883     uint64_t Offset = DI.getOffset();
4884     const Value *V = DI.getValue();
4885     if (!V)
4886       return nullptr;
4887 
4888     SDDbgValue *SDV;
4889     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4890       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4891                                     SDNodeOrder);
4892       DAG.AddDbgValue(SDV, nullptr, false);
4893     } else {
4894       // Do not use getValue() in here; we don't want to generate code at
4895       // this point if it hasn't been done yet.
4896       SDValue N = NodeMap[V];
4897       if (!N.getNode() && isa<Argument>(V))
4898         // Check unused arguments map.
4899         N = UnusedArgNodeMap[V];
4900       if (N.getNode()) {
4901         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4902                                       false, N)) {
4903           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4904                                 false, Offset, dl, SDNodeOrder);
4905           DAG.AddDbgValue(SDV, N.getNode(), false);
4906         }
4907       } else if (!V->use_empty() ) {
4908         // Do not call getValue(V) yet, as we don't want to generate code.
4909         // Remember it for later.
4910         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4911         DanglingDebugInfoMap[V] = DDI;
4912       } else {
4913         // We may expand this to cover more cases.  One case where we have no
4914         // data available is an unreferenced parameter.
4915         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4916       }
4917     }
4918 
4919     // Build a debug info table entry.
4920     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4921       V = BCI->getOperand(0);
4922     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4923     // Don't handle byval struct arguments or VLAs, for example.
4924     if (!AI) {
4925       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4926       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4927       return nullptr;
4928     }
4929     DenseMap<const AllocaInst*, int>::iterator SI =
4930       FuncInfo.StaticAllocaMap.find(AI);
4931     if (SI == FuncInfo.StaticAllocaMap.end())
4932       return nullptr; // VLAs.
4933     return nullptr;
4934   }
4935 
4936   case Intrinsic::eh_typeid_for: {
4937     // Find the type id for the given typeinfo.
4938     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4939     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4940     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4941     setValue(&I, Res);
4942     return nullptr;
4943   }
4944 
4945   case Intrinsic::eh_return_i32:
4946   case Intrinsic::eh_return_i64:
4947     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4948     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4949                             MVT::Other,
4950                             getControlRoot(),
4951                             getValue(I.getArgOperand(0)),
4952                             getValue(I.getArgOperand(1))));
4953     return nullptr;
4954   case Intrinsic::eh_unwind_init:
4955     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4956     return nullptr;
4957   case Intrinsic::eh_dwarf_cfa: {
4958     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4959                                         TLI.getPointerTy(DAG.getDataLayout()));
4960     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4961                                  CfaArg.getValueType(),
4962                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4963                                              CfaArg.getValueType()),
4964                                  CfaArg);
4965     SDValue FA = DAG.getNode(
4966         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4967         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4968     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4969                              FA, Offset));
4970     return nullptr;
4971   }
4972   case Intrinsic::eh_sjlj_callsite: {
4973     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4974     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4975     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4976     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4977 
4978     MMI.setCurrentCallSite(CI->getZExtValue());
4979     return nullptr;
4980   }
4981   case Intrinsic::eh_sjlj_functioncontext: {
4982     // Get and store the index of the function context.
4983     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4984     AllocaInst *FnCtx =
4985       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4986     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4987     MFI->setFunctionContextIndex(FI);
4988     return nullptr;
4989   }
4990   case Intrinsic::eh_sjlj_setjmp: {
4991     SDValue Ops[2];
4992     Ops[0] = getRoot();
4993     Ops[1] = getValue(I.getArgOperand(0));
4994     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4995                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4996     setValue(&I, Op.getValue(0));
4997     DAG.setRoot(Op.getValue(1));
4998     return nullptr;
4999   }
5000   case Intrinsic::eh_sjlj_longjmp: {
5001     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5002                             getRoot(), getValue(I.getArgOperand(0))));
5003     return nullptr;
5004   }
5005   case Intrinsic::eh_sjlj_setup_dispatch: {
5006     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5007                             getRoot()));
5008     return nullptr;
5009   }
5010 
5011   case Intrinsic::masked_gather:
5012     visitMaskedGather(I);
5013     return nullptr;
5014   case Intrinsic::masked_load:
5015     visitMaskedLoad(I);
5016     return nullptr;
5017   case Intrinsic::masked_scatter:
5018     visitMaskedScatter(I);
5019     return nullptr;
5020   case Intrinsic::masked_store:
5021     visitMaskedStore(I);
5022     return nullptr;
5023   case Intrinsic::x86_mmx_pslli_w:
5024   case Intrinsic::x86_mmx_pslli_d:
5025   case Intrinsic::x86_mmx_pslli_q:
5026   case Intrinsic::x86_mmx_psrli_w:
5027   case Intrinsic::x86_mmx_psrli_d:
5028   case Intrinsic::x86_mmx_psrli_q:
5029   case Intrinsic::x86_mmx_psrai_w:
5030   case Intrinsic::x86_mmx_psrai_d: {
5031     SDValue ShAmt = getValue(I.getArgOperand(1));
5032     if (isa<ConstantSDNode>(ShAmt)) {
5033       visitTargetIntrinsic(I, Intrinsic);
5034       return nullptr;
5035     }
5036     unsigned NewIntrinsic = 0;
5037     EVT ShAmtVT = MVT::v2i32;
5038     switch (Intrinsic) {
5039     case Intrinsic::x86_mmx_pslli_w:
5040       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5041       break;
5042     case Intrinsic::x86_mmx_pslli_d:
5043       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5044       break;
5045     case Intrinsic::x86_mmx_pslli_q:
5046       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5047       break;
5048     case Intrinsic::x86_mmx_psrli_w:
5049       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5050       break;
5051     case Intrinsic::x86_mmx_psrli_d:
5052       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5053       break;
5054     case Intrinsic::x86_mmx_psrli_q:
5055       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5056       break;
5057     case Intrinsic::x86_mmx_psrai_w:
5058       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5059       break;
5060     case Intrinsic::x86_mmx_psrai_d:
5061       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5062       break;
5063     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5064     }
5065 
5066     // The vector shift intrinsics with scalars uses 32b shift amounts but
5067     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5068     // to be zero.
5069     // We must do this early because v2i32 is not a legal type.
5070     SDValue ShOps[2];
5071     ShOps[0] = ShAmt;
5072     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5073     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5074     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5075     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5076     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5077                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5078                        getValue(I.getArgOperand(0)), ShAmt);
5079     setValue(&I, Res);
5080     return nullptr;
5081   }
5082   case Intrinsic::convertff:
5083   case Intrinsic::convertfsi:
5084   case Intrinsic::convertfui:
5085   case Intrinsic::convertsif:
5086   case Intrinsic::convertuif:
5087   case Intrinsic::convertss:
5088   case Intrinsic::convertsu:
5089   case Intrinsic::convertus:
5090   case Intrinsic::convertuu: {
5091     ISD::CvtCode Code = ISD::CVT_INVALID;
5092     switch (Intrinsic) {
5093     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5094     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5095     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5096     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5097     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5098     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5099     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5100     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5101     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5102     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5103     }
5104     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5105     const Value *Op1 = I.getArgOperand(0);
5106     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5107                                DAG.getValueType(DestVT),
5108                                DAG.getValueType(getValue(Op1).getValueType()),
5109                                getValue(I.getArgOperand(1)),
5110                                getValue(I.getArgOperand(2)),
5111                                Code);
5112     setValue(&I, Res);
5113     return nullptr;
5114   }
5115   case Intrinsic::powi:
5116     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5117                             getValue(I.getArgOperand(1)), DAG));
5118     return nullptr;
5119   case Intrinsic::log:
5120     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5121     return nullptr;
5122   case Intrinsic::log2:
5123     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5124     return nullptr;
5125   case Intrinsic::log10:
5126     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5127     return nullptr;
5128   case Intrinsic::exp:
5129     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5130     return nullptr;
5131   case Intrinsic::exp2:
5132     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5133     return nullptr;
5134   case Intrinsic::pow:
5135     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5136                            getValue(I.getArgOperand(1)), DAG, TLI));
5137     return nullptr;
5138   case Intrinsic::sqrt:
5139   case Intrinsic::fabs:
5140   case Intrinsic::sin:
5141   case Intrinsic::cos:
5142   case Intrinsic::floor:
5143   case Intrinsic::ceil:
5144   case Intrinsic::trunc:
5145   case Intrinsic::rint:
5146   case Intrinsic::nearbyint:
5147   case Intrinsic::round:
5148   case Intrinsic::canonicalize: {
5149     unsigned Opcode;
5150     switch (Intrinsic) {
5151     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5152     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5153     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5154     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5155     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5156     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5157     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5158     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5159     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5160     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5161     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5162     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5163     }
5164 
5165     setValue(&I, DAG.getNode(Opcode, sdl,
5166                              getValue(I.getArgOperand(0)).getValueType(),
5167                              getValue(I.getArgOperand(0))));
5168     return nullptr;
5169   }
5170   case Intrinsic::minnum: {
5171     auto VT = getValue(I.getArgOperand(0)).getValueType();
5172     unsigned Opc =
5173         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5174             ? ISD::FMINNAN
5175             : ISD::FMINNUM;
5176     setValue(&I, DAG.getNode(Opc, sdl, VT,
5177                              getValue(I.getArgOperand(0)),
5178                              getValue(I.getArgOperand(1))));
5179     return nullptr;
5180   }
5181   case Intrinsic::maxnum: {
5182     auto VT = getValue(I.getArgOperand(0)).getValueType();
5183     unsigned Opc =
5184         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5185             ? ISD::FMAXNAN
5186             : ISD::FMAXNUM;
5187     setValue(&I, DAG.getNode(Opc, sdl, VT,
5188                              getValue(I.getArgOperand(0)),
5189                              getValue(I.getArgOperand(1))));
5190     return nullptr;
5191   }
5192   case Intrinsic::copysign:
5193     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5194                              getValue(I.getArgOperand(0)).getValueType(),
5195                              getValue(I.getArgOperand(0)),
5196                              getValue(I.getArgOperand(1))));
5197     return nullptr;
5198   case Intrinsic::fma:
5199     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5200                              getValue(I.getArgOperand(0)).getValueType(),
5201                              getValue(I.getArgOperand(0)),
5202                              getValue(I.getArgOperand(1)),
5203                              getValue(I.getArgOperand(2))));
5204     return nullptr;
5205   case Intrinsic::fmuladd: {
5206     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5207     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5208         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5209       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5210                                getValue(I.getArgOperand(0)).getValueType(),
5211                                getValue(I.getArgOperand(0)),
5212                                getValue(I.getArgOperand(1)),
5213                                getValue(I.getArgOperand(2))));
5214     } else {
5215       // TODO: Intrinsic calls should have fast-math-flags.
5216       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5217                                 getValue(I.getArgOperand(0)).getValueType(),
5218                                 getValue(I.getArgOperand(0)),
5219                                 getValue(I.getArgOperand(1)));
5220       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5221                                 getValue(I.getArgOperand(0)).getValueType(),
5222                                 Mul,
5223                                 getValue(I.getArgOperand(2)));
5224       setValue(&I, Add);
5225     }
5226     return nullptr;
5227   }
5228   case Intrinsic::convert_to_fp16:
5229     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5230                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5231                                          getValue(I.getArgOperand(0)),
5232                                          DAG.getTargetConstant(0, sdl,
5233                                                                MVT::i32))));
5234     return nullptr;
5235   case Intrinsic::convert_from_fp16:
5236     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5237                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5238                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5239                                          getValue(I.getArgOperand(0)))));
5240     return nullptr;
5241   case Intrinsic::pcmarker: {
5242     SDValue Tmp = getValue(I.getArgOperand(0));
5243     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5244     return nullptr;
5245   }
5246   case Intrinsic::readcyclecounter: {
5247     SDValue Op = getRoot();
5248     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5249                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5250     setValue(&I, Res);
5251     DAG.setRoot(Res.getValue(1));
5252     return nullptr;
5253   }
5254   case Intrinsic::bitreverse:
5255     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5256                              getValue(I.getArgOperand(0)).getValueType(),
5257                              getValue(I.getArgOperand(0))));
5258     return nullptr;
5259   case Intrinsic::bswap:
5260     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5261                              getValue(I.getArgOperand(0)).getValueType(),
5262                              getValue(I.getArgOperand(0))));
5263     return nullptr;
5264   case Intrinsic::cttz: {
5265     SDValue Arg = getValue(I.getArgOperand(0));
5266     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5267     EVT Ty = Arg.getValueType();
5268     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5269                              sdl, Ty, Arg));
5270     return nullptr;
5271   }
5272   case Intrinsic::ctlz: {
5273     SDValue Arg = getValue(I.getArgOperand(0));
5274     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5275     EVT Ty = Arg.getValueType();
5276     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5277                              sdl, Ty, Arg));
5278     return nullptr;
5279   }
5280   case Intrinsic::ctpop: {
5281     SDValue Arg = getValue(I.getArgOperand(0));
5282     EVT Ty = Arg.getValueType();
5283     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5284     return nullptr;
5285   }
5286   case Intrinsic::stacksave: {
5287     SDValue Op = getRoot();
5288     Res = DAG.getNode(
5289         ISD::STACKSAVE, sdl,
5290         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5291     setValue(&I, Res);
5292     DAG.setRoot(Res.getValue(1));
5293     return nullptr;
5294   }
5295   case Intrinsic::stackrestore: {
5296     Res = getValue(I.getArgOperand(0));
5297     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5298     return nullptr;
5299   }
5300   case Intrinsic::get_dynamic_area_offset: {
5301     SDValue Op = getRoot();
5302     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5303     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5304     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5305     // target.
5306     if (PtrTy != ResTy)
5307       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5308                          " intrinsic!");
5309     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5310                       Op);
5311     DAG.setRoot(Op);
5312     setValue(&I, Res);
5313     return nullptr;
5314   }
5315   case Intrinsic::stackguard: {
5316     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5317     MachineFunction &MF = DAG.getMachineFunction();
5318     const Module &M = *MF.getFunction()->getParent();
5319     SDValue Chain = getRoot();
5320     if (TLI.useLoadStackGuardNode()) {
5321       Res = getLoadStackGuard(DAG, sdl, Chain);
5322     } else {
5323       const Value *Global = TLI.getSDagStackGuard(M);
5324       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5325       Res =
5326           DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5327                       MachinePointerInfo(Global, 0), true, false, false, Align);
5328     }
5329     DAG.setRoot(Chain);
5330     setValue(&I, Res);
5331     return nullptr;
5332   }
5333   case Intrinsic::stackprotector: {
5334     // Emit code into the DAG to store the stack guard onto the stack.
5335     MachineFunction &MF = DAG.getMachineFunction();
5336     MachineFrameInfo *MFI = MF.getFrameInfo();
5337     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5338     SDValue Src, Chain = getRoot();
5339 
5340     if (TLI.useLoadStackGuardNode())
5341       Src = getLoadStackGuard(DAG, sdl, Chain);
5342     else
5343       Src = getValue(I.getArgOperand(0));   // The guard's value.
5344 
5345     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5346 
5347     int FI = FuncInfo.StaticAllocaMap[Slot];
5348     MFI->setStackProtectorIndex(FI);
5349 
5350     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5351 
5352     // Store the stack protector onto the stack.
5353     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5354                                                  DAG.getMachineFunction(), FI),
5355                        true, false, 0);
5356     setValue(&I, Res);
5357     DAG.setRoot(Res);
5358     return nullptr;
5359   }
5360   case Intrinsic::objectsize: {
5361     // If we don't know by now, we're never going to know.
5362     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5363 
5364     assert(CI && "Non-constant type in __builtin_object_size?");
5365 
5366     SDValue Arg = getValue(I.getCalledValue());
5367     EVT Ty = Arg.getValueType();
5368 
5369     if (CI->isZero())
5370       Res = DAG.getConstant(-1ULL, sdl, Ty);
5371     else
5372       Res = DAG.getConstant(0, sdl, Ty);
5373 
5374     setValue(&I, Res);
5375     return nullptr;
5376   }
5377   case Intrinsic::annotation:
5378   case Intrinsic::ptr_annotation:
5379     // Drop the intrinsic, but forward the value
5380     setValue(&I, getValue(I.getOperand(0)));
5381     return nullptr;
5382   case Intrinsic::assume:
5383   case Intrinsic::var_annotation:
5384     // Discard annotate attributes and assumptions
5385     return nullptr;
5386 
5387   case Intrinsic::init_trampoline: {
5388     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5389 
5390     SDValue Ops[6];
5391     Ops[0] = getRoot();
5392     Ops[1] = getValue(I.getArgOperand(0));
5393     Ops[2] = getValue(I.getArgOperand(1));
5394     Ops[3] = getValue(I.getArgOperand(2));
5395     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5396     Ops[5] = DAG.getSrcValue(F);
5397 
5398     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5399 
5400     DAG.setRoot(Res);
5401     return nullptr;
5402   }
5403   case Intrinsic::adjust_trampoline: {
5404     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5405                              TLI.getPointerTy(DAG.getDataLayout()),
5406                              getValue(I.getArgOperand(0))));
5407     return nullptr;
5408   }
5409   case Intrinsic::gcroot: {
5410     MachineFunction &MF = DAG.getMachineFunction();
5411     const Function *F = MF.getFunction();
5412     (void)F;
5413     assert(F->hasGC() &&
5414            "only valid in functions with gc specified, enforced by Verifier");
5415     assert(GFI && "implied by previous");
5416     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5417     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5418 
5419     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5420     GFI->addStackRoot(FI->getIndex(), TypeMap);
5421     return nullptr;
5422   }
5423   case Intrinsic::gcread:
5424   case Intrinsic::gcwrite:
5425     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5426   case Intrinsic::flt_rounds:
5427     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5428     return nullptr;
5429 
5430   case Intrinsic::expect: {
5431     // Just replace __builtin_expect(exp, c) with EXP.
