1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Constants.h" 22 #include "llvm/CallingConv.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Function.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/InlineAsm.h" 27 #include "llvm/Instructions.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/IntrinsicInst.h" 30 #include "llvm/LLVMContext.h" 31 #include "llvm/Module.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineJumpTableInfo.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameInfo.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 /// getCopyFromParts - Create a value that contains the specified legal parts 74 /// combined into the value they represent. If the parts combine to a type 75 /// larger then ValueVT then AssertOp can be used to specify whether the extra 76 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 77 /// (ISD::AssertSext). 78 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, 79 const SDValue *Parts, 80 unsigned NumParts, EVT PartVT, EVT ValueVT, 81 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 82 assert(NumParts > 0 && "No parts to assemble!"); 83 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 84 SDValue Val = Parts[0]; 85 86 if (NumParts > 1) { 87 // Assemble the value from multiple parts. 88 if (!ValueVT.isVector() && ValueVT.isInteger()) { 89 unsigned PartBits = PartVT.getSizeInBits(); 90 unsigned ValueBits = ValueVT.getSizeInBits(); 91 92 // Assemble the power of 2 part. 93 unsigned RoundParts = NumParts & (NumParts - 1) ? 94 1 << Log2_32(NumParts) : NumParts; 95 unsigned RoundBits = PartBits * RoundParts; 96 EVT RoundVT = RoundBits == ValueBits ? 97 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 98 SDValue Lo, Hi; 99 100 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 101 102 if (RoundParts > 2) { 103 Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2, 104 PartVT, HalfVT); 105 Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2, 106 RoundParts / 2, PartVT, HalfVT); 107 } else { 108 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 109 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 110 } 111 112 if (TLI.isBigEndian()) 113 std::swap(Lo, Hi); 114 115 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 116 117 if (RoundParts < NumParts) { 118 // Assemble the trailing non-power-of-2 part. 119 unsigned OddParts = NumParts - RoundParts; 120 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 121 Hi = getCopyFromParts(DAG, dl, 122 Parts + RoundParts, OddParts, PartVT, OddVT); 123 124 // Combine the round and odd parts. 125 Lo = Val; 126 if (TLI.isBigEndian()) 127 std::swap(Lo, Hi); 128 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 129 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 130 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 131 DAG.getConstant(Lo.getValueType().getSizeInBits(), 132 TLI.getPointerTy())); 133 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 134 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 135 } 136 } else if (ValueVT.isVector()) { 137 // Handle a multi-element vector. 138 EVT IntermediateVT, RegisterVT; 139 unsigned NumIntermediates; 140 unsigned NumRegs = 141 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 142 NumIntermediates, RegisterVT); 143 assert(NumRegs == NumParts 144 && "Part count doesn't match vector breakdown!"); 145 NumParts = NumRegs; // Silence a compiler warning. 146 assert(RegisterVT == PartVT 147 && "Part type doesn't match vector breakdown!"); 148 assert(RegisterVT == Parts[0].getValueType() && 149 "Part type doesn't match part!"); 150 151 // Assemble the parts into intermediate operands. 152 SmallVector<SDValue, 8> Ops(NumIntermediates); 153 if (NumIntermediates == NumParts) { 154 // If the register was not expanded, truncate or copy the value, 155 // as appropriate. 156 for (unsigned i = 0; i != NumParts; ++i) 157 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, 158 PartVT, IntermediateVT); 159 } else if (NumParts > 0) { 160 // If the intermediate type was expanded, build the intermediate 161 // operands from the parts. 162 assert(NumParts % NumIntermediates == 0 && 163 "Must expand into a divisible number of parts!"); 164 unsigned Factor = NumParts / NumIntermediates; 165 for (unsigned i = 0; i != NumIntermediates; ++i) 166 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, 167 PartVT, IntermediateVT); 168 } 169 170 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 171 // intermediate operands. 172 Val = DAG.getNode(IntermediateVT.isVector() ? 173 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 174 ValueVT, &Ops[0], NumIntermediates); 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 182 if (TLI.isBigEndian()) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 PartVT = Val.getValueType(); 196 197 if (PartVT == ValueVT) 198 return Val; 199 200 if (PartVT.isVector()) { 201 assert(ValueVT.isVector() && "Unknown vector conversion!"); 202 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 203 } 204 205 if (ValueVT.isVector()) { 206 assert(ValueVT.getVectorElementType() == PartVT && 207 ValueVT.getVectorNumElements() == 1 && 208 "Only trivial scalar-to-vector conversions should get here!"); 209 return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 210 } 211 212 if (PartVT.isInteger() && 213 ValueVT.isInteger()) { 214 if (ValueVT.bitsLT(PartVT)) { 215 // For a truncate, see if we have any information to 216 // indicate whether the truncated bits will always be 217 // zero or sign-extension. 218 if (AssertOp != ISD::DELETED_NODE) 219 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 220 DAG.getValueType(ValueVT)); 221 return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 222 } else { 223 return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 224 } 225 } 226 227 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 228 if (ValueVT.bitsLT(Val.getValueType())) { 229 // FP_ROUND's are always exact here. 230 return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 231 DAG.getIntPtrConstant(1)); 232 } 233 234 return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 235 } 236 237 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 238 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 239 240 llvm_unreachable("Unknown mismatch!"); 241 return SDValue(); 242 } 243 244 /// getCopyToParts - Create a series of nodes that contain the specified value 245 /// split into legal parts. If the parts contain more bits than Val, then, for 246 /// integers, ExtendKind can be used to specify how to generate the extra bits. 247 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, 248 SDValue Val, SDValue *Parts, unsigned NumParts, 249 EVT PartVT, 250 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 251 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 252 EVT PtrVT = TLI.getPointerTy(); 253 EVT ValueVT = Val.getValueType(); 254 unsigned PartBits = PartVT.getSizeInBits(); 255 unsigned OrigNumParts = NumParts; 256 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 257 258 if (!NumParts) 259 return; 260 261 if (!ValueVT.isVector()) { 262 if (PartVT == ValueVT) { 263 assert(NumParts == 1 && "No-op copy with multiple parts!"); 264 Parts[0] = Val; 265 return; 266 } 267 268 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 269 // If the parts cover more bits than the value has, promote the value. 270 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 271 assert(NumParts == 1 && "Do not know what to promote to!"); 272 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 273 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 274 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 275 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 276 } else { 277 llvm_unreachable("Unknown mismatch!"); 278 } 279 } else if (PartBits == ValueVT.getSizeInBits()) { 280 // Different types of the same size. 281 assert(NumParts == 1 && PartVT != ValueVT); 282 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 283 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 284 // If the parts cover less bits than value has, truncate the value. 285 if (PartVT.isInteger() && ValueVT.isInteger()) { 286 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 287 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 288 } else { 289 llvm_unreachable("Unknown mismatch!"); 290 } 291 } 292 293 // The value may have changed - recompute ValueVT. 294 ValueVT = Val.getValueType(); 295 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 296 "Failed to tile the value with PartVT!"); 297 298 if (NumParts == 1) { 299 assert(PartVT == ValueVT && "Type conversion failed!"); 300 Parts[0] = Val; 301 return; 302 } 303 304 // Expand the value into multiple parts. 305 if (NumParts & (NumParts - 1)) { 306 // The number of parts is not a power of 2. Split off and copy the tail. 307 assert(PartVT.isInteger() && ValueVT.isInteger() && 308 "Do not know what to expand to!"); 309 unsigned RoundParts = 1 << Log2_32(NumParts); 310 unsigned RoundBits = RoundParts * PartBits; 311 unsigned OddParts = NumParts - RoundParts; 312 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 313 DAG.getConstant(RoundBits, 314 TLI.getPointerTy())); 315 getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, 316 OddParts, PartVT); 317 318 if (TLI.isBigEndian()) 319 // The odd parts were reversed by getCopyToParts - unreverse them. 320 std::reverse(Parts + RoundParts, Parts + NumParts); 321 322 NumParts = RoundParts; 323 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 324 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 325 } 326 327 // The number of parts is a power of 2. Repeatedly bisect the value using 328 // EXTRACT_ELEMENT. 329 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 330 EVT::getIntegerVT(*DAG.getContext(), 331 ValueVT.getSizeInBits()), 332 Val); 333 334 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 335 for (unsigned i = 0; i < NumParts; i += StepSize) { 336 unsigned ThisBits = StepSize * PartBits / 2; 337 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 338 SDValue &Part0 = Parts[i]; 339 SDValue &Part1 = Parts[i+StepSize/2]; 340 341 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 342 ThisVT, Part0, 343 DAG.getConstant(1, PtrVT)); 344 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 345 ThisVT, Part0, 346 DAG.getConstant(0, PtrVT)); 347 348 if (ThisBits == PartBits && ThisVT != PartVT) { 349 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 350 PartVT, Part0); 351 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 352 PartVT, Part1); 353 } 354 } 355 } 356 357 if (TLI.isBigEndian()) 358 std::reverse(Parts, Parts + OrigNumParts); 359 360 return; 361 } 362 363 // Vector ValueVT. 364 if (NumParts == 1) { 365 if (PartVT != ValueVT) { 366 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 367 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 368 } else { 369 assert(ValueVT.getVectorElementType() == PartVT && 370 ValueVT.getVectorNumElements() == 1 && 371 "Only trivial vector-to-scalar conversions should get here!"); 372 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 373 PartVT, Val, 374 DAG.getConstant(0, PtrVT)); 375 } 376 } 377 378 Parts[0] = Val; 379 return; 380 } 381 382 // Handle a multi-element vector. 383 EVT IntermediateVT, RegisterVT; 384 unsigned NumIntermediates; 385 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 386 IntermediateVT, NumIntermediates, RegisterVT); 387 unsigned NumElements = ValueVT.getVectorNumElements(); 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 393 // Split the vector into intermediate operands. 394 SmallVector<SDValue, 8> Ops(NumIntermediates); 395 for (unsigned i = 0; i != NumIntermediates; ++i) { 396 if (IntermediateVT.isVector()) 397 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 398 IntermediateVT, Val, 399 DAG.getConstant(i * (NumElements / NumIntermediates), 400 PtrVT)); 401 else 402 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 403 IntermediateVT, Val, 404 DAG.getConstant(i, PtrVT)); 405 } 406 407 // Split the intermediate operands into legal parts. 408 if (NumParts == NumIntermediates) { 409 // If the register was not expanded, promote or copy the value, 410 // as appropriate. 411 for (unsigned i = 0; i != NumParts; ++i) 412 getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); 413 } else if (NumParts > 0) { 414 // If the intermediate type was expanded, split each the value into 415 // legal parts. 416 assert(NumParts % NumIntermediates == 0 && 417 "Must expand into a divisible number of parts!"); 418 unsigned Factor = NumParts / NumIntermediates; 419 for (unsigned i = 0; i != NumIntermediates; ++i) 420 getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT); 421 } 422 } 423 424 namespace { 425 /// RegsForValue - This struct represents the registers (physical or virtual) 426 /// that a particular set of values is assigned, and the type information 427 /// about the value. The most common situation is to represent one value at a 428 /// time, but struct or array values are handled element-wise as multiple 429 /// values. The splitting of aggregates is performed recursively, so that we 430 /// never have aggregate-typed registers. The values at this point do not 431 /// necessarily have legal types, so each value may require one or more 432 /// registers of some legal type. 433 /// 434 struct RegsForValue { 435 /// ValueVTs - The value types of the values, which may not be legal, and 436 /// may need be promoted or synthesized from one or more registers. 437 /// 438 SmallVector<EVT, 4> ValueVTs; 439 440 /// RegVTs - The value types of the registers. This is the same size as 441 /// ValueVTs and it records, for each value, what the type of the assigned 442 /// register or registers are. (Individual values are never synthesized 443 /// from more than one type of register.) 444 /// 445 /// With virtual registers, the contents of RegVTs is redundant with TLI's 446 /// getRegisterType member function, however when with physical registers 447 /// it is necessary to have a separate record of the types. 448 /// 449 SmallVector<EVT, 4> RegVTs; 450 451 /// Regs - This list holds the registers assigned to the values. 452 /// Each legal or promoted value requires one register, and each 453 /// expanded value requires multiple registers. 454 /// 455 SmallVector<unsigned, 4> Regs; 456 457 RegsForValue() {} 458 459 RegsForValue(const SmallVector<unsigned, 4> ®s, 460 EVT regvt, EVT valuevt) 461 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 462 463 RegsForValue(const SmallVector<unsigned, 4> ®s, 464 const SmallVector<EVT, 4> ®vts, 465 const SmallVector<EVT, 4> &valuevts) 466 : ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 467 468 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 469 unsigned Reg, const Type *Ty) { 470 ComputeValueVTs(tli, Ty, ValueVTs); 471 472 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 473 EVT ValueVT = ValueVTs[Value]; 474 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 475 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 476 for (unsigned i = 0; i != NumRegs; ++i) 477 Regs.push_back(Reg + i); 478 RegVTs.push_back(RegisterVT); 479 Reg += NumRegs; 480 } 481 } 482 483 /// areValueTypesLegal - Return true if types of all the values are legal. 484 bool areValueTypesLegal(const TargetLowering &TLI) { 485 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 486 EVT RegisterVT = RegVTs[Value]; 487 if (!TLI.isTypeLegal(RegisterVT)) 488 return false; 489 } 490 return true; 491 } 492 493 /// append - Add the specified values to this one. 494 void append(const RegsForValue &RHS) { 495 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 496 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 497 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 498 } 499 500 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 501 /// this value and returns the result as a ValueVTs value. This uses 502 /// Chain/Flag as the input and updates them for the output Chain/Flag. 503 /// If the Flag pointer is NULL, no flag is used. 504 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 505 DebugLoc dl, 506 SDValue &Chain, SDValue *Flag) const; 507 508 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 509 /// specified value into the registers specified by this object. This uses 510 /// Chain/Flag as the input and updates them for the output Chain/Flag. 511 /// If the Flag pointer is NULL, no flag is used. 512 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 513 SDValue &Chain, SDValue *Flag) const; 514 515 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 516 /// operand list. This adds the code marker, matching input operand index 517 /// (if applicable), and includes the number of values added into it. 518 void AddInlineAsmOperands(unsigned Kind, 519 bool HasMatching, unsigned MatchingIdx, 520 SelectionDAG &DAG, 521 std::vector<SDValue> &Ops) const; 522 }; 523 } 524 525 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 526 /// this value and returns the result as a ValueVT value. This uses 527 /// Chain/Flag as the input and updates them for the output Chain/Flag. 528 /// If the Flag pointer is NULL, no flag is used. 529 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 530 FunctionLoweringInfo &FuncInfo, 531 DebugLoc dl, 532 SDValue &Chain, SDValue *Flag) const { 533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 534 535 // Assemble the legal parts into the final values. 536 SmallVector<SDValue, 4> Values(ValueVTs.size()); 537 SmallVector<SDValue, 8> Parts; 538 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 539 // Copy the legal parts from the registers. 540 EVT ValueVT = ValueVTs[Value]; 541 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 542 EVT RegisterVT = RegVTs[Value]; 543 544 Parts.resize(NumRegs); 545 for (unsigned i = 0; i != NumRegs; ++i) { 546 SDValue P; 547 if (Flag == 0) { 548 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 549 } else { 550 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 551 *Flag = P.getValue(2); 552 } 553 554 Chain = P.getValue(1); 555 556 // If the source register was virtual and if we know something about it, 557 // add an assert node. 558 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 559 RegisterVT.isInteger() && !RegisterVT.isVector()) { 560 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 561 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 562 const FunctionLoweringInfo::LiveOutInfo &LOI = 563 FuncInfo.LiveOutRegInfo[SlotNo]; 564 565 unsigned RegSize = RegisterVT.getSizeInBits(); 566 unsigned NumSignBits = LOI.NumSignBits; 567 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 568 569 // FIXME: We capture more information than the dag can represent. For 570 // now, just use the tightest assertzext/assertsext possible. 571 bool isSExt = true; 572 EVT FromVT(MVT::Other); 573 if (NumSignBits == RegSize) 574 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 575 else if (NumZeroBits >= RegSize-1) 576 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 577 else if (NumSignBits > RegSize-8) 578 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 579 else if (NumZeroBits >= RegSize-8) 580 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 581 else if (NumSignBits > RegSize-16) 582 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 583 else if (NumZeroBits >= RegSize-16) 584 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 585 else if (NumSignBits > RegSize-32) 586 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 587 else if (NumZeroBits >= RegSize-32) 588 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 589 590 if (FromVT != MVT::Other) 591 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 592 RegisterVT, P, DAG.getValueType(FromVT)); 593 } 594 } 595 596 Parts[i] = P; 597 } 598 599 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 600 NumRegs, RegisterVT, ValueVT); 601 Part += NumRegs; 602 Parts.clear(); 603 } 604 605 return DAG.getNode(ISD::MERGE_VALUES, dl, 606 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 607 &Values[0], ValueVTs.size()); 608 } 609 610 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 611 /// specified value into the registers specified by this object. This uses 612 /// Chain/Flag as the input and updates them for the output Chain/Flag. 613 /// If the Flag pointer is NULL, no flag is used. 614 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 615 SDValue &Chain, SDValue *Flag) const { 616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 617 618 // Get the list of the values's legal parts. 619 unsigned NumRegs = Regs.size(); 620 SmallVector<SDValue, 8> Parts(NumRegs); 621 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 622 EVT ValueVT = ValueVTs[Value]; 623 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 624 EVT RegisterVT = RegVTs[Value]; 625 626 getCopyToParts(DAG, dl, 627 Val.getValue(Val.getResNo() + Value), 628 &Parts[Part], NumParts, RegisterVT); 629 Part += NumParts; 630 } 631 632 // Copy the parts into the registers. 633 SmallVector<SDValue, 8> Chains(NumRegs); 634 for (unsigned i = 0; i != NumRegs; ++i) { 635 SDValue Part; 636 if (Flag == 0) { 637 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 638 } else { 639 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 640 *Flag = Part.getValue(1); 641 } 642 643 Chains[i] = Part.getValue(0); 644 } 645 646 if (NumRegs == 1 || Flag) 647 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 648 // flagged to it. That is the CopyToReg nodes and the user are considered 649 // a single scheduling unit. If we create a TokenFactor and return it as 650 // chain, then the TokenFactor is both a predecessor (operand) of the 651 // user as well as a successor (the TF operands are flagged to the user). 652 // c1, f1 = CopyToReg 653 // c2, f2 = CopyToReg 654 // c3 = TokenFactor c1, c2 655 // ... 656 // = op c3, ..., f2 657 Chain = Chains[NumRegs-1]; 658 else 659 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 660 } 661 662 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 663 /// operand list. This adds the code marker and includes the number of 664 /// values added into it. 665 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 666 unsigned MatchingIdx, 667 SelectionDAG &DAG, 668 std::vector<SDValue> &Ops) const { 669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 670 671 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 672 if (HasMatching) 673 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 674 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 675 Ops.push_back(Res); 676 677 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 678 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 679 EVT RegisterVT = RegVTs[Value]; 680 for (unsigned i = 0; i != NumRegs; ++i) { 681 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 682 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 683 } 684 } 685 } 686 687 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 688 AA = &aa; 689 GFI = gfi; 690 TD = DAG.getTarget().getTargetData(); 691 } 692 693 /// clear - Clear out the current SelectionDAG and the associated 694 /// state and prepare this SelectionDAGBuilder object to be used 695 /// for a new block. This doesn't clear out information about 696 /// additional blocks that are needed to complete switch lowering 697 /// or PHI node updating; that information is cleared out as it is 698 /// consumed. 699 void SelectionDAGBuilder::clear() { 700 NodeMap.clear(); 701 UnusedArgNodeMap.clear(); 702 PendingLoads.clear(); 703 PendingExports.clear(); 704 DanglingDebugInfoMap.clear(); 705 CurDebugLoc = DebugLoc(); 706 HasTailCall = false; 707 } 708 709 /// getRoot - Return the current virtual root of the Selection DAG, 710 /// flushing any PendingLoad items. This must be done before emitting 711 /// a store or any other node that may need to be ordered after any 712 /// prior load instructions. 713 /// 714 SDValue SelectionDAGBuilder::getRoot() { 715 if (PendingLoads.empty()) 716 return DAG.getRoot(); 717 718 if (PendingLoads.size() == 1) { 719 SDValue Root = PendingLoads[0]; 720 DAG.setRoot(Root); 721 PendingLoads.clear(); 722 return Root; 723 } 724 725 // Otherwise, we have to make a token factor node. 726 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 727 &PendingLoads[0], PendingLoads.size()); 728 PendingLoads.clear(); 729 DAG.setRoot(Root); 730 return Root; 731 } 732 733 /// getControlRoot - Similar to getRoot, but instead of flushing all the 734 /// PendingLoad items, flush all the PendingExports items. It is necessary 735 /// to do this before emitting a terminator instruction. 736 /// 737 SDValue SelectionDAGBuilder::getControlRoot() { 738 SDValue Root = DAG.getRoot(); 739 740 if (PendingExports.empty()) 741 return Root; 742 743 // Turn all of the CopyToReg chains into one factored node. 744 if (Root.getOpcode() != ISD::EntryToken) { 745 unsigned i = 0, e = PendingExports.size(); 746 for (; i != e; ++i) { 747 assert(PendingExports[i].getNode()->getNumOperands() > 1); 748 if (PendingExports[i].getNode()->getOperand(0) == Root) 749 break; // Don't add the root if we already indirectly depend on it. 750 } 751 752 if (i == e) 753 PendingExports.push_back(Root); 754 } 755 756 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 757 &PendingExports[0], 758 PendingExports.size()); 759 PendingExports.clear(); 760 DAG.setRoot(Root); 761 return Root; 762 } 763 764 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 765 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 766 DAG.AssignOrdering(Node, SDNodeOrder); 767 768 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 769 AssignOrderingToNode(Node->getOperand(I).getNode()); 770 } 771 772 void SelectionDAGBuilder::visit(const Instruction &I) { 773 // Set up outgoing PHI node register values before emitting the terminator. 774 if (isa<TerminatorInst>(&I)) 775 HandlePHINodesInSuccessorBlocks(I.getParent()); 776 777 CurDebugLoc = I.getDebugLoc(); 778 779 visit(I.getOpcode(), I); 780 781 if (!isa<TerminatorInst>(&I) && !HasTailCall) 782 CopyToExportRegsIfNeeded(&I); 783 784 CurDebugLoc = DebugLoc(); 785 } 786 787 void SelectionDAGBuilder::visitPHI(const PHINode &) { 788 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 789 } 790 791 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 792 // Note: this doesn't use InstVisitor, because it has to work with 793 // ConstantExpr's in addition to instructions. 794 switch (Opcode) { 795 default: llvm_unreachable("Unknown instruction type encountered!"); 796 // Build the switch statement using the Instruction.def file. 797 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 798 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 799 #include "llvm/Instruction.def" 800 } 801 802 // Assign the ordering to the freshly created DAG nodes. 803 if (NodeMap.count(&I)) { 804 ++SDNodeOrder; 805 AssignOrderingToNode(getValue(&I).getNode()); 806 } 807 } 808 809 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 810 // generate the debug data structures now that we've seen its definition. 811 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 812 SDValue Val) { 813 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 814 if (DDI.getDI()) { 815 const DbgValueInst *DI = DDI.getDI(); 816 DebugLoc dl = DDI.getdl(); 817 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 818 MDNode *Variable = DI->getVariable(); 819 uint64_t Offset = DI->getOffset(); 820 SDDbgValue *SDV; 821 if (Val.getNode()) { 822 if (!EmitFuncArgumentDbgValue(*DI, V, Variable, Offset, Val)) { 823 SDV = DAG.getDbgValue(Variable, Val.getNode(), 824 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 825 DAG.AddDbgValue(SDV, Val.getNode(), false); 826 } 827 } else { 828 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 829 Offset, dl, SDNodeOrder); 830 DAG.AddDbgValue(SDV, 0, false); 831 } 832 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 833 } 834 } 835 836 // getValue - Return an SDValue for the given Value. 