xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision bf61113e4f57dd115e583828afb51b19ea53cf87)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "isel"
126 
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
130 
131 static cl::opt<unsigned, true>
132     LimitFPPrecision("limit-float-precision",
133                      cl::desc("Generate low-precision inline sequences "
134                               "for some float libcalls"),
135                      cl::location(LimitFloatPrecision), cl::Hidden,
136                      cl::init(0));
137 
138 static cl::opt<unsigned> SwitchPeelThreshold(
139     "switch-peel-threshold", cl::Hidden, cl::init(66),
140     cl::desc("Set the case probability threshold for peeling the case from a "
141              "switch statement. A value greater than 100 will void this "
142              "optimization"));
143 
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
150 //
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
159 
160 // True if the Value passed requires ABI mangling as it is a parameter to a
161 // function or a return value from a function which is not an intrinsic.
162 static bool isABIRegCopy(const Value *V) {
163   const bool IsRetInst = V && isa<ReturnInst>(V);
164   const bool IsCallInst = V && isa<CallInst>(V);
165   const bool IsInLineAsm =
166       IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
167   const bool IsIndirectFunctionCall =
168       IsCallInst && !IsInLineAsm &&
169       !static_cast<const CallInst *>(V)->getCalledFunction();
170   // It is possible that the call instruction is an inline asm statement or an
171   // indirect function call in which case the return value of
172   // getCalledFunction() would be nullptr.
173   const bool IsInstrinsicCall =
174       IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
175       static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
176           Intrinsic::not_intrinsic;
177 
178   return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
179 }
180 
181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
182                                       const SDValue *Parts, unsigned NumParts,
183                                       MVT PartVT, EVT ValueVT, const Value *V,
184                                       bool IsABIRegCopy);
185 
186 /// getCopyFromParts - Create a value that contains the specified legal parts
187 /// combined into the value they represent.  If the parts combine to a type
188 /// larger than ValueVT then AssertOp can be used to specify whether the extra
189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
190 /// (ISD::AssertSext).
191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
192                                 const SDValue *Parts, unsigned NumParts,
193                                 MVT PartVT, EVT ValueVT, const Value *V,
194                                 Optional<ISD::NodeType> AssertOp = None,
195                                 bool IsABIRegCopy = false) {
196   if (ValueVT.isVector())
197     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
198                                   PartVT, ValueVT, V, IsABIRegCopy);
199 
200   assert(NumParts > 0 && "No parts to assemble!");
201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
202   SDValue Val = Parts[0];
203 
204   if (NumParts > 1) {
205     // Assemble the value from multiple parts.
206     if (ValueVT.isInteger()) {
207       unsigned PartBits = PartVT.getSizeInBits();
208       unsigned ValueBits = ValueVT.getSizeInBits();
209 
210       // Assemble the power of 2 part.
211       unsigned RoundParts = NumParts & (NumParts - 1) ?
212         1 << Log2_32(NumParts) : NumParts;
213       unsigned RoundBits = PartBits * RoundParts;
214       EVT RoundVT = RoundBits == ValueBits ?
215         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
216       SDValue Lo, Hi;
217 
218       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
219 
220       if (RoundParts > 2) {
221         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
222                               PartVT, HalfVT, V);
223         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
224                               RoundParts / 2, PartVT, HalfVT, V);
225       } else {
226         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
227         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
228       }
229 
230       if (DAG.getDataLayout().isBigEndian())
231         std::swap(Lo, Hi);
232 
233       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
234 
235       if (RoundParts < NumParts) {
236         // Assemble the trailing non-power-of-2 part.
237         unsigned OddParts = NumParts - RoundParts;
238         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
239         Hi = getCopyFromParts(DAG, DL,
240                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
241 
242         // Combine the round and odd parts.
243         Lo = Val;
244         if (DAG.getDataLayout().isBigEndian())
245           std::swap(Lo, Hi);
246         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
247         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
248         Hi =
249             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
250                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
251                                         TLI.getPointerTy(DAG.getDataLayout())));
252         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
253         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
254       }
255     } else if (PartVT.isFloatingPoint()) {
256       // FP split into multiple FP parts (for ppcf128)
257       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
258              "Unexpected split");
259       SDValue Lo, Hi;
260       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
261       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
262       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
263         std::swap(Lo, Hi);
264       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
265     } else {
266       // FP split into integer parts (soft fp)
267       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
268              !PartVT.isVector() && "Unexpected split");
269       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
270       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
271     }
272   }
273 
274   // There is now one part, held in Val.  Correct it to match ValueVT.
275   // PartEVT is the type of the register class that holds the value.
276   // ValueVT is the type of the inline asm operation.
277   EVT PartEVT = Val.getValueType();
278 
279   if (PartEVT == ValueVT)
280     return Val;
281 
282   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
283       ValueVT.bitsLT(PartEVT)) {
284     // For an FP value in an integer part, we need to truncate to the right
285     // width first.
286     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
287     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
288   }
289 
290   // Handle types that have the same size.
291   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
292     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
293 
294   // Handle types with different sizes.
295   if (PartEVT.isInteger() && ValueVT.isInteger()) {
296     if (ValueVT.bitsLT(PartEVT)) {
297       // For a truncate, see if we have any information to
298       // indicate whether the truncated bits will always be
299       // zero or sign-extension.
300       if (AssertOp.hasValue())
301         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
302                           DAG.getValueType(ValueVT));
303       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
304     }
305     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
306   }
307 
308   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
309     // FP_ROUND's are always exact here.
310     if (ValueVT.bitsLT(Val.getValueType()))
311       return DAG.getNode(
312           ISD::FP_ROUND, DL, ValueVT, Val,
313           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
314 
315     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
316   }
317 
318   llvm_unreachable("Unknown mismatch!");
319 }
320 
321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
322                                               const Twine &ErrMsg) {
323   const Instruction *I = dyn_cast_or_null<Instruction>(V);
324   if (!V)
325     return Ctx.emitError(ErrMsg);
326 
327   const char *AsmError = ", possible invalid constraint for vector type";
328   if (const CallInst *CI = dyn_cast<CallInst>(I))
329     if (isa<InlineAsm>(CI->getCalledValue()))
330       return Ctx.emitError(I, ErrMsg + AsmError);
331 
332   return Ctx.emitError(I, ErrMsg);
333 }
334 
335 /// getCopyFromPartsVector - Create a value that contains the specified legal
336 /// parts combined into the value they represent.  If the parts combine to a
337 /// type larger than ValueVT then AssertOp can be used to specify whether the
338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
339 /// ValueVT (ISD::AssertSext).
340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
341                                       const SDValue *Parts, unsigned NumParts,
342                                       MVT PartVT, EVT ValueVT, const Value *V,
343                                       bool IsABIRegCopy) {
344   assert(ValueVT.isVector() && "Not a vector value");
345   assert(NumParts > 0 && "No parts to assemble!");
346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347   SDValue Val = Parts[0];
348 
349   // Handle a multi-element vector.
350   if (NumParts > 1) {
351     EVT IntermediateVT;
352     MVT RegisterVT;
353     unsigned NumIntermediates;
354     unsigned NumRegs;
355 
356     if (IsABIRegCopy) {
357       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
358           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
359           RegisterVT);
360     } else {
361       NumRegs =
362           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
363                                      NumIntermediates, RegisterVT);
364     }
365 
366     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
367     NumParts = NumRegs; // Silence a compiler warning.
368     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
369     assert(RegisterVT.getSizeInBits() ==
370            Parts[0].getSimpleValueType().getSizeInBits() &&
371            "Part type sizes don't match!");
372 
373     // Assemble the parts into intermediate operands.
374     SmallVector<SDValue, 8> Ops(NumIntermediates);
375     if (NumIntermediates == NumParts) {
376       // If the register was not expanded, truncate or copy the value,
377       // as appropriate.
378       for (unsigned i = 0; i != NumParts; ++i)
379         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
380                                   PartVT, IntermediateVT, V);
381     } else if (NumParts > 0) {
382       // If the intermediate type was expanded, build the intermediate
383       // operands from the parts.
384       assert(NumParts % NumIntermediates == 0 &&
385              "Must expand into a divisible number of parts!");
386       unsigned Factor = NumParts / NumIntermediates;
387       for (unsigned i = 0; i != NumIntermediates; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
389                                   PartVT, IntermediateVT, V);
390     }
391 
392     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
393     // intermediate operands.
394     EVT BuiltVectorTy =
395         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
396                          (IntermediateVT.isVector()
397                               ? IntermediateVT.getVectorNumElements() * NumParts
398                               : NumIntermediates));
399     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
400                                                 : ISD::BUILD_VECTOR,
401                       DL, BuiltVectorTy, Ops);
402   }
403 
404   // There is now one part, held in Val.  Correct it to match ValueVT.
405   EVT PartEVT = Val.getValueType();
406 
407   if (PartEVT == ValueVT)
408     return Val;
409 
410   if (PartEVT.isVector()) {
411     // If the element type of the source/dest vectors are the same, but the
412     // parts vector has more elements than the value vector, then we have a
413     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
414     // elements we want.
415     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
416       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
417              "Cannot narrow, it would be a lossy transformation");
418       return DAG.getNode(
419           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
420           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
421     }
422 
423     // Vector/Vector bitcast.
424     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
425       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
426 
427     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
428       "Cannot handle this kind of promotion");
429     // Promoted vector extract
430     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
431 
432   }
433 
434   // Trivial bitcast if the types are the same size and the destination
435   // vector type is legal.
436   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
437       TLI.isTypeLegal(ValueVT))
438     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
439 
440   if (ValueVT.getVectorNumElements() != 1) {
441      // Certain ABIs require that vectors are passed as integers. For vectors
442      // are the same size, this is an obvious bitcast.
443      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
444        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
446        // Bitcast Val back the original type and extract the corresponding
447        // vector we want.
448        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
449        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
450                                            ValueVT.getVectorElementType(), Elts);
451        Val = DAG.getBitcast(WiderVecType, Val);
452        return DAG.getNode(
453            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
454            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
455      }
456 
457      diagnosePossiblyInvalidConstraint(
458          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
459      return DAG.getUNDEF(ValueVT);
460   }
461 
462   // Handle cases such as i8 -> <1 x i1>
463   EVT ValueSVT = ValueVT.getVectorElementType();
464   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
465     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467 
468   return DAG.getBuildVector(ValueVT, DL, Val);
469 }
470 
471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
472                                  SDValue Val, SDValue *Parts, unsigned NumParts,
473                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
474 
475 /// getCopyToParts - Create a series of nodes that contain the specified value
476 /// split into legal parts.  If the parts contain more bits than Val, then, for
477 /// integers, ExtendKind can be used to specify how to generate the extra bits.
478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
479                            SDValue *Parts, unsigned NumParts, MVT PartVT,
480                            const Value *V,
481                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
482                            bool IsABIRegCopy = false) {
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 IsABIRegCopy);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566                                  DAG.getIntPtrConstant(RoundBits, DL));
567     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
568 
569     if (DAG.getDataLayout().isBigEndian())
570       // The odd parts were reversed by getCopyToParts - unreverse them.
571       std::reverse(Parts + RoundParts, Parts + NumParts);
572 
573     NumParts = RoundParts;
574     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
575     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
576   }
577 
578   // The number of parts is a power of 2.  Repeatedly bisect the value using
579   // EXTRACT_ELEMENT.
580   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
581                          EVT::getIntegerVT(*DAG.getContext(),
582                                            ValueVT.getSizeInBits()),
583                          Val);
584 
585   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
586     for (unsigned i = 0; i < NumParts; i += StepSize) {
587       unsigned ThisBits = StepSize * PartBits / 2;
588       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
589       SDValue &Part0 = Parts[i];
590       SDValue &Part1 = Parts[i+StepSize/2];
591 
592       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
594       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
596 
597       if (ThisBits == PartBits && ThisVT != PartVT) {
598         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
599         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
600       }
601     }
602   }
603 
604   if (DAG.getDataLayout().isBigEndian())
605     std::reverse(Parts, Parts + OrigNumParts);
606 }
607 
608 
609 /// getCopyToPartsVector - Create a series of nodes that contain the specified
610 /// value split into legal parts.
611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
612                                  SDValue Val, SDValue *Parts, unsigned NumParts,
613                                  MVT PartVT, const Value *V,
614                                  bool IsABIRegCopy) {
615   EVT ValueVT = Val.getValueType();
616   assert(ValueVT.isVector() && "Not a vector");
617   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
618 
619   if (NumParts == 1) {
620     EVT PartEVT = PartVT;
621     if (PartEVT == ValueVT) {
622       // Nothing to do.
623     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
624       // Bitconvert vector->vector case.
625       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
626     } else if (PartVT.isVector() &&
627                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
628                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
629       EVT ElementVT = PartVT.getVectorElementType();
630       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631       // undef elements.
632       SmallVector<SDValue, 16> Ops;
633       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
634         Ops.push_back(DAG.getNode(
635             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
636             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
637 
638       for (unsigned i = ValueVT.getVectorNumElements(),
639            e = PartVT.getVectorNumElements(); i != e; ++i)
640         Ops.push_back(DAG.getUNDEF(ElementVT));
641 
642       Val = DAG.getBuildVector(PartVT, DL, Ops);
643 
644       // FIXME: Use CONCAT for 2x -> 4x.
645 
646       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
647       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
648     } else if (PartVT.isVector() &&
649                PartEVT.getVectorElementType().bitsGE(
650                  ValueVT.getVectorElementType()) &&
651                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
652 
653       // Promoted vector extract
654       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
655     } else {
656       if (ValueVT.getVectorNumElements() == 1) {
657         Val = DAG.getNode(
658             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
659             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
660       } else {
661         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
662                "lossy conversion of vector to scalar type");
663         EVT IntermediateType =
664             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
665         Val = DAG.getBitcast(IntermediateType, Val);
666         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667       }
668     }
669 
670     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
671     Parts[0] = Val;
672     return;
673   }
674 
675   // Handle a multi-element vector.
676   EVT IntermediateVT;
677   MVT RegisterVT;
678   unsigned NumIntermediates;
679   unsigned NumRegs;
680   if (IsABIRegCopy) {
681     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
682         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
683         RegisterVT);
684   } else {
685     NumRegs =
686         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
687                                    NumIntermediates, RegisterVT);
688   }
689   unsigned NumElements = ValueVT.getVectorNumElements();
690 
691   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
692   NumParts = NumRegs; // Silence a compiler warning.
693   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
694 
695   // Convert the vector to the appropiate type if necessary.
696   unsigned DestVectorNoElts =
697       NumIntermediates *
698       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
699   EVT BuiltVectorTy = EVT::getVectorVT(
700       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
701   if (Val.getValueType() != BuiltVectorTy)
702     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
703 
704   // Split the vector into intermediate operands.
705   SmallVector<SDValue, 8> Ops(NumIntermediates);
706   for (unsigned i = 0; i != NumIntermediates; ++i) {
707     if (IntermediateVT.isVector())
708       Ops[i] =
709           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
710                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
711                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
712     else
713       Ops[i] = DAG.getNode(
714           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
715           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
716   }
717 
718   // Split the intermediate operands into legal parts.
719   if (NumParts == NumIntermediates) {
720     // If the register was not expanded, promote or copy the value,
721     // as appropriate.
722     for (unsigned i = 0; i != NumParts; ++i)
723       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
724   } else if (NumParts > 0) {
725     // If the intermediate type was expanded, split each the value into
726     // legal parts.
727     assert(NumIntermediates != 0 && "division by zero");
728     assert(NumParts % NumIntermediates == 0 &&
729            "Must expand into a divisible number of parts!");
730     unsigned Factor = NumParts / NumIntermediates;
731     for (unsigned i = 0; i != NumIntermediates; ++i)
732       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
733   }
734 }
735 
736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
737                            EVT valuevt, bool IsABIMangledValue)
738     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
739       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
740 
741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
742                            const DataLayout &DL, unsigned Reg, Type *Ty,
743                            bool IsABIMangledValue) {
744   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
745 
746   IsABIMangled = IsABIMangledValue;
747 
748   for (EVT ValueVT : ValueVTs) {
749     unsigned NumRegs = IsABIMangledValue
750                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
751                            : TLI.getNumRegisters(Context, ValueVT);
752     MVT RegisterVT = IsABIMangledValue
753                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
754                          : TLI.getRegisterType(Context, ValueVT);
755     for (unsigned i = 0; i != NumRegs; ++i)
756       Regs.push_back(Reg + i);
757     RegVTs.push_back(RegisterVT);
758     RegCount.push_back(NumRegs);
759     Reg += NumRegs;
760   }
761 }
762 
763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
764                                       FunctionLoweringInfo &FuncInfo,
765                                       const SDLoc &dl, SDValue &Chain,
766                                       SDValue *Flag, const Value *V) const {
767   // A Value with type {} or [0 x %t] needs no registers.
768   if (ValueVTs.empty())
769     return SDValue();
770 
771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
772 
773   // Assemble the legal parts into the final values.
774   SmallVector<SDValue, 4> Values(ValueVTs.size());
775   SmallVector<SDValue, 8> Parts;
776   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
777     // Copy the legal parts from the registers.
778     EVT ValueVT = ValueVTs[Value];
779     unsigned NumRegs = RegCount[Value];
780     MVT RegisterVT = IsABIMangled
781       ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value])
782       : RegVTs[Value];
783 
784     Parts.resize(NumRegs);
785     for (unsigned i = 0; i != NumRegs; ++i) {
786       SDValue P;
787       if (!Flag) {
788         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
789       } else {
790         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
791         *Flag = P.getValue(2);
792       }
793 
794       Chain = P.getValue(1);
795       Parts[i] = P;
796 
797       // If the source register was virtual and if we know something about it,
798       // add an assert node.
799       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
800           !RegisterVT.isInteger() || RegisterVT.isVector())
801         continue;
802 
803       const FunctionLoweringInfo::LiveOutInfo *LOI =
804         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
805       if (!LOI)
806         continue;
807 
808       unsigned RegSize = RegisterVT.getSizeInBits();
809       unsigned NumSignBits = LOI->NumSignBits;
810       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
811 
812       if (NumZeroBits == RegSize) {
813         // The current value is a zero.
814         // Explicitly express that as it would be easier for
815         // optimizations to kick in.
816         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
817         continue;
818       }
819 
820       // FIXME: We capture more information than the dag can represent.  For
821       // now, just use the tightest assertzext/assertsext possible.
822       bool isSExt;
823       EVT FromVT(MVT::Other);
824       if (NumZeroBits) {
825         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
826         isSExt = false;
827       } else if (NumSignBits > 1) {
828         FromVT =
829             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
830         isSExt = true;
831       } else {
832         continue;
833       }
834       // Add an assertion node.
835       assert(FromVT != MVT::Other);
836       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
837                              RegisterVT, P, DAG.getValueType(FromVT));
838     }
839 
840     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
841                                      NumRegs, RegisterVT, ValueVT, V);
842     Part += NumRegs;
843     Parts.clear();
844   }
845 
846   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
847 }
848 
849 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
850                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
851                                  const Value *V,
852                                  ISD::NodeType PreferredExtendType) const {
853   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
854   ISD::NodeType ExtendKind = PreferredExtendType;
855 
856   // Get the list of the values's legal parts.
857   unsigned NumRegs = Regs.size();
858   SmallVector<SDValue, 8> Parts(NumRegs);
859   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
860     unsigned NumParts = RegCount[Value];
861 
862     MVT RegisterVT = IsABIMangled
863       ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value])
864       : RegVTs[Value];
865 
866     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
867       ExtendKind = ISD::ZERO_EXTEND;
868 
869     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
870                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
871     Part += NumParts;
872   }
873 
874   // Copy the parts into the registers.
875   SmallVector<SDValue, 8> Chains(NumRegs);
876   for (unsigned i = 0; i != NumRegs; ++i) {
877     SDValue Part;
878     if (!Flag) {
879       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
880     } else {
881       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
882       *Flag = Part.getValue(1);
883     }
884 
885     Chains[i] = Part.getValue(0);
886   }
887 
888   if (NumRegs == 1 || Flag)
889     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
890     // flagged to it. That is the CopyToReg nodes and the user are considered
891     // a single scheduling unit. If we create a TokenFactor and return it as
892     // chain, then the TokenFactor is both a predecessor (operand) of the
893     // user as well as a successor (the TF operands are flagged to the user).
894     // c1, f1 = CopyToReg
895     // c2, f2 = CopyToReg
896     // c3     = TokenFactor c1, c2
897     // ...
898     //        = op c3, ..., f2
899     Chain = Chains[NumRegs-1];
900   else
901     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
902 }
903 
904 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
905                                         unsigned MatchingIdx, const SDLoc &dl,
906                                         SelectionDAG &DAG,
907                                         std::vector<SDValue> &Ops) const {
908   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
909 
910   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
911   if (HasMatching)
912     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
913   else if (!Regs.empty() &&
914            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
915     // Put the register class of the virtual registers in the flag word.  That
916     // way, later passes can recompute register class constraints for inline
917     // assembly as well as normal instructions.
918     // Don't do this for tied operands that can use the regclass information
919     // from the def.
920     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
921     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
922     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
923   }
924 
925   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
926   Ops.push_back(Res);
927 
928   if (Code == InlineAsm::Kind_Clobber) {
929     // Clobbers should always have a 1:1 mapping with registers, and may
930     // reference registers that have illegal (e.g. vector) types. Hence, we
931     // shouldn't try to apply any sort of splitting logic to them.
932     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
933            "No 1:1 mapping from clobbers to regs?");
934     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
935     (void)SP;
936     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
937       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
938       assert(
939           (Regs[I] != SP ||
940            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
941           "If we clobbered the stack pointer, MFI should know about it.");
942     }
943     return;
944   }
945 
946   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
947     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
948     MVT RegisterVT = RegVTs[Value];
949     for (unsigned i = 0; i != NumRegs; ++i) {
950       assert(Reg < Regs.size() && "Mismatch in # registers expected");
951       unsigned TheReg = Regs[Reg++];
952       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
953     }
954   }
955 }
956 
957 SmallVector<std::pair<unsigned, unsigned>, 4>
958 RegsForValue::getRegsAndSizes() const {
959   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
960   unsigned I = 0;
961   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
962     unsigned RegCount = std::get<0>(CountAndVT);
963     MVT RegisterVT = std::get<1>(CountAndVT);
964     unsigned RegisterSize = RegisterVT.getSizeInBits();
965     for (unsigned E = I + RegCount; I != E; ++I)
966       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
967   }
968   return OutVec;
969 }
970 
971 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
972                                const TargetLibraryInfo *li) {
973   AA = aa;
974   GFI = gfi;
975   LibInfo = li;
976   DL = &DAG.getDataLayout();
977   Context = DAG.getContext();
978   LPadToCallSiteMap.clear();
979 }
980 
981 void SelectionDAGBuilder::clear() {
982   NodeMap.clear();
983   UnusedArgNodeMap.clear();
984   PendingLoads.clear();
985   PendingExports.clear();
986   CurInst = nullptr;
987   HasTailCall = false;
988   SDNodeOrder = LowestSDNodeOrder;
989   StatepointLowering.clear();
990 }
991 
992 void SelectionDAGBuilder::clearDanglingDebugInfo() {
993   DanglingDebugInfoMap.clear();
994 }
995 
996 SDValue SelectionDAGBuilder::getRoot() {
997   if (PendingLoads.empty())
998     return DAG.getRoot();
999 
1000   if (PendingLoads.size() == 1) {
1001     SDValue Root = PendingLoads[0];
1002     DAG.setRoot(Root);
1003     PendingLoads.clear();
1004     return Root;
1005   }
1006 
1007   // Otherwise, we have to make a token factor node.
1008   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1009                              PendingLoads);
1010   PendingLoads.clear();
1011   DAG.setRoot(Root);
1012   return Root;
1013 }
1014 
1015 SDValue SelectionDAGBuilder::getControlRoot() {
1016   SDValue Root = DAG.getRoot();
1017 
1018   if (PendingExports.empty())
1019     return Root;
1020 
1021   // Turn all of the CopyToReg chains into one factored node.
1022   if (Root.getOpcode() != ISD::EntryToken) {
1023     unsigned i = 0, e = PendingExports.size();
1024     for (; i != e; ++i) {
1025       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1026       if (PendingExports[i].getNode()->getOperand(0) == Root)
1027         break;  // Don't add the root if we already indirectly depend on it.
1028     }
1029 
1030     if (i == e)
1031       PendingExports.push_back(Root);
1032   }
1033 
1034   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1035                      PendingExports);
1036   PendingExports.clear();
1037   DAG.setRoot(Root);
1038   return Root;
1039 }
1040 
1041 void SelectionDAGBuilder::visit(const Instruction &I) {
1042   // Set up outgoing PHI node register values before emitting the terminator.
1043   if (isa<TerminatorInst>(&I)) {
1044     HandlePHINodesInSuccessorBlocks(I.getParent());
1045   }
1046 
1047   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1048   if (!isa<DbgInfoIntrinsic>(I))
1049     ++SDNodeOrder;
1050 
1051   CurInst = &I;
1052 
1053   visit(I.getOpcode(), I);
1054 
1055   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1056     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1057     // maps to this instruction.
1058     // TODO: We could handle all flags (nsw, etc) here.
1059     // TODO: If an IR instruction maps to >1 node, only the final node will have
1060     //       flags set.
1061     if (SDNode *Node = getNodeForIRValue(&I)) {
1062       SDNodeFlags IncomingFlags;
1063       IncomingFlags.copyFMF(*FPMO);
1064       if (!Node->getFlags().isDefined())
1065         Node->setFlags(IncomingFlags);
1066       else
1067         Node->intersectFlagsWith(IncomingFlags);
1068     }
1069   }
1070 
1071   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1072       !isStatepoint(&I)) // statepoints handle their exports internally
1073     CopyToExportRegsIfNeeded(&I);
1074 
1075   CurInst = nullptr;
1076 }
1077 
1078 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1079   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1080 }
1081 
1082 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1083   // Note: this doesn't use InstVisitor, because it has to work with
1084   // ConstantExpr's in addition to instructions.
1085   switch (Opcode) {
1086   default: llvm_unreachable("Unknown instruction type encountered!");
1087     // Build the switch statement using the Instruction.def file.
1088 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1089     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1090 #include "llvm/IR/Instruction.def"
1091   }
1092 }
1093 
1094 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1095                                                 const DIExpression *Expr) {
1096   for (auto &DDIMI : DanglingDebugInfoMap)
1097     for (auto &DDI : DDIMI.second)
1098       if (DDI.getDI()) {
1099         const DbgValueInst *DI = DDI.getDI();
1100         DIVariable *DanglingVariable = DI->getVariable();
1101         DIExpression *DanglingExpr = DI->getExpression();
1102         if (DanglingVariable == Variable &&
1103             Expr->fragmentsOverlap(DanglingExpr)) {
1104           LLVM_DEBUG(dbgs()
1105                      << "Dropping dangling debug info for " << *DI << "\n");
1106           DDI = DanglingDebugInfo();
1107         }
1108       }
1109 }
1110 
1111 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1112 // generate the debug data structures now that we've seen its definition.
1113 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1114                                                    SDValue Val) {
1115   DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V];
1116   for (auto &DDI : DDIV) {
1117     if (!DDI.getDI())
1118       continue;
1119     const DbgValueInst *DI = DDI.getDI();
1120     DebugLoc dl = DDI.getdl();
1121     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1122     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1123     DILocalVariable *Variable = DI->getVariable();
1124     DIExpression *Expr = DI->getExpression();
1125     assert(Variable->isValidLocationForIntrinsic(dl) &&
1126            "Expected inlined-at fields to agree");
1127     SDDbgValue *SDV;
1128     if (Val.getNode()) {
1129       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1130         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1131                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1132         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1133         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1134         // inserted after the definition of Val when emitting the instructions
1135         // after ISel. An alternative could be to teach
1136         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1137         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1138                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1139                    << ValSDNodeOrder << "\n");
1140         SDV = getDbgValue(Val, Variable, Expr, dl,
1141                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1142         DAG.AddDbgValue(SDV, Val.getNode(), false);
1143       } else
1144         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1145                           << "in EmitFuncArgumentDbgValue\n");
1146     } else
1147       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1148   }
1149   DanglingDebugInfoMap[V].clear();
1150 }
1151 
1152 /// getCopyFromRegs - If there was virtual register allocated for the value V
1153 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1154 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1155   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1156   SDValue Result;
1157 
1158   if (It != FuncInfo.ValueMap.end()) {
1159     unsigned InReg = It->second;
1160 
1161     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1162                      DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
1163     SDValue Chain = DAG.getEntryNode();
1164     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1165                                  V);
1166     resolveDanglingDebugInfo(V, Result);
1167   }
1168 
1169   return Result;
1170 }
1171 
1172 /// getValue - Return an SDValue for the given Value.
1173 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1174   // If we already have an SDValue for this value, use it. It's important
1175   // to do this first, so that we don't create a CopyFromReg if we already
1176   // have a regular SDValue.
1177   SDValue &N = NodeMap[V];
1178   if (N.getNode()) return N;
1179 
1180   // If there's a virtual register allocated and initialized for this
1181   // value, use it.
1182   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1183     return copyFromReg;
1184 
1185   // Otherwise create a new SDValue and remember it.
1186   SDValue Val = getValueImpl(V);
1187   NodeMap[V] = Val;
1188   resolveDanglingDebugInfo(V, Val);
1189   return Val;
1190 }
1191 
1192 // Return true if SDValue exists for the given Value
1193 bool SelectionDAGBuilder::findValue(const Value *V) const {
1194   return (NodeMap.find(V) != NodeMap.end()) ||
1195     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1196 }
1197 
1198 /// getNonRegisterValue - Return an SDValue for the given Value, but
1199 /// don't look in FuncInfo.ValueMap for a virtual register.
1200 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1201   // If we already have an SDValue for this value, use it.
1202   SDValue &N = NodeMap[V];
1203   if (N.getNode()) {
1204     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1205       // Remove the debug location from the node as the node is about to be used
1206       // in a location which may differ from the original debug location.  This
1207       // is relevant to Constant and ConstantFP nodes because they can appear
1208       // as constant expressions inside PHI nodes.
1209       N->setDebugLoc(DebugLoc());
1210     }
1211     return N;
1212   }
1213 
1214   // Otherwise create a new SDValue and remember it.
1215   SDValue Val = getValueImpl(V);
1216   NodeMap[V] = Val;
1217   resolveDanglingDebugInfo(V, Val);
1218   return Val;
1219 }
1220 
1221 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1222 /// Create an SDValue for the given value.
1223 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1224   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1225 
1226   if (const Constant *C = dyn_cast<Constant>(V)) {
1227     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1228 
1229     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1230       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1231 
1232     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1233       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1234 
1235     if (isa<ConstantPointerNull>(C)) {
1236       unsigned AS = V->getType()->getPointerAddressSpace();
1237       return DAG.getConstant(0, getCurSDLoc(),
1238                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1239     }
1240 
1241     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1242       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1243 
1244     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1245       return DAG.getUNDEF(VT);
1246 
1247     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1248       visit(CE->getOpcode(), *CE);
1249       SDValue N1 = NodeMap[V];
1250       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1251       return N1;
1252     }
1253 
1254     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1255       SmallVector<SDValue, 4> Constants;
1256       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1257            OI != OE; ++OI) {
1258         SDNode *Val = getValue(*OI).getNode();
1259         // If the operand is an empty aggregate, there are no values.
1260         if (!Val) continue;
1261         // Add each leaf value from the operand to the Constants list
1262         // to form a flattened list of all the values.
1263         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1264           Constants.push_back(SDValue(Val, i));
1265       }
1266 
1267       return DAG.getMergeValues(Constants, getCurSDLoc());
1268     }
1269 
1270     if (const ConstantDataSequential *CDS =
1271           dyn_cast<ConstantDataSequential>(C)) {
1272       SmallVector<SDValue, 4> Ops;
1273       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1274         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1275         // Add each leaf value from the operand to the Constants list
1276         // to form a flattened list of all the values.
1277         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1278           Ops.push_back(SDValue(Val, i));
1279       }
1280 
1281       if (isa<ArrayType>(CDS->getType()))
1282         return DAG.getMergeValues(Ops, getCurSDLoc());
1283       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1284     }
1285 
1286     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1287       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1288              "Unknown struct or array constant!");
1289 
1290       SmallVector<EVT, 4> ValueVTs;
1291       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1292       unsigned NumElts = ValueVTs.size();
1293       if (NumElts == 0)
1294         return SDValue(); // empty struct
1295       SmallVector<SDValue, 4> Constants(NumElts);
1296       for (unsigned i = 0; i != NumElts; ++i) {
1297         EVT EltVT = ValueVTs[i];
1298         if (isa<UndefValue>(C))
1299           Constants[i] = DAG.getUNDEF(EltVT);
1300         else if (EltVT.isFloatingPoint())
1301           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1302         else
1303           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1304       }
1305 
1306       return DAG.getMergeValues(Constants, getCurSDLoc());
1307     }
1308 
1309     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1310       return DAG.getBlockAddress(BA, VT);
1311 
1312     VectorType *VecTy = cast<VectorType>(V->getType());
1313     unsigned NumElements = VecTy->getNumElements();
1314 
1315     // Now that we know the number and type of the elements, get that number of
1316     // elements into the Ops array based on what kind of constant it is.
1317     SmallVector<SDValue, 16> Ops;
1318     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1319       for (unsigned i = 0; i != NumElements; ++i)
1320         Ops.push_back(getValue(CV->getOperand(i)));
1321     } else {
1322       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1323       EVT EltVT =
1324           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1325 
1326       SDValue Op;
1327       if (EltVT.isFloatingPoint())
1328         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1329       else
1330         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1331       Ops.assign(NumElements, Op);
1332     }
1333 
1334     // Create a BUILD_VECTOR node.
1335     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1336   }
1337 
1338   // If this is a static alloca, generate it as the frameindex instead of
1339   // computation.
1340   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1341     DenseMap<const AllocaInst*, int>::iterator SI =
1342       FuncInfo.StaticAllocaMap.find(AI);
1343     if (SI != FuncInfo.StaticAllocaMap.end())
1344       return DAG.getFrameIndex(SI->second,
1345                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1346   }
1347 
1348   // If this is an instruction which fast-isel has deferred, select it now.
1349   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1350     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1351 
1352     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1353                      Inst->getType(), isABIRegCopy(V));
1354     SDValue Chain = DAG.getEntryNode();
1355     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1356   }
1357 
1358   llvm_unreachable("Can't get register for value!");
1359 }
1360 
1361 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1362   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1363   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1364   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1365   bool IsSEH = isAsynchronousEHPersonality(Pers);
1366   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1367   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1368   if (!IsSEH)
1369     CatchPadMBB->setIsEHScopeEntry();
1370   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1371   if (IsMSVCCXX || IsCoreCLR)
1372     CatchPadMBB->setIsEHFuncletEntry();
1373   // Wasm does not need catchpads anymore
1374   if (!IsWasmCXX)
1375     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1376                             getControlRoot()));
1377 }
1378 
1379 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1380   // Update machine-CFG edge.
1381   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1382   FuncInfo.MBB->addSuccessor(TargetMBB);
1383 
1384   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1385   bool IsSEH = isAsynchronousEHPersonality(Pers);
1386   if (IsSEH) {
1387     // If this is not a fall-through branch or optimizations are switched off,
1388     // emit the branch.
1389     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1390         TM.getOptLevel() == CodeGenOpt::None)
1391       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1392                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1393     return;
1394   }
1395 
1396   // Figure out the funclet membership for the catchret's successor.
1397   // This will be used by the FuncletLayout pass to determine how to order the
1398   // BB's.
1399   // A 'catchret' returns to the outer scope's color.
1400   Value *ParentPad = I.getCatchSwitchParentPad();
1401   const BasicBlock *SuccessorColor;
1402   if (isa<ConstantTokenNone>(ParentPad))
1403     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1404   else
1405     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1406   assert(SuccessorColor && "No parent funclet for catchret!");
1407   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1408   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1409 
1410   // Create the terminator node.
1411   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1412                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1413                             DAG.getBasicBlock(SuccessorColorMBB));
1414   DAG.setRoot(Ret);
1415 }
1416 
1417 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1418   // Don't emit any special code for the cleanuppad instruction. It just marks
1419   // the start of an EH scope/funclet.
1420   FuncInfo.MBB->setIsEHScopeEntry();
1421   FuncInfo.MBB->setIsEHFuncletEntry();
1422   FuncInfo.MBB->setIsCleanupFuncletEntry();
1423 }
1424 
1425 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1426 /// many places it could ultimately go. In the IR, we have a single unwind
1427 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1428 /// This function skips over imaginary basic blocks that hold catchswitch
1429 /// instructions, and finds all the "real" machine
1430 /// basic block destinations. As those destinations may not be successors of
1431 /// EHPadBB, here we also calculate the edge probability to those destinations.
1432 /// The passed-in Prob is the edge probability to EHPadBB.
1433 static void findUnwindDestinations(
1434     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1435     BranchProbability Prob,
1436     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1437         &UnwindDests) {
1438   EHPersonality Personality =
1439     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1440   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1441   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1442   bool IsSEH = isAsynchronousEHPersonality(Personality);
1443 
1444   while (EHPadBB) {
1445     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1446     BasicBlock *NewEHPadBB = nullptr;
1447     if (isa<LandingPadInst>(Pad)) {
1448       // Stop on landingpads. They are not funclets.
1449       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1450       break;
1451     } else if (isa<CleanupPadInst>(Pad)) {
1452       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1453       // personalities.
1454       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1455       UnwindDests.back().first->setIsEHScopeEntry();
1456       UnwindDests.back().first->setIsEHFuncletEntry();
1457       break;
1458     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1459       // Add the catchpad handlers to the possible destinations.
1460       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1461         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1462         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1463         if (IsMSVCCXX || IsCoreCLR)
1464           UnwindDests.back().first->setIsEHFuncletEntry();
1465         if (!IsSEH)
1466           UnwindDests.back().first->setIsEHScopeEntry();
1467       }
1468       NewEHPadBB = CatchSwitch->getUnwindDest();
1469     } else {
1470       continue;
1471     }
1472 
1473     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1474     if (BPI && NewEHPadBB)
1475       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1476     EHPadBB = NewEHPadBB;
1477   }
1478 }
1479 
1480 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1481   // Update successor info.
1482   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1483   auto UnwindDest = I.getUnwindDest();
1484   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1485   BranchProbability UnwindDestProb =
1486       (BPI && UnwindDest)
1487           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1488           : BranchProbability::getZero();
1489   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1490   for (auto &UnwindDest : UnwindDests) {
1491     UnwindDest.first->setIsEHPad();
1492     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1493   }
1494   FuncInfo.MBB->normalizeSuccProbs();
1495 
1496   // Create the terminator node.
1497   SDValue Ret =
1498       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1499   DAG.setRoot(Ret);
1500 }
1501 
1502 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1503   report_fatal_error("visitCatchSwitch not yet implemented!");
1504 }
1505 
1506 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1507   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1508   auto &DL = DAG.getDataLayout();
1509   SDValue Chain = getControlRoot();
1510   SmallVector<ISD::OutputArg, 8> Outs;
1511   SmallVector<SDValue, 8> OutVals;
1512 
1513   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1514   // lower
1515   //
1516   //   %val = call <ty> @llvm.experimental.deoptimize()
1517   //   ret <ty> %val
1518   //
1519   // differently.
1520   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1521     LowerDeoptimizingReturn();
1522     return;
1523   }
1524 
1525   if (!FuncInfo.CanLowerReturn) {
1526     unsigned DemoteReg = FuncInfo.DemoteRegister;
1527     const Function *F = I.getParent()->getParent();
1528 
1529     // Emit a store of the return value through the virtual register.
1530     // Leave Outs empty so that LowerReturn won't try to load return
1531     // registers the usual way.