5432     setValue(&I, getValue(I.getArgOperand(0)));
5433     return nullptr;
5434   }
5435 
5436   case Intrinsic::debugtrap:
5437   case Intrinsic::trap: {
5438     StringRef TrapFuncName =
5439         I.getAttributes()
5440             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5441             .getValueAsString();
5442     if (TrapFuncName.empty()) {
5443       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5444         ISD::TRAP : ISD::DEBUGTRAP;
5445       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5446       return nullptr;
5447     }
5448     TargetLowering::ArgListTy Args;
5449 
5450     TargetLowering::CallLoweringInfo CLI(DAG);
5451     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5452         CallingConv::C, I.getType(),
5453         DAG.getExternalSymbol(TrapFuncName.data(),
5454                               TLI.getPointerTy(DAG.getDataLayout())),
5455         std::move(Args), 0);
5456 
5457     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5458     DAG.setRoot(Result.second);
5459     return nullptr;
5460   }
5461 
5462   case Intrinsic::uadd_with_overflow:
5463   case Intrinsic::sadd_with_overflow:
5464   case Intrinsic::usub_with_overflow:
5465   case Intrinsic::ssub_with_overflow:
5466   case Intrinsic::umul_with_overflow:
5467   case Intrinsic::smul_with_overflow: {
5468     ISD::NodeType Op;
5469     switch (Intrinsic) {
5470     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5471     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5472     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5473     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5474     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5475     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5476     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5477     }
5478     SDValue Op1 = getValue(I.getArgOperand(0));
5479     SDValue Op2 = getValue(I.getArgOperand(1));
5480 
5481     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5482     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5483     return nullptr;
5484   }
5485   case Intrinsic::prefetch: {
5486     SDValue Ops[5];
5487     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5488     Ops[0] = getRoot();
5489     Ops[1] = getValue(I.getArgOperand(0));
5490     Ops[2] = getValue(I.getArgOperand(1));
5491     Ops[3] = getValue(I.getArgOperand(2));
5492     Ops[4] = getValue(I.getArgOperand(3));
5493     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5494                                         DAG.getVTList(MVT::Other), Ops,
5495                                         EVT::getIntegerVT(*Context, 8),
5496                                         MachinePointerInfo(I.getArgOperand(0)),
5497                                         0, /* align */
5498                                         false, /* volatile */
5499                                         rw==0, /* read */
5500                                         rw==1)); /* write */
5501     return nullptr;
5502   }
5503   case Intrinsic::lifetime_start:
5504   case Intrinsic::lifetime_end: {
5505     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5506     // Stack coloring is not enabled in O0, discard region information.
5507     if (TM.getOptLevel() == CodeGenOpt::None)
5508       return nullptr;
5509 
5510     SmallVector<Value *, 4> Allocas;
5511     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5512 
5513     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5514            E = Allocas.end(); Object != E; ++Object) {
5515       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5516 
5517       // Could not find an Alloca.
5518       if (!LifetimeObject)
5519         continue;
5520 
5521       // First check that the Alloca is static, otherwise it won't have a
5522       // valid frame index.
5523       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5524       if (SI == FuncInfo.StaticAllocaMap.end())
5525         return nullptr;
5526 
5527       int FI = SI->second;
5528 
5529       SDValue Ops[2];
5530       Ops[0] = getRoot();
5531       Ops[1] =
5532           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5533       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5534 
5535       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5536       DAG.setRoot(Res);
5537     }
5538     return nullptr;
5539   }
5540   case Intrinsic::invariant_start:
5541     // Discard region information.
5542     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5543     return nullptr;
5544   case Intrinsic::invariant_end:
5545     // Discard region information.
5546     return nullptr;
5547   case Intrinsic::clear_cache:
5548     return TLI.getClearCacheBuiltinName();
5549   case Intrinsic::donothing:
5550     // ignore
5551     return nullptr;
5552   case Intrinsic::experimental_stackmap: {
5553     visitStackmap(I);
5554     return nullptr;
5555   }
5556   case Intrinsic::experimental_patchpoint_void:
5557   case Intrinsic::experimental_patchpoint_i64: {
5558     visitPatchpoint(&I);
5559     return nullptr;
5560   }
5561   case Intrinsic::experimental_gc_statepoint: {
5562     LowerStatepoint(ImmutableStatepoint(&I));
5563     return nullptr;
5564   }
5565   case Intrinsic::experimental_gc_result: {
5566     visitGCResult(cast<GCResultInst>(I));
5567     return nullptr;
5568   }
5569   case Intrinsic::experimental_gc_relocate: {
5570     visitGCRelocate(cast<GCRelocateInst>(I));
5571     return nullptr;
5572   }
5573   case Intrinsic::instrprof_increment:
5574     llvm_unreachable("instrprof failed to lower an increment");
5575   case Intrinsic::instrprof_value_profile:
5576     llvm_unreachable("instrprof failed to lower a value profiling call");
5577   case Intrinsic::localescape: {
5578     MachineFunction &MF = DAG.getMachineFunction();
5579     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5580 
5581     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5582     // is the same on all targets.
5583     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5584       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5585       if (isa<ConstantPointerNull>(Arg))
5586         continue; // Skip null pointers. They represent a hole in index space.
5587       AllocaInst *Slot = cast<AllocaInst>(Arg);
5588       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5589              "can only escape static allocas");
5590       int FI = FuncInfo.StaticAllocaMap[Slot];
5591       MCSymbol *FrameAllocSym =
5592           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5593               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5594       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5595               TII->get(TargetOpcode::LOCAL_ESCAPE))
5596           .addSym(FrameAllocSym)
5597           .addFrameIndex(FI);
5598     }
5599 
5600     return nullptr;
5601   }
5602 
5603   case Intrinsic::localrecover: {
5604     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5605     MachineFunction &MF = DAG.getMachineFunction();
5606     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5607 
5608     // Get the symbol that defines the frame offset.
5609     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5610     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5611     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5612     MCSymbol *FrameAllocSym =
5613         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5614             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5615 
5616     // Create a MCSymbol for the label to avoid any target lowering
5617     // that would make this PC relative.
5618     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5619     SDValue OffsetVal =
5620         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5621 
5622     // Add the offset to the FP.
5623     Value *FP = I.getArgOperand(1);
5624     SDValue FPVal = getValue(FP);
5625     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5626     setValue(&I, Add);
5627 
5628     return nullptr;
5629   }
5630 
5631   case Intrinsic::eh_exceptionpointer:
5632   case Intrinsic::eh_exceptioncode: {
5633     // Get the exception pointer vreg, copy from it, and resize it to fit.
5634     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5635     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5636     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5637     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5638     SDValue N =
5639         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5640     if (Intrinsic == Intrinsic::eh_exceptioncode)
5641       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5642     setValue(&I, N);
5643     return nullptr;
5644   }
5645 
5646   case Intrinsic::experimental_deoptimize:
5647     LowerDeoptimizeCall(&I);
5648     return nullptr;
5649   }
5650 }
5651 
5652 std::pair<SDValue, SDValue>
5653 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5654                                     const BasicBlock *EHPadBB) {
5655   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5656   MCSymbol *BeginLabel = nullptr;
5657 
5658   if (EHPadBB) {
5659     // Insert a label before the invoke call to mark the try range.  This can be
5660     // used to detect deletion of the invoke via the MachineModuleInfo.
5661     BeginLabel = MMI.getContext().createTempSymbol();
5662 
5663     // For SjLj, keep track of which landing pads go with which invokes
5664     // so as to maintain the ordering of pads in the LSDA.
5665     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5666     if (CallSiteIndex) {
5667       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5668       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5669 
5670       // Now that the call site is handled, stop tracking it.
5671       MMI.setCurrentCallSite(0);
5672     }
5673 
5674     // Both PendingLoads and PendingExports must be flushed here;
5675     // this call might not return.
5676     (void)getRoot();
5677     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5678 
5679     CLI.setChain(getRoot());
5680   }
5681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5682   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5683 
5684   assert((CLI.IsTailCall || Result.second.getNode()) &&
5685          "Non-null chain expected with non-tail call!");
5686   assert((Result.second.getNode() || !Result.first.getNode()) &&
5687          "Null value expected with tail call!");
5688 
5689   if (!Result.second.getNode()) {
5690     // As a special case, a null chain means that a tail call has been emitted
5691     // and the DAG root is already updated.
5692     HasTailCall = true;
5693 
5694     // Since there's no actual continuation from this block, nothing can be
5695     // relying on us setting vregs for them.
5696     PendingExports.clear();
5697   } else {
5698     DAG.setRoot(Result.second);
5699   }
5700 
5701   if (EHPadBB) {
5702     // Insert a label at the end of the invoke call to mark the try range.  This
5703     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5704     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5705     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5706 
5707     // Inform MachineModuleInfo of range.
5708     if (MMI.hasEHFunclets()) {
5709       assert(CLI.CS);
5710       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5711       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5712                                 BeginLabel, EndLabel);
5713     } else {
5714       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5715     }
5716   }
5717 
5718   return Result;
5719 }
5720 
5721 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5722                                       bool isTailCall,
5723                                       const BasicBlock *EHPadBB) {
5724   auto &DL = DAG.getDataLayout();
5725   FunctionType *FTy = CS.getFunctionType();
5726   Type *RetTy = CS.getType();
5727 
5728   TargetLowering::ArgListTy Args;
5729   TargetLowering::ArgListEntry Entry;
5730   Args.reserve(CS.arg_size());
5731 
5732   const Value *SwiftErrorVal = nullptr;
5733   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5734   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5735        i != e; ++i) {
5736     const Value *V = *i;
5737 
5738     // Skip empty types
5739     if (V->getType()->isEmptyTy())
5740       continue;
5741 
5742     SDValue ArgNode = getValue(V);
5743     Entry.Node = ArgNode; Entry.Ty = V->getType();
5744 
5745     // Skip the first return-type Attribute to get to params.
5746     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5747 
5748     // Use swifterror virtual register as input to the call.
5749     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5750       SwiftErrorVal = V;
5751       // We find the virtual register for the actual swifterror argument.
5752       // Instead of using the Value, we use the virtual register instead.
5753       Entry.Node = DAG.getRegister(
5754           FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V),
5755           EVT(TLI.getPointerTy(DL)));
5756     }
5757 
5758     Args.push_back(Entry);
5759 
5760     // If we have an explicit sret argument that is an Instruction, (i.e., it
5761     // might point to function-local memory), we can't meaningfully tail-call.
5762     if (Entry.isSRet && isa<Instruction>(V))
5763       isTailCall = false;
5764   }
5765 
5766   // Check if target-independent constraints permit a tail call here.
5767   // Target-dependent constraints are checked within TLI->LowerCallTo.
5768   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5769     isTailCall = false;
5770 
5771   TargetLowering::CallLoweringInfo CLI(DAG);
5772   CLI.setDebugLoc(getCurSDLoc())
5773       .setChain(getRoot())
5774       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5775       .setTailCall(isTailCall)
5776       .setConvergent(CS.isConvergent());
5777   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5778 
5779   if (Result.first.getNode()) {
5780     const Instruction *Inst = CS.getInstruction();
5781     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5782     setValue(Inst, Result.first);
5783   }
5784 
5785   // The last element of CLI.InVals has the SDValue for swifterror return.
5786   // Here we copy it to a virtual register and update SwiftErrorMap for
5787   // book-keeping.
5788   if (SwiftErrorVal && TLI.supportSwiftError()) {
5789     // Get the last element of InVals.
5790     SDValue Src = CLI.InVals.back();
5791     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5792     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5793     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5794     // We update the virtual register for the actual swifterror argument.
5795     FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5796     DAG.setRoot(CopyNode);
5797   }
5798 }
5799 
5800 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5801 /// value is equal or not-equal to zero.
5802 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5803   for (const User *U : V->users()) {
5804     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5805       if (IC->isEquality())
5806         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5807           if (C->isNullValue())
5808             continue;
5809     // Unknown instruction.
5810     return false;
5811   }
5812   return true;
5813 }
5814 
5815 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5816                              Type *LoadTy,
5817                              SelectionDAGBuilder &Builder) {
5818 
5819   // Check to see if this load can be trivially constant folded, e.g. if the
5820   // input is from a string literal.
5821   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5822     // Cast pointer to the type we really want to load.
5823     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5824                                          PointerType::getUnqual(LoadTy));
5825 
5826     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5827             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5828       return Builder.getValue(LoadCst);
5829   }
5830 
5831   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5832   // still constant memory, the input chain can be the entry node.
5833   SDValue Root;
5834   bool ConstantMemory = false;
5835 
5836   // Do not serialize (non-volatile) loads of constant memory with anything.
5837   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5838     Root = Builder.DAG.getEntryNode();
5839     ConstantMemory = true;
5840   } else {
5841     // Do not serialize non-volatile loads against each other.
5842     Root = Builder.DAG.getRoot();
5843   }
5844 
5845   SDValue Ptr = Builder.getValue(PtrVal);
5846   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5847                                         Ptr, MachinePointerInfo(PtrVal),
5848                                         false /*volatile*/,
5849                                         false /*nontemporal*/,
5850                                         false /*isinvariant*/, 1 /* align=1 */);
5851 
5852   if (!ConstantMemory)
5853     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5854   return LoadVal;
5855 }
5856 
5857 /// processIntegerCallValue - Record the value for an instruction that
5858 /// produces an integer result, converting the type where necessary.
5859 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5860                                                   SDValue Value,
5861                                                   bool IsSigned) {
5862   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5863                                                     I.getType(), true);
5864   if (IsSigned)
5865     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5866   else
5867     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5868   setValue(&I, Value);
5869 }
5870 
5871 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5872 /// If so, return true and lower it, otherwise return false and it will be
5873 /// lowered like a normal call.
5874 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5875   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5876   if (I.getNumArgOperands() != 3)
5877     return false;
5878 
5879   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5880   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5881       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5882       !I.getType()->isIntegerTy())
5883     return false;
5884 
5885   const Value *Size = I.getArgOperand(2);
5886   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5887   if (CSize && CSize->getZExtValue() == 0) {
5888     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5889                                                           I.getType(), true);
5890     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5891     return true;
5892   }
5893 
5894   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5895   std::pair<SDValue, SDValue> Res =
5896     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5897                                 getValue(LHS), getValue(RHS), getValue(Size),
5898                                 MachinePointerInfo(LHS),
5899                                 MachinePointerInfo(RHS));
5900   if (Res.first.getNode()) {
5901     processIntegerCallValue(I, Res.first, true);
5902     PendingLoads.push_back(Res.second);
5903     return true;
5904   }
5905 
5906   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5907   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5908   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5909     bool ActuallyDoIt = true;
5910     MVT LoadVT;
5911     Type *LoadTy;
5912     switch (CSize->getZExtValue()) {
5913     default:
5914       LoadVT = MVT::Other;
5915       LoadTy = nullptr;
5916       ActuallyDoIt = false;
5917       break;
5918     case 2:
5919       LoadVT = MVT::i16;
5920       LoadTy = Type::getInt16Ty(CSize->getContext());
5921       break;
5922     case 4:
5923       LoadVT = MVT::i32;
5924       LoadTy = Type::getInt32Ty(CSize->getContext());
5925       break;
5926     case 8:
5927       LoadVT = MVT::i64;
5928       LoadTy = Type::getInt64Ty(CSize->getContext());
5929       break;
5930         /*
5931     case 16:
5932       LoadVT = MVT::v4i32;
5933       LoadTy = Type::getInt32Ty(CSize->getContext());
5934       LoadTy = VectorType::get(LoadTy, 4);
5935       break;
5936          */
5937     }
5938 
5939     // This turns into unaligned loads.  We only do this if the target natively
5940     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5941     // we'll only produce a small number of byte loads.