837 SDValue SelectionDAGBuilder::getValue(const Value *V) { 838 // If we already have an SDValue for this value, use it. It's important 839 // to do this first, so that we don't create a CopyFromReg if we already 840 // have a regular SDValue. 841 SDValue &N = NodeMap[V]; 842 if (N.getNode()) return N; 843 844 // If there's a virtual register allocated and initialized for this 845 // value, use it. 846 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 847 if (It != FuncInfo.ValueMap.end()) { 848 unsigned InReg = It->second; 849 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 850 SDValue Chain = DAG.getEntryNode(); 851 return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 852 } 853 854 // Otherwise create a new SDValue and remember it. 855 SDValue Val = getValueImpl(V); 856 NodeMap[V] = Val; 857 resolveDanglingDebugInfo(V, Val); 858 return Val; 859 } 860 861 /// getNonRegisterValue - Return an SDValue for the given Value, but 862 /// don't look in FuncInfo.ValueMap for a virtual register. 863 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 864 // If we already have an SDValue for this value, use it. 865 SDValue &N = NodeMap[V]; 866 if (N.getNode()) return N; 867 868 // Otherwise create a new SDValue and remember it. 869 SDValue Val = getValueImpl(V); 870 NodeMap[V] = Val; 871 resolveDanglingDebugInfo(V, Val); 872 return Val; 873 } 874 875 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 876 /// Create an SDValue for the given value. 877 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 878 if (const Constant *C = dyn_cast<Constant>(V)) { 879 EVT VT = TLI.getValueType(V->getType(), true); 880 881 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 882 return DAG.getConstant(*CI, VT); 883 884 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 885 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 886 887 if (isa<ConstantPointerNull>(C)) 888 return DAG.getConstant(0, TLI.getPointerTy()); 889 890 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 891 return DAG.getConstantFP(*CFP, VT); 892 893 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 894 return DAG.getUNDEF(VT); 895 896 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 897 visit(CE->getOpcode(), *CE); 898 SDValue N1 = NodeMap[V]; 899 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 900 return N1; 901 } 902 903 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 904 SmallVector<SDValue, 4> Constants; 905 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 906 OI != OE; ++OI) { 907 SDNode *Val = getValue(*OI).getNode(); 908 // If the operand is an empty aggregate, there are no values. 909 if (!Val) continue; 910 // Add each leaf value from the operand to the Constants list 911 // to form a flattened list of all the values. 912 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 913 Constants.push_back(SDValue(Val, i)); 914 } 915 916 return DAG.getMergeValues(&Constants[0], Constants.size(), 917 getCurDebugLoc()); 918 } 919 920 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 921 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 922 "Unknown struct or array constant!"); 923 924 SmallVector<EVT, 4> ValueVTs; 925 ComputeValueVTs(TLI, C->getType(), ValueVTs); 926 unsigned NumElts = ValueVTs.size(); 927 if (NumElts == 0) 928 return SDValue(); // empty struct 929 SmallVector<SDValue, 4> Constants(NumElts); 930 for (unsigned i = 0; i != NumElts; ++i) { 931 EVT EltVT = ValueVTs[i]; 932 if (isa<UndefValue>(C)) 933 Constants[i] = DAG.getUNDEF(EltVT); 934 else if (EltVT.isFloatingPoint()) 935 Constants[i] = DAG.getConstantFP(0, EltVT); 936 else 937 Constants[i] = DAG.getConstant(0, EltVT); 938 } 939 940 return DAG.getMergeValues(&Constants[0], NumElts, 941 getCurDebugLoc()); 942 } 943 944 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 945 return DAG.getBlockAddress(BA, VT); 946 947 const VectorType *VecTy = cast<VectorType>(V->getType()); 948 unsigned NumElements = VecTy->getNumElements(); 949 950 // Now that we know the number and type of the elements, get that number of 951 // elements into the Ops array based on what kind of constant it is. 952 SmallVector<SDValue, 16> Ops; 953 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 954 for (unsigned i = 0; i != NumElements; ++i) 955 Ops.push_back(getValue(CP->getOperand(i))); 956 } else { 957 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 958 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 959 960 SDValue Op; 961 if (EltVT.isFloatingPoint()) 962 Op = DAG.getConstantFP(0, EltVT); 963 else 964 Op = DAG.getConstant(0, EltVT); 965 Ops.assign(NumElements, Op); 966 } 967 968 // Create a BUILD_VECTOR node. 969 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 970 VT, &Ops[0], Ops.size()); 971 } 972 973 // If this is a static alloca, generate it as the frameindex instead of 974 // computation. 975 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 976 DenseMap<const AllocaInst*, int>::iterator SI = 977 FuncInfo.StaticAllocaMap.find(AI); 978 if (SI != FuncInfo.StaticAllocaMap.end()) 979 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 980 } 981 982 // If this is an instruction which fast-isel has deferred, select it now. 983 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 984 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 985 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 986 SDValue Chain = DAG.getEntryNode(); 987 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 988 } 989 990 llvm_unreachable("Can't get register for value!"); 991 return SDValue(); 992 } 993 994 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 995 SDValue Chain = getControlRoot(); 996 SmallVector<ISD::OutputArg, 8> Outs; 997 SmallVector<SDValue, 8> OutVals; 998 999 if (!FuncInfo.CanLowerReturn) { 1000 unsigned DemoteReg = FuncInfo.DemoteRegister; 1001 const Function *F = I.getParent()->getParent(); 1002 1003 // Emit a store of the return value through the virtual register. 1004 // Leave Outs empty so that LowerReturn won't try to load return 1005 // registers the usual way. 1006 SmallVector<EVT, 1> PtrValueVTs; 1007 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1008 PtrValueVTs); 1009 1010 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1011 SDValue RetOp = getValue(I.getOperand(0)); 1012 1013 SmallVector<EVT, 4> ValueVTs; 1014 SmallVector<uint64_t, 4> Offsets; 1015 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1016 unsigned NumValues = ValueVTs.size(); 1017 1018 SmallVector<SDValue, 4> Chains(NumValues); 1019 EVT PtrVT = PtrValueVTs[0]; 1020 for (unsigned i = 0; i != NumValues; ++i) { 1021 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 1022 DAG.getConstant(Offsets[i], PtrVT)); 1023 Chains[i] = 1024 DAG.getStore(Chain, getCurDebugLoc(), 1025 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1026 Add, NULL, Offsets[i], false, false, 0); 1027 } 1028 1029 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1030 MVT::Other, &Chains[0], NumValues); 1031 } else if (I.getNumOperands() != 0) { 1032 SmallVector<EVT, 4> ValueVTs; 1033 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1034 unsigned NumValues = ValueVTs.size(); 1035 if (NumValues) { 1036 SDValue RetOp = getValue(I.getOperand(0)); 1037 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1038 EVT VT = ValueVTs[j]; 1039 1040 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1041 1042 const Function *F = I.getParent()->getParent(); 1043 if (F->paramHasAttr(0, Attribute::SExt)) 1044 ExtendKind = ISD::SIGN_EXTEND; 1045 else if (F->paramHasAttr(0, Attribute::ZExt)) 1046 ExtendKind = ISD::ZERO_EXTEND; 1047 1048 // FIXME: C calling convention requires the return type to be promoted 1049 // to at least 32-bit. But this is not necessary for non-C calling 1050 // conventions. The frontend should mark functions whose return values 1051 // require promoting with signext or zeroext attributes. 1052 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1053 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1054 if (VT.bitsLT(MinVT)) 1055 VT = MinVT; 1056 } 1057 1058 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1059 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1060 SmallVector<SDValue, 4> Parts(NumParts); 1061 getCopyToParts(DAG, getCurDebugLoc(), 1062 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1063 &Parts[0], NumParts, PartVT, ExtendKind); 1064 1065 // 'inreg' on function refers to return value 1066 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1067 if (F->paramHasAttr(0, Attribute::InReg)) 1068 Flags.setInReg(); 1069 1070 // Propagate extension type if any 1071 if (F->paramHasAttr(0, Attribute::SExt)) 1072 Flags.setSExt(); 1073 else if (F->paramHasAttr(0, Attribute::ZExt)) 1074 Flags.setZExt(); 1075 1076 for (unsigned i = 0; i < NumParts; ++i) { 1077 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1078 /*isfixed=*/true)); 1079 OutVals.push_back(Parts[i]); 1080 } 1081 } 1082 } 1083 } 1084 1085 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1086 CallingConv::ID CallConv = 1087 DAG.getMachineFunction().getFunction()->getCallingConv(); 1088 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1089 Outs, OutVals, getCurDebugLoc(), DAG); 1090 1091 // Verify that the target's LowerReturn behaved as expected. 1092 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1093 "LowerReturn didn't return a valid chain!"); 1094 1095 // Update the DAG with the new chain value resulting from return lowering. 1096 DAG.setRoot(Chain); 1097 } 1098 1099 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1100 /// created for it, emit nodes to copy the value into the virtual 1101 /// registers. 1102 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1103 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1104 if (VMI != FuncInfo.ValueMap.end()) { 1105 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1106 CopyValueToVirtualRegister(V, VMI->second); 1107 } 1108 } 1109 1110 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1111 /// the current basic block, add it to ValueMap now so that we'll get a 1112 /// CopyTo/FromReg. 1113 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1114 // No need to export constants. 1115 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1116 1117 // Already exported? 1118 if (FuncInfo.isExportedInst(V)) return; 1119 1120 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1121 CopyValueToVirtualRegister(V, Reg); 1122 } 1123 1124 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1125 const BasicBlock *FromBB) { 1126 // The operands of the setcc have to be in this block. We don't know 1127 // how to export them from some other block. 1128 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1129 // Can export from current BB. 1130 if (VI->getParent() == FromBB) 1131 return true; 1132 1133 // Is already exported, noop. 1134 return FuncInfo.isExportedInst(V); 1135 } 1136 1137 // If this is an argument, we can export it if the BB is the entry block or 1138 // if it is already exported. 1139 if (isa<Argument>(V)) { 1140 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1141 return true; 1142 1143 // Otherwise, can only export this if it is already exported. 1144 return FuncInfo.isExportedInst(V); 1145 } 1146 1147 // Otherwise, constants can always be exported. 1148 return true; 1149 } 1150 1151 static bool InBlock(const Value *V, const BasicBlock *BB) { 1152 if (const Instruction *I = dyn_cast<Instruction>(V)) 1153 return I->getParent() == BB; 1154 return true; 1155 } 1156 1157 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1158 /// This function emits a branch and is used at the leaves of an OR or an 1159 /// AND operator tree. 1160 /// 1161 void 1162 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1163 MachineBasicBlock *TBB, 1164 MachineBasicBlock *FBB, 1165 MachineBasicBlock *CurBB, 1166 MachineBasicBlock *SwitchBB) { 1167 const BasicBlock *BB = CurBB->getBasicBlock(); 1168 1169 // If the leaf of the tree is a comparison, merge the condition into 1170 // the caseblock. 1171 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1172 // The operands of the cmp have to be in this block. We don't know 1173 // how to export them from some other block. If this is the first block 1174 // of the sequence, no exporting is needed. 1175 if (CurBB == SwitchBB || 1176 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1177 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1178 ISD::CondCode Condition; 1179 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1180 Condition = getICmpCondCode(IC->getPredicate()); 1181 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1182 Condition = getFCmpCondCode(FC->getPredicate()); 1183 } else { 1184 Condition = ISD::SETEQ; // silence warning. 1185 llvm_unreachable("Unknown compare instruction"); 1186 } 1187 1188 CaseBlock CB(Condition, BOp->getOperand(0), 1189 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1190 SwitchCases.push_back(CB); 1191 return; 1192 } 1193 } 1194 1195 // Create a CaseBlock record representing this branch. 1196 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1197 NULL, TBB, FBB, CurBB); 1198 SwitchCases.push_back(CB); 1199 } 1200 1201 /// FindMergedConditions - If Cond is an expression like 1202 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1203 MachineBasicBlock *TBB, 1204 MachineBasicBlock *FBB, 1205 MachineBasicBlock *CurBB, 1206 MachineBasicBlock *SwitchBB, 1207 unsigned Opc) { 1208 // If this node is not part of the or/and tree, emit it as a branch. 1209 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1210 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1211 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1212 BOp->getParent() != CurBB->getBasicBlock() || 1213 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1214 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1215 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1216 return; 1217 } 1218 1219 // Create TmpBB after CurBB. 1220 MachineFunction::iterator BBI = CurBB; 1221 MachineFunction &MF = DAG.getMachineFunction(); 1222 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1223 CurBB->getParent()->insert(++BBI, TmpBB); 1224 1225 if (Opc == Instruction::Or) { 1226 // Codegen X | Y as: 1227 // jmp_if_X TBB 1228 // jmp TmpBB 1229 // TmpBB: 1230 // jmp_if_Y TBB 1231 // jmp FBB 1232 // 1233 1234 // Emit the LHS condition. 1235 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1236 1237 // Emit the RHS condition into TmpBB. 1238 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1239 } else { 1240 assert(Opc == Instruction::And && "Unknown merge op!"); 1241 // Codegen X & Y as: 1242 // jmp_if_X TmpBB 1243 // jmp FBB 1244 // TmpBB: 1245 // jmp_if_Y TBB 1246 // jmp FBB 1247 // 1248 // This requires creation of TmpBB after CurBB. 1249 1250 // Emit the LHS condition. 1251 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1252 1253 // Emit the RHS condition into TmpBB. 1254 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1255 } 1256 } 1257 1258 /// If the set of cases should be emitted as a series of branches, return true. 1259 /// If we should emit this as a bunch of and/or'd together conditions, return 1260 /// false. 1261 bool 1262 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1263 if (Cases.size() != 2) return true; 1264 1265 // If this is two comparisons of the same values or'd or and'd together, they 1266 // will get folded into a single comparison, so don't emit two blocks. 1267 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1268 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1269 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1270 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1271 return false; 1272 } 1273 1274 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1275 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1276 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1277 Cases[0].CC == Cases[1].CC && 1278 isa<Constant>(Cases[0].CmpRHS) && 1279 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1280 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1281 return false; 1282 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1283 return false; 1284 } 1285 1286 return true; 1287 } 1288 1289 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1290 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1291 1292 // Update machine-CFG edges. 1293 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1294 1295 // Figure out which block is immediately after the current one. 1296 MachineBasicBlock *NextBlock = 0; 1297 MachineFunction::iterator BBI = BrMBB; 1298 if (++BBI != FuncInfo.MF->end()) 1299 NextBlock = BBI; 1300 1301 if (I.isUnconditional()) { 1302 // Update machine-CFG edges. 1303 BrMBB->addSuccessor(Succ0MBB); 1304 1305 // If this is not a fall-through branch, emit the branch. 1306 if (Succ0MBB != NextBlock) 1307 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1308 MVT::Other, getControlRoot(), 1309 DAG.getBasicBlock(Succ0MBB))); 1310 1311 return; 1312 } 1313 1314 // If this condition is one of the special cases we handle, do special stuff 1315 // now. 1316 const Value *CondVal = I.getCondition(); 1317 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1318 1319 // If this is a series of conditions that are or'd or and'd together, emit 1320 // this as a sequence of branches instead of setcc's with and/or operations. 1321 // For example, instead of something like: 1322 // cmp A, B 1323 // C = seteq 1324 // cmp D, E 1325 // F = setle 1326 // or C, F 1327 // jnz foo 1328 // Emit: 1329 // cmp A, B 1330 // je foo 1331 // cmp D, E 1332 // jle foo 1333 // 1334 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1335 if (BOp->hasOneUse() && 1336 (BOp->getOpcode() == Instruction::And || 1337 BOp->getOpcode() == Instruction::Or)) { 1338 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1339 BOp->getOpcode()); 1340 // If the compares in later blocks need to use values not currently 1341 // exported from this block, export them now. This block should always 1342 // be the first entry. 1343 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1344 1345 // Allow some cases to be rejected. 1346 if (ShouldEmitAsBranches(SwitchCases)) { 1347 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1348 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1349 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1350 } 1351 1352 // Emit the branch for this block. 1353 visitSwitchCase(SwitchCases[0], BrMBB); 1354 SwitchCases.erase(SwitchCases.begin()); 1355 return; 1356 } 1357 1358 // Okay, we decided not to do this, remove any inserted MBB's and clear 1359 // SwitchCases. 1360 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1361 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1362 1363 SwitchCases.clear(); 1364 } 1365 } 1366 1367 // Create a CaseBlock record representing this branch. 1368 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1369 NULL, Succ0MBB, Succ1MBB, BrMBB); 1370 1371 // Use visitSwitchCase to actually insert the fast branch sequence for this 1372 // cond branch. 1373 visitSwitchCase(CB, BrMBB); 1374 } 1375 1376 /// visitSwitchCase - Emits the necessary code to represent a single node in 1377 /// the binary search tree resulting from lowering a switch instruction. 1378 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1379 MachineBasicBlock *SwitchBB) { 1380 SDValue Cond; 1381 SDValue CondLHS = getValue(CB.CmpLHS); 1382 DebugLoc dl = getCurDebugLoc(); 1383 1384 // Build the setcc now. 1385 if (CB.CmpMHS == NULL) { 1386 // Fold "(X == true)" to X and "(X == false)" to !X to 1387 // handle common cases produced by branch lowering. 1388 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1389 CB.CC == ISD::SETEQ) 1390 Cond = CondLHS; 1391 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1392 CB.CC == ISD::SETEQ) { 1393 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1394 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1395 } else 1396 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1397 } else { 1398 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1399 1400 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1401 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1402 1403 SDValue CmpOp = getValue(CB.CmpMHS); 1404 EVT VT = CmpOp.getValueType(); 1405 1406 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1407 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1408 ISD::SETLE); 1409 } else { 1410 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1411 VT, CmpOp, DAG.getConstant(Low, VT)); 1412 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1413 DAG.getConstant(High-Low, VT), ISD::SETULE); 1414 } 1415 } 1416 1417 // Update successor info 1418 SwitchBB->addSuccessor(CB.TrueBB); 1419 SwitchBB->addSuccessor(CB.FalseBB); 1420 1421 // Set NextBlock to be the MBB immediately after the current one, if any. 1422 // This is used to avoid emitting unnecessary branches to the next block. 1423 MachineBasicBlock *NextBlock = 0; 1424 MachineFunction::iterator BBI = SwitchBB; 1425 if (++BBI != FuncInfo.MF->end()) 1426 NextBlock = BBI; 1427 1428 // If the lhs block is the next block, invert the condition so that we can 1429 // fall through to the lhs instead of the rhs block. 1430 if (CB.TrueBB == NextBlock) { 1431 std::swap(CB.TrueBB, CB.FalseBB); 1432 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1433 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1434 } 1435 1436 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1437 MVT::Other, getControlRoot(), Cond, 1438 DAG.getBasicBlock(CB.TrueBB)); 1439 1440 // Insert the false branch. 1441 if (CB.FalseBB != NextBlock) 1442 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1443 DAG.getBasicBlock(CB.FalseBB)); 1444 1445 DAG.setRoot(BrCond); 1446 } 1447 1448 /// visitJumpTable - Emit JumpTable node in the current MBB 1449 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1450 // Emit the code for the jump table 1451 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1452 EVT PTy = TLI.getPointerTy(); 1453 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1454 JT.Reg, PTy); 1455 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1456 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1457 MVT::Other, Index.getValue(1), 1458 Table, Index); 1459 DAG.setRoot(BrJumpTable); 1460 } 1461 1462 /// visitJumpTableHeader - This function emits necessary code to produce index 1463 /// in the JumpTable from switch case. 1464 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1465 JumpTableHeader &JTH, 1466 MachineBasicBlock *SwitchBB) { 1467 // Subtract the lowest switch case value from the value being switched on and 1468 // conditional branch to default mbb if the result is greater than the 1469 // difference between smallest and largest cases. 1470 SDValue SwitchOp = getValue(JTH.SValue); 1471 EVT VT = SwitchOp.getValueType(); 1472 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1473 DAG.getConstant(JTH.First, VT)); 1474 1475 // The SDNode we just created, which holds the value being switched on minus 1476 // the smallest case value, needs to be copied to a virtual register so it 1477 // can be used as an index into the jump table in a subsequent basic block. 1478 // This value may be smaller or larger than the target's pointer type, and 1479 // therefore require extension or truncating. 1480 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1481 1482 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1483 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1484 JumpTableReg, SwitchOp); 1485 JT.Reg = JumpTableReg; 1486 1487 // Emit the range check for the jump table, and branch to the default block 1488 // for the switch statement if the value being switched on exceeds the largest 1489 // case in the switch. 1490 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1491 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1492 DAG.getConstant(JTH.Last-JTH.First,VT), 1493 ISD::SETUGT); 1494 1495 // Set NextBlock to be the MBB immediately after the current one, if any. 1496 // This is used to avoid emitting unnecessary branches to the next block. 1497 MachineBasicBlock *NextBlock = 0; 1498 MachineFunction::iterator BBI = SwitchBB; 1499 1500 if (++BBI != FuncInfo.MF->end()) 1501 NextBlock = BBI; 1502 1503 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1504 MVT::Other, CopyTo, CMP, 1505 DAG.getBasicBlock(JT.Default)); 1506 1507 if (JT.MBB != NextBlock) 1508 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1509 DAG.getBasicBlock(JT.MBB)); 1510 1511 DAG.setRoot(BrCond); 1512 } 1513 1514 /// visitBitTestHeader - This function emits necessary code to produce value 1515 /// suitable for "bit tests" 1516 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1517 MachineBasicBlock *SwitchBB) { 1518 // Subtract the minimum value 1519 SDValue SwitchOp = getValue(B.SValue); 1520 EVT VT = SwitchOp.getValueType(); 1521 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1522 DAG.getConstant(B.First, VT)); 1523 1524 // Check range 1525 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1526 TLI.getSetCCResultType(Sub.getValueType()), 1527 Sub, DAG.getConstant(B.Range, VT), 1528 ISD::SETUGT); 1529 1530 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1531 TLI.getPointerTy()); 1532 1533 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1534 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1535 B.Reg, ShiftOp); 1536 1537 // Set NextBlock to be the MBB immediately after the current one, if any. 1538 // This is used to avoid emitting unnecessary branches to the next block. 1539 MachineBasicBlock *NextBlock = 0; 1540 MachineFunction::iterator BBI = SwitchBB; 1541 if (++BBI != FuncInfo.MF->end()) 1542 NextBlock = BBI; 1543 1544 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1545 1546 SwitchBB->addSuccessor(B.Default); 1547 SwitchBB->addSuccessor(MBB); 1548 1549 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1550 MVT::Other, CopyTo, RangeCmp, 1551 DAG.getBasicBlock(B.Default)); 1552 1553 if (MBB != NextBlock) 1554 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1555 DAG.getBasicBlock(MBB)); 1556 1557 DAG.setRoot(BrRange); 1558 } 1559 1560 /// visitBitTestCase - this function produces one "bit test" 1561 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1562 unsigned Reg, 1563 BitTestCase &B, 1564 MachineBasicBlock *SwitchBB) { 1565 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1566 TLI.getPointerTy()); 1567 SDValue Cmp; 1568 if (CountPopulation_64(B.Mask) == 1) { 1569 // Testing for a single bit; just compare the shift count with what it 1570 // would need to be to shift a 1 bit in that position. 1571 Cmp = DAG.getSetCC(getCurDebugLoc(), 1572 TLI.getSetCCResultType(ShiftOp.getValueType()), 1573 ShiftOp, 1574 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1575 TLI.getPointerTy()), 1576 ISD::SETEQ); 1577 } else { 1578 // Make desired shift 1579 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1580 TLI.getPointerTy(), 1581 DAG.getConstant(1, TLI.getPointerTy()), 1582 ShiftOp); 1583 1584 // Emit bit tests and jumps 1585 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1586 TLI.getPointerTy(), SwitchVal, 1587 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1588 Cmp = DAG.getSetCC(getCurDebugLoc(), 1589 TLI.getSetCCResultType(AndOp.getValueType()), 1590 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1591 ISD::SETNE); 1592 } 1593 1594 SwitchBB->addSuccessor(B.TargetBB); 1595 SwitchBB->addSuccessor(NextMBB); 1596 1597 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1598 MVT::Other, getControlRoot(), 1599 Cmp, DAG.getBasicBlock(B.TargetBB)); 1600 1601 // Set NextBlock to be the MBB immediately after the current one, if any. 1602 // This is used to avoid emitting unnecessary branches to the next block. 