1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // True if the Value passed requires ABI mangling as it is a parameter to a 161 // function or a return value from a function which is not an intrinsic. 162 static bool isABIRegCopy(const Value *V) { 163 const bool IsRetInst = V && isa<ReturnInst>(V); 164 const bool IsCallInst = V && isa<CallInst>(V); 165 const bool IsInLineAsm = 166 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 167 const bool IsIndirectFunctionCall = 168 IsCallInst && !IsInLineAsm && 169 !static_cast<const CallInst *>(V)->getCalledFunction(); 170 // It is possible that the call instruction is an inline asm statement or an 171 // indirect function call in which case the return value of 172 // getCalledFunction() would be nullptr. 173 const bool IsInstrinsicCall = 174 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 175 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 176 Intrinsic::not_intrinsic; 177 178 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 179 } 180 181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 182 const SDValue *Parts, unsigned NumParts, 183 MVT PartVT, EVT ValueVT, const Value *V, 184 bool IsABIRegCopy); 185 186 /// getCopyFromParts - Create a value that contains the specified legal parts 187 /// combined into the value they represent. If the parts combine to a type 188 /// larger than ValueVT then AssertOp can be used to specify whether the extra 189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 190 /// (ISD::AssertSext). 191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 192 const SDValue *Parts, unsigned NumParts, 193 MVT PartVT, EVT ValueVT, const Value *V, 194 Optional<ISD::NodeType> AssertOp = None, 195 bool IsABIRegCopy = false) { 196 if (ValueVT.isVector()) 197 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 198 PartVT, ValueVT, V, IsABIRegCopy); 199 200 assert(NumParts > 0 && "No parts to assemble!"); 201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 202 SDValue Val = Parts[0]; 203 204 if (NumParts > 1) { 205 // Assemble the value from multiple parts. 206 if (ValueVT.isInteger()) { 207 unsigned PartBits = PartVT.getSizeInBits(); 208 unsigned ValueBits = ValueVT.getSizeInBits(); 209 210 // Assemble the power of 2 part. 211 unsigned RoundParts = NumParts & (NumParts - 1) ? 212 1 << Log2_32(NumParts) : NumParts; 213 unsigned RoundBits = PartBits * RoundParts; 214 EVT RoundVT = RoundBits == ValueBits ? 215 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 216 SDValue Lo, Hi; 217 218 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 219 220 if (RoundParts > 2) { 221 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 222 PartVT, HalfVT, V); 223 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 224 RoundParts / 2, PartVT, HalfVT, V); 225 } else { 226 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 227 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 228 } 229 230 if (DAG.getDataLayout().isBigEndian()) 231 std::swap(Lo, Hi); 232 233 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 234 235 if (RoundParts < NumParts) { 236 // Assemble the trailing non-power-of-2 part. 237 unsigned OddParts = NumParts - RoundParts; 238 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 239 Hi = getCopyFromParts(DAG, DL, 240 Parts + RoundParts, OddParts, PartVT, OddVT, V); 241 242 // Combine the round and odd parts. 243 Lo = Val; 244 if (DAG.getDataLayout().isBigEndian()) 245 std::swap(Lo, Hi); 246 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 247 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 248 Hi = 249 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 250 DAG.getConstant(Lo.getValueSizeInBits(), DL, 251 TLI.getPointerTy(DAG.getDataLayout()))); 252 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 253 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 254 } 255 } else if (PartVT.isFloatingPoint()) { 256 // FP split into multiple FP parts (for ppcf128) 257 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 258 "Unexpected split"); 259 SDValue Lo, Hi; 260 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 261 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 262 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 263 std::swap(Lo, Hi); 264 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 265 } else { 266 // FP split into integer parts (soft fp) 267 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 268 !PartVT.isVector() && "Unexpected split"); 269 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 271 } 272 } 273 274 // There is now one part, held in Val. Correct it to match ValueVT. 275 // PartEVT is the type of the register class that holds the value. 276 // ValueVT is the type of the inline asm operation. 277 EVT PartEVT = Val.getValueType(); 278 279 if (PartEVT == ValueVT) 280 return Val; 281 282 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 283 ValueVT.bitsLT(PartEVT)) { 284 // For an FP value in an integer part, we need to truncate to the right 285 // width first. 286 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 287 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 288 } 289 290 // Handle types that have the same size. 291 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 292 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 293 294 // Handle types with different sizes. 295 if (PartEVT.isInteger() && ValueVT.isInteger()) { 296 if (ValueVT.bitsLT(PartEVT)) { 297 // For a truncate, see if we have any information to 298 // indicate whether the truncated bits will always be 299 // zero or sign-extension. 300 if (AssertOp.hasValue()) 301 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 302 DAG.getValueType(ValueVT)); 303 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 304 } 305 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 306 } 307 308 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 309 // FP_ROUND's are always exact here. 310 if (ValueVT.bitsLT(Val.getValueType())) 311 return DAG.getNode( 312 ISD::FP_ROUND, DL, ValueVT, Val, 313 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 314 315 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 316 } 317 318 llvm_unreachable("Unknown mismatch!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (isa<InlineAsm>(CI->getCalledValue())) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 bool IsABIRegCopy) { 344 assert(ValueVT.isVector() && "Not a vector value"); 345 assert(NumParts > 0 && "No parts to assemble!"); 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 359 RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 380 PartVT, IntermediateVT, V); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 389 PartVT, IntermediateVT, V); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 396 (IntermediateVT.isVector() 397 ? IntermediateVT.getVectorNumElements() * NumParts 398 : NumIntermediates)); 399 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 400 : ISD::BUILD_VECTOR, 401 DL, BuiltVectorTy, Ops); 402 } 403 404 // There is now one part, held in Val. Correct it to match ValueVT. 405 EVT PartEVT = Val.getValueType(); 406 407 if (PartEVT == ValueVT) 408 return Val; 409 410 if (PartEVT.isVector()) { 411 // If the element type of the source/dest vectors are the same, but the 412 // parts vector has more elements than the value vector, then we have a 413 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 414 // elements we want. 415 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 416 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 417 "Cannot narrow, it would be a lossy transformation"); 418 return DAG.getNode( 419 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 420 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 421 } 422 423 // Vector/Vector bitcast. 424 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 425 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 426 427 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 428 "Cannot handle this kind of promotion"); 429 // Promoted vector extract 430 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 431 432 } 433 434 // Trivial bitcast if the types are the same size and the destination 435 // vector type is legal. 436 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 437 TLI.isTypeLegal(ValueVT)) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 if (ValueVT.getVectorNumElements() != 1) { 441 // Certain ABIs require that vectors are passed as integers. For vectors 442 // are the same size, this is an obvious bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 446 // Bitcast Val back the original type and extract the corresponding 447 // vector we want. 448 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 449 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 450 ValueVT.getVectorElementType(), Elts); 451 Val = DAG.getBitcast(WiderVecType, Val); 452 return DAG.getNode( 453 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 454 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 455 } 456 457 diagnosePossiblyInvalidConstraint( 458 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 459 return DAG.getUNDEF(ValueVT); 460 } 461 462 // Handle cases such as i8 -> <1 x i1> 463 EVT ValueSVT = ValueVT.getVectorElementType(); 464 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 465 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 468 return DAG.getBuildVector(ValueVT, DL, Val); 469 } 470 471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V, bool IsABIRegCopy); 474 475 /// getCopyToParts - Create a series of nodes that contain the specified value 476 /// split into legal parts. If the parts contain more bits than Val, then, for 477 /// integers, ExtendKind can be used to specify how to generate the extra bits. 478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 479 SDValue *Parts, unsigned NumParts, MVT PartVT, 480 const Value *V, 481 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 482 bool IsABIRegCopy = false) { 483 EVT ValueVT = Val.getValueType(); 484 485 // Handle the vector case separately. 486 if (ValueVT.isVector()) 487 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 488 IsABIRegCopy); 489 490 unsigned PartBits = PartVT.getSizeInBits(); 491 unsigned OrigNumParts = NumParts; 492 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 493 "Copying to an illegal type!"); 494 495 if (NumParts == 0) 496 return; 497 498 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 499 EVT PartEVT = PartVT; 500 if (PartEVT == ValueVT) { 501 assert(NumParts == 1 && "No-op copy with multiple parts!"); 502 Parts[0] = Val; 503 return; 504 } 505 506 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 507 // If the parts cover more bits than the value has, promote the value. 508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 509 assert(NumParts == 1 && "Do not know what to promote to!"); 510 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 511 } else { 512 if (ValueVT.isFloatingPoint()) { 513 // FP values need to be bitcast, then extended if they are being put 514 // into a larger container. 515 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 516 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 517 } 518 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 519 ValueVT.isInteger() && 520 "Unknown mismatch!"); 521 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 522 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 523 if (PartVT == MVT::x86mmx) 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } 526 } else if (PartBits == ValueVT.getSizeInBits()) { 527 // Different types of the same size. 528 assert(NumParts == 1 && PartEVT != ValueVT); 529 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 530 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 531 // If the parts cover less bits than value has, truncate the value. 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 541 // The value may have changed - recompute ValueVT. 542 ValueVT = Val.getValueType(); 543 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 544 "Failed to tile the value with PartVT!"); 545 546 if (NumParts == 1) { 547 if (PartEVT != ValueVT) { 548 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 549 "scalar-to-vector conversion failed"); 550 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 551 } 552 553 Parts[0] = Val; 554 return; 555 } 556 557 // Expand the value into multiple parts. 558 if (NumParts & (NumParts - 1)) { 559 // The number of parts is not a power of 2. Split off and copy the tail. 560 assert(PartVT.isInteger() && ValueVT.isInteger() && 561 "Do not know what to expand to!"); 562 unsigned RoundParts = 1 << Log2_32(NumParts); 563 unsigned RoundBits = RoundParts * PartBits; 564 unsigned OddParts = NumParts - RoundParts; 565 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 566 DAG.getIntPtrConstant(RoundBits, DL)); 567 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 568 569 if (DAG.getDataLayout().isBigEndian()) 570 // The odd parts were reversed by getCopyToParts - unreverse them. 571 std::reverse(Parts + RoundParts, Parts + NumParts); 572 573 NumParts = RoundParts; 574 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 575 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 576 } 577 578 // The number of parts is a power of 2. Repeatedly bisect the value using 579 // EXTRACT_ELEMENT. 580 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 581 EVT::getIntegerVT(*DAG.getContext(), 582 ValueVT.getSizeInBits()), 583 Val); 584 585 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 586 for (unsigned i = 0; i < NumParts; i += StepSize) { 587 unsigned ThisBits = StepSize * PartBits / 2; 588 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 589 SDValue &Part0 = Parts[i]; 590 SDValue &Part1 = Parts[i+StepSize/2]; 591 592 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 594 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 595 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 596 597 if (ThisBits == PartBits && ThisVT != PartVT) { 598 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 599 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 600 } 601 } 602 } 603 604 if (DAG.getDataLayout().isBigEndian()) 605 std::reverse(Parts, Parts + OrigNumParts); 606 } 607 608 609 /// getCopyToPartsVector - Create a series of nodes that contain the specified 610 /// value split into legal parts. 