5942 
5943     // Require that we can find a legal MVT, and only do this if the target
5944     // supports unaligned loads of that type.  Expanding into byte loads would
5945     // bloat the code.
5946     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5947     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5948       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5949       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5950       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5951       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5952       // TODO: Check alignment of src and dest ptrs.
5953       if (!TLI.isTypeLegal(LoadVT) ||
5954           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5955           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5956         ActuallyDoIt = false;
5957     }
5958 
5959     if (ActuallyDoIt) {
5960       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5961       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5962 
5963       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5964                                  ISD::SETNE);
5965       processIntegerCallValue(I, Res, false);
5966       return true;
5967     }
5968   }
5969 
5970 
5971   return false;
5972 }
5973 
5974 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5975 /// form.  If so, return true and lower it, otherwise return false and it
5976 /// will be lowered like a normal call.
5977 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5978   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5979   if (I.getNumArgOperands() != 3)
5980     return false;
5981 
5982   const Value *Src = I.getArgOperand(0);
5983   const Value *Char = I.getArgOperand(1);
5984   const Value *Length = I.getArgOperand(2);
5985   if (!Src->getType()->isPointerTy() ||
5986       !Char->getType()->isIntegerTy() ||
5987       !Length->getType()->isIntegerTy() ||
5988       !I.getType()->isPointerTy())
5989     return false;
5990 
5991   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5992   std::pair<SDValue, SDValue> Res =
5993     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5994                                 getValue(Src), getValue(Char), getValue(Length),
5995                                 MachinePointerInfo(Src));
5996   if (Res.first.getNode()) {
5997     setValue(&I, Res.first);
5998     PendingLoads.push_back(Res.second);
5999     return true;
6000   }
6001 
6002   return false;
6003 }
6004 
6005 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6006 /// optimized form.  If so, return true and lower it, otherwise return false
6007 /// and it will be lowered like a normal call.
6008 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6009   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6010   if (I.getNumArgOperands() != 2)
6011     return false;
6012 
6013   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6014   if (!Arg0->getType()->isPointerTy() ||
6015       !Arg1->getType()->isPointerTy() ||
6016       !I.getType()->isPointerTy())
6017     return false;
6018 
6019   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6020   std::pair<SDValue, SDValue> Res =
6021     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6022                                 getValue(Arg0), getValue(Arg1),
6023                                 MachinePointerInfo(Arg0),
6024                                 MachinePointerInfo(Arg1), isStpcpy);
6025   if (Res.first.getNode()) {
6026     setValue(&I, Res.first);
6027     DAG.setRoot(Res.second);
6028     return true;
6029   }
6030 
6031   return false;
6032 }
6033 
6034 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6035 /// If so, return true and lower it, otherwise return false and it will be
6036 /// lowered like a normal call.
6037 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6038   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6039   if (I.getNumArgOperands() != 2)
6040     return false;
6041 
6042   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6043   if (!Arg0->getType()->isPointerTy() ||
6044       !Arg1->getType()->isPointerTy() ||
6045       !I.getType()->isIntegerTy())
6046     return false;
6047 
6048   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6049   std::pair<SDValue, SDValue> Res =
6050     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6051                                 getValue(Arg0), getValue(Arg1),
6052                                 MachinePointerInfo(Arg0),
6053                                 MachinePointerInfo(Arg1));
6054   if (Res.first.getNode()) {
6055     processIntegerCallValue(I, Res.first, true);
6056     PendingLoads.push_back(Res.second);
6057     return true;
6058   }
6059 
6060   return false;
6061 }
6062 
6063 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6064 /// form.  If so, return true and lower it, otherwise return false and it
6065 /// will be lowered like a normal call.
6066 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6067   // Verify that the prototype makes sense.  size_t strlen(char *)
6068   if (I.getNumArgOperands() != 1)
6069     return false;
6070 
6071   const Value *Arg0 = I.getArgOperand(0);
6072   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6073     return false;
6074 
6075   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6076   std::pair<SDValue, SDValue> Res =
6077     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6078                                 getValue(Arg0), MachinePointerInfo(Arg0));
6079   if (Res.first.getNode()) {
6080     processIntegerCallValue(I, Res.first, false);
6081     PendingLoads.push_back(Res.second);
6082     return true;
6083   }
6084 
6085   return false;
6086 }
6087 
6088 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6089 /// form.  If so, return true and lower it, otherwise return false and it
6090 /// will be lowered like a normal call.
6091 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6092   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6093   if (I.getNumArgOperands() != 2)
6094     return false;
6095 
6096   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6097   if (!Arg0->getType()->isPointerTy() ||
6098       !Arg1->getType()->isIntegerTy() ||
6099       !I.getType()->isIntegerTy())
6100     return false;
6101 
6102   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6103   std::pair<SDValue, SDValue> Res =
6104     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6105                                  getValue(Arg0), getValue(Arg1),
6106                                  MachinePointerInfo(Arg0));
6107   if (Res.first.getNode()) {
6108     processIntegerCallValue(I, Res.first, false);
6109     PendingLoads.push_back(Res.second);
6110     return true;
6111   }
6112 
6113   return false;
6114 }
6115 
6116 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6117 /// operation (as expected), translate it to an SDNode with the specified opcode
6118 /// and return true.
6119 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6120                                               unsigned Opcode) {
6121   // Sanity check that it really is a unary floating-point call.
6122   if (I.getNumArgOperands() != 1 ||
6123       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6124       I.getType() != I.getArgOperand(0)->getType() ||
6125       !I.onlyReadsMemory())
6126     return false;
6127 
6128   SDValue Tmp = getValue(I.getArgOperand(0));
6129   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6130   return true;
6131 }
6132 
6133 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6134 /// operation (as expected), translate it to an SDNode with the specified opcode
6135 /// and return true.
6136 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6137                                                unsigned Opcode) {
6138   // Sanity check that it really is a binary floating-point call.
6139   if (I.getNumArgOperands() != 2 ||
6140       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6141       I.getType() != I.getArgOperand(0)->getType() ||
6142       I.getType() != I.getArgOperand(1)->getType() ||
6143       !I.onlyReadsMemory())
6144     return false;
6145 
6146   SDValue Tmp0 = getValue(I.getArgOperand(0));
6147   SDValue Tmp1 = getValue(I.getArgOperand(1));
6148   EVT VT = Tmp0.getValueType();
6149   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6150   return true;
6151 }
6152 
6153 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6154   // Handle inline assembly differently.
6155   if (isa<InlineAsm>(I.getCalledValue())) {
6156     visitInlineAsm(&I);
6157     return;
6158   }
6159 
6160   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6161   ComputeUsesVAFloatArgument(I, &MMI);
6162 
6163   const char *RenameFn = nullptr;
6164   if (Function *F = I.getCalledFunction()) {
6165     if (F->isDeclaration()) {
6166       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6167         if (unsigned IID = II->getIntrinsicID(F)) {
6168           RenameFn = visitIntrinsicCall(I, IID);
6169           if (!RenameFn)
6170             return;
6171         }
6172       }
6173       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6174         RenameFn = visitIntrinsicCall(I, IID);
6175         if (!RenameFn)
6176           return;
6177       }
6178     }
6179 
6180     // Check for well-known libc/libm calls.  If the function is internal, it
6181     // can't be a library call.
6182     LibFunc::Func Func;
6183     if (!F->hasLocalLinkage() && F->hasName() &&
6184         LibInfo->getLibFunc(F->getName(), Func) &&
6185         LibInfo->hasOptimizedCodeGen(Func)) {
6186       switch (Func) {
6187       default: break;
6188       case LibFunc::copysign:
6189       case LibFunc::copysignf:
6190       case LibFunc::copysignl:
6191         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6192             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6193             I.getType() == I.getArgOperand(0)->getType() &&
6194             I.getType() == I.getArgOperand(1)->getType() &&
6195             I.onlyReadsMemory()) {
6196           SDValue LHS = getValue(I.getArgOperand(0));
6197           SDValue RHS = getValue(I.getArgOperand(1));
6198           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6199                                    LHS.getValueType(), LHS, RHS));
6200           return;
6201         }
6202         break;
6203       case LibFunc::fabs:
6204       case LibFunc::fabsf:
6205       case LibFunc::fabsl:
6206         if (visitUnaryFloatCall(I, ISD::FABS))
6207           return;
6208         break;
6209       case LibFunc::fmin:
6210       case LibFunc::fminf:
6211       case LibFunc::fminl:
6212         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6213           return;
6214         break;
6215       case LibFunc::fmax:
6216       case LibFunc::fmaxf:
6217       case LibFunc::fmaxl:
6218         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6219           return;
6220         break;
6221       case LibFunc::sin:
6222       case LibFunc::sinf:
6223       case LibFunc::sinl:
6224         if (visitUnaryFloatCall(I, ISD::FSIN))
6225           return;
6226         break;
6227       case LibFunc::cos:
6228       case LibFunc::cosf:
6229       case LibFunc::cosl:
6230         if (visitUnaryFloatCall(I, ISD::FCOS))
6231           return;
6232         break;
6233       case LibFunc::sqrt:
6234       case LibFunc::sqrtf:
6235       case LibFunc::sqrtl:
6236       case LibFunc::sqrt_finite:
6237       case LibFunc::sqrtf_finite:
6238       case LibFunc::sqrtl_finite:
6239         if (visitUnaryFloatCall(I, ISD::FSQRT))
6240           return;
6241         break;
6242       case LibFunc::floor:
6243       case LibFunc::floorf:
6244       case LibFunc::floorl:
6245         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6246           return;
6247         break;
6248       case LibFunc::nearbyint:
6249       case LibFunc::nearbyintf:
6250       case LibFunc::nearbyintl:
6251         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6252           return;
6253         break;
6254       case LibFunc::ceil:
6255       case LibFunc::ceilf:
6256       case LibFunc::ceill:
6257         if (visitUnaryFloatCall(I, ISD::FCEIL))
6258           return;
6259         break;
6260       case LibFunc::rint:
6261       case LibFunc::rintf:
6262       case LibFunc::rintl:
6263         if (visitUnaryFloatCall(I, ISD::FRINT))
6264           return;
6265         break;
6266       case LibFunc::round:
6267       case LibFunc::roundf:
6268       case LibFunc::roundl:
6269         if (visitUnaryFloatCall(I, ISD::FROUND))
6270           return;
6271         break;
6272       case LibFunc::trunc:
6273       case LibFunc::truncf:
6274       case LibFunc::truncl:
6275         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6276           return;
6277         break;
6278       case LibFunc::log2:
6279       case LibFunc::log2f:
6280       case LibFunc::log2l:
6281         if (visitUnaryFloatCall(I, ISD::FLOG2))
6282           return;
6283         break;
6284       case LibFunc::exp2:
6285       case LibFunc::exp2f:
6286       case LibFunc::exp2l:
6287         if (visitUnaryFloatCall(I, ISD::FEXP2))
6288           return;
6289         break;
6290       case LibFunc::memcmp:
6291         if (visitMemCmpCall(I))
6292           return;
6293         break;
6294       case LibFunc::memchr:
6295         if (visitMemChrCall(I))
6296           return;
6297         break;
6298       case LibFunc::strcpy:
6299         if (visitStrCpyCall(I, false))
6300           return;
6301         break;
6302       case LibFunc::stpcpy:
6303         if (visitStrCpyCall(I, true))
6304           return;
6305         break;
6306       case LibFunc::strcmp:
6307         if (visitStrCmpCall(I))
6308           return;
6309         break;
6310       case LibFunc::strlen:
6311         if (visitStrLenCall(I))
6312           return;
6313         break;
6314       case LibFunc::strnlen:
6315         if (visitStrNLenCall(I))
6316           return;
6317         break;
6318       }
6319     }
6320   }
6321 
6322   SDValue Callee;
6323   if (!RenameFn)
6324     Callee = getValue(I.getCalledValue());
6325   else
6326     Callee = DAG.getExternalSymbol(
6327         RenameFn,
6328         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6329 
6330   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6331   // have to do anything here to lower funclet bundles.
6332   assert(!I.hasOperandBundlesOtherThan(
6333              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6334          "Cannot lower calls with arbitrary operand bundles!");
6335 
6336   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6337     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6338   else
6339     // Check if we can potentially perform a tail call. More detailed checking
6340     // is be done within LowerCallTo, after more information about the call is
6341     // known.
6342     LowerCallTo(&I, Callee, I.isTailCall());
6343 }
6344 
6345 namespace {
6346 
6347 /// AsmOperandInfo - This contains information for each constraint that we are
6348 /// lowering.
6349 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6350 public:
6351   /// CallOperand - If this is the result output operand or a clobber
6352   /// this is null, otherwise it is the incoming operand to the CallInst.
6353   /// This gets modified as the asm is processed.
6354   SDValue CallOperand;
6355 
6356   /// AssignedRegs - If this is a register or register class operand, this
6357   /// contains the set of register corresponding to the operand.
6358   RegsForValue AssignedRegs;
6359 
6360   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6361     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6362   }
6363 
6364   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6365   /// corresponds to.  If there is no Value* for this operand, it returns
6366   /// MVT::Other.
6367   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6368                            const DataLayout &DL) const {
6369     if (!CallOperandVal) return MVT::Other;
6370 
6371     if (isa<BasicBlock>(CallOperandVal))
6372       return TLI.getPointerTy(DL);
6373 
6374     llvm::Type *OpTy = CallOperandVal->getType();
6375 
6376     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6377     // If this is an indirect operand, the operand is a pointer to the
6378     // accessed type.
6379     if (isIndirect) {
6380       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6381       if (!PtrTy)
6382         report_fatal_error("Indirect operand for inline asm not a pointer!");
6383       OpTy = PtrTy->getElementType();
6384     }
6385 
6386     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6387     if (StructType *STy = dyn_cast<StructType>(OpTy))
6388       if (STy->getNumElements() == 1)
6389         OpTy = STy->getElementType(0);
6390 
6391     // If OpTy is not a single value, it may be a struct/union that we
6392     // can tile with integers.
6393     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6394       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6395       switch (BitSize) {
6396       default: break;
6397       case 1:
6398       case 8:
6399       case 16:
6400       case 32:
6401       case 64:
6402       case 128:
6403         OpTy = IntegerType::get(Context, BitSize);
6404         break;
6405       }
6406     }
6407 
6408     return TLI.getValueType(DL, OpTy, true);
6409   }
6410 };
6411 
6412 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6413 
6414 } // end anonymous namespace
6415 
6416 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6417 /// specified operand.  We prefer to assign virtual registers, to allow the
6418 /// register allocator to handle the assignment process.  However, if the asm
6419 /// uses features that we can't model on machineinstrs, we have SDISel do the
6420 /// allocation.  This produces generally horrible, but correct, code.
6421 ///
6422 ///   OpInfo describes the operand.
6423 ///
6424 static void GetRegistersForValue(SelectionDAG &DAG,
6425                                  const TargetLowering &TLI,
6426                                  SDLoc DL,
6427                                  SDISelAsmOperandInfo &OpInfo) {
6428   LLVMContext &Context = *DAG.getContext();
6429 
6430   MachineFunction &MF = DAG.getMachineFunction();
6431   SmallVector<unsigned, 4> Regs;
6432 
6433   // If this is a constraint for a single physreg, or a constraint for a
6434   // register class, find it.
6435   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6436       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6437                                        OpInfo.ConstraintCode,
6438                                        OpInfo.ConstraintVT);
6439 
6440   unsigned NumRegs = 1;
6441   if (OpInfo.ConstraintVT != MVT::Other) {
6442     // If this is a FP input in an integer register (or visa versa) insert a bit
6443     // cast of the input value.  More generally, handle any case where the input
6444     // value disagrees with the register class we plan to stick this in.
6445     if (OpInfo.Type == InlineAsm::isInput &&
6446         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6447       // Try to convert to the first EVT that the reg class contains.  If the
6448       // types are identical size, use a bitcast to convert (e.g. two differing
6449       // vector types).
6450       MVT RegVT = *PhysReg.second->vt_begin();
6451       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6452         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6453                                          RegVT, OpInfo.CallOperand);
6454         OpInfo.ConstraintVT = RegVT;
6455       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6456         // If the input is a FP value and we want it in FP registers, do a
6457         // bitcast to the corresponding integer type.  This turns an f64 value
6458         // into i64, which can be passed with two i32 values on a 32-bit
6459         // machine.
6460         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6461         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6462                                          RegVT, OpInfo.CallOperand);
6463         OpInfo.ConstraintVT = RegVT;
6464       }
6465     }
6466 
6467     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6468   }
6469 
6470   MVT RegVT;
6471   EVT ValueVT = OpInfo.ConstraintVT;
6472 
6473   // If this is a constraint for a specific physical register, like {r17},
6474   // assign it now.