1532     SmallVector<EVT, 1> PtrValueVTs;
1533     ComputeValueVTs(TLI, DL,
1534                     F->getReturnType()->getPointerTo(
1535                         DAG.getDataLayout().getAllocaAddrSpace()),
1536                     PtrValueVTs);
1537 
1538     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1539                                         DemoteReg, PtrValueVTs[0]);
1540     SDValue RetOp = getValue(I.getOperand(0));
1541 
1542     SmallVector<EVT, 4> ValueVTs;
1543     SmallVector<uint64_t, 4> Offsets;
1544     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1545     unsigned NumValues = ValueVTs.size();
1546 
1547     SmallVector<SDValue, 4> Chains(NumValues);
1548     for (unsigned i = 0; i != NumValues; ++i) {
1549       // An aggregate return value cannot wrap around the address space, so
1550       // offsets to its parts don't wrap either.
1551       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1552       Chains[i] = DAG.getStore(
1553           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1554           // FIXME: better loc info would be nice.
1555           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1556     }
1557 
1558     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1559                         MVT::Other, Chains);
1560   } else if (I.getNumOperands() != 0) {
1561     SmallVector<EVT, 4> ValueVTs;
1562     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1563     unsigned NumValues = ValueVTs.size();
1564     if (NumValues) {
1565       SDValue RetOp = getValue(I.getOperand(0));
1566 
1567       const Function *F = I.getParent()->getParent();
1568 
1569       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1570       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1571                                           Attribute::SExt))
1572         ExtendKind = ISD::SIGN_EXTEND;
1573       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1574                                                Attribute::ZExt))
1575         ExtendKind = ISD::ZERO_EXTEND;
1576 
1577       LLVMContext &Context = F->getContext();
1578       bool RetInReg = F->getAttributes().hasAttribute(
1579           AttributeList::ReturnIndex, Attribute::InReg);
1580 
1581       for (unsigned j = 0; j != NumValues; ++j) {
1582         EVT VT = ValueVTs[j];
1583 
1584         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1585           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1586 
1587         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1588         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1589         SmallVector<SDValue, 4> Parts(NumParts);
1590         getCopyToParts(DAG, getCurSDLoc(),
1591                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1592                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1593 
1594         // 'inreg' on function refers to return value
1595         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1596         if (RetInReg)
1597           Flags.setInReg();
1598 
1599         // Propagate extension type if any
1600         if (ExtendKind == ISD::SIGN_EXTEND)
1601           Flags.setSExt();
1602         else if (ExtendKind == ISD::ZERO_EXTEND)
1603           Flags.setZExt();
1604 
1605         for (unsigned i = 0; i < NumParts; ++i) {
1606           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1607                                         VT, /*isfixed=*/true, 0, 0));
1608           OutVals.push_back(Parts[i]);
1609         }
1610       }
1611     }
1612   }
1613 
1614   // Push in swifterror virtual register as the last element of Outs. This makes
1615   // sure swifterror virtual register will be returned in the swifterror
1616   // physical register.
1617   const Function *F = I.getParent()->getParent();
1618   if (TLI.supportSwiftError() &&
1619       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1620     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1621     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1622     Flags.setSwiftError();
1623     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1624                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1625                                   true /*isfixed*/, 1 /*origidx*/,
1626                                   0 /*partOffs*/));
1627     // Create SDNode for the swifterror virtual register.
1628     OutVals.push_back(
1629         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1630                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1631                         EVT(TLI.getPointerTy(DL))));
1632   }
1633 
1634   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1635   CallingConv::ID CallConv =
1636     DAG.getMachineFunction().getFunction().getCallingConv();
1637   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1638       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1639 
1640   // Verify that the target's LowerReturn behaved as expected.
1641   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1642          "LowerReturn didn't return a valid chain!");
1643 
1644   // Update the DAG with the new chain value resulting from return lowering.
1645   DAG.setRoot(Chain);
1646 }
1647 
1648 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1649 /// created for it, emit nodes to copy the value into the virtual
1650 /// registers.
1651 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1652   // Skip empty types
1653   if (V->getType()->isEmptyTy())
1654     return;
1655 
1656   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1657   if (VMI != FuncInfo.ValueMap.end()) {
1658     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1659     CopyValueToVirtualRegister(V, VMI->second);
1660   }
1661 }
1662 
1663 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1664 /// the current basic block, add it to ValueMap now so that we'll get a
1665 /// CopyTo/FromReg.
1666 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1667   // No need to export constants.
1668   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1669 
1670   // Already exported?
1671   if (FuncInfo.isExportedInst(V)) return;
1672 
1673   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1674   CopyValueToVirtualRegister(V, Reg);
1675 }
1676 
1677 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1678                                                      const BasicBlock *FromBB) {
1679   // The operands of the setcc have to be in this block.  We don't know
1680   // how to export them from some other block.
1681   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1682     // Can export from current BB.
1683     if (VI->getParent() == FromBB)
1684       return true;
1685 
1686     // Is already exported, noop.
1687     return FuncInfo.isExportedInst(V);
1688   }
1689 
1690   // If this is an argument, we can export it if the BB is the entry block or
1691   // if it is already exported.
1692   if (isa<Argument>(V)) {
1693     if (FromBB == &FromBB->getParent()->getEntryBlock())
1694       return true;
1695 
1696     // Otherwise, can only export this if it is already exported.
1697     return FuncInfo.isExportedInst(V);
1698   }
1699 
1700   // Otherwise, constants can always be exported.
1701   return true;
1702 }
1703 
1704 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1705 BranchProbability
1706 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1707                                         const MachineBasicBlock *Dst) const {
1708   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1709   const BasicBlock *SrcBB = Src->getBasicBlock();
1710   const BasicBlock *DstBB = Dst->getBasicBlock();
1711   if (!BPI) {
1712     // If BPI is not available, set the default probability as 1 / N, where N is
1713     // the number of successors.
1714     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1715     return BranchProbability(1, SuccSize);
1716   }
1717   return BPI->getEdgeProbability(SrcBB, DstBB);
1718 }
1719 
1720 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1721                                                MachineBasicBlock *Dst,
1722                                                BranchProbability Prob) {
1723   if (!FuncInfo.BPI)
1724     Src->addSuccessorWithoutProb(Dst);
1725   else {
1726     if (Prob.isUnknown())
1727       Prob = getEdgeProbability(Src, Dst);
1728     Src->addSuccessor(Dst, Prob);
1729   }
1730 }
1731 
1732 static bool InBlock(const Value *V, const BasicBlock *BB) {
1733   if (const Instruction *I = dyn_cast<Instruction>(V))
1734     return I->getParent() == BB;
1735   return true;
1736 }
1737 
1738 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1739 /// This function emits a branch and is used at the leaves of an OR or an
1740 /// AND operator tree.
1741 void
1742 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1743                                                   MachineBasicBlock *TBB,
1744                                                   MachineBasicBlock *FBB,
1745                                                   MachineBasicBlock *CurBB,
1746                                                   MachineBasicBlock *SwitchBB,
1747                                                   BranchProbability TProb,
1748                                                   BranchProbability FProb,
1749                                                   bool InvertCond) {
1750   const BasicBlock *BB = CurBB->getBasicBlock();
1751 
1752   // If the leaf of the tree is a comparison, merge the condition into
1753   // the caseblock.
1754   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1755     // The operands of the cmp have to be in this block.  We don't know
1756     // how to export them from some other block.  If this is the first block
1757     // of the sequence, no exporting is needed.
1758     if (CurBB == SwitchBB ||
1759         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1760          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1761       ISD::CondCode Condition;
1762       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1763         ICmpInst::Predicate Pred =
1764             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1765         Condition = getICmpCondCode(Pred);
1766       } else {
1767         const FCmpInst *FC = cast<FCmpInst>(Cond);
1768         FCmpInst::Predicate Pred =
1769             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1770         Condition = getFCmpCondCode(Pred);
1771         if (TM.Options.NoNaNsFPMath)
1772           Condition = getFCmpCodeWithoutNaN(Condition);
1773       }
1774 
1775       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1776                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1777       SwitchCases.push_back(CB);
1778       return;
1779     }
1780   }
1781 
1782   // Create a CaseBlock record representing this branch.
1783   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1784   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1785                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1786   SwitchCases.push_back(CB);
1787 }
1788 
1789 /// FindMergedConditions - If Cond is an expression like
1790 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1791                                                MachineBasicBlock *TBB,
1792                                                MachineBasicBlock *FBB,
1793                                                MachineBasicBlock *CurBB,
1794                                                MachineBasicBlock *SwitchBB,
1795                                                Instruction::BinaryOps Opc,
1796                                                BranchProbability TProb,
1797                                                BranchProbability FProb,
1798                                                bool InvertCond) {
1799   // Skip over not part of the tree and remember to invert op and operands at
1800   // next level.
1801   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1802     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1803     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1804       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1805                            !InvertCond);
1806       return;
1807     }
1808   }
1809 
1810   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1811   // Compute the effective opcode for Cond, taking into account whether it needs
1812   // to be inverted, e.g.
1813   //   and (not (or A, B)), C
1814   // gets lowered as
1815   //   and (and (not A, not B), C)
1816   unsigned BOpc = 0;
1817   if (BOp) {
1818     BOpc = BOp->getOpcode();
1819     if (InvertCond) {
1820       if (BOpc == Instruction::And)
1821         BOpc = Instruction::Or;
1822       else if (BOpc == Instruction::Or)
1823         BOpc = Instruction::And;
1824     }
1825   }
1826 
1827   // If this node is not part of the or/and tree, emit it as a branch.
1828   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1829       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1830       BOp->getParent() != CurBB->getBasicBlock() ||
1831       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1832       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1833     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1834                                  TProb, FProb, InvertCond);
1835     return;
1836   }
1837 
1838   //  Create TmpBB after CurBB.
1839   MachineFunction::iterator BBI(CurBB);
1840   MachineFunction &MF = DAG.getMachineFunction();
1841   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1842   CurBB->getParent()->insert(++BBI, TmpBB);
1843 
1844   if (Opc == Instruction::Or) {
1845     // Codegen X | Y as:
1846     // BB1:
1847     //   jmp_if_X TBB
1848     //   jmp TmpBB
1849     // TmpBB:
1850     //   jmp_if_Y TBB
1851     //   jmp FBB
1852     //
1853 
1854     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1855     // The requirement is that
1856     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1857     //     = TrueProb for original BB.
1858     // Assuming the original probabilities are A and B, one choice is to set
1859     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1860     // A/(1+B) and 2B/(1+B). This choice assumes that
1861     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1862     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1863     // TmpBB, but the math is more complicated.
1864 
1865     auto NewTrueProb = TProb / 2;
1866     auto NewFalseProb = TProb / 2 + FProb;
1867     // Emit the LHS condition.
1868     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1869                          NewTrueProb, NewFalseProb, InvertCond);
1870 
1871     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1872     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1873     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1874     // Emit the RHS condition into TmpBB.
1875     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1876                          Probs[0], Probs[1], InvertCond);
1877   } else {
1878     assert(Opc == Instruction::And && "Unknown merge op!");
1879     // Codegen X & Y as:
1880     // BB1:
1881     //   jmp_if_X TmpBB
1882     //   jmp FBB
1883     // TmpBB:
1884     //   jmp_if_Y TBB
1885     //   jmp FBB
1886     //
1887     //  This requires creation of TmpBB after CurBB.
1888 
1889     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1890     // The requirement is that
1891     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1892     //     = FalseProb for original BB.
1893     // Assuming the original probabilities are A and B, one choice is to set
1894     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1895     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1896     // TrueProb for BB1 * FalseProb for TmpBB.
1897 
1898     auto NewTrueProb = TProb + FProb / 2;
1899     auto NewFalseProb = FProb / 2;
1900     // Emit the LHS condition.
1901     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1902                          NewTrueProb, NewFalseProb, InvertCond);
1903 
1904     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1905     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1906     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1907     // Emit the RHS condition into TmpBB.
1908     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1909                          Probs[0], Probs[1], InvertCond);
1910   }
1911 }
1912 
1913 /// If the set of cases should be emitted as a series of branches, return true.
1914 /// If we should emit this as a bunch of and/or'd together conditions, return
1915 /// false.
1916 bool
1917 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1918   if (Cases.size() != 2) return true;
1919 
1920   // If this is two comparisons of the same values or'd or and'd together, they
1921   // will get folded into a single comparison, so don't emit two blocks.
1922   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1923        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1924       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1925        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1926     return false;
1927   }
1928 
1929   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1930   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1931   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1932       Cases[0].CC == Cases[1].CC &&
1933       isa<Constant>(Cases[0].CmpRHS) &&
1934       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1935     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1936       return false;
1937     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1938       return false;
1939   }
1940 
1941   return true;
1942 }
1943 
1944 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1945   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1946 
1947   // Update machine-CFG edges.
1948   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1949 
1950   if (I.isUnconditional()) {
1951     // Update machine-CFG edges.
1952     BrMBB->addSuccessor(Succ0MBB);
1953 
1954     // If this is not a fall-through branch or optimizations are switched off,
1955     // emit the branch.
1956     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1957       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1958                               MVT::Other, getControlRoot(),
1959                               DAG.getBasicBlock(Succ0MBB)));
1960 
1961     return;
1962   }
1963 
1964   // If this condition is one of the special cases we handle, do special stuff
1965   // now.
1966   const Value *CondVal = I.getCondition();
1967   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1968 
1969   // If this is a series of conditions that are or'd or and'd together, emit
1970   // this as a sequence of branches instead of setcc's with and/or operations.
1971   // As long as jumps are not expensive, this should improve performance.
1972   // For example, instead of something like:
1973   //     cmp A, B
1974   //     C = seteq
1975   //     cmp D, E
1976   //     F = setle
1977   //     or C, F
1978   //     jnz foo
1979   // Emit:
1980   //     cmp A, B
1981   //     je foo
1982   //     cmp D, E
1983   //     jle foo
1984   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1985     Instruction::BinaryOps Opcode = BOp->getOpcode();
1986     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1987         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1988         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1989       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1990                            Opcode,
1991                            getEdgeProbability(BrMBB, Succ0MBB),
1992                            getEdgeProbability(BrMBB, Succ1MBB),
1993                            /*InvertCond=*/false);
1994       // If the compares in later blocks need to use values not currently
1995       // exported from this block, export them now.  This block should always
1996       // be the first entry.
1997       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1998 
1999       // Allow some cases to be rejected.
2000       if (ShouldEmitAsBranches(SwitchCases)) {
2001         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2002           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2003           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2004         }
2005 
2006         // Emit the branch for this block.
2007         visitSwitchCase(SwitchCases[0], BrMBB);
2008         SwitchCases.erase(SwitchCases.begin());
2009         return;
2010       }
2011 
2012       // Okay, we decided not to do this, remove any inserted MBB's and clear
2013       // SwitchCases.
2014       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2015         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2016 
2017       SwitchCases.clear();
2018     }
2019   }
2020 
2021   // Create a CaseBlock record representing this branch.
2022   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2023                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2024 
2025   // Use visitSwitchCase to actually insert the fast branch sequence for this
2026   // cond branch.
2027   visitSwitchCase(CB, BrMBB);
2028 }
2029 
2030 /// visitSwitchCase - Emits the necessary code to represent a single node in
2031 /// the binary search tree resulting from lowering a switch instruction.
2032 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2033                                           MachineBasicBlock *SwitchBB) {
2034   SDValue Cond;
2035   SDValue CondLHS = getValue(CB.CmpLHS);
2036   SDLoc dl = CB.DL;
2037 
2038   // Build the setcc now.
2039   if (!CB.CmpMHS) {
2040     // Fold "(X == true)" to X and "(X == false)" to !X to
2041     // handle common cases produced by branch lowering.
2042     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2043         CB.CC == ISD::SETEQ)
2044       Cond = CondLHS;
2045     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2046              CB.CC == ISD::SETEQ) {
2047       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2048       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2049     } else
2050       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2051   } else {
2052     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2053 
2054     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2055     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2056 
2057     SDValue CmpOp = getValue(CB.CmpMHS);
2058     EVT VT = CmpOp.getValueType();
2059 
2060     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2061       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2062                           ISD::SETLE);
2063     } else {
2064       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2065                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2066       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2067                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2068     }
2069   }
2070 
2071   // Update successor info
2072   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2073   // TrueBB and FalseBB are always different unless the incoming IR is
2074   // degenerate. This only happens when running llc on weird IR.
2075   if (CB.TrueBB != CB.FalseBB)
2076     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2077   SwitchBB->normalizeSuccProbs();
2078 
2079   // If the lhs block is the next block, invert the condition so that we can
2080   // fall through to the lhs instead of the rhs block.
2081   if (CB.TrueBB == NextBlock(SwitchBB)) {
2082     std::swap(CB.TrueBB, CB.FalseBB);
2083     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2084     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2085   }
2086 
2087   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2088                                MVT::Other, getControlRoot(), Cond,
2089                                DAG.getBasicBlock(CB.TrueBB));
2090 
2091   // Insert the false branch. Do this even if it's a fall through branch,
2092   // this makes it easier to do DAG optimizations which require inverting
2093   // the branch condition.
2094   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2095                        DAG.getBasicBlock(CB.FalseBB));
2096 
2097   DAG.setRoot(BrCond);
2098 }
2099 
2100 /// visitJumpTable - Emit JumpTable node in the current MBB
2101 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2102   // Emit the code for the jump table
2103   assert(JT.Reg != -1U && "Should lower JT Header first!");
2104   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2105   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2106                                      JT.Reg, PTy);
2107   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2108   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2109                                     MVT::Other, Index.getValue(1),
2110                                     Table, Index);
2111   DAG.setRoot(BrJumpTable);
2112 }
2113 
2114 /// visitJumpTableHeader - This function emits necessary code to produce index
2115 /// in the JumpTable from switch case.
2116 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2117                                                JumpTableHeader &JTH,
2118                                                MachineBasicBlock *SwitchBB) {
2119   SDLoc dl = getCurSDLoc();
2120 
2121   // Subtract the lowest switch case value from the value being switched on and
2122   // conditional branch to default mbb if the result is greater than the
2123   // difference between smallest and largest cases.
2124   SDValue SwitchOp = getValue(JTH.SValue);
2125   EVT VT = SwitchOp.getValueType();
2126   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2127                             DAG.getConstant(JTH.First, dl, VT));
2128 
2129   // The SDNode we just created, which holds the value being switched on minus
2130   // the smallest case value, needs to be copied to a virtual register so it
2131   // can be used as an index into the jump table in a subsequent basic block.
2132   // This value may be smaller or larger than the target's pointer type, and
2133   // therefore require extension or truncating.
2134   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2135   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2136 
2137   unsigned JumpTableReg =
2138       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2139   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2140                                     JumpTableReg, SwitchOp);
2141   JT.Reg = JumpTableReg;
2142 
2143   // Emit the range check for the jump table, and branch to the default block
2144   // for the switch statement if the value being switched on exceeds the largest
2145   // case in the switch.
2146   SDValue CMP = DAG.getSetCC(
2147       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2148                                  Sub.getValueType()),
2149       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2150 
2151   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2152                                MVT::Other, CopyTo, CMP,
2153                                DAG.getBasicBlock(JT.Default));
2154 
2155   // Avoid emitting unnecessary branches to the next block.
2156   if (JT.MBB != NextBlock(SwitchBB))
2157     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2158                          DAG.getBasicBlock(JT.MBB));
2159 
2160   DAG.setRoot(BrCond);
2161 }
2162 
2163 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2164 /// variable if there exists one.
2165 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2166                                  SDValue &Chain) {
2167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2168   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2169   MachineFunction &MF = DAG.getMachineFunction();
2170   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2171   MachineSDNode *Node =
2172       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2173   if (Global) {
2174     MachinePointerInfo MPInfo(Global);
2175     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2176     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2177                  MachineMemOperand::MODereferenceable;
2178     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2179                                        DAG.getEVTAlignment(PtrTy));
2180     Node->setMemRefs(MemRefs, MemRefs + 1);
2181   }
2182   return SDValue(Node, 0);
2183 }
2184 
2185 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2186 /// tail spliced into a stack protector check success bb.
2187 ///
2188 /// For a high level explanation of how this fits into the stack protector
2189 /// generation see the comment on the declaration of class
2190 /// StackProtectorDescriptor.
2191 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2192                                                   MachineBasicBlock *ParentBB) {
2193 
2194   // First create the loads to the guard/stack slot for the comparison.
2195   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2196   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2197 
2198   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2199   int FI = MFI.getStackProtectorIndex();
2200 
2201   SDValue Guard;
2202   SDLoc dl = getCurSDLoc();
2203   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2204   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2205   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2206 
2207   // Generate code to load the content of the guard slot.
2208   SDValue GuardVal = DAG.getLoad(
2209       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2210       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2211       MachineMemOperand::MOVolatile);
2212 
2213   if (TLI.useStackGuardXorFP())
2214     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2215 
2216   // Retrieve guard check function, nullptr if instrumentation is inlined.
2217   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2218     // The target provides a guard check function to validate the guard value.
2219     // Generate a call to that function with the content of the guard slot as
2220     // argument.
2221     auto *Fn = cast<Function>(GuardCheck);
2222     FunctionType *FnTy = Fn->getFunctionType();
2223     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2224 
2225     TargetLowering::ArgListTy Args;
2226     TargetLowering::ArgListEntry Entry;
2227     Entry.Node = GuardVal;
2228     Entry.Ty = FnTy->getParamType(0);
2229     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2230       Entry.IsInReg = true;
2231     Args.push_back(Entry);
2232 
2233     TargetLowering::CallLoweringInfo CLI(DAG);
2234     CLI.setDebugLoc(getCurSDLoc())
2235       .setChain(DAG.getEntryNode())
2236       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2237                  getValue(GuardCheck), std::move(Args));
2238 
2239     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2240     DAG.setRoot(Result.second);
2241     return;
2242   }
2243 
2244   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2245   // Otherwise, emit a volatile load to retrieve the stack guard value.
2246   SDValue Chain = DAG.getEntryNode();
2247   if (TLI.useLoadStackGuardNode()) {
2248     Guard = getLoadStackGuard(DAG, dl, Chain);
2249   } else {
2250     const Value *IRGuard = TLI.getSDagStackGuard(M);
2251     SDValue GuardPtr = getValue(IRGuard);
2252 
2253     Guard =
2254         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2255                     Align, MachineMemOperand::MOVolatile);
2256   }
2257 
2258   // Perform the comparison via a subtract/getsetcc.
2259   EVT VT = Guard.getValueType();
2260   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2261 
2262   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2263                                                         *DAG.getContext(),
2264                                                         Sub.getValueType()),
2265                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2266 
2267   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2268   // branch to failure MBB.
2269   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2270                                MVT::Other, GuardVal.getOperand(0),
2271                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2272   // Otherwise branch to success MBB.
2273   SDValue Br = DAG.getNode(ISD::BR, dl,
2274                            MVT::Other, BrCond,
2275                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2276 
2277   DAG.setRoot(Br);
2278 }
2279 
2280 /// Codegen the failure basic block for a stack protector check.
2281 ///
2282 /// A failure stack protector machine basic block consists simply of a call to
2283 /// __stack_chk_fail().
2284 ///
2285 /// For a high level explanation of how this fits into the stack protector
2286 /// generation see the comment on the declaration of class
2287 /// StackProtectorDescriptor.
2288 void
2289 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2290   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2291   SDValue Chain =
2292       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2293                       None, false, getCurSDLoc(), false, false).second;
2294   DAG.setRoot(Chain);
2295 }
2296 
2297 /// visitBitTestHeader - This function emits necessary code to produce value
2298 /// suitable for "bit tests"
2299 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2300                                              MachineBasicBlock *SwitchBB) {
2301   SDLoc dl = getCurSDLoc();
2302 
2303   // Subtract the minimum value
2304   SDValue SwitchOp = getValue(B.SValue);
2305   EVT VT = SwitchOp.getValueType();
2306   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2307                             DAG.getConstant(B.First, dl, VT));
2308 
2309   // Check range
2310   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2311   SDValue RangeCmp = DAG.getSetCC(
2312       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2313                                  Sub.getValueType()),
2314       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2315 
2316   // Determine the type of the test operands.
2317   bool UsePtrType = false;
2318   if (!TLI.isTypeLegal(VT))
2319     UsePtrType = true;
2320   else {
2321     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2322       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2323         // Switch table case range are encoded into series of masks.
2324         // Just use pointer type, it's guaranteed to fit.
2325         UsePtrType = true;
2326         break;
2327       }
2328   }
2329   if (UsePtrType) {
2330     VT = TLI.getPointerTy(DAG.getDataLayout());
2331     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2332   }
2333 
2334   B.RegVT = VT.getSimpleVT();
2335   B.Reg = FuncInfo.CreateReg(B.RegVT);
2336   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2337 
2338   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2339 
2340   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2341   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2342   SwitchBB->normalizeSuccProbs();
2343 
2344   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2345                                 MVT::Other, CopyTo, RangeCmp,
2346                                 DAG.getBasicBlock(B.Default));
2347 
2348   // Avoid emitting unnecessary branches to the next block.
2349   if (MBB != NextBlock(SwitchBB))
2350     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2351                           DAG.getBasicBlock(MBB));
2352 
2353   DAG.setRoot(BrRange);
2354 }
2355 
2356 /// visitBitTestCase - this function produces one "bit test"
2357 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2358                                            MachineBasicBlock* NextMBB,
2359                                            BranchProbability BranchProbToNext,
2360                                            unsigned Reg,
2361                                            BitTestCase &B,
2362                                            MachineBasicBlock *SwitchBB) {
2363   SDLoc dl = getCurSDLoc();
2364   MVT VT = BB.RegVT;
2365   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2366   SDValue Cmp;
2367   unsigned PopCount = countPopulation(B.Mask);
2368   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2369   if (PopCount == 1) {
2370     // Testing for a single bit; just compare the shift count with what it
2371     // would need to be to shift a 1 bit in that position.
2372     Cmp = DAG.getSetCC(
2373         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2374         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2375         ISD::SETEQ);
2376   } else if (PopCount == BB.Range) {
2377     // There is only one zero bit in the range, test for it directly.
2378     Cmp = DAG.getSetCC(
2379         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2380         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2381         ISD::SETNE);
2382   } else {
2383     // Make desired shift
2384     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2385                                     DAG.getConstant(1, dl, VT), ShiftOp);
2386 
2387     // Emit bit tests and jumps
2388     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2389                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2390     Cmp = DAG.getSetCC(
2391         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2392         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2393   }
2394 
2395   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2396   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2397   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2398   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2399   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2400   // one as they are relative probabilities (and thus work more like weights),
2401   // and hence we need to normalize them to let the sum of them become one.
2402   SwitchBB->normalizeSuccProbs();
2403 
2404   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2405                               MVT::Other, getControlRoot(),
2406                               Cmp, DAG.getBasicBlock(B.TargetBB));
2407 
2408   // Avoid emitting unnecessary branches to the next block.
2409   if (NextMBB != NextBlock(SwitchBB))
2410     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2411                         DAG.getBasicBlock(NextMBB));
2412 
2413   DAG.setRoot(BrAnd);
2414 }
2415 
2416 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2417   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2418 
2419   // Retrieve successors. Look through artificial IR level blocks like
2420   // catchswitch for successors.
2421   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2422   const BasicBlock *EHPadBB = I.getSuccessor(1);
2423 
2424   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2425   // have to do anything here to lower funclet bundles.
2426   assert(!I.hasOperandBundlesOtherThan(
2427              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2428          "Cannot lower invokes with arbitrary operand bundles yet!");
2429 
2430   const Value *Callee(I.getCalledValue());
2431   const Function *Fn = dyn_cast<Function>(Callee);
2432   if (isa<InlineAsm>(Callee))
2433     visitInlineAsm(&I);
2434   else if (Fn && Fn->isIntrinsic()) {
2435     switch (Fn->getIntrinsicID()) {
2436     default:
2437       llvm_unreachable("Cannot invoke this intrinsic");
2438     case Intrinsic::donothing:
2439       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2440       break;
2441     case Intrinsic::experimental_patchpoint_void:
2442     case Intrinsic::experimental_patchpoint_i64:
2443       visitPatchpoint(&I, EHPadBB);
2444       break;
2445     case Intrinsic::experimental_gc_statepoint:
2446       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2447       break;
2448     }
2449   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2450     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2451     // Eventually we will support lowering the @llvm.experimental.deoptimize
2452     // intrinsic, and right now there are no plans to support other intrinsics
2453     // with deopt state.
2454     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2455   } else {
2456     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2457   }
2458 
2459   // If the value of the invoke is used outside of its defining block, make it
2460   // available as a virtual register.
2461   // We already took care of the exported value for the statepoint instruction
2462   // during call to the LowerStatepoint.
2463   if (!isStatepoint(I)) {
2464     CopyToExportRegsIfNeeded(&I);
2465   }
2466 
2467   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2468   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2469   BranchProbability EHPadBBProb =
2470       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2471           : BranchProbability::getZero();
2472   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2473 
2474   // Update successor info.
2475   addSuccessorWithProb(InvokeMBB, Return);
2476   for (auto &UnwindDest : UnwindDests) {
2477     UnwindDest.first->setIsEHPad();
2478     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2479   }
2480   InvokeMBB->normalizeSuccProbs();
2481 
2482   // Drop into normal successor.
2483   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2484                           MVT::Other, getControlRoot(),
2485                           DAG.getBasicBlock(Return)));
2486 }
2487 
2488 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2489   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2490 }
2491 
2492 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2493   assert(FuncInfo.MBB->isEHPad() &&
2494          "Call to landingpad not in landing pad!");
2495 
2496   MachineBasicBlock *MBB = FuncInfo.MBB;
2497   addLandingPadInfo(LP, *MBB);
2498 
2499   // If there aren't registers to copy the values into (e.g., during SjLj
2500   // exceptions), then don't bother to create these DAG nodes.
2501   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2502   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2503   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2504       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2505     return;
2506 
2507   // If landingpad's return type is token type, we don't create DAG nodes
2508   // for its exception pointer and selector value. The extraction of exception
2509   // pointer or selector value from token type landingpads is not currently
2510   // supported.
2511   if (LP.getType()->isTokenTy())
2512     return;
2513 
2514   SmallVector<EVT, 2> ValueVTs;
2515   SDLoc dl = getCurSDLoc();
2516   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2517   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2518 
2519   // Get the two live-in registers as SDValues. The physregs have already been
2520   // copied into virtual registers.
2521   SDValue Ops[2];
2522   if (FuncInfo.ExceptionPointerVirtReg) {
2523     Ops[0] = DAG.getZExtOrTrunc(
2524         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2525                            FuncInfo.ExceptionPointerVirtReg,
2526                            TLI.getPointerTy(DAG.getDataLayout())),
2527         dl, ValueVTs[0]);
2528   } else {
2529     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2530   }
2531   Ops[1] = DAG.getZExtOrTrunc(
2532       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2533                          FuncInfo.ExceptionSelectorVirtReg,
2534                          TLI.getPointerTy(DAG.getDataLayout())),
2535       dl, ValueVTs[1]);
2536 
2537   // Merge into one.
2538   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2539                             DAG.getVTList(ValueVTs), Ops);
2540   setValue(&LP, Res);
2541 }
2542 
2543 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2544 #ifndef NDEBUG
2545   for (const CaseCluster &CC : Clusters)
2546     assert(CC.Low == CC.High && "Input clusters must be single-case");
2547 #endif
2548 
2549   llvm::sort(Clusters.begin(), Clusters.end(),
2550              [](const CaseCluster &a, const CaseCluster &b) {
2551     return a.Low->getValue().slt(b.Low->getValue());
2552   });
2553 
2554   // Merge adjacent clusters with the same destination.
2555   const unsigned N = Clusters.size();
2556   unsigned DstIndex = 0;
2557   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2558     CaseCluster &CC = Clusters[SrcIndex];
2559     const ConstantInt *CaseVal = CC.Low;
2560     MachineBasicBlock *Succ = CC.MBB;
2561 
2562     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2563         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2564       // If this case has the same successor and is a neighbour, merge it into
2565       // the previous cluster.
2566       Clusters[DstIndex - 1].High = CaseVal;
2567       Clusters[DstIndex - 1].Prob += CC.Prob;
2568     } else {
2569       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2570                    sizeof(Clusters[SrcIndex]));
2571     }
2572   }
2573   Clusters.resize(DstIndex);
2574 }
2575 
2576 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2577                                            MachineBasicBlock *Last) {
2578   // Update JTCases.
2579   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2580     if (JTCases[i].first.HeaderBB == First)
2581       JTCases[i].first.HeaderBB = Last;
2582 
2583   // Update BitTestCases.
2584   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2585     if (BitTestCases[i].Parent == First)
2586       BitTestCases[i].Parent = Last;
2587 }
2588 
2589 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2590   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2591 
2592   // Update machine-CFG edges with unique successors.
2593   SmallSet<BasicBlock*, 32> Done;
2594   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2595     BasicBlock *BB = I.getSuccessor(i);
2596     bool Inserted = Done.insert(BB).second;
2597     if (!Inserted)
2598         continue;
2599 
2600     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2601     addSuccessorWithProb(IndirectBrMBB, Succ);
2602   }
2603   IndirectBrMBB->normalizeSuccProbs();
2604 
2605   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2606                           MVT::Other, getControlRoot(),
2607                           getValue(I.getAddress())));
2608 }
2609 
2610 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2611   if (!DAG.getTarget().Options.TrapUnreachable)
2612     return;
2613 
2614   // We may be able to ignore unreachable behind a noreturn call.
2615   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2616     const BasicBlock &BB = *I.getParent();
2617     if (&I != &BB.front()) {
2618       BasicBlock::const_iterator PredI =
2619         std::prev(BasicBlock::const_iterator(&I));
2620       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2621         if (Call->doesNotReturn())
2622           return;
2623       }
2624     }
2625   }
2626 
2627   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2628 }
2629 
2630 void SelectionDAGBuilder::visitFSub(const User &I) {
2631   // -0.0 - X --> fneg
2632   Type *Ty = I.getType();
2633   if (isa<Constant>(I.getOperand(0)) &&
2634       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2635     SDValue Op2 = getValue(I.getOperand(1));
2636     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2637                              Op2.getValueType(), Op2));
2638     return;
2639   }
2640 
2641   visitBinary(I, ISD::FSUB);
2642 }
2643 
2644 /// Checks if the given instruction performs a vector reduction, in which case
2645 /// we have the freedom to alter the elements in the result as long as the
2646 /// reduction of them stays unchanged.
2647 static bool isVectorReductionOp(const User *I) {
2648   const Instruction *Inst = dyn_cast<Instruction>(I);
2649   if (!Inst || !Inst->getType()->isVectorTy())
2650     return false;
2651 
2652   auto OpCode = Inst->getOpcode();
2653   switch (OpCode) {
2654   case Instruction::Add:
2655   case Instruction::Mul:
2656   case Instruction::And:
2657   case Instruction::Or:
2658   case Instruction::Xor:
2659     break;
2660   case Instruction::FAdd:
2661   case Instruction::FMul:
2662     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2663       if (FPOp->getFastMathFlags().isFast())
2664         break;
2665     LLVM_FALLTHROUGH;
2666   default:
2667     return false;
2668   }
2669 
2670   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2671   // Ensure the reduction size is a power of 2.
2672   if (!isPowerOf2_32(ElemNum))
2673     return false;
2674 
2675   unsigned ElemNumToReduce = ElemNum;
2676 
2677   // Do DFS search on the def-use chain from the given instruction. We only
2678   // allow four kinds of operations during the search until we reach the
2679   // instruction that extracts the first element from the vector:
2680   //
2681   //   1. The reduction operation of the same opcode as the given instruction.
2682   //
2683   //   2. PHI node.
2684   //
2685   //   3. ShuffleVector instruction together with a reduction operation that
2686   //      does a partial reduction.
2687   //
2688   //   4. ExtractElement that extracts the first element from the vector, and we
2689   //      stop searching the def-use chain here.
2690   //
2691   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2692   // from 1-3 to the stack to continue the DFS. The given instruction is not
2693   // a reduction operation if we meet any other instructions other than those
2694   // listed above.
2695 
2696   SmallVector<const User *, 16> UsersToVisit{Inst};
2697   SmallPtrSet<const User *, 16> Visited;
2698   bool ReduxExtracted = false;
2699 
2700   while (!UsersToVisit.empty()) {
2701     auto User = UsersToVisit.back();
2702     UsersToVisit.pop_back();
2703     if (!Visited.insert(User).second)
2704       continue;
2705 
2706     for (const auto &U : User->users()) {
2707       auto Inst = dyn_cast<Instruction>(U);
2708       if (!Inst)
2709         return false;
2710 
2711       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2712         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2713           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2714             return false;
2715         UsersToVisit.push_back(U);
2716       } else if (const ShuffleVectorInst *ShufInst =
2717                      dyn_cast<ShuffleVectorInst>(U)) {
2718         // Detect the following pattern: A ShuffleVector instruction together
2719         // with a reduction that do partial reduction on the first and second
2720         // ElemNumToReduce / 2 elements, and store the result in
2721         // ElemNumToReduce / 2 elements in another vector.
2722 
2723         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2724         if (ResultElements < ElemNum)
2725           return false;
2726 
2727         if (ElemNumToReduce == 1)
2728           return false;
2729         if (!isa<UndefValue>(U->getOperand(1)))
2730           return false;
2731         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2732           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2733             return false;
2734         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2735           if (ShufInst->getMaskValue(i) != -1)
2736             return false;
2737 
2738         // There is only one user of this ShuffleVector instruction, which
2739         // must be a reduction operation.
2740         if (!U->hasOneUse())
2741           return false;
2742 
2743         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2744         if (!U2 || U2->getOpcode() != OpCode)
2745           return false;
2746 
2747         // Check operands of the reduction operation.
2748         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2749             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2750           UsersToVisit.push_back(U2);
2751           ElemNumToReduce /= 2;
2752         } else
2753           return false;
2754       } else if (isa<ExtractElementInst>(U)) {
2755         // At this moment we should have reduced all elements in the vector.
2756         if (ElemNumToReduce != 1)
2757           return false;
2758 
2759         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2760         if (!Val || Val->getZExtValue() != 0)
2761           return false;
2762 
2763         ReduxExtracted = true;
2764       } else
2765         return false;
2766     }
2767   }
2768   return ReduxExtracted;
2769 }
2770 
2771 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2772   SDNodeFlags Flags;
2773   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2774     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2775     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2776   }
2777   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2778     Flags.setExact(ExactOp->isExact());
2779   }
2780   if (isVectorReductionOp(&I)) {
2781     Flags.setVectorReduction(true);
2782     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2783   }
2784 
2785   SDValue Op1 = getValue(I.getOperand(0));
2786   SDValue Op2 = getValue(I.getOperand(1));
2787   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2788                                      Op1, Op2, Flags);
2789   setValue(&I, BinNodeValue);
2790 }
2791 
2792 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2793   SDValue Op1 = getValue(I.getOperand(0));
2794   SDValue Op2 = getValue(I.getOperand(1));
2795 
2796   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2797       Op2.getValueType(), DAG.getDataLayout());
2798 
2799   // Coerce the shift amount to the right type if we can.
2800   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2801     unsigned ShiftSize = ShiftTy.getSizeInBits();
2802     unsigned Op2Size = Op2.getValueSizeInBits();
2803     SDLoc DL = getCurSDLoc();
2804 
2805     // If the operand is smaller than the shift count type, promote it.
2806     if (ShiftSize > Op2Size)
2807       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2808 
2809     // If the operand is larger than the shift count type but the shift
2810     // count type has enough bits to represent any shift value, truncate
2811     // it now. This is a common case and it exposes the truncate to
2812     // optimization early.