1603 MachineBasicBlock *NextBlock = 0; 1604 MachineFunction::iterator BBI = SwitchBB; 1605 if (++BBI != FuncInfo.MF->end()) 1606 NextBlock = BBI; 1607 1608 if (NextMBB != NextBlock) 1609 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1610 DAG.getBasicBlock(NextMBB)); 1611 1612 DAG.setRoot(BrAnd); 1613 } 1614 1615 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1616 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1617 1618 // Retrieve successors. 1619 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1620 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1621 1622 const Value *Callee(I.getCalledValue()); 1623 if (isa<InlineAsm>(Callee)) 1624 visitInlineAsm(&I); 1625 else 1626 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1627 1628 // If the value of the invoke is used outside of its defining block, make it 1629 // available as a virtual register. 1630 CopyToExportRegsIfNeeded(&I); 1631 1632 // Update successor info 1633 InvokeMBB->addSuccessor(Return); 1634 InvokeMBB->addSuccessor(LandingPad); 1635 1636 // Drop into normal successor. 1637 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1638 MVT::Other, getControlRoot(), 1639 DAG.getBasicBlock(Return))); 1640 } 1641 1642 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1643 } 1644 1645 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1646 /// small case ranges). 1647 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1648 CaseRecVector& WorkList, 1649 const Value* SV, 1650 MachineBasicBlock *Default, 1651 MachineBasicBlock *SwitchBB) { 1652 Case& BackCase = *(CR.Range.second-1); 1653 1654 // Size is the number of Cases represented by this range. 1655 size_t Size = CR.Range.second - CR.Range.first; 1656 if (Size > 3) 1657 return false; 1658 1659 // Get the MachineFunction which holds the current MBB. This is used when 1660 // inserting any additional MBBs necessary to represent the switch. 1661 MachineFunction *CurMF = FuncInfo.MF; 1662 1663 // Figure out which block is immediately after the current one. 1664 MachineBasicBlock *NextBlock = 0; 1665 MachineFunction::iterator BBI = CR.CaseBB; 1666 1667 if (++BBI != FuncInfo.MF->end()) 1668 NextBlock = BBI; 1669 1670 // TODO: If any two of the cases has the same destination, and if one value 1671 // is the same as the other, but has one bit unset that the other has set, 1672 // use bit manipulation to do two compares at once. For example: 1673 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1674 1675 // Rearrange the case blocks so that the last one falls through if possible. 1676 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1677 // The last case block won't fall through into 'NextBlock' if we emit the 1678 // branches in this order. See if rearranging a case value would help. 1679 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1680 if (I->BB == NextBlock) { 1681 std::swap(*I, BackCase); 1682 break; 1683 } 1684 } 1685 } 1686 1687 // Create a CaseBlock record representing a conditional branch to 1688 // the Case's target mbb if the value being switched on SV is equal 1689 // to C. 1690 MachineBasicBlock *CurBlock = CR.CaseBB; 1691 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1692 MachineBasicBlock *FallThrough; 1693 if (I != E-1) { 1694 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1695 CurMF->insert(BBI, FallThrough); 1696 1697 // Put SV in a virtual register to make it available from the new blocks. 1698 ExportFromCurrentBlock(SV); 1699 } else { 1700 // If the last case doesn't match, go to the default block. 1701 FallThrough = Default; 1702 } 1703 1704 const Value *RHS, *LHS, *MHS; 1705 ISD::CondCode CC; 1706 if (I->High == I->Low) { 1707 // This is just small small case range :) containing exactly 1 case 1708 CC = ISD::SETEQ; 1709 LHS = SV; RHS = I->High; MHS = NULL; 1710 } else { 1711 CC = ISD::SETLE; 1712 LHS = I->Low; MHS = SV; RHS = I->High; 1713 } 1714 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1715 1716 // If emitting the first comparison, just call visitSwitchCase to emit the 1717 // code into the current block. Otherwise, push the CaseBlock onto the 1718 // vector to be later processed by SDISel, and insert the node's MBB 1719 // before the next MBB. 1720 if (CurBlock == SwitchBB) 1721 visitSwitchCase(CB, SwitchBB); 1722 else 1723 SwitchCases.push_back(CB); 1724 1725 CurBlock = FallThrough; 1726 } 1727 1728 return true; 1729 } 1730 1731 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1732 return !DisableJumpTables && 1733 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1734 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1735 } 1736 1737 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1738 APInt LastExt(Last), FirstExt(First); 1739 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1740 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1741 return (LastExt - FirstExt + 1ULL); 1742 } 1743 1744 /// handleJTSwitchCase - Emit jumptable for current switch case range 1745 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1746 CaseRecVector& WorkList, 1747 const Value* SV, 1748 MachineBasicBlock* Default, 1749 MachineBasicBlock *SwitchBB) { 1750 Case& FrontCase = *CR.Range.first; 1751 Case& BackCase = *(CR.Range.second-1); 1752 1753 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1754 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1755 1756 APInt TSize(First.getBitWidth(), 0); 1757 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1758 I!=E; ++I) 1759 TSize += I->size(); 1760 1761 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1762 return false; 1763 1764 APInt Range = ComputeRange(First, Last); 1765 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1766 if (Density < 0.4) 1767 return false; 1768 1769 DEBUG(dbgs() << "Lowering jump table\n" 1770 << "First entry: " << First << ". Last entry: " << Last << '\n' 1771 << "Range: " << Range 1772 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1773 1774 // Get the MachineFunction which holds the current MBB. This is used when 1775 // inserting any additional MBBs necessary to represent the switch. 1776 MachineFunction *CurMF = FuncInfo.MF; 1777 1778 // Figure out which block is immediately after the current one. 1779 MachineFunction::iterator BBI = CR.CaseBB; 1780 ++BBI; 1781 1782 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1783 1784 // Create a new basic block to hold the code for loading the address 1785 // of the jump table, and jumping to it. Update successor information; 1786 // we will either branch to the default case for the switch, or the jump 1787 // table. 1788 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1789 CurMF->insert(BBI, JumpTableBB); 1790 CR.CaseBB->addSuccessor(Default); 1791 CR.CaseBB->addSuccessor(JumpTableBB); 1792 1793 // Build a vector of destination BBs, corresponding to each target 1794 // of the jump table. If the value of the jump table slot corresponds to 1795 // a case statement, push the case's BB onto the vector, otherwise, push 1796 // the default BB. 1797 std::vector<MachineBasicBlock*> DestBBs; 1798 APInt TEI = First; 1799 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1800 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1801 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1802 1803 if (Low.sle(TEI) && TEI.sle(High)) { 1804 DestBBs.push_back(I->BB); 1805 if (TEI==High) 1806 ++I; 1807 } else { 1808 DestBBs.push_back(Default); 1809 } 1810 } 1811 1812 // Update successor info. Add one edge to each unique successor. 1813 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1814 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1815 E = DestBBs.end(); I != E; ++I) { 1816 if (!SuccsHandled[(*I)->getNumber()]) { 1817 SuccsHandled[(*I)->getNumber()] = true; 1818 JumpTableBB->addSuccessor(*I); 1819 } 1820 } 1821 1822 // Create a jump table index for this jump table. 1823 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1824 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1825 ->createJumpTableIndex(DestBBs); 1826 1827 // Set the jump table information so that we can codegen it as a second 1828 // MachineBasicBlock 1829 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1830 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1831 if (CR.CaseBB == SwitchBB) 1832 visitJumpTableHeader(JT, JTH, SwitchBB); 1833 1834 JTCases.push_back(JumpTableBlock(JTH, JT)); 1835 1836 return true; 1837 } 1838 1839 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1840 /// 2 subtrees. 1841 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1842 CaseRecVector& WorkList, 1843 const Value* SV, 1844 MachineBasicBlock *Default, 1845 MachineBasicBlock *SwitchBB) { 1846 // Get the MachineFunction which holds the current MBB. This is used when 1847 // inserting any additional MBBs necessary to represent the switch. 1848 MachineFunction *CurMF = FuncInfo.MF; 1849 1850 // Figure out which block is immediately after the current one. 1851 MachineFunction::iterator BBI = CR.CaseBB; 1852 ++BBI; 1853 1854 Case& FrontCase = *CR.Range.first; 1855 Case& BackCase = *(CR.Range.second-1); 1856 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1857 1858 // Size is the number of Cases represented by this range. 1859 unsigned Size = CR.Range.second - CR.Range.first; 1860 1861 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1862 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1863 double FMetric = 0; 1864 CaseItr Pivot = CR.Range.first + Size/2; 1865 1866 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1867 // (heuristically) allow us to emit JumpTable's later. 1868 APInt TSize(First.getBitWidth(), 0); 1869 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1870 I!=E; ++I) 1871 TSize += I->size(); 1872 1873 APInt LSize = FrontCase.size(); 1874 APInt RSize = TSize-LSize; 1875 DEBUG(dbgs() << "Selecting best pivot: \n" 1876 << "First: " << First << ", Last: " << Last <<'\n' 1877 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1878 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1879 J!=E; ++I, ++J) { 1880 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1881 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1882 APInt Range = ComputeRange(LEnd, RBegin); 1883 assert((Range - 2ULL).isNonNegative() && 1884 "Invalid case distance"); 1885 double LDensity = (double)LSize.roundToDouble() / 1886 (LEnd - First + 1ULL).roundToDouble(); 1887 double RDensity = (double)RSize.roundToDouble() / 1888 (Last - RBegin + 1ULL).roundToDouble(); 1889 double Metric = Range.logBase2()*(LDensity+RDensity); 1890 // Should always split in some non-trivial place 1891 DEBUG(dbgs() <<"=>Step\n" 1892 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1893 << "LDensity: " << LDensity 1894 << ", RDensity: " << RDensity << '\n' 1895 << "Metric: " << Metric << '\n'); 1896 if (FMetric < Metric) { 1897 Pivot = J; 1898 FMetric = Metric; 1899 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1900 } 1901 1902 LSize += J->size(); 1903 RSize -= J->size(); 1904 } 1905 if (areJTsAllowed(TLI)) { 1906 // If our case is dense we *really* should handle it earlier! 1907 assert((FMetric > 0) && "Should handle dense range earlier!"); 1908 } else { 1909 Pivot = CR.Range.first + Size/2; 1910 } 1911 1912 CaseRange LHSR(CR.Range.first, Pivot); 1913 CaseRange RHSR(Pivot, CR.Range.second); 1914 Constant *C = Pivot->Low; 1915 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1916 1917 // We know that we branch to the LHS if the Value being switched on is 1918 // less than the Pivot value, C. We use this to optimize our binary 1919 // tree a bit, by recognizing that if SV is greater than or equal to the 1920 // LHS's Case Value, and that Case Value is exactly one less than the 1921 // Pivot's Value, then we can branch directly to the LHS's Target, 1922 // rather than creating a leaf node for it. 1923 if ((LHSR.second - LHSR.first) == 1 && 1924 LHSR.first->High == CR.GE && 1925 cast<ConstantInt>(C)->getValue() == 1926 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1927 TrueBB = LHSR.first->BB; 1928 } else { 1929 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1930 CurMF->insert(BBI, TrueBB); 1931 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1932 1933 // Put SV in a virtual register to make it available from the new blocks. 1934 ExportFromCurrentBlock(SV); 1935 } 1936 1937 // Similar to the optimization above, if the Value being switched on is 1938 // known to be less than the Constant CR.LT, and the current Case Value 1939 // is CR.LT - 1, then we can branch directly to the target block for 1940 // the current Case Value, rather than emitting a RHS leaf node for it. 1941 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1942 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1943 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1944 FalseBB = RHSR.first->BB; 1945 } else { 1946 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1947 CurMF->insert(BBI, FalseBB); 1948 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1949 1950 // Put SV in a virtual register to make it available from the new blocks. 1951 ExportFromCurrentBlock(SV); 1952 } 1953 1954 // Create a CaseBlock record representing a conditional branch to 1955 // the LHS node if the value being switched on SV is less than C. 1956 // Otherwise, branch to LHS. 1957 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1958 1959 if (CR.CaseBB == SwitchBB) 1960 visitSwitchCase(CB, SwitchBB); 1961 else 1962 SwitchCases.push_back(CB); 1963 1964 return true; 1965 } 1966 1967 /// handleBitTestsSwitchCase - if current case range has few destination and 1968 /// range span less, than machine word bitwidth, encode case range into series 1969 /// of masks and emit bit tests with these masks. 1970 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1971 CaseRecVector& WorkList, 1972 const Value* SV, 1973 MachineBasicBlock* Default, 1974 MachineBasicBlock *SwitchBB){ 1975 EVT PTy = TLI.getPointerTy(); 1976 unsigned IntPtrBits = PTy.getSizeInBits(); 1977 1978 Case& FrontCase = *CR.Range.first; 1979 Case& BackCase = *(CR.Range.second-1); 1980 1981 // Get the MachineFunction which holds the current MBB. This is used when 1982 // inserting any additional MBBs necessary to represent the switch. 1983 MachineFunction *CurMF = FuncInfo.MF; 1984 1985 // If target does not have legal shift left, do not emit bit tests at all. 1986 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1987 return false; 1988 1989 size_t numCmps = 0; 1990 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1991 I!=E; ++I) { 1992 // Single case counts one, case range - two. 1993 numCmps += (I->Low == I->High ? 1 : 2); 1994 } 1995 1996 // Count unique destinations 1997 SmallSet<MachineBasicBlock*, 4> Dests; 1998 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1999 Dests.insert(I->BB); 2000 if (Dests.size() > 3) 2001 // Don't bother the code below, if there are too much unique destinations 2002 return false; 2003 } 2004 DEBUG(dbgs() << "Total number of unique destinations: " 2005 << Dests.size() << '\n' 2006 << "Total number of comparisons: " << numCmps << '\n'); 2007 2008 // Compute span of values. 2009 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2010 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2011 APInt cmpRange = maxValue - minValue; 2012 2013 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2014 << "Low bound: " << minValue << '\n' 2015 << "High bound: " << maxValue << '\n'); 2016 2017 if (cmpRange.uge(IntPtrBits) || 2018 (!(Dests.size() == 1 && numCmps >= 3) && 2019 !(Dests.size() == 2 && numCmps >= 5) && 2020 !(Dests.size() >= 3 && numCmps >= 6))) 2021 return false; 2022 2023 DEBUG(dbgs() << "Emitting bit tests\n"); 2024 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2025 2026 // Optimize the case where all the case values fit in a 2027 // word without having to subtract minValue. In this case, 2028 // we can optimize away the subtraction. 2029 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2030 cmpRange = maxValue; 2031 } else { 2032 lowBound = minValue; 2033 } 2034 2035 CaseBitsVector CasesBits; 2036 unsigned i, count = 0; 2037 2038 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2039 MachineBasicBlock* Dest = I->BB; 2040 for (i = 0; i < count; ++i) 2041 if (Dest == CasesBits[i].BB) 2042 break; 2043 2044 if (i == count) { 2045 assert((count < 3) && "Too much destinations to test!"); 2046 CasesBits.push_back(CaseBits(0, Dest, 0)); 2047 count++; 2048 } 2049 2050 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2051 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2052 2053 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2054 uint64_t hi = (highValue - lowBound).getZExtValue(); 2055 2056 for (uint64_t j = lo; j <= hi; j++) { 2057 CasesBits[i].Mask |= 1ULL << j; 2058 CasesBits[i].Bits++; 2059 } 2060 2061 } 2062 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2063 2064 BitTestInfo BTC; 2065 2066 // Figure out which block is immediately after the current one. 2067 MachineFunction::iterator BBI = CR.CaseBB; 2068 ++BBI; 2069 2070 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2071 2072 DEBUG(dbgs() << "Cases:\n"); 2073 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2074 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2075 << ", Bits: " << CasesBits[i].Bits 2076 << ", BB: " << CasesBits[i].BB << '\n'); 2077 2078 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2079 CurMF->insert(BBI, CaseBB); 2080 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2081 CaseBB, 2082 CasesBits[i].BB)); 2083 2084 // Put SV in a virtual register to make it available from the new blocks. 2085 ExportFromCurrentBlock(SV); 2086 } 2087 2088 BitTestBlock BTB(lowBound, cmpRange, SV, 2089 -1U, (CR.CaseBB == SwitchBB), 2090 CR.CaseBB, Default, BTC); 2091 2092 if (CR.CaseBB == SwitchBB) 2093 visitBitTestHeader(BTB, SwitchBB); 2094 2095 BitTestCases.push_back(BTB); 2096 2097 return true; 2098 } 2099 2100 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2101 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2102 const SwitchInst& SI) { 2103 size_t numCmps = 0; 2104 2105 // Start with "simple" cases 2106 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2107 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2108 Cases.push_back(Case(SI.getSuccessorValue(i), 2109 SI.getSuccessorValue(i), 2110 SMBB)); 2111 } 2112 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2113 2114 // Merge case into clusters 2115 if (Cases.size() >= 2) 2116 // Must recompute end() each iteration because it may be 2117 // invalidated by erase if we hold on to it 2118 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2119 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2120 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2121 MachineBasicBlock* nextBB = J->BB; 2122 MachineBasicBlock* currentBB = I->BB; 2123 2124 // If the two neighboring cases go to the same destination, merge them 2125 // into a single case. 2126 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2127 I->High = J->High; 2128 J = Cases.erase(J); 2129 } else { 2130 I = J++; 2131 } 2132 } 2133 2134 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2135 if (I->Low != I->High) 2136 // A range counts double, since it requires two compares. 2137 ++numCmps; 2138 } 2139 2140 return numCmps; 2141 } 2142 2143 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2144 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2145 2146 // Figure out which block is immediately after the current one. 2147 MachineBasicBlock *NextBlock = 0; 2148 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2149 2150 // If there is only the default destination, branch to it if it is not the 2151 // next basic block. Otherwise, just fall through. 2152 if (SI.getNumOperands() == 2) { 2153 // Update machine-CFG edges. 2154 2155 // If this is not a fall-through branch, emit the branch. 2156 SwitchMBB->addSuccessor(Default); 2157 if (Default != NextBlock) 2158 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2159 MVT::Other, getControlRoot(), 2160 DAG.getBasicBlock(Default))); 2161 2162 return; 2163 } 2164 2165 // If there are any non-default case statements, create a vector of Cases 2166 // representing each one, and sort the vector so that we can efficiently 2167 // create a binary search tree from them. 2168 CaseVector Cases; 2169 size_t numCmps = Clusterify(Cases, SI); 2170 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2171 << ". Total compares: " << numCmps << '\n'); 2172 numCmps = 0; 2173 2174 // Get the Value to be switched on and default basic blocks, which will be 2175 // inserted into CaseBlock records, representing basic blocks in the binary 2176 // search tree. 2177 const Value *SV = SI.getOperand(0); 2178 2179 // Push the initial CaseRec onto the worklist 2180 CaseRecVector WorkList; 2181 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2182 CaseRange(Cases.begin(),Cases.end()))); 2183 2184 while (!WorkList.empty()) { 2185 // Grab a record representing a case range to process off the worklist 2186 CaseRec CR = WorkList.back(); 2187 WorkList.pop_back(); 2188 2189 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2190 continue; 2191 2192 // If the range has few cases (two or less) emit a series of specific 2193 // tests. 2194 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2195 continue; 2196 2197 // If the switch has more than 5 blocks, and at least 40% dense, and the 2198 // target supports indirect branches, then emit a jump table rather than 2199 // lowering the switch to a binary tree of conditional branches. 2200 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2201 continue; 2202 2203 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2204 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2205 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2206 } 2207 } 2208 2209 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2210 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2211 2212 // Update machine-CFG edges with unique successors. 2213 SmallVector<BasicBlock*, 32> succs; 2214 succs.reserve(I.getNumSuccessors()); 2215 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2216 succs.push_back(I.getSuccessor(i)); 2217 array_pod_sort(succs.begin(), succs.end()); 2218 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2219 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2220 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2221 2222 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2223 MVT::Other, getControlRoot(), 2224 getValue(I.getAddress()))); 2225 } 2226 2227 void SelectionDAGBuilder::visitFSub(const User &I) { 2228 // -0.0 - X --> fneg 2229 const Type *Ty = I.getType(); 2230 if (Ty->isVectorTy()) { 2231 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2232 const VectorType *DestTy = cast<VectorType>(I.getType()); 2233 const Type *ElTy = DestTy->getElementType(); 2234 unsigned VL = DestTy->getNumElements(); 2235 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2236 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2237 if (CV == CNZ) { 2238 SDValue Op2 = getValue(I.getOperand(1)); 2239 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2240 Op2.getValueType(), Op2)); 2241 return; 2242 } 2243 } 2244 } 2245 2246 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2247 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2248 SDValue Op2 = getValue(I.getOperand(1)); 2249 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2250 Op2.getValueType(), Op2)); 2251 return; 2252 } 2253 2254 visitBinary(I, ISD::FSUB); 2255 } 2256 2257 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2258 SDValue Op1 = getValue(I.getOperand(0)); 2259 SDValue Op2 = getValue(I.getOperand(1)); 2260 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2261 Op1.getValueType(), Op1, Op2)); 2262 } 2263 2264 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2265 SDValue Op1 = getValue(I.getOperand(0)); 2266 SDValue Op2 = getValue(I.getOperand(1)); 2267 if (!I.getType()->isVectorTy() && 2268 Op2.getValueType() != TLI.getShiftAmountTy()) { 2269 // If the operand is smaller than the shift count type, promote it. 2270 EVT PTy = TLI.getPointerTy(); 2271 EVT STy = TLI.getShiftAmountTy(); 2272 if (STy.bitsGT(Op2.getValueType())) 2273 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2274 TLI.getShiftAmountTy(), Op2); 2275 // If the operand is larger than the shift count type but the shift 2276 // count type has enough bits to represent any shift value, truncate 2277 // it now. This is a common case and it exposes the truncate to 2278 // optimization early. 2279 else if (STy.getSizeInBits() >= 2280 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2281 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2282 TLI.getShiftAmountTy(), Op2); 2283 // Otherwise we'll need to temporarily settle for some other 2284 // convenient type; type legalization will make adjustments as 2285 // needed. 2286 else if (PTy.bitsLT(Op2.getValueType())) 2287 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2288 TLI.getPointerTy(), Op2); 2289 else if (PTy.bitsGT(Op2.getValueType())) 2290 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2291 TLI.getPointerTy(), Op2); 2292 } 2293 2294 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2295 Op1.getValueType(), Op1, Op2)); 2296 } 2297 2298 void SelectionDAGBuilder::visitICmp(const User &I) { 2299 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2300 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2301 predicate = IC->getPredicate(); 2302 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2303 predicate = ICmpInst::Predicate(IC->getPredicate()); 2304 SDValue Op1 = getValue(I.getOperand(0)); 2305 SDValue Op2 = getValue(I.getOperand(1)); 2306 ISD::CondCode Opcode = getICmpCondCode(predicate); 2307 2308 EVT DestVT = TLI.getValueType(I.getType()); 2309 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2310 } 2311 2312 void SelectionDAGBuilder::visitFCmp(const User &I) { 2313 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2314 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2315 predicate = FC->getPredicate(); 2316 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2317 predicate = FCmpInst::Predicate(FC->getPredicate()); 2318 SDValue Op1 = getValue(I.getOperand(0)); 2319 SDValue Op2 = getValue(I.getOperand(1)); 2320 ISD::CondCode Condition = getFCmpCondCode(predicate); 2321 EVT DestVT = TLI.getValueType(I.getType()); 2322 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2323 } 2324 2325 void SelectionDAGBuilder::visitSelect(const User &I) { 2326 SmallVector<EVT, 4> ValueVTs; 2327 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2328 unsigned NumValues = ValueVTs.size(); 2329 if (NumValues == 0) return; 2330 2331 SmallVector<SDValue, 4> Values(NumValues); 2332 SDValue Cond = getValue(I.getOperand(0)); 2333 SDValue TrueVal = getValue(I.getOperand(1)); 2334 SDValue FalseVal = getValue(I.getOperand(2)); 2335 2336 for (unsigned i = 0; i != NumValues; ++i) 2337 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2338 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2339 Cond, 2340 SDValue(TrueVal.getNode(), 2341 TrueVal.getResNo() + i), 2342 SDValue(FalseVal.getNode(), 2343 FalseVal.getResNo() + i)); 2344 2345 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2346 DAG.getVTList(&ValueVTs[0], NumValues), 2347 &Values[0], NumValues)); 2348 } 2349 2350 void SelectionDAGBuilder::visitTrunc(const User &I) { 2351 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2352 SDValue N = getValue(I.getOperand(0)); 2353 EVT DestVT = TLI.getValueType(I.getType()); 2354 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2355 } 2356 2357 void SelectionDAGBuilder::visitZExt(const User &I) { 2358 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2359 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2360 SDValue N = getValue(I.getOperand(0)); 2361 EVT DestVT = TLI.getValueType(I.getType()); 2362 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2363 } 2364 2365 void SelectionDAGBuilder::visitSExt(const User &I) { 2366 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2367 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2368 SDValue N = getValue(I.getOperand(0)); 2369 EVT DestVT = TLI.getValueType(I.getType()); 2370 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2371 } 2372 2373 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2374 // FPTrunc is never a no-op cast, no need to check 2375 SDValue N = getValue(I.getOperand(0)); 2376 EVT DestVT = TLI.getValueType(I.getType()); 2377 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2378 DestVT, N, DAG.getIntPtrConstant(0))); 2379 } 2380 2381 void SelectionDAGBuilder::visitFPExt(const User &I){ 2382 // FPTrunc is never a no-op cast, no need to check 2383 SDValue N = getValue(I.getOperand(0)); 2384 EVT DestVT = TLI.getValueType(I.getType()); 2385 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2386 } 2387 2388 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2389 // FPToUI is never a no-op cast, no need to check 2390 SDValue N = getValue(I.getOperand(0)); 2391 EVT DestVT = TLI.getValueType(I.getType()); 2392 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2393 } 2394 2395 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2396 // FPToSI is never a no-op cast, no need to check 2397 SDValue N = getValue(I.getOperand(0)); 2398 EVT DestVT = TLI.getValueType(I.getType()); 2399 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2400 } 2401 2402 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2403 // UIToFP is never a no-op cast, no need to check 2404 SDValue N = getValue(I.getOperand(0)); 2405 EVT DestVT = TLI.getValueType(I.getType()); 2406 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2407 } 2408 2409 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2410 // SIToFP is never a no-op cast, no need to check 2411 SDValue N = getValue(I.getOperand(0)); 2412 EVT DestVT = TLI.getValueType(I.getType()); 2413 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2414 } 2415 2416 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2417 // What to do depends on the size of the integer and the size of the pointer. 