6475   if (unsigned AssignedReg = PhysReg.first) {
6476     const TargetRegisterClass *RC = PhysReg.second;
6477     if (OpInfo.ConstraintVT == MVT::Other)
6478       ValueVT = *RC->vt_begin();
6479 
6480     // Get the actual register value type.  This is important, because the user
6481     // may have asked for (e.g.) the AX register in i32 type.  We need to
6482     // remember that AX is actually i16 to get the right extension.
6483     RegVT = *RC->vt_begin();
6484 
6485     // This is a explicit reference to a physical register.
6486     Regs.push_back(AssignedReg);
6487 
6488     // If this is an expanded reference, add the rest of the regs to Regs.
6489     if (NumRegs != 1) {
6490       TargetRegisterClass::iterator I = RC->begin();
6491       for (; *I != AssignedReg; ++I)
6492         assert(I != RC->end() && "Didn't find reg!");
6493 
6494       // Already added the first reg.
6495       --NumRegs; ++I;
6496       for (; NumRegs; --NumRegs, ++I) {
6497         assert(I != RC->end() && "Ran out of registers to allocate!");
6498         Regs.push_back(*I);
6499       }
6500     }
6501 
6502     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6503     return;
6504   }
6505 
6506   // Otherwise, if this was a reference to an LLVM register class, create vregs
6507   // for this reference.
6508   if (const TargetRegisterClass *RC = PhysReg.second) {
6509     RegVT = *RC->vt_begin();
6510     if (OpInfo.ConstraintVT == MVT::Other)
6511       ValueVT = RegVT;
6512 
6513     // Create the appropriate number of virtual registers.
6514     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6515     for (; NumRegs; --NumRegs)
6516       Regs.push_back(RegInfo.createVirtualRegister(RC));
6517 
6518     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6519     return;
6520   }
6521 
6522   // Otherwise, we couldn't allocate enough registers for this.
6523 }
6524 
6525 /// visitInlineAsm - Handle a call to an InlineAsm object.
6526 ///
6527 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6528   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6529 
6530   /// ConstraintOperands - Information about all of the constraints.
6531   SDISelAsmOperandInfoVector ConstraintOperands;
6532 
6533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6534   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6535       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6536 
6537   bool hasMemory = false;
6538 
6539   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6540   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6541   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6542     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6543     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6544 
6545     MVT OpVT = MVT::Other;
6546 
6547     // Compute the value type for each operand.
6548     switch (OpInfo.Type) {
6549     case InlineAsm::isOutput:
6550       // Indirect outputs just consume an argument.
6551       if (OpInfo.isIndirect) {
6552         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6553         break;
6554       }
6555 
6556       // The return value of the call is this value.  As such, there is no
6557       // corresponding argument.
6558       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6559       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6560         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6561                                       STy->getElementType(ResNo));
6562       } else {
6563         assert(ResNo == 0 && "Asm only has one result!");
6564         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6565       }
6566       ++ResNo;
6567       break;
6568     case InlineAsm::isInput:
6569       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6570       break;
6571     case InlineAsm::isClobber:
6572       // Nothing to do.
6573       break;
6574     }
6575 
6576     // If this is an input or an indirect output, process the call argument.
6577     // BasicBlocks are labels, currently appearing only in asm's.
6578     if (OpInfo.CallOperandVal) {
6579       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6580         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6581       } else {
6582         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6583       }
6584 
6585       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6586                                          DAG.getDataLayout()).getSimpleVT();
6587     }
6588 
6589     OpInfo.ConstraintVT = OpVT;
6590 
6591     // Indirect operand accesses access memory.
6592     if (OpInfo.isIndirect)
6593       hasMemory = true;
6594     else {
6595       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6596         TargetLowering::ConstraintType
6597           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6598         if (CType == TargetLowering::C_Memory) {
6599           hasMemory = true;
6600           break;
6601         }
6602       }
6603     }
6604   }
6605 
6606   SDValue Chain, Flag;
6607 
6608   // We won't need to flush pending loads if this asm doesn't touch
6609   // memory and is nonvolatile.
6610   if (hasMemory || IA->hasSideEffects())
6611     Chain = getRoot();
6612   else
6613     Chain = DAG.getRoot();
6614 
6615   // Second pass over the constraints: compute which constraint option to use
6616   // and assign registers to constraints that want a specific physreg.
6617   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6618     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6619 
6620     // If this is an output operand with a matching input operand, look up the
6621     // matching input. If their types mismatch, e.g. one is an integer, the
6622     // other is floating point, or their sizes are different, flag it as an
6623     // error.
6624     if (OpInfo.hasMatchingInput()) {
6625       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6626 
6627       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6628         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6629         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6630             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6631                                              OpInfo.ConstraintVT);
6632         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6633             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6634                                              Input.ConstraintVT);
6635         if ((OpInfo.ConstraintVT.isInteger() !=
6636              Input.ConstraintVT.isInteger()) ||
6637             (MatchRC.second != InputRC.second)) {
6638           report_fatal_error("Unsupported asm: input constraint"
6639                              " with a matching output constraint of"
6640                              " incompatible type!");
6641         }
6642         Input.ConstraintVT = OpInfo.ConstraintVT;
6643       }
6644     }
6645 
6646     // Compute the constraint code and ConstraintType to use.
6647     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6648 
6649     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6650         OpInfo.Type == InlineAsm::isClobber)
6651       continue;
6652 
6653     // If this is a memory input, and if the operand is not indirect, do what we
6654     // need to to provide an address for the memory input.
6655     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6656         !OpInfo.isIndirect) {
6657       assert((OpInfo.isMultipleAlternative ||
6658               (OpInfo.Type == InlineAsm::isInput)) &&
6659              "Can only indirectify direct input operands!");
6660 
6661       // Memory operands really want the address of the value.  If we don't have
6662       // an indirect input, put it in the constpool if we can, otherwise spill
6663       // it to a stack slot.
6664       // TODO: This isn't quite right. We need to handle these according to
6665       // the addressing mode that the constraint wants. Also, this may take
6666       // an additional register for the computation and we don't want that
6667       // either.
6668 
6669       // If the operand is a float, integer, or vector constant, spill to a
6670       // constant pool entry to get its address.
6671       const Value *OpVal = OpInfo.CallOperandVal;
6672       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6673           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6674         OpInfo.CallOperand = DAG.getConstantPool(
6675             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6676       } else {
6677         // Otherwise, create a stack slot and emit a store to it before the
6678         // asm.
6679         Type *Ty = OpVal->getType();
6680         auto &DL = DAG.getDataLayout();
6681         uint64_t TySize = DL.getTypeAllocSize(Ty);
6682         unsigned Align = DL.getPrefTypeAlignment(Ty);
6683         MachineFunction &MF = DAG.getMachineFunction();
6684         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6685         SDValue StackSlot =
6686             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6687         Chain = DAG.getStore(
6688             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6689             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6690             false, false, 0);
6691         OpInfo.CallOperand = StackSlot;
6692       }
6693 
6694       // There is no longer a Value* corresponding to this operand.
6695       OpInfo.CallOperandVal = nullptr;
6696 
6697       // It is now an indirect operand.
6698       OpInfo.isIndirect = true;
6699     }
6700 
6701     // If this constraint is for a specific register, allocate it before
6702     // anything else.
6703     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6704       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6705   }
6706 
6707   // Second pass - Loop over all of the operands, assigning virtual or physregs
6708   // to register class operands.
6709   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6710     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6711 
6712     // C_Register operands have already been allocated, Other/Memory don't need
6713     // to be.
6714     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6715       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6716   }
6717 
6718   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6719   std::vector<SDValue> AsmNodeOperands;
6720   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6721   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6722       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6723 
6724   // If we have a !srcloc metadata node associated with it, we want to attach
6725   // this to the ultimately generated inline asm machineinstr.  To do this, we
6726   // pass in the third operand as this (potentially null) inline asm MDNode.
6727   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6728   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6729 
6730   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6731   // bits as operand 3.
6732   unsigned ExtraInfo = 0;
6733   if (IA->hasSideEffects())
6734     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6735   if (IA->isAlignStack())
6736     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6737   // Set the asm dialect.
6738   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6739 
6740   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6741   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6742     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6743 
6744     // Compute the constraint code and ConstraintType to use.
6745     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6746 
6747     // Ideally, we would only check against memory constraints.  However, the
6748     // meaning of an other constraint can be target-specific and we can't easily
6749     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6750     // for other constriants as well.
6751     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6752         OpInfo.ConstraintType == TargetLowering::C_Other) {
6753       if (OpInfo.Type == InlineAsm::isInput)
6754         ExtraInfo |= InlineAsm::Extra_MayLoad;
6755       else if (OpInfo.Type == InlineAsm::isOutput)
6756         ExtraInfo |= InlineAsm::Extra_MayStore;
6757       else if (OpInfo.Type == InlineAsm::isClobber)
6758         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6759     }
6760   }
6761 
6762   AsmNodeOperands.push_back(DAG.getTargetConstant(
6763       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6764 
6765   // Loop over all of the inputs, copying the operand values into the
6766   // appropriate registers and processing the output regs.
6767   RegsForValue RetValRegs;
6768 
6769   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6770   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6771 
6772   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6773     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6774 
6775     switch (OpInfo.Type) {
6776     case InlineAsm::isOutput: {
6777       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6778           OpInfo.ConstraintType != TargetLowering::C_Register) {
6779         // Memory output, or 'other' output (e.g. 'X' constraint).
6780         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6781 
6782         unsigned ConstraintID =
6783             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6784         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6785                "Failed to convert memory constraint code to constraint id.");
6786 
6787         // Add information to the INLINEASM node to know about this output.
6788         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6789         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6790         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6791                                                         MVT::i32));
6792         AsmNodeOperands.push_back(OpInfo.CallOperand);
6793         break;
6794       }
6795 
6796       // Otherwise, this is a register or register class output.
6797 
6798       // Copy the output from the appropriate register.  Find a register that
6799       // we can use.
6800       if (OpInfo.AssignedRegs.Regs.empty()) {
6801         emitInlineAsmError(
6802             CS, "couldn't allocate output register for constraint '" +
6803                     Twine(OpInfo.ConstraintCode) + "'");
6804         return;
6805       }
6806 
6807       // If this is an indirect operand, store through the pointer after the
6808       // asm.
6809       if (OpInfo.isIndirect) {
6810         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6811                                                       OpInfo.CallOperandVal));
6812       } else {
6813         // This is the result value of the call.
6814         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6815         // Concatenate this output onto the outputs list.
6816         RetValRegs.append(OpInfo.AssignedRegs);
6817       }
6818 
6819       // Add information to the INLINEASM node to know that this register is
6820       // set.
6821       OpInfo.AssignedRegs
6822           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6823                                     ? InlineAsm::Kind_RegDefEarlyClobber
6824                                     : InlineAsm::Kind_RegDef,
6825                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6826       break;
6827     }
6828     case InlineAsm::isInput: {
6829       SDValue InOperandVal = OpInfo.CallOperand;
6830 
6831       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6832         // If this is required to match an output register we have already set,
6833         // just use its register.
6834         unsigned OperandNo = OpInfo.getMatchedOperand();
6835 
6836         // Scan until we find the definition we already emitted of this operand.
6837         // When we find it, create a RegsForValue operand.
6838         unsigned CurOp = InlineAsm::Op_FirstOperand;
6839         for (; OperandNo; --OperandNo) {
6840           // Advance to the next operand.
6841           unsigned OpFlag =
6842             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6843           assert((InlineAsm::isRegDefKind(OpFlag) ||
6844                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6845                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6846           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6847         }
6848 
6849         unsigned OpFlag =
6850           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6851         if (InlineAsm::isRegDefKind(OpFlag) ||
6852             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6853           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6854           if (OpInfo.isIndirect) {
6855             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6856             emitInlineAsmError(CS, "inline asm not supported yet:"
6857                                    " don't know how to handle tied "
6858                                    "indirect register inputs");
6859             return;
6860           }
6861 
6862           RegsForValue MatchedRegs;
6863           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6864           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6865           MatchedRegs.RegVTs.push_back(RegVT);
6866           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6867           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6868                i != e; ++i) {
6869             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6870               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6871             else {
6872               emitInlineAsmError(
6873                   CS, "inline asm error: This value"
6874                       " type register class is not natively supported!");
6875               return;
6876             }
6877           }
6878           SDLoc dl = getCurSDLoc();
6879           // Use the produced MatchedRegs object to
6880           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6881                                     Chain, &Flag, CS.getInstruction());
6882           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6883                                            true, OpInfo.getMatchedOperand(), dl,
6884                                            DAG, AsmNodeOperands);
6885           break;
6886         }
6887 
6888         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6889         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6890                "Unexpected number of operands");
6891         // Add information to the INLINEASM node to know about this input.
6892         // See InlineAsm.h isUseOperandTiedToDef.
6893         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6894         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6895                                                     OpInfo.getMatchedOperand());
6896         AsmNodeOperands.push_back(DAG.getTargetConstant(
6897             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6898         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6899         break;
6900       }
6901 
6902       // Treat indirect 'X' constraint as memory.
6903       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6904           OpInfo.isIndirect)
6905         OpInfo.ConstraintType = TargetLowering::C_Memory;
6906 
6907       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6908         std::vector<SDValue> Ops;
6909         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6910                                           Ops, DAG);
6911         if (Ops.empty()) {
6912           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
6913                                      Twine(OpInfo.ConstraintCode) + "'");
6914           return;
6915         }
6916 
6917         // Add information to the INLINEASM node to know about this input.
6918         unsigned ResOpType =
6919           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6920         AsmNodeOperands.push_back(DAG.getTargetConstant(
6921             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6922         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6923         break;
6924       }
6925 
6926       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6927         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6928         assert(InOperandVal.getValueType() ==
6929                    TLI.getPointerTy(DAG.getDataLayout()) &&
6930                "Memory operands expect pointer values");
6931 
6932         unsigned ConstraintID =
6933             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6934         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6935                "Failed to convert memory constraint code to constraint id.");
6936 
6937         // Add information to the INLINEASM node to know about this input.
6938         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6939         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6940         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6941                                                         getCurSDLoc(),
6942                                                         MVT::i32));
6943         AsmNodeOperands.push_back(InOperandVal);
6944         break;
6945       }
6946 
6947       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6948               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6949              "Unknown constraint type!");
6950 
6951       // TODO: Support this.
6952       if (OpInfo.isIndirect) {
6953         emitInlineAsmError(
6954             CS, "Don't know how to handle indirect register inputs yet "
6955                 "for constraint '" +
6956                     Twine(OpInfo.ConstraintCode) + "'");
6957         return;
6958       }
6959 
6960       // Copy the input into the appropriate registers.
6961       if (OpInfo.AssignedRegs.Regs.empty()) {
6962         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
6963                                    Twine(OpInfo.ConstraintCode) + "'");
6964         return;
6965       }
6966 
6967       SDLoc dl = getCurSDLoc();
6968 
6969       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6970                                         Chain, &Flag, CS.getInstruction());
6971 
6972       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6973                                                dl, DAG, AsmNodeOperands);
6974       break;
6975     }
6976     case InlineAsm::isClobber: {
6977       // Add the clobbered value to the operand list, so that the register
6978       // allocator is aware that the physreg got clobbered.
6979       if (!OpInfo.AssignedRegs.Regs.empty())
6980         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6981                                                  false, 0, getCurSDLoc(), DAG,
6982                                                  AsmNodeOperands);
6983       break;
6984     }
6985     }
6986   }
6987 
6988   // Finish up input operands.  Set the input chain and add the flag last.
6989   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6990   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6991 
6992   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6993                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6994   Flag = Chain.getValue(1);
6995 
6996   // If this asm returns a register value, copy the result from that register
6997   // and set it as the value of the call.
6998   if (!RetValRegs.Regs.empty()) {
6999     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7000                                              Chain, &Flag, CS.getInstruction());
7001 
7002     // FIXME: Why don't we do this for inline asms with MRVs?
7003     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7004       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7005 
7006       // If any of the results of the inline asm is a vector, it may have the
7007       // wrong width/num elts.  This can happen for register classes that can
7008       // contain multiple different value types.  The preg or vreg allocated may
7009       // not have the same VT as was expected.  Convert it to the right type
7010       // with bit_convert.
7011       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7012         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7013                           ResultType, Val);
7014 
7015       } else if (ResultType != Val.getValueType() &&
7016                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7017         // If a result value was tied to an input value, the computed result may
7018         // have a wider width than the expected result.  Extract the relevant
7019         // portion.
7020         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7021       }
7022 
7023       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7024     }
7025 
7026     setValue(CS.getInstruction(), Val);
7027     // Don't need to use this as a chain in this case.
7028     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7029       return;
7030   }
7031 
7032   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7033 
7034   // Process indirect outputs, first output all of the flagged copies out of
7035   // physregs.
7036   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7037     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7038     const Value *Ptr = IndirectStoresToEmit[i].second;
7039     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7040                                              Chain, &Flag, IA);
7041     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7042   }
7043 
7044   // Emit the non-flagged stores from the physregs.