611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 612 SDValue Val, SDValue *Parts, unsigned NumParts, 613 MVT PartVT, const Value *V, 614 bool IsABIRegCopy) { 615 EVT ValueVT = Val.getValueType(); 616 assert(ValueVT.isVector() && "Not a vector"); 617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 618 619 if (NumParts == 1) { 620 EVT PartEVT = PartVT; 621 if (PartEVT == ValueVT) { 622 // Nothing to do. 623 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 624 // Bitconvert vector->vector case. 625 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 626 } else if (PartVT.isVector() && 627 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 628 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 634 Ops.push_back(DAG.getNode( 635 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 636 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 637 638 for (unsigned i = ValueVT.getVectorNumElements(), 639 e = PartVT.getVectorNumElements(); i != e; ++i) 640 Ops.push_back(DAG.getUNDEF(ElementVT)); 641 642 Val = DAG.getBuildVector(PartVT, DL, Ops); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 646 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 647 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 648 } else if (PartVT.isVector() && 649 PartEVT.getVectorElementType().bitsGE( 650 ValueVT.getVectorElementType()) && 651 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 652 653 // Promoted vector extract 654 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 655 } else { 656 if (ValueVT.getVectorNumElements() == 1) { 657 Val = DAG.getNode( 658 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 659 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 660 } else { 661 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 662 "lossy conversion of vector to scalar type"); 663 EVT IntermediateType = 664 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 665 Val = DAG.getBitcast(IntermediateType, Val); 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } 668 } 669 670 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 671 Parts[0] = Val; 672 return; 673 } 674 675 // Handle a multi-element vector. 676 EVT IntermediateVT; 677 MVT RegisterVT; 678 unsigned NumIntermediates; 679 unsigned NumRegs; 680 if (IsABIRegCopy) { 681 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 682 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 683 RegisterVT); 684 } else { 685 NumRegs = 686 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 687 NumIntermediates, RegisterVT); 688 } 689 unsigned NumElements = ValueVT.getVectorNumElements(); 690 691 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 692 NumParts = NumRegs; // Silence a compiler warning. 693 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 694 695 // Convert the vector to the appropiate type if necessary. 696 unsigned DestVectorNoElts = 697 NumIntermediates * 698 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 699 EVT BuiltVectorTy = EVT::getVectorVT( 700 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 701 if (Val.getValueType() != BuiltVectorTy) 702 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 703 704 // Split the vector into intermediate operands. 705 SmallVector<SDValue, 8> Ops(NumIntermediates); 706 for (unsigned i = 0; i != NumIntermediates; ++i) { 707 if (IntermediateVT.isVector()) 708 Ops[i] = 709 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 710 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 711 TLI.getVectorIdxTy(DAG.getDataLayout()))); 712 else 713 Ops[i] = DAG.getNode( 714 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 715 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 716 } 717 718 // Split the intermediate operands into legal parts. 719 if (NumParts == NumIntermediates) { 720 // If the register was not expanded, promote or copy the value, 721 // as appropriate. 722 for (unsigned i = 0; i != NumParts; ++i) 723 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 724 } else if (NumParts > 0) { 725 // If the intermediate type was expanded, split each the value into 726 // legal parts. 727 assert(NumIntermediates != 0 && "division by zero"); 728 assert(NumParts % NumIntermediates == 0 && 729 "Must expand into a divisible number of parts!"); 730 unsigned Factor = NumParts / NumIntermediates; 731 for (unsigned i = 0; i != NumIntermediates; ++i) 732 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 733 } 734 } 735 736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 737 EVT valuevt, bool IsABIMangledValue) 738 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 739 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 740 741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 742 const DataLayout &DL, unsigned Reg, Type *Ty, 743 bool IsABIMangledValue) { 744 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 745 746 IsABIMangled = IsABIMangledValue; 747 748 for (EVT ValueVT : ValueVTs) { 749 unsigned NumRegs = IsABIMangledValue 750 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 751 : TLI.getNumRegisters(Context, ValueVT); 752 MVT RegisterVT = IsABIMangledValue 753 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 754 : TLI.getRegisterType(Context, ValueVT); 755 for (unsigned i = 0; i != NumRegs; ++i) 756 Regs.push_back(Reg + i); 757 RegVTs.push_back(RegisterVT); 758 RegCount.push_back(NumRegs); 759 Reg += NumRegs; 760 } 761 } 762 763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 764 FunctionLoweringInfo &FuncInfo, 765 const SDLoc &dl, SDValue &Chain, 766 SDValue *Flag, const Value *V) const { 767 // A Value with type {} or [0 x %t] needs no registers. 768 if (ValueVTs.empty()) 769 return SDValue(); 770 771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 772 773 // Assemble the legal parts into the final values. 774 SmallVector<SDValue, 4> Values(ValueVTs.size()); 775 SmallVector<SDValue, 8> Parts; 776 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 777 // Copy the legal parts from the registers. 778 EVT ValueVT = ValueVTs[Value]; 779 unsigned NumRegs = RegCount[Value]; 780 MVT RegisterVT = IsABIMangled 781 ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value]) 782 : RegVTs[Value]; 783 784 Parts.resize(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue P; 787 if (!Flag) { 788 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 789 } else { 790 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 791 *Flag = P.getValue(2); 792 } 793 794 Chain = P.getValue(1); 795 Parts[i] = P; 796 797 // If the source register was virtual and if we know something about it, 798 // add an assert node. 799 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 800 !RegisterVT.isInteger() || RegisterVT.isVector()) 801 continue; 802 803 const FunctionLoweringInfo::LiveOutInfo *LOI = 804 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 805 if (!LOI) 806 continue; 807 808 unsigned RegSize = RegisterVT.getSizeInBits(); 809 unsigned NumSignBits = LOI->NumSignBits; 810 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 811 812 if (NumZeroBits == RegSize) { 813 // The current value is a zero. 814 // Explicitly express that as it would be easier for 815 // optimizations to kick in. 816 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 817 continue; 818 } 819 820 // FIXME: We capture more information than the dag can represent. For 821 // now, just use the tightest assertzext/assertsext possible. 822 bool isSExt; 823 EVT FromVT(MVT::Other); 824 if (NumZeroBits) { 825 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 826 isSExt = false; 827 } else if (NumSignBits > 1) { 828 FromVT = 829 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 830 isSExt = true; 831 } else { 832 continue; 833 } 834 // Add an assertion node. 835 assert(FromVT != MVT::Other); 836 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 837 RegisterVT, P, DAG.getValueType(FromVT)); 838 } 839 840 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 841 NumRegs, RegisterVT, ValueVT, V); 842 Part += NumRegs; 843 Parts.clear(); 844 } 845 846 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 847 } 848 849 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 850 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 851 const Value *V, 852 ISD::NodeType PreferredExtendType) const { 853 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 854 ISD::NodeType ExtendKind = PreferredExtendType; 855 856 // Get the list of the values's legal parts. 857 unsigned NumRegs = Regs.size(); 858 SmallVector<SDValue, 8> Parts(NumRegs); 859 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 860 unsigned NumParts = RegCount[Value]; 861 862 MVT RegisterVT = IsABIMangled 863 ? TLI.getRegisterTypeForCallingConv(*DAG.getContext(), RegVTs[Value]) 864 : RegVTs[Value]; 865 866 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 867 ExtendKind = ISD::ZERO_EXTEND; 868 869 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 870 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 871 Part += NumParts; 872 } 873 874 // Copy the parts into the registers. 875 SmallVector<SDValue, 8> Chains(NumRegs); 876 for (unsigned i = 0; i != NumRegs; ++i) { 877 SDValue Part; 878 if (!Flag) { 879 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 880 } else { 881 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 882 *Flag = Part.getValue(1); 883 } 884 885 Chains[i] = Part.getValue(0); 886 } 887 888 if (NumRegs == 1 || Flag) 889 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 890 // flagged to it. That is the CopyToReg nodes and the user are considered 891 // a single scheduling unit. If we create a TokenFactor and return it as 892 // chain, then the TokenFactor is both a predecessor (operand) of the 893 // user as well as a successor (the TF operands are flagged to the user). 894 // c1, f1 = CopyToReg 895 // c2, f2 = CopyToReg 896 // c3 = TokenFactor c1, c2 897 // ... 898 // = op c3, ..., f2 899 Chain = Chains[NumRegs-1]; 900 else 901 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 902 } 903 904 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 905 unsigned MatchingIdx, const SDLoc &dl, 906 SelectionDAG &DAG, 907 std::vector<SDValue> &Ops) const { 908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 909 910 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 911 if (HasMatching) 912 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 913 else if (!Regs.empty() && 914 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 915 // Put the register class of the virtual registers in the flag word. That 916 // way, later passes can recompute register class constraints for inline 917 // assembly as well as normal instructions. 918 // Don't do this for tied operands that can use the regclass information 919 // from the def. 920 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 921 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 922 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 923 } 924 925 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 926 Ops.push_back(Res); 927 928 if (Code == InlineAsm::Kind_Clobber) { 929 // Clobbers should always have a 1:1 mapping with registers, and may 930 // reference registers that have illegal (e.g. vector) types. Hence, we 931 // shouldn't try to apply any sort of splitting logic to them. 932 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 933 "No 1:1 mapping from clobbers to regs?"); 934 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 935 (void)SP; 936 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 937 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 938 assert( 939 (Regs[I] != SP || 940 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 941 "If we clobbered the stack pointer, MFI should know about it."); 942 } 943 return; 944 } 945 946 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 947 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 948 MVT RegisterVT = RegVTs[Value]; 949 for (unsigned i = 0; i != NumRegs; ++i) { 950 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 951 unsigned TheReg = Regs[Reg++]; 952 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 953 } 954 } 955 } 956 957 SmallVector<std::pair<unsigned, unsigned>, 4> 958 RegsForValue::getRegsAndSizes() const { 959 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 960 unsigned I = 0; 961 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 962 unsigned RegCount = std::get<0>(CountAndVT); 963 MVT RegisterVT = std::get<1>(CountAndVT); 964 unsigned RegisterSize = RegisterVT.getSizeInBits(); 965 for (unsigned E = I + RegCount; I != E; ++I) 966 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 967 } 968 return OutVec; 969 } 970 971 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 972 const TargetLibraryInfo *li) { 973 AA = aa; 974 GFI = gfi; 975 LibInfo = li; 976 DL = &DAG.getDataLayout(); 977 Context = DAG.getContext(); 978 LPadToCallSiteMap.clear(); 979 } 980 981 void SelectionDAGBuilder::clear() { 982 NodeMap.clear(); 983 UnusedArgNodeMap.clear(); 984 PendingLoads.clear(); 985 PendingExports.clear(); 986 CurInst = nullptr; 987 HasTailCall = false; 988 SDNodeOrder = LowestSDNodeOrder; 989 StatepointLowering.clear(); 990 } 991 992 void SelectionDAGBuilder::clearDanglingDebugInfo() { 993 DanglingDebugInfoMap.clear(); 994 } 995 996 SDValue SelectionDAGBuilder::getRoot() { 997 if (PendingLoads.empty()) 998 return DAG.getRoot(); 999 1000 if (PendingLoads.size() == 1) { 1001 SDValue Root = PendingLoads[0]; 1002 DAG.setRoot(Root); 1003 PendingLoads.clear(); 1004 return Root; 1005 } 1006 1007 // Otherwise, we have to make a token factor node. 1008 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1009 PendingLoads); 1010 PendingLoads.clear(); 1011 DAG.setRoot(Root); 1012 return Root; 1013 } 1014 1015 SDValue SelectionDAGBuilder::getControlRoot() { 1016 SDValue Root = DAG.getRoot(); 1017 1018 if (PendingExports.empty()) 1019 return Root; 1020 1021 // Turn all of the CopyToReg chains into one factored node. 1022 if (Root.getOpcode() != ISD::EntryToken) { 1023 unsigned i = 0, e = PendingExports.size(); 1024 for (; i != e; ++i) { 1025 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1026 if (PendingExports[i].getNode()->getOperand(0) == Root) 1027 break; // Don't add the root if we already indirectly depend on it. 1028 } 1029 1030 if (i == e) 1031 PendingExports.push_back(Root); 1032 } 1033 1034 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1035 PendingExports); 1036 PendingExports.clear(); 1037 DAG.setRoot(Root); 1038 return Root; 1039 } 1040 1041 void SelectionDAGBuilder::visit(const Instruction &I) { 1042 // Set up outgoing PHI node register values before emitting the terminator. 1043 if (isa<TerminatorInst>(&I)) { 1044 HandlePHINodesInSuccessorBlocks(I.getParent()); 1045 } 1046 1047 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1048 if (!isa<DbgInfoIntrinsic>(I)) 1049 ++SDNodeOrder; 1050 1051 CurInst = &I; 1052 1053 visit(I.getOpcode(), I); 1054 1055 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1056 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1057 // maps to this instruction. 1058 // TODO: We could handle all flags (nsw, etc) here. 1059 // TODO: If an IR instruction maps to >1 node, only the final node will have 1060 // flags set. 1061 if (SDNode *Node = getNodeForIRValue(&I)) { 1062 SDNodeFlags IncomingFlags; 1063 IncomingFlags.copyFMF(*FPMO); 1064 if (!Node->getFlags().isDefined()) 1065 Node->setFlags(IncomingFlags); 1066 else 1067 Node->intersectFlagsWith(IncomingFlags); 1068 } 1069 } 1070 1071 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1072 !isStatepoint(&I)) // statepoints handle their exports internally 1073 CopyToExportRegsIfNeeded(&I); 1074 1075 CurInst = nullptr; 1076 } 1077 1078 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1079 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1080 } 1081 1082 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1083 // Note: this doesn't use InstVisitor, because it has to work with 1084 // ConstantExpr's in addition to instructions. 