2813     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2814       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2815     // Otherwise we'll need to temporarily settle for some other convenient
2816     // type.  Type legalization will make adjustments once the shiftee is split.
2817     else
2818       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2819   }
2820 
2821   bool nuw = false;
2822   bool nsw = false;
2823   bool exact = false;
2824 
2825   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2826 
2827     if (const OverflowingBinaryOperator *OFBinOp =
2828             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2829       nuw = OFBinOp->hasNoUnsignedWrap();
2830       nsw = OFBinOp->hasNoSignedWrap();
2831     }
2832     if (const PossiblyExactOperator *ExactOp =
2833             dyn_cast<const PossiblyExactOperator>(&I))
2834       exact = ExactOp->isExact();
2835   }
2836   SDNodeFlags Flags;
2837   Flags.setExact(exact);
2838   Flags.setNoSignedWrap(nsw);
2839   Flags.setNoUnsignedWrap(nuw);
2840   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2841                             Flags);
2842   setValue(&I, Res);
2843 }
2844 
2845 void SelectionDAGBuilder::visitSDiv(const User &I) {
2846   SDValue Op1 = getValue(I.getOperand(0));
2847   SDValue Op2 = getValue(I.getOperand(1));
2848 
2849   SDNodeFlags Flags;
2850   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2851                  cast<PossiblyExactOperator>(&I)->isExact());
2852   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2853                            Op2, Flags));
2854 }
2855 
2856 void SelectionDAGBuilder::visitICmp(const User &I) {
2857   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2858   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2859     predicate = IC->getPredicate();
2860   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2861     predicate = ICmpInst::Predicate(IC->getPredicate());
2862   SDValue Op1 = getValue(I.getOperand(0));
2863   SDValue Op2 = getValue(I.getOperand(1));
2864   ISD::CondCode Opcode = getICmpCondCode(predicate);
2865 
2866   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2867                                                         I.getType());
2868   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2869 }
2870 
2871 void SelectionDAGBuilder::visitFCmp(const User &I) {
2872   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2873   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2874     predicate = FC->getPredicate();
2875   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2876     predicate = FCmpInst::Predicate(FC->getPredicate());
2877   SDValue Op1 = getValue(I.getOperand(0));
2878   SDValue Op2 = getValue(I.getOperand(1));
2879 
2880   ISD::CondCode Condition = getFCmpCondCode(predicate);
2881   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2882   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2883     Condition = getFCmpCodeWithoutNaN(Condition);
2884 
2885   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2886                                                         I.getType());
2887   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2888 }
2889 
2890 // Check if the condition of the select has one use or two users that are both
2891 // selects with the same condition.
2892 static bool hasOnlySelectUsers(const Value *Cond) {
2893   return llvm::all_of(Cond->users(), [](const Value *V) {
2894     return isa<SelectInst>(V);
2895   });
2896 }
2897 
2898 void SelectionDAGBuilder::visitSelect(const User &I) {
2899   SmallVector<EVT, 4> ValueVTs;
2900   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2901                   ValueVTs);
2902   unsigned NumValues = ValueVTs.size();
2903   if (NumValues == 0) return;
2904 
2905   SmallVector<SDValue, 4> Values(NumValues);
2906   SDValue Cond     = getValue(I.getOperand(0));
2907   SDValue LHSVal   = getValue(I.getOperand(1));
2908   SDValue RHSVal   = getValue(I.getOperand(2));
2909   auto BaseOps = {Cond};
2910   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2911     ISD::VSELECT : ISD::SELECT;
2912 
2913   // Min/max matching is only viable if all output VTs are the same.
2914   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2915     EVT VT = ValueVTs[0];
2916     LLVMContext &Ctx = *DAG.getContext();
2917     auto &TLI = DAG.getTargetLoweringInfo();
2918 
2919     // We care about the legality of the operation after it has been type
2920     // legalized.
2921     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2922            VT != TLI.getTypeToTransformTo(Ctx, VT))
2923       VT = TLI.getTypeToTransformTo(Ctx, VT);
2924 
2925     // If the vselect is legal, assume we want to leave this as a vector setcc +
2926     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2927     // min/max is legal on the scalar type.
2928     bool UseScalarMinMax = VT.isVector() &&
2929       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2930 
2931     Value *LHS, *RHS;
2932     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2933     ISD::NodeType Opc = ISD::DELETED_NODE;
2934     switch (SPR.Flavor) {
2935     case SPF_UMAX:    Opc = ISD::UMAX; break;
2936     case SPF_UMIN:    Opc = ISD::UMIN; break;
2937     case SPF_SMAX:    Opc = ISD::SMAX; break;
2938     case SPF_SMIN:    Opc = ISD::SMIN; break;
2939     case SPF_FMINNUM:
2940       switch (SPR.NaNBehavior) {
2941       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2942       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2943       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2944       case SPNB_RETURNS_ANY: {
2945         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2946           Opc = ISD::FMINNUM;
2947         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2948           Opc = ISD::FMINNAN;
2949         else if (UseScalarMinMax)
2950           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2951             ISD::FMINNUM : ISD::FMINNAN;
2952         break;
2953       }
2954       }
2955       break;
2956     case SPF_FMAXNUM:
2957       switch (SPR.NaNBehavior) {
2958       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2959       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2960       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2961       case SPNB_RETURNS_ANY:
2962 
2963         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2964           Opc = ISD::FMAXNUM;
2965         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2966           Opc = ISD::FMAXNAN;
2967         else if (UseScalarMinMax)
2968           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2969             ISD::FMAXNUM : ISD::FMAXNAN;
2970         break;
2971       }
2972       break;
2973     default: break;
2974     }
2975 
2976     if (Opc != ISD::DELETED_NODE &&
2977         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2978          (UseScalarMinMax &&
2979           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2980         // If the underlying comparison instruction is used by any other
2981         // instruction, the consumed instructions won't be destroyed, so it is
2982         // not profitable to convert to a min/max.
2983         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2984       OpCode = Opc;
2985       LHSVal = getValue(LHS);
2986       RHSVal = getValue(RHS);
2987       BaseOps = {};
2988     }
2989   }
2990 
2991   for (unsigned i = 0; i != NumValues; ++i) {
2992     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2993     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2994     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2995     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2996                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2997                             Ops);
2998   }
2999 
3000   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3001                            DAG.getVTList(ValueVTs), Values));
3002 }
3003 
3004 void SelectionDAGBuilder::visitTrunc(const User &I) {
3005   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3006   SDValue N = getValue(I.getOperand(0));
3007   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3008                                                         I.getType());
3009   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3010 }
3011 
3012 void SelectionDAGBuilder::visitZExt(const User &I) {
3013   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3014   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3015   SDValue N = getValue(I.getOperand(0));
3016   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3017                                                         I.getType());
3018   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3019 }
3020 
3021 void SelectionDAGBuilder::visitSExt(const User &I) {
3022   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3023   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3024   SDValue N = getValue(I.getOperand(0));
3025   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3026                                                         I.getType());
3027   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3028 }
3029 
3030 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3031   // FPTrunc is never a no-op cast, no need to check
3032   SDValue N = getValue(I.getOperand(0));
3033   SDLoc dl = getCurSDLoc();
3034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3035   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3036   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3037                            DAG.getTargetConstant(
3038                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3039 }
3040 
3041 void SelectionDAGBuilder::visitFPExt(const User &I) {
3042   // FPExt is never a no-op cast, no need to check
3043   SDValue N = getValue(I.getOperand(0));
3044   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3045                                                         I.getType());
3046   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3047 }
3048 
3049 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3050   // FPToUI is never a no-op cast, no need to check
3051   SDValue N = getValue(I.getOperand(0));
3052   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3053                                                         I.getType());
3054   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3055 }
3056 
3057 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3058   // FPToSI is never a no-op cast, no need to check
3059   SDValue N = getValue(I.getOperand(0));
3060   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3061                                                         I.getType());
3062   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3063 }
3064 
3065 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3066   // UIToFP is never a no-op cast, no need to check
3067   SDValue N = getValue(I.getOperand(0));
3068   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3069                                                         I.getType());
3070   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3071 }
3072 
3073 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3074   // SIToFP is never a no-op cast, no need to check
3075   SDValue N = getValue(I.getOperand(0));
3076   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3077                                                         I.getType());
3078   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3079 }
3080 
3081 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3082   // What to do depends on the size of the integer and the size of the pointer.
3083   // We can either truncate, zero extend, or no-op, accordingly.
3084   SDValue N = getValue(I.getOperand(0));
3085   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3086                                                         I.getType());
3087   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3088 }
3089 
3090 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3091   // What to do depends on the size of the integer and the size of the pointer.
3092   // We can either truncate, zero extend, or no-op, accordingly.
3093   SDValue N = getValue(I.getOperand(0));
3094   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3095                                                         I.getType());
3096   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3097 }
3098 
3099 void SelectionDAGBuilder::visitBitCast(const User &I) {
3100   SDValue N = getValue(I.getOperand(0));
3101   SDLoc dl = getCurSDLoc();
3102   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3103                                                         I.getType());
3104 
3105   // BitCast assures us that source and destination are the same size so this is
3106   // either a BITCAST or a no-op.
3107   if (DestVT != N.getValueType())
3108     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3109                              DestVT, N)); // convert types.
3110   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3111   // might fold any kind of constant expression to an integer constant and that
3112   // is not what we are looking for. Only recognize a bitcast of a genuine
3113   // constant integer as an opaque constant.
3114   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3115     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3116                                  /*isOpaque*/true));
3117   else
3118     setValue(&I, N);            // noop cast.
3119 }
3120 
3121 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3122   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3123   const Value *SV = I.getOperand(0);
3124   SDValue N = getValue(SV);
3125   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3126 
3127   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3128   unsigned DestAS = I.getType()->getPointerAddressSpace();
3129 
3130   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3131     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3132 
3133   setValue(&I, N);
3134 }
3135 
3136 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3138   SDValue InVec = getValue(I.getOperand(0));
3139   SDValue InVal = getValue(I.getOperand(1));
3140   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3141                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3142   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3143                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3144                            InVec, InVal, InIdx));
3145 }
3146 
3147 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3148   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3149   SDValue InVec = getValue(I.getOperand(0));
3150   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3151                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3152   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3153                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3154                            InVec, InIdx));
3155 }
3156 
3157 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3158   SDValue Src1 = getValue(I.getOperand(0));
3159   SDValue Src2 = getValue(I.getOperand(1));
3160   SDLoc DL = getCurSDLoc();
3161 
3162   SmallVector<int, 8> Mask;
3163   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3164   unsigned MaskNumElts = Mask.size();
3165 
3166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3167   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3168   EVT SrcVT = Src1.getValueType();
3169   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3170 
3171   if (SrcNumElts == MaskNumElts) {
3172     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3173     return;
3174   }
3175 
3176   // Normalize the shuffle vector since mask and vector length don't match.
3177   if (SrcNumElts < MaskNumElts) {
3178     // Mask is longer than the source vectors. We can use concatenate vector to
3179     // make the mask and vectors lengths match.
3180 
3181     if (MaskNumElts % SrcNumElts == 0) {
3182       // Mask length is a multiple of the source vector length.
3183       // Check if the shuffle is some kind of concatenation of the input
3184       // vectors.
3185       unsigned NumConcat = MaskNumElts / SrcNumElts;
3186       bool IsConcat = true;
3187       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3188       for (unsigned i = 0; i != MaskNumElts; ++i) {
3189         int Idx = Mask[i];
3190         if (Idx < 0)
3191           continue;
3192         // Ensure the indices in each SrcVT sized piece are sequential and that
3193         // the same source is used for the whole piece.
3194         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3195             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3196              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3197           IsConcat = false;
3198           break;
3199         }
3200         // Remember which source this index came from.
3201         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3202       }
3203 
3204       // The shuffle is concatenating multiple vectors together. Just emit
3205       // a CONCAT_VECTORS operation.
3206       if (IsConcat) {
3207         SmallVector<SDValue, 8> ConcatOps;
3208         for (auto Src : ConcatSrcs) {
3209           if (Src < 0)
3210             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3211           else if (Src == 0)
3212             ConcatOps.push_back(Src1);
3213           else
3214             ConcatOps.push_back(Src2);
3215         }
3216         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3217         return;
3218       }
3219     }
3220 
3221     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3222     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3223     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3224                                     PaddedMaskNumElts);
3225 
3226     // Pad both vectors with undefs to make them the same length as the mask.
3227     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3228 
3229     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3230     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3231     MOps1[0] = Src1;
3232     MOps2[0] = Src2;
3233 
3234     Src1 = Src1.isUndef()
3235                ? DAG.getUNDEF(PaddedVT)
3236                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3237     Src2 = Src2.isUndef()
3238                ? DAG.getUNDEF(PaddedVT)
3239                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3240 
3241     // Readjust mask for new input vector length.
3242     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3243     for (unsigned i = 0; i != MaskNumElts; ++i) {
3244       int Idx = Mask[i];
3245       if (Idx >= (int)SrcNumElts)
3246         Idx -= SrcNumElts - PaddedMaskNumElts;
3247       MappedOps[i] = Idx;
3248     }
3249 
3250     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3251 
3252     // If the concatenated vector was padded, extract a subvector with the
3253     // correct number of elements.
3254     if (MaskNumElts != PaddedMaskNumElts)
3255       Result = DAG.getNode(
3256           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3257           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3258 
3259     setValue(&I, Result);
3260     return;
3261   }
3262 
3263   if (SrcNumElts > MaskNumElts) {
3264     // Analyze the access pattern of the vector to see if we can extract
3265     // two subvectors and do the shuffle.
3266     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3267     bool CanExtract = true;
3268     for (int Idx : Mask) {
3269       unsigned Input = 0;
3270       if (Idx < 0)
3271         continue;
3272 
3273       if (Idx >= (int)SrcNumElts) {
3274         Input = 1;
3275         Idx -= SrcNumElts;
3276       }
3277 
3278       // If all the indices come from the same MaskNumElts sized portion of
3279       // the sources we can use extract. Also make sure the extract wouldn't
3280       // extract past the end of the source.
3281       int NewStartIdx = alignDown(Idx, MaskNumElts);
3282       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3283           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3284         CanExtract = false;
3285       // Make sure we always update StartIdx as we use it to track if all
3286       // elements are undef.
3287       StartIdx[Input] = NewStartIdx;
3288     }
3289 
3290     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3291       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3292       return;
3293     }
3294     if (CanExtract) {
3295       // Extract appropriate subvector and generate a vector shuffle
3296       for (unsigned Input = 0; Input < 2; ++Input) {
3297         SDValue &Src = Input == 0 ? Src1 : Src2;
3298         if (StartIdx[Input] < 0)
3299           Src = DAG.getUNDEF(VT);
3300         else {
3301           Src = DAG.getNode(
3302               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3303               DAG.getConstant(StartIdx[Input], DL,
3304                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3305         }
3306       }
3307 
3308       // Calculate new mask.
3309       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3310       for (int &Idx : MappedOps) {
3311         if (Idx >= (int)SrcNumElts)
3312           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3313         else if (Idx >= 0)
3314           Idx -= StartIdx[0];
3315       }
3316 
3317       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3318       return;
3319     }
3320   }
3321 
3322   // We can't use either concat vectors or extract subvectors so fall back to
3323   // replacing the shuffle with extract and build vector.
3324   // to insert and build vector.
3325   EVT EltVT = VT.getVectorElementType();
3326   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3327   SmallVector<SDValue,8> Ops;
3328   for (int Idx : Mask) {
3329     SDValue Res;
3330 
3331     if (Idx < 0) {
3332       Res = DAG.getUNDEF(EltVT);
3333     } else {
3334       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3335       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3336 
3337       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3338                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3339     }
3340 
3341     Ops.push_back(Res);
3342   }
3343 
3344   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3345 }
3346 
3347 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3348   ArrayRef<unsigned> Indices;
3349   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3350     Indices = IV->getIndices();
3351   else
3352     Indices = cast<ConstantExpr>(&I)->getIndices();
3353 
3354   const Value *Op0 = I.getOperand(0);
3355   const Value *Op1 = I.getOperand(1);
3356   Type *AggTy = I.getType();
3357   Type *ValTy = Op1->getType();
3358   bool IntoUndef = isa<UndefValue>(Op0);
3359   bool FromUndef = isa<UndefValue>(Op1);
3360 
3361   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3362 
3363   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3364   SmallVector<EVT, 4> AggValueVTs;
3365   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3366   SmallVector<EVT, 4> ValValueVTs;
3367   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3368 
3369   unsigned NumAggValues = AggValueVTs.size();
3370   unsigned NumValValues = ValValueVTs.size();
3371   SmallVector<SDValue, 4> Values(NumAggValues);
3372 
3373   // Ignore an insertvalue that produces an empty object
3374   if (!NumAggValues) {
3375     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3376     return;
3377   }
3378 
3379   SDValue Agg = getValue(Op0);
3380   unsigned i = 0;
3381   // Copy the beginning value(s) from the original aggregate.
3382   for (; i != LinearIndex; ++i)
3383     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3384                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3385   // Copy values from the inserted value(s).
3386   if (NumValValues) {
3387     SDValue Val = getValue(Op1);
3388     for (; i != LinearIndex + NumValValues; ++i)
3389       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3390                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3391   }
3392   // Copy remaining value(s) from the original aggregate.
3393   for (; i != NumAggValues; ++i)
3394     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3395                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3396 
3397   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3398                            DAG.getVTList(AggValueVTs), Values));
3399 }
3400 
3401 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3402   ArrayRef<unsigned> Indices;
3403   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3404     Indices = EV->getIndices();
3405   else
3406     Indices = cast<ConstantExpr>(&I)->getIndices();
3407 
3408   const Value *Op0 = I.getOperand(0);
3409   Type *AggTy = Op0->getType();
3410   Type *ValTy = I.getType();
3411   bool OutOfUndef = isa<UndefValue>(Op0);
3412 
3413   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3414 
3415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3416   SmallVector<EVT, 4> ValValueVTs;
3417   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3418 
3419   unsigned NumValValues = ValValueVTs.size();
3420 
3421   // Ignore a extractvalue that produces an empty object
3422   if (!NumValValues) {
3423     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3424     return;
3425   }
3426 
3427   SmallVector<SDValue, 4> Values(NumValValues);
3428 
3429   SDValue Agg = getValue(Op0);
3430   // Copy out the selected value(s).
3431   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3432     Values[i - LinearIndex] =
3433       OutOfUndef ?
3434         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3435         SDValue(Agg.getNode(), Agg.getResNo() + i);
3436 
3437   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3438                            DAG.getVTList(ValValueVTs), Values));
3439 }
3440 
3441 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3442   Value *Op0 = I.getOperand(0);
3443   // Note that the pointer operand may be a vector of pointers. Take the scalar
3444   // element which holds a pointer.
3445   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3446   SDValue N = getValue(Op0);
3447   SDLoc dl = getCurSDLoc();
3448 
3449   // Normalize Vector GEP - all scalar operands should be converted to the
3450   // splat vector.
3451   unsigned VectorWidth = I.getType()->isVectorTy() ?
3452     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3453 
3454   if (VectorWidth && !N.getValueType().isVector()) {
3455     LLVMContext &Context = *DAG.getContext();
3456     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3457     N = DAG.getSplatBuildVector(VT, dl, N);
3458   }
3459 
3460   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3461        GTI != E; ++GTI) {
3462     const Value *Idx = GTI.getOperand();
3463     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3464       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3465       if (Field) {
3466         // N = N + Offset
3467         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3468 
3469         // In an inbounds GEP with an offset that is nonnegative even when
3470         // interpreted as signed, assume there is no unsigned overflow.
3471         SDNodeFlags Flags;
3472         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3473           Flags.setNoUnsignedWrap(true);
3474 
3475         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3476                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3477       }
3478     } else {
3479       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3480       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3481       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3482 
3483       // If this is a scalar constant or a splat vector of constants,
3484       // handle it quickly.
3485       const auto *CI = dyn_cast<ConstantInt>(Idx);
3486       if (!CI && isa<ConstantDataVector>(Idx) &&
3487           cast<ConstantDataVector>(Idx)->getSplatValue())
3488         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3489 
3490       if (CI) {
3491         if (CI->isZero())
3492           continue;
3493         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3494         LLVMContext &Context = *DAG.getContext();
3495         SDValue OffsVal = VectorWidth ?
3496           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3497           DAG.getConstant(Offs, dl, IdxTy);
3498 
3499         // In an inbouds GEP with an offset that is nonnegative even when
3500         // interpreted as signed, assume there is no unsigned overflow.
3501         SDNodeFlags Flags;
3502         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3503           Flags.setNoUnsignedWrap(true);
3504 
3505         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3506         continue;
3507       }
3508 
3509       // N = N + Idx * ElementSize;
3510       SDValue IdxN = getValue(Idx);
3511 
3512       if (!IdxN.getValueType().isVector() && VectorWidth) {
3513         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3514         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3515       }
3516 
3517       // If the index is smaller or larger than intptr_t, truncate or extend
3518       // it.
3519       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3520 
3521       // If this is a multiply by a power of two, turn it into a shl
3522       // immediately.  This is a very common case.
3523       if (ElementSize != 1) {
3524         if (ElementSize.isPowerOf2()) {
3525           unsigned Amt = ElementSize.logBase2();
3526           IdxN = DAG.getNode(ISD::SHL, dl,
3527                              N.getValueType(), IdxN,
3528                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3529         } else {
3530           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3531           IdxN = DAG.getNode(ISD::MUL, dl,
3532                              N.getValueType(), IdxN, Scale);
3533         }
3534       }
3535 
3536       N = DAG.getNode(ISD::ADD, dl,
3537                       N.getValueType(), N, IdxN);
3538     }
3539   }
3540 
3541   setValue(&I, N);
3542 }
3543 
3544 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3545   // If this is a fixed sized alloca in the entry block of the function,
3546   // allocate it statically on the stack.
3547   if (FuncInfo.StaticAllocaMap.count(&I))
3548     return;   // getValue will auto-populate this.
3549 
3550   SDLoc dl = getCurSDLoc();
3551   Type *Ty = I.getAllocatedType();
3552   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3553   auto &DL = DAG.getDataLayout();
3554   uint64_t TySize = DL.getTypeAllocSize(Ty);
3555   unsigned Align =
3556       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3557 
3558   SDValue AllocSize = getValue(I.getArraySize());
3559 
3560   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3561   if (AllocSize.getValueType() != IntPtr)
3562     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3563 
3564   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3565                           AllocSize,
3566                           DAG.getConstant(TySize, dl, IntPtr));
3567 
3568   // Handle alignment.  If the requested alignment is less than or equal to
3569   // the stack alignment, ignore it.  If the size is greater than or equal to
3570   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3571   unsigned StackAlign =
3572       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3573   if (Align <= StackAlign)
3574     Align = 0;
3575 
3576   // Round the size of the allocation up to the stack alignment size
3577   // by add SA-1 to the size. This doesn't overflow because we're computing
3578   // an address inside an alloca.
3579   SDNodeFlags Flags;
3580   Flags.setNoUnsignedWrap(true);
3581   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3582                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3583 
3584   // Mask out the low bits for alignment purposes.
3585   AllocSize =
3586       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3587                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3588 
3589   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3590   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3591   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3592   setValue(&I, DSA);
3593   DAG.setRoot(DSA.getValue(1));
3594 
3595   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3596 }
3597 
3598 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3599   if (I.isAtomic())
3600     return visitAtomicLoad(I);
3601 
3602   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3603   const Value *SV = I.getOperand(0);
3604   if (TLI.supportSwiftError()) {
3605     // Swifterror values can come from either a function parameter with
3606     // swifterror attribute or an alloca with swifterror attribute.
3607     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3608       if (Arg->hasSwiftErrorAttr())
3609         return visitLoadFromSwiftError(I);
3610     }
3611 
3612     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3613       if (Alloca->isSwiftError())
3614         return visitLoadFromSwiftError(I);
3615     }
3616   }
3617 
3618   SDValue Ptr = getValue(SV);
3619 
3620   Type *Ty = I.getType();
3621 
3622   bool isVolatile = I.isVolatile();
3623   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3624   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3625   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3626   unsigned Alignment = I.getAlignment();
3627 
3628   AAMDNodes AAInfo;
3629   I.getAAMetadata(AAInfo);
3630   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3631 
3632   SmallVector<EVT, 4> ValueVTs;
3633   SmallVector<uint64_t, 4> Offsets;
3634   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3635   unsigned NumValues = ValueVTs.size();
3636   if (NumValues == 0)
3637     return;
3638 
3639   SDValue Root;
3640   bool ConstantMemory = false;
3641   if (isVolatile || NumValues > MaxParallelChains)
3642     // Serialize volatile loads with other side effects.
3643     Root = getRoot();
3644   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3645                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3646     // Do not serialize (non-volatile) loads of constant memory with anything.
3647     Root = DAG.getEntryNode();
3648     ConstantMemory = true;
3649   } else {
3650     // Do not serialize non-volatile loads against each other.
3651     Root = DAG.getRoot();
3652   }
3653 
3654   SDLoc dl = getCurSDLoc();
3655 
3656   if (isVolatile)
3657     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3658 
3659   // An aggregate load cannot wrap around the address space, so offsets to its
3660   // parts don't wrap either.
3661   SDNodeFlags Flags;
3662   Flags.setNoUnsignedWrap(true);
3663 
3664   SmallVector<SDValue, 4> Values(NumValues);
3665   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3666   EVT PtrVT = Ptr.getValueType();
3667   unsigned ChainI = 0;
3668   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3669     // Serializing loads here may result in excessive register pressure, and
3670     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3671     // could recover a bit by hoisting nodes upward in the chain by recognizing
3672     // they are side-effect free or do not alias. The optimizer should really
3673     // avoid this case by converting large object/array copies to llvm.memcpy
3674     // (MaxParallelChains should always remain as failsafe).
3675     if (ChainI == MaxParallelChains) {
3676       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3677       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3678                                   makeArrayRef(Chains.data(), ChainI));
3679       Root = Chain;
3680       ChainI = 0;
3681     }
3682     SDValue A = DAG.getNode(ISD::ADD, dl,
3683                             PtrVT, Ptr,
3684                             DAG.getConstant(Offsets[i], dl, PtrVT),
3685                             Flags);
3686     auto MMOFlags = MachineMemOperand::MONone;
3687     if (isVolatile)
3688       MMOFlags |= MachineMemOperand::MOVolatile;
3689     if (isNonTemporal)
3690       MMOFlags |= MachineMemOperand::MONonTemporal;
3691     if (isInvariant)
3692       MMOFlags |= MachineMemOperand::MOInvariant;
3693     if (isDereferenceable)
3694       MMOFlags |= MachineMemOperand::MODereferenceable;
3695     MMOFlags |= TLI.getMMOFlags(I);
3696 
3697     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3698                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3699                             MMOFlags, AAInfo, Ranges);
3700 
3701     Values[i] = L;
3702     Chains[ChainI] = L.getValue(1);
3703   }
3704 
3705   if (!ConstantMemory) {
3706     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3707                                 makeArrayRef(Chains.data(), ChainI));
3708     if (isVolatile)
3709       DAG.setRoot(Chain);
3710     else
3711       PendingLoads.push_back(Chain);
3712   }
3713 
3714   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3715                            DAG.getVTList(ValueVTs), Values));
3716 }
3717 
3718 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3719   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3720          "call visitStoreToSwiftError when backend supports swifterror");
3721 
3722   SmallVector<EVT, 4> ValueVTs;
3723   SmallVector<uint64_t, 4> Offsets;
3724   const Value *SrcV = I.getOperand(0);
3725   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3726                   SrcV->getType(), ValueVTs, &Offsets);
3727   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3728          "expect a single EVT for swifterror");
3729 
3730   SDValue Src = getValue(SrcV);
3731   // Create a virtual register, then update the virtual register.
3732   unsigned VReg; bool CreatedVReg;
3733   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3734   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3735   // Chain can be getRoot or getControlRoot.
3736   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3737                                       SDValue(Src.getNode(), Src.getResNo()));
3738   DAG.setRoot(CopyNode);
3739   if (CreatedVReg)
3740     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3741 }
3742 
3743 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3744   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3745          "call visitLoadFromSwiftError when backend supports swifterror");
3746 
3747   assert(!I.isVolatile() &&
3748          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3749          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3750          "Support volatile, non temporal, invariant for load_from_swift_error");
3751 
3752   const Value *SV = I.getOperand(0);
3753   Type *Ty = I.getType();
3754   AAMDNodes AAInfo;
3755   I.getAAMetadata(AAInfo);
3756   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3757              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3758          "load_from_swift_error should not be constant memory");
3759 
3760   SmallVector<EVT, 4> ValueVTs;
3761   SmallVector<uint64_t, 4> Offsets;
3762   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3763                   ValueVTs, &Offsets);
3764   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3765          "expect a single EVT for swifterror");
3766 
3767   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3768   SDValue L = DAG.getCopyFromReg(
3769       getRoot(), getCurSDLoc(),
3770       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3771       ValueVTs[0]);
3772 
3773   setValue(&I, L);
3774 }
3775 
3776 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3777   if (I.isAtomic())
3778     return visitAtomicStore(I);
3779 
3780   const Value *SrcV = I.getOperand(0);
3781   const Value *PtrV = I.getOperand(1);
3782 
3783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3784   if (TLI.supportSwiftError()) {
3785     // Swifterror values can come from either a function parameter with
3786     // swifterror attribute or an alloca with swifterror attribute.
3787     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3788       if (Arg->hasSwiftErrorAttr())
3789         return visitStoreToSwiftError(I);
3790     }
3791 
3792     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3793       if (Alloca->isSwiftError())
3794         return visitStoreToSwiftError(I);
3795     }
3796   }
3797 
3798   SmallVector<EVT, 4> ValueVTs;
3799   SmallVector<uint64_t, 4> Offsets;
3800   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3801                   SrcV->getType(), ValueVTs, &Offsets);
3802   unsigned NumValues = ValueVTs.size();
3803   if (NumValues == 0)
3804     return;
3805 
3806   // Get the lowered operands. Note that we do this after
3807   // checking if NumResults is zero, because with zero results
3808   // the operands won't have values in the map.
3809   SDValue Src = getValue(SrcV);
3810   SDValue Ptr = getValue(PtrV);
3811 
3812   SDValue Root = getRoot();
3813   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3814   SDLoc dl = getCurSDLoc();
3815   EVT PtrVT = Ptr.getValueType();
3816   unsigned Alignment = I.getAlignment();
3817   AAMDNodes AAInfo;
3818   I.getAAMetadata(AAInfo);
3819 
3820   auto MMOFlags = MachineMemOperand::MONone;
3821   if (I.isVolatile())
3822     MMOFlags |= MachineMemOperand::MOVolatile;
3823   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3824     MMOFlags |= MachineMemOperand::MONonTemporal;
3825   MMOFlags |= TLI.getMMOFlags(I);
3826 
3827   // An aggregate load cannot wrap around the address space, so offsets to its
3828   // parts don't wrap either.
3829   SDNodeFlags Flags;
3830   Flags.setNoUnsignedWrap(true);
3831 
3832   unsigned ChainI = 0;
3833   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3834     // See visitLoad comments.
3835     if (ChainI == MaxParallelChains) {
3836       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3837                                   makeArrayRef(Chains.data(), ChainI));
3838       Root = Chain;
3839       ChainI = 0;
3840     }
3841     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3842                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3843     SDValue St = DAG.getStore(
3844         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3845         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3846     Chains[ChainI] = St;
3847   }
3848 
3849   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3850                                   makeArrayRef(Chains.data(), ChainI));
3851   DAG.setRoot(StoreNode);
3852 }
3853 
3854 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3855                                            bool IsCompressing) {
3856   SDLoc sdl = getCurSDLoc();
3857 
3858   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3859                            unsigned& Alignment) {
3860     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3861     Src0 = I.getArgOperand(0);
3862     Ptr = I.getArgOperand(1);
3863     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3864     Mask = I.getArgOperand(3);
3865   };
3866   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3867                            unsigned& Alignment) {
3868     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3869     Src0 = I.getArgOperand(0);
3870     Ptr = I.getArgOperand(1);
3871     Mask = I.getArgOperand(2);
3872     Alignment = 0;
3873   };
3874 
3875   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3876   unsigned Alignment;
3877   if (IsCompressing)
3878     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3879   else
3880     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3881 
3882   SDValue Ptr = getValue(PtrOperand);
3883   SDValue Src0 = getValue(Src0Operand);
3884   SDValue Mask = getValue(MaskOperand);
3885 
3886   EVT VT = Src0.getValueType();
3887   if (!Alignment)
3888     Alignment = DAG.getEVTAlignment(VT);
3889 
3890   AAMDNodes AAInfo;
3891   I.getAAMetadata(AAInfo);
3892 
3893   MachineMemOperand *MMO =
3894     DAG.getMachineFunction().
3895     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3896                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3897                           Alignment, AAInfo);
3898   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3899                                          MMO, false /* Truncating */,
3900                                          IsCompressing);
3901   DAG.setRoot(StoreNode);
3902   setValue(&I, StoreNode);
3903 }
3904 
3905 // Get a uniform base for the Gather/Scatter intrinsic.
3906 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3907 // We try to represent it as a base pointer + vector of indices.
3908 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3909 // The first operand of the GEP may be a single pointer or a vector of pointers
3910 // Example:
3911 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3912 //  or
3913 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3914 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3915 //
3916 // When the first GEP operand is a single pointer - it is the uniform base we
3917 // are looking for. If first operand of the GEP is a splat vector - we
3918 // extract the splat value and use it as a uniform base.
3919 // In all other cases the function returns 'false'.
3920 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3921                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3922   SelectionDAG& DAG = SDB->DAG;
3923   LLVMContext &Context = *DAG.getContext();
3924 
3925   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3926   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3927   if (!GEP)
3928     return false;
3929 
3930   const Value *GEPPtr = GEP->getPointerOperand();
3931   if (!GEPPtr->getType()->isVectorTy())
3932     Ptr = GEPPtr;
3933   else if (!(Ptr = getSplatValue(GEPPtr)))
3934     return false;
3935 
3936   unsigned FinalIndex = GEP->getNumOperands() - 1;
3937   Value *IndexVal = GEP->getOperand(FinalIndex);
3938 
3939   // Ensure all the other indices are 0.
3940   for (unsigned i = 1; i < FinalIndex; ++i) {
3941     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3942     if (!C || !C->isZero())
3943       return false;
3944   }
3945 
3946   // The operands of the GEP may be defined in another basic block.
3947   // In this case we'll not find nodes for the operands.
3948   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3949     return false;
3950 
3951   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3952   const DataLayout &DL = DAG.getDataLayout();
3953   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3954                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3955   Base = SDB->getValue(Ptr);
3956   Index = SDB->getValue(IndexVal);
3957 
3958   if (!Index.getValueType().isVector()) {
3959     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3960     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3961     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3962   }
3963   return true;
3964 }
3965 
3966 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3967   SDLoc sdl = getCurSDLoc();
3968 
3969   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3970   const Value *Ptr = I.getArgOperand(1);
3971   SDValue Src0 = getValue(I.getArgOperand(0));
3972   SDValue Mask = getValue(I.getArgOperand(3));
3973   EVT VT = Src0.getValueType();
3974   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3975   if (!Alignment)
3976     Alignment = DAG.getEVTAlignment(VT);
3977   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3978 
3979   AAMDNodes AAInfo;
3980   I.getAAMetadata(AAInfo);
3981 
3982   SDValue Base;
3983   SDValue Index;
3984   SDValue Scale;
3985   const Value *BasePtr = Ptr;
3986   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
3987 
3988   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3989   MachineMemOperand *MMO = DAG.getMachineFunction().
3990     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3991                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3992                          Alignment, AAInfo);
3993   if (!UniformBase) {
3994     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3995     Index = getValue(Ptr);
3996     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3997   }
3998   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
3999   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4000                                          Ops, MMO);
4001   DAG.setRoot(Scatter);
4002   setValue(&I, Scatter);
4003 }
4004 
4005 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4006   SDLoc sdl = getCurSDLoc();
4007 
4008   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4009                            unsigned& Alignment) {
4010     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4011     Ptr = I.getArgOperand(0);
4012     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4013     Mask = I.getArgOperand(2);
4014     Src0 = I.getArgOperand(3);
4015   };
4016   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4017                            unsigned& Alignment) {
4018     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4019     Ptr = I.getArgOperand(0);
4020     Alignment = 0;
4021     Mask = I.getArgOperand(1);
4022     Src0 = I.getArgOperand(2);
4023   };
4024 
4025   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4026   unsigned Alignment;
4027   if (IsExpanding)
4028     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4029   else
4030     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4031 
4032   SDValue Ptr = getValue(PtrOperand);
4033   SDValue Src0 = getValue(Src0Operand);
4034   SDValue Mask = getValue(MaskOperand);
4035 
4036   EVT VT = Src0.getValueType();
4037   if (!Alignment)
4038     Alignment = DAG.getEVTAlignment(VT);
4039 
4040   AAMDNodes AAInfo;
4041   I.getAAMetadata(AAInfo);
4042   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4043 
4044   // Do not serialize masked loads of constant memory with anything.
4045   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4046       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4047   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4048 
4049   MachineMemOperand *MMO =
4050     DAG.getMachineFunction().
4051     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4052                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4053                           Alignment, AAInfo, Ranges);
4054 
4055   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4056                                    ISD::NON_EXTLOAD, IsExpanding);
4057   if (AddToChain) {
4058     SDValue OutChain = Load.getValue(1);
4059     DAG.setRoot(OutChain);
4060   }
4061   setValue(&I, Load);
4062 }
4063 
4064 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4065   SDLoc sdl = getCurSDLoc();
4066 
4067   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4068   const Value *Ptr = I.getArgOperand(0);
4069   SDValue Src0 = getValue(I.getArgOperand(3));
4070   SDValue Mask = getValue(I.getArgOperand(2));
4071 
4072   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4073   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4074   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4075   if (!Alignment)
4076     Alignment = DAG.getEVTAlignment(VT);
4077 
4078   AAMDNodes AAInfo;
4079   I.getAAMetadata(AAInfo);
4080   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4081 
4082   SDValue Root = DAG.getRoot();
4083   SDValue Base;
4084   SDValue Index;
4085   SDValue Scale;
4086   const Value *BasePtr = Ptr;
4087   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4088   bool ConstantMemory = false;
4089   if (UniformBase &&
4090       AA && AA->pointsToConstantMemory(MemoryLocation(
4091           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4092           AAInfo))) {
4093     // Do not serialize (non-volatile) loads of constant memory with anything.