7045   SmallVector<SDValue, 8> OutChains;
7046   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7047     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
7048                                StoresToEmit[i].first,
7049                                getValue(StoresToEmit[i].second),
7050                                MachinePointerInfo(StoresToEmit[i].second),
7051                                false, false, 0);
7052     OutChains.push_back(Val);
7053   }
7054 
7055   if (!OutChains.empty())
7056     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7057 
7058   DAG.setRoot(Chain);
7059 }
7060 
7061 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7062                                              const Twine &Message) {
7063   LLVMContext &Ctx = *DAG.getContext();
7064   Ctx.emitError(CS.getInstruction(), Message);
7065 
7066   // Make sure we leave the DAG in a valid state
7067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7068   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7069   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7070 }
7071 
7072 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7073   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7074                           MVT::Other, getRoot(),
7075                           getValue(I.getArgOperand(0)),
7076                           DAG.getSrcValue(I.getArgOperand(0))));
7077 }
7078 
7079 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7081   const DataLayout &DL = DAG.getDataLayout();
7082   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7083                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7084                            DAG.getSrcValue(I.getOperand(0)),
7085                            DL.getABITypeAlignment(I.getType()));
7086   setValue(&I, V);
7087   DAG.setRoot(V.getValue(1));
7088 }
7089 
7090 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7091   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7092                           MVT::Other, getRoot(),
7093                           getValue(I.getArgOperand(0)),
7094                           DAG.getSrcValue(I.getArgOperand(0))));
7095 }
7096 
7097 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7098   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7099                           MVT::Other, getRoot(),
7100                           getValue(I.getArgOperand(0)),
7101                           getValue(I.getArgOperand(1)),
7102                           DAG.getSrcValue(I.getArgOperand(0)),
7103                           DAG.getSrcValue(I.getArgOperand(1))));
7104 }
7105 
7106 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7107                                                     const Instruction &I,
7108                                                     SDValue Op) {
7109   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7110   if (!Range)
7111     return Op;
7112 
7113   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7114   if (!Lo->isNullValue())
7115     return Op;
7116 
7117   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7118   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7119 
7120   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7121 
7122   SDLoc SL = getCurSDLoc();
7123 
7124   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7125                              Op, DAG.getValueType(SmallVT));
7126   unsigned NumVals = Op.getNode()->getNumValues();
7127   if (NumVals == 1)
7128     return ZExt;
7129 
7130   SmallVector<SDValue, 4> Ops;
7131 
7132   Ops.push_back(ZExt);
7133   for (unsigned I = 1; I != NumVals; ++I)
7134     Ops.push_back(Op.getValue(I));
7135 
7136   return DAG.getMergeValues(Ops, SL);
7137 }
7138 
7139 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7140 /// the call being lowered.
7141 ///
7142 /// This is a helper for lowering intrinsics that follow a target calling
7143 /// convention or require stack pointer adjustment. Only a subset of the
7144 /// intrinsic's operands need to participate in the calling convention.
7145 void SelectionDAGBuilder::populateCallLoweringInfo(
7146     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7147     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7148     bool IsPatchPoint) {
7149   TargetLowering::ArgListTy Args;
7150   Args.reserve(NumArgs);
7151 
7152   // Populate the argument list.
7153   // Attributes for args start at offset 1, after the return attribute.
7154   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7155        ArgI != ArgE; ++ArgI) {
7156     const Value *V = CS->getOperand(ArgI);
7157 
7158     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7159 
7160     TargetLowering::ArgListEntry Entry;
7161     Entry.Node = getValue(V);
7162     Entry.Ty = V->getType();
7163     Entry.setAttributes(&CS, AttrI);
7164     Args.push_back(Entry);
7165   }
7166 
7167   CLI.setDebugLoc(getCurSDLoc())
7168       .setChain(getRoot())
7169       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args),
7170                  NumArgs)
7171       .setDiscardResult(CS->use_empty())
7172       .setIsPatchPoint(IsPatchPoint);
7173 }
7174 
7175 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7176 /// or patchpoint target node's operand list.
7177 ///
7178 /// Constants are converted to TargetConstants purely as an optimization to
7179 /// avoid constant materialization and register allocation.
7180 ///
7181 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7182 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7183 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7184 /// address materialization and register allocation, but may also be required
7185 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7186 /// alloca in the entry block, then the runtime may assume that the alloca's
7187 /// StackMap location can be read immediately after compilation and that the
7188 /// location is valid at any point during execution (this is similar to the
7189 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7190 /// only available in a register, then the runtime would need to trap when
7191 /// execution reaches the StackMap in order to read the alloca's location.
7192 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7193                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
7194                                 SelectionDAGBuilder &Builder) {
7195   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7196     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7197     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7198       Ops.push_back(
7199         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7200       Ops.push_back(
7201         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7202     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7203       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7204       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7205           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7206     } else
7207       Ops.push_back(OpVal);
7208   }
7209 }
7210 
7211 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7212 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7213   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7214   //                                  [live variables...])
7215 
7216   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7217 
7218   SDValue Chain, InFlag, Callee, NullPtr;
7219   SmallVector<SDValue, 32> Ops;
7220 
7221   SDLoc DL = getCurSDLoc();
7222   Callee = getValue(CI.getCalledValue());
7223   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7224 
7225   // The stackmap intrinsic only records the live variables (the arguemnts
7226   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7227   // intrinsic, this won't be lowered to a function call. This means we don't
7228   // have to worry about calling conventions and target specific lowering code.
7229   // Instead we perform the call lowering right here.
7230   //
7231   // chain, flag = CALLSEQ_START(chain, 0)
7232   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7233   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7234   //
7235   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7236   InFlag = Chain.getValue(1);
7237 
7238   // Add the <id> and <numBytes> constants.
7239   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7240   Ops.push_back(DAG.getTargetConstant(
7241                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7242   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7243   Ops.push_back(DAG.getTargetConstant(
7244                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7245                   MVT::i32));
7246 
7247   // Push live variables for the stack map.
7248   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7249 
7250   // We are not pushing any register mask info here on the operands list,
7251   // because the stackmap doesn't clobber anything.
7252 
7253   // Push the chain and the glue flag.
7254   Ops.push_back(Chain);
7255   Ops.push_back(InFlag);
7256 
7257   // Create the STACKMAP node.
7258   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7259   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7260   Chain = SDValue(SM, 0);
7261   InFlag = Chain.getValue(1);
7262 
7263   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7264 
7265   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7266 
7267   // Set the root to the target-lowered call chain.
7268   DAG.setRoot(Chain);
7269 
7270   // Inform the Frame Information that we have a stackmap in this function.
7271   FuncInfo.MF->getFrameInfo()->setHasStackMap();
7272 }
7273 
7274 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7275 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7276                                           const BasicBlock *EHPadBB) {
7277   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7278   //                                                 i32 <numBytes>,
7279   //                                                 i8* <target>,
7280   //                                                 i32 <numArgs>,
7281   //                                                 [Args...],
7282   //                                                 [live variables...])
7283 
7284   CallingConv::ID CC = CS.getCallingConv();
7285   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7286   bool HasDef = !CS->getType()->isVoidTy();
7287   SDLoc dl = getCurSDLoc();
7288   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7289 
7290   // Handle immediate and symbolic callees.
7291   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7292     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7293                                    /*isTarget=*/true);
7294   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7295     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7296                                          SDLoc(SymbolicCallee),
7297                                          SymbolicCallee->getValueType(0));
7298 
7299   // Get the real number of arguments participating in the call <numArgs>
7300   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7301   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7302 
7303   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7304   // Intrinsics include all meta-operands up to but not including CC.
7305   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7306   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7307          "Not enough arguments provided to the patchpoint intrinsic");
7308 
7309   // For AnyRegCC the arguments are lowered later on manually.
7310   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7311   Type *ReturnTy =
7312     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7313 
7314   TargetLowering::CallLoweringInfo CLI(DAG);
7315   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7316                            true);
7317   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7318 
7319   SDNode *CallEnd = Result.second.getNode();
7320   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7321     CallEnd = CallEnd->getOperand(0).getNode();
7322 
7323   /// Get a call instruction from the call sequence chain.
7324   /// Tail calls are not allowed.
7325   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7326          "Expected a callseq node.");
7327   SDNode *Call = CallEnd->getOperand(0).getNode();
7328   bool HasGlue = Call->getGluedNode();
7329 
7330   // Replace the target specific call node with the patchable intrinsic.
7331   SmallVector<SDValue, 8> Ops;
7332 
7333   // Add the <id> and <numBytes> constants.
7334   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7335   Ops.push_back(DAG.getTargetConstant(
7336                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7337   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7338   Ops.push_back(DAG.getTargetConstant(
7339                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7340                   MVT::i32));
7341 
7342   // Add the callee.
7343   Ops.push_back(Callee);
7344 
7345   // Adjust <numArgs> to account for any arguments that have been passed on the
7346   // stack instead.
7347   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7348   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7349   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7350   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7351 
7352   // Add the calling convention
7353   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7354 
7355   // Add the arguments we omitted previously. The register allocator should
7356   // place these in any free register.
7357   if (IsAnyRegCC)
7358     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7359       Ops.push_back(getValue(CS.getArgument(i)));
7360 
7361   // Push the arguments from the call instruction up to the register mask.
7362   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7363   Ops.append(Call->op_begin() + 2, e);
7364 
7365   // Push live variables for the stack map.
7366   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7367 
7368   // Push the register mask info.
7369   if (HasGlue)
7370     Ops.push_back(*(Call->op_end()-2));
7371   else
7372     Ops.push_back(*(Call->op_end()-1));
7373 
7374   // Push the chain (this is originally the first operand of the call, but
7375   // becomes now the last or second to last operand).
7376   Ops.push_back(*(Call->op_begin()));
7377 
7378   // Push the glue flag (last operand).
7379   if (HasGlue)
7380     Ops.push_back(*(Call->op_end()-1));
7381 
7382   SDVTList NodeTys;
7383   if (IsAnyRegCC && HasDef) {
7384     // Create the return types based on the intrinsic definition
7385     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7386     SmallVector<EVT, 3> ValueVTs;
7387     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7388     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7389 
7390     // There is always a chain and a glue type at the end
7391     ValueVTs.push_back(MVT::Other);
7392     ValueVTs.push_back(MVT::Glue);
7393     NodeTys = DAG.getVTList(ValueVTs);
7394   } else
7395     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7396 
7397   // Replace the target specific call node with a PATCHPOINT node.
7398   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7399                                          dl, NodeTys, Ops);
7400 
7401   // Update the NodeMap.
7402   if (HasDef) {
7403     if (IsAnyRegCC)
7404       setValue(CS.getInstruction(), SDValue(MN, 0));
7405     else
7406       setValue(CS.getInstruction(), Result.first);
7407   }
7408 
7409   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7410   // call sequence. Furthermore the location of the chain and glue can change
7411   // when the AnyReg calling convention is used and the intrinsic returns a
7412   // value.
7413   if (IsAnyRegCC && HasDef) {
7414     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7415     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7416     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7417   } else
7418     DAG.ReplaceAllUsesWith(Call, MN);
7419   DAG.DeleteNode(Call);
7420 
7421   // Inform the Frame Information that we have a patchpoint in this function.
7422   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7423 }
7424 
7425 /// Returns an AttributeSet representing the attributes applied to the return
7426 /// value of the given call.
7427 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7428   SmallVector<Attribute::AttrKind, 2> Attrs;
7429   if (CLI.RetSExt)
7430     Attrs.push_back(Attribute::SExt);
7431   if (CLI.RetZExt)
7432     Attrs.push_back(Attribute::ZExt);
7433   if (CLI.IsInReg)
7434     Attrs.push_back(Attribute::InReg);
7435 
7436   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7437                            Attrs);
7438 }
7439 
7440 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7441 /// implementation, which just calls LowerCall.
7442 /// FIXME: When all targets are
7443 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7444 std::pair<SDValue, SDValue>
7445 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7446   // Handle the incoming return values from the call.
7447   CLI.Ins.clear();
7448   Type *OrigRetTy = CLI.RetTy;
7449   SmallVector<EVT, 4> RetTys;
7450   SmallVector<uint64_t, 4> Offsets;
7451   auto &DL = CLI.DAG.getDataLayout();
7452   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7453 
7454   SmallVector<ISD::OutputArg, 4> Outs;
7455   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7456 
7457   bool CanLowerReturn =
7458       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7459                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7460 
7461   SDValue DemoteStackSlot;
7462   int DemoteStackIdx = -100;
7463   if (!CanLowerReturn) {
7464     // FIXME: equivalent assert?
7465     // assert(!CS.hasInAllocaArgument() &&
7466     //        "sret demotion is incompatible with inalloca");
7467     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7468     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7469     MachineFunction &MF = CLI.DAG.getMachineFunction();
7470     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7471     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7472 
7473     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7474     ArgListEntry Entry;
7475     Entry.Node = DemoteStackSlot;
7476     Entry.Ty = StackSlotPtrType;
7477     Entry.isSExt = false;
7478     Entry.isZExt = false;
7479     Entry.isInReg = false;
7480     Entry.isSRet = true;
7481     Entry.isNest = false;
7482     Entry.isByVal = false;
7483     Entry.isReturned = false;
7484     Entry.isSwiftSelf = false;
7485     Entry.isSwiftError = false;
7486     Entry.Alignment = Align;
7487     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7488     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7489 
7490     // sret demotion isn't compatible with tail-calls, since the sret argument
7491     // points into the callers stack frame.
7492     CLI.IsTailCall = false;
7493   } else {
7494     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7495       EVT VT = RetTys[I];
7496       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7497       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7498       for (unsigned i = 0; i != NumRegs; ++i) {
7499         ISD::InputArg MyFlags;
7500         MyFlags.VT = RegisterVT;
7501         MyFlags.ArgVT = VT;
7502         MyFlags.Used = CLI.IsReturnValueUsed;
7503         if (CLI.RetSExt)
7504           MyFlags.Flags.setSExt();
7505         if (CLI.RetZExt)
7506           MyFlags.Flags.setZExt();
7507         if (CLI.IsInReg)
7508           MyFlags.Flags.setInReg();
7509         CLI.Ins.push_back(MyFlags);
7510       }
7511     }
7512   }
7513 
7514   // We push in swifterror return as the last element of CLI.Ins.
7515   ArgListTy &Args = CLI.getArgs();
7516   if (supportSwiftError()) {
7517     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7518       if (Args[i].isSwiftError) {
7519         ISD::InputArg MyFlags;
7520         MyFlags.VT = getPointerTy(DL);
7521         MyFlags.ArgVT = EVT(getPointerTy(DL));
7522         MyFlags.Flags.setSwiftError();
7523         CLI.Ins.push_back(MyFlags);
7524       }
7525     }
7526   }
7527 
7528   // Handle all of the outgoing arguments.
7529   CLI.Outs.clear();
7530   CLI.OutVals.clear();
7531   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7532     SmallVector<EVT, 4> ValueVTs;
7533     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7534     Type *FinalType = Args[i].Ty;
7535     if (Args[i].isByVal)
7536       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7537     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7538         FinalType, CLI.CallConv, CLI.IsVarArg);
7539     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7540          ++Value) {
7541       EVT VT = ValueVTs[Value];
7542       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7543       SDValue Op = SDValue(Args[i].Node.getNode(),
7544                            Args[i].Node.getResNo() + Value);
7545       ISD::ArgFlagsTy Flags;
7546       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7547 
7548       if (Args[i].isZExt)
7549         Flags.setZExt();
7550       if (Args[i].isSExt)
7551         Flags.setSExt();
7552       if (Args[i].isInReg)
7553         Flags.setInReg();
7554       if (Args[i].isSRet)
7555         Flags.setSRet();
7556       if (Args[i].isSwiftSelf)
7557         Flags.setSwiftSelf();
7558       if (Args[i].isSwiftError)
7559         Flags.setSwiftError();
7560       if (Args[i].isByVal)
7561         Flags.setByVal();
7562       if (Args[i].isInAlloca) {
7563         Flags.setInAlloca();
7564         // Set the byval flag for CCAssignFn callbacks that don't know about
7565         // inalloca.  This way we can know how many bytes we should've allocated
7566         // and how many bytes a callee cleanup function will pop.  If we port
7567         // inalloca to more targets, we'll have to add custom inalloca handling
7568         // in the various CC lowering callbacks.
7569         Flags.setByVal();
7570       }
7571       if (Args[i].isByVal || Args[i].isInAlloca) {
7572         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7573         Type *ElementTy = Ty->getElementType();
7574         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7575         // For ByVal, alignment should come from FE.  BE will guess if this
7576         // info is not there but there are cases it cannot get right.