1085 switch (Opcode) { 1086 default: llvm_unreachable("Unknown instruction type encountered!"); 1087 // Build the switch statement using the Instruction.def file. 1088 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1089 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1090 #include "llvm/IR/Instruction.def" 1091 } 1092 } 1093 1094 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1095 const DIExpression *Expr) { 1096 for (auto &DDIMI : DanglingDebugInfoMap) 1097 for (auto &DDI : DDIMI.second) 1098 if (DDI.getDI()) { 1099 const DbgValueInst *DI = DDI.getDI(); 1100 DIVariable *DanglingVariable = DI->getVariable(); 1101 DIExpression *DanglingExpr = DI->getExpression(); 1102 if (DanglingVariable == Variable && 1103 Expr->fragmentsOverlap(DanglingExpr)) { 1104 LLVM_DEBUG(dbgs() 1105 << "Dropping dangling debug info for " << *DI << "\n"); 1106 DDI = DanglingDebugInfo(); 1107 } 1108 } 1109 } 1110 1111 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1112 // generate the debug data structures now that we've seen its definition. 1113 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1114 SDValue Val) { 1115 DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V]; 1116 for (auto &DDI : DDIV) { 1117 if (!DDI.getDI()) 1118 continue; 1119 const DbgValueInst *DI = DDI.getDI(); 1120 DebugLoc dl = DDI.getdl(); 1121 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1122 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1123 DILocalVariable *Variable = DI->getVariable(); 1124 DIExpression *Expr = DI->getExpression(); 1125 assert(Variable->isValidLocationForIntrinsic(dl) && 1126 "Expected inlined-at fields to agree"); 1127 SDDbgValue *SDV; 1128 if (Val.getNode()) { 1129 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1130 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1131 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1132 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1133 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1134 // inserted after the definition of Val when emitting the instructions 1135 // after ISel. An alternative could be to teach 1136 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1137 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1138 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1139 << ValSDNodeOrder << "\n"); 1140 SDV = getDbgValue(Val, Variable, Expr, dl, 1141 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1142 DAG.AddDbgValue(SDV, Val.getNode(), false); 1143 } else 1144 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1145 << "in EmitFuncArgumentDbgValue\n"); 1146 } else 1147 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1148 } 1149 DanglingDebugInfoMap[V].clear(); 1150 } 1151 1152 /// getCopyFromRegs - If there was virtual register allocated for the value V 1153 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1154 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1155 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1156 SDValue Result; 1157 1158 if (It != FuncInfo.ValueMap.end()) { 1159 unsigned InReg = It->second; 1160 1161 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1162 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1163 SDValue Chain = DAG.getEntryNode(); 1164 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1165 V); 1166 resolveDanglingDebugInfo(V, Result); 1167 } 1168 1169 return Result; 1170 } 1171 1172 /// getValue - Return an SDValue for the given Value. 1173 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1174 // If we already have an SDValue for this value, use it. It's important 1175 // to do this first, so that we don't create a CopyFromReg if we already 1176 // have a regular SDValue. 1177 SDValue &N = NodeMap[V]; 1178 if (N.getNode()) return N; 1179 1180 // If there's a virtual register allocated and initialized for this 1181 // value, use it. 1182 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1183 return copyFromReg; 1184 1185 // Otherwise create a new SDValue and remember it. 1186 SDValue Val = getValueImpl(V); 1187 NodeMap[V] = Val; 1188 resolveDanglingDebugInfo(V, Val); 1189 return Val; 1190 } 1191 1192 // Return true if SDValue exists for the given Value 1193 bool SelectionDAGBuilder::findValue(const Value *V) const { 1194 return (NodeMap.find(V) != NodeMap.end()) || 1195 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1196 } 1197 1198 /// getNonRegisterValue - Return an SDValue for the given Value, but 1199 /// don't look in FuncInfo.ValueMap for a virtual register. 1200 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1201 // If we already have an SDValue for this value, use it. 1202 SDValue &N = NodeMap[V]; 1203 if (N.getNode()) { 1204 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1205 // Remove the debug location from the node as the node is about to be used 1206 // in a location which may differ from the original debug location. This 1207 // is relevant to Constant and ConstantFP nodes because they can appear 1208 // as constant expressions inside PHI nodes. 1209 N->setDebugLoc(DebugLoc()); 1210 } 1211 return N; 1212 } 1213 1214 // Otherwise create a new SDValue and remember it. 1215 SDValue Val = getValueImpl(V); 1216 NodeMap[V] = Val; 1217 resolveDanglingDebugInfo(V, Val); 1218 return Val; 1219 } 1220 1221 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1222 /// Create an SDValue for the given value. 1223 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1224 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1225 1226 if (const Constant *C = dyn_cast<Constant>(V)) { 1227 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1228 1229 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1230 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1231 1232 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1233 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1234 1235 if (isa<ConstantPointerNull>(C)) { 1236 unsigned AS = V->getType()->getPointerAddressSpace(); 1237 return DAG.getConstant(0, getCurSDLoc(), 1238 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1239 } 1240 1241 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1242 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1243 1244 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1245 return DAG.getUNDEF(VT); 1246 1247 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1248 visit(CE->getOpcode(), *CE); 1249 SDValue N1 = NodeMap[V]; 1250 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1251 return N1; 1252 } 1253 1254 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1255 SmallVector<SDValue, 4> Constants; 1256 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1257 OI != OE; ++OI) { 1258 SDNode *Val = getValue(*OI).getNode(); 1259 // If the operand is an empty aggregate, there are no values. 1260 if (!Val) continue; 1261 // Add each leaf value from the operand to the Constants list 1262 // to form a flattened list of all the values. 1263 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1264 Constants.push_back(SDValue(Val, i)); 1265 } 1266 1267 return DAG.getMergeValues(Constants, getCurSDLoc()); 1268 } 1269 1270 if (const ConstantDataSequential *CDS = 1271 dyn_cast<ConstantDataSequential>(C)) { 1272 SmallVector<SDValue, 4> Ops; 1273 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1274 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1275 // Add each leaf value from the operand to the Constants list 1276 // to form a flattened list of all the values. 1277 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1278 Ops.push_back(SDValue(Val, i)); 1279 } 1280 1281 if (isa<ArrayType>(CDS->getType())) 1282 return DAG.getMergeValues(Ops, getCurSDLoc()); 1283 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1284 } 1285 1286 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1287 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1288 "Unknown struct or array constant!"); 1289 1290 SmallVector<EVT, 4> ValueVTs; 1291 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1292 unsigned NumElts = ValueVTs.size(); 1293 if (NumElts == 0) 1294 return SDValue(); // empty struct 1295 SmallVector<SDValue, 4> Constants(NumElts); 1296 for (unsigned i = 0; i != NumElts; ++i) { 1297 EVT EltVT = ValueVTs[i]; 1298 if (isa<UndefValue>(C)) 1299 Constants[i] = DAG.getUNDEF(EltVT); 1300 else if (EltVT.isFloatingPoint()) 1301 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1302 else 1303 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1304 } 1305 1306 return DAG.getMergeValues(Constants, getCurSDLoc()); 1307 } 1308 1309 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1310 return DAG.getBlockAddress(BA, VT); 1311 1312 VectorType *VecTy = cast<VectorType>(V->getType()); 1313 unsigned NumElements = VecTy->getNumElements(); 1314 1315 // Now that we know the number and type of the elements, get that number of 1316 // elements into the Ops array based on what kind of constant it is. 1317 SmallVector<SDValue, 16> Ops; 1318 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1319 for (unsigned i = 0; i != NumElements; ++i) 1320 Ops.push_back(getValue(CV->getOperand(i))); 1321 } else { 1322 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1323 EVT EltVT = 1324 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1325 1326 SDValue Op; 1327 if (EltVT.isFloatingPoint()) 1328 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1329 else 1330 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1331 Ops.assign(NumElements, Op); 1332 } 1333 1334 // Create a BUILD_VECTOR node. 1335 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1336 } 1337 1338 // If this is a static alloca, generate it as the frameindex instead of 1339 // computation. 1340 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1341 DenseMap<const AllocaInst*, int>::iterator SI = 1342 FuncInfo.StaticAllocaMap.find(AI); 1343 if (SI != FuncInfo.StaticAllocaMap.end()) 1344 return DAG.getFrameIndex(SI->second, 1345 TLI.getFrameIndexTy(DAG.getDataLayout())); 1346 } 1347 1348 // If this is an instruction which fast-isel has deferred, select it now. 1349 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1350 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1351 1352 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1353 Inst->getType(), isABIRegCopy(V)); 1354 SDValue Chain = DAG.getEntryNode(); 1355 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1356 } 1357 1358 llvm_unreachable("Can't get register for value!"); 1359 } 1360 1361 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1362 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1363 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1364 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1365 bool IsSEH = isAsynchronousEHPersonality(Pers); 1366 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1367 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1368 if (!IsSEH) 1369 CatchPadMBB->setIsEHScopeEntry(); 1370 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1371 if (IsMSVCCXX || IsCoreCLR) 1372 CatchPadMBB->setIsEHFuncletEntry(); 1373 // Wasm does not need catchpads anymore 1374 if (!IsWasmCXX) 1375 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1376 getControlRoot())); 1377 } 1378 1379 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1380 // Update machine-CFG edge. 1381 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1382 FuncInfo.MBB->addSuccessor(TargetMBB); 1383 1384 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1385 bool IsSEH = isAsynchronousEHPersonality(Pers); 1386 if (IsSEH) { 1387 // If this is not a fall-through branch or optimizations are switched off, 1388 // emit the branch. 1389 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1390 TM.getOptLevel() == CodeGenOpt::None) 1391 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1392 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1393 return; 1394 } 1395 1396 // Figure out the funclet membership for the catchret's successor. 1397 // This will be used by the FuncletLayout pass to determine how to order the 1398 // BB's. 1399 // A 'catchret' returns to the outer scope's color. 1400 Value *ParentPad = I.getCatchSwitchParentPad(); 1401 const BasicBlock *SuccessorColor; 1402 if (isa<ConstantTokenNone>(ParentPad)) 1403 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1404 else 1405 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1406 assert(SuccessorColor && "No parent funclet for catchret!"); 1407 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1408 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1409 1410 // Create the terminator node. 1411 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1412 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1413 DAG.getBasicBlock(SuccessorColorMBB)); 1414 DAG.setRoot(Ret); 1415 } 1416 1417 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1418 // Don't emit any special code for the cleanuppad instruction. It just marks 1419 // the start of an EH scope/funclet. 1420 FuncInfo.MBB->setIsEHScopeEntry(); 1421 FuncInfo.MBB->setIsEHFuncletEntry(); 1422 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1423 } 1424 1425 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1426 /// many places it could ultimately go. In the IR, we have a single unwind 1427 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1428 /// This function skips over imaginary basic blocks that hold catchswitch 1429 /// instructions, and finds all the "real" machine 1430 /// basic block destinations. As those destinations may not be successors of 1431 /// EHPadBB, here we also calculate the edge probability to those destinations. 1432 /// The passed-in Prob is the edge probability to EHPadBB. 1433 static void findUnwindDestinations( 1434 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1435 BranchProbability Prob, 1436 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1437 &UnwindDests) { 1438 EHPersonality Personality = 1439 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1440 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1441 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1442 bool IsSEH = isAsynchronousEHPersonality(Personality); 1443 1444 while (EHPadBB) { 1445 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1446 BasicBlock *NewEHPadBB = nullptr; 1447 if (isa<LandingPadInst>(Pad)) { 1448 // Stop on landingpads. They are not funclets. 1449 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1450 break; 1451 } else if (isa<CleanupPadInst>(Pad)) { 1452 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1453 // personalities. 1454 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1455 UnwindDests.back().first->setIsEHScopeEntry(); 1456 UnwindDests.back().first->setIsEHFuncletEntry(); 1457 break; 1458 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1459 // Add the catchpad handlers to the possible destinations. 1460 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1461 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1462 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1463 if (IsMSVCCXX || IsCoreCLR) 1464 UnwindDests.back().first->setIsEHFuncletEntry(); 1465 if (!IsSEH) 1466 UnwindDests.back().first->setIsEHScopeEntry(); 1467 } 1468 NewEHPadBB = CatchSwitch->getUnwindDest(); 1469 } else { 1470 continue; 1471 } 1472 1473 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1474 if (BPI && NewEHPadBB) 1475 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1476 EHPadBB = NewEHPadBB; 1477 } 1478 } 1479 1480 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1481 // Update successor info. 1482 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1483 auto UnwindDest = I.getUnwindDest(); 1484 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1485 BranchProbability UnwindDestProb = 1486 (BPI && UnwindDest) 1487 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1488 : BranchProbability::getZero(); 1489 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1490 for (auto &UnwindDest : UnwindDests) { 1491 UnwindDest.first->setIsEHPad(); 1492 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1493 } 1494 FuncInfo.MBB->normalizeSuccProbs(); 1495 1496 // Create the terminator node. 1497 SDValue Ret = 1498 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1499 DAG.setRoot(Ret); 1500 } 1501 1502 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1503 report_fatal_error("visitCatchSwitch not yet implemented!"); 1504 } 1505 1506 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1508 auto &DL = DAG.getDataLayout(); 1509 SDValue Chain = getControlRoot(); 1510 SmallVector<ISD::OutputArg, 8> Outs; 1511 SmallVector<SDValue, 8> OutVals; 1512 1513 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1514 // lower 1515 // 1516 // %val = call <ty> @llvm.experimental.deoptimize() 1517 // ret <ty> %val 1518 // 1519 // differently. 