4094     Root = DAG.getEntryNode();
4095     ConstantMemory = true;
4096   }
4097 
4098   MachineMemOperand *MMO =
4099     DAG.getMachineFunction().
4100     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4101                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4102                          Alignment, AAInfo, Ranges);
4103 
4104   if (!UniformBase) {
4105     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4106     Index = getValue(Ptr);
4107     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4108   }
4109   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4110   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4111                                        Ops, MMO);
4112 
4113   SDValue OutChain = Gather.getValue(1);
4114   if (!ConstantMemory)
4115     PendingLoads.push_back(OutChain);
4116   setValue(&I, Gather);
4117 }
4118 
4119 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4120   SDLoc dl = getCurSDLoc();
4121   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4122   AtomicOrdering FailureOrder = I.getFailureOrdering();
4123   SyncScope::ID SSID = I.getSyncScopeID();
4124 
4125   SDValue InChain = getRoot();
4126 
4127   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4128   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4129   SDValue L = DAG.getAtomicCmpSwap(
4130       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4131       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4132       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4133       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4134 
4135   SDValue OutChain = L.getValue(2);
4136 
4137   setValue(&I, L);
4138   DAG.setRoot(OutChain);
4139 }
4140 
4141 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4142   SDLoc dl = getCurSDLoc();
4143   ISD::NodeType NT;
4144   switch (I.getOperation()) {
4145   default: llvm_unreachable("Unknown atomicrmw operation");
4146   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4147   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4148   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4149   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4150   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4151   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4152   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4153   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4154   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4155   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4156   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4157   }
4158   AtomicOrdering Order = I.getOrdering();
4159   SyncScope::ID SSID = I.getSyncScopeID();
4160 
4161   SDValue InChain = getRoot();
4162 
4163   SDValue L =
4164     DAG.getAtomic(NT, dl,
4165                   getValue(I.getValOperand()).getSimpleValueType(),
4166                   InChain,
4167                   getValue(I.getPointerOperand()),
4168                   getValue(I.getValOperand()),
4169                   I.getPointerOperand(),
4170                   /* Alignment=*/ 0, Order, SSID);
4171 
4172   SDValue OutChain = L.getValue(1);
4173 
4174   setValue(&I, L);
4175   DAG.setRoot(OutChain);
4176 }
4177 
4178 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4179   SDLoc dl = getCurSDLoc();
4180   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4181   SDValue Ops[3];
4182   Ops[0] = getRoot();
4183   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4184                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4185   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4186                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4187   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4188 }
4189 
4190 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4191   SDLoc dl = getCurSDLoc();
4192   AtomicOrdering Order = I.getOrdering();
4193   SyncScope::ID SSID = I.getSyncScopeID();
4194 
4195   SDValue InChain = getRoot();
4196 
4197   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4198   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4199 
4200   if (!TLI.supportsUnalignedAtomics() &&
4201       I.getAlignment() < VT.getStoreSize())
4202     report_fatal_error("Cannot generate unaligned atomic load");
4203 
4204   MachineMemOperand *MMO =
4205       DAG.getMachineFunction().
4206       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4207                            MachineMemOperand::MOVolatile |
4208                            MachineMemOperand::MOLoad,
4209                            VT.getStoreSize(),
4210                            I.getAlignment() ? I.getAlignment() :
4211                                               DAG.getEVTAlignment(VT),
4212                            AAMDNodes(), nullptr, SSID, Order);
4213 
4214   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4215   SDValue L =
4216       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4217                     getValue(I.getPointerOperand()), MMO);
4218 
4219   SDValue OutChain = L.getValue(1);
4220 
4221   setValue(&I, L);
4222   DAG.setRoot(OutChain);
4223 }
4224 
4225 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4226   SDLoc dl = getCurSDLoc();
4227 
4228   AtomicOrdering Order = I.getOrdering();
4229   SyncScope::ID SSID = I.getSyncScopeID();
4230 
4231   SDValue InChain = getRoot();
4232 
4233   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4234   EVT VT =
4235       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4236 
4237   if (I.getAlignment() < VT.getStoreSize())
4238     report_fatal_error("Cannot generate unaligned atomic store");
4239 
4240   SDValue OutChain =
4241     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4242                   InChain,
4243                   getValue(I.getPointerOperand()),
4244                   getValue(I.getValueOperand()),
4245                   I.getPointerOperand(), I.getAlignment(),
4246                   Order, SSID);
4247 
4248   DAG.setRoot(OutChain);
4249 }
4250 
4251 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4252 /// node.
4253 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4254                                                unsigned Intrinsic) {
4255   // Ignore the callsite's attributes. A specific call site may be marked with
4256   // readnone, but the lowering code will expect the chain based on the
4257   // definition.
4258   const Function *F = I.getCalledFunction();
4259   bool HasChain = !F->doesNotAccessMemory();
4260   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4261 
4262   // Build the operand list.
4263   SmallVector<SDValue, 8> Ops;
4264   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4265     if (OnlyLoad) {
4266       // We don't need to serialize loads against other loads.
4267       Ops.push_back(DAG.getRoot());
4268     } else {
4269       Ops.push_back(getRoot());
4270     }
4271   }
4272 
4273   // Info is set by getTgtMemInstrinsic
4274   TargetLowering::IntrinsicInfo Info;
4275   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4276   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4277                                                DAG.getMachineFunction(),
4278                                                Intrinsic);
4279 
4280   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4281   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4282       Info.opc == ISD::INTRINSIC_W_CHAIN)
4283     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4284                                         TLI.getPointerTy(DAG.getDataLayout())));
4285 
4286   // Add all operands of the call to the operand list.
4287   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4288     SDValue Op = getValue(I.getArgOperand(i));
4289     Ops.push_back(Op);
4290   }
4291 
4292   SmallVector<EVT, 4> ValueVTs;
4293   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4294 
4295   if (HasChain)
4296     ValueVTs.push_back(MVT::Other);
4297 
4298   SDVTList VTs = DAG.getVTList(ValueVTs);
4299 
4300   // Create the node.
4301   SDValue Result;
4302   if (IsTgtIntrinsic) {
4303     // This is target intrinsic that touches memory
4304     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4305       Ops, Info.memVT,
4306       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4307       Info.flags, Info.size);
4308   } else if (!HasChain) {
4309     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4310   } else if (!I.getType()->isVoidTy()) {
4311     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4312   } else {
4313     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4314   }
4315 
4316   if (HasChain) {
4317     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4318     if (OnlyLoad)
4319       PendingLoads.push_back(Chain);
4320     else
4321       DAG.setRoot(Chain);
4322   }
4323 
4324   if (!I.getType()->isVoidTy()) {
4325     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4326       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4327       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4328     } else
4329       Result = lowerRangeToAssertZExt(DAG, I, Result);
4330 
4331     setValue(&I, Result);
4332   }
4333 }
4334 
4335 /// GetSignificand - Get the significand and build it into a floating-point
4336 /// number with exponent of 1:
4337 ///
4338 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4339 ///
4340 /// where Op is the hexadecimal representation of floating point value.
4341 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4342   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4343                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4344   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4345                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4346   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4347 }
4348 
4349 /// GetExponent - Get the exponent:
4350 ///
4351 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4352 ///
4353 /// where Op is the hexadecimal representation of floating point value.
4354 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4355                            const TargetLowering &TLI, const SDLoc &dl) {
4356   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4357                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4358   SDValue t1 = DAG.getNode(
4359       ISD::SRL, dl, MVT::i32, t0,
4360       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4361   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4362                            DAG.getConstant(127, dl, MVT::i32));
4363   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4364 }
4365 
4366 /// getF32Constant - Get 32-bit floating point constant.
4367 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4368                               const SDLoc &dl) {
4369   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4370                            MVT::f32);
4371 }
4372 
4373 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4374                                        SelectionDAG &DAG) {
4375   // TODO: What fast-math-flags should be set on the floating-point nodes?
4376 
4377   //   IntegerPartOfX = ((int32_t)(t0);
4378   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4379 
4380   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4381   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4382   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4383 
4384   //   IntegerPartOfX <<= 23;
4385   IntegerPartOfX = DAG.getNode(
4386       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4387       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4388                                   DAG.getDataLayout())));
4389 
4390   SDValue TwoToFractionalPartOfX;
4391   if (LimitFloatPrecision <= 6) {
4392     // For floating-point precision of 6:
4393     //
4394     //   TwoToFractionalPartOfX =
4395     //     0.997535578f +
4396     //       (0.735607626f + 0.252464424f * x) * x;
4397     //
4398     // error 0.0144103317, which is 6 bits
4399     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4400                              getF32Constant(DAG, 0x3e814304, dl));
4401     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4402                              getF32Constant(DAG, 0x3f3c50c8, dl));
4403     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4404     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4405                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4406   } else if (LimitFloatPrecision <= 12) {
4407     // For floating-point precision of 12:
4408     //
4409     //   TwoToFractionalPartOfX =
4410     //     0.999892986f +
4411     //       (0.696457318f +
4412     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4413     //
4414     // error 0.000107046256, which is 13 to 14 bits
4415     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4416                              getF32Constant(DAG, 0x3da235e3, dl));
4417     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4418                              getF32Constant(DAG, 0x3e65b8f3, dl));
4419     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4420     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4421                              getF32Constant(DAG, 0x3f324b07, dl));
4422     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4423     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4424                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4425   } else { // LimitFloatPrecision <= 18
4426     // For floating-point precision of 18:
4427     //
4428     //   TwoToFractionalPartOfX =
4429     //     0.999999982f +
4430     //       (0.693148872f +
4431     //         (0.240227044f +
4432     //           (0.554906021e-1f +
4433     //             (0.961591928e-2f +
4434     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4435     // error 2.47208000*10^(-7), which is better than 18 bits
4436     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4437                              getF32Constant(DAG, 0x3924b03e, dl));
4438     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4439                              getF32Constant(DAG, 0x3ab24b87, dl));
4440     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4441     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4442                              getF32Constant(DAG, 0x3c1d8c17, dl));
4443     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4444     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4445                              getF32Constant(DAG, 0x3d634a1d, dl));
4446     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4447     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4448                              getF32Constant(DAG, 0x3e75fe14, dl));
4449     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4450     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4451                               getF32Constant(DAG, 0x3f317234, dl));
4452     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4453     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4454                                          getF32Constant(DAG, 0x3f800000, dl));
4455   }
4456 
4457   // Add the exponent into the result in integer domain.
4458   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4459   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4460                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4461 }
4462 
4463 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4464 /// limited-precision mode.
4465 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4466                          const TargetLowering &TLI) {
4467   if (Op.getValueType() == MVT::f32 &&
4468       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4469 
4470     // Put the exponent in the right bit position for later addition to the
4471     // final result:
4472     //
4473     //   #define LOG2OFe 1.4426950f
4474     //   t0 = Op * LOG2OFe
4475 
4476     // TODO: What fast-math-flags should be set here?
4477     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4478                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4479     return getLimitedPrecisionExp2(t0, dl, DAG);
4480   }
4481 
4482   // No special expansion.
4483   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4484 }
4485 
4486 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4487 /// limited-precision mode.
4488 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4489                          const TargetLowering &TLI) {
4490   // TODO: What fast-math-flags should be set on the floating-point nodes?
4491 
4492   if (Op.getValueType() == MVT::f32 &&
4493       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4494     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4495 
4496     // Scale the exponent by log(2) [0.69314718f].
4497     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4498     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4499                                         getF32Constant(DAG, 0x3f317218, dl));
4500 
4501     // Get the significand and build it into a floating-point number with
4502     // exponent of 1.
4503     SDValue X = GetSignificand(DAG, Op1, dl);
4504 
4505     SDValue LogOfMantissa;
4506     if (LimitFloatPrecision <= 6) {
4507       // For floating-point precision of 6:
4508       //
4509       //   LogofMantissa =
4510       //     -1.1609546f +
4511       //       (1.4034025f - 0.23903021f * x) * x;
4512       //
4513       // error 0.0034276066, which is better than 8 bits
4514       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4515                                getF32Constant(DAG, 0xbe74c456, dl));
4516       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4517                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4518       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4519       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4520                                   getF32Constant(DAG, 0x3f949a29, dl));
4521     } else if (LimitFloatPrecision <= 12) {
4522       // For floating-point precision of 12:
4523       //
4524       //   LogOfMantissa =
4525       //     -1.7417939f +
4526       //       (2.8212026f +
4527       //         (-1.4699568f +
4528       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4529       //
4530       // error 0.000061011436, which is 14 bits
4531       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4532                                getF32Constant(DAG, 0xbd67b6d6, dl));
4533       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4534                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4535       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4536       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4537                                getF32Constant(DAG, 0x3fbc278b, dl));
4538       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4539       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4540                                getF32Constant(DAG, 0x40348e95, dl));
4541       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4542       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4543                                   getF32Constant(DAG, 0x3fdef31a, dl));
4544     } else { // LimitFloatPrecision <= 18
4545       // For floating-point precision of 18:
4546       //
4547       //   LogOfMantissa =
4548       //     -2.1072184f +
4549       //       (4.2372794f +
4550       //         (-3.7029485f +
4551       //           (2.2781945f +
4552       //             (-0.87823314f +
4553       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4554       //
4555       // error 0.0000023660568, which is better than 18 bits
4556       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4557                                getF32Constant(DAG, 0xbc91e5ac, dl));
4558       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4559                                getF32Constant(DAG, 0x3e4350aa, dl));
4560       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4561       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4562                                getF32Constant(DAG, 0x3f60d3e3, dl));
4563       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4564       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4565                                getF32Constant(DAG, 0x4011cdf0, dl));
4566       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4567       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4568                                getF32Constant(DAG, 0x406cfd1c, dl));
4569       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4570       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4571                                getF32Constant(DAG, 0x408797cb, dl));
4572       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4573       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4574                                   getF32Constant(DAG, 0x4006dcab, dl));
4575     }
4576 
4577     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4578   }
4579 
4580   // No special expansion.
4581   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4582 }
4583 
4584 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4585 /// limited-precision mode.
4586 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4587                           const TargetLowering &TLI) {
4588   // TODO: What fast-math-flags should be set on the floating-point nodes?
4589 
4590   if (Op.getValueType() == MVT::f32 &&
4591       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4592     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4593 
4594     // Get the exponent.
4595     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4596 
4597     // Get the significand and build it into a floating-point number with
4598     // exponent of 1.
4599     SDValue X = GetSignificand(DAG, Op1, dl);
4600 
4601     // Different possible minimax approximations of significand in
4602     // floating-point for various degrees of accuracy over [1,2].
4603     SDValue Log2ofMantissa;
4604     if (LimitFloatPrecision <= 6) {
4605       // For floating-point precision of 6:
4606       //
4607       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4608       //
4609       // error 0.0049451742, which is more than 7 bits
4610       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4611                                getF32Constant(DAG, 0xbeb08fe0, dl));
4612       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4613                                getF32Constant(DAG, 0x40019463, dl));
4614       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4615       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4616                                    getF32Constant(DAG, 0x3fd6633d, dl));
4617     } else if (LimitFloatPrecision <= 12) {
4618       // For floating-point precision of 12:
4619       //
4620       //   Log2ofMantissa =
4621       //     -2.51285454f +
4622       //       (4.07009056f +
4623       //         (-2.12067489f +
4624       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4625       //
4626       // error 0.0000876136000, which is better than 13 bits
4627       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4628                                getF32Constant(DAG, 0xbda7262e, dl));
4629       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4630                                getF32Constant(DAG, 0x3f25280b, dl));
4631       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4632       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4633                                getF32Constant(DAG, 0x4007b923, dl));
4634       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4635       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4636                                getF32Constant(DAG, 0x40823e2f, dl));
4637       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4638       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4639                                    getF32Constant(DAG, 0x4020d29c, dl));
4640     } else { // LimitFloatPrecision <= 18
4641       // For floating-point precision of 18:
4642       //
4643       //   Log2ofMantissa =
4644       //     -3.0400495f +
4645       //       (6.1129976f +
4646       //         (-5.3420409f +
4647       //           (3.2865683f +
4648       //             (-1.2669343f +
4649       //               (0.27515199f -
4650       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4651       //
4652       // error 0.0000018516, which is better than 18 bits
4653       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4654                                getF32Constant(DAG, 0xbcd2769e, dl));
4655       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4656                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4657       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4658       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4659                                getF32Constant(DAG, 0x3fa22ae7, dl));
4660       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4661       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4662                                getF32Constant(DAG, 0x40525723, dl));
4663       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4664       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4665                                getF32Constant(DAG, 0x40aaf200, dl));
4666       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4667       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4668                                getF32Constant(DAG, 0x40c39dad, dl));
4669       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4670       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4671                                    getF32Constant(DAG, 0x4042902c, dl));
4672     }
4673 
4674     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4675   }
4676 
4677   // No special expansion.
4678   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4679 }
4680 
4681 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4682 /// limited-precision mode.
4683 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4684                            const TargetLowering &TLI) {
4685   // TODO: What fast-math-flags should be set on the floating-point nodes?
4686 
4687   if (Op.getValueType() == MVT::f32 &&
4688       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4689     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4690 
4691     // Scale the exponent by log10(2) [0.30102999f].
4692     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4693     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4694                                         getF32Constant(DAG, 0x3e9a209a, dl));
4695 
4696     // Get the significand and build it into a floating-point number with
4697     // exponent of 1.
4698     SDValue X = GetSignificand(DAG, Op1, dl);
4699 
4700     SDValue Log10ofMantissa;
4701     if (LimitFloatPrecision <= 6) {
4702       // For floating-point precision of 6:
4703       //
4704       //   Log10ofMantissa =
4705       //     -0.50419619f +
4706       //       (0.60948995f - 0.10380950f * x) * x;
4707       //
4708       // error 0.0014886165, which is 6 bits
4709       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4710                                getF32Constant(DAG, 0xbdd49a13, dl));
4711       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4712                                getF32Constant(DAG, 0x3f1c0789, dl));
4713       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4714       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4715                                     getF32Constant(DAG, 0x3f011300, dl));
4716     } else if (LimitFloatPrecision <= 12) {
4717       // For floating-point precision of 12:
4718       //
4719       //   Log10ofMantissa =
4720       //     -0.64831180f +
4721       //       (0.91751397f +
4722       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4723       //
4724       // error 0.00019228036, which is better than 12 bits
4725       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4726                                getF32Constant(DAG, 0x3d431f31, dl));
4727       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4728                                getF32Constant(DAG, 0x3ea21fb2, dl));
4729       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4730       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4731                                getF32Constant(DAG, 0x3f6ae232, dl));
4732       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4733       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4734                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4735     } else { // LimitFloatPrecision <= 18
4736       // For floating-point precision of 18:
4737       //
4738       //   Log10ofMantissa =
4739       //     -0.84299375f +
4740       //       (1.5327582f +
4741       //         (-1.0688956f +
4742       //           (0.49102474f +
4743       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4744       //
4745       // error 0.0000037995730, which is better than 18 bits
4746       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4747                                getF32Constant(DAG, 0x3c5d51ce, dl));
4748       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4749                                getF32Constant(DAG, 0x3e00685a, dl));
4750       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4751       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4752                                getF32Constant(DAG, 0x3efb6798, dl));
4753       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4754       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4755                                getF32Constant(DAG, 0x3f88d192, dl));
4756       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4757       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4758                                getF32Constant(DAG, 0x3fc4316c, dl));
4759       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4760       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4761                                     getF32Constant(DAG, 0x3f57ce70, dl));
4762     }
4763 
4764     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4765   }
4766 
4767   // No special expansion.
4768   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4769 }
4770 
4771 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4772 /// limited-precision mode.
4773 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4774                           const TargetLowering &TLI) {
4775   if (Op.getValueType() == MVT::f32 &&
4776       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4777     return getLimitedPrecisionExp2(Op, dl, DAG);
4778 
4779   // No special expansion.
4780   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4781 }
4782 
4783 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4784 /// limited-precision mode with x == 10.0f.
4785 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4786                          SelectionDAG &DAG, const TargetLowering &TLI) {
4787   bool IsExp10 = false;
4788   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4789       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4790     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4791       APFloat Ten(10.0f);
4792       IsExp10 = LHSC->isExactlyValue(Ten);
4793     }
4794   }
4795 
4796   // TODO: What fast-math-flags should be set on the FMUL node?
4797   if (IsExp10) {
4798     // Put the exponent in the right bit position for later addition to the
4799     // final result:
4800     //
4801     //   #define LOG2OF10 3.3219281f
4802     //   t0 = Op * LOG2OF10;
4803     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4804                              getF32Constant(DAG, 0x40549a78, dl));
4805     return getLimitedPrecisionExp2(t0, dl, DAG);
4806   }
4807 
4808   // No special expansion.
4809   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4810 }
4811 
4812 /// ExpandPowI - Expand a llvm.powi intrinsic.
4813 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4814                           SelectionDAG &DAG) {
4815   // If RHS is a constant, we can expand this out to a multiplication tree,
4816   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4817   // optimizing for size, we only want to do this if the expansion would produce
4818   // a small number of multiplies, otherwise we do the full expansion.
4819   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4820     // Get the exponent as a positive value.
4821     unsigned Val = RHSC->getSExtValue();
4822     if ((int)Val < 0) Val = -Val;
4823 
4824     // powi(x, 0) -> 1.0
4825     if (Val == 0)
4826       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4827 
4828     const Function &F = DAG.getMachineFunction().getFunction();
4829     if (!F.optForSize() ||
4830         // If optimizing for size, don't insert too many multiplies.
4831         // This inserts up to 5 multiplies.
4832         countPopulation(Val) + Log2_32(Val) < 7) {
4833       // We use the simple binary decomposition method to generate the multiply
4834       // sequence.  There are more optimal ways to do this (for example,
4835       // powi(x,15) generates one more multiply than it should), but this has
4836       // the benefit of being both really simple and much better than a libcall.
4837       SDValue Res;  // Logically starts equal to 1.0
4838       SDValue CurSquare = LHS;
4839       // TODO: Intrinsics should have fast-math-flags that propagate to these
4840       // nodes.
4841       while (Val) {
4842         if (Val & 1) {
4843           if (Res.getNode())
4844             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4845           else
4846             Res = CurSquare;  // 1.0*CurSquare.
4847         }
4848 
4849         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4850                                 CurSquare, CurSquare);
4851         Val >>= 1;
4852       }
4853 
4854       // If the original was negative, invert the result, producing 1/(x*x*x).
4855       if (RHSC->getSExtValue() < 0)
4856         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4857                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4858       return Res;
4859     }
4860   }
4861 
4862   // Otherwise, expand to a libcall.
4863   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4864 }
4865 
4866 // getUnderlyingArgReg - Find underlying register used for a truncated or
4867 // bitcasted argument.
4868 static unsigned getUnderlyingArgReg(const SDValue &N) {
4869   switch (N.getOpcode()) {
4870   case ISD::CopyFromReg:
4871     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4872   case ISD::BITCAST:
4873   case ISD::AssertZext:
4874   case ISD::AssertSext:
4875   case ISD::TRUNCATE:
4876     return getUnderlyingArgReg(N.getOperand(0));
4877   default:
4878     return 0;
4879   }
4880 }
4881 
4882 /// If the DbgValueInst is a dbg_value of a function argument, create the
4883 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4884 /// instruction selection, they will be inserted to the entry BB.
4885 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4886     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4887     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4888   const Argument *Arg = dyn_cast<Argument>(V);
4889   if (!Arg)
4890     return false;
4891 
4892   MachineFunction &MF = DAG.getMachineFunction();
4893   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4894 
4895   bool IsIndirect = false;
4896   Optional<MachineOperand> Op;
4897   // Some arguments' frame index is recorded during argument lowering.
4898   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4899   if (FI != std::numeric_limits<int>::max())
4900     Op = MachineOperand::CreateFI(FI);
4901 
4902   if (!Op && N.getNode()) {
4903     unsigned Reg = getUnderlyingArgReg(N);
4904     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4905       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4906       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4907       if (PR)
4908         Reg = PR;
4909     }
4910     if (Reg) {
4911       Op = MachineOperand::CreateReg(Reg, false);
4912       IsIndirect = IsDbgDeclare;
4913     }
4914   }
4915 
4916   if (!Op && N.getNode())
4917     // Check if frame index is available.
4918     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4919       if (FrameIndexSDNode *FINode =
4920           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4921         Op = MachineOperand::CreateFI(FINode->getIndex());
4922 
4923   if (!Op) {
4924     // Check if ValueMap has reg number.
4925     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4926     if (VMI != FuncInfo.ValueMap.end()) {
4927       const auto &TLI = DAG.getTargetLoweringInfo();
4928       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4929                        V->getType(), isABIRegCopy(V));
4930       if (RFV.occupiesMultipleRegs()) {
4931         unsigned Offset = 0;
4932         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4933           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4934           auto FragmentExpr = DIExpression::createFragmentExpression(
4935               Expr, Offset, RegAndSize.second);
4936           if (!FragmentExpr)
4937             continue;
4938           FuncInfo.ArgDbgValues.push_back(
4939               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4940                       Op->getReg(), Variable, *FragmentExpr));
4941           Offset += RegAndSize.second;
4942         }
4943         return true;
4944       }
4945       Op = MachineOperand::CreateReg(VMI->second, false);
4946       IsIndirect = IsDbgDeclare;
4947     }
4948   }
4949 
4950   if (!Op)
4951     return false;
4952 
4953   assert(Variable->isValidLocationForIntrinsic(DL) &&
4954          "Expected inlined-at fields to agree");
4955   IsIndirect = (Op->isReg()) ? IsIndirect : true;
4956   FuncInfo.ArgDbgValues.push_back(
4957       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4958               *Op, Variable, Expr));
4959 
4960   return true;
4961 }
4962 
4963 /// Return the appropriate SDDbgValue based on N.
4964 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4965                                              DILocalVariable *Variable,
4966                                              DIExpression *Expr,
4967                                              const DebugLoc &dl,
4968                                              unsigned DbgSDNodeOrder) {
4969   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4970     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4971     // stack slot locations as such instead of as indirectly addressed
4972     // locations.
4973     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl,
4974                                      DbgSDNodeOrder);
4975   }
4976   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl,
4977                          DbgSDNodeOrder);
4978 }
4979 
4980 // VisualStudio defines setjmp as _setjmp
4981 #if defined(_MSC_VER) && defined(setjmp) && \
4982                          !defined(setjmp_undefined_for_msvc)
4983 #  pragma push_macro("setjmp")
4984 #  undef setjmp
4985 #  define setjmp_undefined_for_msvc
4986 #endif
4987 
4988 /// Lower the call to the specified intrinsic function. If we want to emit this
4989 /// as a call to a named external function, return the name. Otherwise, lower it
4990 /// and return null.
4991 const char *
4992 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4993   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4994   SDLoc sdl = getCurSDLoc();
4995   DebugLoc dl = getCurDebugLoc();
4996   SDValue Res;
4997 
4998   switch (Intrinsic) {
4999   default:
5000     // By default, turn this into a target intrinsic node.
5001     visitTargetIntrinsic(I, Intrinsic);
5002     return nullptr;
5003   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5004   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5005   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5006   case Intrinsic::returnaddress:
5007     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5008                              TLI.getPointerTy(DAG.getDataLayout()),
5009                              getValue(I.getArgOperand(0))));
5010     return nullptr;
5011   case Intrinsic::addressofreturnaddress:
5012     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5013                              TLI.getPointerTy(DAG.getDataLayout())));
5014     return nullptr;
5015   case Intrinsic::frameaddress:
5016     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5017                              TLI.getPointerTy(DAG.getDataLayout()),
5018                              getValue(I.getArgOperand(0))));
5019     return nullptr;
5020   case Intrinsic::read_register: {
5021     Value *Reg = I.getArgOperand(0);
5022     SDValue Chain = getRoot();
5023     SDValue RegName =
5024         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5025     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5026     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5027       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5028     setValue(&I, Res);
5029     DAG.setRoot(Res.getValue(1));
5030     return nullptr;
5031   }
5032   case Intrinsic::write_register: {
5033     Value *Reg = I.getArgOperand(0);
5034     Value *RegValue = I.getArgOperand(1);
5035     SDValue Chain = getRoot();
5036     SDValue RegName =
5037         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5038     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5039                             RegName, getValue(RegValue)));
5040     return nullptr;
5041   }
5042   case Intrinsic::setjmp:
5043     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5044   case Intrinsic::longjmp:
5045     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5046   case Intrinsic::memcpy: {
5047     const auto &MCI = cast<MemCpyInst>(I);
5048     SDValue Op1 = getValue(I.getArgOperand(0));
5049     SDValue Op2 = getValue(I.getArgOperand(1));
5050     SDValue Op3 = getValue(I.getArgOperand(2));
5051     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5052     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5053     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5054     unsigned Align = MinAlign(DstAlign, SrcAlign);
5055     bool isVol = MCI.isVolatile();
5056     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5057     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5058     // node.
5059     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5060                                false, isTC,
5061                                MachinePointerInfo(I.getArgOperand(0)),
5062                                MachinePointerInfo(I.getArgOperand(1)));
5063     updateDAGForMaybeTailCall(MC);
5064     return nullptr;
5065   }
5066   case Intrinsic::memset: {
5067     const auto &MSI = cast<MemSetInst>(I);
5068     SDValue Op1 = getValue(I.getArgOperand(0));
5069     SDValue Op2 = getValue(I.getArgOperand(1));
5070     SDValue Op3 = getValue(I.getArgOperand(2));
5071     // @llvm.memset defines 0 and 1 to both mean no alignment.
5072     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5073     bool isVol = MSI.isVolatile();
5074     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5075     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5076                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5077     updateDAGForMaybeTailCall(MS);
5078     return nullptr;
5079   }
5080   case Intrinsic::memmove: {
5081     const auto &MMI = cast<MemMoveInst>(I);
5082     SDValue Op1 = getValue(I.getArgOperand(0));
5083     SDValue Op2 = getValue(I.getArgOperand(1));
5084     SDValue Op3 = getValue(I.getArgOperand(2));
5085     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5086     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5087     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5088     unsigned Align = MinAlign(DstAlign, SrcAlign);
5089     bool isVol = MMI.isVolatile();
5090     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5091     // FIXME: Support passing different dest/src alignments to the memmove DAG
5092     // node.
5093     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5094                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5095                                 MachinePointerInfo(I.getArgOperand(1)));
5096     updateDAGForMaybeTailCall(MM);
5097     return nullptr;
5098   }
5099   case Intrinsic::memcpy_element_unordered_atomic: {
5100     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5101     SDValue Dst = getValue(MI.getRawDest());
5102     SDValue Src = getValue(MI.getRawSource());
5103     SDValue Length = getValue(MI.getLength());
5104 
5105     unsigned DstAlign = MI.getDestAlignment();
5106     unsigned SrcAlign = MI.getSourceAlignment();
5107     Type *LengthTy = MI.getLength()->getType();
5108     unsigned ElemSz = MI.getElementSizeInBytes();
5109     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5110     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5111                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5112                                      MachinePointerInfo(MI.getRawDest()),
5113                                      MachinePointerInfo(MI.getRawSource()));
5114     updateDAGForMaybeTailCall(MC);
5115     return nullptr;
5116   }
5117   case Intrinsic::memmove_element_unordered_atomic: {
5118     auto &MI = cast<AtomicMemMoveInst>(I);
5119     SDValue Dst = getValue(MI.getRawDest());
5120     SDValue Src = getValue(MI.getRawSource());
5121     SDValue Length = getValue(MI.getLength());
5122 
5123     unsigned DstAlign = MI.getDestAlignment();
5124     unsigned SrcAlign = MI.getSourceAlignment();
5125     Type *LengthTy = MI.getLength()->getType();
5126     unsigned ElemSz = MI.getElementSizeInBytes();
5127     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5128     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5129                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5130                                       MachinePointerInfo(MI.getRawDest()),
5131                                       MachinePointerInfo(MI.getRawSource()));
5132     updateDAGForMaybeTailCall(MC);
5133     return nullptr;
5134   }
5135   case Intrinsic::memset_element_unordered_atomic: {
5136     auto &MI = cast<AtomicMemSetInst>(I);
5137     SDValue Dst = getValue(MI.getRawDest());
5138     SDValue Val = getValue(MI.getValue());
5139     SDValue Length = getValue(MI.getLength());
5140 
5141     unsigned DstAlign = MI.getDestAlignment();
5142     Type *LengthTy = MI.getLength()->getType();
5143     unsigned ElemSz = MI.getElementSizeInBytes();
5144     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5145     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5146                                      LengthTy, ElemSz, isTC,
5147                                      MachinePointerInfo(MI.getRawDest()));
5148     updateDAGForMaybeTailCall(MC);
5149     return nullptr;
5150   }
5151   case Intrinsic::dbg_addr:
5152   case Intrinsic::dbg_declare: {
5153     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5154     DILocalVariable *Variable = DI.getVariable();
5155     DIExpression *Expression = DI.getExpression();
5156     dropDanglingDebugInfo(Variable, Expression);
5157     assert(Variable && "Missing variable");
5158 
5159     // Check if address has undef value.
5160     const Value *Address = DI.getVariableLocation();
5161     if (!Address || isa<UndefValue>(Address) ||
5162         (Address->use_empty() && !isa<Argument>(Address))) {
5163       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5164       return nullptr;
5165     }
5166 
5167     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5168 
5169     // Check if this variable can be described by a frame index, typically
5170     // either as a static alloca or a byval parameter.
5171     int FI = std::numeric_limits<int>::max();
5172     if (const auto *AI =
5173             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5174       if (AI->isStaticAlloca()) {
5175         auto I = FuncInfo.StaticAllocaMap.find(AI);
5176         if (I != FuncInfo.StaticAllocaMap.end())
5177           FI = I->second;
5178       }
5179     } else if (const auto *Arg = dyn_cast<Argument>(
5180                    Address->stripInBoundsConstantOffsets())) {
5181       FI = FuncInfo.getArgumentFrameIndex(Arg);
5182     }
5183 
5184     // llvm.dbg.addr is control dependent and always generates indirect
5185     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5186     // the MachineFunction variable table.
5187     if (FI != std::numeric_limits<int>::max()) {
5188       if (Intrinsic == Intrinsic::dbg_addr) {
5189          SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5190                                                      FI, dl, SDNodeOrder);
5191          DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5192       }
5193       return nullptr;
5194     }
5195 
5196     SDValue &N = NodeMap[Address];
5197     if (!N.getNode() && isa<Argument>(Address))
5198       // Check unused arguments map.
5199       N = UnusedArgNodeMap[Address];
5200     SDDbgValue *SDV;
5201     if (N.getNode()) {
5202       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5203         Address = BCI->getOperand(0);
5204       // Parameters are handled specially.
5205       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5206       if (isParameter && FINode) {
5207         // Byval parameter. We have a frame index at this point.
5208         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5209                                         FINode->getIndex(), dl, SDNodeOrder);
5210       } else if (isa<Argument>(Address)) {
5211         // Address is an argument, so try to emit its dbg value using
5212         // virtual register info from the FuncInfo.ValueMap.
5213         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5214         return nullptr;
5215       } else {
5216         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5217                               true, dl, SDNodeOrder);
5218       }
5219       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5220     } else {
5221       // If Address is an argument then try to emit its dbg value using
5222       // virtual register info from the FuncInfo.ValueMap.
5223       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5224                                     N)) {
5225         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5226       }
5227     }
5228     return nullptr;
5229   }
5230   case Intrinsic::dbg_label: {
5231     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5232     DILabel *Label = DI.getLabel();
5233     assert(Label && "Missing label");
5234 
5235     SDDbgLabel *SDV;
5236     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5237     DAG.AddDbgLabel(SDV);
5238     return nullptr;
5239   }
5240   case Intrinsic::dbg_value: {
5241     const DbgValueInst &DI = cast<DbgValueInst>(I);
5242     assert(DI.getVariable() && "Missing variable");
5243 
5244     DILocalVariable *Variable = DI.getVariable();
5245     DIExpression *Expression = DI.getExpression();
5246     dropDanglingDebugInfo(Variable, Expression);
5247     const Value *V = DI.getValue();
5248     if (!V)
5249       return nullptr;
5250 
5251     SDDbgValue *SDV;
5252     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5253       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5254       DAG.AddDbgValue(SDV, nullptr, false);
5255       return nullptr;
5256     }
5257 
5258     // Do not use getValue() in here; we don't want to generate code at
5259     // this point if it hasn't been done yet.
5260     SDValue N = NodeMap[V];
5261     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5262       N = UnusedArgNodeMap[V];
5263     if (N.getNode()) {
5264       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5265         return nullptr;
5266       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5267       DAG.AddDbgValue(SDV, N.getNode(), false);
5268       return nullptr;
5269     }
5270 
5271     // PHI nodes have already been selected, so we should know which VReg that
5272     // is assigns to already.
5273     if (isa<PHINode>(V)) {
5274       auto VMI = FuncInfo.ValueMap.find(V);
5275       if (VMI != FuncInfo.ValueMap.end()) {
5276         unsigned Reg = VMI->second;
5277         // The PHI node may be split up into several MI PHI nodes (in
5278         // FunctionLoweringInfo::set).
5279         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5280                          V->getType(), false);
5281         if (RFV.occupiesMultipleRegs()) {
5282           unsigned Offset = 0;
5283           unsigned BitsToDescribe = 0;
5284           if (auto VarSize = Variable->getSizeInBits())
5285             BitsToDescribe = *VarSize;
5286           if (auto Fragment = Expression->getFragmentInfo())
5287             BitsToDescribe = Fragment->SizeInBits;
5288           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5289             unsigned RegisterSize = RegAndSize.second;
5290             // Bail out if all bits are described already.
5291             if (Offset >= BitsToDescribe)
5292               break;
5293             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5294                 ? BitsToDescribe - Offset
5295                 : RegisterSize;
5296             auto FragmentExpr = DIExpression::createFragmentExpression(
5297                 Expression, Offset, FragmentSize);
5298             if (!FragmentExpr)
5299                 continue;
5300             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5301                                       false, dl, SDNodeOrder);
5302             DAG.AddDbgValue(SDV, nullptr, false);
5303             Offset += RegisterSize;
5304           }
5305         } else {
5306           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5307                                     SDNodeOrder);
5308           DAG.AddDbgValue(SDV, nullptr, false);
5309         }
5310         return nullptr;
5311       }
5312     }
5313 
5314     // TODO: When we get here we will either drop the dbg.value completely, or
5315     // we try to move it forward by letting it dangle for awhile. So we should
5316     // probably add an extra DbgValue to the DAG here, with a reference to
5317     // "noreg", to indicate that we have lost the debug location for the
5318     // variable.
5319 
5320     if (!V->use_empty() ) {
5321       // Do not call getValue(V) yet, as we don't want to generate code.
5322       // Remember it for later.
5323       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5324       DanglingDebugInfoMap[V].push_back(DDI);
5325       return nullptr;
5326     }
5327 
5328     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5329     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5330     return nullptr;
5331   }
5332 
5333   case Intrinsic::eh_typeid_for: {
5334     // Find the type id for the given typeinfo.
5335     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5336     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5337     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5338     setValue(&I, Res);
5339     return nullptr;
5340   }
5341 
5342   case Intrinsic::eh_return_i32:
5343   case Intrinsic::eh_return_i64:
5344     DAG.getMachineFunction().setCallsEHReturn(true);
5345     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5346                             MVT::Other,
5347                             getControlRoot(),
5348                             getValue(I.getArgOperand(0)),
5349                             getValue(I.getArgOperand(1))));
5350     return nullptr;
5351   case Intrinsic::eh_unwind_init:
5352     DAG.getMachineFunction().setCallsUnwindInit(true);
5353     return nullptr;
5354   case Intrinsic::eh_dwarf_cfa:
5355     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5356                              TLI.getPointerTy(DAG.getDataLayout()),
5357                              getValue(I.getArgOperand(0))));
5358     return nullptr;
5359   case Intrinsic::eh_sjlj_callsite: {
5360     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5361     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5362     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5363     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5364 
5365     MMI.setCurrentCallSite(CI->getZExtValue());
5366     return nullptr;
5367   }
5368   case Intrinsic::eh_sjlj_functioncontext: {
5369     // Get and store the index of the function context.