2418 // We can either truncate, zero extend, or no-op, accordingly. 2419 SDValue N = getValue(I.getOperand(0)); 2420 EVT DestVT = TLI.getValueType(I.getType()); 2421 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2422 } 2423 2424 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2425 // What to do depends on the size of the integer and the size of the pointer. 2426 // We can either truncate, zero extend, or no-op, accordingly. 2427 SDValue N = getValue(I.getOperand(0)); 2428 EVT DestVT = TLI.getValueType(I.getType()); 2429 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2430 } 2431 2432 void SelectionDAGBuilder::visitBitCast(const User &I) { 2433 SDValue N = getValue(I.getOperand(0)); 2434 EVT DestVT = TLI.getValueType(I.getType()); 2435 2436 // BitCast assures us that source and destination are the same size so this is 2437 // either a BIT_CONVERT or a no-op. 2438 if (DestVT != N.getValueType()) 2439 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2440 DestVT, N)); // convert types. 2441 else 2442 setValue(&I, N); // noop cast. 2443 } 2444 2445 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2446 SDValue InVec = getValue(I.getOperand(0)); 2447 SDValue InVal = getValue(I.getOperand(1)); 2448 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2449 TLI.getPointerTy(), 2450 getValue(I.getOperand(2))); 2451 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2452 TLI.getValueType(I.getType()), 2453 InVec, InVal, InIdx)); 2454 } 2455 2456 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2457 SDValue InVec = getValue(I.getOperand(0)); 2458 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2459 TLI.getPointerTy(), 2460 getValue(I.getOperand(1))); 2461 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2462 TLI.getValueType(I.getType()), InVec, InIdx)); 2463 } 2464 2465 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2466 // from SIndx and increasing to the element length (undefs are allowed). 2467 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2468 unsigned MaskNumElts = Mask.size(); 2469 for (unsigned i = 0; i != MaskNumElts; ++i) 2470 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2471 return false; 2472 return true; 2473 } 2474 2475 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2476 SmallVector<int, 8> Mask; 2477 SDValue Src1 = getValue(I.getOperand(0)); 2478 SDValue Src2 = getValue(I.getOperand(1)); 2479 2480 // Convert the ConstantVector mask operand into an array of ints, with -1 2481 // representing undef values. 2482 SmallVector<Constant*, 8> MaskElts; 2483 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2484 unsigned MaskNumElts = MaskElts.size(); 2485 for (unsigned i = 0; i != MaskNumElts; ++i) { 2486 if (isa<UndefValue>(MaskElts[i])) 2487 Mask.push_back(-1); 2488 else 2489 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2490 } 2491 2492 EVT VT = TLI.getValueType(I.getType()); 2493 EVT SrcVT = Src1.getValueType(); 2494 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2495 2496 if (SrcNumElts == MaskNumElts) { 2497 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2498 &Mask[0])); 2499 return; 2500 } 2501 2502 // Normalize the shuffle vector since mask and vector length don't match. 2503 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2504 // Mask is longer than the source vectors and is a multiple of the source 2505 // vectors. We can use concatenate vector to make the mask and vectors 2506 // lengths match. 2507 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2508 // The shuffle is concatenating two vectors together. 2509 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2510 VT, Src1, Src2)); 2511 return; 2512 } 2513 2514 // Pad both vectors with undefs to make them the same length as the mask. 2515 unsigned NumConcat = MaskNumElts / SrcNumElts; 2516 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2517 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2518 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2519 2520 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2521 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2522 MOps1[0] = Src1; 2523 MOps2[0] = Src2; 2524 2525 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2526 getCurDebugLoc(), VT, 2527 &MOps1[0], NumConcat); 2528 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2529 getCurDebugLoc(), VT, 2530 &MOps2[0], NumConcat); 2531 2532 // Readjust mask for new input vector length. 2533 SmallVector<int, 8> MappedOps; 2534 for (unsigned i = 0; i != MaskNumElts; ++i) { 2535 int Idx = Mask[i]; 2536 if (Idx < (int)SrcNumElts) 2537 MappedOps.push_back(Idx); 2538 else 2539 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2540 } 2541 2542 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2543 &MappedOps[0])); 2544 return; 2545 } 2546 2547 if (SrcNumElts > MaskNumElts) { 2548 // Analyze the access pattern of the vector to see if we can extract 2549 // two subvectors and do the shuffle. The analysis is done by calculating 2550 // the range of elements the mask access on both vectors. 2551 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2552 int MaxRange[2] = {-1, -1}; 2553 2554 for (unsigned i = 0; i != MaskNumElts; ++i) { 2555 int Idx = Mask[i]; 2556 int Input = 0; 2557 if (Idx < 0) 2558 continue; 2559 2560 if (Idx >= (int)SrcNumElts) { 2561 Input = 1; 2562 Idx -= SrcNumElts; 2563 } 2564 if (Idx > MaxRange[Input]) 2565 MaxRange[Input] = Idx; 2566 if (Idx < MinRange[Input]) 2567 MinRange[Input] = Idx; 2568 } 2569 2570 // Check if the access is smaller than the vector size and can we find 2571 // a reasonable extract index. 2572 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2573 // Extract. 2574 int StartIdx[2]; // StartIdx to extract from 2575 for (int Input=0; Input < 2; ++Input) { 2576 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2577 RangeUse[Input] = 0; // Unused 2578 StartIdx[Input] = 0; 2579 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2580 // Fits within range but we should see if we can find a good 2581 // start index that is a multiple of the mask length. 2582 if (MaxRange[Input] < (int)MaskNumElts) { 2583 RangeUse[Input] = 1; // Extract from beginning of the vector 2584 StartIdx[Input] = 0; 2585 } else { 2586 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2587 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2588 StartIdx[Input] + MaskNumElts < SrcNumElts) 2589 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2590 } 2591 } 2592 } 2593 2594 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2595 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2596 return; 2597 } 2598 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2599 // Extract appropriate subvector and generate a vector shuffle 2600 for (int Input=0; Input < 2; ++Input) { 2601 SDValue &Src = Input == 0 ? Src1 : Src2; 2602 if (RangeUse[Input] == 0) 2603 Src = DAG.getUNDEF(VT); 2604 else 2605 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2606 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2607 } 2608 2609 // Calculate new mask. 2610 SmallVector<int, 8> MappedOps; 2611 for (unsigned i = 0; i != MaskNumElts; ++i) { 2612 int Idx = Mask[i]; 2613 if (Idx < 0) 2614 MappedOps.push_back(Idx); 2615 else if (Idx < (int)SrcNumElts) 2616 MappedOps.push_back(Idx - StartIdx[0]); 2617 else 2618 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2619 } 2620 2621 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2622 &MappedOps[0])); 2623 return; 2624 } 2625 } 2626 2627 // We can't use either concat vectors or extract subvectors so fall back to 2628 // replacing the shuffle with extract and build vector. 2629 // to insert and build vector. 2630 EVT EltVT = VT.getVectorElementType(); 2631 EVT PtrVT = TLI.getPointerTy(); 2632 SmallVector<SDValue,8> Ops; 2633 for (unsigned i = 0; i != MaskNumElts; ++i) { 2634 if (Mask[i] < 0) { 2635 Ops.push_back(DAG.getUNDEF(EltVT)); 2636 } else { 2637 int Idx = Mask[i]; 2638 SDValue Res; 2639 2640 if (Idx < (int)SrcNumElts) 2641 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2642 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2643 else 2644 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2645 EltVT, Src2, 2646 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2647 2648 Ops.push_back(Res); 2649 } 2650 } 2651 2652 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2653 VT, &Ops[0], Ops.size())); 2654 } 2655 2656 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2657 const Value *Op0 = I.getOperand(0); 2658 const Value *Op1 = I.getOperand(1); 2659 const Type *AggTy = I.getType(); 2660 const Type *ValTy = Op1->getType(); 2661 bool IntoUndef = isa<UndefValue>(Op0); 2662 bool FromUndef = isa<UndefValue>(Op1); 2663 2664 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2665 I.idx_begin(), I.idx_end()); 2666 2667 SmallVector<EVT, 4> AggValueVTs; 2668 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2669 SmallVector<EVT, 4> ValValueVTs; 2670 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2671 2672 unsigned NumAggValues = AggValueVTs.size(); 2673 unsigned NumValValues = ValValueVTs.size(); 2674 SmallVector<SDValue, 4> Values(NumAggValues); 2675 2676 SDValue Agg = getValue(Op0); 2677 SDValue Val = getValue(Op1); 2678 unsigned i = 0; 2679 // Copy the beginning value(s) from the original aggregate. 2680 for (; i != LinearIndex; ++i) 2681 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2682 SDValue(Agg.getNode(), Agg.getResNo() + i); 2683 // Copy values from the inserted value(s). 2684 for (; i != LinearIndex + NumValValues; ++i) 2685 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2686 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2687 // Copy remaining value(s) from the original aggregate. 2688 for (; i != NumAggValues; ++i) 2689 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2690 SDValue(Agg.getNode(), Agg.getResNo() + i); 2691 2692 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2693 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2694 &Values[0], NumAggValues)); 2695 } 2696 2697 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2698 const Value *Op0 = I.getOperand(0); 2699 const Type *AggTy = Op0->getType(); 2700 const Type *ValTy = I.getType(); 2701 bool OutOfUndef = isa<UndefValue>(Op0); 2702 2703 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2704 I.idx_begin(), I.idx_end()); 2705 2706 SmallVector<EVT, 4> ValValueVTs; 2707 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2708 2709 unsigned NumValValues = ValValueVTs.size(); 2710 SmallVector<SDValue, 4> Values(NumValValues); 2711 2712 SDValue Agg = getValue(Op0); 2713 // Copy out the selected value(s). 2714 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2715 Values[i - LinearIndex] = 2716 OutOfUndef ? 2717 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2718 SDValue(Agg.getNode(), Agg.getResNo() + i); 2719 2720 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2721 DAG.getVTList(&ValValueVTs[0], NumValValues), 2722 &Values[0], NumValValues)); 2723 } 2724 2725 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2726 SDValue N = getValue(I.getOperand(0)); 2727 const Type *Ty = I.getOperand(0)->getType(); 2728 2729 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2730 OI != E; ++OI) { 2731 const Value *Idx = *OI; 2732 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2733 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2734 if (Field) { 2735 // N = N + Offset 2736 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2737 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2738 DAG.getIntPtrConstant(Offset)); 2739 } 2740 2741 Ty = StTy->getElementType(Field); 2742 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2743 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2744 2745 // Offset canonically 0 for unions, but type changes 2746 Ty = UnTy->getElementType(Field); 2747 } else { 2748 Ty = cast<SequentialType>(Ty)->getElementType(); 2749 2750 // If this is a constant subscript, handle it quickly. 2751 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2752 if (CI->isZero()) continue; 2753 uint64_t Offs = 2754 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2755 SDValue OffsVal; 2756 EVT PTy = TLI.getPointerTy(); 2757 unsigned PtrBits = PTy.getSizeInBits(); 2758 if (PtrBits < 64) 2759 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2760 TLI.getPointerTy(), 2761 DAG.getConstant(Offs, MVT::i64)); 2762 else 2763 OffsVal = DAG.getIntPtrConstant(Offs); 2764 2765 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2766 OffsVal); 2767 continue; 2768 } 2769 2770 // N = N + Idx * ElementSize; 2771 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2772 TD->getTypeAllocSize(Ty)); 2773 SDValue IdxN = getValue(Idx); 2774 2775 // If the index is smaller or larger than intptr_t, truncate or extend 2776 // it. 2777 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2778 2779 // If this is a multiply by a power of two, turn it into a shl 2780 // immediately. This is a very common case. 2781 if (ElementSize != 1) { 2782 if (ElementSize.isPowerOf2()) { 2783 unsigned Amt = ElementSize.logBase2(); 2784 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2785 N.getValueType(), IdxN, 2786 DAG.getConstant(Amt, TLI.getPointerTy())); 2787 } else { 2788 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2789 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2790 N.getValueType(), IdxN, Scale); 2791 } 2792 } 2793 2794 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2795 N.getValueType(), N, IdxN); 2796 } 2797 } 2798 2799 setValue(&I, N); 2800 } 2801 2802 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2803 // If this is a fixed sized alloca in the entry block of the function, 2804 // allocate it statically on the stack. 2805 if (FuncInfo.StaticAllocaMap.count(&I)) 2806 return; // getValue will auto-populate this. 2807 2808 const Type *Ty = I.getAllocatedType(); 2809 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2810 unsigned Align = 2811 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2812 I.getAlignment()); 2813 2814 SDValue AllocSize = getValue(I.getArraySize()); 2815 2816 EVT IntPtr = TLI.getPointerTy(); 2817 if (AllocSize.getValueType() != IntPtr) 2818 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2819 2820 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2821 AllocSize, 2822 DAG.getConstant(TySize, IntPtr)); 2823 2824 // Handle alignment. If the requested alignment is less than or equal to 2825 // the stack alignment, ignore it. If the size is greater than or equal to 2826 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2827 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2828 if (Align <= StackAlign) 2829 Align = 0; 2830 2831 // Round the size of the allocation up to the stack alignment size 2832 // by add SA-1 to the size. 2833 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2834 AllocSize.getValueType(), AllocSize, 2835 DAG.getIntPtrConstant(StackAlign-1)); 2836 2837 // Mask out the low bits for alignment purposes. 2838 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2839 AllocSize.getValueType(), AllocSize, 2840 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2841 2842 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2843 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2844 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2845 VTs, Ops, 3); 2846 setValue(&I, DSA); 2847 DAG.setRoot(DSA.getValue(1)); 2848 2849 // Inform the Frame Information that we have just allocated a variable-sized 2850 // object. 2851 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2852 } 2853 2854 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2855 const Value *SV = I.getOperand(0); 2856 SDValue Ptr = getValue(SV); 2857 2858 const Type *Ty = I.getType(); 2859 2860 bool isVolatile = I.isVolatile(); 2861 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2862 unsigned Alignment = I.getAlignment(); 2863 2864 SmallVector<EVT, 4> ValueVTs; 2865 SmallVector<uint64_t, 4> Offsets; 2866 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2867 unsigned NumValues = ValueVTs.size(); 2868 if (NumValues == 0) 2869 return; 2870 2871 SDValue Root; 2872 bool ConstantMemory = false; 2873 if (I.isVolatile()) 2874 // Serialize volatile loads with other side effects. 2875 Root = getRoot(); 2876 else if (AA->pointsToConstantMemory(SV)) { 2877 // Do not serialize (non-volatile) loads of constant memory with anything. 2878 Root = DAG.getEntryNode(); 2879 ConstantMemory = true; 2880 } else { 2881 // Do not serialize non-volatile loads against each other. 2882 Root = DAG.getRoot(); 2883 } 2884 2885 SmallVector<SDValue, 4> Values(NumValues); 2886 SmallVector<SDValue, 4> Chains(NumValues); 2887 EVT PtrVT = Ptr.getValueType(); 2888 for (unsigned i = 0; i != NumValues; ++i) { 2889 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2890 PtrVT, Ptr, 2891 DAG.getConstant(Offsets[i], PtrVT)); 2892 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2893 A, SV, Offsets[i], isVolatile, 2894 isNonTemporal, Alignment); 2895 2896 Values[i] = L; 2897 Chains[i] = L.getValue(1); 2898 } 2899 2900 if (!ConstantMemory) { 2901 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2902 MVT::Other, &Chains[0], NumValues); 2903 if (isVolatile) 2904 DAG.setRoot(Chain); 2905 else 2906 PendingLoads.push_back(Chain); 2907 } 2908 2909 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2910 DAG.getVTList(&ValueVTs[0], NumValues), 2911 &Values[0], NumValues)); 2912 } 2913 2914 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2915 const Value *SrcV = I.getOperand(0); 2916 const Value *PtrV = I.getOperand(1); 2917 2918 SmallVector<EVT, 4> ValueVTs; 2919 SmallVector<uint64_t, 4> Offsets; 2920 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2921 unsigned NumValues = ValueVTs.size(); 2922 if (NumValues == 0) 2923 return; 2924 2925 // Get the lowered operands. Note that we do this after 2926 // checking if NumResults is zero, because with zero results 2927 // the operands won't have values in the map. 2928 SDValue Src = getValue(SrcV); 2929 SDValue Ptr = getValue(PtrV); 2930 2931 SDValue Root = getRoot(); 2932 SmallVector<SDValue, 4> Chains(NumValues); 2933 EVT PtrVT = Ptr.getValueType(); 2934 bool isVolatile = I.isVolatile(); 2935 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2936 unsigned Alignment = I.getAlignment(); 2937 2938 for (unsigned i = 0; i != NumValues; ++i) { 2939 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 2940 DAG.getConstant(Offsets[i], PtrVT)); 2941 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 2942 SDValue(Src.getNode(), Src.getResNo() + i), 2943 Add, PtrV, Offsets[i], isVolatile, 2944 isNonTemporal, Alignment); 2945 } 2946 2947 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2948 MVT::Other, &Chains[0], NumValues)); 2949 } 2950 2951 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2952 /// node. 2953 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 2954 unsigned Intrinsic) { 2955 bool HasChain = !I.doesNotAccessMemory(); 2956 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2957 2958 // Build the operand list. 2959 SmallVector<SDValue, 8> Ops; 2960 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2961 if (OnlyLoad) { 2962 // We don't need to serialize loads against other loads. 2963 Ops.push_back(DAG.getRoot()); 2964 } else { 2965 Ops.push_back(getRoot()); 2966 } 2967 } 2968 2969 // Info is set by getTgtMemInstrinsic 2970 TargetLowering::IntrinsicInfo Info; 2971 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 2972 2973 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 2974 if (!IsTgtIntrinsic) 2975 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 2976 2977 // Add all operands of the call to the operand list. 2978 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 2979 SDValue Op = getValue(I.getArgOperand(i)); 2980 assert(TLI.isTypeLegal(Op.getValueType()) && 2981 "Intrinsic uses a non-legal type?"); 2982 Ops.push_back(Op); 2983 } 2984 2985 SmallVector<EVT, 4> ValueVTs; 2986 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2987 #ifndef NDEBUG 2988 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 2989 assert(TLI.isTypeLegal(ValueVTs[Val]) && 2990 "Intrinsic uses a non-legal type?"); 2991 } 2992 #endif // NDEBUG 2993 2994 if (HasChain) 2995 ValueVTs.push_back(MVT::Other); 2996 2997 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 2998 2999 // Create the node. 3000 SDValue Result; 3001 if (IsTgtIntrinsic) { 3002 // This is target intrinsic that touches memory 3003 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3004 VTs, &Ops[0], Ops.size(), 3005 Info.memVT, Info.ptrVal, Info.offset, 3006 Info.align, Info.vol, 3007 Info.readMem, Info.writeMem); 3008 } else if (!HasChain) { 3009 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3010 VTs, &Ops[0], Ops.size()); 3011 } else if (!I.getType()->isVoidTy()) { 3012 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3013 VTs, &Ops[0], Ops.size()); 3014 } else { 3015 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3016 VTs, &Ops[0], Ops.size()); 3017 } 3018 3019 if (HasChain) { 3020 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3021 if (OnlyLoad) 3022 PendingLoads.push_back(Chain); 3023 else 3024 DAG.setRoot(Chain); 3025 } 3026 3027 if (!I.getType()->isVoidTy()) { 3028 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3029 EVT VT = TLI.getValueType(PTy); 3030 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3031 } 3032 3033 setValue(&I, Result); 3034 } 3035 } 3036 3037 /// GetSignificand - Get the significand and build it into a floating-point 3038 /// number with exponent of 1: 3039 /// 3040 /// Op = (Op & 0x007fffff) | 0x3f800000; 3041 /// 3042 /// where Op is the hexidecimal representation of floating point value. 3043 static SDValue 3044 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3045 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3046 DAG.getConstant(0x007fffff, MVT::i32)); 3047 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3048 DAG.getConstant(0x3f800000, MVT::i32)); 3049 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3050 } 3051 3052 /// GetExponent - Get the exponent: 3053 /// 3054 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3055 /// 3056 /// where Op is the hexidecimal representation of floating point value. 3057 static SDValue 3058 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3059 DebugLoc dl) { 3060 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3061 DAG.getConstant(0x7f800000, MVT::i32)); 3062 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3063 DAG.getConstant(23, TLI.getPointerTy())); 3064 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3065 DAG.getConstant(127, MVT::i32)); 3066 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3067 } 3068 3069 /// getF32Constant - Get 32-bit floating point constant. 3070 static SDValue 3071 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3072 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3073 } 3074 3075 /// Inlined utility function to implement binary input atomic intrinsics for 3076 /// visitIntrinsicCall: I is a call instruction 3077 /// Op is the associated NodeType for I 3078 const char * 3079 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3080 ISD::NodeType Op) { 3081 SDValue Root = getRoot(); 3082 SDValue L = 3083 DAG.getAtomic(Op, getCurDebugLoc(), 3084 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3085 Root, 3086 getValue(I.getArgOperand(0)), 3087 getValue(I.getArgOperand(1)), 3088 I.getArgOperand(0)); 3089 setValue(&I, L); 3090 DAG.setRoot(L.getValue(1)); 3091 return 0; 3092 } 3093 3094 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3095 const char * 3096 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3097 SDValue Op1 = getValue(I.getArgOperand(0)); 3098 SDValue Op2 = getValue(I.getArgOperand(1)); 3099 3100 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3101 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3102 return 0; 3103 } 3104 3105 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3106 /// limited-precision mode. 3107 void 3108 SelectionDAGBuilder::visitExp(const CallInst &I) { 3109 SDValue result; 3110 DebugLoc dl = getCurDebugLoc(); 3111 3112 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3113 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3114 SDValue Op = getValue(I.getArgOperand(0)); 3115 3116 // Put the exponent in the right bit position for later addition to the 3117 // final result: 3118 // 3119 // #define LOG2OFe 1.4426950f 3120 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3121 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3122 getF32Constant(DAG, 0x3fb8aa3b)); 3123 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3124 3125 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3126 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3127 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3128 3129 // IntegerPartOfX <<= 23; 3130 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3131 DAG.getConstant(23, TLI.getPointerTy())); 3132 3133 if (LimitFloatPrecision <= 6) { 3134 // For floating-point precision of 6: 3135 // 3136 // TwoToFractionalPartOfX = 3137 // 0.997535578f + 3138 // (0.735607626f + 0.252464424f * x) * x; 3139 // 3140 // error 0.0144103317, which is 6 bits 3141 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3142 getF32Constant(DAG, 0x3e814304)); 3143 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3144 getF32Constant(DAG, 0x3f3c50c8)); 3145 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3146 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3147 getF32Constant(DAG, 0x3f7f5e7e)); 3148 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3149 3150 // Add the exponent into the result in integer domain. 