1520 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1521 LowerDeoptimizingReturn(); 1522 return; 1523 } 1524 1525 if (!FuncInfo.CanLowerReturn) { 1526 unsigned DemoteReg = FuncInfo.DemoteRegister; 1527 const Function *F = I.getParent()->getParent(); 1528 1529 // Emit a store of the return value through the virtual register. 1530 // Leave Outs empty so that LowerReturn won't try to load return 1531 // registers the usual way. 1532 SmallVector<EVT, 1> PtrValueVTs; 1533 ComputeValueVTs(TLI, DL, 1534 F->getReturnType()->getPointerTo( 1535 DAG.getDataLayout().getAllocaAddrSpace()), 1536 PtrValueVTs); 1537 1538 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1539 DemoteReg, PtrValueVTs[0]); 1540 SDValue RetOp = getValue(I.getOperand(0)); 1541 1542 SmallVector<EVT, 4> ValueVTs; 1543 SmallVector<uint64_t, 4> Offsets; 1544 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1545 unsigned NumValues = ValueVTs.size(); 1546 1547 SmallVector<SDValue, 4> Chains(NumValues); 1548 for (unsigned i = 0; i != NumValues; ++i) { 1549 // An aggregate return value cannot wrap around the address space, so 1550 // offsets to its parts don't wrap either. 1551 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1552 Chains[i] = DAG.getStore( 1553 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1554 // FIXME: better loc info would be nice. 1555 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1556 } 1557 1558 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1559 MVT::Other, Chains); 1560 } else if (I.getNumOperands() != 0) { 1561 SmallVector<EVT, 4> ValueVTs; 1562 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1563 unsigned NumValues = ValueVTs.size(); 1564 if (NumValues) { 1565 SDValue RetOp = getValue(I.getOperand(0)); 1566 1567 const Function *F = I.getParent()->getParent(); 1568 1569 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1570 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1571 Attribute::SExt)) 1572 ExtendKind = ISD::SIGN_EXTEND; 1573 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1574 Attribute::ZExt)) 1575 ExtendKind = ISD::ZERO_EXTEND; 1576 1577 LLVMContext &Context = F->getContext(); 1578 bool RetInReg = F->getAttributes().hasAttribute( 1579 AttributeList::ReturnIndex, Attribute::InReg); 1580 1581 for (unsigned j = 0; j != NumValues; ++j) { 1582 EVT VT = ValueVTs[j]; 1583 1584 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1585 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1586 1587 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1588 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1589 SmallVector<SDValue, 4> Parts(NumParts); 1590 getCopyToParts(DAG, getCurSDLoc(), 1591 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1592 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1593 1594 // 'inreg' on function refers to return value 1595 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1596 if (RetInReg) 1597 Flags.setInReg(); 1598 1599 // Propagate extension type if any 1600 if (ExtendKind == ISD::SIGN_EXTEND) 1601 Flags.setSExt(); 1602 else if (ExtendKind == ISD::ZERO_EXTEND) 1603 Flags.setZExt(); 1604 1605 for (unsigned i = 0; i < NumParts; ++i) { 1606 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1607 VT, /*isfixed=*/true, 0, 0)); 1608 OutVals.push_back(Parts[i]); 1609 } 1610 } 1611 } 1612 } 1613 1614 // Push in swifterror virtual register as the last element of Outs. This makes 1615 // sure swifterror virtual register will be returned in the swifterror 1616 // physical register. 1617 const Function *F = I.getParent()->getParent(); 1618 if (TLI.supportSwiftError() && 1619 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1620 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1621 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1622 Flags.setSwiftError(); 1623 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1624 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1625 true /*isfixed*/, 1 /*origidx*/, 1626 0 /*partOffs*/)); 1627 // Create SDNode for the swifterror virtual register. 1628 OutVals.push_back( 1629 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1630 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1631 EVT(TLI.getPointerTy(DL)))); 1632 } 1633 1634 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1635 CallingConv::ID CallConv = 1636 DAG.getMachineFunction().getFunction().getCallingConv(); 1637 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1638 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1639 1640 // Verify that the target's LowerReturn behaved as expected. 1641 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1642 "LowerReturn didn't return a valid chain!"); 1643 1644 // Update the DAG with the new chain value resulting from return lowering. 1645 DAG.setRoot(Chain); 1646 } 1647 1648 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1649 /// created for it, emit nodes to copy the value into the virtual 1650 /// registers. 1651 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1652 // Skip empty types 1653 if (V->getType()->isEmptyTy()) 1654 return; 1655 1656 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1657 if (VMI != FuncInfo.ValueMap.end()) { 1658 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1659 CopyValueToVirtualRegister(V, VMI->second); 1660 } 1661 } 1662 1663 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1664 /// the current basic block, add it to ValueMap now so that we'll get a 1665 /// CopyTo/FromReg. 1666 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1667 // No need to export constants. 1668 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1669 1670 // Already exported? 1671 if (FuncInfo.isExportedInst(V)) return; 1672 1673 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1674 CopyValueToVirtualRegister(V, Reg); 1675 } 1676 1677 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1678 const BasicBlock *FromBB) { 1679 // The operands of the setcc have to be in this block. We don't know 1680 // how to export them from some other block. 1681 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1682 // Can export from current BB. 1683 if (VI->getParent() == FromBB) 1684 return true; 1685 1686 // Is already exported, noop. 1687 return FuncInfo.isExportedInst(V); 1688 } 1689 1690 // If this is an argument, we can export it if the BB is the entry block or 1691 // if it is already exported. 1692 if (isa<Argument>(V)) { 1693 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1694 return true; 1695 1696 // Otherwise, can only export this if it is already exported. 1697 return FuncInfo.isExportedInst(V); 1698 } 1699 1700 // Otherwise, constants can always be exported. 1701 return true; 1702 } 1703 1704 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1705 BranchProbability 1706 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1707 const MachineBasicBlock *Dst) const { 1708 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1709 const BasicBlock *SrcBB = Src->getBasicBlock(); 1710 const BasicBlock *DstBB = Dst->getBasicBlock(); 1711 if (!BPI) { 1712 // If BPI is not available, set the default probability as 1 / N, where N is 1713 // the number of successors. 1714 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1715 return BranchProbability(1, SuccSize); 1716 } 1717 return BPI->getEdgeProbability(SrcBB, DstBB); 1718 } 1719 1720 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1721 MachineBasicBlock *Dst, 1722 BranchProbability Prob) { 1723 if (!FuncInfo.BPI) 1724 Src->addSuccessorWithoutProb(Dst); 1725 else { 1726 if (Prob.isUnknown()) 1727 Prob = getEdgeProbability(Src, Dst); 1728 Src->addSuccessor(Dst, Prob); 1729 } 1730 } 1731 1732 static bool InBlock(const Value *V, const BasicBlock *BB) { 1733 if (const Instruction *I = dyn_cast<Instruction>(V)) 1734 return I->getParent() == BB; 1735 return true; 1736 } 1737 1738 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1739 /// This function emits a branch and is used at the leaves of an OR or an 1740 /// AND operator tree. 1741 void 1742 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1743 MachineBasicBlock *TBB, 1744 MachineBasicBlock *FBB, 1745 MachineBasicBlock *CurBB, 1746 MachineBasicBlock *SwitchBB, 1747 BranchProbability TProb, 1748 BranchProbability FProb, 1749 bool InvertCond) { 1750 const BasicBlock *BB = CurBB->getBasicBlock(); 1751 1752 // If the leaf of the tree is a comparison, merge the condition into 1753 // the caseblock. 1754 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1755 // The operands of the cmp have to be in this block. We don't know 1756 // how to export them from some other block. If this is the first block 1757 // of the sequence, no exporting is needed. 1758 if (CurBB == SwitchBB || 1759 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1760 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1761 ISD::CondCode Condition; 1762 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1763 ICmpInst::Predicate Pred = 1764 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1765 Condition = getICmpCondCode(Pred); 1766 } else { 1767 const FCmpInst *FC = cast<FCmpInst>(Cond); 1768 FCmpInst::Predicate Pred = 1769 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1770 Condition = getFCmpCondCode(Pred); 1771 if (TM.Options.NoNaNsFPMath) 1772 Condition = getFCmpCodeWithoutNaN(Condition); 1773 } 1774 1775 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1776 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1777 SwitchCases.push_back(CB); 1778 return; 1779 } 1780 } 1781 1782 // Create a CaseBlock record representing this branch. 1783 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1784 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1785 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1786 SwitchCases.push_back(CB); 1787 } 1788 1789 /// FindMergedConditions - If Cond is an expression like 1790 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1791 MachineBasicBlock *TBB, 1792 MachineBasicBlock *FBB, 1793 MachineBasicBlock *CurBB, 1794 MachineBasicBlock *SwitchBB, 1795 Instruction::BinaryOps Opc, 1796 BranchProbability TProb, 1797 BranchProbability FProb, 1798 bool InvertCond) { 1799 // Skip over not part of the tree and remember to invert op and operands at 1800 // next level. 1801 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1802 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1803 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1804 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1805 !InvertCond); 1806 return; 1807 } 1808 } 1809 1810 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1811 // Compute the effective opcode for Cond, taking into account whether it needs 1812 // to be inverted, e.g. 1813 // and (not (or A, B)), C 1814 // gets lowered as 1815 // and (and (not A, not B), C) 1816 unsigned BOpc = 0; 1817 if (BOp) { 1818 BOpc = BOp->getOpcode(); 1819 if (InvertCond) { 1820 if (BOpc == Instruction::And) 1821 BOpc = Instruction::Or; 1822 else if (BOpc == Instruction::Or) 1823 BOpc = Instruction::And; 1824 } 1825 } 1826 1827 // If this node is not part of the or/and tree, emit it as a branch. 1828 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1829 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1830 BOp->getParent() != CurBB->getBasicBlock() || 1831 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1832 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1833 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1834 TProb, FProb, InvertCond); 1835 return; 1836 } 1837 1838 // Create TmpBB after CurBB. 1839 MachineFunction::iterator BBI(CurBB); 1840 MachineFunction &MF = DAG.getMachineFunction(); 1841 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1842 CurBB->getParent()->insert(++BBI, TmpBB); 1843 1844 if (Opc == Instruction::Or) { 1845 // Codegen X | Y as: 1846 // BB1: 1847 // jmp_if_X TBB 1848 // jmp TmpBB 1849 // TmpBB: 1850 // jmp_if_Y TBB 1851 // jmp FBB 1852 // 1853 1854 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1855 // The requirement is that 1856 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1857 // = TrueProb for original BB. 1858 // Assuming the original probabilities are A and B, one choice is to set 1859 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1860 // A/(1+B) and 2B/(1+B). This choice assumes that 1861 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1862 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1863 // TmpBB, but the math is more complicated. 1864 1865 auto NewTrueProb = TProb / 2; 1866 auto NewFalseProb = TProb / 2 + FProb; 1867 // Emit the LHS condition. 1868 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1869 NewTrueProb, NewFalseProb, InvertCond); 1870 1871 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1872 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1873 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1874 // Emit the RHS condition into TmpBB. 1875 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1876 Probs[0], Probs[1], InvertCond); 1877 } else { 1878 assert(Opc == Instruction::And && "Unknown merge op!"); 1879 // Codegen X & Y as: 1880 // BB1: 1881 // jmp_if_X TmpBB 1882 // jmp FBB 1883 // TmpBB: 1884 // jmp_if_Y TBB 1885 // jmp FBB 1886 // 1887 // This requires creation of TmpBB after CurBB. 1888 1889 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1890 // The requirement is that 1891 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1892 // = FalseProb for original BB. 1893 // Assuming the original probabilities are A and B, one choice is to set 1894 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1895 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1896 // TrueProb for BB1 * FalseProb for TmpBB. 1897 1898 auto NewTrueProb = TProb + FProb / 2; 1899 auto NewFalseProb = FProb / 2; 1900 // Emit the LHS condition. 1901 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1902 NewTrueProb, NewFalseProb, InvertCond); 1903 1904 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1905 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1906 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1907 // Emit the RHS condition into TmpBB. 1908 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1909 Probs[0], Probs[1], InvertCond); 1910 } 1911 } 1912 1913 /// If the set of cases should be emitted as a series of branches, return true. 1914 /// If we should emit this as a bunch of and/or'd together conditions, return 1915 /// false. 1916 bool 1917 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1918 if (Cases.size() != 2) return true; 1919 1920 // If this is two comparisons of the same values or'd or and'd together, they 1921 // will get folded into a single comparison, so don't emit two blocks. 