7577         unsigned FrameAlign;
7578         if (Args[i].Alignment)
7579           FrameAlign = Args[i].Alignment;
7580         else
7581           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7582         Flags.setByValAlign(FrameAlign);
7583       }
7584       if (Args[i].isNest)
7585         Flags.setNest();
7586       if (NeedsRegBlock)
7587         Flags.setInConsecutiveRegs();
7588       Flags.setOrigAlign(OriginalAlignment);
7589 
7590       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7591       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7592       SmallVector<SDValue, 4> Parts(NumParts);
7593       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7594 
7595       if (Args[i].isSExt)
7596         ExtendKind = ISD::SIGN_EXTEND;
7597       else if (Args[i].isZExt)
7598         ExtendKind = ISD::ZERO_EXTEND;
7599 
7600       // Conservatively only handle 'returned' on non-vectors for now
7601       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7602         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7603                "unexpected use of 'returned'");
7604         // Before passing 'returned' to the target lowering code, ensure that
7605         // either the register MVT and the actual EVT are the same size or that
7606         // the return value and argument are extended in the same way; in these
7607         // cases it's safe to pass the argument register value unchanged as the
7608         // return register value (although it's at the target's option whether
7609         // to do so)
7610         // TODO: allow code generation to take advantage of partially preserved
7611         // registers rather than clobbering the entire register when the
7612         // parameter extension method is not compatible with the return
7613         // extension method
7614         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7615             (ExtendKind != ISD::ANY_EXTEND &&
7616              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7617         Flags.setReturned();
7618       }
7619 
7620       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7621                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7622 
7623       for (unsigned j = 0; j != NumParts; ++j) {
7624         // if it isn't first piece, alignment must be 1
7625         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7626                                i < CLI.NumFixedArgs,
7627                                i, j*Parts[j].getValueType().getStoreSize());
7628         if (NumParts > 1 && j == 0)
7629           MyFlags.Flags.setSplit();
7630         else if (j != 0) {
7631           MyFlags.Flags.setOrigAlign(1);
7632           if (j == NumParts - 1)
7633             MyFlags.Flags.setSplitEnd();
7634         }
7635 
7636         CLI.Outs.push_back(MyFlags);
7637         CLI.OutVals.push_back(Parts[j]);
7638       }
7639 
7640       if (NeedsRegBlock && Value == NumValues - 1)
7641         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7642     }
7643   }
7644 
7645   SmallVector<SDValue, 4> InVals;
7646   CLI.Chain = LowerCall(CLI, InVals);
7647 
7648   // Update CLI.InVals to use outside of this function.
7649   CLI.InVals = InVals;
7650 
7651   // Verify that the target's LowerCall behaved as expected.
7652   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7653          "LowerCall didn't return a valid chain!");
7654   assert((!CLI.IsTailCall || InVals.empty()) &&
7655          "LowerCall emitted a return value for a tail call!");
7656   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7657          "LowerCall didn't emit the correct number of values!");
7658 
7659   // For a tail call, the return value is merely live-out and there aren't
7660   // any nodes in the DAG representing it. Return a special value to
7661   // indicate that a tail call has been emitted and no more Instructions
7662   // should be processed in the current block.
7663   if (CLI.IsTailCall) {
7664     CLI.DAG.setRoot(CLI.Chain);
7665     return std::make_pair(SDValue(), SDValue());
7666   }
7667 
7668 #ifndef NDEBUG
7669   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7670     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7671     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7672            "LowerCall emitted a value with the wrong type!");
7673   }
7674 #endif
7675 
7676   SmallVector<SDValue, 4> ReturnValues;
7677   if (!CanLowerReturn) {
7678     // The instruction result is the result of loading from the
7679     // hidden sret parameter.
7680     SmallVector<EVT, 1> PVTs;
7681     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7682 
7683     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7684     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7685     EVT PtrVT = PVTs[0];
7686 
7687     unsigned NumValues = RetTys.size();
7688     ReturnValues.resize(NumValues);
7689     SmallVector<SDValue, 4> Chains(NumValues);
7690 
7691     // An aggregate return value cannot wrap around the address space, so
7692     // offsets to its parts don't wrap either.
7693     SDNodeFlags Flags;
7694     Flags.setNoUnsignedWrap(true);
7695 
7696     for (unsigned i = 0; i < NumValues; ++i) {
7697       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7698                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7699                                                         PtrVT), &Flags);
7700       SDValue L = CLI.DAG.getLoad(
7701           RetTys[i], CLI.DL, CLI.Chain, Add,
7702           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7703                                             DemoteStackIdx, Offsets[i]),
7704           false, false, false, 1);
7705       ReturnValues[i] = L;
7706       Chains[i] = L.getValue(1);
7707     }
7708 
7709     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7710   } else {
7711     // Collect the legal value parts into potentially illegal values
7712     // that correspond to the original function's return values.
7713     Optional<ISD::NodeType> AssertOp;
7714     if (CLI.RetSExt)
7715       AssertOp = ISD::AssertSext;
7716     else if (CLI.RetZExt)
7717       AssertOp = ISD::AssertZext;
7718     unsigned CurReg = 0;
7719     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7720       EVT VT = RetTys[I];
7721       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7722       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7723 
7724       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7725                                               NumRegs, RegisterVT, VT, nullptr,
7726                                               AssertOp));
7727       CurReg += NumRegs;
7728     }
7729 
7730     // For a function returning void, there is no return value. We can't create
7731     // such a node, so we just return a null return value in that case. In
7732     // that case, nothing will actually look at the value.
7733     if (ReturnValues.empty())
7734       return std::make_pair(SDValue(), CLI.Chain);
7735   }
7736 
7737   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7738                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7739   return std::make_pair(Res, CLI.Chain);
7740 }
7741 
7742 void TargetLowering::LowerOperationWrapper(SDNode *N,
7743                                            SmallVectorImpl<SDValue> &Results,
7744                                            SelectionDAG &DAG) const {
7745   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7746     Results.push_back(Res);
7747 }
7748 
7749 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7750   llvm_unreachable("LowerOperation not implemented for this target!");
7751 }
7752 
7753 void
7754 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7755   SDValue Op = getNonRegisterValue(V);
7756   assert((Op.getOpcode() != ISD::CopyFromReg ||
7757           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7758          "Copy from a reg to the same reg!");
7759   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7760 
7761   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7762   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7763                    V->getType());
7764   SDValue Chain = DAG.getEntryNode();
7765 
7766   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7767                               FuncInfo.PreferredExtendType.end())
7768                                  ? ISD::ANY_EXTEND
7769                                  : FuncInfo.PreferredExtendType[V];
7770   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7771   PendingExports.push_back(Chain);
7772 }
7773 
7774 #include "llvm/CodeGen/SelectionDAGISel.h"
7775 
7776 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7777 /// entry block, return true.  This includes arguments used by switches, since
7778 /// the switch may expand into multiple basic blocks.
7779 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7780   // With FastISel active, we may be splitting blocks, so force creation
7781   // of virtual registers for all non-dead arguments.
7782   if (FastISel)
7783     return A->use_empty();
7784 
7785   const BasicBlock &Entry = A->getParent()->front();
7786   for (const User *U : A->users())
7787     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7788       return false;  // Use not in entry block.
7789 
7790   return true;
7791 }
7792 
7793 void SelectionDAGISel::LowerArguments(const Function &F) {
7794   SelectionDAG &DAG = SDB->DAG;
7795   SDLoc dl = SDB->getCurSDLoc();
7796   const DataLayout &DL = DAG.getDataLayout();
7797   SmallVector<ISD::InputArg, 16> Ins;
7798 
7799   if (!FuncInfo->CanLowerReturn) {
7800     // Put in an sret pointer parameter before all the other parameters.
7801     SmallVector<EVT, 1> ValueVTs;
7802     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7803                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7804 
7805     // NOTE: Assuming that a pointer will never break down to more than one VT
7806     // or one register.
7807     ISD::ArgFlagsTy Flags;
7808     Flags.setSRet();
7809     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7810     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7811                          ISD::InputArg::NoArgIndex, 0);
7812     Ins.push_back(RetArg);
7813   }
7814 
7815   // Set up the incoming argument description vector.
7816   unsigned Idx = 1;
7817   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7818        I != E; ++I, ++Idx) {
7819     SmallVector<EVT, 4> ValueVTs;
7820     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7821     bool isArgValueUsed = !I->use_empty();
7822     unsigned PartBase = 0;
7823     Type *FinalType = I->getType();
7824     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7825       FinalType = cast<PointerType>(FinalType)->getElementType();
7826     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7827         FinalType, F.getCallingConv(), F.isVarArg());
7828     for (unsigned Value = 0, NumValues = ValueVTs.size();
7829          Value != NumValues; ++Value) {
7830       EVT VT = ValueVTs[Value];
7831       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7832       ISD::ArgFlagsTy Flags;
7833       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7834 
7835       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7836         Flags.setZExt();
7837       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7838         Flags.setSExt();
7839       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7840         Flags.setInReg();
7841       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7842         Flags.setSRet();
7843       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
7844         Flags.setSwiftSelf();
7845       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
7846         Flags.setSwiftError();
7847       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7848         Flags.setByVal();
7849       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7850         Flags.setInAlloca();
7851         // Set the byval flag for CCAssignFn callbacks that don't know about
7852         // inalloca.  This way we can know how many bytes we should've allocated
7853         // and how many bytes a callee cleanup function will pop.  If we port
7854         // inalloca to more targets, we'll have to add custom inalloca handling
7855         // in the various CC lowering callbacks.
7856         Flags.setByVal();
7857       }
7858       if (F.getCallingConv() == CallingConv::X86_INTR) {
7859         // IA Interrupt passes frame (1st parameter) by value in the stack.
7860         if (Idx == 1)
7861           Flags.setByVal();
7862       }
7863       if (Flags.isByVal() || Flags.isInAlloca()) {
7864         PointerType *Ty = cast<PointerType>(I->getType());
7865         Type *ElementTy = Ty->getElementType();
7866         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7867         // For ByVal, alignment should be passed from FE.  BE will guess if
7868         // this info is not there but there are cases it cannot get right.
7869         unsigned FrameAlign;
7870         if (F.getParamAlignment(Idx))
7871           FrameAlign = F.getParamAlignment(Idx);
7872         else
7873           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7874         Flags.setByValAlign(FrameAlign);
7875       }
7876       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7877         Flags.setNest();
7878       if (NeedsRegBlock)
7879         Flags.setInConsecutiveRegs();
7880       Flags.setOrigAlign(OriginalAlignment);
7881 
7882       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7883       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7884       for (unsigned i = 0; i != NumRegs; ++i) {
7885         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7886                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7887         if (NumRegs > 1 && i == 0)
7888           MyFlags.Flags.setSplit();
7889         // if it isn't first piece, alignment must be 1
7890         else if (i > 0) {
7891           MyFlags.Flags.setOrigAlign(1);
7892           if (i == NumRegs - 1)
7893             MyFlags.Flags.setSplitEnd();
7894         }
7895         Ins.push_back(MyFlags);
7896       }
7897       if (NeedsRegBlock && Value == NumValues - 1)
7898         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7899       PartBase += VT.getStoreSize();
7900     }
7901   }
7902 
7903   // Call the target to set up the argument values.
7904   SmallVector<SDValue, 8> InVals;
7905   SDValue NewRoot = TLI->LowerFormalArguments(
7906       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7907 
7908   // Verify that the target's LowerFormalArguments behaved as expected.
7909   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7910          "LowerFormalArguments didn't return a valid chain!");
7911   assert(InVals.size() == Ins.size() &&
7912          "LowerFormalArguments didn't emit the correct number of values!");
7913   DEBUG({
7914       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7915         assert(InVals[i].getNode() &&
7916                "LowerFormalArguments emitted a null value!");
7917         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7918                "LowerFormalArguments emitted a value with the wrong type!");
7919       }
7920     });
7921 
7922   // Update the DAG with the new chain value resulting from argument lowering.
7923   DAG.setRoot(NewRoot);
7924 
7925   // Set up the argument values.
7926   unsigned i = 0;
7927   Idx = 1;
7928   if (!FuncInfo->CanLowerReturn) {
7929     // Create a virtual register for the sret pointer, and put in a copy
7930     // from the sret argument into it.
7931     SmallVector<EVT, 1> ValueVTs;
7932     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7933                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7934     MVT VT = ValueVTs[0].getSimpleVT();
7935     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7936     Optional<ISD::NodeType> AssertOp = None;
7937     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7938                                         RegVT, VT, nullptr, AssertOp);
7939 
7940     MachineFunction& MF = SDB->DAG.getMachineFunction();
7941     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7942     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7943     FuncInfo->DemoteRegister = SRetReg;
7944     NewRoot =
7945         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7946     DAG.setRoot(NewRoot);
7947 
7948     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7949     // Idx indexes LLVM arguments.  Don't touch it.
7950     ++i;
7951   }
7952 
7953   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7954       ++I, ++Idx) {
7955     SmallVector<SDValue, 4> ArgValues;
7956     SmallVector<EVT, 4> ValueVTs;
7957     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7958     unsigned NumValues = ValueVTs.size();
7959 
7960     // If this argument is unused then remember its value. It is used to generate
7961     // debugging information.
7962     if (I->use_empty() && NumValues) {
7963       SDB->setUnusedArgValue(&*I, InVals[i]);
7964 
7965       // Also remember any frame index for use in FastISel.
7966       if (FrameIndexSDNode *FI =
7967           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7968         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7969     }
7970 
7971     for (unsigned Val = 0; Val != NumValues; ++Val) {
7972       EVT VT = ValueVTs[Val];
7973       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7974       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7975 
7976       if (!I->use_empty()) {
7977         Optional<ISD::NodeType> AssertOp;
7978         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7979           AssertOp = ISD::AssertSext;
7980         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7981           AssertOp = ISD::AssertZext;
7982 
7983         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7984                                              NumParts, PartVT, VT,
7985                                              nullptr, AssertOp));
7986       }
7987 
7988       i += NumParts;
7989     }
7990 
7991     // We don't need to do anything else for unused arguments.
7992     if (ArgValues.empty())
7993       continue;
7994 
7995     // Note down frame index.
7996     if (FrameIndexSDNode *FI =
7997         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7998       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7999 
8000     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8001                                      SDB->getCurSDLoc());
8002 
8003     SDB->setValue(&*I, Res);
8004     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8005       if (LoadSDNode *LNode =
8006           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8007         if (FrameIndexSDNode *FI =
8008             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8009         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8010     }
8011 
8012     // Update SwiftErrorMap.
8013     if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() &&
8014         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) {
8015       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8016       if (TargetRegisterInfo::isVirtualRegister(Reg))
8017         FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg;
8018     }
8019 
8020     // If this argument is live outside of the entry block, insert a copy from
8021     // wherever we got it to the vreg that other BB's will reference it as.
8022     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8023       // If we can, though, try to skip creating an unnecessary vreg.
8024       // FIXME: This isn't very clean... it would be nice to make this more
8025       // general.  It's also subtly incompatible with the hacks FastISel
8026       // uses with vregs.
8027       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8028       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8029         FuncInfo->ValueMap[&*I] = Reg;
8030         continue;
8031       }
8032     }
8033     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8034       FuncInfo->InitializeRegForValue(&*I);
8035       SDB->CopyToExportRegsIfNeeded(&*I);
8036     }
8037   }
8038 
8039   assert(i == InVals.size() && "Argument register count mismatch!");
8040 
8041   // Finally, if the target has anything special to do, allow it to do so.
8042   EmitFunctionEntryCode();
8043 }
8044 
8045 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8046 /// ensure constants are generated when needed.  Remember the virtual registers
8047 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8048 /// directly add them, because expansion might result in multiple MBB's for one
8049 /// BB.  As such, the start of the BB might correspond to a different MBB than
8050 /// the end.
8051 ///
8052 void
8053 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8054   const TerminatorInst *TI = LLVMBB->getTerminator();
8055 
8056   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8057 
8058   // Check PHI nodes in successors that expect a value to be available from this
8059   // block.
8060   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8061     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8062     if (!isa<PHINode>(SuccBB->begin())) continue;
8063     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8064 
8065     // If this terminator has multiple identical successors (common for
8066     // switches), only handle each succ once.
8067     if (!SuccsHandled.insert(SuccMBB).second)
8068       continue;
8069 
8070     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8071 
8072     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8073     // nodes and Machine PHI nodes, but the incoming operands have not been
8074     // emitted yet.
8075     for (BasicBlock::const_iterator I = SuccBB->begin();
8076          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8077       // Ignore dead phi's.