3151 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3152 TwoToFracPartOfX, IntegerPartOfX); 3153 3154 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3155 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3156 // For floating-point precision of 12: 3157 // 3158 // TwoToFractionalPartOfX = 3159 // 0.999892986f + 3160 // (0.696457318f + 3161 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3162 // 3163 // 0.000107046256 error, which is 13 to 14 bits 3164 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3165 getF32Constant(DAG, 0x3da235e3)); 3166 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3167 getF32Constant(DAG, 0x3e65b8f3)); 3168 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3169 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3170 getF32Constant(DAG, 0x3f324b07)); 3171 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3172 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3173 getF32Constant(DAG, 0x3f7ff8fd)); 3174 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3175 3176 // Add the exponent into the result in integer domain. 3177 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3178 TwoToFracPartOfX, IntegerPartOfX); 3179 3180 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3181 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3182 // For floating-point precision of 18: 3183 // 3184 // TwoToFractionalPartOfX = 3185 // 0.999999982f + 3186 // (0.693148872f + 3187 // (0.240227044f + 3188 // (0.554906021e-1f + 3189 // (0.961591928e-2f + 3190 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3191 // 3192 // error 2.47208000*10^(-7), which is better than 18 bits 3193 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3194 getF32Constant(DAG, 0x3924b03e)); 3195 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3196 getF32Constant(DAG, 0x3ab24b87)); 3197 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3198 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3199 getF32Constant(DAG, 0x3c1d8c17)); 3200 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3201 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3202 getF32Constant(DAG, 0x3d634a1d)); 3203 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3204 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3205 getF32Constant(DAG, 0x3e75fe14)); 3206 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3207 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3208 getF32Constant(DAG, 0x3f317234)); 3209 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3210 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3211 getF32Constant(DAG, 0x3f800000)); 3212 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3213 MVT::i32, t13); 3214 3215 // Add the exponent into the result in integer domain. 3216 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3217 TwoToFracPartOfX, IntegerPartOfX); 3218 3219 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3220 } 3221 } else { 3222 // No special expansion. 3223 result = DAG.getNode(ISD::FEXP, dl, 3224 getValue(I.getArgOperand(0)).getValueType(), 3225 getValue(I.getArgOperand(0))); 3226 } 3227 3228 setValue(&I, result); 3229 } 3230 3231 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3232 /// limited-precision mode. 3233 void 3234 SelectionDAGBuilder::visitLog(const CallInst &I) { 3235 SDValue result; 3236 DebugLoc dl = getCurDebugLoc(); 3237 3238 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3239 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3240 SDValue Op = getValue(I.getArgOperand(0)); 3241 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3242 3243 // Scale the exponent by log(2) [0.69314718f]. 3244 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3245 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3246 getF32Constant(DAG, 0x3f317218)); 3247 3248 // Get the significand and build it into a floating-point number with 3249 // exponent of 1. 3250 SDValue X = GetSignificand(DAG, Op1, dl); 3251 3252 if (LimitFloatPrecision <= 6) { 3253 // For floating-point precision of 6: 3254 // 3255 // LogofMantissa = 3256 // -1.1609546f + 3257 // (1.4034025f - 0.23903021f * x) * x; 3258 // 3259 // error 0.0034276066, which is better than 8 bits 3260 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3261 getF32Constant(DAG, 0xbe74c456)); 3262 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3263 getF32Constant(DAG, 0x3fb3a2b1)); 3264 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3265 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3266 getF32Constant(DAG, 0x3f949a29)); 3267 3268 result = DAG.getNode(ISD::FADD, dl, 3269 MVT::f32, LogOfExponent, LogOfMantissa); 3270 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3271 // For floating-point precision of 12: 3272 // 3273 // LogOfMantissa = 3274 // -1.7417939f + 3275 // (2.8212026f + 3276 // (-1.4699568f + 3277 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3278 // 3279 // error 0.000061011436, which is 14 bits 3280 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3281 getF32Constant(DAG, 0xbd67b6d6)); 3282 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3283 getF32Constant(DAG, 0x3ee4f4b8)); 3284 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3285 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3286 getF32Constant(DAG, 0x3fbc278b)); 3287 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3288 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3289 getF32Constant(DAG, 0x40348e95)); 3290 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3291 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3292 getF32Constant(DAG, 0x3fdef31a)); 3293 3294 result = DAG.getNode(ISD::FADD, dl, 3295 MVT::f32, LogOfExponent, LogOfMantissa); 3296 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3297 // For floating-point precision of 18: 3298 // 3299 // LogOfMantissa = 3300 // -2.1072184f + 3301 // (4.2372794f + 3302 // (-3.7029485f + 3303 // (2.2781945f + 3304 // (-0.87823314f + 3305 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3306 // 3307 // error 0.0000023660568, which is better than 18 bits 3308 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3309 getF32Constant(DAG, 0xbc91e5ac)); 3310 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3311 getF32Constant(DAG, 0x3e4350aa)); 3312 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3313 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3314 getF32Constant(DAG, 0x3f60d3e3)); 3315 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3316 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3317 getF32Constant(DAG, 0x4011cdf0)); 3318 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3319 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3320 getF32Constant(DAG, 0x406cfd1c)); 3321 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3322 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3323 getF32Constant(DAG, 0x408797cb)); 3324 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3325 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3326 getF32Constant(DAG, 0x4006dcab)); 3327 3328 result = DAG.getNode(ISD::FADD, dl, 3329 MVT::f32, LogOfExponent, LogOfMantissa); 3330 } 3331 } else { 3332 // No special expansion. 3333 result = DAG.getNode(ISD::FLOG, dl, 3334 getValue(I.getArgOperand(0)).getValueType(), 3335 getValue(I.getArgOperand(0))); 3336 } 3337 3338 setValue(&I, result); 3339 } 3340 3341 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3342 /// limited-precision mode. 3343 void 3344 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3345 SDValue result; 3346 DebugLoc dl = getCurDebugLoc(); 3347 3348 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3349 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3350 SDValue Op = getValue(I.getArgOperand(0)); 3351 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3352 3353 // Get the exponent. 3354 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3355 3356 // Get the significand and build it into a floating-point number with 3357 // exponent of 1. 3358 SDValue X = GetSignificand(DAG, Op1, dl); 3359 3360 // Different possible minimax approximations of significand in 3361 // floating-point for various degrees of accuracy over [1,2]. 3362 if (LimitFloatPrecision <= 6) { 3363 // For floating-point precision of 6: 3364 // 3365 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3366 // 3367 // error 0.0049451742, which is more than 7 bits 3368 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3369 getF32Constant(DAG, 0xbeb08fe0)); 3370 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3371 getF32Constant(DAG, 0x40019463)); 3372 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3373 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3374 getF32Constant(DAG, 0x3fd6633d)); 3375 3376 result = DAG.getNode(ISD::FADD, dl, 3377 MVT::f32, LogOfExponent, Log2ofMantissa); 3378 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3379 // For floating-point precision of 12: 3380 // 3381 // Log2ofMantissa = 3382 // -2.51285454f + 3383 // (4.07009056f + 3384 // (-2.12067489f + 3385 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3386 // 3387 // error 0.0000876136000, which is better than 13 bits 3388 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3389 getF32Constant(DAG, 0xbda7262e)); 3390 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3391 getF32Constant(DAG, 0x3f25280b)); 3392 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3393 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3394 getF32Constant(DAG, 0x4007b923)); 3395 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3396 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3397 getF32Constant(DAG, 0x40823e2f)); 3398 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3399 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3400 getF32Constant(DAG, 0x4020d29c)); 3401 3402 result = DAG.getNode(ISD::FADD, dl, 3403 MVT::f32, LogOfExponent, Log2ofMantissa); 3404 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3405 // For floating-point precision of 18: 3406 // 3407 // Log2ofMantissa = 3408 // -3.0400495f + 3409 // (6.1129976f + 3410 // (-5.3420409f + 3411 // (3.2865683f + 3412 // (-1.2669343f + 3413 // (0.27515199f - 3414 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3415 // 3416 // error 0.0000018516, which is better than 18 bits 3417 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3418 getF32Constant(DAG, 0xbcd2769e)); 3419 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3420 getF32Constant(DAG, 0x3e8ce0b9)); 3421 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3422 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3423 getF32Constant(DAG, 0x3fa22ae7)); 3424 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3425 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3426 getF32Constant(DAG, 0x40525723)); 3427 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3428 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3429 getF32Constant(DAG, 0x40aaf200)); 3430 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3431 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3432 getF32Constant(DAG, 0x40c39dad)); 3433 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3434 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3435 getF32Constant(DAG, 0x4042902c)); 3436 3437 result = DAG.getNode(ISD::FADD, dl, 3438 MVT::f32, LogOfExponent, Log2ofMantissa); 3439 } 3440 } else { 3441 // No special expansion. 3442 result = DAG.getNode(ISD::FLOG2, dl, 3443 getValue(I.getArgOperand(0)).getValueType(), 3444 getValue(I.getArgOperand(0))); 3445 } 3446 3447 setValue(&I, result); 3448 } 3449 3450 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3451 /// limited-precision mode. 3452 void 3453 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3454 SDValue result; 3455 DebugLoc dl = getCurDebugLoc(); 3456 3457 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3458 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3459 SDValue Op = getValue(I.getArgOperand(0)); 3460 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3461 3462 // Scale the exponent by log10(2) [0.30102999f]. 3463 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3464 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3465 getF32Constant(DAG, 0x3e9a209a)); 3466 3467 // Get the significand and build it into a floating-point number with 3468 // exponent of 1. 3469 SDValue X = GetSignificand(DAG, Op1, dl); 3470 3471 if (LimitFloatPrecision <= 6) { 3472 // For floating-point precision of 6: 3473 // 3474 // Log10ofMantissa = 3475 // -0.50419619f + 3476 // (0.60948995f - 0.10380950f * x) * x; 3477 // 3478 // error 0.0014886165, which is 6 bits 3479 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3480 getF32Constant(DAG, 0xbdd49a13)); 3481 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3482 getF32Constant(DAG, 0x3f1c0789)); 3483 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3484 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3485 getF32Constant(DAG, 0x3f011300)); 3486 3487 result = DAG.getNode(ISD::FADD, dl, 3488 MVT::f32, LogOfExponent, Log10ofMantissa); 3489 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3490 // For floating-point precision of 12: 3491 // 3492 // Log10ofMantissa = 3493 // -0.64831180f + 3494 // (0.91751397f + 3495 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3496 // 3497 // error 0.00019228036, which is better than 12 bits 3498 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3499 getF32Constant(DAG, 0x3d431f31)); 3500 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3501 getF32Constant(DAG, 0x3ea21fb2)); 3502 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3503 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3504 getF32Constant(DAG, 0x3f6ae232)); 3505 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3506 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3507 getF32Constant(DAG, 0x3f25f7c3)); 3508 3509 result = DAG.getNode(ISD::FADD, dl, 3510 MVT::f32, LogOfExponent, Log10ofMantissa); 3511 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3512 // For floating-point precision of 18: 3513 // 3514 // Log10ofMantissa = 3515 // -0.84299375f + 3516 // (1.5327582f + 3517 // (-1.0688956f + 3518 // (0.49102474f + 3519 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3520 // 3521 // error 0.0000037995730, which is better than 18 bits 3522 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3523 getF32Constant(DAG, 0x3c5d51ce)); 3524 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3525 getF32Constant(DAG, 0x3e00685a)); 3526 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3527 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3528 getF32Constant(DAG, 0x3efb6798)); 3529 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3530 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3531 getF32Constant(DAG, 0x3f88d192)); 3532 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3533 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3534 getF32Constant(DAG, 0x3fc4316c)); 3535 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3536 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3537 getF32Constant(DAG, 0x3f57ce70)); 3538 3539 result = DAG.getNode(ISD::FADD, dl, 3540 MVT::f32, LogOfExponent, Log10ofMantissa); 3541 } 3542 } else { 3543 // No special expansion. 3544 result = DAG.getNode(ISD::FLOG10, dl, 3545 getValue(I.getArgOperand(0)).getValueType(), 3546 getValue(I.getArgOperand(0))); 3547 } 3548 3549 setValue(&I, result); 3550 } 3551 3552 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3553 /// limited-precision mode. 3554 void 3555 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3556 SDValue result; 3557 DebugLoc dl = getCurDebugLoc(); 3558 3559 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3560 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3561 SDValue Op = getValue(I.getArgOperand(0)); 3562 3563 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3564 3565 // FractionalPartOfX = x - (float)IntegerPartOfX; 3566 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3567 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3568 3569 // IntegerPartOfX <<= 23; 3570 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3571 DAG.getConstant(23, TLI.getPointerTy())); 3572 3573 if (LimitFloatPrecision <= 6) { 3574 // For floating-point precision of 6: 3575 // 3576 // TwoToFractionalPartOfX = 3577 // 0.997535578f + 3578 // (0.735607626f + 0.252464424f * x) * x; 3579 // 3580 // error 0.0144103317, which is 6 bits 3581 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3582 getF32Constant(DAG, 0x3e814304)); 3583 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3584 getF32Constant(DAG, 0x3f3c50c8)); 3585 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3586 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3587 getF32Constant(DAG, 0x3f7f5e7e)); 3588 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3589 SDValue TwoToFractionalPartOfX = 3590 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3591 3592 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3593 MVT::f32, TwoToFractionalPartOfX); 3594 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3595 // For floating-point precision of 12: 3596 // 3597 // TwoToFractionalPartOfX = 3598 // 0.999892986f + 3599 // (0.696457318f + 3600 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3601 // 3602 // error 0.000107046256, which is 13 to 14 bits 3603 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3604 getF32Constant(DAG, 0x3da235e3)); 3605 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3606 getF32Constant(DAG, 0x3e65b8f3)); 3607 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3608 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3609 getF32Constant(DAG, 0x3f324b07)); 3610 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3611 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3612 getF32Constant(DAG, 0x3f7ff8fd)); 3613 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3614 SDValue TwoToFractionalPartOfX = 3615 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3616 3617 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3618 MVT::f32, TwoToFractionalPartOfX); 3619 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3620 // For floating-point precision of 18: 3621 // 3622 // TwoToFractionalPartOfX = 3623 // 0.999999982f + 3624 // (0.693148872f + 3625 // (0.240227044f + 3626 // (0.554906021e-1f + 3627 // (0.961591928e-2f + 3628 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3629 // error 2.47208000*10^(-7), which is better than 18 bits 3630 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3631 getF32Constant(DAG, 0x3924b03e)); 3632 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3633 getF32Constant(DAG, 0x3ab24b87)); 3634 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3635 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3636 getF32Constant(DAG, 0x3c1d8c17)); 3637 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3638 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3639 getF32Constant(DAG, 0x3d634a1d)); 3640 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3641 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3642 getF32Constant(DAG, 0x3e75fe14)); 3643 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3644 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3645 getF32Constant(DAG, 0x3f317234)); 3646 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3647 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3648 getF32Constant(DAG, 0x3f800000)); 3649 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3650 SDValue TwoToFractionalPartOfX = 3651 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3652 3653 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3654 MVT::f32, TwoToFractionalPartOfX); 3655 } 3656 } else { 3657 // No special expansion. 3658 result = DAG.getNode(ISD::FEXP2, dl, 3659 getValue(I.getArgOperand(0)).getValueType(), 3660 getValue(I.getArgOperand(0))); 3661 } 3662 3663 setValue(&I, result); 3664 } 3665 3666 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3667 /// limited-precision mode with x == 10.0f. 3668 void 3669 SelectionDAGBuilder::visitPow(const CallInst &I) { 3670 SDValue result; 3671 const Value *Val = I.getArgOperand(0); 3672 DebugLoc dl = getCurDebugLoc(); 3673 bool IsExp10 = false; 3674 3675 if (getValue(Val).getValueType() == MVT::f32 && 3676 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3677 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3678 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3679 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3680 APFloat Ten(10.0f); 3681 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3682 } 3683 } 3684 } 3685 3686 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3687 SDValue Op = getValue(I.getArgOperand(1)); 3688 3689 // Put the exponent in the right bit position for later addition to the 3690 // final result: 3691 // 3692 // #define LOG2OF10 3.3219281f 3693 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3694 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3695 getF32Constant(DAG, 0x40549a78)); 3696 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3697 3698 // FractionalPartOfX = x - (float)IntegerPartOfX; 3699 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3700 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3701 3702 // IntegerPartOfX <<= 23; 3703 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3704 DAG.getConstant(23, TLI.getPointerTy())); 3705 3706 if (LimitFloatPrecision <= 6) { 3707 // For floating-point precision of 6: 3708 // 3709 // twoToFractionalPartOfX = 3710 // 0.997535578f + 3711 // (0.735607626f + 0.252464424f * x) * x; 3712 // 3713 // error 0.0144103317, which is 6 bits 3714 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3715 getF32Constant(DAG, 0x3e814304)); 3716 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3717 getF32Constant(DAG, 0x3f3c50c8)); 3718 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3719 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3720 getF32Constant(DAG, 0x3f7f5e7e)); 3721 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3722 SDValue TwoToFractionalPartOfX = 3723 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3724 3725 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3726 MVT::f32, TwoToFractionalPartOfX); 3727 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3728 // For floating-point precision of 12: 3729 // 3730 // TwoToFractionalPartOfX = 3731 // 0.999892986f + 3732 // (0.696457318f + 3733 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3734 // 3735 // error 0.000107046256, which is 13 to 14 bits 3736 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3737 getF32Constant(DAG, 0x3da235e3)); 3738 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3739 getF32Constant(DAG, 0x3e65b8f3)); 3740 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3741 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3742 getF32Constant(DAG, 0x3f324b07)); 3743 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3744 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3745 getF32Constant(DAG, 0x3f7ff8fd)); 3746 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3747 SDValue TwoToFractionalPartOfX = 3748 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3749 3750 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3751 MVT::f32, TwoToFractionalPartOfX); 3752 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3753 // For floating-point precision of 18: 3754 // 3755 // TwoToFractionalPartOfX = 3756 // 0.999999982f + 3757 // (0.693148872f + 3758 // (0.240227044f + 3759 // (0.554906021e-1f + 3760 // (0.961591928e-2f + 3761 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3762 // error 2.47208000*10^(-7), which is better than 18 bits 3763 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3764 getF32Constant(DAG, 0x3924b03e)); 3765 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3766 getF32Constant(DAG, 0x3ab24b87)); 3767 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3768 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3769 getF32Constant(DAG, 0x3c1d8c17)); 3770 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3771 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3772 getF32Constant(DAG, 0x3d634a1d)); 3773 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3774 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3775 getF32Constant(DAG, 0x3e75fe14)); 3776 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3777 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3778 getF32Constant(DAG, 0x3f317234)); 3779 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3780 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3781 getF32Constant(DAG, 0x3f800000)); 3782 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3783 SDValue TwoToFractionalPartOfX = 3784 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3785 3786 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3787 MVT::f32, TwoToFractionalPartOfX); 3788 } 3789 } else { 3790 // No special expansion. 3791 result = DAG.getNode(ISD::FPOW, dl, 3792 getValue(I.getArgOperand(0)).getValueType(), 3793 getValue(I.getArgOperand(0)), 3794 getValue(I.getArgOperand(1))); 3795 } 3796 3797 setValue(&I, result); 3798 } 3799 3800 3801 /// ExpandPowI - Expand a llvm.powi intrinsic. 3802 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3803 SelectionDAG &DAG) { 3804 // If RHS is a constant, we can expand this out to a multiplication tree, 3805 // otherwise we end up lowering to a call to __powidf2 (for example). When 3806 // optimizing for size, we only want to do this if the expansion would produce 3807 // a small number of multiplies, otherwise we do the full expansion. 3808 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3809 // Get the exponent as a positive value. 3810 unsigned Val = RHSC->getSExtValue(); 3811 if ((int)Val < 0) Val = -Val; 3812 3813 // powi(x, 0) -> 1.0 3814 if (Val == 0) 3815 return DAG.getConstantFP(1.0, LHS.getValueType()); 3816 3817 const Function *F = DAG.getMachineFunction().getFunction(); 3818 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3819 // If optimizing for size, don't insert too many multiplies. This 3820 // inserts up to 5 multiplies. 3821 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3822 // We use the simple binary decomposition method to generate the multiply 3823 // sequence. There are more optimal ways to do this (for example, 3824 // powi(x,15) generates one more multiply than it should), but this has 3825 // the benefit of being both really simple and much better than a libcall. 3826 SDValue Res; // Logically starts equal to 1.0 3827 SDValue CurSquare = LHS; 3828 while (Val) { 3829 if (Val & 1) { 3830 if (Res.getNode()) 3831 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3832 else 3833 Res = CurSquare; // 1.0*CurSquare. 3834 } 3835 3836 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3837 CurSquare, CurSquare); 3838 Val >>= 1; 3839 } 3840 3841 // If the original was negative, invert the result, producing 1/(x*x*x). 3842 if (RHSC->getSExtValue() < 0) 3843 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3844 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3845 return Res; 3846 } 3847 } 3848 3849 // Otherwise, expand to a libcall. 