5370     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5371     AllocaInst *FnCtx =
5372       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5373     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5374     MFI.setFunctionContextIndex(FI);
5375     return nullptr;
5376   }
5377   case Intrinsic::eh_sjlj_setjmp: {
5378     SDValue Ops[2];
5379     Ops[0] = getRoot();
5380     Ops[1] = getValue(I.getArgOperand(0));
5381     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5382                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5383     setValue(&I, Op.getValue(0));
5384     DAG.setRoot(Op.getValue(1));
5385     return nullptr;
5386   }
5387   case Intrinsic::eh_sjlj_longjmp:
5388     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5389                             getRoot(), getValue(I.getArgOperand(0))));
5390     return nullptr;
5391   case Intrinsic::eh_sjlj_setup_dispatch:
5392     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5393                             getRoot()));
5394     return nullptr;
5395   case Intrinsic::masked_gather:
5396     visitMaskedGather(I);
5397     return nullptr;
5398   case Intrinsic::masked_load:
5399     visitMaskedLoad(I);
5400     return nullptr;
5401   case Intrinsic::masked_scatter:
5402     visitMaskedScatter(I);
5403     return nullptr;
5404   case Intrinsic::masked_store:
5405     visitMaskedStore(I);
5406     return nullptr;
5407   case Intrinsic::masked_expandload:
5408     visitMaskedLoad(I, true /* IsExpanding */);
5409     return nullptr;
5410   case Intrinsic::masked_compressstore:
5411     visitMaskedStore(I, true /* IsCompressing */);
5412     return nullptr;
5413   case Intrinsic::x86_mmx_pslli_w:
5414   case Intrinsic::x86_mmx_pslli_d:
5415   case Intrinsic::x86_mmx_pslli_q:
5416   case Intrinsic::x86_mmx_psrli_w:
5417   case Intrinsic::x86_mmx_psrli_d:
5418   case Intrinsic::x86_mmx_psrli_q:
5419   case Intrinsic::x86_mmx_psrai_w:
5420   case Intrinsic::x86_mmx_psrai_d: {
5421     SDValue ShAmt = getValue(I.getArgOperand(1));
5422     if (isa<ConstantSDNode>(ShAmt)) {
5423       visitTargetIntrinsic(I, Intrinsic);
5424       return nullptr;
5425     }
5426     unsigned NewIntrinsic = 0;
5427     EVT ShAmtVT = MVT::v2i32;
5428     switch (Intrinsic) {
5429     case Intrinsic::x86_mmx_pslli_w:
5430       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5431       break;
5432     case Intrinsic::x86_mmx_pslli_d:
5433       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5434       break;
5435     case Intrinsic::x86_mmx_pslli_q:
5436       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5437       break;
5438     case Intrinsic::x86_mmx_psrli_w:
5439       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5440       break;
5441     case Intrinsic::x86_mmx_psrli_d:
5442       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5443       break;
5444     case Intrinsic::x86_mmx_psrli_q:
5445       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5446       break;
5447     case Intrinsic::x86_mmx_psrai_w:
5448       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5449       break;
5450     case Intrinsic::x86_mmx_psrai_d:
5451       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5452       break;
5453     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5454     }
5455 
5456     // The vector shift intrinsics with scalars uses 32b shift amounts but
5457     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5458     // to be zero.
5459     // We must do this early because v2i32 is not a legal type.
5460     SDValue ShOps[2];
5461     ShOps[0] = ShAmt;
5462     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5463     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5464     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5465     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5466     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5467                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5468                        getValue(I.getArgOperand(0)), ShAmt);
5469     setValue(&I, Res);
5470     return nullptr;
5471   }
5472   case Intrinsic::powi:
5473     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5474                             getValue(I.getArgOperand(1)), DAG));
5475     return nullptr;
5476   case Intrinsic::log:
5477     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5478     return nullptr;
5479   case Intrinsic::log2:
5480     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5481     return nullptr;
5482   case Intrinsic::log10:
5483     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5484     return nullptr;
5485   case Intrinsic::exp:
5486     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5487     return nullptr;
5488   case Intrinsic::exp2:
5489     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5490     return nullptr;
5491   case Intrinsic::pow:
5492     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5493                            getValue(I.getArgOperand(1)), DAG, TLI));
5494     return nullptr;
5495   case Intrinsic::sqrt:
5496   case Intrinsic::fabs:
5497   case Intrinsic::sin:
5498   case Intrinsic::cos:
5499   case Intrinsic::floor:
5500   case Intrinsic::ceil:
5501   case Intrinsic::trunc:
5502   case Intrinsic::rint:
5503   case Intrinsic::nearbyint:
5504   case Intrinsic::round:
5505   case Intrinsic::canonicalize: {
5506     unsigned Opcode;
5507     switch (Intrinsic) {
5508     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5509     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5510     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5511     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5512     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5513     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5514     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5515     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5516     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5517     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5518     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5519     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5520     }
5521 
5522     setValue(&I, DAG.getNode(Opcode, sdl,
5523                              getValue(I.getArgOperand(0)).getValueType(),
5524                              getValue(I.getArgOperand(0))));
5525     return nullptr;
5526   }
5527   case Intrinsic::minnum: {
5528     auto VT = getValue(I.getArgOperand(0)).getValueType();
5529     unsigned Opc =
5530         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5531             ? ISD::FMINNAN
5532             : ISD::FMINNUM;
5533     setValue(&I, DAG.getNode(Opc, sdl, VT,
5534                              getValue(I.getArgOperand(0)),
5535                              getValue(I.getArgOperand(1))));
5536     return nullptr;
5537   }
5538   case Intrinsic::maxnum: {
5539     auto VT = getValue(I.getArgOperand(0)).getValueType();
5540     unsigned Opc =
5541         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5542             ? ISD::FMAXNAN
5543             : ISD::FMAXNUM;
5544     setValue(&I, DAG.getNode(Opc, sdl, VT,
5545                              getValue(I.getArgOperand(0)),
5546                              getValue(I.getArgOperand(1))));
5547     return nullptr;
5548   }
5549   case Intrinsic::copysign:
5550     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5551                              getValue(I.getArgOperand(0)).getValueType(),
5552                              getValue(I.getArgOperand(0)),
5553                              getValue(I.getArgOperand(1))));
5554     return nullptr;
5555   case Intrinsic::fma:
5556     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5557                              getValue(I.getArgOperand(0)).getValueType(),
5558                              getValue(I.getArgOperand(0)),
5559                              getValue(I.getArgOperand(1)),
5560                              getValue(I.getArgOperand(2))));
5561     return nullptr;
5562   case Intrinsic::experimental_constrained_fadd:
5563   case Intrinsic::experimental_constrained_fsub:
5564   case Intrinsic::experimental_constrained_fmul:
5565   case Intrinsic::experimental_constrained_fdiv:
5566   case Intrinsic::experimental_constrained_frem:
5567   case Intrinsic::experimental_constrained_fma:
5568   case Intrinsic::experimental_constrained_sqrt:
5569   case Intrinsic::experimental_constrained_pow:
5570   case Intrinsic::experimental_constrained_powi:
5571   case Intrinsic::experimental_constrained_sin:
5572   case Intrinsic::experimental_constrained_cos:
5573   case Intrinsic::experimental_constrained_exp:
5574   case Intrinsic::experimental_constrained_exp2:
5575   case Intrinsic::experimental_constrained_log:
5576   case Intrinsic::experimental_constrained_log10:
5577   case Intrinsic::experimental_constrained_log2:
5578   case Intrinsic::experimental_constrained_rint:
5579   case Intrinsic::experimental_constrained_nearbyint:
5580     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5581     return nullptr;
5582   case Intrinsic::fmuladd: {
5583     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5584     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5585         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5586       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5587                                getValue(I.getArgOperand(0)).getValueType(),
5588                                getValue(I.getArgOperand(0)),
5589                                getValue(I.getArgOperand(1)),
5590                                getValue(I.getArgOperand(2))));
5591     } else {
5592       // TODO: Intrinsic calls should have fast-math-flags.
5593       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5594                                 getValue(I.getArgOperand(0)).getValueType(),
5595                                 getValue(I.getArgOperand(0)),
5596                                 getValue(I.getArgOperand(1)));
5597       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5598                                 getValue(I.getArgOperand(0)).getValueType(),
5599                                 Mul,
5600                                 getValue(I.getArgOperand(2)));
5601       setValue(&I, Add);
5602     }
5603     return nullptr;
5604   }
5605   case Intrinsic::convert_to_fp16:
5606     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5607                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5608                                          getValue(I.getArgOperand(0)),
5609                                          DAG.getTargetConstant(0, sdl,
5610                                                                MVT::i32))));
5611     return nullptr;
5612   case Intrinsic::convert_from_fp16:
5613     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5614                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5615                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5616                                          getValue(I.getArgOperand(0)))));
5617     return nullptr;
5618   case Intrinsic::pcmarker: {
5619     SDValue Tmp = getValue(I.getArgOperand(0));
5620     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5621     return nullptr;
5622   }
5623   case Intrinsic::readcyclecounter: {
5624     SDValue Op = getRoot();
5625     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5626                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5627     setValue(&I, Res);
5628     DAG.setRoot(Res.getValue(1));
5629     return nullptr;
5630   }
5631   case Intrinsic::bitreverse:
5632     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5633                              getValue(I.getArgOperand(0)).getValueType(),
5634                              getValue(I.getArgOperand(0))));
5635     return nullptr;
5636   case Intrinsic::bswap:
5637     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5638                              getValue(I.getArgOperand(0)).getValueType(),
5639                              getValue(I.getArgOperand(0))));
5640     return nullptr;
5641   case Intrinsic::cttz: {
5642     SDValue Arg = getValue(I.getArgOperand(0));
5643     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5644     EVT Ty = Arg.getValueType();
5645     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5646                              sdl, Ty, Arg));
5647     return nullptr;
5648   }
5649   case Intrinsic::ctlz: {
5650     SDValue Arg = getValue(I.getArgOperand(0));
5651     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5652     EVT Ty = Arg.getValueType();
5653     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5654                              sdl, Ty, Arg));
5655     return nullptr;
5656   }
5657   case Intrinsic::ctpop: {
5658     SDValue Arg = getValue(I.getArgOperand(0));
5659     EVT Ty = Arg.getValueType();
5660     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5661     return nullptr;
5662   }
5663   case Intrinsic::fshl:
5664   case Intrinsic::fshr: {
5665     bool IsFSHL = Intrinsic == Intrinsic::fshl;
5666     SDValue X = getValue(I.getArgOperand(0));
5667     SDValue Y = getValue(I.getArgOperand(1));
5668     SDValue Z = getValue(I.getArgOperand(2));
5669     EVT VT = X.getValueType();
5670 
5671     // TODO: When X == Y, this is rotate. Create the node directly if legal.
5672 
5673     // Get the shift amount and inverse shift amount, modulo the bit-width.
5674     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5675     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5676     SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, Z);
5677     SDValue InvShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5678 
5679     // fshl: (X << (Z % BW)) | (Y >> ((BW - Z) % BW))
5680     // fshr: (X << ((BW - Z) % BW)) | (Y >> (Z % BW))
5681     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5682     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5683     SDValue Res = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5684 
5685     // If (Z % BW == 0), then (BW - Z) % BW is also zero, so the result would
5686     // be X | Y. If X == Y (rotate), that's fine. If not, we have to select.
5687     if (X != Y) {
5688       SDValue Zero = DAG.getConstant(0, sdl, VT);
5689       EVT CCVT = MVT::i1;
5690       if (VT.isVector())
5691         CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5692       // For fshl, 0 shift returns the 1st arg (X).
5693       // For fshr, 0 shift returns the 2nd arg (Y).
5694       SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5695       Res = DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Res);
5696     }
5697     setValue(&I, Res);
5698     return nullptr;
5699   }
5700   case Intrinsic::stacksave: {
5701     SDValue Op = getRoot();
5702     Res = DAG.getNode(
5703         ISD::STACKSAVE, sdl,
5704         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5705     setValue(&I, Res);
5706     DAG.setRoot(Res.getValue(1));
5707     return nullptr;
5708   }
5709   case Intrinsic::stackrestore:
5710     Res = getValue(I.getArgOperand(0));
5711     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5712     return nullptr;
5713   case Intrinsic::get_dynamic_area_offset: {
5714     SDValue Op = getRoot();
5715     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5716     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5717     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5718     // target.
5719     if (PtrTy != ResTy)
5720       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5721                          " intrinsic!");
5722     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5723                       Op);
5724     DAG.setRoot(Op);
5725     setValue(&I, Res);
5726     return nullptr;
5727   }
5728   case Intrinsic::stackguard: {
5729     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5730     MachineFunction &MF = DAG.getMachineFunction();
5731     const Module &M = *MF.getFunction().getParent();
5732     SDValue Chain = getRoot();
5733     if (TLI.useLoadStackGuardNode()) {
5734       Res = getLoadStackGuard(DAG, sdl, Chain);
5735     } else {
5736       const Value *Global = TLI.getSDagStackGuard(M);
5737       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5738       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5739                         MachinePointerInfo(Global, 0), Align,
5740                         MachineMemOperand::MOVolatile);
5741     }
5742     if (TLI.useStackGuardXorFP())
5743       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5744     DAG.setRoot(Chain);
5745     setValue(&I, Res);
5746     return nullptr;
5747   }
5748   case Intrinsic::stackprotector: {
5749     // Emit code into the DAG to store the stack guard onto the stack.
5750     MachineFunction &MF = DAG.getMachineFunction();
5751     MachineFrameInfo &MFI = MF.getFrameInfo();
5752     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5753     SDValue Src, Chain = getRoot();
5754 
5755     if (TLI.useLoadStackGuardNode())
5756       Src = getLoadStackGuard(DAG, sdl, Chain);
5757     else
5758       Src = getValue(I.getArgOperand(0));   // The guard's value.
5759 
5760     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5761 
5762     int FI = FuncInfo.StaticAllocaMap[Slot];
5763     MFI.setStackProtectorIndex(FI);
5764 
5765     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5766 
5767     // Store the stack protector onto the stack.
5768     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5769                                                  DAG.getMachineFunction(), FI),
5770                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5771     setValue(&I, Res);
5772     DAG.setRoot(Res);
5773     return nullptr;
5774   }
5775   case Intrinsic::objectsize: {
5776     // If we don't know by now, we're never going to know.
5777     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5778 
5779     assert(CI && "Non-constant type in __builtin_object_size?");
5780 
5781     SDValue Arg = getValue(I.getCalledValue());
5782     EVT Ty = Arg.getValueType();
5783 
5784     if (CI->isZero())
5785       Res = DAG.getConstant(-1ULL, sdl, Ty);
5786     else
5787       Res = DAG.getConstant(0, sdl, Ty);
5788 
5789     setValue(&I, Res);
5790     return nullptr;
5791   }
5792   case Intrinsic::annotation:
5793   case Intrinsic::ptr_annotation:
5794   case Intrinsic::launder_invariant_group:
5795   case Intrinsic::strip_invariant_group:
5796     // Drop the intrinsic, but forward the value
5797     setValue(&I, getValue(I.getOperand(0)));
5798     return nullptr;
5799   case Intrinsic::assume:
5800   case Intrinsic::var_annotation:
5801   case Intrinsic::sideeffect:
5802     // Discard annotate attributes, assumptions, and artificial side-effects.
5803     return nullptr;
5804 
5805   case Intrinsic::codeview_annotation: {
5806     // Emit a label associated with this metadata.
5807     MachineFunction &MF = DAG.getMachineFunction();
5808     MCSymbol *Label =
5809         MF.getMMI().getContext().createTempSymbol("annotation", true);
5810     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5811     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5812     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5813     DAG.setRoot(Res);
5814     return nullptr;
5815   }
5816 
5817   case Intrinsic::init_trampoline: {
5818     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5819 
5820     SDValue Ops[6];
5821     Ops[0] = getRoot();
5822     Ops[1] = getValue(I.getArgOperand(0));
5823     Ops[2] = getValue(I.getArgOperand(1));
5824     Ops[3] = getValue(I.getArgOperand(2));
5825     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5826     Ops[5] = DAG.getSrcValue(F);
5827 
5828     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5829 
5830     DAG.setRoot(Res);
5831     return nullptr;
5832   }
5833   case Intrinsic::adjust_trampoline:
5834     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5835                              TLI.getPointerTy(DAG.getDataLayout()),
5836                              getValue(I.getArgOperand(0))));
5837     return nullptr;
5838   case Intrinsic::gcroot: {
5839     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5840            "only valid in functions with gc specified, enforced by Verifier");
5841     assert(GFI && "implied by previous");
5842     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5843     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5844 
5845     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5846     GFI->addStackRoot(FI->getIndex(), TypeMap);
5847     return nullptr;
5848   }
5849   case Intrinsic::gcread:
5850   case Intrinsic::gcwrite:
5851     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5852   case Intrinsic::flt_rounds:
5853     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5854     return nullptr;
5855 
5856   case Intrinsic::expect:
5857     // Just replace __builtin_expect(exp, c) with EXP.
5858     setValue(&I, getValue(I.getArgOperand(0)));
5859     return nullptr;
5860 
5861   case Intrinsic::debugtrap:
5862   case Intrinsic::trap: {
5863     StringRef TrapFuncName =
5864         I.getAttributes()
5865             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5866             .getValueAsString();
5867     if (TrapFuncName.empty()) {
5868       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5869         ISD::TRAP : ISD::DEBUGTRAP;
5870       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5871       return nullptr;
5872     }
5873     TargetLowering::ArgListTy Args;
5874 
5875     TargetLowering::CallLoweringInfo CLI(DAG);
5876     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5877         CallingConv::C, I.getType(),
5878         DAG.getExternalSymbol(TrapFuncName.data(),
5879                               TLI.getPointerTy(DAG.getDataLayout())),
5880         std::move(Args));
5881 
5882     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5883     DAG.setRoot(Result.second);
5884     return nullptr;
5885   }
5886 
5887   case Intrinsic::uadd_with_overflow:
5888   case Intrinsic::sadd_with_overflow:
5889   case Intrinsic::usub_with_overflow:
5890   case Intrinsic::ssub_with_overflow:
5891   case Intrinsic::umul_with_overflow:
5892   case Intrinsic::smul_with_overflow: {
5893     ISD::NodeType Op;
5894     switch (Intrinsic) {
5895     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5896     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5897     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5898     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5899     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5900     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5901     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5902     }
5903     SDValue Op1 = getValue(I.getArgOperand(0));
5904     SDValue Op2 = getValue(I.getArgOperand(1));
5905 
5906     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5907     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5908     return nullptr;
5909   }
5910   case Intrinsic::prefetch: {
5911     SDValue Ops[5];
5912     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5913     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5914     Ops[0] = DAG.getRoot();
5915     Ops[1] = getValue(I.getArgOperand(0));
5916     Ops[2] = getValue(I.getArgOperand(1));
5917     Ops[3] = getValue(I.getArgOperand(2));
5918     Ops[4] = getValue(I.getArgOperand(3));
5919     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5920                                              DAG.getVTList(MVT::Other), Ops,
5921                                              EVT::getIntegerVT(*Context, 8),
5922                                              MachinePointerInfo(I.getArgOperand(0)),
5923                                              0, /* align */
5924                                              Flags);
5925 
5926     // Chain the prefetch in parallell with any pending loads, to stay out of
5927     // the way of later optimizations.
5928     PendingLoads.push_back(Result);
5929     Result = getRoot();
5930     DAG.setRoot(Result);
5931     return nullptr;
5932   }
5933   case Intrinsic::lifetime_start:
5934   case Intrinsic::lifetime_end: {
5935     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5936     // Stack coloring is not enabled in O0, discard region information.
5937     if (TM.getOptLevel() == CodeGenOpt::None)
5938       return nullptr;
5939 
5940     SmallVector<Value *, 4> Allocas;
5941     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5942 
5943     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5944            E = Allocas.end(); Object != E; ++Object) {
5945       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5946 
5947       // Could not find an Alloca.
5948       if (!LifetimeObject)
5949         continue;
5950 
5951       // First check that the Alloca is static, otherwise it won't have a
5952       // valid frame index.
5953       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5954       if (SI == FuncInfo.StaticAllocaMap.end())
5955         return nullptr;
5956 
5957       int FI = SI->second;
5958 
5959       SDValue Ops[2];
5960       Ops[0] = getRoot();
5961       Ops[1] =
5962           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5963       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5964 
5965       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5966       DAG.setRoot(Res);
5967     }
5968     return nullptr;
5969   }
5970   case Intrinsic::invariant_start:
5971     // Discard region information.
5972     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5973     return nullptr;
5974   case Intrinsic::invariant_end:
5975     // Discard region information.
5976     return nullptr;
5977   case Intrinsic::clear_cache:
5978     return TLI.getClearCacheBuiltinName();
5979   case Intrinsic::donothing:
5980     // ignore
5981     return nullptr;
5982   case Intrinsic::experimental_stackmap:
5983     visitStackmap(I);
5984     return nullptr;
5985   case Intrinsic::experimental_patchpoint_void:
5986   case Intrinsic::experimental_patchpoint_i64:
5987     visitPatchpoint(&I);
5988     return nullptr;
5989   case Intrinsic::experimental_gc_statepoint:
5990     LowerStatepoint(ImmutableStatepoint(&I));
5991     return nullptr;
5992   case Intrinsic::experimental_gc_result:
5993     visitGCResult(cast<GCResultInst>(I));
5994     return nullptr;
5995   case Intrinsic::experimental_gc_relocate:
5996     visitGCRelocate(cast<GCRelocateInst>(I));
5997     return nullptr;
5998   case Intrinsic::instrprof_increment:
5999     llvm_unreachable("instrprof failed to lower an increment");
6000   case Intrinsic::instrprof_value_profile:
6001     llvm_unreachable("instrprof failed to lower a value profiling call");
6002   case Intrinsic::localescape: {
6003     MachineFunction &MF = DAG.getMachineFunction();
6004     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6005 
6006     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6007     // is the same on all targets.
6008     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6009       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6010       if (isa<ConstantPointerNull>(Arg))
6011         continue; // Skip null pointers. They represent a hole in index space.
6012       AllocaInst *Slot = cast<AllocaInst>(Arg);
6013       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6014              "can only escape static allocas");
6015       int FI = FuncInfo.StaticAllocaMap[Slot];
6016       MCSymbol *FrameAllocSym =
6017           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6018               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6019       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6020               TII->get(TargetOpcode::LOCAL_ESCAPE))
6021           .addSym(FrameAllocSym)
6022           .addFrameIndex(FI);
6023     }
6024 
6025     return nullptr;
6026   }
6027 
6028   case Intrinsic::localrecover: {
6029     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6030     MachineFunction &MF = DAG.getMachineFunction();
6031     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6032 
6033     // Get the symbol that defines the frame offset.
6034     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6035     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6036     unsigned IdxVal =
6037         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6038     MCSymbol *FrameAllocSym =
6039         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6040             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6041 
6042     // Create a MCSymbol for the label to avoid any target lowering
6043     // that would make this PC relative.
6044     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6045     SDValue OffsetVal =
6046         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6047 
6048     // Add the offset to the FP.
6049     Value *FP = I.getArgOperand(1);
6050     SDValue FPVal = getValue(FP);
6051     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6052     setValue(&I, Add);
6053 
6054     return nullptr;
6055   }
6056 
6057   case Intrinsic::eh_exceptionpointer:
6058   case Intrinsic::eh_exceptioncode: {
6059     // Get the exception pointer vreg, copy from it, and resize it to fit.
6060     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6061     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6062     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6063     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6064     SDValue N =
6065         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6066     if (Intrinsic == Intrinsic::eh_exceptioncode)
6067       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6068     setValue(&I, N);
6069     return nullptr;
6070   }
6071   case Intrinsic::xray_customevent: {
6072     // Here we want to make sure that the intrinsic behaves as if it has a
6073     // specific calling convention, and only for x86_64.
6074     // FIXME: Support other platforms later.
6075     const auto &Triple = DAG.getTarget().getTargetTriple();
6076     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6077       return nullptr;
6078 
6079     SDLoc DL = getCurSDLoc();
6080     SmallVector<SDValue, 8> Ops;
6081 
6082     // We want to say that we always want the arguments in registers.
6083     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6084     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6085     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6086     SDValue Chain = getRoot();
6087     Ops.push_back(LogEntryVal);
6088     Ops.push_back(StrSizeVal);
6089     Ops.push_back(Chain);
6090 
6091     // We need to enforce the calling convention for the callsite, so that
6092     // argument ordering is enforced correctly, and that register allocation can
6093     // see that some registers may be assumed clobbered and have to preserve
6094     // them across calls to the intrinsic.
6095     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6096                                            DL, NodeTys, Ops);
6097     SDValue patchableNode = SDValue(MN, 0);
6098     DAG.setRoot(patchableNode);
6099     setValue(&I, patchableNode);
6100     return nullptr;
6101   }
6102   case Intrinsic::xray_typedevent: {
6103     // Here we want to make sure that the intrinsic behaves as if it has a
6104     // specific calling convention, and only for x86_64.
6105     // FIXME: Support other platforms later.
6106     const auto &Triple = DAG.getTarget().getTargetTriple();
6107     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6108       return nullptr;
6109 
6110     SDLoc DL = getCurSDLoc();
6111     SmallVector<SDValue, 8> Ops;
6112 
6113     // We want to say that we always want the arguments in registers.
6114     // It's unclear to me how manipulating the selection DAG here forces callers
6115     // to provide arguments in registers instead of on the stack.
6116     SDValue LogTypeId = getValue(I.getArgOperand(0));
6117     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6118     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6119     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6120     SDValue Chain = getRoot();
6121     Ops.push_back(LogTypeId);
6122     Ops.push_back(LogEntryVal);
6123     Ops.push_back(StrSizeVal);
6124     Ops.push_back(Chain);
6125 
6126     // We need to enforce the calling convention for the callsite, so that
6127     // argument ordering is enforced correctly, and that register allocation can
6128     // see that some registers may be assumed clobbered and have to preserve
6129     // them across calls to the intrinsic.
6130     MachineSDNode *MN = DAG.getMachineNode(
6131         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6132     SDValue patchableNode = SDValue(MN, 0);
6133     DAG.setRoot(patchableNode);
6134     setValue(&I, patchableNode);
6135     return nullptr;
6136   }
6137   case Intrinsic::experimental_deoptimize:
6138     LowerDeoptimizeCall(&I);
6139     return nullptr;
6140 
6141   case Intrinsic::experimental_vector_reduce_fadd:
6142   case Intrinsic::experimental_vector_reduce_fmul:
6143   case Intrinsic::experimental_vector_reduce_add:
6144   case Intrinsic::experimental_vector_reduce_mul:
6145   case Intrinsic::experimental_vector_reduce_and:
6146   case Intrinsic::experimental_vector_reduce_or:
6147   case Intrinsic::experimental_vector_reduce_xor:
6148   case Intrinsic::experimental_vector_reduce_smax:
6149   case Intrinsic::experimental_vector_reduce_smin:
6150   case Intrinsic::experimental_vector_reduce_umax:
6151   case Intrinsic::experimental_vector_reduce_umin:
6152   case Intrinsic::experimental_vector_reduce_fmax:
6153   case Intrinsic::experimental_vector_reduce_fmin:
6154     visitVectorReduce(I, Intrinsic);
6155     return nullptr;
6156 
6157   case Intrinsic::icall_branch_funnel: {
6158     SmallVector<SDValue, 16> Ops;
6159     Ops.push_back(DAG.getRoot());
6160     Ops.push_back(getValue(I.getArgOperand(0)));
6161 
6162     int64_t Offset;
6163     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6164         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6165     if (!Base)
6166       report_fatal_error(
6167           "llvm.icall.branch.funnel operand must be a GlobalValue");
6168     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6169 
6170     struct BranchFunnelTarget {
6171       int64_t Offset;
6172       SDValue Target;
6173     };
6174     SmallVector<BranchFunnelTarget, 8> Targets;
6175 
6176     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6177       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6178           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6179       if (ElemBase != Base)
6180         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6181                            "to the same GlobalValue");
6182 
6183       SDValue Val = getValue(I.getArgOperand(Op + 1));
6184       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6185       if (!GA)
6186         report_fatal_error(
6187             "llvm.icall.branch.funnel operand must be a GlobalValue");
6188       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6189                                      GA->getGlobal(), getCurSDLoc(),
6190                                      Val.getValueType(), GA->getOffset())});
6191     }
6192     llvm::sort(Targets.begin(), Targets.end(),
6193                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6194                  return T1.Offset < T2.Offset;
6195                });
6196 
6197     for (auto &T : Targets) {
6198       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6199       Ops.push_back(T.Target);
6200     }
6201 
6202     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6203                                  getCurSDLoc(), MVT::Other, Ops),
6204               0);
6205     DAG.setRoot(N);
6206     setValue(&I, N);
6207     HasTailCall = true;
6208     return nullptr;
6209   }
6210 
6211   case Intrinsic::wasm_landingpad_index: {
6212     // TODO store landing pad index in a map, which will be used when generating
6213     // LSDA information
6214     return nullptr;
6215   }
6216   }
6217 }
6218 
6219 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6220     const ConstrainedFPIntrinsic &FPI) {
6221   SDLoc sdl = getCurSDLoc();
6222   unsigned Opcode;
6223   switch (FPI.getIntrinsicID()) {
6224   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6225   case Intrinsic::experimental_constrained_fadd:
6226     Opcode = ISD::STRICT_FADD;
6227     break;
6228   case Intrinsic::experimental_constrained_fsub:
6229     Opcode = ISD::STRICT_FSUB;
6230     break;
6231   case Intrinsic::experimental_constrained_fmul:
6232     Opcode = ISD::STRICT_FMUL;
6233     break;
6234   case Intrinsic::experimental_constrained_fdiv:
6235     Opcode = ISD::STRICT_FDIV;
6236     break;
6237   case Intrinsic::experimental_constrained_frem:
6238     Opcode = ISD::STRICT_FREM;
6239     break;
6240   case Intrinsic::experimental_constrained_fma:
6241     Opcode = ISD::STRICT_FMA;
6242     break;
6243   case Intrinsic::experimental_constrained_sqrt:
6244     Opcode = ISD::STRICT_FSQRT;
6245     break;
6246   case Intrinsic::experimental_constrained_pow:
6247     Opcode = ISD::STRICT_FPOW;
6248     break;
6249   case Intrinsic::experimental_constrained_powi:
6250     Opcode = ISD::STRICT_FPOWI;
6251     break;
6252   case Intrinsic::experimental_constrained_sin:
6253     Opcode = ISD::STRICT_FSIN;
6254     break;
6255   case Intrinsic::experimental_constrained_cos:
6256     Opcode = ISD::STRICT_FCOS;
6257     break;
6258   case Intrinsic::experimental_constrained_exp:
6259     Opcode = ISD::STRICT_FEXP;
6260     break;
6261   case Intrinsic::experimental_constrained_exp2:
6262     Opcode = ISD::STRICT_FEXP2;
6263     break;
6264   case Intrinsic::experimental_constrained_log:
6265     Opcode = ISD::STRICT_FLOG;
6266     break;
6267   case Intrinsic::experimental_constrained_log10:
6268     Opcode = ISD::STRICT_FLOG10;
6269     break;
6270   case Intrinsic::experimental_constrained_log2:
6271     Opcode = ISD::STRICT_FLOG2;
6272     break;
6273   case Intrinsic::experimental_constrained_rint:
6274     Opcode = ISD::STRICT_FRINT;
6275     break;
6276   case Intrinsic::experimental_constrained_nearbyint:
6277     Opcode = ISD::STRICT_FNEARBYINT;
6278     break;
6279   }
6280   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6281   SDValue Chain = getRoot();
6282   SmallVector<EVT, 4> ValueVTs;
6283   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6284   ValueVTs.push_back(MVT::Other); // Out chain
6285 
6286   SDVTList VTs = DAG.getVTList(ValueVTs);
6287   SDValue Result;
6288   if (FPI.isUnaryOp())
6289     Result = DAG.getNode(Opcode, sdl, VTs,
6290                          { Chain, getValue(FPI.getArgOperand(0)) });
6291   else if (FPI.isTernaryOp())
6292     Result = DAG.getNode(Opcode, sdl, VTs,
6293                          { Chain, getValue(FPI.getArgOperand(0)),
6294                                   getValue(FPI.getArgOperand(1)),
6295                                   getValue(FPI.getArgOperand(2)) });
6296   else
6297     Result = DAG.getNode(Opcode, sdl, VTs,
6298                          { Chain, getValue(FPI.getArgOperand(0)),
6299                            getValue(FPI.getArgOperand(1))  });
6300 
6301   assert(Result.getNode()->getNumValues() == 2);
6302   SDValue OutChain = Result.getValue(1);
6303   DAG.setRoot(OutChain);
6304   SDValue FPResult = Result.getValue(0);
6305   setValue(&FPI, FPResult);
6306 }
6307 
6308 std::pair<SDValue, SDValue>
6309 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6310                                     const BasicBlock *EHPadBB) {
6311   MachineFunction &MF = DAG.getMachineFunction();
6312   MachineModuleInfo &MMI = MF.getMMI();
6313   MCSymbol *BeginLabel = nullptr;
6314 
6315   if (EHPadBB) {
6316     // Insert a label before the invoke call to mark the try range.  This can be
6317     // used to detect deletion of the invoke via the MachineModuleInfo.
6318     BeginLabel = MMI.getContext().createTempSymbol();
6319 
6320     // For SjLj, keep track of which landing pads go with which invokes
6321     // so as to maintain the ordering of pads in the LSDA.
6322     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6323     if (CallSiteIndex) {
6324       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6325       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6326 
6327       // Now that the call site is handled, stop tracking it.
6328       MMI.setCurrentCallSite(0);
6329     }
6330 
6331     // Both PendingLoads and PendingExports must be flushed here;
6332     // this call might not return.
6333     (void)getRoot();
6334     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6335 
6336     CLI.setChain(getRoot());
6337   }
6338   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6339   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6340 
6341   assert((CLI.IsTailCall || Result.second.getNode()) &&
6342          "Non-null chain expected with non-tail call!");
6343   assert((Result.second.getNode() || !Result.first.getNode()) &&
6344          "Null value expected with tail call!");
6345 
6346   if (!Result.second.getNode()) {
6347     // As a special case, a null chain means that a tail call has been emitted
6348     // and the DAG root is already updated.
6349     HasTailCall = true;
6350 
6351     // Since there's no actual continuation from this block, nothing can be
6352     // relying on us setting vregs for them.
6353     PendingExports.clear();
6354   } else {
6355     DAG.setRoot(Result.second);
6356   }
6357 
6358   if (EHPadBB) {
6359     // Insert a label at the end of the invoke call to mark the try range.  This
6360     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6361     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6362     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6363 
6364     // Inform MachineModuleInfo of range.
6365     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6366     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6367     // actually use outlined funclets and their LSDA info style.
6368     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6369       assert(CLI.CS);
6370       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6371       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6372                                 BeginLabel, EndLabel);
6373     } else {
6374       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6375     }
6376   }
6377 
6378   return Result;
6379 }
6380 
6381 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6382                                       bool isTailCall,
6383                                       const BasicBlock *EHPadBB) {
6384   auto &DL = DAG.getDataLayout();
6385   FunctionType *FTy = CS.getFunctionType();
6386   Type *RetTy = CS.getType();
6387 
6388   TargetLowering::ArgListTy Args;
6389   Args.reserve(CS.arg_size());
6390 
6391   const Value *SwiftErrorVal = nullptr;
6392   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6393 
6394   // We can't tail call inside a function with a swifterror argument. Lowering
6395   // does not support this yet. It would have to move into the swifterror
6396   // register before the call.
6397   auto *Caller = CS.getInstruction()->getParent()->getParent();
6398   if (TLI.supportSwiftError() &&
6399       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6400     isTailCall = false;
6401 
6402   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6403        i != e; ++i) {
6404     TargetLowering::ArgListEntry Entry;
6405     const Value *V = *i;
6406 
6407     // Skip empty types
6408     if (V->getType()->isEmptyTy())
6409       continue;
6410 
6411     SDValue ArgNode = getValue(V);
6412     Entry.Node = ArgNode; Entry.Ty = V->getType();
6413 
6414     Entry.setAttributes(&CS, i - CS.arg_begin());
6415 
6416     // Use swifterror virtual register as input to the call.
6417     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6418       SwiftErrorVal = V;
6419       // We find the virtual register for the actual swifterror argument.
6420       // Instead of using the Value, we use the virtual register instead.
6421       Entry.Node = DAG.getRegister(FuncInfo
6422                                        .getOrCreateSwiftErrorVRegUseAt(
6423                                            CS.getInstruction(), FuncInfo.MBB, V)
6424                                        .first,
6425                                    EVT(TLI.getPointerTy(DL)));
6426     }
6427 
6428     Args.push_back(Entry);
6429 
6430     // If we have an explicit sret argument that is an Instruction, (i.e., it
6431     // might point to function-local memory), we can't meaningfully tail-call.
6432     if (Entry.IsSRet && isa<Instruction>(V))
6433       isTailCall = false;
6434   }
6435 
6436   // Check if target-independent constraints permit a tail call here.
6437   // Target-dependent constraints are checked within TLI->LowerCallTo.
6438   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6439     isTailCall = false;
6440 
6441   // Disable tail calls if there is an swifterror argument. Targets have not
6442   // been updated to support tail calls.
6443   if (TLI.supportSwiftError() && SwiftErrorVal)
6444     isTailCall = false;
6445 
6446   TargetLowering::CallLoweringInfo CLI(DAG);
6447   CLI.setDebugLoc(getCurSDLoc())
6448       .setChain(getRoot())
6449       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6450       .setTailCall(isTailCall)
6451       .setConvergent(CS.isConvergent());
6452   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6453 
6454   if (Result.first.getNode()) {
6455     const Instruction *Inst = CS.getInstruction();
6456     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6457     setValue(Inst, Result.first);
6458   }
6459 
6460   // The last element of CLI.InVals has the SDValue for swifterror return.
6461   // Here we copy it to a virtual register and update SwiftErrorMap for
6462   // book-keeping.
6463   if (SwiftErrorVal && TLI.supportSwiftError()) {
6464     // Get the last element of InVals.
6465     SDValue Src = CLI.InVals.back();
6466     unsigned VReg; bool CreatedVReg;
6467     std::tie(VReg, CreatedVReg) =
6468         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6469     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6470     // We update the virtual register for the actual swifterror argument.
6471     if (CreatedVReg)
6472       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6473     DAG.setRoot(CopyNode);
6474   }
6475 }
6476 
6477 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6478                              SelectionDAGBuilder &Builder) {
6479   // Check to see if this load can be trivially constant folded, e.g. if the
6480   // input is from a string literal.
6481   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6482     // Cast pointer to the type we really want to load.
6483     Type *LoadTy =
6484         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6485     if (LoadVT.isVector())
6486       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6487 
6488     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6489                                          PointerType::getUnqual(LoadTy));
6490 
6491     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6492             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6493       return Builder.getValue(LoadCst);
6494   }
6495 
6496   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6497   // still constant memory, the input chain can be the entry node.
6498   SDValue Root;
6499   bool ConstantMemory = false;
6500 
6501   // Do not serialize (non-volatile) loads of constant memory with anything.
6502   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6503     Root = Builder.DAG.getEntryNode();
6504     ConstantMemory = true;
6505   } else {
6506     // Do not serialize non-volatile loads against each other.
6507     Root = Builder.DAG.getRoot();
6508   }
6509 
6510   SDValue Ptr = Builder.getValue(PtrVal);
6511   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6512                                         Ptr, MachinePointerInfo(PtrVal),
6513                                         /* Alignment = */ 1);
6514 
6515   if (!ConstantMemory)
6516     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6517   return LoadVal;
6518 }
6519 
6520 /// Record the value for an instruction that produces an integer result,
6521 /// converting the type where necessary.
6522 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6523                                                   SDValue Value,
6524                                                   bool IsSigned) {
6525   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6526                                                     I.getType(), true);
6527   if (IsSigned)
6528     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6529   else
6530     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6531   setValue(&I, Value);
6532 }
6533 
6534 /// See if we can lower a memcmp call into an optimized form. If so, return
6535 /// true and lower it. Otherwise return false, and it will be lowered like a
6536 /// normal call.
6537 /// The caller already checked that \p I calls the appropriate LibFunc with a
6538 /// correct prototype.