1922 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1923 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1924 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1925 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1926 return false; 1927 } 1928 1929 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1930 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1931 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1932 Cases[0].CC == Cases[1].CC && 1933 isa<Constant>(Cases[0].CmpRHS) && 1934 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1935 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1936 return false; 1937 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1938 return false; 1939 } 1940 1941 return true; 1942 } 1943 1944 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1945 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1946 1947 // Update machine-CFG edges. 1948 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1949 1950 if (I.isUnconditional()) { 1951 // Update machine-CFG edges. 1952 BrMBB->addSuccessor(Succ0MBB); 1953 1954 // If this is not a fall-through branch or optimizations are switched off, 1955 // emit the branch. 1956 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1957 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1958 MVT::Other, getControlRoot(), 1959 DAG.getBasicBlock(Succ0MBB))); 1960 1961 return; 1962 } 1963 1964 // If this condition is one of the special cases we handle, do special stuff 1965 // now. 1966 const Value *CondVal = I.getCondition(); 1967 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1968 1969 // If this is a series of conditions that are or'd or and'd together, emit 1970 // this as a sequence of branches instead of setcc's with and/or operations. 1971 // As long as jumps are not expensive, this should improve performance. 1972 // For example, instead of something like: 1973 // cmp A, B 1974 // C = seteq 1975 // cmp D, E 1976 // F = setle 1977 // or C, F 1978 // jnz foo 1979 // Emit: 1980 // cmp A, B 1981 // je foo 1982 // cmp D, E 1983 // jle foo 1984 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1985 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1986 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1987 !I.getMetadata(LLVMContext::MD_unpredictable) && 1988 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1989 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1990 Opcode, 1991 getEdgeProbability(BrMBB, Succ0MBB), 1992 getEdgeProbability(BrMBB, Succ1MBB), 1993 /*InvertCond=*/false); 1994 // If the compares in later blocks need to use values not currently 1995 // exported from this block, export them now. This block should always 1996 // be the first entry. 1997 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1998 1999 // Allow some cases to be rejected. 2000 if (ShouldEmitAsBranches(SwitchCases)) { 2001 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2002 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2003 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2004 } 2005 2006 // Emit the branch for this block. 2007 visitSwitchCase(SwitchCases[0], BrMBB); 2008 SwitchCases.erase(SwitchCases.begin()); 2009 return; 2010 } 2011 2012 // Okay, we decided not to do this, remove any inserted MBB's and clear 2013 // SwitchCases. 2014 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2015 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2016 2017 SwitchCases.clear(); 2018 } 2019 } 2020 2021 // Create a CaseBlock record representing this branch. 2022 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2023 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2024 2025 // Use visitSwitchCase to actually insert the fast branch sequence for this 2026 // cond branch. 2027 visitSwitchCase(CB, BrMBB); 2028 } 2029 2030 /// visitSwitchCase - Emits the necessary code to represent a single node in 2031 /// the binary search tree resulting from lowering a switch instruction. 2032 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2033 MachineBasicBlock *SwitchBB) { 2034 SDValue Cond; 2035 SDValue CondLHS = getValue(CB.CmpLHS); 2036 SDLoc dl = CB.DL; 2037 2038 // Build the setcc now. 2039 if (!CB.CmpMHS) { 2040 // Fold "(X == true)" to X and "(X == false)" to !X to 2041 // handle common cases produced by branch lowering. 2042 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2043 CB.CC == ISD::SETEQ) 2044 Cond = CondLHS; 2045 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2046 CB.CC == ISD::SETEQ) { 2047 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2048 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2049 } else 2050 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2051 } else { 2052 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2053 2054 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2055 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2056 2057 SDValue CmpOp = getValue(CB.CmpMHS); 2058 EVT VT = CmpOp.getValueType(); 2059 2060 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2061 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2062 ISD::SETLE); 2063 } else { 2064 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2065 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2066 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2067 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2068 } 2069 } 2070 2071 // Update successor info 2072 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2073 // TrueBB and FalseBB are always different unless the incoming IR is 2074 // degenerate. This only happens when running llc on weird IR. 2075 if (CB.TrueBB != CB.FalseBB) 2076 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2077 SwitchBB->normalizeSuccProbs(); 2078 2079 // If the lhs block is the next block, invert the condition so that we can 2080 // fall through to the lhs instead of the rhs block. 2081 if (CB.TrueBB == NextBlock(SwitchBB)) { 2082 std::swap(CB.TrueBB, CB.FalseBB); 2083 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2084 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2085 } 2086 2087 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2088 MVT::Other, getControlRoot(), Cond, 2089 DAG.getBasicBlock(CB.TrueBB)); 2090 2091 // Insert the false branch. Do this even if it's a fall through branch, 2092 // this makes it easier to do DAG optimizations which require inverting 2093 // the branch condition. 2094 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2095 DAG.getBasicBlock(CB.FalseBB)); 2096 2097 DAG.setRoot(BrCond); 2098 } 2099 2100 /// visitJumpTable - Emit JumpTable node in the current MBB 2101 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2102 // Emit the code for the jump table 2103 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2104 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2105 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2106 JT.Reg, PTy); 2107 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2108 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2109 MVT::Other, Index.getValue(1), 2110 Table, Index); 2111 DAG.setRoot(BrJumpTable); 2112 } 2113 2114 /// visitJumpTableHeader - This function emits necessary code to produce index 2115 /// in the JumpTable from switch case. 2116 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2117 JumpTableHeader &JTH, 2118 MachineBasicBlock *SwitchBB) { 2119 SDLoc dl = getCurSDLoc(); 2120 2121 // Subtract the lowest switch case value from the value being switched on and 2122 // conditional branch to default mbb if the result is greater than the 2123 // difference between smallest and largest cases. 2124 SDValue SwitchOp = getValue(JTH.SValue); 2125 EVT VT = SwitchOp.getValueType(); 2126 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2127 DAG.getConstant(JTH.First, dl, VT)); 2128 2129 // The SDNode we just created, which holds the value being switched on minus 2130 // the smallest case value, needs to be copied to a virtual register so it 2131 // can be used as an index into the jump table in a subsequent basic block. 2132 // This value may be smaller or larger than the target's pointer type, and 2133 // therefore require extension or truncating. 2134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2135 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2136 2137 unsigned JumpTableReg = 2138 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2139 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2140 JumpTableReg, SwitchOp); 2141 JT.Reg = JumpTableReg; 2142 2143 // Emit the range check for the jump table, and branch to the default block 2144 // for the switch statement if the value being switched on exceeds the largest 2145 // case in the switch. 2146 SDValue CMP = DAG.getSetCC( 2147 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2148 Sub.getValueType()), 2149 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2150 2151 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2152 MVT::Other, CopyTo, CMP, 2153 DAG.getBasicBlock(JT.Default)); 2154 2155 // Avoid emitting unnecessary branches to the next block. 2156 if (JT.MBB != NextBlock(SwitchBB)) 2157 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2158 DAG.getBasicBlock(JT.MBB)); 2159 2160 DAG.setRoot(BrCond); 2161 } 2162 2163 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2164 /// variable if there exists one. 2165 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2166 SDValue &Chain) { 2167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2168 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2169 MachineFunction &MF = DAG.getMachineFunction(); 2170 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2171 MachineSDNode *Node = 2172 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2173 if (Global) { 2174 MachinePointerInfo MPInfo(Global); 2175 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2176 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2177 MachineMemOperand::MODereferenceable; 2178 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2179 DAG.getEVTAlignment(PtrTy)); 2180 Node->setMemRefs(MemRefs, MemRefs + 1); 2181 } 2182 return SDValue(Node, 0); 2183 } 2184 2185 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2186 /// tail spliced into a stack protector check success bb. 2187 /// 2188 /// For a high level explanation of how this fits into the stack protector 2189 /// generation see the comment on the declaration of class 2190 /// StackProtectorDescriptor. 2191 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2192 MachineBasicBlock *ParentBB) { 2193 2194 // First create the loads to the guard/stack slot for the comparison. 2195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2196 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2197 2198 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2199 int FI = MFI.getStackProtectorIndex(); 2200 2201 SDValue Guard; 2202 SDLoc dl = getCurSDLoc(); 2203 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2204 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2205 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2206 2207 // Generate code to load the content of the guard slot. 2208 SDValue GuardVal = DAG.getLoad( 2209 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2210 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2211 MachineMemOperand::MOVolatile); 2212 2213 if (TLI.useStackGuardXorFP()) 2214 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2215 2216 // Retrieve guard check function, nullptr if instrumentation is inlined. 2217 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2218 // The target provides a guard check function to validate the guard value. 2219 // Generate a call to that function with the content of the guard slot as 2220 // argument. 2221 auto *Fn = cast<Function>(GuardCheck); 2222 FunctionType *FnTy = Fn->getFunctionType(); 2223 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2224 2225 TargetLowering::ArgListTy Args; 2226 TargetLowering::ArgListEntry Entry; 2227 Entry.Node = GuardVal; 2228 Entry.Ty = FnTy->getParamType(0); 2229 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2230 Entry.IsInReg = true; 2231 Args.push_back(Entry); 2232 2233 TargetLowering::CallLoweringInfo CLI(DAG); 2234 CLI.setDebugLoc(getCurSDLoc()) 2235 .setChain(DAG.getEntryNode()) 2236 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2237 getValue(GuardCheck), std::move(Args)); 2238 2239 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2240 DAG.setRoot(Result.second); 2241 return; 2242 } 2243 2244 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2245 // Otherwise, emit a volatile load to retrieve the stack guard value. 2246 SDValue Chain = DAG.getEntryNode(); 2247 if (TLI.useLoadStackGuardNode()) { 2248 Guard = getLoadStackGuard(DAG, dl, Chain); 2249 } else { 2250 const Value *IRGuard = TLI.getSDagStackGuard(M); 2251 SDValue GuardPtr = getValue(IRGuard); 2252 2253 Guard = 2254 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2255 Align, MachineMemOperand::MOVolatile); 2256 } 2257 2258 // Perform the comparison via a subtract/getsetcc. 2259 EVT VT = Guard.getValueType(); 2260 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2261 2262 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2263 *DAG.getContext(), 2264 Sub.getValueType()), 2265 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2266 2267 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2268 // branch to failure MBB. 2269 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2270 MVT::Other, GuardVal.getOperand(0), 2271 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2272 // Otherwise branch to success MBB. 2273 SDValue Br = DAG.getNode(ISD::BR, dl, 2274 MVT::Other, BrCond, 2275 DAG.getBasicBlock(SPD.getSuccessMBB())); 2276 2277 DAG.setRoot(Br); 2278 } 2279 2280 /// Codegen the failure basic block for a stack protector check. 2281 /// 2282 /// A failure stack protector machine basic block consists simply of a call to 2283 /// __stack_chk_fail(). 2284 /// 2285 /// For a high level explanation of how this fits into the stack protector 2286 /// generation see the comment on the declaration of class 2287 /// StackProtectorDescriptor. 2288 void 2289 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2290 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2291 SDValue Chain = 2292 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2293 None, false, getCurSDLoc(), false, false).second; 2294 DAG.setRoot(Chain); 2295 } 2296 2297 /// visitBitTestHeader - This function emits necessary code to produce value 2298 /// suitable for "bit tests" 2299 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2300 MachineBasicBlock *SwitchBB) { 2301 SDLoc dl = getCurSDLoc(); 2302 2303 // Subtract the minimum value 2304 SDValue SwitchOp = getValue(B.SValue); 2305 EVT VT = SwitchOp.getValueType(); 2306 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2307 DAG.getConstant(B.First, dl, VT)); 2308 2309 // Check range 2310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2311 SDValue RangeCmp = DAG.getSetCC( 2312 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2313 Sub.getValueType()), 2314 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2315 2316 // Determine the type of the test operands. 