8078       if (PN->use_empty()) continue;
8079 
8080       // Skip empty types
8081       if (PN->getType()->isEmptyTy())
8082         continue;
8083 
8084       unsigned Reg;
8085       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8086 
8087       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8088         unsigned &RegOut = ConstantsOut[C];
8089         if (RegOut == 0) {
8090           RegOut = FuncInfo.CreateRegs(C->getType());
8091           CopyValueToVirtualRegister(C, RegOut);
8092         }
8093         Reg = RegOut;
8094       } else {
8095         DenseMap<const Value *, unsigned>::iterator I =
8096           FuncInfo.ValueMap.find(PHIOp);
8097         if (I != FuncInfo.ValueMap.end())
8098           Reg = I->second;
8099         else {
8100           assert(isa<AllocaInst>(PHIOp) &&
8101                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8102                  "Didn't codegen value into a register!??");
8103           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8104           CopyValueToVirtualRegister(PHIOp, Reg);
8105         }
8106       }
8107 
8108       // Remember that this register needs to added to the machine PHI node as
8109       // the input for this MBB.
8110       SmallVector<EVT, 4> ValueVTs;
8111       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8112       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8113       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8114         EVT VT = ValueVTs[vti];
8115         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8116         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8117           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
8118         Reg += NumRegisters;
8119       }
8120     }
8121   }
8122 
8123   ConstantsOut.clear();
8124 }
8125 
8126 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8127 /// is 0.
8128 MachineBasicBlock *
8129 SelectionDAGBuilder::StackProtectorDescriptor::
8130 AddSuccessorMBB(const BasicBlock *BB,
8131                 MachineBasicBlock *ParentMBB,
8132                 bool IsLikely,
8133                 MachineBasicBlock *SuccMBB) {
8134   // If SuccBB has not been created yet, create it.
8135   if (!SuccMBB) {
8136     MachineFunction *MF = ParentMBB->getParent();
8137     MachineFunction::iterator BBI(ParentMBB);
8138     SuccMBB = MF->CreateMachineBasicBlock(BB);
8139     MF->insert(++BBI, SuccMBB);
8140   }
8141   // Add it as a successor of ParentMBB.
8142   ParentMBB->addSuccessor(
8143       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8144   return SuccMBB;
8145 }
8146 
8147 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8148   MachineFunction::iterator I(MBB);
8149   if (++I == FuncInfo.MF->end())
8150     return nullptr;
8151   return &*I;
8152 }
8153 
8154 /// During lowering new call nodes can be created (such as memset, etc.).
8155 /// Those will become new roots of the current DAG, but complications arise
8156 /// when they are tail calls. In such cases, the call lowering will update
8157 /// the root, but the builder still needs to know that a tail call has been
8158 /// lowered in order to avoid generating an additional return.
8159 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8160   // If the node is null, we do have a tail call.
8161   if (MaybeTC.getNode() != nullptr)
8162     DAG.setRoot(MaybeTC);
8163   else
8164     HasTailCall = true;
8165 }
8166 
8167 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8168                                   unsigned *TotalCases, unsigned First,
8169                                   unsigned Last,
8170                                   unsigned Density) {
8171   assert(Last >= First);
8172   assert(TotalCases[Last] >= TotalCases[First]);
8173 
8174   APInt LowCase = Clusters[First].Low->getValue();
8175   APInt HighCase = Clusters[Last].High->getValue();
8176   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8177 
8178   // FIXME: A range of consecutive cases has 100% density, but only requires one
8179   // comparison to lower. We should discriminate against such consecutive ranges
8180   // in jump tables.
8181 
8182   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8183   uint64_t Range = Diff + 1;
8184 
8185   uint64_t NumCases =
8186       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8187 
8188   assert(NumCases < UINT64_MAX / 100);
8189   assert(Range >= NumCases);
8190 
8191   return NumCases * 100 >= Range * Density;
8192 }
8193 
8194 static inline bool areJTsAllowed(const TargetLowering &TLI,
8195                                  const SwitchInst *SI) {
8196   const Function *Fn = SI->getParent()->getParent();
8197   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8198     return false;
8199 
8200   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8201          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8202 }
8203 
8204 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
8205                                          unsigned First, unsigned Last,
8206                                          const SwitchInst *SI,
8207                                          MachineBasicBlock *DefaultMBB,
8208                                          CaseCluster &JTCluster) {
8209   assert(First <= Last);
8210 
8211   auto Prob = BranchProbability::getZero();
8212   unsigned NumCmps = 0;
8213   std::vector<MachineBasicBlock*> Table;
8214   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8215 
8216   // Initialize probabilities in JTProbs.
8217   for (unsigned I = First; I <= Last; ++I)
8218     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8219 
8220   for (unsigned I = First; I <= Last; ++I) {
8221     assert(Clusters[I].Kind == CC_Range);
8222     Prob += Clusters[I].Prob;
8223     APInt Low = Clusters[I].Low->getValue();
8224     APInt High = Clusters[I].High->getValue();
8225     NumCmps += (Low == High) ? 1 : 2;
8226     if (I != First) {
8227       // Fill the gap between this and the previous cluster.
8228       APInt PreviousHigh = Clusters[I - 1].High->getValue();
8229       assert(PreviousHigh.slt(Low));
8230       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8231       for (uint64_t J = 0; J < Gap; J++)
8232         Table.push_back(DefaultMBB);
8233     }
8234     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8235     for (uint64_t J = 0; J < ClusterSize; ++J)
8236       Table.push_back(Clusters[I].MBB);
8237     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8238   }
8239 
8240   unsigned NumDests = JTProbs.size();
8241   if (isSuitableForBitTests(NumDests, NumCmps,
8242                             Clusters[First].Low->getValue(),
8243                             Clusters[Last].High->getValue())) {
8244     // Clusters[First..Last] should be lowered as bit tests instead.
8245     return false;
8246   }
8247 
8248   // Create the MBB that will load from and jump through the table.
8249   // Note: We create it here, but it's not inserted into the function yet.
8250   MachineFunction *CurMF = FuncInfo.MF;
8251   MachineBasicBlock *JumpTableMBB =
8252       CurMF->CreateMachineBasicBlock(SI->getParent());
8253 
8254   // Add successors. Note: use table order for determinism.
8255   SmallPtrSet<MachineBasicBlock *, 8> Done;
8256   for (MachineBasicBlock *Succ : Table) {
8257     if (Done.count(Succ))
8258       continue;
8259     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8260     Done.insert(Succ);
8261   }
8262   JumpTableMBB->normalizeSuccProbs();
8263 
8264   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8265   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8266                      ->createJumpTableIndex(Table);
8267 
8268   // Set up the jump table info.
8269   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8270   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8271                       Clusters[Last].High->getValue(), SI->getCondition(),
8272                       nullptr, false);
8273   JTCases.emplace_back(std::move(JTH), std::move(JT));
8274 
8275   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8276                                      JTCases.size() - 1, Prob);
8277   return true;
8278 }
8279 
8280 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8281                                          const SwitchInst *SI,
8282                                          MachineBasicBlock *DefaultMBB) {
8283 #ifndef NDEBUG
8284   // Clusters must be non-empty, sorted, and only contain Range clusters.
8285   assert(!Clusters.empty());
8286   for (CaseCluster &C : Clusters)
8287     assert(C.Kind == CC_Range);
8288   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8289     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8290 #endif
8291 
8292   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8293   if (!areJTsAllowed(TLI, SI))
8294     return;
8295 
8296   const int64_t N = Clusters.size();
8297   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
8298 
8299   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8300   SmallVector<unsigned, 8> TotalCases(N);
8301 
8302   for (unsigned i = 0; i < N; ++i) {
8303     APInt Hi = Clusters[i].High->getValue();
8304     APInt Lo = Clusters[i].Low->getValue();
8305     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8306     if (i != 0)
8307       TotalCases[i] += TotalCases[i - 1];
8308   }
8309 
8310   unsigned MinDensity = JumpTableDensity;
8311   if (DefaultMBB->getParent()->getFunction()->optForSize())
8312     MinDensity = OptsizeJumpTableDensity;
8313   if (N >= MinJumpTableSize
8314       && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) {
8315     // Cheap case: the whole range might be suitable for jump table.
8316     CaseCluster JTCluster;
8317     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8318       Clusters[0] = JTCluster;
8319       Clusters.resize(1);
8320       return;
8321     }
8322   }
8323 
8324   // The algorithm below is not suitable for -O0.
8325   if (TM.getOptLevel() == CodeGenOpt::None)
8326     return;
8327 
8328   // Split Clusters into minimum number of dense partitions. The algorithm uses
8329   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8330   // for the Case Statement'" (1994), but builds the MinPartitions array in
8331   // reverse order to make it easier to reconstruct the partitions in ascending
8332   // order. In the choice between two optimal partitionings, it picks the one
8333   // which yields more jump tables.
8334 
8335   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8336   SmallVector<unsigned, 8> MinPartitions(N);
8337   // LastElement[i] is the last element of the partition starting at i.
8338   SmallVector<unsigned, 8> LastElement(N);
8339   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8340   SmallVector<unsigned, 8> NumTables(N);
8341 
8342   // Base case: There is only one way to partition Clusters[N-1].
8343   MinPartitions[N - 1] = 1;
8344   LastElement[N - 1] = N - 1;
8345   assert(MinJumpTableSize > 1);
8346   NumTables[N - 1] = 0;
8347 
8348   // Note: loop indexes are signed to avoid underflow.
8349   for (int64_t i = N - 2; i >= 0; i--) {
8350     // Find optimal partitioning of Clusters[i..N-1].
8351     // Baseline: Put Clusters[i] into a partition on its own.
8352     MinPartitions[i] = MinPartitions[i + 1] + 1;
8353     LastElement[i] = i;
8354     NumTables[i] = NumTables[i + 1];
8355 
8356     // Search for a solution that results in fewer partitions.
8357     for (int64_t j = N - 1; j > i; j--) {
8358       // Try building a partition from Clusters[i..j].
8359       if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) {
8360         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8361         bool IsTable = j - i + 1 >= MinJumpTableSize;
8362         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8363 
8364         // If this j leads to fewer partitions, or same number of partitions
8365         // with more lookup tables, it is a better partitioning.
8366         if (NumPartitions < MinPartitions[i] ||
8367             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8368           MinPartitions[i] = NumPartitions;
8369           LastElement[i] = j;
8370           NumTables[i] = Tables;
8371         }
8372       }
8373     }
8374   }
8375 
8376   // Iterate over the partitions, replacing some with jump tables in-place.
8377   unsigned DstIndex = 0;
8378   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8379     Last = LastElement[First];
8380     assert(Last >= First);
8381     assert(DstIndex <= First);
8382     unsigned NumClusters = Last - First + 1;
8383 
8384     CaseCluster JTCluster;
8385     if (NumClusters >= MinJumpTableSize &&
8386         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8387       Clusters[DstIndex++] = JTCluster;
8388     } else {
8389       for (unsigned I = First; I <= Last; ++I)
8390         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8391     }
8392   }
8393   Clusters.resize(DstIndex);
8394 }
8395 
8396 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8397   // FIXME: Using the pointer type doesn't seem ideal.
8398   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8399   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8400   return Range <= BW;
8401 }
8402 
8403 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8404                                                 unsigned NumCmps,
8405                                                 const APInt &Low,
8406                                                 const APInt &High) {
8407   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8408   // range of cases both require only one branch to lower. Just looking at the
8409   // number of clusters and destinations should be enough to decide whether to
8410   // build bit tests.
8411 
8412   // To lower a range with bit tests, the range must fit the bitwidth of a
8413   // machine word.
8414   if (!rangeFitsInWord(Low, High))
8415     return false;
8416 
8417   // Decide whether it's profitable to lower this range with bit tests. Each
8418   // destination requires a bit test and branch, and there is an overall range
8419   // check branch. For a small number of clusters, separate comparisons might be
8420   // cheaper, and for many destinations, splitting the range might be better.
8421   return (NumDests == 1 && NumCmps >= 3) ||
8422          (NumDests == 2 && NumCmps >= 5) ||
8423          (NumDests == 3 && NumCmps >= 6);
8424 }
8425 
8426 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8427                                         unsigned First, unsigned Last,
8428                                         const SwitchInst *SI,
8429                                         CaseCluster &BTCluster) {
8430   assert(First <= Last);
8431   if (First == Last)
8432     return false;
8433 
8434   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8435   unsigned NumCmps = 0;
8436   for (int64_t I = First; I <= Last; ++I) {
8437     assert(Clusters[I].Kind == CC_Range);
8438     Dests.set(Clusters[I].MBB->getNumber());
8439     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8440   }
8441   unsigned NumDests = Dests.count();
8442 
8443   APInt Low = Clusters[First].Low->getValue();
8444   APInt High = Clusters[Last].High->getValue();
8445   assert(Low.slt(High));
8446 
8447   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8448     return false;
8449 
8450   APInt LowBound;
8451   APInt CmpRange;
8452 
8453   const int BitWidth = DAG.getTargetLoweringInfo()
8454                            .getPointerTy(DAG.getDataLayout())
8455                            .getSizeInBits();
8456   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8457 
8458   // Check if the clusters cover a contiguous range such that no value in the
8459   // range will jump to the default statement.
8460   bool ContiguousRange = true;
8461   for (int64_t I = First + 1; I <= Last; ++I) {
8462     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8463       ContiguousRange = false;
8464       break;
8465     }
8466   }
8467 
8468   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8469     // Optimize the case where all the case values fit in a word without having
8470     // to subtract minValue. In this case, we can optimize away the subtraction.
8471     LowBound = APInt::getNullValue(Low.getBitWidth());
8472     CmpRange = High;
8473     ContiguousRange = false;
8474   } else {
8475     LowBound = Low;
8476     CmpRange = High - Low;
8477   }
8478 
8479   CaseBitsVector CBV;
8480   auto TotalProb = BranchProbability::getZero();
8481   for (unsigned i = First; i <= Last; ++i) {
8482     // Find the CaseBits for this destination.
8483     unsigned j;
8484     for (j = 0; j < CBV.size(); ++j)
8485       if (CBV[j].BB == Clusters[i].MBB)
8486         break;
8487     if (j == CBV.size())
8488       CBV.push_back(
8489           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8490     CaseBits *CB = &CBV[j];
8491 
8492     // Update Mask, Bits and ExtraProb.
8493     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8494     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8495     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8496     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8497     CB->Bits += Hi - Lo + 1;
8498     CB->ExtraProb += Clusters[i].Prob;
8499     TotalProb += Clusters[i].Prob;
8500   }
8501 
8502   BitTestInfo BTI;
8503   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8504     // Sort by probability first, number of bits second.
8505     if (a.ExtraProb != b.ExtraProb)
8506       return a.ExtraProb > b.ExtraProb;
8507     return a.Bits > b.Bits;
8508   });
8509 
8510   for (auto &CB : CBV) {
8511     MachineBasicBlock *BitTestBB =
8512         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8513     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8514   }
8515   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8516                             SI->getCondition(), -1U, MVT::Other, false,
8517                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8518                             TotalProb);
8519 
8520   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8521                                     BitTestCases.size() - 1, TotalProb);
8522   return true;
8523 }
8524 
8525 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8526                                               const SwitchInst *SI) {
8527 // Partition Clusters into as few subsets as possible, where each subset has a
8528 // range that fits in a machine word and has <= 3 unique destinations.
8529 
8530 #ifndef NDEBUG
8531   // Clusters must be sorted and contain Range or JumpTable clusters.
8532   assert(!Clusters.empty());
8533   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8534   for (const CaseCluster &C : Clusters)
8535     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8536   for (unsigned i = 1; i < Clusters.size(); ++i)
8537     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8538 #endif
8539 
8540   // The algorithm below is not suitable for -O0.
8541   if (TM.getOptLevel() == CodeGenOpt::None)
8542     return;
8543 
8544   // If target does not have legal shift left, do not emit bit tests at all.
8545   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8546   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8547   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8548     return;
8549 
8550   int BitWidth = PTy.getSizeInBits();
8551   const int64_t N = Clusters.size();
8552 
8553   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8554   SmallVector<unsigned, 8> MinPartitions(N);
8555   // LastElement[i] is the last element of the partition starting at i.
8556   SmallVector<unsigned, 8> LastElement(N);
8557 
8558   // FIXME: This might not be the best algorithm for finding bit test clusters.
8559 
8560   // Base case: There is only one way to partition Clusters[N-1].
8561   MinPartitions[N - 1] = 1;
8562   LastElement[N - 1] = N - 1;
8563 
8564   // Note: loop indexes are signed to avoid underflow.
8565   for (int64_t i = N - 2; i >= 0; --i) {
8566     // Find optimal partitioning of Clusters[i..N-1].
8567     // Baseline: Put Clusters[i] into a partition on its own.
8568     MinPartitions[i] = MinPartitions[i + 1] + 1;
8569     LastElement[i] = i;
8570 
8571     // Search for a solution that results in fewer partitions.
8572     // Note: the search is limited by BitWidth, reducing time complexity.
8573     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8574       // Try building a partition from Clusters[i..j].
8575 
8576       // Check the range.
8577       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8578                            Clusters[j].High->getValue()))
8579         continue;
8580 
8581       // Check nbr of destinations and cluster types.