6539 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6540   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6541   const Value *Size = I.getArgOperand(2);
6542   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6543   if (CSize && CSize->getZExtValue() == 0) {
6544     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6545                                                           I.getType(), true);
6546     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6547     return true;
6548   }
6549 
6550   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6551   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6552       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6553       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6554   if (Res.first.getNode()) {
6555     processIntegerCallValue(I, Res.first, true);
6556     PendingLoads.push_back(Res.second);
6557     return true;
6558   }
6559 
6560   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6561   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6562   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6563     return false;
6564 
6565   // If the target has a fast compare for the given size, it will return a
6566   // preferred load type for that size. Require that the load VT is legal and
6567   // that the target supports unaligned loads of that type. Otherwise, return
6568   // INVALID.
6569   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6570     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6571     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6572     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6573       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6574       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6575       // TODO: Check alignment of src and dest ptrs.
6576       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6577       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6578       if (!TLI.isTypeLegal(LVT) ||
6579           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6580           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6581         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6582     }
6583 
6584     return LVT;
6585   };
6586 
6587   // This turns into unaligned loads. We only do this if the target natively
6588   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6589   // we'll only produce a small number of byte loads.
6590   MVT LoadVT;
6591   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6592   switch (NumBitsToCompare) {
6593   default:
6594     return false;
6595   case 16:
6596     LoadVT = MVT::i16;
6597     break;
6598   case 32:
6599     LoadVT = MVT::i32;
6600     break;
6601   case 64:
6602   case 128:
6603   case 256:
6604     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6605     break;
6606   }
6607 
6608   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6609     return false;
6610 
6611   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6612   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6613 
6614   // Bitcast to a wide integer type if the loads are vectors.
6615   if (LoadVT.isVector()) {
6616     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6617     LoadL = DAG.getBitcast(CmpVT, LoadL);
6618     LoadR = DAG.getBitcast(CmpVT, LoadR);
6619   }
6620 
6621   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6622   processIntegerCallValue(I, Cmp, false);
6623   return true;
6624 }
6625 
6626 /// See if we can lower a memchr call into an optimized form. If so, return
6627 /// true and lower it. Otherwise return false, and it will be lowered like a
6628 /// normal call.
6629 /// The caller already checked that \p I calls the appropriate LibFunc with a
6630 /// correct prototype.
6631 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6632   const Value *Src = I.getArgOperand(0);
6633   const Value *Char = I.getArgOperand(1);
6634   const Value *Length = I.getArgOperand(2);
6635 
6636   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6637   std::pair<SDValue, SDValue> Res =
6638     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6639                                 getValue(Src), getValue(Char), getValue(Length),
6640                                 MachinePointerInfo(Src));
6641   if (Res.first.getNode()) {
6642     setValue(&I, Res.first);
6643     PendingLoads.push_back(Res.second);
6644     return true;
6645   }
6646 
6647   return false;
6648 }
6649 
6650 /// See if we can lower a mempcpy call into an optimized form. If so, return
6651 /// true and lower it. Otherwise return false, and it will be lowered like a
6652 /// normal call.
6653 /// The caller already checked that \p I calls the appropriate LibFunc with a
6654 /// correct prototype.
6655 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6656   SDValue Dst = getValue(I.getArgOperand(0));
6657   SDValue Src = getValue(I.getArgOperand(1));
6658   SDValue Size = getValue(I.getArgOperand(2));
6659 
6660   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6661   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6662   unsigned Align = std::min(DstAlign, SrcAlign);
6663   if (Align == 0) // Alignment of one or both could not be inferred.
6664     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6665 
6666   bool isVol = false;
6667   SDLoc sdl = getCurSDLoc();
6668 
6669   // In the mempcpy context we need to pass in a false value for isTailCall
6670   // because the return pointer needs to be adjusted by the size of
6671   // the copied memory.
6672   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6673                              false, /*isTailCall=*/false,
6674                              MachinePointerInfo(I.getArgOperand(0)),
6675                              MachinePointerInfo(I.getArgOperand(1)));
6676   assert(MC.getNode() != nullptr &&
6677          "** memcpy should not be lowered as TailCall in mempcpy context **");
6678   DAG.setRoot(MC);
6679 
6680   // Check if Size needs to be truncated or extended.
6681   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6682 
6683   // Adjust return pointer to point just past the last dst byte.
6684   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6685                                     Dst, Size);
6686   setValue(&I, DstPlusSize);
6687   return true;
6688 }
6689 
6690 /// See if we can lower a strcpy call into an optimized form.  If so, return
6691 /// true and lower it, otherwise return false and it will be lowered like a
6692 /// normal call.
6693 /// The caller already checked that \p I calls the appropriate LibFunc with a
6694 /// correct prototype.
6695 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6696   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6697 
6698   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6699   std::pair<SDValue, SDValue> Res =
6700     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6701                                 getValue(Arg0), getValue(Arg1),
6702                                 MachinePointerInfo(Arg0),
6703                                 MachinePointerInfo(Arg1), isStpcpy);
6704   if (Res.first.getNode()) {
6705     setValue(&I, Res.first);
6706     DAG.setRoot(Res.second);
6707     return true;
6708   }
6709 
6710   return false;
6711 }
6712 
6713 /// See if we can lower a strcmp call into an optimized form.  If so, return
6714 /// true and lower it, otherwise return false and it will be lowered like a
6715 /// normal call.
6716 /// The caller already checked that \p I calls the appropriate LibFunc with a
6717 /// correct prototype.
6718 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6719   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6720 
6721   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6722   std::pair<SDValue, SDValue> Res =
6723     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6724                                 getValue(Arg0), getValue(Arg1),
6725                                 MachinePointerInfo(Arg0),
6726                                 MachinePointerInfo(Arg1));
6727   if (Res.first.getNode()) {
6728     processIntegerCallValue(I, Res.first, true);
6729     PendingLoads.push_back(Res.second);
6730     return true;
6731   }
6732 
6733   return false;
6734 }
6735 
6736 /// See if we can lower a strlen call into an optimized form.  If so, return
6737 /// true and lower it, otherwise return false and it will be lowered like a
6738 /// normal call.
6739 /// The caller already checked that \p I calls the appropriate LibFunc with a
6740 /// correct prototype.
6741 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6742   const Value *Arg0 = I.getArgOperand(0);
6743 
6744   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6745   std::pair<SDValue, SDValue> Res =
6746     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6747                                 getValue(Arg0), MachinePointerInfo(Arg0));
6748   if (Res.first.getNode()) {
6749     processIntegerCallValue(I, Res.first, false);
6750     PendingLoads.push_back(Res.second);
6751     return true;
6752   }
6753 
6754   return false;
6755 }
6756 
6757 /// See if we can lower a strnlen call into an optimized form.  If so, return
6758 /// true and lower it, otherwise return false and it will be lowered like a
6759 /// normal call.
6760 /// The caller already checked that \p I calls the appropriate LibFunc with a
6761 /// correct prototype.
6762 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6763   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6764 
6765   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6766   std::pair<SDValue, SDValue> Res =
6767     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6768                                  getValue(Arg0), getValue(Arg1),
6769                                  MachinePointerInfo(Arg0));
6770   if (Res.first.getNode()) {
6771     processIntegerCallValue(I, Res.first, false);
6772     PendingLoads.push_back(Res.second);
6773     return true;
6774   }
6775 
6776   return false;
6777 }
6778 
6779 /// See if we can lower a unary floating-point operation into an SDNode with
6780 /// the specified Opcode.  If so, return true and lower it, otherwise return
6781 /// false and it will be lowered like a normal call.
6782 /// The caller already checked that \p I calls the appropriate LibFunc with a
6783 /// correct prototype.
6784 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6785                                               unsigned Opcode) {
6786   // We already checked this call's prototype; verify it doesn't modify errno.
6787   if (!I.onlyReadsMemory())
6788     return false;
6789 
6790   SDValue Tmp = getValue(I.getArgOperand(0));
6791   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6792   return true;
6793 }
6794 
6795 /// See if we can lower a binary floating-point operation into an SDNode with
6796 /// the specified Opcode. If so, return true and lower it. Otherwise return
6797 /// false, and it will be lowered like a normal call.
6798 /// The caller already checked that \p I calls the appropriate LibFunc with a
6799 /// correct prototype.
6800 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6801                                                unsigned Opcode) {
6802   // We already checked this call's prototype; verify it doesn't modify errno.
6803   if (!I.onlyReadsMemory())
6804     return false;
6805 
6806   SDValue Tmp0 = getValue(I.getArgOperand(0));
6807   SDValue Tmp1 = getValue(I.getArgOperand(1));
6808   EVT VT = Tmp0.getValueType();
6809   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6810   return true;
6811 }
6812 
6813 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6814   // Handle inline assembly differently.
6815   if (isa<InlineAsm>(I.getCalledValue())) {
6816     visitInlineAsm(&I);
6817     return;
6818   }
6819 
6820   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6821   computeUsesVAFloatArgument(I, MMI);
6822 
6823   const char *RenameFn = nullptr;
6824   if (Function *F = I.getCalledFunction()) {
6825     if (F->isDeclaration()) {
6826       // Is this an LLVM intrinsic or a target-specific intrinsic?
6827       unsigned IID = F->getIntrinsicID();
6828       if (!IID)
6829         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
6830           IID = II->getIntrinsicID(F);
6831 
6832       if (IID) {
6833         RenameFn = visitIntrinsicCall(I, IID);
6834         if (!RenameFn)
6835           return;
6836       }
6837     }
6838 
6839     // Check for well-known libc/libm calls.  If the function is internal, it
6840     // can't be a library call.  Don't do the check if marked as nobuiltin for
6841     // some reason or the call site requires strict floating point semantics.
6842     LibFunc Func;
6843     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6844         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6845         LibInfo->hasOptimizedCodeGen(Func)) {
6846       switch (Func) {
6847       default: break;
6848       case LibFunc_copysign:
6849       case LibFunc_copysignf:
6850       case LibFunc_copysignl:
6851         // We already checked this call's prototype; verify it doesn't modify
6852         // errno.
6853         if (I.onlyReadsMemory()) {
6854           SDValue LHS = getValue(I.getArgOperand(0));
6855           SDValue RHS = getValue(I.getArgOperand(1));
6856           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6857                                    LHS.getValueType(), LHS, RHS));
6858           return;
6859         }
6860         break;
6861       case LibFunc_fabs:
6862       case LibFunc_fabsf:
6863       case LibFunc_fabsl:
6864         if (visitUnaryFloatCall(I, ISD::FABS))
6865           return;
6866         break;
6867       case LibFunc_fmin:
6868       case LibFunc_fminf:
6869       case LibFunc_fminl:
6870         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6871           return;
6872         break;
6873       case LibFunc_fmax:
6874       case LibFunc_fmaxf:
6875       case LibFunc_fmaxl:
6876         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6877           return;
6878         break;
6879       case LibFunc_sin:
6880       case LibFunc_sinf:
6881       case LibFunc_sinl:
6882         if (visitUnaryFloatCall(I, ISD::FSIN))
6883           return;
6884         break;
6885       case LibFunc_cos:
6886       case LibFunc_cosf:
6887       case LibFunc_cosl:
6888         if (visitUnaryFloatCall(I, ISD::FCOS))
6889           return;
6890         break;
6891       case LibFunc_sqrt:
6892       case LibFunc_sqrtf:
6893       case LibFunc_sqrtl:
6894       case LibFunc_sqrt_finite:
6895       case LibFunc_sqrtf_finite:
6896       case LibFunc_sqrtl_finite:
6897         if (visitUnaryFloatCall(I, ISD::FSQRT))
6898           return;
6899         break;
6900       case LibFunc_floor:
6901       case LibFunc_floorf:
6902       case LibFunc_floorl:
6903         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6904           return;
6905         break;
6906       case LibFunc_nearbyint:
6907       case LibFunc_nearbyintf:
6908       case LibFunc_nearbyintl:
6909         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6910           return;
6911         break;
6912       case LibFunc_ceil:
6913       case LibFunc_ceilf:
6914       case LibFunc_ceill:
6915         if (visitUnaryFloatCall(I, ISD::FCEIL))
6916           return;
6917         break;
6918       case LibFunc_rint:
6919       case LibFunc_rintf:
6920       case LibFunc_rintl:
6921         if (visitUnaryFloatCall(I, ISD::FRINT))
6922           return;
6923         break;
6924       case LibFunc_round:
6925       case LibFunc_roundf:
6926       case LibFunc_roundl:
6927         if (visitUnaryFloatCall(I, ISD::FROUND))
6928           return;
6929         break;
6930       case LibFunc_trunc:
6931       case LibFunc_truncf:
6932       case LibFunc_truncl:
6933         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6934           return;
6935         break;
6936       case LibFunc_log2:
6937       case LibFunc_log2f:
6938       case LibFunc_log2l:
6939         if (visitUnaryFloatCall(I, ISD::FLOG2))
6940           return;
6941         break;
6942       case LibFunc_exp2:
6943       case LibFunc_exp2f:
6944       case LibFunc_exp2l:
6945         if (visitUnaryFloatCall(I, ISD::FEXP2))
6946           return;
6947         break;
6948       case LibFunc_memcmp:
6949         if (visitMemCmpCall(I))
6950           return;
6951         break;
6952       case LibFunc_mempcpy:
6953         if (visitMemPCpyCall(I))
6954           return;
6955         break;
6956       case LibFunc_memchr:
6957         if (visitMemChrCall(I))
6958           return;
6959         break;
6960       case LibFunc_strcpy:
6961         if (visitStrCpyCall(I, false))
6962           return;
6963         break;
6964       case LibFunc_stpcpy:
6965         if (visitStrCpyCall(I, true))
6966           return;
6967         break;
6968       case LibFunc_strcmp:
6969         if (visitStrCmpCall(I))
6970           return;
6971         break;
6972       case LibFunc_strlen:
6973         if (visitStrLenCall(I))
6974           return;
6975         break;
6976       case LibFunc_strnlen:
6977         if (visitStrNLenCall(I))
6978           return;
6979         break;
6980       }
6981     }
6982   }
6983 
6984   SDValue Callee;
6985   if (!RenameFn)
6986     Callee = getValue(I.getCalledValue());
6987   else
6988     Callee = DAG.getExternalSymbol(
6989         RenameFn,
6990         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6991 
6992   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6993   // have to do anything here to lower funclet bundles.
6994   assert(!I.hasOperandBundlesOtherThan(
6995              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6996          "Cannot lower calls with arbitrary operand bundles!");
6997 
6998   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6999     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7000   else
7001     // Check if we can potentially perform a tail call. More detailed checking
7002     // is be done within LowerCallTo, after more information about the call is
7003     // known.
7004     LowerCallTo(&I, Callee, I.isTailCall());
7005 }
7006 
7007 namespace {
7008 
7009 /// AsmOperandInfo - This contains information for each constraint that we are
7010 /// lowering.
7011 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7012 public:
7013   /// CallOperand - If this is the result output operand or a clobber
7014   /// this is null, otherwise it is the incoming operand to the CallInst.
7015   /// This gets modified as the asm is processed.
7016   SDValue CallOperand;
7017 
7018   /// AssignedRegs - If this is a register or register class operand, this
7019   /// contains the set of register corresponding to the operand.
7020   RegsForValue AssignedRegs;
7021 
7022   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7023     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7024   }
7025 
7026   /// Whether or not this operand accesses memory
7027   bool hasMemory(const TargetLowering &TLI) const {
7028     // Indirect operand accesses access memory.
7029     if (isIndirect)
7030       return true;
7031 
7032     for (const auto &Code : Codes)
7033       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7034         return true;
7035 
7036     return false;
7037   }
7038 
7039   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7040   /// corresponds to.  If there is no Value* for this operand, it returns
7041   /// MVT::Other.
7042   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7043                            const DataLayout &DL) const {
7044     if (!CallOperandVal) return MVT::Other;
7045 
7046     if (isa<BasicBlock>(CallOperandVal))
7047       return TLI.getPointerTy(DL);
7048 
7049     llvm::Type *OpTy = CallOperandVal->getType();
7050 
7051     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7052     // If this is an indirect operand, the operand is a pointer to the
7053     // accessed type.
7054     if (isIndirect) {
7055       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7056       if (!PtrTy)
7057         report_fatal_error("Indirect operand for inline asm not a pointer!");
7058       OpTy = PtrTy->getElementType();
7059     }
7060 
7061     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7062     if (StructType *STy = dyn_cast<StructType>(OpTy))
7063       if (STy->getNumElements() == 1)
7064         OpTy = STy->getElementType(0);
7065 
7066     // If OpTy is not a single value, it may be a struct/union that we
7067     // can tile with integers.
7068     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7069       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7070       switch (BitSize) {
7071       default: break;
7072       case 1:
7073       case 8:
7074       case 16:
7075       case 32:
7076       case 64:
7077       case 128:
7078         OpTy = IntegerType::get(Context, BitSize);
7079         break;
7080       }
7081     }
7082 
7083     return TLI.getValueType(DL, OpTy, true);
7084   }
7085 };
7086 
7087 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7088 
7089 } // end anonymous namespace
7090 
7091 /// Make sure that the output operand \p OpInfo and its corresponding input
7092 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7093 /// out).
7094 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7095                                SDISelAsmOperandInfo &MatchingOpInfo,
7096                                SelectionDAG &DAG) {
7097   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7098     return;
7099 
7100   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7101   const auto &TLI = DAG.getTargetLoweringInfo();
7102 
7103   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7104       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7105                                        OpInfo.ConstraintVT);
7106   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7107       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7108                                        MatchingOpInfo.ConstraintVT);
7109   if ((OpInfo.ConstraintVT.isInteger() !=
7110        MatchingOpInfo.ConstraintVT.isInteger()) ||
7111       (MatchRC.second != InputRC.second)) {
7112     // FIXME: error out in a more elegant fashion
7113     report_fatal_error("Unsupported asm: input constraint"
7114                        " with a matching output constraint of"
7115                        " incompatible type!");
7116   }
7117   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7118 }
7119 
7120 /// Get a direct memory input to behave well as an indirect operand.
7121 /// This may introduce stores, hence the need for a \p Chain.
7122 /// \return The (possibly updated) chain.
7123 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7124                                         SDISelAsmOperandInfo &OpInfo,
7125                                         SelectionDAG &DAG) {
7126   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7127 
7128   // If we don't have an indirect input, put it in the constpool if we can,
7129   // otherwise spill it to a stack slot.
7130   // TODO: This isn't quite right. We need to handle these according to
7131   // the addressing mode that the constraint wants. Also, this may take
7132   // an additional register for the computation and we don't want that
7133   // either.
7134 
7135   // If the operand is a float, integer, or vector constant, spill to a
7136   // constant pool entry to get its address.
7137   const Value *OpVal = OpInfo.CallOperandVal;
7138   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7139       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7140     OpInfo.CallOperand = DAG.getConstantPool(
7141         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7142     return Chain;
7143   }
7144 
7145   // Otherwise, create a stack slot and emit a store to it before the asm.
7146   Type *Ty = OpVal->getType();
7147   auto &DL = DAG.getDataLayout();
7148   uint64_t TySize = DL.getTypeAllocSize(Ty);
7149   unsigned Align = DL.getPrefTypeAlignment(Ty);
7150   MachineFunction &MF = DAG.getMachineFunction();
7151   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7152   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7153   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7154                        MachinePointerInfo::getFixedStack(MF, SSFI));
7155   OpInfo.CallOperand = StackSlot;
7156 
7157   return Chain;
7158 }
7159 
7160 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7161 /// specified operand.  We prefer to assign virtual registers, to allow the
7162 /// register allocator to handle the assignment process.  However, if the asm
7163 /// uses features that we can't model on machineinstrs, we have SDISel do the
7164 /// allocation.  This produces generally horrible, but correct, code.
7165 ///
7166 ///   OpInfo describes the operand.
7167 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7168                                  const SDLoc &DL,
7169                                  SDISelAsmOperandInfo &OpInfo) {
7170   LLVMContext &Context = *DAG.getContext();
7171 
7172   MachineFunction &MF = DAG.getMachineFunction();
7173   SmallVector<unsigned, 4> Regs;
7174   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7175 
7176   // If this is a constraint for a single physreg, or a constraint for a
7177   // register class, find it.
7178   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7179       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
7180                                        OpInfo.ConstraintVT);
7181 
7182   unsigned NumRegs = 1;
7183   if (OpInfo.ConstraintVT != MVT::Other) {
7184     // If this is a FP input in an integer register (or visa versa) insert a bit
7185     // cast of the input value.  More generally, handle any case where the input
7186     // value disagrees with the register class we plan to stick this in.
7187     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
7188         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7189       // Try to convert to the first EVT that the reg class contains.  If the
7190       // types are identical size, use a bitcast to convert (e.g. two differing
7191       // vector types).
7192       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7193       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
7194         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7195                                          RegVT, OpInfo.CallOperand);
7196         OpInfo.ConstraintVT = RegVT;
7197       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7198         // If the input is a FP value and we want it in FP registers, do a
7199         // bitcast to the corresponding integer type.  This turns an f64 value
7200         // into i64, which can be passed with two i32 values on a 32-bit
7201         // machine.
7202         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7203         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7204                                          RegVT, OpInfo.CallOperand);
7205         OpInfo.ConstraintVT = RegVT;
7206       }
7207     }
7208 
7209     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7210   }
7211 
7212   MVT RegVT;
7213   EVT ValueVT = OpInfo.ConstraintVT;
7214 
7215   // If this is a constraint for a specific physical register, like {r17},
7216   // assign it now.
7217   if (unsigned AssignedReg = PhysReg.first) {
7218     const TargetRegisterClass *RC = PhysReg.second;
7219     if (OpInfo.ConstraintVT == MVT::Other)
7220       ValueVT = *TRI.legalclasstypes_begin(*RC);
7221 
7222     // Get the actual register value type.  This is important, because the user
7223     // may have asked for (e.g.) the AX register in i32 type.  We need to
7224     // remember that AX is actually i16 to get the right extension.
7225     RegVT = *TRI.legalclasstypes_begin(*RC);
7226 
7227     // This is a explicit reference to a physical register.
7228     Regs.push_back(AssignedReg);
7229 
7230     // If this is an expanded reference, add the rest of the regs to Regs.
7231     if (NumRegs != 1) {
7232       TargetRegisterClass::iterator I = RC->begin();
7233       for (; *I != AssignedReg; ++I)
7234         assert(I != RC->end() && "Didn't find reg!");
7235 
7236       // Already added the first reg.
7237       --NumRegs; ++I;
7238       for (; NumRegs; --NumRegs, ++I) {
7239         assert(I != RC->end() && "Ran out of registers to allocate!");
7240         Regs.push_back(*I);
7241       }
7242     }
7243 
7244     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7245     return;
7246   }
7247 
7248   // Otherwise, if this was a reference to an LLVM register class, create vregs
7249   // for this reference.
7250   if (const TargetRegisterClass *RC = PhysReg.second) {
7251     RegVT = *TRI.legalclasstypes_begin(*RC);
7252     if (OpInfo.ConstraintVT == MVT::Other)
7253       ValueVT = RegVT;
7254 
7255     // Create the appropriate number of virtual registers.
7256     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7257     for (; NumRegs; --NumRegs)
7258       Regs.push_back(RegInfo.createVirtualRegister(RC));
7259 
7260     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7261     return;
7262   }
7263 
7264   // Otherwise, we couldn't allocate enough registers for this.
7265 }
7266 
7267 static unsigned
7268 findMatchingInlineAsmOperand(unsigned OperandNo,
7269                              const std::vector<SDValue> &AsmNodeOperands) {
7270   // Scan until we find the definition we already emitted of this operand.
7271   unsigned CurOp = InlineAsm::Op_FirstOperand;
7272   for (; OperandNo; --OperandNo) {
7273     // Advance to the next operand.
7274     unsigned OpFlag =
7275         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7276     assert((InlineAsm::isRegDefKind(OpFlag) ||
7277             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7278             InlineAsm::isMemKind(OpFlag)) &&
7279            "Skipped past definitions?");
7280     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7281   }
7282   return CurOp;
7283 }
7284 
7285 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7286 /// \return true if it has succeeded, false otherwise
7287 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7288                               MVT RegVT, SelectionDAG &DAG) {
7289   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7290   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7291   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7292     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7293       Regs.push_back(RegInfo.createVirtualRegister(RC));
7294     else
7295       return false;
7296   }
7297   return true;
7298 }
7299 
7300 namespace {
7301 
7302 class ExtraFlags {
7303   unsigned Flags = 0;
7304 
7305 public:
7306   explicit ExtraFlags(ImmutableCallSite CS) {
7307     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7308     if (IA->hasSideEffects())
7309       Flags |= InlineAsm::Extra_HasSideEffects;
7310     if (IA->isAlignStack())
7311       Flags |= InlineAsm::Extra_IsAlignStack;
7312     if (CS.isConvergent())
7313       Flags |= InlineAsm::Extra_IsConvergent;
7314     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7315   }
7316 
7317   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7318     // Ideally, we would only check against memory constraints.  However, the
7319     // meaning of an Other constraint can be target-specific and we can't easily
7320     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7321     // for Other constraints as well.
7322     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7323         OpInfo.ConstraintType == TargetLowering::C_Other) {
7324       if (OpInfo.Type == InlineAsm::isInput)
7325         Flags |= InlineAsm::Extra_MayLoad;
7326       else if (OpInfo.Type == InlineAsm::isOutput)
7327         Flags |= InlineAsm::Extra_MayStore;
7328       else if (OpInfo.Type == InlineAsm::isClobber)
7329         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7330     }
7331   }
7332 
7333   unsigned get() const { return Flags; }
7334 };
7335 
7336 } // end anonymous namespace
7337 
7338 /// visitInlineAsm - Handle a call to an InlineAsm object.
7339 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7340   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7341 
7342   /// ConstraintOperands - Information about all of the constraints.
7343   SDISelAsmOperandInfoVector ConstraintOperands;
7344 
7345   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7346   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7347       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7348 
7349   bool hasMemory = false;
7350 
7351   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7352   ExtraFlags ExtraInfo(CS);
7353 
7354   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7355   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7356   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7357     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7358     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7359 
7360     MVT OpVT = MVT::Other;
7361 
7362     // Compute the value type for each operand.
7363     if (OpInfo.Type == InlineAsm::isInput ||
7364         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7365       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7366 
7367       // Process the call argument. BasicBlocks are labels, currently appearing
7368       // only in asm's.
7369       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7370         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7371       } else {
7372         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7373       }
7374 
7375       OpVT =
7376           OpInfo
7377               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7378               .getSimpleVT();
7379     }
7380 
7381     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7382       // The return value of the call is this value.  As such, there is no
7383       // corresponding argument.
7384       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7385       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7386         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7387                                       STy->getElementType(ResNo));
7388       } else {
7389         assert(ResNo == 0 && "Asm only has one result!");
7390         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7391       }
7392       ++ResNo;
7393     }
7394 
7395     OpInfo.ConstraintVT = OpVT;
7396 
7397     if (!hasMemory)
7398       hasMemory = OpInfo.hasMemory(TLI);
7399 
7400     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7401     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7402     auto TargetConstraint = TargetConstraints[i];
7403 
7404     // Compute the constraint code and ConstraintType to use.
7405     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7406 
7407     ExtraInfo.update(TargetConstraint);
7408   }
7409 
7410   SDValue Chain, Flag;
7411 
7412   // We won't need to flush pending loads if this asm doesn't touch
7413   // memory and is nonvolatile.
7414   if (hasMemory || IA->hasSideEffects())
7415     Chain = getRoot();
7416   else
7417     Chain = DAG.getRoot();
7418 
7419   // Second pass over the constraints: compute which constraint option to use
7420   // and assign registers to constraints that want a specific physreg.
7421   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7422     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7423 
7424     // If this is an output operand with a matching input operand, look up the
7425     // matching input. If their types mismatch, e.g. one is an integer, the
7426     // other is floating point, or their sizes are different, flag it as an
7427     // error.
7428     if (OpInfo.hasMatchingInput()) {
7429       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7430       patchMatchingInput(OpInfo, Input, DAG);
7431     }
7432 
7433     // Compute the constraint code and ConstraintType to use.
7434     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7435 
7436     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7437         OpInfo.Type == InlineAsm::isClobber)
7438       continue;
7439 
7440     // If this is a memory input, and if the operand is not indirect, do what we
7441     // need to provide an address for the memory input.
7442     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7443         !OpInfo.isIndirect) {
7444       assert((OpInfo.isMultipleAlternative ||
7445               (OpInfo.Type == InlineAsm::isInput)) &&
7446              "Can only indirectify direct input operands!");
7447 
7448       // Memory operands really want the address of the value.
7449       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7450 
7451       // There is no longer a Value* corresponding to this operand.
7452       OpInfo.CallOperandVal = nullptr;
7453 
7454       // It is now an indirect operand.
7455       OpInfo.isIndirect = true;
7456     }
7457 
7458     // If this constraint is for a specific register, allocate it before
7459     // anything else.
7460     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7461       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7462   }
7463 
7464   // Third pass - Loop over all of the operands, assigning virtual or physregs
7465   // to register class operands.
7466   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7467     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7468 
7469     // C_Register operands have already been allocated, Other/Memory don't need
7470     // to be.
7471     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7472       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7473   }
7474 
7475   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7476   std::vector<SDValue> AsmNodeOperands;
7477   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7478   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7479       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7480 
7481   // If we have a !srcloc metadata node associated with it, we want to attach
7482   // this to the ultimately generated inline asm machineinstr.  To do this, we
7483   // pass in the third operand as this (potentially null) inline asm MDNode.
7484   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7485   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7486 
7487   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7488   // bits as operand 3.
7489   AsmNodeOperands.push_back(DAG.getTargetConstant(
7490       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7491 
7492   // Loop over all of the inputs, copying the operand values into the
7493   // appropriate registers and processing the output regs.
7494   RegsForValue RetValRegs;
7495 
7496   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7497   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7498 
7499   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7500     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7501 
7502     switch (OpInfo.Type) {
7503     case InlineAsm::isOutput:
7504       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7505           OpInfo.ConstraintType != TargetLowering::C_Register) {
7506         // Memory output, or 'other' output (e.g. 'X' constraint).
7507         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7508 
7509         unsigned ConstraintID =
7510             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7511         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7512                "Failed to convert memory constraint code to constraint id.");
7513 
7514         // Add information to the INLINEASM node to know about this output.
7515         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7516         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7517         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7518                                                         MVT::i32));
7519         AsmNodeOperands.push_back(OpInfo.CallOperand);
7520         break;
7521       }
7522 
7523       // Otherwise, this is a register or register class output.
7524 
7525       // Copy the output from the appropriate register.  Find a register that
7526       // we can use.
7527       if (OpInfo.AssignedRegs.Regs.empty()) {
7528         emitInlineAsmError(
7529             CS, "couldn't allocate output register for constraint '" +
7530                     Twine(OpInfo.ConstraintCode) + "'");
7531         return;
7532       }
7533 
7534       // If this is an indirect operand, store through the pointer after the
7535       // asm.
7536       if (OpInfo.isIndirect) {
7537         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7538                                                       OpInfo.CallOperandVal));
7539       } else {
7540         // This is the result value of the call.
7541         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7542         // Concatenate this output onto the outputs list.
7543         RetValRegs.append(OpInfo.AssignedRegs);
7544       }
7545 
7546       // Add information to the INLINEASM node to know that this register is
7547       // set.
7548       OpInfo.AssignedRegs
7549           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7550                                     ? InlineAsm::Kind_RegDefEarlyClobber
7551                                     : InlineAsm::Kind_RegDef,
7552                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7553       break;
7554 
7555     case InlineAsm::isInput: {
7556       SDValue InOperandVal = OpInfo.CallOperand;
7557 
7558       if (OpInfo.isMatchingInputConstraint()) {
7559         // If this is required to match an output register we have already set,
7560         // just use its register.
7561         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7562                                                   AsmNodeOperands);
7563         unsigned OpFlag =
7564           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7565         if (InlineAsm::isRegDefKind(OpFlag) ||
7566             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7567           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7568           if (OpInfo.isIndirect) {
7569             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7570             emitInlineAsmError(CS, "inline asm not supported yet:"
7571                                    " don't know how to handle tied "
7572                                    "indirect register inputs");
7573             return;
7574           }
7575 
7576           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7577           SmallVector<unsigned, 4> Regs;
7578 
7579           if (!createVirtualRegs(Regs,
7580                                  InlineAsm::getNumOperandRegisters(OpFlag),
7581                                  RegVT, DAG)) {
7582             emitInlineAsmError(CS, "inline asm error: This value type register "
7583                                    "class is not natively supported!");
7584             return;
7585           }
7586 
7587           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7588 
7589           SDLoc dl = getCurSDLoc();
7590           // Use the produced MatchedRegs object to
7591           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7592                                     CS.getInstruction());
7593           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7594                                            true, OpInfo.getMatchedOperand(), dl,
7595                                            DAG, AsmNodeOperands);
7596           break;
7597         }
7598 
7599         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7600         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7601                "Unexpected number of operands");
7602         // Add information to the INLINEASM node to know about this input.
7603         // See InlineAsm.h isUseOperandTiedToDef.
7604         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7605         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7606                                                     OpInfo.getMatchedOperand());
7607         AsmNodeOperands.push_back(DAG.getTargetConstant(
7608             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7609         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7610         break;
7611       }
7612 
7613       // Treat indirect 'X' constraint as memory.
7614       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7615           OpInfo.isIndirect)
7616         OpInfo.ConstraintType = TargetLowering::C_Memory;
7617 
7618       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7619         std::vector<SDValue> Ops;
7620         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7621                                           Ops, DAG);
7622         if (Ops.empty()) {
7623           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7624                                      Twine(OpInfo.ConstraintCode) + "'");
7625           return;
7626         }
7627 
7628         // Add information to the INLINEASM node to know about this input.
7629         unsigned ResOpType =
7630           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7631         AsmNodeOperands.push_back(DAG.getTargetConstant(
7632             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7633         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7634         break;
7635       }
7636 
7637       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7638         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7639         assert(InOperandVal.getValueType() ==
7640                    TLI.getPointerTy(DAG.getDataLayout()) &&
7641                "Memory operands expect pointer values");
7642 
7643         unsigned ConstraintID =
7644             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7645         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7646                "Failed to convert memory constraint code to constraint id.");
7647 
7648         // Add information to the INLINEASM node to know about this input.
7649         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7650         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7651         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7652                                                         getCurSDLoc(),
7653                                                         MVT::i32));
7654         AsmNodeOperands.push_back(InOperandVal);
7655         break;
7656       }
7657 
7658       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7659               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7660              "Unknown constraint type!");
7661 
7662       // TODO: Support this.
7663       if (OpInfo.isIndirect) {
7664         emitInlineAsmError(
7665             CS, "Don't know how to handle indirect register inputs yet "
7666                 "for constraint '" +
7667                     Twine(OpInfo.ConstraintCode) + "'");
7668         return;
7669       }
7670 
7671       // Copy the input into the appropriate registers.
7672       if (OpInfo.AssignedRegs.Regs.empty()) {
7673         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7674                                    Twine(OpInfo.ConstraintCode) + "'");
7675         return;
7676       }
7677 
7678       SDLoc dl = getCurSDLoc();
7679 
7680       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7681                                         Chain, &Flag, CS.getInstruction());
7682 
7683       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7684                                                dl, DAG, AsmNodeOperands);
7685       break;
7686     }
7687     case InlineAsm::isClobber:
7688       // Add the clobbered value to the operand list, so that the register
7689       // allocator is aware that the physreg got clobbered.
7690       if (!OpInfo.AssignedRegs.Regs.empty())
7691         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7692                                                  false, 0, getCurSDLoc(), DAG,
7693                                                  AsmNodeOperands);
7694       break;
7695     }
7696   }
7697 
7698   // Finish up input operands.  Set the input chain and add the flag last.
7699   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7700   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7701 
7702   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7703                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7704   Flag = Chain.getValue(1);
7705 
7706   // If this asm returns a register value, copy the result from that register
7707   // and set it as the value of the call.
7708   if (!RetValRegs.Regs.empty()) {
7709     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7710                                              Chain, &Flag, CS.getInstruction());
7711 
7712     // FIXME: Why don't we do this for inline asms with MRVs?
7713     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7714       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7715 
7716       // If any of the results of the inline asm is a vector, it may have the
7717       // wrong width/num elts.  This can happen for register classes that can
7718       // contain multiple different value types.  The preg or vreg allocated may
7719       // not have the same VT as was expected.  Convert it to the right type
7720       // with bit_convert.
7721       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7722         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7723                           ResultType, Val);
7724 
7725       } else if (ResultType != Val.getValueType() &&
7726                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7727         // If a result value was tied to an input value, the computed result may
7728         // have a wider width than the expected result.  Extract the relevant
7729         // portion.
7730         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7731       }
7732 
7733       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7734     }
7735 
7736     setValue(CS.getInstruction(), Val);
7737     // Don't need to use this as a chain in this case.
7738     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7739       return;
7740   }
7741 
7742   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7743 
7744   // Process indirect outputs, first output all of the flagged copies out of
7745   // physregs.
7746   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7747     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7748     const Value *Ptr = IndirectStoresToEmit[i].second;
7749     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7750                                              Chain, &Flag, IA);
7751     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7752   }
7753 
7754   // Emit the non-flagged stores from the physregs.
7755   SmallVector<SDValue, 8> OutChains;
7756   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7757     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7758                                getValue(StoresToEmit[i].second),
7759                                MachinePointerInfo(StoresToEmit[i].second));
7760     OutChains.push_back(Val);
7761   }
7762 
7763   if (!OutChains.empty())
7764     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7765 
7766   DAG.setRoot(Chain);
7767 }
7768 
7769 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7770                                              const Twine &Message) {
7771   LLVMContext &Ctx = *DAG.getContext();
7772   Ctx.emitError(CS.getInstruction(), Message);
7773 
7774   // Make sure we leave the DAG in a valid state
7775   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7776   SmallVector<EVT, 1> ValueVTs;
7777   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7778 
7779   if (ValueVTs.empty())
7780     return;
7781 
7782   SmallVector<SDValue, 1> Ops;
7783   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
7784     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
7785 
7786   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
7787 }
7788 
7789 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7790   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7791                           MVT::Other, getRoot(),
7792                           getValue(I.getArgOperand(0)),
7793                           DAG.getSrcValue(I.getArgOperand(0))));
7794 }
7795 
7796 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7797   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7798   const DataLayout &DL = DAG.getDataLayout();
7799   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7800                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7801                            DAG.getSrcValue(I.getOperand(0)),
7802                            DL.getABITypeAlignment(I.getType()));
7803   setValue(&I, V);
7804   DAG.setRoot(V.getValue(1));
7805 }
7806 
7807 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7808   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7809                           MVT::Other, getRoot(),
7810                           getValue(I.getArgOperand(0)),
7811                           DAG.getSrcValue(I.getArgOperand(0))));
7812 }
7813 
7814 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7815   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7816                           MVT::Other, getRoot(),
7817                           getValue(I.getArgOperand(0)),
7818                           getValue(I.getArgOperand(1)),
7819                           DAG.getSrcValue(I.getArgOperand(0)),
7820                           DAG.getSrcValue(I.getArgOperand(1))));
7821 }
7822 
7823 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7824                                                     const Instruction &I,
7825                                                     SDValue Op) {
7826   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7827   if (!Range)
7828     return Op;
7829 
7830   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7831   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7832     return Op;
7833 
7834   APInt Lo = CR.getUnsignedMin();
7835   if (!Lo.isMinValue())
7836     return Op;
7837 
7838   APInt Hi = CR.getUnsignedMax();
7839   unsigned Bits = Hi.getActiveBits();
7840 
7841   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7842 
7843   SDLoc SL = getCurSDLoc();
7844 
7845   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7846                              DAG.getValueType(SmallVT));
7847   unsigned NumVals = Op.getNode()->getNumValues();
7848   if (NumVals == 1)
7849     return ZExt;
7850 
7851   SmallVector<SDValue, 4> Ops;
7852 
7853   Ops.push_back(ZExt);
7854   for (unsigned I = 1; I != NumVals; ++I)
7855     Ops.push_back(Op.getValue(I));
7856 
7857   return DAG.getMergeValues(Ops, SL);
7858 }
7859 
7860 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
7861 /// the call being lowered.