2317 bool UsePtrType = false; 2318 if (!TLI.isTypeLegal(VT)) 2319 UsePtrType = true; 2320 else { 2321 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2322 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2323 // Switch table case range are encoded into series of masks. 2324 // Just use pointer type, it's guaranteed to fit. 2325 UsePtrType = true; 2326 break; 2327 } 2328 } 2329 if (UsePtrType) { 2330 VT = TLI.getPointerTy(DAG.getDataLayout()); 2331 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2332 } 2333 2334 B.RegVT = VT.getSimpleVT(); 2335 B.Reg = FuncInfo.CreateReg(B.RegVT); 2336 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2337 2338 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2339 2340 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2341 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2342 SwitchBB->normalizeSuccProbs(); 2343 2344 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2345 MVT::Other, CopyTo, RangeCmp, 2346 DAG.getBasicBlock(B.Default)); 2347 2348 // Avoid emitting unnecessary branches to the next block. 2349 if (MBB != NextBlock(SwitchBB)) 2350 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2351 DAG.getBasicBlock(MBB)); 2352 2353 DAG.setRoot(BrRange); 2354 } 2355 2356 /// visitBitTestCase - this function produces one "bit test" 2357 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2358 MachineBasicBlock* NextMBB, 2359 BranchProbability BranchProbToNext, 2360 unsigned Reg, 2361 BitTestCase &B, 2362 MachineBasicBlock *SwitchBB) { 2363 SDLoc dl = getCurSDLoc(); 2364 MVT VT = BB.RegVT; 2365 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2366 SDValue Cmp; 2367 unsigned PopCount = countPopulation(B.Mask); 2368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2369 if (PopCount == 1) { 2370 // Testing for a single bit; just compare the shift count with what it 2371 // would need to be to shift a 1 bit in that position. 2372 Cmp = DAG.getSetCC( 2373 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2374 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2375 ISD::SETEQ); 2376 } else if (PopCount == BB.Range) { 2377 // There is only one zero bit in the range, test for it directly. 2378 Cmp = DAG.getSetCC( 2379 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2380 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2381 ISD::SETNE); 2382 } else { 2383 // Make desired shift 2384 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2385 DAG.getConstant(1, dl, VT), ShiftOp); 2386 2387 // Emit bit tests and jumps 2388 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2389 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2390 Cmp = DAG.getSetCC( 2391 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2392 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2393 } 2394 2395 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2396 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2397 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2398 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2399 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2400 // one as they are relative probabilities (and thus work more like weights), 2401 // and hence we need to normalize them to let the sum of them become one. 2402 SwitchBB->normalizeSuccProbs(); 2403 2404 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2405 MVT::Other, getControlRoot(), 2406 Cmp, DAG.getBasicBlock(B.TargetBB)); 2407 2408 // Avoid emitting unnecessary branches to the next block. 2409 if (NextMBB != NextBlock(SwitchBB)) 2410 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2411 DAG.getBasicBlock(NextMBB)); 2412 2413 DAG.setRoot(BrAnd); 2414 } 2415 2416 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2417 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2418 2419 // Retrieve successors. Look through artificial IR level blocks like 2420 // catchswitch for successors. 2421 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2422 const BasicBlock *EHPadBB = I.getSuccessor(1); 2423 2424 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2425 // have to do anything here to lower funclet bundles. 2426 assert(!I.hasOperandBundlesOtherThan( 2427 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2428 "Cannot lower invokes with arbitrary operand bundles yet!"); 2429 2430 const Value *Callee(I.getCalledValue()); 2431 const Function *Fn = dyn_cast<Function>(Callee); 2432 if (isa<InlineAsm>(Callee)) 2433 visitInlineAsm(&I); 2434 else if (Fn && Fn->isIntrinsic()) { 2435 switch (Fn->getIntrinsicID()) { 2436 default: 2437 llvm_unreachable("Cannot invoke this intrinsic"); 2438 case Intrinsic::donothing: 2439 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2440 break; 2441 case Intrinsic::experimental_patchpoint_void: 2442 case Intrinsic::experimental_patchpoint_i64: 2443 visitPatchpoint(&I, EHPadBB); 2444 break; 2445 case Intrinsic::experimental_gc_statepoint: 2446 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2447 break; 2448 } 2449 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2450 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2451 // Eventually we will support lowering the @llvm.experimental.deoptimize 2452 // intrinsic, and right now there are no plans to support other intrinsics 2453 // with deopt state. 2454 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2455 } else { 2456 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2457 } 2458 2459 // If the value of the invoke is used outside of its defining block, make it 2460 // available as a virtual register. 2461 // We already took care of the exported value for the statepoint instruction 2462 // during call to the LowerStatepoint. 2463 if (!isStatepoint(I)) { 2464 CopyToExportRegsIfNeeded(&I); 2465 } 2466 2467 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2468 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2469 BranchProbability EHPadBBProb = 2470 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2471 : BranchProbability::getZero(); 2472 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2473 2474 // Update successor info. 2475 addSuccessorWithProb(InvokeMBB, Return); 2476 for (auto &UnwindDest : UnwindDests) { 2477 UnwindDest.first->setIsEHPad(); 2478 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2479 } 2480 InvokeMBB->normalizeSuccProbs(); 2481 2482 // Drop into normal successor. 2483 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2484 MVT::Other, getControlRoot(), 2485 DAG.getBasicBlock(Return))); 2486 } 2487 2488 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2489 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2490 } 2491 2492 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2493 assert(FuncInfo.MBB->isEHPad() && 2494 "Call to landingpad not in landing pad!"); 2495 2496 MachineBasicBlock *MBB = FuncInfo.MBB; 2497 addLandingPadInfo(LP, *MBB); 2498 2499 // If there aren't registers to copy the values into (e.g., during SjLj 2500 // exceptions), then don't bother to create these DAG nodes. 2501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2502 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2503 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2504 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2505 return; 2506 2507 // If landingpad's return type is token type, we don't create DAG nodes 2508 // for its exception pointer and selector value. The extraction of exception 2509 // pointer or selector value from token type landingpads is not currently 2510 // supported. 2511 if (LP.getType()->isTokenTy()) 2512 return; 2513 2514 SmallVector<EVT, 2> ValueVTs; 2515 SDLoc dl = getCurSDLoc(); 2516 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2517 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2518 2519 // Get the two live-in registers as SDValues. The physregs have already been 2520 // copied into virtual registers. 2521 SDValue Ops[2]; 2522 if (FuncInfo.ExceptionPointerVirtReg) { 2523 Ops[0] = DAG.getZExtOrTrunc( 2524 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2525 FuncInfo.ExceptionPointerVirtReg, 2526 TLI.getPointerTy(DAG.getDataLayout())), 2527 dl, ValueVTs[0]); 2528 } else { 2529 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2530 } 2531 Ops[1] = DAG.getZExtOrTrunc( 2532 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2533 FuncInfo.ExceptionSelectorVirtReg, 2534 TLI.getPointerTy(DAG.getDataLayout())), 2535 dl, ValueVTs[1]); 2536 2537 // Merge into one. 2538 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2539 DAG.getVTList(ValueVTs), Ops); 2540 setValue(&LP, Res); 2541 } 2542 2543 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2544 #ifndef NDEBUG 2545 for (const CaseCluster &CC : Clusters) 2546 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2547 #endif 2548 2549 llvm::sort(Clusters.begin(), Clusters.end(), 2550 [](const CaseCluster &a, const CaseCluster &b) { 2551 return a.Low->getValue().slt(b.Low->getValue()); 2552 }); 2553 2554 // Merge adjacent clusters with the same destination. 2555 const unsigned N = Clusters.size(); 2556 unsigned DstIndex = 0; 2557 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2558 CaseCluster &CC = Clusters[SrcIndex]; 2559 const ConstantInt *CaseVal = CC.Low; 2560 MachineBasicBlock *Succ = CC.MBB; 2561 2562 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2563 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2564 // If this case has the same successor and is a neighbour, merge it into 2565 // the previous cluster. 2566 Clusters[DstIndex - 1].High = CaseVal; 2567 Clusters[DstIndex - 1].Prob += CC.Prob; 2568 } else { 2569 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2570 sizeof(Clusters[SrcIndex])); 2571 } 2572 } 2573 Clusters.resize(DstIndex); 2574 } 2575 2576 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2577 MachineBasicBlock *Last) { 2578 // Update JTCases. 2579 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2580 if (JTCases[i].first.HeaderBB == First) 2581 JTCases[i].first.HeaderBB = Last; 2582 2583 // Update BitTestCases. 2584 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2585 if (BitTestCases[i].Parent == First) 2586 BitTestCases[i].Parent = Last; 2587 } 2588 2589 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2590 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2591 2592 // Update machine-CFG edges with unique successors. 2593 SmallSet<BasicBlock*, 32> Done; 2594 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2595 BasicBlock *BB = I.getSuccessor(i); 2596 bool Inserted = Done.insert(BB).second; 2597 if (!Inserted) 2598 continue; 2599 2600 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2601 addSuccessorWithProb(IndirectBrMBB, Succ); 2602 } 2603 IndirectBrMBB->normalizeSuccProbs(); 2604 2605 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2606 MVT::Other, getControlRoot(), 2607 getValue(I.getAddress()))); 2608 } 2609 2610 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2611 if (!DAG.getTarget().Options.TrapUnreachable) 2612 return; 2613 2614 // We may be able to ignore unreachable behind a noreturn call. 2615 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2616 const BasicBlock &BB = *I.getParent(); 2617 if (&I != &BB.front()) { 2618 BasicBlock::const_iterator PredI = 2619 std::prev(BasicBlock::const_iterator(&I)); 2620 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2621 if (Call->doesNotReturn()) 2622 return; 2623 } 2624 } 2625 } 2626 2627 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2628 } 2629 2630 void SelectionDAGBuilder::visitFSub(const User &I) { 2631 // -0.0 - X --> fneg 2632 Type *Ty = I.getType(); 2633 if (isa<Constant>(I.getOperand(0)) && 2634 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2635 SDValue Op2 = getValue(I.getOperand(1)); 2636 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2637 Op2.getValueType(), Op2)); 2638 return; 2639 } 2640 2641 visitBinary(I, ISD::FSUB); 2642 } 2643 2644 /// Checks if the given instruction performs a vector reduction, in which case 2645 /// we have the freedom to alter the elements in the result as long as the 2646 /// reduction of them stays unchanged. 2647 static bool isVectorReductionOp(const User *I) { 2648 const Instruction *Inst = dyn_cast<Instruction>(I); 2649 if (!Inst || !Inst->getType()->isVectorTy()) 2650 return false; 2651 2652 auto OpCode = Inst->getOpcode(); 2653 switch (OpCode) { 2654 case Instruction::Add: 2655 case Instruction::Mul: 2656 case Instruction::And: 2657 case Instruction::Or: 2658 case Instruction::Xor: 2659 break; 2660 case Instruction::FAdd: 2661 case Instruction::FMul: 2662 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2663 if (FPOp->getFastMathFlags().isFast()) 2664 break; 2665 LLVM_FALLTHROUGH; 2666 default: 2667 return false; 2668 } 2669 2670 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2671 // Ensure the reduction size is a power of 2. 2672 if (!isPowerOf2_32(ElemNum)) 2673 return false; 2674 2675 unsigned ElemNumToReduce = ElemNum; 2676 2677 // Do DFS search on the def-use chain from the given instruction. We only 2678 // allow four kinds of operations during the search until we reach the 2679 // instruction that extracts the first element from the vector: 2680 // 2681 // 1. The reduction operation of the same opcode as the given instruction. 2682 // 2683 // 2. PHI node. 2684 // 2685 // 3. ShuffleVector instruction together with a reduction operation that 2686 // does a partial reduction. 2687 // 2688 // 4. ExtractElement that extracts the first element from the vector, and we 2689 // stop searching the def-use chain here. 2690 // 2691 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2692 // from 1-3 to the stack to continue the DFS. The given instruction is not 2693 // a reduction operation if we meet any other instructions other than those 2694 // listed above. 2695 2696 SmallVector<const User *, 16> UsersToVisit{Inst}; 2697 SmallPtrSet<const User *, 16> Visited; 2698 bool ReduxExtracted = false; 2699 2700 while (!UsersToVisit.empty()) { 2701 auto User = UsersToVisit.back(); 2702 UsersToVisit.pop_back(); 2703 if (!Visited.insert(User).second) 2704 continue; 2705 2706 for (const auto &U : User->users()) { 2707 auto Inst = dyn_cast<Instruction>(U); 2708 if (!Inst) 2709 return false; 2710 2711 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2712 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2713 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2714 return false; 2715 UsersToVisit.push_back(U); 2716 } else if (const ShuffleVectorInst *ShufInst = 2717 dyn_cast<ShuffleVectorInst>(U)) { 2718 // Detect the following pattern: A ShuffleVector instruction together 2719 // with a reduction that do partial reduction on the first and second 2720 // ElemNumToReduce / 2 elements, and store the result in 2721 // ElemNumToReduce / 2 elements in another vector. 2722 2723 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2724 if (ResultElements < ElemNum) 2725 return false; 2726 2727 if (ElemNumToReduce == 1) 2728 return false; 2729 if (!isa<UndefValue>(U->getOperand(1))) 2730 return false; 2731 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2732 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2733 return false; 2734 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2735 if (ShufInst->getMaskValue(i) != -1) 2736 return false; 2737 2738 // There is only one user of this ShuffleVector instruction, which 2739 // must be a reduction operation. 2740 if (!U->hasOneUse()) 2741 return false; 2742 2743 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2744 if (!U2 || U2->getOpcode() != OpCode) 2745 return false; 2746 2747 // Check operands of the reduction operation. 