8582       // FIXME: This works, but doesn't seem very efficient.
8583       bool RangesOnly = true;
8584       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8585       for (int64_t k = i; k <= j; k++) {
8586         if (Clusters[k].Kind != CC_Range) {
8587           RangesOnly = false;
8588           break;
8589         }
8590         Dests.set(Clusters[k].MBB->getNumber());
8591       }
8592       if (!RangesOnly || Dests.count() > 3)
8593         break;
8594 
8595       // Check if it's a better partition.
8596       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8597       if (NumPartitions < MinPartitions[i]) {
8598         // Found a better partition.
8599         MinPartitions[i] = NumPartitions;
8600         LastElement[i] = j;
8601       }
8602     }
8603   }
8604 
8605   // Iterate over the partitions, replacing with bit-test clusters in-place.
8606   unsigned DstIndex = 0;
8607   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8608     Last = LastElement[First];
8609     assert(First <= Last);
8610     assert(DstIndex <= First);
8611 
8612     CaseCluster BitTestCluster;
8613     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8614       Clusters[DstIndex++] = BitTestCluster;
8615     } else {
8616       size_t NumClusters = Last - First + 1;
8617       std::memmove(&Clusters[DstIndex], &Clusters[First],
8618                    sizeof(Clusters[0]) * NumClusters);
8619       DstIndex += NumClusters;
8620     }
8621   }
8622   Clusters.resize(DstIndex);
8623 }
8624 
8625 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8626                                         MachineBasicBlock *SwitchMBB,
8627                                         MachineBasicBlock *DefaultMBB) {
8628   MachineFunction *CurMF = FuncInfo.MF;
8629   MachineBasicBlock *NextMBB = nullptr;
8630   MachineFunction::iterator BBI(W.MBB);
8631   if (++BBI != FuncInfo.MF->end())
8632     NextMBB = &*BBI;
8633 
8634   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8635 
8636   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8637 
8638   if (Size == 2 && W.MBB == SwitchMBB) {
8639     // If any two of the cases has the same destination, and if one value
8640     // is the same as the other, but has one bit unset that the other has set,
8641     // use bit manipulation to do two compares at once.  For example:
8642     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8643     // TODO: This could be extended to merge any 2 cases in switches with 3
8644     // cases.
8645     // TODO: Handle cases where W.CaseBB != SwitchBB.
8646     CaseCluster &Small = *W.FirstCluster;
8647     CaseCluster &Big = *W.LastCluster;
8648 
8649     if (Small.Low == Small.High && Big.Low == Big.High &&
8650         Small.MBB == Big.MBB) {
8651       const APInt &SmallValue = Small.Low->getValue();
8652       const APInt &BigValue = Big.Low->getValue();
8653 
8654       // Check that there is only one bit different.
8655       APInt CommonBit = BigValue ^ SmallValue;
8656       if (CommonBit.isPowerOf2()) {
8657         SDValue CondLHS = getValue(Cond);
8658         EVT VT = CondLHS.getValueType();
8659         SDLoc DL = getCurSDLoc();
8660 
8661         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8662                                  DAG.getConstant(CommonBit, DL, VT));
8663         SDValue Cond = DAG.getSetCC(
8664             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8665             ISD::SETEQ);
8666 
8667         // Update successor info.
8668         // Both Small and Big will jump to Small.BB, so we sum up the
8669         // probabilities.
8670         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8671         if (BPI)
8672           addSuccessorWithProb(
8673               SwitchMBB, DefaultMBB,
8674               // The default destination is the first successor in IR.
8675               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8676         else
8677           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8678 
8679         // Insert the true branch.
8680         SDValue BrCond =
8681             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8682                         DAG.getBasicBlock(Small.MBB));
8683         // Insert the false branch.
8684         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8685                              DAG.getBasicBlock(DefaultMBB));
8686 
8687         DAG.setRoot(BrCond);
8688         return;
8689       }
8690     }
8691   }
8692 
8693   if (TM.getOptLevel() != CodeGenOpt::None) {
8694     // Order cases by probability so the most likely case will be checked first.
8695     std::sort(W.FirstCluster, W.LastCluster + 1,
8696               [](const CaseCluster &a, const CaseCluster &b) {
8697       return a.Prob > b.Prob;
8698     });
8699 
8700     // Rearrange the case blocks so that the last one falls through if possible
8701     // without without changing the order of probabilities.
8702     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8703       --I;
8704       if (I->Prob > W.LastCluster->Prob)
8705         break;
8706       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8707         std::swap(*I, *W.LastCluster);
8708         break;
8709       }
8710     }
8711   }
8712 
8713   // Compute total probability.
8714   BranchProbability DefaultProb = W.DefaultProb;
8715   BranchProbability UnhandledProbs = DefaultProb;
8716   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8717     UnhandledProbs += I->Prob;
8718 
8719   MachineBasicBlock *CurMBB = W.MBB;
8720   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8721     MachineBasicBlock *Fallthrough;
8722     if (I == W.LastCluster) {
8723       // For the last cluster, fall through to the default destination.
8724       Fallthrough = DefaultMBB;
8725     } else {
8726       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8727       CurMF->insert(BBI, Fallthrough);
8728       // Put Cond in a virtual register to make it available from the new blocks.
8729       ExportFromCurrentBlock(Cond);
8730     }
8731     UnhandledProbs -= I->Prob;
8732 
8733     switch (I->Kind) {
8734       case CC_JumpTable: {
8735         // FIXME: Optimize away range check based on pivot comparisons.
8736         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8737         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8738 
8739         // The jump block hasn't been inserted yet; insert it here.
8740         MachineBasicBlock *JumpMBB = JT->MBB;
8741         CurMF->insert(BBI, JumpMBB);
8742 
8743         auto JumpProb = I->Prob;
8744         auto FallthroughProb = UnhandledProbs;
8745 
8746         // If the default statement is a target of the jump table, we evenly
8747         // distribute the default probability to successors of CurMBB. Also
8748         // update the probability on the edge from JumpMBB to Fallthrough.
8749         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8750                                               SE = JumpMBB->succ_end();
8751              SI != SE; ++SI) {
8752           if (*SI == DefaultMBB) {
8753             JumpProb += DefaultProb / 2;
8754             FallthroughProb -= DefaultProb / 2;
8755             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8756             JumpMBB->normalizeSuccProbs();
8757             break;
8758           }
8759         }
8760 
8761         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8762         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8763         CurMBB->normalizeSuccProbs();
8764 
8765         // The jump table header will be inserted in our current block, do the
8766         // range check, and fall through to our fallthrough block.
8767         JTH->HeaderBB = CurMBB;
8768         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8769 
8770         // If we're in the right place, emit the jump table header right now.
8771         if (CurMBB == SwitchMBB) {
8772           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8773           JTH->Emitted = true;
8774         }
8775         break;
8776       }
8777       case CC_BitTests: {
8778         // FIXME: Optimize away range check based on pivot comparisons.
8779         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8780 
8781         // The bit test blocks haven't been inserted yet; insert them here.
8782         for (BitTestCase &BTC : BTB->Cases)
8783           CurMF->insert(BBI, BTC.ThisBB);
8784 
8785         // Fill in fields of the BitTestBlock.
8786         BTB->Parent = CurMBB;
8787         BTB->Default = Fallthrough;
8788 
8789         BTB->DefaultProb = UnhandledProbs;
8790         // If the cases in bit test don't form a contiguous range, we evenly
8791         // distribute the probability on the edge to Fallthrough to two
8792         // successors of CurMBB.
8793         if (!BTB->ContiguousRange) {
8794           BTB->Prob += DefaultProb / 2;
8795           BTB->DefaultProb -= DefaultProb / 2;
8796         }
8797 
8798         // If we're in the right place, emit the bit test header right now.
8799         if (CurMBB == SwitchMBB) {
8800           visitBitTestHeader(*BTB, SwitchMBB);
8801           BTB->Emitted = true;
8802         }
8803         break;
8804       }
8805       case CC_Range: {
8806         const Value *RHS, *LHS, *MHS;
8807         ISD::CondCode CC;
8808         if (I->Low == I->High) {
8809           // Check Cond == I->Low.
8810           CC = ISD::SETEQ;
8811           LHS = Cond;
8812           RHS=I->Low;
8813           MHS = nullptr;
8814         } else {
8815           // Check I->Low <= Cond <= I->High.
8816           CC = ISD::SETLE;
8817           LHS = I->Low;
8818           MHS = Cond;
8819           RHS = I->High;
8820         }
8821 
8822         // The false probability is the sum of all unhandled cases.
8823         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8824                      UnhandledProbs);
8825 
8826         if (CurMBB == SwitchMBB)
8827           visitSwitchCase(CB, SwitchMBB);
8828         else
8829           SwitchCases.push_back(CB);
8830 
8831         break;
8832       }
8833     }
8834     CurMBB = Fallthrough;
8835   }
8836 }
8837 
8838 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8839                                               CaseClusterIt First,
8840                                               CaseClusterIt Last) {
8841   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8842     if (X.Prob != CC.Prob)
8843       return X.Prob > CC.Prob;
8844 
8845     // Ties are broken by comparing the case value.
8846     return X.Low->getValue().slt(CC.Low->getValue());
8847   });
8848 }
8849 
8850 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8851                                         const SwitchWorkListItem &W,
8852                                         Value *Cond,
8853                                         MachineBasicBlock *SwitchMBB) {
8854   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8855          "Clusters not sorted?");
8856 
8857   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8858 
8859   // Balance the tree based on branch probabilities to create a near-optimal (in
8860   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8861   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8862   CaseClusterIt LastLeft = W.FirstCluster;
8863   CaseClusterIt FirstRight = W.LastCluster;
8864   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8865   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8866 
8867   // Move LastLeft and FirstRight towards each other from opposite directions to
8868   // find a partitioning of the clusters which balances the probability on both
8869   // sides. If LeftProb and RightProb are equal, alternate which side is
8870   // taken to ensure 0-probability nodes are distributed evenly.
8871   unsigned I = 0;
8872   while (LastLeft + 1 < FirstRight) {
8873     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8874       LeftProb += (++LastLeft)->Prob;
8875     else
8876       RightProb += (--FirstRight)->Prob;
8877     I++;
8878   }
8879 
8880   for (;;) {
8881     // Our binary search tree differs from a typical BST in that ours can have up
8882     // to three values in each leaf. The pivot selection above doesn't take that
8883     // into account, which means the tree might require more nodes and be less
8884     // efficient. We compensate for this here.
8885 
8886     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8887     unsigned NumRight = W.LastCluster - FirstRight + 1;
8888 
8889     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8890       // If one side has less than 3 clusters, and the other has more than 3,
8891       // consider taking a cluster from the other side.
8892 
8893       if (NumLeft < NumRight) {
8894         // Consider moving the first cluster on the right to the left side.
8895         CaseCluster &CC = *FirstRight;
8896         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8897         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8898         if (LeftSideRank <= RightSideRank) {
8899           // Moving the cluster to the left does not demote it.
8900           ++LastLeft;
8901           ++FirstRight;
8902           continue;
8903         }
8904       } else {
8905         assert(NumRight < NumLeft);
8906         // Consider moving the last element on the left to the right side.
8907         CaseCluster &CC = *LastLeft;
8908         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8909         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8910         if (RightSideRank <= LeftSideRank) {
8911           // Moving the cluster to the right does not demot it.
8912           --LastLeft;
8913           --FirstRight;
8914           continue;
8915         }
8916       }
8917     }
8918     break;
8919   }
8920 
8921   assert(LastLeft + 1 == FirstRight);
8922   assert(LastLeft >= W.FirstCluster);
8923   assert(FirstRight <= W.LastCluster);
8924 
8925   // Use the first element on the right as pivot since we will make less-than
8926   // comparisons against it.
8927   CaseClusterIt PivotCluster = FirstRight;
8928   assert(PivotCluster > W.FirstCluster);
8929   assert(PivotCluster <= W.LastCluster);
8930 
8931   CaseClusterIt FirstLeft = W.FirstCluster;
8932   CaseClusterIt LastRight = W.LastCluster;
8933 
8934   const ConstantInt *Pivot = PivotCluster->Low;
8935 
8936   // New blocks will be inserted immediately after the current one.
8937   MachineFunction::iterator BBI(W.MBB);
8938   ++BBI;
8939 
8940   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8941   // we can branch to its destination directly if it's squeezed exactly in
8942   // between the known lower bound and Pivot - 1.
8943   MachineBasicBlock *LeftMBB;
8944   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8945       FirstLeft->Low == W.GE &&
8946       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8947     LeftMBB = FirstLeft->MBB;
8948   } else {
8949     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8950     FuncInfo.MF->insert(BBI, LeftMBB);
8951     WorkList.push_back(
8952         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8953     // Put Cond in a virtual register to make it available from the new blocks.
8954     ExportFromCurrentBlock(Cond);
8955   }
8956 
8957   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8958   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8959   // directly if RHS.High equals the current upper bound.
8960   MachineBasicBlock *RightMBB;
8961   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8962       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8963     RightMBB = FirstRight->MBB;
8964   } else {
8965     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8966     FuncInfo.MF->insert(BBI, RightMBB);
8967     WorkList.push_back(
8968         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8969     // Put Cond in a virtual register to make it available from the new blocks.
8970     ExportFromCurrentBlock(Cond);
8971   }
8972 
8973   // Create the CaseBlock record that will be used to lower the branch.
8974   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8975                LeftProb, RightProb);
8976 
8977   if (W.MBB == SwitchMBB)
8978     visitSwitchCase(CB, SwitchMBB);
8979   else
8980     SwitchCases.push_back(CB);
8981 }
8982 
8983 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8984   // Extract cases from the switch.
8985   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8986   CaseClusterVector Clusters;
8987   Clusters.reserve(SI.getNumCases());
8988   for (auto I : SI.cases()) {
8989     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8990     const ConstantInt *CaseVal = I.getCaseValue();
8991     BranchProbability Prob =
8992         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8993             : BranchProbability(1, SI.getNumCases() + 1);
8994     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8995   }
8996 
8997   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8998 
8999   // Cluster adjacent cases with the same destination. We do this at all
9000   // optimization levels because it's cheap to do and will make codegen faster
9001   // if there are many clusters.
9002   sortAndRangeify(Clusters);
9003 
9004   if (TM.getOptLevel() != CodeGenOpt::None) {
9005     // Replace an unreachable default with the most popular destination.
9006     // FIXME: Exploit unreachable default more aggressively.
9007     bool UnreachableDefault =
9008         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9009     if (UnreachableDefault && !Clusters.empty()) {
9010       DenseMap<const BasicBlock *, unsigned> Popularity;
9011       unsigned MaxPop = 0;
9012       const BasicBlock *MaxBB = nullptr;
9013       for (auto I : SI.cases()) {
9014         const BasicBlock *BB = I.getCaseSuccessor();
9015         if (++Popularity[BB] > MaxPop) {
9016           MaxPop = Popularity[BB];
9017           MaxBB = BB;
9018         }
9019       }
9020       // Set new default.
9021       assert(MaxPop > 0 && MaxBB);
9022       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9023 
9024       // Remove cases that were pointing to the destination that is now the
9025       // default.
9026       CaseClusterVector New;
9027       New.reserve(Clusters.size());
9028       for (CaseCluster &CC : Clusters) {
9029         if (CC.MBB != DefaultMBB)
9030           New.push_back(CC);
9031       }
9032       Clusters = std::move(New);
9033     }
9034   }
9035 
9036   // If there is only the default destination, jump there directly.
9037   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9038   if (Clusters.empty()) {
9039     SwitchMBB->addSuccessor(DefaultMBB);
9040     if (DefaultMBB != NextBlock(SwitchMBB)) {
9041       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9042                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9043     }
9044     return;
9045   }
9046 
9047   findJumpTables(Clusters, &SI, DefaultMBB);
9048   findBitTestClusters(Clusters, &SI);
9049 
9050   DEBUG({
9051     dbgs() << "Case clusters: ";
9052     for (const CaseCluster &C : Clusters) {
9053       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9054       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9055 
9056       C.Low->getValue().print(dbgs(), true);
9057       if (C.Low != C.High) {
9058         dbgs() << '-';
9059         C.High->getValue().print(dbgs(), true);
9060       }
9061       dbgs() << ' ';
9062     }
9063     dbgs() << '\n';
9064   });
9065 
9066   assert(!Clusters.empty());
9067   SwitchWorkList WorkList;
9068   CaseClusterIt First = Clusters.begin();
9069   CaseClusterIt Last = Clusters.end() - 1;
9070   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9071   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9072 
9073   while (!WorkList.empty()) {
9074     SwitchWorkListItem W = WorkList.back();
9075     WorkList.pop_back();
9076     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9077 
9078     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
9079       // For optimized builds, lower large range as a balanced binary tree.
9080       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9081       continue;
9082     }
9083 
9084     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9085   }
9086 }
9087