7862 ///
7863 /// This is a helper for lowering intrinsics that follow a target calling
7864 /// convention or require stack pointer adjustment. Only a subset of the
7865 /// intrinsic's operands need to participate in the calling convention.
7866 void SelectionDAGBuilder::populateCallLoweringInfo(
7867     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7868     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7869     bool IsPatchPoint) {
7870   TargetLowering::ArgListTy Args;
7871   Args.reserve(NumArgs);
7872 
7873   // Populate the argument list.
7874   // Attributes for args start at offset 1, after the return attribute.
7875   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7876        ArgI != ArgE; ++ArgI) {
7877     const Value *V = CS->getOperand(ArgI);
7878 
7879     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7880 
7881     TargetLowering::ArgListEntry Entry;
7882     Entry.Node = getValue(V);
7883     Entry.Ty = V->getType();
7884     Entry.setAttributes(&CS, ArgI);
7885     Args.push_back(Entry);
7886   }
7887 
7888   CLI.setDebugLoc(getCurSDLoc())
7889       .setChain(getRoot())
7890       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7891       .setDiscardResult(CS->use_empty())
7892       .setIsPatchPoint(IsPatchPoint);
7893 }
7894 
7895 /// Add a stack map intrinsic call's live variable operands to a stackmap
7896 /// or patchpoint target node's operand list.
7897 ///
7898 /// Constants are converted to TargetConstants purely as an optimization to
7899 /// avoid constant materialization and register allocation.
7900 ///
7901 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7902 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7903 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7904 /// address materialization and register allocation, but may also be required
7905 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7906 /// alloca in the entry block, then the runtime may assume that the alloca's
7907 /// StackMap location can be read immediately after compilation and that the
7908 /// location is valid at any point during execution (this is similar to the
7909 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7910 /// only available in a register, then the runtime would need to trap when
7911 /// execution reaches the StackMap in order to read the alloca's location.
7912 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7913                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7914                                 SelectionDAGBuilder &Builder) {
7915   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7916     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7917     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7918       Ops.push_back(
7919         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7920       Ops.push_back(
7921         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7922     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7923       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7924       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7925           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7926     } else
7927       Ops.push_back(OpVal);
7928   }
7929 }
7930 
7931 /// Lower llvm.experimental.stackmap directly to its target opcode.
7932 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7933   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7934   //                                  [live variables...])
7935 
7936   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7937 
7938   SDValue Chain, InFlag, Callee, NullPtr;
7939   SmallVector<SDValue, 32> Ops;
7940 
7941   SDLoc DL = getCurSDLoc();
7942   Callee = getValue(CI.getCalledValue());
7943   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7944 
7945   // The stackmap intrinsic only records the live variables (the arguemnts
7946   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7947   // intrinsic, this won't be lowered to a function call. This means we don't
7948   // have to worry about calling conventions and target specific lowering code.
7949   // Instead we perform the call lowering right here.
7950   //
7951   // chain, flag = CALLSEQ_START(chain, 0, 0)
7952   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7953   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7954   //
7955   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7956   InFlag = Chain.getValue(1);
7957 
7958   // Add the <id> and <numBytes> constants.
7959   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7960   Ops.push_back(DAG.getTargetConstant(
7961                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7962   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7963   Ops.push_back(DAG.getTargetConstant(
7964                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7965                   MVT::i32));
7966 
7967   // Push live variables for the stack map.
7968   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7969 
7970   // We are not pushing any register mask info here on the operands list,
7971   // because the stackmap doesn't clobber anything.
7972 
7973   // Push the chain and the glue flag.
7974   Ops.push_back(Chain);
7975   Ops.push_back(InFlag);
7976 
7977   // Create the STACKMAP node.
7978   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7979   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7980   Chain = SDValue(SM, 0);
7981   InFlag = Chain.getValue(1);
7982 
7983   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7984 
7985   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7986 
7987   // Set the root to the target-lowered call chain.
7988   DAG.setRoot(Chain);
7989 
7990   // Inform the Frame Information that we have a stackmap in this function.
7991   FuncInfo.MF->getFrameInfo().setHasStackMap();
7992 }
7993 
7994 /// Lower llvm.experimental.patchpoint directly to its target opcode.
7995 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7996                                           const BasicBlock *EHPadBB) {
7997   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7998   //                                                 i32 <numBytes>,
7999   //                                                 i8* <target>,
8000   //                                                 i32 <numArgs>,
8001   //                                                 [Args...],
8002   //                                                 [live variables...])
8003 
8004   CallingConv::ID CC = CS.getCallingConv();
8005   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8006   bool HasDef = !CS->getType()->isVoidTy();
8007   SDLoc dl = getCurSDLoc();
8008   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8009 
8010   // Handle immediate and symbolic callees.
8011   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8012     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8013                                    /*isTarget=*/true);
8014   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8015     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8016                                          SDLoc(SymbolicCallee),
8017                                          SymbolicCallee->getValueType(0));
8018 
8019   // Get the real number of arguments participating in the call <numArgs>
8020   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8021   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8022 
8023   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8024   // Intrinsics include all meta-operands up to but not including CC.
8025   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8026   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8027          "Not enough arguments provided to the patchpoint intrinsic");
8028 
8029   // For AnyRegCC the arguments are lowered later on manually.
8030   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8031   Type *ReturnTy =
8032     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8033 
8034   TargetLowering::CallLoweringInfo CLI(DAG);
8035   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8036                            true);
8037   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8038 
8039   SDNode *CallEnd = Result.second.getNode();
8040   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8041     CallEnd = CallEnd->getOperand(0).getNode();
8042 
8043   /// Get a call instruction from the call sequence chain.
8044   /// Tail calls are not allowed.
8045   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8046          "Expected a callseq node.");
8047   SDNode *Call = CallEnd->getOperand(0).getNode();
8048   bool HasGlue = Call->getGluedNode();
8049 
8050   // Replace the target specific call node with the patchable intrinsic.
8051   SmallVector<SDValue, 8> Ops;
8052 
8053   // Add the <id> and <numBytes> constants.
8054   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8055   Ops.push_back(DAG.getTargetConstant(
8056                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8057   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8058   Ops.push_back(DAG.getTargetConstant(
8059                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8060                   MVT::i32));
8061 
8062   // Add the callee.
8063   Ops.push_back(Callee);
8064 
8065   // Adjust <numArgs> to account for any arguments that have been passed on the
8066   // stack instead.
8067   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8068   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8069   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8070   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8071 
8072   // Add the calling convention
8073   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8074 
8075   // Add the arguments we omitted previously. The register allocator should
8076   // place these in any free register.
8077   if (IsAnyRegCC)
8078     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8079       Ops.push_back(getValue(CS.getArgument(i)));
8080 
8081   // Push the arguments from the call instruction up to the register mask.
8082   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8083   Ops.append(Call->op_begin() + 2, e);
8084 
8085   // Push live variables for the stack map.
8086   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8087 
8088   // Push the register mask info.
8089   if (HasGlue)
8090     Ops.push_back(*(Call->op_end()-2));
8091   else
8092     Ops.push_back(*(Call->op_end()-1));
8093 
8094   // Push the chain (this is originally the first operand of the call, but
8095   // becomes now the last or second to last operand).
8096   Ops.push_back(*(Call->op_begin()));
8097 
8098   // Push the glue flag (last operand).
8099   if (HasGlue)
8100     Ops.push_back(*(Call->op_end()-1));
8101 
8102   SDVTList NodeTys;
8103   if (IsAnyRegCC && HasDef) {
8104     // Create the return types based on the intrinsic definition
8105     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8106     SmallVector<EVT, 3> ValueVTs;
8107     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8108     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8109 
8110     // There is always a chain and a glue type at the end
8111     ValueVTs.push_back(MVT::Other);
8112     ValueVTs.push_back(MVT::Glue);
8113     NodeTys = DAG.getVTList(ValueVTs);
8114   } else
8115     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8116 
8117   // Replace the target specific call node with a PATCHPOINT node.
8118   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8119                                          dl, NodeTys, Ops);
8120 
8121   // Update the NodeMap.
8122   if (HasDef) {
8123     if (IsAnyRegCC)
8124       setValue(CS.getInstruction(), SDValue(MN, 0));
8125     else
8126       setValue(CS.getInstruction(), Result.first);
8127   }
8128 
8129   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8130   // call sequence. Furthermore the location of the chain and glue can change
8131   // when the AnyReg calling convention is used and the intrinsic returns a
8132   // value.
8133   if (IsAnyRegCC && HasDef) {
8134     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8135     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8136     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8137   } else
8138     DAG.ReplaceAllUsesWith(Call, MN);
8139   DAG.DeleteNode(Call);
8140 
8141   // Inform the Frame Information that we have a patchpoint in this function.
8142   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8143 }
8144 
8145 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8146                                             unsigned Intrinsic) {
8147   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8148   SDValue Op1 = getValue(I.getArgOperand(0));
8149   SDValue Op2;
8150   if (I.getNumArgOperands() > 1)
8151     Op2 = getValue(I.getArgOperand(1));
8152   SDLoc dl = getCurSDLoc();
8153   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8154   SDValue Res;
8155   FastMathFlags FMF;
8156   if (isa<FPMathOperator>(I))
8157     FMF = I.getFastMathFlags();
8158 
8159   switch (Intrinsic) {
8160   case Intrinsic::experimental_vector_reduce_fadd:
8161     if (FMF.isFast())
8162       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8163     else
8164       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8165     break;
8166   case Intrinsic::experimental_vector_reduce_fmul:
8167     if (FMF.isFast())
8168       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8169     else
8170       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8171     break;
8172   case Intrinsic::experimental_vector_reduce_add:
8173     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8174     break;
8175   case Intrinsic::experimental_vector_reduce_mul:
8176     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8177     break;
8178   case Intrinsic::experimental_vector_reduce_and:
8179     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8180     break;
8181   case Intrinsic::experimental_vector_reduce_or:
8182     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8183     break;
8184   case Intrinsic::experimental_vector_reduce_xor:
8185     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8186     break;
8187   case Intrinsic::experimental_vector_reduce_smax:
8188     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8189     break;
8190   case Intrinsic::experimental_vector_reduce_smin:
8191     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8192     break;
8193   case Intrinsic::experimental_vector_reduce_umax:
8194     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8195     break;
8196   case Intrinsic::experimental_vector_reduce_umin:
8197     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8198     break;
8199   case Intrinsic::experimental_vector_reduce_fmax:
8200     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8201     break;
8202   case Intrinsic::experimental_vector_reduce_fmin:
8203     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8204     break;
8205   default:
8206     llvm_unreachable("Unhandled vector reduce intrinsic");
8207   }
8208   setValue(&I, Res);
8209 }
8210 
8211 /// Returns an AttributeList representing the attributes applied to the return
8212 /// value of the given call.
8213 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8214   SmallVector<Attribute::AttrKind, 2> Attrs;
8215   if (CLI.RetSExt)
8216     Attrs.push_back(Attribute::SExt);
8217   if (CLI.RetZExt)
8218     Attrs.push_back(Attribute::ZExt);
8219   if (CLI.IsInReg)
8220     Attrs.push_back(Attribute::InReg);
8221 
8222   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8223                             Attrs);
8224 }
8225 
8226 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8227 /// implementation, which just calls LowerCall.
8228 /// FIXME: When all targets are
8229 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8230 std::pair<SDValue, SDValue>
8231 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8232   // Handle the incoming return values from the call.
8233   CLI.Ins.clear();
8234   Type *OrigRetTy = CLI.RetTy;
8235   SmallVector<EVT, 4> RetTys;
8236   SmallVector<uint64_t, 4> Offsets;
8237   auto &DL = CLI.DAG.getDataLayout();
8238   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8239 
8240   if (CLI.IsPostTypeLegalization) {
8241     // If we are lowering a libcall after legalization, split the return type.
8242     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8243     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8244     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8245       EVT RetVT = OldRetTys[i];
8246       uint64_t Offset = OldOffsets[i];
8247       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8248       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8249       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8250       RetTys.append(NumRegs, RegisterVT);
8251       for (unsigned j = 0; j != NumRegs; ++j)
8252         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8253     }
8254   }
8255 
8256   SmallVector<ISD::OutputArg, 4> Outs;
8257   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8258 
8259   bool CanLowerReturn =
8260       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8261                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8262 
8263   SDValue DemoteStackSlot;
8264   int DemoteStackIdx = -100;
8265   if (!CanLowerReturn) {
8266     // FIXME: equivalent assert?
8267     // assert(!CS.hasInAllocaArgument() &&
8268     //        "sret demotion is incompatible with inalloca");
8269     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8270     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8271     MachineFunction &MF = CLI.DAG.getMachineFunction();
8272     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8273     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
8274 
8275     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8276     ArgListEntry Entry;
8277     Entry.Node = DemoteStackSlot;
8278     Entry.Ty = StackSlotPtrType;
8279     Entry.IsSExt = false;
8280     Entry.IsZExt = false;
8281     Entry.IsInReg = false;
8282     Entry.IsSRet = true;
8283     Entry.IsNest = false;
8284     Entry.IsByVal = false;
8285     Entry.IsReturned = false;
8286     Entry.IsSwiftSelf = false;
8287     Entry.IsSwiftError = false;
8288     Entry.Alignment = Align;
8289     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8290     CLI.NumFixedArgs += 1;
8291     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8292 
8293     // sret demotion isn't compatible with tail-calls, since the sret argument
8294     // points into the callers stack frame.
8295     CLI.IsTailCall = false;
8296   } else {
8297     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8298       EVT VT = RetTys[I];
8299       MVT RegisterVT =
8300           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8301       unsigned NumRegs =
8302           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8303       for (unsigned i = 0; i != NumRegs; ++i) {
8304         ISD::InputArg MyFlags;
8305         MyFlags.VT = RegisterVT;
8306         MyFlags.ArgVT = VT;
8307         MyFlags.Used = CLI.IsReturnValueUsed;
8308         if (CLI.RetSExt)
8309           MyFlags.Flags.setSExt();
8310         if (CLI.RetZExt)
8311           MyFlags.Flags.setZExt();
8312         if (CLI.IsInReg)
8313           MyFlags.Flags.setInReg();
8314         CLI.Ins.push_back(MyFlags);
8315       }
8316     }
8317   }
8318 
8319   // We push in swifterror return as the last element of CLI.Ins.
8320   ArgListTy &Args = CLI.getArgs();
8321   if (supportSwiftError()) {
8322     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8323       if (Args[i].IsSwiftError) {
8324         ISD::InputArg MyFlags;
8325         MyFlags.VT = getPointerTy(DL);
8326         MyFlags.ArgVT = EVT(getPointerTy(DL));
8327         MyFlags.Flags.setSwiftError();
8328         CLI.Ins.push_back(MyFlags);
8329       }
8330     }
8331   }
8332 
8333   // Handle all of the outgoing arguments.
8334   CLI.Outs.clear();
8335   CLI.OutVals.clear();
8336   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8337     SmallVector<EVT, 4> ValueVTs;
8338     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8339     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8340     Type *FinalType = Args[i].Ty;
8341     if (Args[i].IsByVal)
8342       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8343     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8344         FinalType, CLI.CallConv, CLI.IsVarArg);
8345     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8346          ++Value) {
8347       EVT VT = ValueVTs[Value];
8348       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8349       SDValue Op = SDValue(Args[i].Node.getNode(),
8350                            Args[i].Node.getResNo() + Value);
8351       ISD::ArgFlagsTy Flags;
8352 
8353       // Certain targets (such as MIPS), may have a different ABI alignment
8354       // for a type depending on the context. Give the target a chance to
8355       // specify the alignment it wants.
8356       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8357 
8358       if (Args[i].IsZExt)
8359         Flags.setZExt();
8360       if (Args[i].IsSExt)
8361         Flags.setSExt();
8362       if (Args[i].IsInReg) {
8363         // If we are using vectorcall calling convention, a structure that is
8364         // passed InReg - is surely an HVA
8365         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8366             isa<StructType>(FinalType)) {
8367           // The first value of a structure is marked
8368           if (0 == Value)
8369             Flags.setHvaStart();
8370           Flags.setHva();
8371         }
8372         // Set InReg Flag
8373         Flags.setInReg();
8374       }
8375       if (Args[i].IsSRet)
8376         Flags.setSRet();
8377       if (Args[i].IsSwiftSelf)
8378         Flags.setSwiftSelf();
8379       if (Args[i].IsSwiftError)
8380         Flags.setSwiftError();
8381       if (Args[i].IsByVal)
8382         Flags.setByVal();
8383       if (Args[i].IsInAlloca) {
8384         Flags.setInAlloca();
8385         // Set the byval flag for CCAssignFn callbacks that don't know about
8386         // inalloca.  This way we can know how many bytes we should've allocated
8387         // and how many bytes a callee cleanup function will pop.  If we port
8388         // inalloca to more targets, we'll have to add custom inalloca handling
8389         // in the various CC lowering callbacks.
8390         Flags.setByVal();
8391       }
8392       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8393         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8394         Type *ElementTy = Ty->getElementType();
8395         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8396         // For ByVal, alignment should come from FE.  BE will guess if this
8397         // info is not there but there are cases it cannot get right.
8398         unsigned FrameAlign;
8399         if (Args[i].Alignment)
8400           FrameAlign = Args[i].Alignment;
8401         else
8402           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8403         Flags.setByValAlign(FrameAlign);
8404       }
8405       if (Args[i].IsNest)
8406         Flags.setNest();
8407       if (NeedsRegBlock)
8408         Flags.setInConsecutiveRegs();
8409       Flags.setOrigAlign(OriginalAlignment);
8410 
8411       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8412       unsigned NumParts =
8413           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8414       SmallVector<SDValue, 4> Parts(NumParts);
8415       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8416 
8417       if (Args[i].IsSExt)
8418         ExtendKind = ISD::SIGN_EXTEND;
8419       else if (Args[i].IsZExt)
8420         ExtendKind = ISD::ZERO_EXTEND;
8421 
8422       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8423       // for now.
8424       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8425           CanLowerReturn) {
8426         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8427                "unexpected use of 'returned'");
8428         // Before passing 'returned' to the target lowering code, ensure that
8429         // either the register MVT and the actual EVT are the same size or that
8430         // the return value and argument are extended in the same way; in these
8431         // cases it's safe to pass the argument register value unchanged as the
8432         // return register value (although it's at the target's option whether
8433         // to do so)
8434         // TODO: allow code generation to take advantage of partially preserved
8435         // registers rather than clobbering the entire register when the
8436         // parameter extension method is not compatible with the return
8437         // extension method
8438         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8439             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8440              CLI.RetZExt == Args[i].IsZExt))
8441           Flags.setReturned();
8442       }
8443 
8444       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8445                      CLI.CS.getInstruction(), ExtendKind, true);
8446 
8447       for (unsigned j = 0; j != NumParts; ++j) {
8448         // if it isn't first piece, alignment must be 1
8449         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8450                                i < CLI.NumFixedArgs,
8451                                i, j*Parts[j].getValueType().getStoreSize());
8452         if (NumParts > 1 && j == 0)
8453           MyFlags.Flags.setSplit();
8454         else if (j != 0) {
8455           MyFlags.Flags.setOrigAlign(1);
8456           if (j == NumParts - 1)
8457             MyFlags.Flags.setSplitEnd();
8458         }
8459 
8460         CLI.Outs.push_back(MyFlags);
8461         CLI.OutVals.push_back(Parts[j]);
8462       }
8463 
8464       if (NeedsRegBlock && Value == NumValues - 1)
8465         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8466     }
8467   }
8468 
8469   SmallVector<SDValue, 4> InVals;
8470   CLI.Chain = LowerCall(CLI, InVals);
8471 
8472   // Update CLI.InVals to use outside of this function.
8473   CLI.InVals = InVals;
8474 
8475   // Verify that the target's LowerCall behaved as expected.
8476   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8477          "LowerCall didn't return a valid chain!");
8478   assert((!CLI.IsTailCall || InVals.empty()) &&
8479          "LowerCall emitted a return value for a tail call!");
8480   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8481          "LowerCall didn't emit the correct number of values!");
8482 
8483   // For a tail call, the return value is merely live-out and there aren't
8484   // any nodes in the DAG representing it. Return a special value to
8485   // indicate that a tail call has been emitted and no more Instructions
8486   // should be processed in the current block.
8487   if (CLI.IsTailCall) {
8488     CLI.DAG.setRoot(CLI.Chain);
8489     return std::make_pair(SDValue(), SDValue());
8490   }
8491 
8492 #ifndef NDEBUG
8493   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8494     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8495     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8496            "LowerCall emitted a value with the wrong type!");
8497   }
8498 #endif
8499 
8500   SmallVector<SDValue, 4> ReturnValues;
8501   if (!CanLowerReturn) {
8502     // The instruction result is the result of loading from the
8503     // hidden sret parameter.
8504     SmallVector<EVT, 1> PVTs;
8505     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8506 
8507     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8508     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8509     EVT PtrVT = PVTs[0];
8510 
8511     unsigned NumValues = RetTys.size();
8512     ReturnValues.resize(NumValues);
8513     SmallVector<SDValue, 4> Chains(NumValues);
8514 
8515     // An aggregate return value cannot wrap around the address space, so
8516     // offsets to its parts don't wrap either.
8517     SDNodeFlags Flags;
8518     Flags.setNoUnsignedWrap(true);
8519 
8520     for (unsigned i = 0; i < NumValues; ++i) {
8521       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8522                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8523                                                         PtrVT), Flags);
8524       SDValue L = CLI.DAG.getLoad(
8525           RetTys[i], CLI.DL, CLI.Chain, Add,
8526           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8527                                             DemoteStackIdx, Offsets[i]),
8528           /* Alignment = */ 1);
8529       ReturnValues[i] = L;
8530       Chains[i] = L.getValue(1);
8531     }
8532 
8533     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8534   } else {
8535     // Collect the legal value parts into potentially illegal values
8536     // that correspond to the original function's return values.
8537     Optional<ISD::NodeType> AssertOp;
8538     if (CLI.RetSExt)
8539       AssertOp = ISD::AssertSext;
8540     else if (CLI.RetZExt)
8541       AssertOp = ISD::AssertZext;
8542     unsigned CurReg = 0;
8543     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8544       EVT VT = RetTys[I];
8545       MVT RegisterVT =
8546           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8547       unsigned NumRegs =
8548           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8549 
8550       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8551                                               NumRegs, RegisterVT, VT, nullptr,
8552                                               AssertOp, true));
8553       CurReg += NumRegs;
8554     }
8555 
8556     // For a function returning void, there is no return value. We can't create
8557     // such a node, so we just return a null return value in that case. In
8558     // that case, nothing will actually look at the value.
8559     if (ReturnValues.empty())
8560       return std::make_pair(SDValue(), CLI.Chain);
8561   }
8562 
8563   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8564                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8565   return std::make_pair(Res, CLI.Chain);
8566 }
8567 
8568 void TargetLowering::LowerOperationWrapper(SDNode *N,
8569                                            SmallVectorImpl<SDValue> &Results,
8570                                            SelectionDAG &DAG) const {
8571   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8572     Results.push_back(Res);
8573 }
8574 
8575 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8576   llvm_unreachable("LowerOperation not implemented for this target!");
8577 }
8578 
8579 void
8580 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8581   SDValue Op = getNonRegisterValue(V);
8582   assert((Op.getOpcode() != ISD::CopyFromReg ||
8583           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8584          "Copy from a reg to the same reg!");
8585   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8586 
8587   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8588   // If this is an InlineAsm we have to match the registers required, not the
8589   // notional registers required by the type.
8590 
8591   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8592                    V->getType(), isABIRegCopy(V));
8593   SDValue Chain = DAG.getEntryNode();
8594 
8595   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8596                               FuncInfo.PreferredExtendType.end())
8597                                  ? ISD::ANY_EXTEND
8598                                  : FuncInfo.PreferredExtendType[V];
8599   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8600   PendingExports.push_back(Chain);
8601 }
8602 
8603 #include "llvm/CodeGen/SelectionDAGISel.h"
8604 
8605 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8606 /// entry block, return true.  This includes arguments used by switches, since
8607 /// the switch may expand into multiple basic blocks.
8608 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8609   // With FastISel active, we may be splitting blocks, so force creation
8610   // of virtual registers for all non-dead arguments.
8611   if (FastISel)
8612     return A->use_empty();
8613 
8614   const BasicBlock &Entry = A->getParent()->front();
8615   for (const User *U : A->users())
8616     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8617       return false;  // Use not in entry block.
8618 
8619   return true;
8620 }
8621 
8622 using ArgCopyElisionMapTy =
8623     DenseMap<const Argument *,
8624              std::pair<const AllocaInst *, const StoreInst *>>;
8625 
8626 /// Scan the entry block of the function in FuncInfo for arguments that look
8627 /// like copies into a local alloca. Record any copied arguments in
8628 /// ArgCopyElisionCandidates.
8629 static void
8630 findArgumentCopyElisionCandidates(const DataLayout &DL,
8631                                   FunctionLoweringInfo *FuncInfo,
8632                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8633   // Record the state of every static alloca used in the entry block. Argument
8634   // allocas are all used in the entry block, so we need approximately as many
8635   // entries as we have arguments.
8636   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8637   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8638   unsigned NumArgs = FuncInfo->Fn->arg_size();
8639   StaticAllocas.reserve(NumArgs * 2);
8640 
8641   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8642     if (!V)
8643       return nullptr;
8644     V = V->stripPointerCasts();
8645     const auto *AI = dyn_cast<AllocaInst>(V);
8646     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8647       return nullptr;
8648     auto Iter = StaticAllocas.insert({AI, Unknown});
8649     return &Iter.first->second;
8650   };
8651 
8652   // Look for stores of arguments to static allocas. Look through bitcasts and
8653   // GEPs to handle type coercions, as long as the alloca is fully initialized
8654   // by the store. Any non-store use of an alloca escapes it and any subsequent
8655   // unanalyzed store might write it.
8656   // FIXME: Handle structs initialized with multiple stores.
8657   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8658     // Look for stores, and handle non-store uses conservatively.
8659     const auto *SI = dyn_cast<StoreInst>(&I);
8660     if (!SI) {
8661       // We will look through cast uses, so ignore them completely.
8662       if (I.isCast())
8663         continue;
8664       // Ignore debug info intrinsics, they don't escape or store to allocas.
8665       if (isa<DbgInfoIntrinsic>(I))
8666         continue;
8667       // This is an unknown instruction. Assume it escapes or writes to all
8668       // static alloca operands.
8669       for (const Use &U : I.operands()) {
8670         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8671           *Info = StaticAllocaInfo::Clobbered;
8672       }
8673       continue;
8674     }
8675 
8676     // If the stored value is a static alloca, mark it as escaped.
8677     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8678       *Info = StaticAllocaInfo::Clobbered;
8679 
8680     // Check if the destination is a static alloca.
8681     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8682     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8683     if (!Info)
8684       continue;
8685     const AllocaInst *AI = cast<AllocaInst>(Dst);
8686 
8687     // Skip allocas that have been initialized or clobbered.
8688     if (*Info != StaticAllocaInfo::Unknown)
8689       continue;
8690 
8691     // Check if the stored value is an argument, and that this store fully
8692     // initializes the alloca. Don't elide copies from the same argument twice.
8693     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8694     const auto *Arg = dyn_cast<Argument>(Val);
8695     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8696         Arg->getType()->isEmptyTy() ||
8697         DL.getTypeStoreSize(Arg->getType()) !=
8698             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8699         ArgCopyElisionCandidates.count(Arg)) {
8700       *Info = StaticAllocaInfo::Clobbered;
8701       continue;
8702     }
8703 
8704     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8705                       << '\n');
8706 
8707     // Mark this alloca and store for argument copy elision.
8708     *Info = StaticAllocaInfo::Elidable;
8709     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8710 
8711     // Stop scanning if we've seen all arguments. This will happen early in -O0
8712     // builds, which is useful, because -O0 builds have large entry blocks and
8713     // many allocas.
8714     if (ArgCopyElisionCandidates.size() == NumArgs)
8715       break;
8716   }
8717 }
8718 
8719 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8720 /// ArgVal is a load from a suitable fixed stack object.
8721 static void tryToElideArgumentCopy(
8722     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8723     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8724     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8725     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8726     SDValue ArgVal, bool &ArgHasUses) {
8727   // Check if this is a load from a fixed stack object.
8728   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8729   if (!LNode)
8730     return;
8731   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8732   if (!FINode)
8733     return;
8734 
8735   // Check that the fixed stack object is the right size and alignment.
8736   // Look at the alignment that the user wrote on the alloca instead of looking
8737   // at the stack object.
8738   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8739   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8740   const AllocaInst *AI = ArgCopyIter->second.first;
8741   int FixedIndex = FINode->getIndex();
8742   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8743   int OldIndex = AllocaIndex;
8744   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8745   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8746     LLVM_DEBUG(
8747         dbgs() << "  argument copy elision failed due to bad fixed stack "
8748                   "object size\n");
8749     return;
8750   }
8751   unsigned RequiredAlignment = AI->getAlignment();
8752   if (!RequiredAlignment) {
8753     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8754         AI->getAllocatedType());
8755   }
8756   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8757     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8758                          "greater than stack argument alignment ("
8759                       << RequiredAlignment << " vs "
8760                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8761     return;
8762   }
8763 
8764   // Perform the elision. Delete the old stack object and replace its only use
8765   // in the variable info map. Mark the stack object as mutable.
8766   LLVM_DEBUG({
8767     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8768            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8769            << '\n';
8770   });
8771   MFI.RemoveStackObject(OldIndex);
8772   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8773   AllocaIndex = FixedIndex;
8774   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8775   Chains.push_back(ArgVal.getValue(1));
8776 
8777   // Avoid emitting code for the store implementing the copy.
8778   const StoreInst *SI = ArgCopyIter->second.second;
8779   ElidedArgCopyInstrs.insert(SI);
8780 
8781   // Check for uses of the argument again so that we can avoid exporting ArgVal
8782   // if it is't used by anything other than the store.
8783   for (const Value *U : Arg.users()) {
8784     if (U != SI) {
8785       ArgHasUses = true;
8786       break;
8787     }
8788   }
8789 }
8790 
8791 void SelectionDAGISel::LowerArguments(const Function &F) {
8792   SelectionDAG &DAG = SDB->DAG;
8793   SDLoc dl = SDB->getCurSDLoc();
8794   const DataLayout &DL = DAG.getDataLayout();
8795   SmallVector<ISD::InputArg, 16> Ins;
8796 
8797   if (!FuncInfo->CanLowerReturn) {
8798     // Put in an sret pointer parameter before all the other parameters.
8799     SmallVector<EVT, 1> ValueVTs;
8800     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8801                     F.getReturnType()->getPointerTo(
8802                         DAG.getDataLayout().getAllocaAddrSpace()),
8803                     ValueVTs);
8804 
8805     // NOTE: Assuming that a pointer will never break down to more than one VT
8806     // or one register.
8807     ISD::ArgFlagsTy Flags;
8808     Flags.setSRet();
8809     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8810     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8811                          ISD::InputArg::NoArgIndex, 0);
8812     Ins.push_back(RetArg);
8813   }
8814 
8815   // Look for stores of arguments to static allocas. Mark such arguments with a
8816   // flag to ask the target to give us the memory location of that argument if
8817   // available.
8818   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8819   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8820 
8821   // Set up the incoming argument description vector.
8822   for (const Argument &Arg : F.args()) {
8823     unsigned ArgNo = Arg.getArgNo();
8824     SmallVector<EVT, 4> ValueVTs;
8825     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8826     bool isArgValueUsed = !Arg.use_empty();
8827     unsigned PartBase = 0;
8828     Type *FinalType = Arg.getType();
8829     if (Arg.hasAttribute(Attribute::ByVal))
8830       FinalType = cast<PointerType>(FinalType)->getElementType();
8831     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8832         FinalType, F.getCallingConv(), F.isVarArg());
8833     for (unsigned Value = 0, NumValues = ValueVTs.size();
8834          Value != NumValues; ++Value) {
8835       EVT VT = ValueVTs[Value];
8836       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8837       ISD::ArgFlagsTy Flags;
8838 
8839       // Certain targets (such as MIPS), may have a different ABI alignment
8840       // for a type depending on the context. Give the target a chance to
8841       // specify the alignment it wants.
8842       unsigned OriginalAlignment =
8843           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8844 
8845       if (Arg.hasAttribute(Attribute::ZExt))
8846         Flags.setZExt();
8847       if (Arg.hasAttribute(Attribute::SExt))
8848         Flags.setSExt();
8849       if (Arg.hasAttribute(Attribute::InReg)) {
8850         // If we are using vectorcall calling convention, a structure that is
8851         // passed InReg - is surely an HVA
8852         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8853             isa<StructType>(Arg.getType())) {
8854           // The first value of a structure is marked
8855           if (0 == Value)
8856             Flags.setHvaStart();
8857           Flags.setHva();
8858         }
8859         // Set InReg Flag
8860         Flags.setInReg();
8861       }
8862       if (Arg.hasAttribute(Attribute::StructRet))
8863         Flags.setSRet();
8864       if (Arg.hasAttribute(Attribute::SwiftSelf))
8865         Flags.setSwiftSelf();
8866       if (Arg.hasAttribute(Attribute::SwiftError))
8867         Flags.setSwiftError();
8868       if (Arg.hasAttribute(Attribute::ByVal))
8869         Flags.setByVal();
8870       if (Arg.hasAttribute(Attribute::InAlloca)) {
8871         Flags.setInAlloca();
8872         // Set the byval flag for CCAssignFn callbacks that don't know about
8873         // inalloca.  This way we can know how many bytes we should've allocated
8874         // and how many bytes a callee cleanup function will pop.  If we port
8875         // inalloca to more targets, we'll have to add custom inalloca handling
8876         // in the various CC lowering callbacks.
8877         Flags.setByVal();
8878       }
8879       if (F.getCallingConv() == CallingConv::X86_INTR) {
8880         // IA Interrupt passes frame (1st parameter) by value in the stack.
8881         if (ArgNo == 0)
8882           Flags.setByVal();
8883       }
8884       if (Flags.isByVal() || Flags.isInAlloca()) {
8885         PointerType *Ty = cast<PointerType>(Arg.getType());
8886         Type *ElementTy = Ty->getElementType();
8887         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8888         // For ByVal, alignment should be passed from FE.  BE will guess if
8889         // this info is not there but there are cases it cannot get right.
8890         unsigned FrameAlign;
8891         if (Arg.getParamAlignment())
8892           FrameAlign = Arg.getParamAlignment();
8893         else
8894           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8895         Flags.setByValAlign(FrameAlign);
8896       }
8897       if (Arg.hasAttribute(Attribute::Nest))
8898         Flags.setNest();
8899       if (NeedsRegBlock)
8900         Flags.setInConsecutiveRegs();
8901       Flags.setOrigAlign(OriginalAlignment);
8902       if (ArgCopyElisionCandidates.count(&Arg))
8903         Flags.setCopyElisionCandidate();
8904 
8905       MVT RegisterVT =
8906           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8907       unsigned NumRegs =
8908           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8909       for (unsigned i = 0; i != NumRegs; ++i) {
8910         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8911                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8912         if (NumRegs > 1 && i == 0)
8913           MyFlags.Flags.setSplit();
8914         // if it isn't first piece, alignment must be 1
8915         else if (i > 0) {
8916           MyFlags.Flags.setOrigAlign(1);
8917           if (i == NumRegs - 1)
8918             MyFlags.Flags.setSplitEnd();
8919         }
8920         Ins.push_back(MyFlags);
8921       }
8922       if (NeedsRegBlock && Value == NumValues - 1)
8923         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8924       PartBase += VT.getStoreSize();
8925     }
8926   }
8927 
8928   // Call the target to set up the argument values.
8929   SmallVector<SDValue, 8> InVals;
8930   SDValue NewRoot = TLI->LowerFormalArguments(
8931       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8932 
8933   // Verify that the target's LowerFormalArguments behaved as expected.
8934   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8935          "LowerFormalArguments didn't return a valid chain!");
8936   assert(InVals.size() == Ins.size() &&
8937          "LowerFormalArguments didn't emit the correct number of values!");
8938   LLVM_DEBUG({
8939     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8940       assert(InVals[i].getNode() &&
8941              "LowerFormalArguments emitted a null value!");
8942       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8943              "LowerFormalArguments emitted a value with the wrong type!");
8944     }
8945   });
8946 
8947   // Update the DAG with the new chain value resulting from argument lowering.
8948   DAG.setRoot(NewRoot);
8949 
8950   // Set up the argument values.
8951   unsigned i = 0;
8952   if (!FuncInfo->CanLowerReturn) {
8953     // Create a virtual register for the sret pointer, and put in a copy
8954     // from the sret argument into it.
8955     SmallVector<EVT, 1> ValueVTs;
8956     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8957                     F.getReturnType()->getPointerTo(
8958                         DAG.getDataLayout().getAllocaAddrSpace()),
8959                     ValueVTs);
8960     MVT VT = ValueVTs[0].getSimpleVT();
8961     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8962     Optional<ISD::NodeType> AssertOp = None;
8963     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8964                                         RegVT, VT, nullptr, AssertOp);
8965 
8966     MachineFunction& MF = SDB->DAG.getMachineFunction();
8967     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8968     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8969     FuncInfo->DemoteRegister = SRetReg;
8970     NewRoot =
8971         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8972     DAG.setRoot(NewRoot);
8973 
8974     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8975     ++i;
8976   }
8977 
8978   SmallVector<SDValue, 4> Chains;
8979   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8980   for (const Argument &Arg : F.args()) {
8981     SmallVector<SDValue, 4> ArgValues;
8982     SmallVector<EVT, 4> ValueVTs;
8983     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8984     unsigned NumValues = ValueVTs.size();
8985     if (NumValues == 0)
8986       continue;
8987 
8988     bool ArgHasUses = !Arg.use_empty();
8989 
8990     // Elide the copying store if the target loaded this argument from a
8991     // suitable fixed stack object.
8992     if (Ins[i].Flags.isCopyElisionCandidate()) {
8993       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8994                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8995                              InVals[i], ArgHasUses);
8996     }
8997 
8998     // If this argument is unused then remember its value. It is used to generate
8999     // debugging information.
9000     bool isSwiftErrorArg =
9001         TLI->supportSwiftError() &&
9002         Arg.hasAttribute(Attribute::SwiftError);
9003     if (!ArgHasUses && !isSwiftErrorArg) {
9004       SDB->setUnusedArgValue(&Arg, InVals[i]);
9005 
9006       // Also remember any frame index for use in FastISel.
9007       if (FrameIndexSDNode *FI =
9008           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9009         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9010     }
9011 
9012     for (unsigned Val = 0; Val != NumValues; ++Val) {
9013       EVT VT = ValueVTs[Val];
9014       MVT PartVT =
9015           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
9016       unsigned NumParts =
9017           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
9018 
9019       // Even an apparant 'unused' swifterror argument needs to be returned. So
9020       // we do generate a copy for it that can be used on return from the
9021       // function.
9022       if (ArgHasUses || isSwiftErrorArg) {
9023         Optional<ISD::NodeType> AssertOp;
9024         if (Arg.hasAttribute(Attribute::SExt))
9025           AssertOp = ISD::AssertSext;
9026         else if (Arg.hasAttribute(Attribute::ZExt))
9027           AssertOp = ISD::AssertZext;
9028 
9029         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9030                                              PartVT, VT, nullptr, AssertOp,
9031                                              true));
9032       }
9033 
9034       i += NumParts;
9035     }
9036 
9037     // We don't need to do anything else for unused arguments.