3850 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3851 } 3852 3853 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3854 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3855 /// At the end of instruction selection, they will be inserted to the entry BB. 3856 bool 3857 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI, 3858 const Value *V, MDNode *Variable, 3859 uint64_t Offset, 3860 const SDValue &N) { 3861 if (!isa<Argument>(V)) 3862 return false; 3863 3864 MachineFunction &MF = DAG.getMachineFunction(); 3865 // Ignore inlined function arguments here. 3866 DIVariable DV(Variable); 3867 if (DV.isInlinedFnArgument(MF.getFunction())) 3868 return false; 3869 3870 MachineBasicBlock *MBB = FuncInfo.MBB; 3871 if (MBB != &MF.front()) 3872 return false; 3873 3874 unsigned Reg = 0; 3875 if (N.getOpcode() == ISD::CopyFromReg) { 3876 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3877 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3878 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3879 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3880 if (PR) 3881 Reg = PR; 3882 } 3883 } 3884 3885 if (!Reg) { 3886 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3887 if (VMI == FuncInfo.ValueMap.end()) 3888 return false; 3889 Reg = VMI->second; 3890 } 3891 3892 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 3893 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 3894 TII->get(TargetOpcode::DBG_VALUE)) 3895 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 3896 FuncInfo.ArgDbgValues.push_back(&*MIB); 3897 return true; 3898 } 3899 3900 // VisualStudio defines setjmp as _setjmp 3901 #if defined(_MSC_VER) && defined(setjmp) 3902 #define setjmp_undefined_for_visual_studio 3903 #undef setjmp 3904 #endif 3905 3906 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3907 /// we want to emit this as a call to a named external function, return the name 3908 /// otherwise lower it and return null. 3909 const char * 3910 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3911 DebugLoc dl = getCurDebugLoc(); 3912 SDValue Res; 3913 3914 switch (Intrinsic) { 3915 default: 3916 // By default, turn this into a target intrinsic node. 3917 visitTargetIntrinsic(I, Intrinsic); 3918 return 0; 3919 case Intrinsic::vastart: visitVAStart(I); return 0; 3920 case Intrinsic::vaend: visitVAEnd(I); return 0; 3921 case Intrinsic::vacopy: visitVACopy(I); return 0; 3922 case Intrinsic::returnaddress: 3923 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3924 getValue(I.getArgOperand(0)))); 3925 return 0; 3926 case Intrinsic::frameaddress: 3927 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3928 getValue(I.getArgOperand(0)))); 3929 return 0; 3930 case Intrinsic::setjmp: 3931 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3932 case Intrinsic::longjmp: 3933 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3934 case Intrinsic::memcpy: { 3935 // Assert for address < 256 since we support only user defined address 3936 // spaces. 3937 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 3938 < 256 && 3939 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 3940 < 256 && 3941 "Unknown address space"); 3942 SDValue Op1 = getValue(I.getArgOperand(0)); 3943 SDValue Op2 = getValue(I.getArgOperand(1)); 3944 SDValue Op3 = getValue(I.getArgOperand(2)); 3945 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 3946 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 3947 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 3948 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 3949 return 0; 3950 } 3951 case Intrinsic::memset: { 3952 // Assert for address < 256 since we support only user defined address 3953 // spaces. 3954 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 3955 < 256 && 3956 "Unknown address space"); 3957 SDValue Op1 = getValue(I.getArgOperand(0)); 3958 SDValue Op2 = getValue(I.getArgOperand(1)); 3959 SDValue Op3 = getValue(I.getArgOperand(2)); 3960 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 3961 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 3962 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3963 I.getArgOperand(0), 0)); 3964 return 0; 3965 } 3966 case Intrinsic::memmove: { 3967 // Assert for address < 256 since we support only user defined address 3968 // spaces. 3969 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 3970 < 256 && 3971 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 3972 < 256 && 3973 "Unknown address space"); 3974 SDValue Op1 = getValue(I.getArgOperand(0)); 3975 SDValue Op2 = getValue(I.getArgOperand(1)); 3976 SDValue Op3 = getValue(I.getArgOperand(2)); 3977 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 3978 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 3979 3980 // If the source and destination are known to not be aliases, we can 3981 // lower memmove as memcpy. 3982 uint64_t Size = -1ULL; 3983 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 3984 Size = C->getZExtValue(); 3985 if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) == 3986 AliasAnalysis::NoAlias) { 3987 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3988 false, I.getArgOperand(0), 0, 3989 I.getArgOperand(1), 0)); 3990 return 0; 3991 } 3992 3993 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3994 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 3995 return 0; 3996 } 3997 case Intrinsic::dbg_declare: { 3998 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 3999 if (!DIVariable(DI.getVariable()).Verify()) 4000 return 0; 4001 4002 MDNode *Variable = DI.getVariable(); 4003 // Parameters are handled specially. 4004 bool isParameter = 4005 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4006 const Value *Address = DI.getAddress(); 4007 if (!Address) 4008 return 0; 4009 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4010 Address = BCI->getOperand(0); 4011 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4012 if (AI) { 4013 // Don't handle byval arguments or VLAs, for example. 4014 // Non-byval arguments are handled here (they refer to the stack temporary 4015 // alloca at this point). 4016 DenseMap<const AllocaInst*, int>::iterator SI = 4017 FuncInfo.StaticAllocaMap.find(AI); 4018 if (SI == FuncInfo.StaticAllocaMap.end()) 4019 return 0; // VLAs. 4020 int FI = SI->second; 4021 4022 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4023 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4024 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4025 } 4026 4027 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4028 // but do not always have a corresponding SDNode built. The SDNodeOrder 4029 // absolute, but not relative, values are different depending on whether 4030 // debug info exists. 4031 ++SDNodeOrder; 4032 SDValue &N = NodeMap[Address]; 4033 SDDbgValue *SDV; 4034 if (N.getNode()) { 4035 if (isParameter && !AI) { 4036 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4037 if (FINode) 4038 // Byval parameter. We have a frame index at this point. 4039 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4040 0, dl, SDNodeOrder); 4041 else 4042 // Can't do anything with other non-AI cases yet. This might be a 4043 // parameter of a callee function that got inlined, for example. 4044 return 0; 4045 } else if (AI) 4046 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4047 0, dl, SDNodeOrder); 4048 else 4049 // Can't do anything with other non-AI cases yet. 4050 return 0; 4051 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4052 } else { 4053 // This isn't useful, but it shows what we're missing. 4054 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4055 0, dl, SDNodeOrder); 4056 DAG.AddDbgValue(SDV, 0, isParameter); 4057 } 4058 return 0; 4059 } 4060 case Intrinsic::dbg_value: { 4061 const DbgValueInst &DI = cast<DbgValueInst>(I); 4062 if (!DIVariable(DI.getVariable()).Verify()) 4063 return 0; 4064 4065 MDNode *Variable = DI.getVariable(); 4066 uint64_t Offset = DI.getOffset(); 4067 const Value *V = DI.getValue(); 4068 if (!V) 4069 return 0; 4070 4071 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4072 // but do not always have a corresponding SDNode built. The SDNodeOrder 4073 // absolute, but not relative, values are different depending on whether 4074 // debug info exists. 4075 ++SDNodeOrder; 4076 SDDbgValue *SDV; 4077 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4078 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4079 DAG.AddDbgValue(SDV, 0, false); 4080 } else { 4081 bool createUndef = false; 4082 // Do not use getValue() in here; we don't want to generate code at 4083 // this point if it hasn't been done yet. 4084 SDValue N = NodeMap[V]; 4085 if (!N.getNode() && isa<Argument>(V)) 4086 // Check unused arguments map. 4087 N = UnusedArgNodeMap[V]; 4088 if (N.getNode()) { 4089 if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) { 4090 SDV = DAG.getDbgValue(Variable, N.getNode(), 4091 N.getResNo(), Offset, dl, SDNodeOrder); 4092 DAG.AddDbgValue(SDV, N.getNode(), false); 4093 } 4094 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4095 // Do not call getValue(V) yet, as we don't want to generate code. 4096 // Remember it for later. 4097 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4098 DanglingDebugInfoMap[V] = DDI; 4099 } else 4100 createUndef = true; 4101 if (createUndef) { 4102 // We may expand this to cover more cases. One case where we have no 4103 // data available is an unreferenced parameter; we need this fallback. 4104 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4105 Offset, dl, SDNodeOrder); 4106 DAG.AddDbgValue(SDV, 0, false); 4107 } 4108 } 4109 4110 // Build a debug info table entry. 4111 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4112 V = BCI->getOperand(0); 4113 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4114 // Don't handle byval struct arguments or VLAs, for example. 4115 if (!AI) 4116 return 0; 4117 DenseMap<const AllocaInst*, int>::iterator SI = 4118 FuncInfo.StaticAllocaMap.find(AI); 4119 if (SI == FuncInfo.StaticAllocaMap.end()) 4120 return 0; // VLAs. 4121 int FI = SI->second; 4122 4123 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4124 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4125 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4126 return 0; 4127 } 4128 case Intrinsic::eh_exception: { 4129 // Insert the EXCEPTIONADDR instruction. 4130 assert(FuncInfo.MBB->isLandingPad() && 4131 "Call to eh.exception not in landing pad!"); 4132 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4133 SDValue Ops[1]; 4134 Ops[0] = DAG.getRoot(); 4135 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4136 setValue(&I, Op); 4137 DAG.setRoot(Op.getValue(1)); 4138 return 0; 4139 } 4140 4141 case Intrinsic::eh_selector: { 4142 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4143 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4144 if (CallMBB->isLandingPad()) 4145 AddCatchInfo(I, &MMI, CallMBB); 4146 else { 4147 #ifndef NDEBUG 4148 FuncInfo.CatchInfoLost.insert(&I); 4149 #endif 4150 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4151 unsigned Reg = TLI.getExceptionSelectorRegister(); 4152 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4153 } 4154 4155 // Insert the EHSELECTION instruction. 4156 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4157 SDValue Ops[2]; 4158 Ops[0] = getValue(I.getArgOperand(0)); 4159 Ops[1] = getRoot(); 4160 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4161 DAG.setRoot(Op.getValue(1)); 4162 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4163 return 0; 4164 } 4165 4166 case Intrinsic::eh_typeid_for: { 4167 // Find the type id for the given typeinfo. 4168 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4169 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4170 Res = DAG.getConstant(TypeID, MVT::i32); 4171 setValue(&I, Res); 4172 return 0; 4173 } 4174 4175 case Intrinsic::eh_return_i32: 4176 case Intrinsic::eh_return_i64: 4177 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4178 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4179 MVT::Other, 4180 getControlRoot(), 4181 getValue(I.getArgOperand(0)), 4182 getValue(I.getArgOperand(1)))); 4183 return 0; 4184 case Intrinsic::eh_unwind_init: 4185 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4186 return 0; 4187 case Intrinsic::eh_dwarf_cfa: { 4188 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4189 TLI.getPointerTy()); 4190 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4191 TLI.getPointerTy(), 4192 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4193 TLI.getPointerTy()), 4194 CfaArg); 4195 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4196 TLI.getPointerTy(), 4197 DAG.getConstant(0, TLI.getPointerTy())); 4198 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4199 FA, Offset)); 4200 return 0; 4201 } 4202 case Intrinsic::eh_sjlj_callsite: { 4203 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4204 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4205 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4206 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4207 4208 MMI.setCurrentCallSite(CI->getZExtValue()); 4209 return 0; 4210 } 4211 case Intrinsic::eh_sjlj_setjmp: { 4212 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4213 getValue(I.getArgOperand(0)))); 4214 return 0; 4215 } 4216 case Intrinsic::eh_sjlj_longjmp: { 4217 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4218 getRoot(), 4219 getValue(I.getArgOperand(0)))); 4220 return 0; 4221 } 4222 4223 case Intrinsic::convertff: 4224 case Intrinsic::convertfsi: 4225 case Intrinsic::convertfui: 4226 case Intrinsic::convertsif: 4227 case Intrinsic::convertuif: 4228 case Intrinsic::convertss: 4229 case Intrinsic::convertsu: 4230 case Intrinsic::convertus: 4231 case Intrinsic::convertuu: { 4232 ISD::CvtCode Code = ISD::CVT_INVALID; 4233 switch (Intrinsic) { 4234 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4235 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4236 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4237 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4238 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4239 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4240 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4241 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4242 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4243 } 4244 EVT DestVT = TLI.getValueType(I.getType()); 4245 const Value *Op1 = I.getArgOperand(0); 4246 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4247 DAG.getValueType(DestVT), 4248 DAG.getValueType(getValue(Op1).getValueType()), 4249 getValue(I.getArgOperand(1)), 4250 getValue(I.getArgOperand(2)), 4251 Code); 4252 setValue(&I, Res); 4253 return 0; 4254 } 4255 case Intrinsic::sqrt: 4256 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4257 getValue(I.getArgOperand(0)).getValueType(), 4258 getValue(I.getArgOperand(0)))); 4259 return 0; 4260 case Intrinsic::powi: 4261 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4262 getValue(I.getArgOperand(1)), DAG)); 4263 return 0; 4264 case Intrinsic::sin: 4265 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4266 getValue(I.getArgOperand(0)).getValueType(), 4267 getValue(I.getArgOperand(0)))); 4268 return 0; 4269 case Intrinsic::cos: 4270 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4271 getValue(I.getArgOperand(0)).getValueType(), 4272 getValue(I.getArgOperand(0)))); 4273 return 0; 4274 case Intrinsic::log: 4275 visitLog(I); 4276 return 0; 4277 case Intrinsic::log2: 4278 visitLog2(I); 4279 return 0; 4280 case Intrinsic::log10: 4281 visitLog10(I); 4282 return 0; 4283 case Intrinsic::exp: 4284 visitExp(I); 4285 return 0; 4286 case Intrinsic::exp2: 4287 visitExp2(I); 4288 return 0; 4289 case Intrinsic::pow: 4290 visitPow(I); 4291 return 0; 4292 case Intrinsic::convert_to_fp16: 4293 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4294 MVT::i16, getValue(I.getArgOperand(0)))); 4295 return 0; 4296 case Intrinsic::convert_from_fp16: 4297 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4298 MVT::f32, getValue(I.getArgOperand(0)))); 4299 return 0; 4300 case Intrinsic::pcmarker: { 4301 SDValue Tmp = getValue(I.getArgOperand(0)); 4302 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4303 return 0; 4304 } 4305 case Intrinsic::readcyclecounter: { 4306 SDValue Op = getRoot(); 4307 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4308 DAG.getVTList(MVT::i64, MVT::Other), 4309 &Op, 1); 4310 setValue(&I, Res); 4311 DAG.setRoot(Res.getValue(1)); 4312 return 0; 4313 } 4314 case Intrinsic::bswap: 4315 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4316 getValue(I.getArgOperand(0)).getValueType(), 4317 getValue(I.getArgOperand(0)))); 4318 return 0; 4319 case Intrinsic::cttz: { 4320 SDValue Arg = getValue(I.getArgOperand(0)); 4321 EVT Ty = Arg.getValueType(); 4322 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4323 return 0; 4324 } 4325 case Intrinsic::ctlz: { 4326 SDValue Arg = getValue(I.getArgOperand(0)); 4327 EVT Ty = Arg.getValueType(); 4328 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4329 return 0; 4330 } 4331 case Intrinsic::ctpop: { 4332 SDValue Arg = getValue(I.getArgOperand(0)); 4333 EVT Ty = Arg.getValueType(); 4334 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4335 return 0; 4336 } 4337 case Intrinsic::stacksave: { 4338 SDValue Op = getRoot(); 4339 Res = DAG.getNode(ISD::STACKSAVE, dl, 4340 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4341 setValue(&I, Res); 4342 DAG.setRoot(Res.getValue(1)); 4343 return 0; 4344 } 4345 case Intrinsic::stackrestore: { 4346 Res = getValue(I.getArgOperand(0)); 4347 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4348 return 0; 4349 } 4350 case Intrinsic::stackprotector: { 4351 // Emit code into the DAG to store the stack guard onto the stack. 4352 MachineFunction &MF = DAG.getMachineFunction(); 4353 MachineFrameInfo *MFI = MF.getFrameInfo(); 4354 EVT PtrTy = TLI.getPointerTy(); 4355 4356 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4357 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4358 4359 int FI = FuncInfo.StaticAllocaMap[Slot]; 4360 MFI->setStackProtectorIndex(FI); 4361 4362 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4363 4364 // Store the stack protector onto the stack. 4365 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4366 PseudoSourceValue::getFixedStack(FI), 4367 0, true, false, 0); 4368 setValue(&I, Res); 4369 DAG.setRoot(Res); 4370 return 0; 4371 } 4372 case Intrinsic::objectsize: { 4373 // If we don't know by now, we're never going to know. 4374 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4375 4376 assert(CI && "Non-constant type in __builtin_object_size?"); 4377 4378 SDValue Arg = getValue(I.getCalledValue()); 4379 EVT Ty = Arg.getValueType(); 4380 4381 if (CI->isZero()) 4382 Res = DAG.getConstant(-1ULL, Ty); 4383 else 4384 Res = DAG.getConstant(0, Ty); 4385 4386 setValue(&I, Res); 4387 return 0; 4388 } 4389 case Intrinsic::var_annotation: 4390 // Discard annotate attributes 4391 return 0; 4392 4393 case Intrinsic::init_trampoline: { 4394 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4395 4396 SDValue Ops[6]; 4397 Ops[0] = getRoot(); 4398 Ops[1] = getValue(I.getArgOperand(0)); 4399 Ops[2] = getValue(I.getArgOperand(1)); 4400 Ops[3] = getValue(I.getArgOperand(2)); 4401 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4402 Ops[5] = DAG.getSrcValue(F); 4403 4404 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4405 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4406 Ops, 6); 4407 4408 setValue(&I, Res); 4409 DAG.setRoot(Res.getValue(1)); 4410 return 0; 4411 } 4412 case Intrinsic::gcroot: 4413 if (GFI) { 4414 const Value *Alloca = I.getArgOperand(0); 4415 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4416 4417 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4418 GFI->addStackRoot(FI->getIndex(), TypeMap); 4419 } 4420 return 0; 4421 case Intrinsic::gcread: 4422 case Intrinsic::gcwrite: 4423 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4424 return 0; 4425 case Intrinsic::flt_rounds: 4426 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4427 return 0; 4428 case Intrinsic::trap: 4429 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4430 return 0; 4431 case Intrinsic::uadd_with_overflow: 4432 return implVisitAluOverflow(I, ISD::UADDO); 4433 case Intrinsic::sadd_with_overflow: 4434 return implVisitAluOverflow(I, ISD::SADDO); 4435 case Intrinsic::usub_with_overflow: 4436 return implVisitAluOverflow(I, ISD::USUBO); 4437 case Intrinsic::ssub_with_overflow: 4438 return implVisitAluOverflow(I, ISD::SSUBO); 4439 case Intrinsic::umul_with_overflow: 4440 return implVisitAluOverflow(I, ISD::UMULO); 4441 case Intrinsic::smul_with_overflow: 4442 return implVisitAluOverflow(I, ISD::SMULO); 4443 4444 case Intrinsic::prefetch: { 4445 SDValue Ops[4]; 4446 Ops[0] = getRoot(); 4447 Ops[1] = getValue(I.getArgOperand(0)); 4448 Ops[2] = getValue(I.getArgOperand(1)); 4449 Ops[3] = getValue(I.getArgOperand(2)); 4450 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4451 return 0; 4452 } 4453 4454 case Intrinsic::memory_barrier: { 4455 SDValue Ops[6]; 4456 Ops[0] = getRoot(); 4457 for (int x = 1; x < 6; ++x) 4458 Ops[x] = getValue(I.getArgOperand(x - 1)); 4459 4460 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4461 return 0; 4462 } 4463 case Intrinsic::atomic_cmp_swap: { 4464 SDValue Root = getRoot(); 4465 SDValue L = 4466 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4467 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4468 Root, 4469 getValue(I.getArgOperand(0)), 4470 getValue(I.getArgOperand(1)), 4471 getValue(I.getArgOperand(2)), 4472 I.getArgOperand(0)); 4473 setValue(&I, L); 4474 DAG.setRoot(L.getValue(1)); 4475 return 0; 4476 } 4477 case Intrinsic::atomic_load_add: 4478 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4479 case Intrinsic::atomic_load_sub: 4480 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4481 case Intrinsic::atomic_load_or: 4482 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4483 case Intrinsic::atomic_load_xor: 4484 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4485 case Intrinsic::atomic_load_and: 4486 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4487 case Intrinsic::atomic_load_nand: 4488 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4489 case Intrinsic::atomic_load_max: 4490 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4491 case Intrinsic::atomic_load_min: 4492 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4493 case Intrinsic::atomic_load_umin: 4494 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4495 case Intrinsic::atomic_load_umax: 4496 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4497 case Intrinsic::atomic_swap: 4498 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4499 4500 case Intrinsic::invariant_start: 4501 case Intrinsic::lifetime_start: 4502 // Discard region information. 4503 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4504 return 0; 4505 case Intrinsic::invariant_end: 4506 case Intrinsic::lifetime_end: 4507 // Discard region information. 4508 return 0; 4509 } 4510 } 4511 4512 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4513 bool isTailCall, 4514 MachineBasicBlock *LandingPad) { 4515 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4516 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4517 const Type *RetTy = FTy->getReturnType(); 4518 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4519 MCSymbol *BeginLabel = 0; 4520 4521 TargetLowering::ArgListTy Args; 4522 TargetLowering::ArgListEntry Entry; 4523 Args.reserve(CS.arg_size()); 4524 4525 // Check whether the function can return without sret-demotion. 4526 SmallVector<ISD::OutputArg, 4> Outs; 4527 SmallVector<uint64_t, 4> Offsets; 4528 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4529 Outs, TLI, &Offsets); 4530 4531 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4532 FTy->isVarArg(), Outs, FTy->getContext()); 4533 4534 SDValue DemoteStackSlot; 4535 4536 if (!CanLowerReturn) { 4537 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4538 FTy->getReturnType()); 4539 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4540 FTy->getReturnType()); 4541 MachineFunction &MF = DAG.getMachineFunction(); 4542 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4543 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4544 4545 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4546 Entry.Node = DemoteStackSlot; 4547 Entry.Ty = StackSlotPtrType; 4548 Entry.isSExt = false; 4549 Entry.isZExt = false; 4550 Entry.isInReg = false; 4551 Entry.isSRet = true; 4552 Entry.isNest = false; 4553 Entry.isByVal = false; 4554 Entry.Alignment = Align; 4555 Args.push_back(Entry); 4556 RetTy = Type::getVoidTy(FTy->getContext()); 4557 } 4558 4559 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4560 i != e; ++i) { 4561 SDValue ArgNode = getValue(*i); 4562 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4563 4564 unsigned attrInd = i - CS.arg_begin() + 1; 4565 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4566 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4567 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4568 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4569 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4570 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4571 Entry.Alignment = CS.getParamAlignment(attrInd); 4572 Args.push_back(Entry); 4573 } 4574 4575 if (LandingPad) { 4576 // Insert a label before the invoke call to mark the try range. This can be 4577 // used to detect deletion of the invoke via the MachineModuleInfo. 4578 BeginLabel = MMI.getContext().CreateTempSymbol(); 4579 4580 // For SjLj, keep track of which landing pads go with which invokes 4581 // so as to maintain the ordering of pads in the LSDA. 4582 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4583 if (CallSiteIndex) { 4584 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4585 // Now that the call site is handled, stop tracking it. 4586 MMI.setCurrentCallSite(0); 4587 } 4588 4589 // Both PendingLoads and PendingExports must be flushed here; 4590 // this call might not return. 4591 (void)getRoot(); 4592 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4593 } 4594 4595 // Check if target-independent constraints permit a tail call here. 4596 // Target-dependent constraints are checked within TLI.LowerCallTo. 4597 if (isTailCall && 4598 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4599 isTailCall = false; 4600 4601 std::pair<SDValue,SDValue> Result = 4602 TLI.LowerCallTo(getRoot(), RetTy, 4603 CS.paramHasAttr(0, Attribute::SExt), 4604 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4605 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4606 CS.getCallingConv(), 4607 isTailCall, 4608 !CS.getInstruction()->use_empty(), 4609 Callee, Args, DAG, getCurDebugLoc()); 4610 assert((isTailCall || Result.second.getNode()) && 4611 "Non-null chain expected with non-tail call!"); 4612 assert((Result.second.getNode() || !Result.first.getNode()) && 4613 "Null value expected with tail call!"); 4614 if (Result.first.getNode()) { 4615 setValue(CS.getInstruction(), Result.first); 4616 } else if (!CanLowerReturn && Result.second.getNode()) { 4617 // The instruction result is the result of loading from the 4618 // hidden sret parameter. 4619 SmallVector<EVT, 1> PVTs; 4620 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4621 4622 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4623 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4624 EVT PtrVT = PVTs[0]; 4625 unsigned NumValues = Outs.size(); 4626 SmallVector<SDValue, 4> Values(NumValues); 4627 SmallVector<SDValue, 4> Chains(NumValues); 4628 4629 for (unsigned i = 0; i < NumValues; ++i) { 4630 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4631 DemoteStackSlot, 4632 DAG.getConstant(Offsets[i], PtrVT)); 4633 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4634 Add, NULL, Offsets[i], false, false, 1); 4635 Values[i] = L; 4636 Chains[i] = L.getValue(1); 4637 } 4638 4639 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4640 MVT::Other, &Chains[0], NumValues); 4641 PendingLoads.push_back(Chain); 4642 4643 // Collect the legal value parts into potentially illegal values 4644 // that correspond to the original function's return values. 