2748 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2749 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2750 UsersToVisit.push_back(U2); 2751 ElemNumToReduce /= 2; 2752 } else 2753 return false; 2754 } else if (isa<ExtractElementInst>(U)) { 2755 // At this moment we should have reduced all elements in the vector. 2756 if (ElemNumToReduce != 1) 2757 return false; 2758 2759 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2760 if (!Val || Val->getZExtValue() != 0) 2761 return false; 2762 2763 ReduxExtracted = true; 2764 } else 2765 return false; 2766 } 2767 } 2768 return ReduxExtracted; 2769 } 2770 2771 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2772 SDNodeFlags Flags; 2773 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2774 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2775 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2776 } 2777 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2778 Flags.setExact(ExactOp->isExact()); 2779 } 2780 if (isVectorReductionOp(&I)) { 2781 Flags.setVectorReduction(true); 2782 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2783 } 2784 2785 SDValue Op1 = getValue(I.getOperand(0)); 2786 SDValue Op2 = getValue(I.getOperand(1)); 2787 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2788 Op1, Op2, Flags); 2789 setValue(&I, BinNodeValue); 2790 } 2791 2792 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2793 SDValue Op1 = getValue(I.getOperand(0)); 2794 SDValue Op2 = getValue(I.getOperand(1)); 2795 2796 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2797 Op2.getValueType(), DAG.getDataLayout()); 2798 2799 // Coerce the shift amount to the right type if we can. 2800 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2801 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2802 unsigned Op2Size = Op2.getValueSizeInBits(); 2803 SDLoc DL = getCurSDLoc(); 2804 2805 // If the operand is smaller than the shift count type, promote it. 2806 if (ShiftSize > Op2Size) 2807 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2808 2809 // If the operand is larger than the shift count type but the shift 2810 // count type has enough bits to represent any shift value, truncate 2811 // it now. This is a common case and it exposes the truncate to 2812 // optimization early. 2813 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2814 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2815 // Otherwise we'll need to temporarily settle for some other convenient 2816 // type. Type legalization will make adjustments once the shiftee is split. 2817 else 2818 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2819 } 2820 2821 bool nuw = false; 2822 bool nsw = false; 2823 bool exact = false; 2824 2825 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2826 2827 if (const OverflowingBinaryOperator *OFBinOp = 2828 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2829 nuw = OFBinOp->hasNoUnsignedWrap(); 2830 nsw = OFBinOp->hasNoSignedWrap(); 2831 } 2832 if (const PossiblyExactOperator *ExactOp = 2833 dyn_cast<const PossiblyExactOperator>(&I)) 2834 exact = ExactOp->isExact(); 2835 } 2836 SDNodeFlags Flags; 2837 Flags.setExact(exact); 2838 Flags.setNoSignedWrap(nsw); 2839 Flags.setNoUnsignedWrap(nuw); 2840 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2841 Flags); 2842 setValue(&I, Res); 2843 } 2844 2845 void SelectionDAGBuilder::visitSDiv(const User &I) { 2846 SDValue Op1 = getValue(I.getOperand(0)); 2847 SDValue Op2 = getValue(I.getOperand(1)); 2848 2849 SDNodeFlags Flags; 2850 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2851 cast<PossiblyExactOperator>(&I)->isExact()); 2852 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2853 Op2, Flags)); 2854 } 2855 2856 void SelectionDAGBuilder::visitICmp(const User &I) { 2857 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2858 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2859 predicate = IC->getPredicate(); 2860 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2861 predicate = ICmpInst::Predicate(IC->getPredicate()); 2862 SDValue Op1 = getValue(I.getOperand(0)); 2863 SDValue Op2 = getValue(I.getOperand(1)); 2864 ISD::CondCode Opcode = getICmpCondCode(predicate); 2865 2866 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2867 I.getType()); 2868 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2869 } 2870 2871 void SelectionDAGBuilder::visitFCmp(const User &I) { 2872 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2873 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2874 predicate = FC->getPredicate(); 2875 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2876 predicate = FCmpInst::Predicate(FC->getPredicate()); 2877 SDValue Op1 = getValue(I.getOperand(0)); 2878 SDValue Op2 = getValue(I.getOperand(1)); 2879 2880 ISD::CondCode Condition = getFCmpCondCode(predicate); 2881 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2882 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2883 Condition = getFCmpCodeWithoutNaN(Condition); 2884 2885 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2886 I.getType()); 2887 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2888 } 2889 2890 // Check if the condition of the select has one use or two users that are both 2891 // selects with the same condition. 2892 static bool hasOnlySelectUsers(const Value *Cond) { 2893 return llvm::all_of(Cond->users(), [](const Value *V) { 2894 return isa<SelectInst>(V); 2895 }); 2896 } 2897 2898 void SelectionDAGBuilder::visitSelect(const User &I) { 2899 SmallVector<EVT, 4> ValueVTs; 2900 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2901 ValueVTs); 2902 unsigned NumValues = ValueVTs.size(); 2903 if (NumValues == 0) return; 2904 2905 SmallVector<SDValue, 4> Values(NumValues); 2906 SDValue Cond = getValue(I.getOperand(0)); 2907 SDValue LHSVal = getValue(I.getOperand(1)); 2908 SDValue RHSVal = getValue(I.getOperand(2)); 2909 auto BaseOps = {Cond}; 2910 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2911 ISD::VSELECT : ISD::SELECT; 2912 2913 // Min/max matching is only viable if all output VTs are the same. 2914 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2915 EVT VT = ValueVTs[0]; 2916 LLVMContext &Ctx = *DAG.getContext(); 2917 auto &TLI = DAG.getTargetLoweringInfo(); 2918 2919 // We care about the legality of the operation after it has been type 2920 // legalized. 2921 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2922 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2923 VT = TLI.getTypeToTransformTo(Ctx, VT); 2924 2925 // If the vselect is legal, assume we want to leave this as a vector setcc + 2926 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2927 // min/max is legal on the scalar type. 2928 bool UseScalarMinMax = VT.isVector() && 2929 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2930 2931 Value *LHS, *RHS; 2932 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2933 ISD::NodeType Opc = ISD::DELETED_NODE; 2934 switch (SPR.Flavor) { 2935 case SPF_UMAX: Opc = ISD::UMAX; break; 2936 case SPF_UMIN: Opc = ISD::UMIN; break; 2937 case SPF_SMAX: Opc = ISD::SMAX; break; 2938 case SPF_SMIN: Opc = ISD::SMIN; break; 2939 case SPF_FMINNUM: 2940 switch (SPR.NaNBehavior) { 2941 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2942 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2943 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2944 case SPNB_RETURNS_ANY: { 2945 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2946 Opc = ISD::FMINNUM; 2947 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2948 Opc = ISD::FMINNAN; 2949 else if (UseScalarMinMax) 2950 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2951 ISD::FMINNUM : ISD::FMINNAN; 2952 break; 2953 } 2954 } 2955 break; 2956 case SPF_FMAXNUM: 2957 switch (SPR.NaNBehavior) { 2958 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2959 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2960 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2961 case SPNB_RETURNS_ANY: 2962 2963 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2964 Opc = ISD::FMAXNUM; 2965 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2966 Opc = ISD::FMAXNAN; 2967 else if (UseScalarMinMax) 2968 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2969 ISD::FMAXNUM : ISD::FMAXNAN; 2970 break; 2971 } 2972 break; 2973 default: break; 2974 } 2975 2976 if (Opc != ISD::DELETED_NODE && 2977 (TLI.isOperationLegalOrCustom(Opc, VT) || 2978 (UseScalarMinMax && 2979 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2980 // If the underlying comparison instruction is used by any other 2981 // instruction, the consumed instructions won't be destroyed, so it is 2982 // not profitable to convert to a min/max. 2983 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2984 OpCode = Opc; 2985 LHSVal = getValue(LHS); 2986 RHSVal = getValue(RHS); 2987 BaseOps = {}; 2988 } 2989 } 2990 2991 for (unsigned i = 0; i != NumValues; ++i) { 2992 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2993 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2994 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2995 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2996 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2997 Ops); 2998 } 2999 3000 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3001 DAG.getVTList(ValueVTs), Values)); 3002 } 3003 3004 void SelectionDAGBuilder::visitTrunc(const User &I) { 3005 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3006 SDValue N = getValue(I.getOperand(0)); 3007 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3008 I.getType()); 3009 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3010 } 3011 3012 void SelectionDAGBuilder::visitZExt(const User &I) { 3013 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3014 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3015 SDValue N = getValue(I.getOperand(0)); 3016 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3017 I.getType()); 3018 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3019 } 3020 3021 void SelectionDAGBuilder::visitSExt(const User &I) { 3022 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3023 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3024 SDValue N = getValue(I.getOperand(0)); 3025 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3026 I.getType()); 3027 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3028 } 3029 3030 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3031 // FPTrunc is never a no-op cast, no need to check 3032 SDValue N = getValue(I.getOperand(0)); 3033 SDLoc dl = getCurSDLoc(); 3034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3035 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3036 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3037 DAG.getTargetConstant( 3038 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3039 } 3040 3041 void SelectionDAGBuilder::visitFPExt(const User &I) { 3042 // FPExt is never a no-op cast, no need to check 3043 SDValue N = getValue(I.getOperand(0)); 3044 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3045 I.getType()); 3046 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3047 } 3048 3049 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3050 // FPToUI is never a no-op cast, no need to check 3051 SDValue N = getValue(I.getOperand(0)); 3052 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3053 I.getType()); 3054 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3055 } 3056 3057 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3058 // FPToSI is never a no-op cast, no need to check 3059 SDValue N = getValue(I.getOperand(0)); 3060 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3061 I.getType()); 3062 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3063 } 3064 3065 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3066 // UIToFP is never a no-op cast, no need to check 3067 SDValue N = getValue(I.getOperand(0)); 3068 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3069 I.getType()); 3070 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3071 } 3072 3073 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3074 // SIToFP is never a no-op cast, no need to check 3075 SDValue N = getValue(I.getOperand(0)); 3076 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3077 I.getType()); 3078 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3079 } 3080 3081 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3082 // What to do depends on the size of the integer and the size of the pointer. 3083 // We can either truncate, zero extend, or no-op, accordingly. 3084 SDValue N = getValue(I.getOperand(0)); 3085 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3086 I.getType()); 3087 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3088 } 3089 3090 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3091 // What to do depends on the size of the integer and the size of the pointer. 3092 // We can either truncate, zero extend, or no-op, accordingly. 3093 SDValue N = getValue(I.getOperand(0)); 3094 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3095 I.getType()); 3096 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3097 } 3098 3099 void SelectionDAGBuilder::visitBitCast(const User &I) { 3100 SDValue N = getValue(I.getOperand(0)); 3101 SDLoc dl = getCurSDLoc(); 3102 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3103 I.getType()); 3104 3105 // BitCast assures us that source and destination are the same size so this is 3106 // either a BITCAST or a no-op. 3107 if (DestVT != N.getValueType()) 3108 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3109 DestVT, N)); // convert types. 3110 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3111 // might fold any kind of constant expression to an integer constant and that 3112 // is not what we are looking for. Only recognize a bitcast of a genuine 3113 // constant integer as an opaque constant. 3114 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3115 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3116 /*isOpaque*/true)); 3117 else 3118 setValue(&I, N); // noop cast. 3119 } 3120 3121 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3123 const Value *SV = I.getOperand(0); 3124 SDValue N = getValue(SV); 3125 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3126 3127 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3128 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3129 3130 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3131 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3132 3133 setValue(&I, N); 3134 } 3135 3136 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3138 SDValue InVec = getValue(I.getOperand(0)); 3139 SDValue InVal = getValue(I.getOperand(1)); 3140 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3141 TLI.getVectorIdxTy(DAG.getDataLayout())); 3142 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3143 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3144 InVec, InVal, InIdx)); 3145 } 3146 3147 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3148 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3149 SDValue InVec = getValue(I.getOperand(0)); 3150 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3151 TLI.getVectorIdxTy(DAG.getDataLayout())); 3152 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3153 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3154 InVec, InIdx)); 3155 } 3156 3157 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3158 SDValue Src1 = getValue(I.getOperand(0)); 3159 SDValue Src2 = getValue(I.getOperand(1)); 3160 SDLoc DL = getCurSDLoc(); 3161 3162 SmallVector<int, 8> Mask; 3163 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3164 unsigned MaskNumElts = Mask.size(); 3165 3166 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3167 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3168 EVT SrcVT = Src1.getValueType(); 3169 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3170 3171 if (SrcNumElts == MaskNumElts) { 3172 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3173 return; 3174 } 3175 3176 // Normalize the shuffle vector since mask and vector length don't match. 