9038     if (ArgValues.empty())
9039       continue;
9040 
9041     // Note down frame index.
9042     if (FrameIndexSDNode *FI =
9043         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9044       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9045 
9046     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9047                                      SDB->getCurSDLoc());
9048 
9049     SDB->setValue(&Arg, Res);
9050     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9051       // We want to associate the argument with the frame index, among
9052       // involved operands, that correspond to the lowest address. The
9053       // getCopyFromParts function, called earlier, is swapping the order of
9054       // the operands to BUILD_PAIR depending on endianness. The result of
9055       // that swapping is that the least significant bits of the argument will
9056       // be in the first operand of the BUILD_PAIR node, and the most
9057       // significant bits will be in the second operand.
9058       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9059       if (LoadSDNode *LNode =
9060           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9061         if (FrameIndexSDNode *FI =
9062             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9063           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9064     }
9065 
9066     // Update the SwiftErrorVRegDefMap.
9067     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9068       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9069       if (TargetRegisterInfo::isVirtualRegister(Reg))
9070         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9071                                            FuncInfo->SwiftErrorArg, Reg);
9072     }
9073 
9074     // If this argument is live outside of the entry block, insert a copy from
9075     // wherever we got it to the vreg that other BB's will reference it as.
9076     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9077       // If we can, though, try to skip creating an unnecessary vreg.
9078       // FIXME: This isn't very clean... it would be nice to make this more
9079       // general.  It's also subtly incompatible with the hacks FastISel
9080       // uses with vregs.
9081       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9082       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9083         FuncInfo->ValueMap[&Arg] = Reg;
9084         continue;
9085       }
9086     }
9087     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9088       FuncInfo->InitializeRegForValue(&Arg);
9089       SDB->CopyToExportRegsIfNeeded(&Arg);
9090     }
9091   }
9092 
9093   if (!Chains.empty()) {
9094     Chains.push_back(NewRoot);
9095     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9096   }
9097 
9098   DAG.setRoot(NewRoot);
9099 
9100   assert(i == InVals.size() && "Argument register count mismatch!");
9101 
9102   // If any argument copy elisions occurred and we have debug info, update the
9103   // stale frame indices used in the dbg.declare variable info table.
9104   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9105   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9106     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9107       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9108       if (I != ArgCopyElisionFrameIndexMap.end())
9109         VI.Slot = I->second;
9110     }
9111   }
9112 
9113   // Finally, if the target has anything special to do, allow it to do so.
9114   EmitFunctionEntryCode();
9115 }
9116 
9117 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9118 /// ensure constants are generated when needed.  Remember the virtual registers
9119 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9120 /// directly add them, because expansion might result in multiple MBB's for one
9121 /// BB.  As such, the start of the BB might correspond to a different MBB than
9122 /// the end.
9123 void
9124 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9125   const TerminatorInst *TI = LLVMBB->getTerminator();
9126 
9127   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9128 
9129   // Check PHI nodes in successors that expect a value to be available from this
9130   // block.
9131   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9132     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9133     if (!isa<PHINode>(SuccBB->begin())) continue;
9134     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9135 
9136     // If this terminator has multiple identical successors (common for
9137     // switches), only handle each succ once.
9138     if (!SuccsHandled.insert(SuccMBB).second)
9139       continue;
9140 
9141     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9142 
9143     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9144     // nodes and Machine PHI nodes, but the incoming operands have not been
9145     // emitted yet.
9146     for (const PHINode &PN : SuccBB->phis()) {
9147       // Ignore dead phi's.
9148       if (PN.use_empty())
9149         continue;
9150 
9151       // Skip empty types
9152       if (PN.getType()->isEmptyTy())
9153         continue;
9154 
9155       unsigned Reg;
9156       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9157 
9158       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9159         unsigned &RegOut = ConstantsOut[C];
9160         if (RegOut == 0) {
9161           RegOut = FuncInfo.CreateRegs(C->getType());
9162           CopyValueToVirtualRegister(C, RegOut);
9163         }
9164         Reg = RegOut;
9165       } else {
9166         DenseMap<const Value *, unsigned>::iterator I =
9167           FuncInfo.ValueMap.find(PHIOp);
9168         if (I != FuncInfo.ValueMap.end())
9169           Reg = I->second;
9170         else {
9171           assert(isa<AllocaInst>(PHIOp) &&
9172                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9173                  "Didn't codegen value into a register!??");
9174           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9175           CopyValueToVirtualRegister(PHIOp, Reg);
9176         }
9177       }
9178 
9179       // Remember that this register needs to added to the machine PHI node as
9180       // the input for this MBB.
9181       SmallVector<EVT, 4> ValueVTs;
9182       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9183       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9184       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9185         EVT VT = ValueVTs[vti];
9186         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9187         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9188           FuncInfo.PHINodesToUpdate.push_back(
9189               std::make_pair(&*MBBI++, Reg + i));
9190         Reg += NumRegisters;
9191       }
9192     }
9193   }
9194 
9195   ConstantsOut.clear();
9196 }
9197 
9198 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9199 /// is 0.
9200 MachineBasicBlock *
9201 SelectionDAGBuilder::StackProtectorDescriptor::
9202 AddSuccessorMBB(const BasicBlock *BB,
9203                 MachineBasicBlock *ParentMBB,
9204                 bool IsLikely,
9205                 MachineBasicBlock *SuccMBB) {
9206   // If SuccBB has not been created yet, create it.
9207   if (!SuccMBB) {
9208     MachineFunction *MF = ParentMBB->getParent();
9209     MachineFunction::iterator BBI(ParentMBB);
9210     SuccMBB = MF->CreateMachineBasicBlock(BB);
9211     MF->insert(++BBI, SuccMBB);
9212   }
9213   // Add it as a successor of ParentMBB.
9214   ParentMBB->addSuccessor(
9215       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9216   return SuccMBB;
9217 }
9218 
9219 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9220   MachineFunction::iterator I(MBB);
9221   if (++I == FuncInfo.MF->end())
9222     return nullptr;
9223   return &*I;
9224 }
9225 
9226 /// During lowering new call nodes can be created (such as memset, etc.).
9227 /// Those will become new roots of the current DAG, but complications arise
9228 /// when they are tail calls. In such cases, the call lowering will update
9229 /// the root, but the builder still needs to know that a tail call has been
9230 /// lowered in order to avoid generating an additional return.
9231 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9232   // If the node is null, we do have a tail call.
9233   if (MaybeTC.getNode() != nullptr)
9234     DAG.setRoot(MaybeTC);
9235   else
9236     HasTailCall = true;
9237 }
9238 
9239 uint64_t
9240 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9241                                        unsigned First, unsigned Last) const {
9242   assert(Last >= First);
9243   const APInt &LowCase = Clusters[First].Low->getValue();
9244   const APInt &HighCase = Clusters[Last].High->getValue();
9245   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9246 
9247   // FIXME: A range of consecutive cases has 100% density, but only requires one
9248   // comparison to lower. We should discriminate against such consecutive ranges
9249   // in jump tables.
9250 
9251   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9252 }
9253 
9254 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9255     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9256     unsigned Last) const {
9257   assert(Last >= First);
9258   assert(TotalCases[Last] >= TotalCases[First]);
9259   uint64_t NumCases =
9260       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9261   return NumCases;
9262 }
9263 
9264 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9265                                          unsigned First, unsigned Last,
9266                                          const SwitchInst *SI,
9267                                          MachineBasicBlock *DefaultMBB,
9268                                          CaseCluster &JTCluster) {
9269   assert(First <= Last);
9270 
9271   auto Prob = BranchProbability::getZero();
9272   unsigned NumCmps = 0;
9273   std::vector<MachineBasicBlock*> Table;
9274   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9275 
9276   // Initialize probabilities in JTProbs.
9277   for (unsigned I = First; I <= Last; ++I)
9278     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9279 
9280   for (unsigned I = First; I <= Last; ++I) {
9281     assert(Clusters[I].Kind == CC_Range);
9282     Prob += Clusters[I].Prob;
9283     const APInt &Low = Clusters[I].Low->getValue();
9284     const APInt &High = Clusters[I].High->getValue();
9285     NumCmps += (Low == High) ? 1 : 2;
9286     if (I != First) {
9287       // Fill the gap between this and the previous cluster.
9288       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9289       assert(PreviousHigh.slt(Low));
9290       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9291       for (uint64_t J = 0; J < Gap; J++)
9292         Table.push_back(DefaultMBB);
9293     }
9294     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9295     for (uint64_t J = 0; J < ClusterSize; ++J)
9296       Table.push_back(Clusters[I].MBB);
9297     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9298   }
9299 
9300   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9301   unsigned NumDests = JTProbs.size();
9302   if (TLI.isSuitableForBitTests(
9303           NumDests, NumCmps, Clusters[First].Low->getValue(),
9304           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9305     // Clusters[First..Last] should be lowered as bit tests instead.
9306     return false;
9307   }
9308 
9309   // Create the MBB that will load from and jump through the table.
9310   // Note: We create it here, but it's not inserted into the function yet.
9311   MachineFunction *CurMF = FuncInfo.MF;
9312   MachineBasicBlock *JumpTableMBB =
9313       CurMF->CreateMachineBasicBlock(SI->getParent());
9314 
9315   // Add successors. Note: use table order for determinism.
9316   SmallPtrSet<MachineBasicBlock *, 8> Done;
9317   for (MachineBasicBlock *Succ : Table) {
9318     if (Done.count(Succ))
9319       continue;
9320     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9321     Done.insert(Succ);
9322   }
9323   JumpTableMBB->normalizeSuccProbs();
9324 
9325   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9326                      ->createJumpTableIndex(Table);
9327 
9328   // Set up the jump table info.
9329   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9330   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9331                       Clusters[Last].High->getValue(), SI->getCondition(),
9332                       nullptr, false);
9333   JTCases.emplace_back(std::move(JTH), std::move(JT));
9334 
9335   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9336                                      JTCases.size() - 1, Prob);
9337   return true;
9338 }
9339 
9340 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9341                                          const SwitchInst *SI,
9342                                          MachineBasicBlock *DefaultMBB) {
9343 #ifndef NDEBUG
9344   // Clusters must be non-empty, sorted, and only contain Range clusters.
9345   assert(!Clusters.empty());
9346   for (CaseCluster &C : Clusters)
9347     assert(C.Kind == CC_Range);
9348   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9349     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9350 #endif
9351 
9352   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9353   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9354     return;
9355 
9356   const int64_t N = Clusters.size();
9357   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9358   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9359 
9360   if (N < 2 || N < MinJumpTableEntries)
9361     return;
9362 
9363   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9364   SmallVector<unsigned, 8> TotalCases(N);
9365   for (unsigned i = 0; i < N; ++i) {
9366     const APInt &Hi = Clusters[i].High->getValue();
9367     const APInt &Lo = Clusters[i].Low->getValue();
9368     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9369     if (i != 0)
9370       TotalCases[i] += TotalCases[i - 1];
9371   }
9372 
9373   // Cheap case: the whole range may be suitable for jump table.
9374   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9375   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9376   assert(NumCases < UINT64_MAX / 100);
9377   assert(Range >= NumCases);
9378   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9379     CaseCluster JTCluster;
9380     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9381       Clusters[0] = JTCluster;
9382       Clusters.resize(1);
9383       return;
9384     }
9385   }
9386 
9387   // The algorithm below is not suitable for -O0.
9388   if (TM.getOptLevel() == CodeGenOpt::None)
9389     return;
9390 
9391   // Split Clusters into minimum number of dense partitions. The algorithm uses
9392   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9393   // for the Case Statement'" (1994), but builds the MinPartitions array in
9394   // reverse order to make it easier to reconstruct the partitions in ascending
9395   // order. In the choice between two optimal partitionings, it picks the one
9396   // which yields more jump tables.
9397 
9398   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9399   SmallVector<unsigned, 8> MinPartitions(N);
9400   // LastElement[i] is the last element of the partition starting at i.
9401   SmallVector<unsigned, 8> LastElement(N);
9402   // PartitionsScore[i] is used to break ties when choosing between two
9403   // partitionings resulting in the same number of partitions.
9404   SmallVector<unsigned, 8> PartitionsScore(N);
9405   // For PartitionsScore, a small number of comparisons is considered as good as
9406   // a jump table and a single comparison is considered better than a jump
9407   // table.
9408   enum PartitionScores : unsigned {
9409     NoTable = 0,
9410     Table = 1,
9411     FewCases = 1,
9412     SingleCase = 2
9413   };
9414 
9415   // Base case: There is only one way to partition Clusters[N-1].
9416   MinPartitions[N - 1] = 1;
9417   LastElement[N - 1] = N - 1;
9418   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9419 
9420   // Note: loop indexes are signed to avoid underflow.
9421   for (int64_t i = N - 2; i >= 0; i--) {
9422     // Find optimal partitioning of Clusters[i..N-1].
9423     // Baseline: Put Clusters[i] into a partition on its own.
9424     MinPartitions[i] = MinPartitions[i + 1] + 1;
9425     LastElement[i] = i;
9426     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9427 
9428     // Search for a solution that results in fewer partitions.
9429     for (int64_t j = N - 1; j > i; j--) {
9430       // Try building a partition from Clusters[i..j].
9431       uint64_t Range = getJumpTableRange(Clusters, i, j);
9432       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9433       assert(NumCases < UINT64_MAX / 100);
9434       assert(Range >= NumCases);
9435       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9436         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9437         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9438         int64_t NumEntries = j - i + 1;
9439 
9440         if (NumEntries == 1)
9441           Score += PartitionScores::SingleCase;
9442         else if (NumEntries <= SmallNumberOfEntries)
9443           Score += PartitionScores::FewCases;
9444         else if (NumEntries >= MinJumpTableEntries)
9445           Score += PartitionScores::Table;
9446 
9447         // If this leads to fewer partitions, or to the same number of
9448         // partitions with better score, it is a better partitioning.
9449         if (NumPartitions < MinPartitions[i] ||
9450             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9451           MinPartitions[i] = NumPartitions;
9452           LastElement[i] = j;
9453           PartitionsScore[i] = Score;
9454         }
9455       }
9456     }
9457   }
9458 
9459   // Iterate over the partitions, replacing some with jump tables in-place.
9460   unsigned DstIndex = 0;
9461   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9462     Last = LastElement[First];
9463     assert(Last >= First);
9464     assert(DstIndex <= First);
9465     unsigned NumClusters = Last - First + 1;
9466 
9467     CaseCluster JTCluster;
9468     if (NumClusters >= MinJumpTableEntries &&
9469         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9470       Clusters[DstIndex++] = JTCluster;
9471     } else {
9472       for (unsigned I = First; I <= Last; ++I)
9473         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9474     }
9475   }
9476   Clusters.resize(DstIndex);
9477 }
9478 
9479 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9480                                         unsigned First, unsigned Last,
9481                                         const SwitchInst *SI,
9482                                         CaseCluster &BTCluster) {
9483   assert(First <= Last);
9484   if (First == Last)
9485     return false;
9486 
9487   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9488   unsigned NumCmps = 0;
9489   for (int64_t I = First; I <= Last; ++I) {
9490     assert(Clusters[I].Kind == CC_Range);
9491     Dests.set(Clusters[I].MBB->getNumber());
9492     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9493   }
9494   unsigned NumDests = Dests.count();
9495 
9496   APInt Low = Clusters[First].Low->getValue();
9497   APInt High = Clusters[Last].High->getValue();
9498   assert(Low.slt(High));
9499 
9500   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9501   const DataLayout &DL = DAG.getDataLayout();
9502   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9503     return false;
9504 
9505   APInt LowBound;
9506   APInt CmpRange;
9507 
9508   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9509   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9510          "Case range must fit in bit mask!");
9511 
9512   // Check if the clusters cover a contiguous range such that no value in the
9513   // range will jump to the default statement.
9514   bool ContiguousRange = true;
9515   for (int64_t I = First + 1; I <= Last; ++I) {
9516     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9517       ContiguousRange = false;
9518       break;
9519     }
9520   }
9521 
9522   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9523     // Optimize the case where all the case values fit in a word without having
9524     // to subtract minValue. In this case, we can optimize away the subtraction.
9525     LowBound = APInt::getNullValue(Low.getBitWidth());
9526     CmpRange = High;
9527     ContiguousRange = false;
9528   } else {
9529     LowBound = Low;
9530     CmpRange = High - Low;
9531   }
9532 
9533   CaseBitsVector CBV;
9534   auto TotalProb = BranchProbability::getZero();
9535   for (unsigned i = First; i <= Last; ++i) {
9536     // Find the CaseBits for this destination.
9537     unsigned j;
9538     for (j = 0; j < CBV.size(); ++j)
9539       if (CBV[j].BB == Clusters[i].MBB)
9540         break;
9541     if (j == CBV.size())
9542       CBV.push_back(
9543           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9544     CaseBits *CB = &CBV[j];
9545 
9546     // Update Mask, Bits and ExtraProb.
9547     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9548     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9549     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9550     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9551     CB->Bits += Hi - Lo + 1;
9552     CB->ExtraProb += Clusters[i].Prob;
9553     TotalProb += Clusters[i].Prob;
9554   }
9555 
9556   BitTestInfo BTI;
9557   llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9558     // Sort by probability first, number of bits second, bit mask third.
9559     if (a.ExtraProb != b.ExtraProb)
9560       return a.ExtraProb > b.ExtraProb;
9561     if (a.Bits != b.Bits)
9562       return a.Bits > b.Bits;
9563     return a.Mask < b.Mask;
9564   });
9565 
9566   for (auto &CB : CBV) {
9567     MachineBasicBlock *BitTestBB =
9568         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9569     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9570   }
9571   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9572                             SI->getCondition(), -1U, MVT::Other, false,
9573                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9574                             TotalProb);
9575 
9576   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9577                                     BitTestCases.size() - 1, TotalProb);
9578   return true;
9579 }
9580 
9581 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9582                                               const SwitchInst *SI) {
9583 // Partition Clusters into as few subsets as possible, where each subset has a
9584 // range that fits in a machine word and has <= 3 unique destinations.
9585 
9586 #ifndef NDEBUG
9587   // Clusters must be sorted and contain Range or JumpTable clusters.
9588   assert(!Clusters.empty());
9589   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9590   for (const CaseCluster &C : Clusters)
9591     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9592   for (unsigned i = 1; i < Clusters.size(); ++i)
9593     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9594 #endif
9595 
9596   // The algorithm below is not suitable for -O0.
9597   if (TM.getOptLevel() == CodeGenOpt::None)
9598     return;
9599 
9600   // If target does not have legal shift left, do not emit bit tests at all.
9601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9602   const DataLayout &DL = DAG.getDataLayout();
9603 
9604   EVT PTy = TLI.getPointerTy(DL);
9605   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9606     return;
9607 
9608   int BitWidth = PTy.getSizeInBits();
9609   const int64_t N = Clusters.size();
9610 
9611   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9612   SmallVector<unsigned, 8> MinPartitions(N);
9613   // LastElement[i] is the last element of the partition starting at i.
9614   SmallVector<unsigned, 8> LastElement(N);
9615 
9616   // FIXME: This might not be the best algorithm for finding bit test clusters.
9617 
9618   // Base case: There is only one way to partition Clusters[N-1].
9619   MinPartitions[N - 1] = 1;
9620   LastElement[N - 1] = N - 1;
9621 
9622   // Note: loop indexes are signed to avoid underflow.
9623   for (int64_t i = N - 2; i >= 0; --i) {
9624     // Find optimal partitioning of Clusters[i..N-1].
9625     // Baseline: Put Clusters[i] into a partition on its own.
9626     MinPartitions[i] = MinPartitions[i + 1] + 1;
9627     LastElement[i] = i;
9628 
9629     // Search for a solution that results in fewer partitions.
9630     // Note: the search is limited by BitWidth, reducing time complexity.
9631     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9632       // Try building a partition from Clusters[i..j].
9633 
9634       // Check the range.
9635       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9636                                Clusters[j].High->getValue(), DL))
9637         continue;
9638 
9639       // Check nbr of destinations and cluster types.
9640       // FIXME: This works, but doesn't seem very efficient.
9641       bool RangesOnly = true;
9642       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9643       for (int64_t k = i; k <= j; k++) {
9644         if (Clusters[k].Kind != CC_Range) {
9645           RangesOnly = false;
9646           break;
9647         }
9648         Dests.set(Clusters[k].MBB->getNumber());
9649       }
9650       if (!RangesOnly || Dests.count() > 3)
9651         break;
9652 
9653       // Check if it's a better partition.
9654       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9655       if (NumPartitions < MinPartitions[i]) {
9656         // Found a better partition.
9657         MinPartitions[i] = NumPartitions;
9658         LastElement[i] = j;
9659       }
9660     }
9661   }
9662 
9663   // Iterate over the partitions, replacing with bit-test clusters in-place.
9664   unsigned DstIndex = 0;
9665   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9666     Last = LastElement[First];
9667     assert(First <= Last);
9668     assert(DstIndex <= First);
9669 
9670     CaseCluster BitTestCluster;
9671     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9672       Clusters[DstIndex++] = BitTestCluster;
9673     } else {
9674       size_t NumClusters = Last - First + 1;
9675       std::memmove(&Clusters[DstIndex], &Clusters[First],
9676                    sizeof(Clusters[0]) * NumClusters);
9677       DstIndex += NumClusters;
9678     }
9679   }
9680   Clusters.resize(DstIndex);
9681 }
9682 
9683 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9684                                         MachineBasicBlock *SwitchMBB,
9685                                         MachineBasicBlock *DefaultMBB) {
9686   MachineFunction *CurMF = FuncInfo.MF;
9687   MachineBasicBlock *NextMBB = nullptr;
9688   MachineFunction::iterator BBI(W.MBB);
9689   if (++BBI != FuncInfo.MF->end())
9690     NextMBB = &*BBI;
9691 
9692   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9693 
9694   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9695 
9696   if (Size == 2 && W.MBB == SwitchMBB) {
9697     // If any two of the cases has the same destination, and if one value
9698     // is the same as the other, but has one bit unset that the other has set,
9699     // use bit manipulation to do two compares at once.  For example:
9700     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9701     // TODO: This could be extended to merge any 2 cases in switches with 3
9702     // cases.
9703     // TODO: Handle cases where W.CaseBB != SwitchBB.
9704     CaseCluster &Small = *W.FirstCluster;
9705     CaseCluster &Big = *W.LastCluster;
9706 
9707     if (Small.Low == Small.High && Big.Low == Big.High &&
9708         Small.MBB == Big.MBB) {
9709       const APInt &SmallValue = Small.Low->getValue();
9710       const APInt &BigValue = Big.Low->getValue();
9711 
9712       // Check that there is only one bit different.
9713       APInt CommonBit = BigValue ^ SmallValue;
9714       if (CommonBit.isPowerOf2()) {
9715         SDValue CondLHS = getValue(Cond);
9716         EVT VT = CondLHS.getValueType();
9717         SDLoc DL = getCurSDLoc();
9718 
9719         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9720                                  DAG.getConstant(CommonBit, DL, VT));
9721         SDValue Cond = DAG.getSetCC(
9722             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9723             ISD::SETEQ);
9724 
9725         // Update successor info.
9726         // Both Small and Big will jump to Small.BB, so we sum up the
9727         // probabilities.
9728         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9729         if (BPI)
9730           addSuccessorWithProb(
9731               SwitchMBB, DefaultMBB,
9732               // The default destination is the first successor in IR.
9733               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9734         else
9735           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9736 
9737         // Insert the true branch.
9738         SDValue BrCond =
9739             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9740                         DAG.getBasicBlock(Small.MBB));
9741         // Insert the false branch.
9742         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9743                              DAG.getBasicBlock(DefaultMBB));
9744 
9745         DAG.setRoot(BrCond);
9746         return;
9747       }
9748     }
9749   }
9750 
9751   if (TM.getOptLevel() != CodeGenOpt::None) {
9752     // Here, we order cases by probability so the most likely case will be
9753     // checked first. However, two clusters can have the same probability in
9754     // which case their relative ordering is non-deterministic. So we use Low
9755     // as a tie-breaker as clusters are guaranteed to never overlap.
9756     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9757                [](const CaseCluster &a, const CaseCluster &b) {
9758       return a.Prob != b.Prob ?
9759              a.Prob > b.Prob :
9760              a.Low->getValue().slt(b.Low->getValue());
9761     });
9762 
9763     // Rearrange the case blocks so that the last one falls through if possible
9764     // without changing the order of probabilities.
9765     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9766       --I;
9767       if (I->Prob > W.LastCluster->Prob)
9768         break;
9769       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9770         std::swap(*I, *W.LastCluster);
9771         break;
9772       }
9773     }
9774   }
9775 
9776   // Compute total probability.
9777   BranchProbability DefaultProb = W.DefaultProb;
9778   BranchProbability UnhandledProbs = DefaultProb;
9779   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9780     UnhandledProbs += I->Prob;
9781 
9782   MachineBasicBlock *CurMBB = W.MBB;
9783   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9784     MachineBasicBlock *Fallthrough;
9785     if (I == W.LastCluster) {
9786       // For the last cluster, fall through to the default destination.
9787       Fallthrough = DefaultMBB;
9788     } else {
9789       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9790       CurMF->insert(BBI, Fallthrough);
9791       // Put Cond in a virtual register to make it available from the new blocks.
9792       ExportFromCurrentBlock(Cond);
9793     }
9794     UnhandledProbs -= I->Prob;
9795 
9796     switch (I->Kind) {
9797       case CC_JumpTable: {
9798         // FIXME: Optimize away range check based on pivot comparisons.
9799         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9800         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9801 
9802         // The jump block hasn't been inserted yet; insert it here.
9803         MachineBasicBlock *JumpMBB = JT->MBB;
9804         CurMF->insert(BBI, JumpMBB);
9805 
9806         auto JumpProb = I->Prob;
9807         auto FallthroughProb = UnhandledProbs;
9808 
9809         // If the default statement is a target of the jump table, we evenly
9810         // distribute the default probability to successors of CurMBB. Also
9811         // update the probability on the edge from JumpMBB to Fallthrough.
9812         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9813                                               SE = JumpMBB->succ_end();
9814              SI != SE; ++SI) {
9815           if (*SI == DefaultMBB) {
9816             JumpProb += DefaultProb / 2;
9817             FallthroughProb -= DefaultProb / 2;
9818             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9819             JumpMBB->normalizeSuccProbs();
9820             break;
9821           }
9822         }
9823 
9824         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9825         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9826         CurMBB->normalizeSuccProbs();
9827 
9828         // The jump table header will be inserted in our current block, do the
9829         // range check, and fall through to our fallthrough block.
9830         JTH->HeaderBB = CurMBB;
9831         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9832 
9833         // If we're in the right place, emit the jump table header right now.
9834         if (CurMBB == SwitchMBB) {
9835           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9836           JTH->Emitted = true;
9837         }
9838         break;
9839       }
9840       case CC_BitTests: {
9841         // FIXME: Optimize away range check based on pivot comparisons.
9842         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9843 
9844         // The bit test blocks haven't been inserted yet; insert them here.
9845         for (BitTestCase &BTC : BTB->Cases)
9846           CurMF->insert(BBI, BTC.ThisBB);
9847 
9848         // Fill in fields of the BitTestBlock.
9849         BTB->Parent = CurMBB;
9850         BTB->Default = Fallthrough;
9851 
9852         BTB->DefaultProb = UnhandledProbs;
9853         // If the cases in bit test don't form a contiguous range, we evenly
9854         // distribute the probability on the edge to Fallthrough to two
9855         // successors of CurMBB.
9856         if (!BTB->ContiguousRange) {
9857           BTB->Prob += DefaultProb / 2;
9858           BTB->DefaultProb -= DefaultProb / 2;
9859         }
9860 
9861         // If we're in the right place, emit the bit test header right now.
9862         if (CurMBB == SwitchMBB) {
9863           visitBitTestHeader(*BTB, SwitchMBB);
9864           BTB->Emitted = true;
9865         }
9866         break;
9867       }
9868       case CC_Range: {
9869         const Value *RHS, *LHS, *MHS;
9870         ISD::CondCode CC;
9871         if (I->Low == I->High) {
9872           // Check Cond == I->Low.
9873           CC = ISD::SETEQ;
9874           LHS = Cond;
9875           RHS=I->Low;
9876           MHS = nullptr;
9877         } else {
9878           // Check I->Low <= Cond <= I->High.
9879           CC = ISD::SETLE;
9880           LHS = I->Low;
9881           MHS = Cond;
9882           RHS = I->High;
9883         }
9884 
9885         // The false probability is the sum of all unhandled cases.
9886         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9887                      getCurSDLoc(), I->Prob, UnhandledProbs);
9888 
9889         if (CurMBB == SwitchMBB)
9890           visitSwitchCase(CB, SwitchMBB);
9891         else
9892           SwitchCases.push_back(CB);
9893 
9894         break;
9895       }
9896     }
9897     CurMBB = Fallthrough;
9898   }
9899 }
9900 
9901 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9902                                               CaseClusterIt First,
9903                                               CaseClusterIt Last) {
9904   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9905     if (X.Prob != CC.Prob)
9906       return X.Prob > CC.Prob;
9907 
9908     // Ties are broken by comparing the case value.
9909     return X.Low->getValue().slt(CC.Low->getValue());
9910   });
9911 }
9912 
9913 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9914                                         const SwitchWorkListItem &W,
9915                                         Value *Cond,
9916                                         MachineBasicBlock *SwitchMBB) {
9917   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9918          "Clusters not sorted?");
9919 
9920   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9921 
9922   // Balance the tree based on branch probabilities to create a near-optimal (in
9923   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9924   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9925   CaseClusterIt LastLeft = W.FirstCluster;
9926   CaseClusterIt FirstRight = W.LastCluster;
9927   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9928   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9929 
9930   // Move LastLeft and FirstRight towards each other from opposite directions to
9931   // find a partitioning of the clusters which balances the probability on both
9932   // sides. If LeftProb and RightProb are equal, alternate which side is
9933   // taken to ensure 0-probability nodes are distributed evenly.
9934   unsigned I = 0;
9935   while (LastLeft + 1 < FirstRight) {
9936     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9937       LeftProb += (++LastLeft)->Prob;
9938     else
9939       RightProb += (--FirstRight)->Prob;
9940     I++;
9941   }
9942 
9943   while (true) {
9944     // Our binary search tree differs from a typical BST in that ours can have up
9945     // to three values in each leaf. The pivot selection above doesn't take that
9946     // into account, which means the tree might require more nodes and be less
9947     // efficient. We compensate for this here.
9948 
9949     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9950     unsigned NumRight = W.LastCluster - FirstRight + 1;
9951 
9952     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9953       // If one side has less than 3 clusters, and the other has more than 3,
9954       // consider taking a cluster from the other side.
9955 
9956       if (NumLeft < NumRight) {
9957         // Consider moving the first cluster on the right to the left side.
9958         CaseCluster &CC = *FirstRight;
9959         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9960         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9961         if (LeftSideRank <= RightSideRank) {
9962           // Moving the cluster to the left does not demote it.
9963           ++LastLeft;
9964           ++FirstRight;
9965           continue;
9966         }
9967       } else {
9968         assert(NumRight < NumLeft);
9969         // Consider moving the last element on the left to the right side.
9970         CaseCluster &CC = *LastLeft;
9971         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9972         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9973         if (RightSideRank <= LeftSideRank) {
9974           // Moving the cluster to the right does not demot it.
9975           --LastLeft;
9976           --FirstRight;
9977           continue;
9978         }
9979       }
9980     }
9981     break;
9982   }
9983 
9984   assert(LastLeft + 1 == FirstRight);
9985   assert(LastLeft >= W.FirstCluster);
9986   assert(FirstRight <= W.LastCluster);
9987 
9988   // Use the first element on the right as pivot since we will make less-than
9989   // comparisons against it.
9990   CaseClusterIt PivotCluster = FirstRight;
9991   assert(PivotCluster > W.FirstCluster);
9992   assert(PivotCluster <= W.LastCluster);
9993 
9994   CaseClusterIt FirstLeft = W.FirstCluster;
9995   CaseClusterIt LastRight = W.LastCluster;
9996 
9997   const ConstantInt *Pivot = PivotCluster->Low;
9998 
9999   // New blocks will be inserted immediately after the current one.
10000   MachineFunction::iterator BBI(W.MBB);
10001   ++BBI;
10002 
10003   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10004   // we can branch to its destination directly if it's squeezed exactly in
10005   // between the known lower bound and Pivot - 1.
10006   MachineBasicBlock *LeftMBB;
10007   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10008       FirstLeft->Low == W.GE &&
10009       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10010     LeftMBB = FirstLeft->MBB;
10011   } else {
10012     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10013     FuncInfo.MF->insert(BBI, LeftMBB);
10014     WorkList.push_back(
10015         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10016     // Put Cond in a virtual register to make it available from the new blocks.
10017     ExportFromCurrentBlock(Cond);
10018   }
10019 
10020   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10021   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10022   // directly if RHS.High equals the current upper bound.
10023   MachineBasicBlock *RightMBB;
10024   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10025       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10026     RightMBB = FirstRight->MBB;
10027   } else {
10028     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10029     FuncInfo.MF->insert(BBI, RightMBB);
10030     WorkList.push_back(
10031         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10032     // Put Cond in a virtual register to make it available from the new blocks.
10033     ExportFromCurrentBlock(Cond);
10034   }
10035 
10036   // Create the CaseBlock record that will be used to lower the branch.
10037   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10038                getCurSDLoc(), LeftProb, RightProb);
10039 
10040   if (W.MBB == SwitchMBB)
10041     visitSwitchCase(CB, SwitchMBB);
10042   else
10043     SwitchCases.push_back(CB);
10044 }
10045 
10046 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10047 // from the swith statement.
10048 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10049                                             BranchProbability PeeledCaseProb) {
10050   if (PeeledCaseProb == BranchProbability::getOne())
10051     return BranchProbability::getZero();
10052   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10053 
10054   uint32_t Numerator = CaseProb.getNumerator();
10055   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10056   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10057 }
10058 
10059 // Try to peel the top probability case if it exceeds the threshold.
10060 // Return current MachineBasicBlock for the switch statement if the peeling
10061 // does not occur.
10062 // If the peeling is performed, return the newly created MachineBasicBlock
10063 // for the peeled switch statement. Also update Clusters to remove the peeled
10064 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10065 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10066     const SwitchInst &SI, CaseClusterVector &Clusters,
10067     BranchProbability &PeeledCaseProb) {
10068   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10069   // Don't perform if there is only one cluster or optimizing for size.
10070   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10071       TM.getOptLevel() == CodeGenOpt::None ||
10072       SwitchMBB->getParent()->getFunction().optForMinSize())
10073     return SwitchMBB;
10074 
10075   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10076   unsigned PeeledCaseIndex = 0;
10077   bool SwitchPeeled = false;
10078   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10079     CaseCluster &CC = Clusters[Index];
10080     if (CC.Prob < TopCaseProb)
10081       continue;
10082     TopCaseProb = CC.Prob;
10083     PeeledCaseIndex = Index;
10084     SwitchPeeled = true;
10085   }
10086   if (!SwitchPeeled)
10087     return SwitchMBB;
10088 
10089   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10090                     << TopCaseProb << "\n");
10091 
10092   // Record the MBB for the peeled switch statement.
10093   MachineFunction::iterator BBI(SwitchMBB);
10094   ++BBI;
10095   MachineBasicBlock *PeeledSwitchMBB =
10096       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10097   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10098 
10099   ExportFromCurrentBlock(SI.getCondition());
10100   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10101   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10102                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10103   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10104 
10105   Clusters.erase(PeeledCaseIt);
10106   for (CaseCluster &CC : Clusters) {
10107     LLVM_DEBUG(
10108         dbgs() << "Scale the probablity for one cluster, before scaling: "
10109                << CC.Prob << "\n");
10110     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10111     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10112   }
10113   PeeledCaseProb = TopCaseProb;
10114   return PeeledSwitchMBB;
10115 }
10116 
10117 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10118   // Extract cases from the switch.
10119   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10120   CaseClusterVector Clusters;
10121   Clusters.reserve(SI.getNumCases());
10122   for (auto I : SI.cases()) {
10123     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10124     const ConstantInt *CaseVal = I.getCaseValue();
10125     BranchProbability Prob =
10126         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10127             : BranchProbability(1, SI.getNumCases() + 1);
10128     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10129   }
10130 
10131   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10132 
10133   // Cluster adjacent cases with the same destination. We do this at all
10134   // optimization levels because it's cheap to do and will make codegen faster
10135   // if there are many clusters.
10136   sortAndRangeify(Clusters);
10137 
10138   if (TM.getOptLevel() != CodeGenOpt::None) {
10139     // Replace an unreachable default with the most popular destination.
10140     // FIXME: Exploit unreachable default more aggressively.
10141     bool UnreachableDefault =
10142         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10143     if (UnreachableDefault && !Clusters.empty()) {
10144       DenseMap<const BasicBlock *, unsigned> Popularity;
10145       unsigned MaxPop = 0;
10146       const BasicBlock *MaxBB = nullptr;
10147       for (auto I : SI.cases()) {
10148         const BasicBlock *BB = I.getCaseSuccessor();
10149         if (++Popularity[BB] > MaxPop) {
10150           MaxPop = Popularity[BB];
10151           MaxBB = BB;
10152         }
10153       }
10154       // Set new default.
10155       assert(MaxPop > 0 && MaxBB);
10156       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10157 
10158       // Remove cases that were pointing to the destination that is now the
10159       // default.
10160       CaseClusterVector New;
10161       New.reserve(Clusters.size());
10162       for (CaseCluster &CC : Clusters) {
10163         if (CC.MBB != DefaultMBB)
10164           New.push_back(CC);
10165       }
10166       Clusters = std::move(New);
10167     }
10168   }
10169 
10170   // The branch probablity of the peeled case.
10171   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10172   MachineBasicBlock *PeeledSwitchMBB =
10173       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10174 
10175   // If there is only the default destination, jump there directly.
10176   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10177   if (Clusters.empty()) {
10178     assert(PeeledSwitchMBB == SwitchMBB);
10179     SwitchMBB->addSuccessor(DefaultMBB);
10180     if (DefaultMBB != NextBlock(SwitchMBB)) {
10181       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10182                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10183     }
10184     return;
10185   }
10186 
10187   findJumpTables(Clusters, &SI, DefaultMBB);
10188   findBitTestClusters(Clusters, &SI);
10189 
10190   LLVM_DEBUG({
10191     dbgs() << "Case clusters: ";
10192     for (const CaseCluster &C : Clusters) {
10193       if (C.Kind == CC_JumpTable)
10194         dbgs() << "JT:";
10195       if (C.Kind == CC_BitTests)
10196         dbgs() << "BT:";
10197 
10198       C.Low->getValue().print(dbgs(), true);
10199       if (C.Low != C.High) {
10200         dbgs() << '-';
10201         C.High->getValue().print(dbgs(), true);
10202       }
10203       dbgs() << ' ';
10204     }
10205     dbgs() << '\n';
10206   });
10207 
10208   assert(!Clusters.empty());
10209   SwitchWorkList WorkList;
10210   CaseClusterIt First = Clusters.begin();
10211   CaseClusterIt Last = Clusters.end() - 1;
10212   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10213   // Scale the branchprobability for DefaultMBB if the peel occurs and
10214   // DefaultMBB is not replaced.
10215   if (PeeledCaseProb != BranchProbability::getZero() &&
10216       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10217     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10218   WorkList.push_back(
10219       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10220 
10221   while (!WorkList.empty()) {
10222     SwitchWorkListItem W = WorkList.back();
10223     WorkList.pop_back();
10224     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10225 
10226     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10227         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10228       // For optimized builds, lower large range as a balanced binary tree.
10229       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10230       continue;
10231     }
10232 
10233     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10234   }
10235 }
10236