4645 SmallVector<EVT, 4> RetTys; 4646 RetTy = FTy->getReturnType(); 4647 ComputeValueVTs(TLI, RetTy, RetTys); 4648 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4649 SmallVector<SDValue, 4> ReturnValues; 4650 unsigned CurReg = 0; 4651 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4652 EVT VT = RetTys[I]; 4653 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4654 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4655 4656 SDValue ReturnValue = 4657 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4658 RegisterVT, VT, AssertOp); 4659 ReturnValues.push_back(ReturnValue); 4660 CurReg += NumRegs; 4661 } 4662 4663 setValue(CS.getInstruction(), 4664 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4665 DAG.getVTList(&RetTys[0], RetTys.size()), 4666 &ReturnValues[0], ReturnValues.size())); 4667 4668 } 4669 4670 // As a special case, a null chain means that a tail call has been emitted and 4671 // the DAG root is already updated. 4672 if (Result.second.getNode()) 4673 DAG.setRoot(Result.second); 4674 else 4675 HasTailCall = true; 4676 4677 if (LandingPad) { 4678 // Insert a label at the end of the invoke call to mark the try range. This 4679 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4680 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4681 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4682 4683 // Inform MachineModuleInfo of range. 4684 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4685 } 4686 } 4687 4688 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4689 /// value is equal or not-equal to zero. 4690 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4691 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4692 UI != E; ++UI) { 4693 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4694 if (IC->isEquality()) 4695 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4696 if (C->isNullValue()) 4697 continue; 4698 // Unknown instruction. 4699 return false; 4700 } 4701 return true; 4702 } 4703 4704 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4705 const Type *LoadTy, 4706 SelectionDAGBuilder &Builder) { 4707 4708 // Check to see if this load can be trivially constant folded, e.g. if the 4709 // input is from a string literal. 4710 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4711 // Cast pointer to the type we really want to load. 4712 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4713 PointerType::getUnqual(LoadTy)); 4714 4715 if (const Constant *LoadCst = 4716 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4717 Builder.TD)) 4718 return Builder.getValue(LoadCst); 4719 } 4720 4721 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4722 // still constant memory, the input chain can be the entry node. 4723 SDValue Root; 4724 bool ConstantMemory = false; 4725 4726 // Do not serialize (non-volatile) loads of constant memory with anything. 4727 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4728 Root = Builder.DAG.getEntryNode(); 4729 ConstantMemory = true; 4730 } else { 4731 // Do not serialize non-volatile loads against each other. 4732 Root = Builder.DAG.getRoot(); 4733 } 4734 4735 SDValue Ptr = Builder.getValue(PtrVal); 4736 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4737 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4738 false /*volatile*/, 4739 false /*nontemporal*/, 1 /* align=1 */); 4740 4741 if (!ConstantMemory) 4742 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4743 return LoadVal; 4744 } 4745 4746 4747 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4748 /// If so, return true and lower it, otherwise return false and it will be 4749 /// lowered like a normal call. 4750 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4751 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4752 if (I.getNumArgOperands() != 3) 4753 return false; 4754 4755 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 4756 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4757 !I.getArgOperand(2)->getType()->isIntegerTy() || 4758 !I.getType()->isIntegerTy()) 4759 return false; 4760 4761 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 4762 4763 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4764 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4765 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4766 bool ActuallyDoIt = true; 4767 MVT LoadVT; 4768 const Type *LoadTy; 4769 switch (Size->getZExtValue()) { 4770 default: 4771 LoadVT = MVT::Other; 4772 LoadTy = 0; 4773 ActuallyDoIt = false; 4774 break; 4775 case 2: 4776 LoadVT = MVT::i16; 4777 LoadTy = Type::getInt16Ty(Size->getContext()); 4778 break; 4779 case 4: 4780 LoadVT = MVT::i32; 4781 LoadTy = Type::getInt32Ty(Size->getContext()); 4782 break; 4783 case 8: 4784 LoadVT = MVT::i64; 4785 LoadTy = Type::getInt64Ty(Size->getContext()); 4786 break; 4787 /* 4788 case 16: 4789 LoadVT = MVT::v4i32; 4790 LoadTy = Type::getInt32Ty(Size->getContext()); 4791 LoadTy = VectorType::get(LoadTy, 4); 4792 break; 4793 */ 4794 } 4795 4796 // This turns into unaligned loads. We only do this if the target natively 4797 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4798 // we'll only produce a small number of byte loads. 4799 4800 // Require that we can find a legal MVT, and only do this if the target 4801 // supports unaligned loads of that type. Expanding into byte loads would 4802 // bloat the code. 4803 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4804 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4805 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4806 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4807 ActuallyDoIt = false; 4808 } 4809 4810 if (ActuallyDoIt) { 4811 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4812 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4813 4814 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4815 ISD::SETNE); 4816 EVT CallVT = TLI.getValueType(I.getType(), true); 4817 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4818 return true; 4819 } 4820 } 4821 4822 4823 return false; 4824 } 4825 4826 4827 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4828 // Handle inline assembly differently. 4829 if (isa<InlineAsm>(I.getCalledValue())) { 4830 visitInlineAsm(&I); 4831 return; 4832 } 4833 4834 const char *RenameFn = 0; 4835 if (Function *F = I.getCalledFunction()) { 4836 if (F->isDeclaration()) { 4837 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 4838 if (unsigned IID = II->getIntrinsicID(F)) { 4839 RenameFn = visitIntrinsicCall(I, IID); 4840 if (!RenameFn) 4841 return; 4842 } 4843 } 4844 if (unsigned IID = F->getIntrinsicID()) { 4845 RenameFn = visitIntrinsicCall(I, IID); 4846 if (!RenameFn) 4847 return; 4848 } 4849 } 4850 4851 // Check for well-known libc/libm calls. If the function is internal, it 4852 // can't be a library call. 4853 if (!F->hasLocalLinkage() && F->hasName()) { 4854 StringRef Name = F->getName(); 4855 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4856 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 4857 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4858 I.getType() == I.getArgOperand(0)->getType() && 4859 I.getType() == I.getArgOperand(1)->getType()) { 4860 SDValue LHS = getValue(I.getArgOperand(0)); 4861 SDValue RHS = getValue(I.getArgOperand(1)); 4862 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4863 LHS.getValueType(), LHS, RHS)); 4864 return; 4865 } 4866 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4867 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4868 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4869 I.getType() == I.getArgOperand(0)->getType()) { 4870 SDValue Tmp = getValue(I.getArgOperand(0)); 4871 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4872 Tmp.getValueType(), Tmp)); 4873 return; 4874 } 4875 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4876 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4877 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4878 I.getType() == I.getArgOperand(0)->getType() && 4879 I.onlyReadsMemory()) { 4880 SDValue Tmp = getValue(I.getArgOperand(0)); 4881 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4882 Tmp.getValueType(), Tmp)); 4883 return; 4884 } 4885 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4886 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4887 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4888 I.getType() == I.getArgOperand(0)->getType() && 4889 I.onlyReadsMemory()) { 4890 SDValue Tmp = getValue(I.getArgOperand(0)); 4891 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4892 Tmp.getValueType(), Tmp)); 4893 return; 4894 } 4895 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4896 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4897 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4898 I.getType() == I.getArgOperand(0)->getType() && 4899 I.onlyReadsMemory()) { 4900 SDValue Tmp = getValue(I.getArgOperand(0)); 4901 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4902 Tmp.getValueType(), Tmp)); 4903 return; 4904 } 4905 } else if (Name == "memcmp") { 4906 if (visitMemCmpCall(I)) 4907 return; 4908 } 4909 } 4910 } 4911 4912 SDValue Callee; 4913 if (!RenameFn) 4914 Callee = getValue(I.getCalledValue()); 4915 else 4916 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4917 4918 // Check if we can potentially perform a tail call. More detailed checking is 4919 // be done within LowerCallTo, after more information about the call is known. 4920 LowerCallTo(&I, Callee, I.isTailCall()); 4921 } 4922 4923 namespace llvm { 4924 4925 /// AsmOperandInfo - This contains information for each constraint that we are 4926 /// lowering. 4927 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 4928 public TargetLowering::AsmOperandInfo { 4929 public: 4930 /// CallOperand - If this is the result output operand or a clobber 4931 /// this is null, otherwise it is the incoming operand to the CallInst. 4932 /// This gets modified as the asm is processed. 4933 SDValue CallOperand; 4934 4935 /// AssignedRegs - If this is a register or register class operand, this 4936 /// contains the set of register corresponding to the operand. 4937 RegsForValue AssignedRegs; 4938 4939 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4940 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4941 } 4942 4943 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4944 /// busy in OutputRegs/InputRegs. 4945 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4946 std::set<unsigned> &OutputRegs, 4947 std::set<unsigned> &InputRegs, 4948 const TargetRegisterInfo &TRI) const { 4949 if (isOutReg) { 4950 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4951 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 4952 } 4953 if (isInReg) { 4954 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4955 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 4956 } 4957 } 4958 4959 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 4960 /// corresponds to. If there is no Value* for this operand, it returns 4961 /// MVT::Other. 4962 EVT getCallOperandValEVT(LLVMContext &Context, 4963 const TargetLowering &TLI, 4964 const TargetData *TD) const { 4965 if (CallOperandVal == 0) return MVT::Other; 4966 4967 if (isa<BasicBlock>(CallOperandVal)) 4968 return TLI.getPointerTy(); 4969 4970 const llvm::Type *OpTy = CallOperandVal->getType(); 4971 4972 // If this is an indirect operand, the operand is a pointer to the 4973 // accessed type. 4974 if (isIndirect) { 4975 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4976 if (!PtrTy) 4977 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4978 OpTy = PtrTy->getElementType(); 4979 } 4980 4981 // If OpTy is not a single value, it may be a struct/union that we 4982 // can tile with integers. 4983 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4984 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 4985 switch (BitSize) { 4986 default: break; 4987 case 1: 4988 case 8: 4989 case 16: 4990 case 32: 4991 case 64: 4992 case 128: 4993 OpTy = IntegerType::get(Context, BitSize); 4994 break; 4995 } 4996 } 4997 4998 return TLI.getValueType(OpTy, true); 4999 } 5000 5001 private: 5002 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5003 /// specified set. 5004 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5005 const TargetRegisterInfo &TRI) { 5006 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5007 Regs.insert(Reg); 5008 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5009 for (; *Aliases; ++Aliases) 5010 Regs.insert(*Aliases); 5011 } 5012 }; 5013 5014 } // end llvm namespace. 5015 5016 /// isAllocatableRegister - If the specified register is safe to allocate, 5017 /// i.e. it isn't a stack pointer or some other special register, return the 5018 /// register class for the register. Otherwise, return null. 5019 static const TargetRegisterClass * 5020 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5021 const TargetLowering &TLI, 5022 const TargetRegisterInfo *TRI) { 5023 EVT FoundVT = MVT::Other; 5024 const TargetRegisterClass *FoundRC = 0; 5025 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5026 E = TRI->regclass_end(); RCI != E; ++RCI) { 5027 EVT ThisVT = MVT::Other; 5028 5029 const TargetRegisterClass *RC = *RCI; 5030 // If none of the value types for this register class are valid, we 5031 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5032 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5033 I != E; ++I) { 5034 if (TLI.isTypeLegal(*I)) { 5035 // If we have already found this register in a different register class, 5036 // choose the one with the largest VT specified. For example, on 5037 // PowerPC, we favor f64 register classes over f32. 5038 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5039 ThisVT = *I; 5040 break; 5041 } 5042 } 5043 } 5044 5045 if (ThisVT == MVT::Other) continue; 5046 5047 // NOTE: This isn't ideal. In particular, this might allocate the 5048 // frame pointer in functions that need it (due to them not being taken 5049 // out of allocation, because a variable sized allocation hasn't been seen 5050 // yet). This is a slight code pessimization, but should still work. 5051 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5052 E = RC->allocation_order_end(MF); I != E; ++I) 5053 if (*I == Reg) { 5054 // We found a matching register class. Keep looking at others in case 5055 // we find one with larger registers that this physreg is also in. 5056 FoundRC = RC; 5057 FoundVT = ThisVT; 5058 break; 5059 } 5060 } 5061 return FoundRC; 5062 } 5063 5064 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5065 /// specified operand. We prefer to assign virtual registers, to allow the 5066 /// register allocator to handle the assignment process. However, if the asm 5067 /// uses features that we can't model on machineinstrs, we have SDISel do the 5068 /// allocation. This produces generally horrible, but correct, code. 5069 /// 5070 /// OpInfo describes the operand. 5071 /// Input and OutputRegs are the set of already allocated physical registers. 5072 /// 5073 void SelectionDAGBuilder:: 5074 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5075 std::set<unsigned> &OutputRegs, 5076 std::set<unsigned> &InputRegs) { 5077 LLVMContext &Context = FuncInfo.Fn->getContext(); 5078 5079 // Compute whether this value requires an input register, an output register, 5080 // or both. 5081 bool isOutReg = false; 5082 bool isInReg = false; 5083 switch (OpInfo.Type) { 5084 case InlineAsm::isOutput: 5085 isOutReg = true; 5086 5087 // If there is an input constraint that matches this, we need to reserve 5088 // the input register so no other inputs allocate to it. 5089 isInReg = OpInfo.hasMatchingInput(); 5090 break; 5091 case InlineAsm::isInput: 5092 isInReg = true; 5093 isOutReg = false; 5094 break; 5095 case InlineAsm::isClobber: 5096 isOutReg = true; 5097 isInReg = true; 5098 break; 5099 } 5100 5101 5102 MachineFunction &MF = DAG.getMachineFunction(); 5103 SmallVector<unsigned, 4> Regs; 5104 5105 // If this is a constraint for a single physreg, or a constraint for a 5106 // register class, find it. 5107 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5108 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5109 OpInfo.ConstraintVT); 5110 5111 unsigned NumRegs = 1; 5112 if (OpInfo.ConstraintVT != MVT::Other) { 5113 // If this is a FP input in an integer register (or visa versa) insert a bit 5114 // cast of the input value. More generally, handle any case where the input 5115 // value disagrees with the register class we plan to stick this in. 5116 if (OpInfo.Type == InlineAsm::isInput && 5117 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5118 // Try to convert to the first EVT that the reg class contains. If the 5119 // types are identical size, use a bitcast to convert (e.g. two differing 5120 // vector types). 5121 EVT RegVT = *PhysReg.second->vt_begin(); 5122 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5123 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5124 RegVT, OpInfo.CallOperand); 5125 OpInfo.ConstraintVT = RegVT; 5126 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5127 // If the input is a FP value and we want it in FP registers, do a 5128 // bitcast to the corresponding integer type. This turns an f64 value 5129 // into i64, which can be passed with two i32 values on a 32-bit 5130 // machine. 5131 RegVT = EVT::getIntegerVT(Context, 5132 OpInfo.ConstraintVT.getSizeInBits()); 5133 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5134 RegVT, OpInfo.CallOperand); 5135 OpInfo.ConstraintVT = RegVT; 5136 } 5137 } 5138 5139 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5140 } 5141 5142 EVT RegVT; 5143 EVT ValueVT = OpInfo.ConstraintVT; 5144 5145 // If this is a constraint for a specific physical register, like {r17}, 5146 // assign it now. 5147 if (unsigned AssignedReg = PhysReg.first) { 5148 const TargetRegisterClass *RC = PhysReg.second; 5149 if (OpInfo.ConstraintVT == MVT::Other) 5150 ValueVT = *RC->vt_begin(); 5151 5152 // Get the actual register value type. This is important, because the user 5153 // may have asked for (e.g.) the AX register in i32 type. We need to 5154 // remember that AX is actually i16 to get the right extension. 5155 RegVT = *RC->vt_begin(); 5156 5157 // This is a explicit reference to a physical register. 5158 Regs.push_back(AssignedReg); 5159 5160 // If this is an expanded reference, add the rest of the regs to Regs. 5161 if (NumRegs != 1) { 5162 TargetRegisterClass::iterator I = RC->begin(); 5163 for (; *I != AssignedReg; ++I) 5164 assert(I != RC->end() && "Didn't find reg!"); 5165 5166 // Already added the first reg. 5167 --NumRegs; ++I; 5168 for (; NumRegs; --NumRegs, ++I) { 5169 assert(I != RC->end() && "Ran out of registers to allocate!"); 5170 Regs.push_back(*I); 5171 } 5172 } 5173 5174 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5175 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5176 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5177 return; 5178 } 5179 5180 // Otherwise, if this was a reference to an LLVM register class, create vregs 5181 // for this reference. 5182 if (const TargetRegisterClass *RC = PhysReg.second) { 5183 RegVT = *RC->vt_begin(); 5184 if (OpInfo.ConstraintVT == MVT::Other) 5185 ValueVT = RegVT; 5186 5187 // Create the appropriate number of virtual registers. 5188 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5189 for (; NumRegs; --NumRegs) 5190 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5191 5192 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5193 return; 5194 } 5195 5196 // This is a reference to a register class that doesn't directly correspond 5197 // to an LLVM register class. Allocate NumRegs consecutive, available, 5198 // registers from the class. 5199 std::vector<unsigned> RegClassRegs 5200 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5201 OpInfo.ConstraintVT); 5202 5203 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5204 unsigned NumAllocated = 0; 5205 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5206 unsigned Reg = RegClassRegs[i]; 5207 // See if this register is available. 5208 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5209 (isInReg && InputRegs.count(Reg))) { // Already used. 5210 // Make sure we find consecutive registers. 5211 NumAllocated = 0; 5212 continue; 5213 } 5214 5215 // Check to see if this register is allocatable (i.e. don't give out the 5216 // stack pointer). 5217 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5218 if (!RC) { // Couldn't allocate this register. 5219 // Reset NumAllocated to make sure we return consecutive registers. 5220 NumAllocated = 0; 5221 continue; 5222 } 5223 5224 // Okay, this register is good, we can use it. 5225 ++NumAllocated; 5226 5227 // If we allocated enough consecutive registers, succeed. 5228 if (NumAllocated == NumRegs) { 5229 unsigned RegStart = (i-NumAllocated)+1; 5230 unsigned RegEnd = i+1; 5231 // Mark all of the allocated registers used. 5232 for (unsigned i = RegStart; i != RegEnd; ++i) 5233 Regs.push_back(RegClassRegs[i]); 5234 5235 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5236 OpInfo.ConstraintVT); 5237 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5238 return; 5239 } 5240 } 5241 5242 // Otherwise, we couldn't allocate enough registers for this. 5243 } 5244 5245 /// visitInlineAsm - Handle a call to an InlineAsm object. 5246 /// 5247 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5248 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5249 5250 /// ConstraintOperands - Information about all of the constraints. 5251 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5252 5253 std::set<unsigned> OutputRegs, InputRegs; 5254 5255 // Do a prepass over the constraints, canonicalizing them, and building up the 5256 // ConstraintOperands list. 5257 std::vector<InlineAsm::ConstraintInfo> 5258 ConstraintInfos = IA->ParseConstraints(); 5259 5260 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5261 5262 SDValue Chain, Flag; 5263 5264 // We won't need to flush pending loads if this asm doesn't touch 5265 // memory and is nonvolatile. 5266 if (hasMemory || IA->hasSideEffects()) 5267 Chain = getRoot(); 5268 else 5269 Chain = DAG.getRoot(); 5270 5271 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5272 unsigned ResNo = 0; // ResNo - The result number of the next output. 5273 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5274 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5275 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5276 5277 EVT OpVT = MVT::Other; 5278 5279 // Compute the value type for each operand. 5280 switch (OpInfo.Type) { 5281 case InlineAsm::isOutput: 5282 // Indirect outputs just consume an argument. 5283 if (OpInfo.isIndirect) { 5284 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5285 break; 5286 } 5287 5288 // The return value of the call is this value. As such, there is no 5289 // corresponding argument. 5290 assert(!CS.getType()->isVoidTy() && 5291 "Bad inline asm!"); 5292 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5293 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5294 } else { 5295 assert(ResNo == 0 && "Asm only has one result!"); 5296 OpVT = TLI.getValueType(CS.getType()); 5297 } 5298 ++ResNo; 5299 break; 5300 case InlineAsm::isInput: 5301 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5302 break; 5303 case InlineAsm::isClobber: 5304 // Nothing to do. 5305 break; 5306 } 5307 5308 // If this is an input or an indirect output, process the call argument. 5309 // BasicBlocks are labels, currently appearing only in asm's. 5310 if (OpInfo.CallOperandVal) { 5311 // Strip bitcasts, if any. This mostly comes up for functions. 5312 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5313 5314 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5315 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5316 } else { 5317 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5318 } 5319 5320 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5321 } 5322 5323 OpInfo.ConstraintVT = OpVT; 5324 } 5325 5326 // Second pass over the constraints: compute which constraint option to use 5327 // and assign registers to constraints that want a specific physreg. 5328 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5329 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5330 5331 // If this is an output operand with a matching input operand, look up the 5332 // matching input. If their types mismatch, e.g. one is an integer, the 5333 // other is floating point, or their sizes are different, flag it as an 5334 // error. 5335 if (OpInfo.hasMatchingInput()) { 5336 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5337 5338 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5339 if ((OpInfo.ConstraintVT.isInteger() != 5340 Input.ConstraintVT.isInteger()) || 5341 (OpInfo.ConstraintVT.getSizeInBits() != 5342 Input.ConstraintVT.getSizeInBits())) { 5343 report_fatal_error("Unsupported asm: input constraint" 5344 " with a matching output constraint of" 5345 " incompatible type!"); 5346 } 5347 Input.ConstraintVT = OpInfo.ConstraintVT; 5348 } 5349 } 5350 5351 // Compute the constraint code and ConstraintType to use. 5352 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5353 5354 // If this is a memory input, and if the operand is not indirect, do what we 5355 // need to to provide an address for the memory input. 5356 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5357 !OpInfo.isIndirect) { 5358 assert(OpInfo.Type == InlineAsm::isInput && 5359 "Can only indirectify direct input operands!"); 5360 5361 // Memory operands really want the address of the value. If we don't have 5362 // an indirect input, put it in the constpool if we can, otherwise spill 5363 // it to a stack slot. 5364 5365 // If the operand is a float, integer, or vector constant, spill to a 5366 // constant pool entry to get its address. 5367 const Value *OpVal = OpInfo.CallOperandVal; 5368 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5369 isa<ConstantVector>(OpVal)) { 5370 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5371 TLI.getPointerTy()); 5372 } else { 5373 // Otherwise, create a stack slot and emit a store to it before the 5374 // asm. 5375 const Type *Ty = OpVal->getType(); 5376 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5377 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5378 MachineFunction &MF = DAG.getMachineFunction(); 5379 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5380 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5381 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5382 OpInfo.CallOperand, StackSlot, NULL, 0, 5383 false, false, 0); 5384 OpInfo.CallOperand = StackSlot; 5385 } 5386 5387 // There is no longer a Value* corresponding to this operand. 5388 OpInfo.CallOperandVal = 0; 5389 5390 // It is now an indirect operand. 5391 OpInfo.isIndirect = true; 5392 } 5393 5394 // If this constraint is for a specific register, allocate it before 5395 // anything else. 5396 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5397 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5398 } 5399 5400 ConstraintInfos.clear(); 5401 5402 // Second pass - Loop over all of the operands, assigning virtual or physregs 5403 // to register class operands. 5404 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5405 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5406 5407 // C_Register operands have already been allocated, Other/Memory don't need 5408 // to be. 5409 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5410 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5411 } 5412 5413 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5414 std::vector<SDValue> AsmNodeOperands; 5415 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5416 AsmNodeOperands.push_back( 5417 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5418 TLI.getPointerTy())); 5419 5420 // If we have a !srcloc metadata node associated with it, we want to attach 5421 // this to the ultimately generated inline asm machineinstr. To do this, we 5422 // pass in the third operand as this (potentially null) inline asm MDNode. 5423 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5424 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5425 5426 // Remember the AlignStack bit as operand 3. 5427 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5428 MVT::i1)); 5429 5430 // Loop over all of the inputs, copying the operand values into the 5431 // appropriate registers and processing the output regs. 5432 RegsForValue RetValRegs; 5433 5434 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5435 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5436 5437 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5438 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5439 5440 switch (OpInfo.Type) { 5441 case InlineAsm::isOutput: { 5442 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5443 OpInfo.ConstraintType != TargetLowering::C_Register) { 5444 // Memory output, or 'other' output (e.g. 'X' constraint). 5445 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5446 5447 // Add information to the INLINEASM node to know about this output. 5448 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5449 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5450 TLI.getPointerTy())); 5451 AsmNodeOperands.push_back(OpInfo.CallOperand); 5452 break; 5453 } 5454 5455 // Otherwise, this is a register or register class output. 5456 5457 // Copy the output from the appropriate register. Find a register that 5458 // we can use. 5459 if (OpInfo.AssignedRegs.Regs.empty()) 5460 report_fatal_error("Couldn't allocate output reg for constraint '" + 5461 Twine(OpInfo.ConstraintCode) + "'!"); 5462 5463 // If this is an indirect operand, store through the pointer after the 5464 // asm. 5465 if (OpInfo.isIndirect) { 5466 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5467 OpInfo.CallOperandVal)); 5468 } else { 5469 // This is the result value of the call. 5470 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5471 // Concatenate this output onto the outputs list. 5472 RetValRegs.append(OpInfo.AssignedRegs); 5473 } 5474 5475 // Add information to the INLINEASM node to know that this register is 5476 // set. 5477 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5478 InlineAsm::Kind_RegDefEarlyClobber : 5479 InlineAsm::Kind_RegDef, 5480 false, 5481 0, 5482 DAG, 5483 AsmNodeOperands); 5484 break; 5485 } 5486 case InlineAsm::isInput: { 5487 SDValue InOperandVal = OpInfo.CallOperand; 5488 5489 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5490 // If this is required to match an output register we have already set, 5491 // just use its register. 5492 unsigned OperandNo = OpInfo.getMatchedOperand(); 5493 5494 // Scan until we find the definition we already emitted of this operand. 5495 // When we find it, create a RegsForValue operand. 5496 unsigned CurOp = InlineAsm::Op_FirstOperand; 5497 for (; OperandNo; --OperandNo) { 5498 // Advance to the next operand. 5499 unsigned OpFlag = 5500 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5501 assert((InlineAsm::isRegDefKind(OpFlag) || 5502 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5503 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5504 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5505 } 5506 5507 unsigned OpFlag = 5508 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5509 if (InlineAsm::isRegDefKind(OpFlag) || 5510 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5511 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5512 if (OpInfo.isIndirect) { 5513 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5514 LLVMContext &Ctx = *DAG.getContext(); 5515 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5516 " don't know how to handle tied " 5517 "indirect register inputs"); 5518 } 5519 5520 RegsForValue MatchedRegs; 5521 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5522 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5523 MatchedRegs.RegVTs.push_back(RegVT); 5524 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5525 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5526 i != e; ++i) 5527 MatchedRegs.Regs.push_back 5528 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5529 5530 // Use the produced MatchedRegs object to 5531 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5532 Chain, &Flag); 5533 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5534 true, OpInfo.getMatchedOperand(), 5535 DAG, AsmNodeOperands); 5536 break; 5537 } 5538 5539 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5540 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5541 "Unexpected number of operands"); 5542 // Add information to the INLINEASM node to know about this input. 5543 // See InlineAsm.h isUseOperandTiedToDef. 5544 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5545 OpInfo.getMatchedOperand()); 5546 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5547 TLI.getPointerTy())); 5548 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5549 break; 5550 } 5551 5552 // Treat indirect 'X' constraint as memory. 5553 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5554 OpInfo.isIndirect) 5555 OpInfo.ConstraintType = TargetLowering::C_Memory; 5556 5557 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5558 std::vector<SDValue> Ops; 5559 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5560 Ops, DAG); 5561 if (Ops.empty()) 5562 report_fatal_error("Invalid operand for inline asm constraint '" + 5563 Twine(OpInfo.ConstraintCode) + "'!"); 5564 5565 // Add information to the INLINEASM node to know about this input. 5566 unsigned ResOpType = 5567 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5568 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5569 TLI.getPointerTy())); 5570 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5571 break; 5572 } 5573 5574 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5575 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5576 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5577 "Memory operands expect pointer values"); 5578 5579 // Add information to the INLINEASM node to know about this input. 5580 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5581 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5582 TLI.getPointerTy())); 5583 AsmNodeOperands.push_back(InOperandVal); 5584 break; 5585 } 5586 5587 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5588 OpInfo.ConstraintType == TargetLowering::C_Register) && 5589 "Unknown constraint type!"); 5590 assert(!OpInfo.isIndirect && 5591 "Don't know how to handle indirect register inputs yet!"); 5592 5593 // Copy the input into the appropriate registers. 5594 if (OpInfo.AssignedRegs.Regs.empty() || 5595 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5596 report_fatal_error("Couldn't allocate input reg for constraint '" + 5597 Twine(OpInfo.ConstraintCode) + "'!"); 5598 5599 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5600 Chain, &Flag); 5601 5602 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5603 DAG, AsmNodeOperands); 5604 break; 5605 } 5606 case InlineAsm::isClobber: { 5607 // Add the clobbered value to the operand list, so that the register 5608 // allocator is aware that the physreg got clobbered. 5609 if (!OpInfo.AssignedRegs.Regs.empty()) 5610 OpInfo.AssignedRegs.AddInlineAsmOperands( 5611 InlineAsm::Kind_RegDefEarlyClobber, 5612 false, 0, DAG, 5613 AsmNodeOperands); 5614 break; 5615 } 5616 } 5617 } 5618 5619 // Finish up input operands. Set the input chain and add the flag last. 5620 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5621 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5622 5623 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5624 DAG.getVTList(MVT::Other, MVT::Flag), 5625 &AsmNodeOperands[0], AsmNodeOperands.size()); 5626 Flag = Chain.getValue(1); 5627 5628 // If this asm returns a register value, copy the result from that register 5629 // and set it as the value of the call. 5630 if (!RetValRegs.Regs.empty()) { 5631 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5632 Chain, &Flag); 5633 5634 // FIXME: Why don't we do this for inline asms with MRVs? 5635 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5636 EVT ResultType = TLI.getValueType(CS.getType()); 5637 5638 // If any of the results of the inline asm is a vector, it may have the 5639 // wrong width/num elts. This can happen for register classes that can 5640 // contain multiple different value types. The preg or vreg allocated may 5641 // not have the same VT as was expected. Convert it to the right type 5642 // with bit_convert. 5643 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5644 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5645 ResultType, Val); 5646 5647 } else if (ResultType != Val.getValueType() && 5648 ResultType.isInteger() && Val.getValueType().isInteger()) { 5649 // If a result value was tied to an input value, the computed result may 5650 // have a wider width than the expected result. Extract the relevant 5651 // portion. 5652 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5653 } 5654 5655 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5656 } 5657 5658 setValue(CS.getInstruction(), Val); 5659 // Don't need to use this as a chain in this case. 5660 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5661 return; 5662 } 5663 5664 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5665 5666 // Process indirect outputs, first output all of the flagged copies out of 5667 // physregs. 5668 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5669 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5670 const Value *Ptr = IndirectStoresToEmit[i].second; 5671 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5672 Chain, &Flag); 5673 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5674 } 5675 5676 // Emit the non-flagged stores from the physregs. 5677 SmallVector<SDValue, 8> OutChains; 5678 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5679 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5680 StoresToEmit[i].first, 5681 getValue(StoresToEmit[i].second), 5682 StoresToEmit[i].second, 0, 5683 false, false, 0); 5684 OutChains.push_back(Val); 5685 } 5686 5687 if (!OutChains.empty()) 5688 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5689 &OutChains[0], OutChains.size()); 5690 5691 DAG.setRoot(Chain); 5692 } 5693 5694 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5695 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5696 MVT::Other, getRoot(), 5697 getValue(I.getArgOperand(0)), 5698 DAG.getSrcValue(I.getArgOperand(0)))); 5699 } 5700 5701 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5702 const TargetData &TD = *TLI.getTargetData(); 5703 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5704 getRoot(), getValue(I.getOperand(0)), 5705 DAG.getSrcValue(I.getOperand(0)), 5706 TD.getABITypeAlignment(I.getType())); 5707 setValue(&I, V); 5708 DAG.setRoot(V.getValue(1)); 5709 } 5710 5711 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5712 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5713 MVT::Other, getRoot(), 5714 getValue(I.getArgOperand(0)), 5715 DAG.getSrcValue(I.getArgOperand(0)))); 5716 } 5717 5718 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5719 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5720 MVT::Other, getRoot(), 5721 getValue(I.getArgOperand(0)), 5722 getValue(I.getArgOperand(1)), 5723 DAG.getSrcValue(I.getArgOperand(0)), 5724 DAG.getSrcValue(I.getArgOperand(1)))); 5725 } 5726 5727 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5728 /// implementation, which just calls LowerCall. 5729 /// FIXME: When all targets are 5730 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5731 std::pair<SDValue, SDValue> 5732 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5733 bool RetSExt, bool RetZExt, bool isVarArg, 5734 bool isInreg, unsigned NumFixedArgs, 5735 CallingConv::ID CallConv, bool isTailCall, 5736 bool isReturnValueUsed, 5737 SDValue Callee, 5738 ArgListTy &Args, SelectionDAG &DAG, 5739 DebugLoc dl) const { 5740 // Handle all of the outgoing arguments. 5741 SmallVector<ISD::OutputArg, 32> Outs; 5742 SmallVector<SDValue, 32> OutVals; 5743 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5744 SmallVector<EVT, 4> ValueVTs; 5745 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5746 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5747 Value != NumValues; ++Value) { 5748 EVT VT = ValueVTs[Value]; 5749 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5750 SDValue Op = SDValue(Args[i].Node.getNode(), 5751 Args[i].Node.getResNo() + Value); 5752 ISD::ArgFlagsTy Flags; 5753 unsigned OriginalAlignment = 5754 getTargetData()->getABITypeAlignment(ArgTy); 5755 5756 if (Args[i].isZExt) 5757 Flags.setZExt(); 5758 if (Args[i].isSExt) 5759 Flags.setSExt(); 5760 if (Args[i].isInReg) 5761 Flags.setInReg(); 5762 if (Args[i].isSRet) 5763 Flags.setSRet(); 5764 if (Args[i].isByVal) { 5765 Flags.setByVal(); 5766 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5767 const Type *ElementTy = Ty->getElementType(); 5768 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5769 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5770 // For ByVal, alignment should come from FE. BE will guess if this 5771 // info is not there but there are cases it cannot get right. 5772 if (Args[i].Alignment) 5773 FrameAlign = Args[i].Alignment; 5774 Flags.setByValAlign(FrameAlign); 5775 Flags.setByValSize(FrameSize); 5776 } 5777 if (Args[i].isNest) 5778 Flags.setNest(); 5779 Flags.setOrigAlign(OriginalAlignment); 5780 5781 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5782 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5783 SmallVector<SDValue, 4> Parts(NumParts); 5784 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5785 5786 if (Args[i].isSExt) 5787 ExtendKind = ISD::SIGN_EXTEND; 5788 else if (Args[i].isZExt) 5789 ExtendKind = ISD::ZERO_EXTEND; 5790 5791 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5792 PartVT, ExtendKind); 5793 5794 for (unsigned j = 0; j != NumParts; ++j) { 5795 // if it isn't first piece, alignment must be 1 5796 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 5797 i < NumFixedArgs); 5798 if (NumParts > 1 && j == 0) 5799 MyFlags.Flags.setSplit(); 5800 else if (j != 0) 5801 MyFlags.Flags.setOrigAlign(1); 5802 5803 Outs.push_back(MyFlags); 5804 OutVals.push_back(Parts[j]); 5805 } 5806 } 5807 } 5808 5809 // Handle the incoming return values from the call. 5810 SmallVector<ISD::InputArg, 32> Ins; 5811 SmallVector<EVT, 4> RetTys; 5812 ComputeValueVTs(*this, RetTy, RetTys); 5813 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5814 EVT VT = RetTys[I]; 5815 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5816 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5817 for (unsigned i = 0; i != NumRegs; ++i) { 5818 ISD::InputArg MyFlags; 5819 MyFlags.VT = RegisterVT; 5820 MyFlags.Used = isReturnValueUsed; 5821 if (RetSExt) 5822 MyFlags.Flags.setSExt(); 5823 if (RetZExt) 5824 MyFlags.Flags.setZExt(); 5825 if (isInreg) 5826 MyFlags.Flags.setInReg(); 5827 Ins.push_back(MyFlags); 5828 } 5829 } 5830 5831 SmallVector<SDValue, 4> InVals; 5832 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5833 Outs, OutVals, Ins, dl, DAG, InVals); 5834 5835 // Verify that the target's LowerCall behaved as expected. 5836 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5837 "LowerCall didn't return a valid chain!"); 5838 assert((!isTailCall || InVals.empty()) && 5839 "LowerCall emitted a return value for a tail call!"); 5840 assert((isTailCall || InVals.size() == Ins.size()) && 5841 "LowerCall didn't emit the correct number of values!"); 5842 5843 // For a tail call, the return value is merely live-out and there aren't 5844 // any nodes in the DAG representing it. Return a special value to 5845 // indicate that a tail call has been emitted and no more Instructions 5846 // should be processed in the current block. 5847 if (isTailCall) { 5848 DAG.setRoot(Chain); 5849 return std::make_pair(SDValue(), SDValue()); 5850 } 5851 5852 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5853 assert(InVals[i].getNode() && 5854 "LowerCall emitted a null value!"); 5855 assert(Ins[i].VT == InVals[i].getValueType() && 5856 "LowerCall emitted a value with the wrong type!"); 5857 }); 5858 5859 // Collect the legal value parts into potentially illegal values 5860 // that correspond to the original function's return values. 5861 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5862 if (RetSExt) 5863 AssertOp = ISD::AssertSext; 5864 else if (RetZExt) 5865 AssertOp = ISD::AssertZext; 5866 SmallVector<SDValue, 4> ReturnValues; 5867 unsigned CurReg = 0; 5868 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5869 EVT VT = RetTys[I]; 5870 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5871 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5872 5873 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5874 NumRegs, RegisterVT, VT, 5875 AssertOp)); 5876 CurReg += NumRegs; 5877 } 5878 5879 // For a function returning void, there is no return value. We can't create 5880 // such a node, so we just return a null return value in that case. In 5881 // that case, nothing will actualy look at the value. 5882 if (ReturnValues.empty()) 5883 return std::make_pair(SDValue(), Chain); 5884 5885 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5886 DAG.getVTList(&RetTys[0], RetTys.size()), 5887 &ReturnValues[0], ReturnValues.size()); 5888 return std::make_pair(Res, Chain); 5889 } 5890 5891 void TargetLowering::LowerOperationWrapper(SDNode *N, 5892 SmallVectorImpl<SDValue> &Results, 5893 SelectionDAG &DAG) const { 5894 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5895 if (Res.getNode()) 5896 Results.push_back(Res); 5897 } 5898 5899 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5900 llvm_unreachable("LowerOperation not implemented for this target!"); 5901 return SDValue(); 5902 } 5903 5904 void 5905 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5906 SDValue Op = getNonRegisterValue(V); 5907 assert((Op.getOpcode() != ISD::CopyFromReg || 5908 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5909 "Copy from a reg to the same reg!"); 5910 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5911 5912 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5913 SDValue Chain = DAG.getEntryNode(); 5914 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5915 PendingExports.push_back(Chain); 5916 } 5917 5918 #include "llvm/CodeGen/SelectionDAGISel.h" 5919 5920 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 5921 // If this is the entry block, emit arguments. 5922 const Function &F = *LLVMBB->getParent(); 5923 SelectionDAG &DAG = SDB->DAG; 5924 DebugLoc dl = SDB->getCurDebugLoc(); 5925 const TargetData *TD = TLI.getTargetData(); 5926 SmallVector<ISD::InputArg, 16> Ins; 5927 5928 // Check whether the function can return without sret-demotion. 5929 SmallVector<ISD::OutputArg, 4> Outs; 5930 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5931 Outs, TLI); 5932 5933 if (!FuncInfo->CanLowerReturn) { 5934 // Put in an sret pointer parameter before all the other parameters. 5935 SmallVector<EVT, 1> ValueVTs; 5936 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5937 5938 // NOTE: Assuming that a pointer will never break down to more than one VT 5939 // or one register. 5940 ISD::ArgFlagsTy Flags; 5941 Flags.setSRet(); 5942 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 5943 ISD::InputArg RetArg(Flags, RegisterVT, true); 5944 Ins.push_back(RetArg); 5945 } 5946 5947 // Set up the incoming argument description vector. 5948 unsigned Idx = 1; 5949 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 5950 I != E; ++I, ++Idx) { 5951 SmallVector<EVT, 4> ValueVTs; 5952 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5953 bool isArgValueUsed = !I->use_empty(); 5954 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5955 Value != NumValues; ++Value) { 5956 EVT VT = ValueVTs[Value]; 5957 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5958 ISD::ArgFlagsTy Flags; 5959 unsigned OriginalAlignment = 5960 TD->getABITypeAlignment(ArgTy); 5961 5962 if (F.paramHasAttr(Idx, Attribute::ZExt)) 5963 Flags.setZExt(); 5964 if (F.paramHasAttr(Idx, Attribute::SExt)) 5965 Flags.setSExt(); 5966 if (F.paramHasAttr(Idx, Attribute::InReg)) 5967 Flags.setInReg(); 5968 if (F.paramHasAttr(Idx, Attribute::StructRet)) 5969 Flags.setSRet(); 5970 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 5971 Flags.setByVal(); 5972 const PointerType *Ty = cast<PointerType>(I->getType()); 5973 const Type *ElementTy = Ty->getElementType(); 5974 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 5975 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 5976 // For ByVal, alignment should be passed from FE. BE will guess if 5977 // this info is not there but there are cases it cannot get right. 5978 if (F.getParamAlignment(Idx)) 5979 FrameAlign = F.getParamAlignment(Idx); 5980 Flags.setByValAlign(FrameAlign); 5981 Flags.setByValSize(FrameSize); 5982 } 5983 if (F.paramHasAttr(Idx, Attribute::Nest)) 5984 Flags.setNest(); 5985 Flags.setOrigAlign(OriginalAlignment); 5986 5987 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5988 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5989 for (unsigned i = 0; i != NumRegs; ++i) { 5990 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 5991 if (NumRegs > 1 && i == 0) 5992 MyFlags.Flags.setSplit(); 5993 // if it isn't first piece, alignment must be 1 5994 else if (i > 0) 5995 MyFlags.Flags.setOrigAlign(1); 5996 Ins.push_back(MyFlags); 5997 } 5998 } 5999 } 6000 6001 // Call the target to set up the argument values. 6002 SmallVector<SDValue, 8> InVals; 6003 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6004 F.isVarArg(), Ins, 6005 dl, DAG, InVals); 6006 6007 // Verify that the target's LowerFormalArguments behaved as expected. 6008 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6009 "LowerFormalArguments didn't return a valid chain!"); 6010 assert(InVals.size() == Ins.size() && 6011 "LowerFormalArguments didn't emit the correct number of values!"); 6012 DEBUG({ 6013 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6014 assert(InVals[i].getNode() && 6015 "LowerFormalArguments emitted a null value!"); 6016 assert(Ins[i].VT == InVals[i].getValueType() && 6017 "LowerFormalArguments emitted a value with the wrong type!"); 6018 } 6019 }); 6020 6021 // Update the DAG with the new chain value resulting from argument lowering. 6022 DAG.setRoot(NewRoot); 6023 6024 // Set up the argument values. 6025 unsigned i = 0; 6026 Idx = 1; 6027 if (!FuncInfo->CanLowerReturn) { 6028 // Create a virtual register for the sret pointer, and put in a copy 6029 // from the sret argument into it. 6030 SmallVector<EVT, 1> ValueVTs; 6031 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6032 EVT VT = ValueVTs[0]; 6033 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6034 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6035 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6036 RegVT, VT, AssertOp); 6037 6038 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6039 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6040 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6041 FuncInfo->DemoteRegister = SRetReg; 6042 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6043 SRetReg, ArgValue); 6044 DAG.setRoot(NewRoot); 6045 6046 // i indexes lowered arguments. Bump it past the hidden sret argument. 6047 // Idx indexes LLVM arguments. Don't touch it. 6048 ++i; 6049 } 6050 6051 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6052 ++I, ++Idx) { 6053 SmallVector<SDValue, 4> ArgValues; 6054 SmallVector<EVT, 4> ValueVTs; 6055 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6056 unsigned NumValues = ValueVTs.size(); 6057 6058 // If this argument is unused then remember its value. It is used to generate 6059 // debugging information. 6060 if (I->use_empty() && NumValues) 6061 SDB->setUnusedArgValue(I, InVals[i]); 6062 6063 for (unsigned Value = 0; Value != NumValues; ++Value) { 6064 EVT VT = ValueVTs[Value]; 6065 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6066 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6067 6068 if (!I->use_empty()) { 6069 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6070 if (F.paramHasAttr(Idx, Attribute::SExt)) 6071 AssertOp = ISD::AssertSext; 6072 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6073 AssertOp = ISD::AssertZext; 6074 6075 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6076 NumParts, PartVT, VT, 6077 AssertOp)); 6078 } 6079 6080 i += NumParts; 6081 } 6082 6083 if (!I->use_empty()) { 6084 SDValue Res; 6085 if (!ArgValues.empty()) 6086 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6087 SDB->getCurDebugLoc()); 6088 SDB->setValue(I, Res); 6089 6090 // If this argument is live outside of the entry block, insert a copy from 6091 // whereever we got it to the vreg that other BB's will reference it as. 6092 SDB->CopyToExportRegsIfNeeded(I); 6093 } 6094 } 6095 6096 assert(i == InVals.size() && "Argument register count mismatch!"); 6097 6098 // Finally, if the target has anything special to do, allow it to do so. 6099 // FIXME: this should insert code into the DAG! 6100 EmitFunctionEntryCode(); 6101 } 6102 6103 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6104 /// ensure constants are generated when needed. Remember the virtual registers 6105 /// that need to be added to the Machine PHI nodes as input. We cannot just 6106 /// directly add them, because expansion might result in multiple MBB's for one 6107 /// BB. As such, the start of the BB might correspond to a different MBB than 6108 /// the end. 6109 /// 6110 void 6111 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6112 const TerminatorInst *TI = LLVMBB->getTerminator(); 6113 6114 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6115 6116 // Check successor nodes' PHI nodes that expect a constant to be available 6117 // from this block. 6118 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6119 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6120 if (!isa<PHINode>(SuccBB->begin())) continue; 6121 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6122 6123 // If this terminator has multiple identical successors (common for 6124 // switches), only handle each succ once. 6125 if (!SuccsHandled.insert(SuccMBB)) continue; 6126 6127 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6128 6129 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6130 // nodes and Machine PHI nodes, but the incoming operands have not been 6131 // emitted yet. 6132 for (BasicBlock::const_iterator I = SuccBB->begin(); 6133 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6134 // Ignore dead phi's. 6135 if (PN->use_empty()) continue; 6136 6137 unsigned Reg; 6138 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6139 6140 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6141 unsigned &RegOut = ConstantsOut[C]; 6142 if (RegOut == 0) { 6143 RegOut = FuncInfo.CreateRegs(C->getType()); 6144 CopyValueToVirtualRegister(C, RegOut); 6145 } 6146 Reg = RegOut; 6147 } else { 6148 DenseMap<const Value *, unsigned>::iterator I = 6149 FuncInfo.ValueMap.find(PHIOp); 6150 if (I != FuncInfo.ValueMap.end()) 6151 Reg = I->second; 6152 else { 6153 assert(isa<AllocaInst>(PHIOp) && 6154 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6155 "Didn't codegen value into a register!??"); 6156 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6157 CopyValueToVirtualRegister(PHIOp, Reg); 6158 } 6159 } 6160 6161 // Remember that this register needs to added to the machine PHI node as 6162 // the input for this MBB. 6163 SmallVector<EVT, 4> ValueVTs; 6164 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6165 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6166 EVT VT = ValueVTs[vti]; 6167 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6168 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6169 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6170 Reg += NumRegisters; 6171 } 6172 } 6173 } 6174 ConstantsOut.clear(); 6175 } 6176