3177 if (SrcNumElts < MaskNumElts) { 3178 // Mask is longer than the source vectors. We can use concatenate vector to 3179 // make the mask and vectors lengths match. 3180 3181 if (MaskNumElts % SrcNumElts == 0) { 3182 // Mask length is a multiple of the source vector length. 3183 // Check if the shuffle is some kind of concatenation of the input 3184 // vectors. 3185 unsigned NumConcat = MaskNumElts / SrcNumElts; 3186 bool IsConcat = true; 3187 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3188 for (unsigned i = 0; i != MaskNumElts; ++i) { 3189 int Idx = Mask[i]; 3190 if (Idx < 0) 3191 continue; 3192 // Ensure the indices in each SrcVT sized piece are sequential and that 3193 // the same source is used for the whole piece. 3194 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3195 (ConcatSrcs[i / SrcNumElts] >= 0 && 3196 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3197 IsConcat = false; 3198 break; 3199 } 3200 // Remember which source this index came from. 3201 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3202 } 3203 3204 // The shuffle is concatenating multiple vectors together. Just emit 3205 // a CONCAT_VECTORS operation. 3206 if (IsConcat) { 3207 SmallVector<SDValue, 8> ConcatOps; 3208 for (auto Src : ConcatSrcs) { 3209 if (Src < 0) 3210 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3211 else if (Src == 0) 3212 ConcatOps.push_back(Src1); 3213 else 3214 ConcatOps.push_back(Src2); 3215 } 3216 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3217 return; 3218 } 3219 } 3220 3221 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3222 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3223 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3224 PaddedMaskNumElts); 3225 3226 // Pad both vectors with undefs to make them the same length as the mask. 3227 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3228 3229 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3230 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3231 MOps1[0] = Src1; 3232 MOps2[0] = Src2; 3233 3234 Src1 = Src1.isUndef() 3235 ? DAG.getUNDEF(PaddedVT) 3236 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3237 Src2 = Src2.isUndef() 3238 ? DAG.getUNDEF(PaddedVT) 3239 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3240 3241 // Readjust mask for new input vector length. 3242 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3243 for (unsigned i = 0; i != MaskNumElts; ++i) { 3244 int Idx = Mask[i]; 3245 if (Idx >= (int)SrcNumElts) 3246 Idx -= SrcNumElts - PaddedMaskNumElts; 3247 MappedOps[i] = Idx; 3248 } 3249 3250 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3251 3252 // If the concatenated vector was padded, extract a subvector with the 3253 // correct number of elements. 3254 if (MaskNumElts != PaddedMaskNumElts) 3255 Result = DAG.getNode( 3256 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3257 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3258 3259 setValue(&I, Result); 3260 return; 3261 } 3262 3263 if (SrcNumElts > MaskNumElts) { 3264 // Analyze the access pattern of the vector to see if we can extract 3265 // two subvectors and do the shuffle. 3266 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3267 bool CanExtract = true; 3268 for (int Idx : Mask) { 3269 unsigned Input = 0; 3270 if (Idx < 0) 3271 continue; 3272 3273 if (Idx >= (int)SrcNumElts) { 3274 Input = 1; 3275 Idx -= SrcNumElts; 3276 } 3277 3278 // If all the indices come from the same MaskNumElts sized portion of 3279 // the sources we can use extract. Also make sure the extract wouldn't 3280 // extract past the end of the source. 3281 int NewStartIdx = alignDown(Idx, MaskNumElts); 3282 if (NewStartIdx + MaskNumElts > SrcNumElts || 3283 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3284 CanExtract = false; 3285 // Make sure we always update StartIdx as we use it to track if all 3286 // elements are undef. 3287 StartIdx[Input] = NewStartIdx; 3288 } 3289 3290 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3291 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3292 return; 3293 } 3294 if (CanExtract) { 3295 // Extract appropriate subvector and generate a vector shuffle 3296 for (unsigned Input = 0; Input < 2; ++Input) { 3297 SDValue &Src = Input == 0 ? Src1 : Src2; 3298 if (StartIdx[Input] < 0) 3299 Src = DAG.getUNDEF(VT); 3300 else { 3301 Src = DAG.getNode( 3302 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3303 DAG.getConstant(StartIdx[Input], DL, 3304 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3305 } 3306 } 3307 3308 // Calculate new mask. 3309 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3310 for (int &Idx : MappedOps) { 3311 if (Idx >= (int)SrcNumElts) 3312 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3313 else if (Idx >= 0) 3314 Idx -= StartIdx[0]; 3315 } 3316 3317 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3318 return; 3319 } 3320 } 3321 3322 // We can't use either concat vectors or extract subvectors so fall back to 3323 // replacing the shuffle with extract and build vector. 3324 // to insert and build vector. 3325 EVT EltVT = VT.getVectorElementType(); 3326 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3327 SmallVector<SDValue,8> Ops; 3328 for (int Idx : Mask) { 3329 SDValue Res; 3330 3331 if (Idx < 0) { 3332 Res = DAG.getUNDEF(EltVT); 3333 } else { 3334 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3335 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3336 3337 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3338 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3339 } 3340 3341 Ops.push_back(Res); 3342 } 3343 3344 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3345 } 3346 3347 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3348 ArrayRef<unsigned> Indices; 3349 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3350 Indices = IV->getIndices(); 3351 else 3352 Indices = cast<ConstantExpr>(&I)->getIndices(); 3353 3354 const Value *Op0 = I.getOperand(0); 3355 const Value *Op1 = I.getOperand(1); 3356 Type *AggTy = I.getType(); 3357 Type *ValTy = Op1->getType(); 3358 bool IntoUndef = isa<UndefValue>(Op0); 3359 bool FromUndef = isa<UndefValue>(Op1); 3360 3361 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3362 3363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3364 SmallVector<EVT, 4> AggValueVTs; 3365 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3366 SmallVector<EVT, 4> ValValueVTs; 3367 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3368 3369 unsigned NumAggValues = AggValueVTs.size(); 3370 unsigned NumValValues = ValValueVTs.size(); 3371 SmallVector<SDValue, 4> Values(NumAggValues); 3372 3373 // Ignore an insertvalue that produces an empty object 3374 if (!NumAggValues) { 3375 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3376 return; 3377 } 3378 3379 SDValue Agg = getValue(Op0); 3380 unsigned i = 0; 3381 // Copy the beginning value(s) from the original aggregate. 3382 for (; i != LinearIndex; ++i) 3383 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3384 SDValue(Agg.getNode(), Agg.getResNo() + i); 3385 // Copy values from the inserted value(s). 3386 if (NumValValues) { 3387 SDValue Val = getValue(Op1); 3388 for (; i != LinearIndex + NumValValues; ++i) 3389 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3390 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3391 } 3392 // Copy remaining value(s) from the original aggregate. 3393 for (; i != NumAggValues; ++i) 3394 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3395 SDValue(Agg.getNode(), Agg.getResNo() + i); 3396 3397 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3398 DAG.getVTList(AggValueVTs), Values)); 3399 } 3400 3401 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3402 ArrayRef<unsigned> Indices; 3403 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3404 Indices = EV->getIndices(); 3405 else 3406 Indices = cast<ConstantExpr>(&I)->getIndices(); 3407 3408 const Value *Op0 = I.getOperand(0); 3409 Type *AggTy = Op0->getType(); 3410 Type *ValTy = I.getType(); 3411 bool OutOfUndef = isa<UndefValue>(Op0); 3412 3413 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3414 3415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3416 SmallVector<EVT, 4> ValValueVTs; 3417 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3418 3419 unsigned NumValValues = ValValueVTs.size(); 3420 3421 // Ignore a extractvalue that produces an empty object 3422 if (!NumValValues) { 3423 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3424 return; 3425 } 3426 3427 SmallVector<SDValue, 4> Values(NumValValues); 3428 3429 SDValue Agg = getValue(Op0); 3430 // Copy out the selected value(s). 3431 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3432 Values[i - LinearIndex] = 3433 OutOfUndef ? 3434 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3435 SDValue(Agg.getNode(), Agg.getResNo() + i); 3436 3437 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3438 DAG.getVTList(ValValueVTs), Values)); 3439 } 3440 3441 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3442 Value *Op0 = I.getOperand(0); 3443 // Note that the pointer operand may be a vector of pointers. Take the scalar 3444 // element which holds a pointer. 3445 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3446 SDValue N = getValue(Op0); 3447 SDLoc dl = getCurSDLoc(); 3448 3449 // Normalize Vector GEP - all scalar operands should be converted to the 3450 // splat vector. 3451 unsigned VectorWidth = I.getType()->isVectorTy() ? 3452 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3453 3454 if (VectorWidth && !N.getValueType().isVector()) { 3455 LLVMContext &Context = *DAG.getContext(); 3456 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3457 N = DAG.getSplatBuildVector(VT, dl, N); 3458 } 3459 3460 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3461 GTI != E; ++GTI) { 3462 const Value *Idx = GTI.getOperand(); 3463 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3464 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3465 if (Field) { 3466 // N = N + Offset 3467 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3468 3469 // In an inbounds GEP with an offset that is nonnegative even when 3470 // interpreted as signed, assume there is no unsigned overflow. 3471 SDNodeFlags Flags; 3472 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3473 Flags.setNoUnsignedWrap(true); 3474 3475 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3476 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3477 } 3478 } else { 3479 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3480 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3481 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3482 3483 // If this is a scalar constant or a splat vector of constants, 3484 // handle it quickly. 3485 const auto *CI = dyn_cast<ConstantInt>(Idx); 3486 if (!CI && isa<ConstantDataVector>(Idx) && 3487 cast<ConstantDataVector>(Idx)->getSplatValue()) 3488 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3489 3490 if (CI) { 3491 if (CI->isZero()) 3492 continue; 3493 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3494 LLVMContext &Context = *DAG.getContext(); 3495 SDValue OffsVal = VectorWidth ? 3496 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3497 DAG.getConstant(Offs, dl, IdxTy); 3498 3499 // In an inbouds GEP with an offset that is nonnegative even when 3500 // interpreted as signed, assume there is no unsigned overflow. 3501 SDNodeFlags Flags; 3502 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3503 Flags.setNoUnsignedWrap(true); 3504 3505 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3506 continue; 3507 } 3508 3509 // N = N + Idx * ElementSize; 3510 SDValue IdxN = getValue(Idx); 3511 3512 if (!IdxN.getValueType().isVector() && VectorWidth) { 3513 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3514 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3515 } 3516 3517 // If the index is smaller or larger than intptr_t, truncate or extend 3518 // it. 3519 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3520 3521 // If this is a multiply by a power of two, turn it into a shl 3522 // immediately. This is a very common case. 3523 if (ElementSize != 1) { 3524 if (ElementSize.isPowerOf2()) { 3525 unsigned Amt = ElementSize.logBase2(); 3526 IdxN = DAG.getNode(ISD::SHL, dl, 3527 N.getValueType(), IdxN, 3528 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3529 } else { 3530 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3531 IdxN = DAG.getNode(ISD::MUL, dl, 3532 N.getValueType(), IdxN, Scale); 3533 } 3534 } 3535 3536 N = DAG.getNode(ISD::ADD, dl, 3537 N.getValueType(), N, IdxN); 3538 } 3539 } 3540 3541 setValue(&I, N); 3542 } 3543 3544 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3545 // If this is a fixed sized alloca in the entry block of the function, 3546 // allocate it statically on the stack. 3547 if (FuncInfo.StaticAllocaMap.count(&I)) 3548 return; // getValue will auto-populate this. 3549 3550 SDLoc dl = getCurSDLoc(); 3551 Type *Ty = I.getAllocatedType(); 3552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3553 auto &DL = DAG.getDataLayout(); 3554 uint64_t TySize = DL.getTypeAllocSize(Ty); 3555 unsigned Align = 3556 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3557 3558 SDValue AllocSize = getValue(I.getArraySize()); 3559 3560 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3561 if (AllocSize.getValueType() != IntPtr) 3562 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3563 3564 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3565 AllocSize, 3566 DAG.getConstant(TySize, dl, IntPtr)); 3567 3568 // Handle alignment. If the requested alignment is less than or equal to 3569 // the stack alignment, ignore it. If the size is greater than or equal to 3570 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3571 unsigned StackAlign = 3572 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3573 if (Align <= StackAlign) 3574 Align = 0; 3575 3576 // Round the size of the allocation up to the stack alignment size 3577 // by add SA-1 to the size. This doesn't overflow because we're computing 3578 // an address inside an alloca. 3579 SDNodeFlags Flags; 3580 Flags.setNoUnsignedWrap(true); 3581 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3582 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3583 3584 // Mask out the low bits for alignment purposes. 3585 AllocSize = 3586 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3587 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3588 3589 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3590 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3591 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3592 setValue(&I, DSA); 3593 DAG.setRoot(DSA.getValue(1)); 3594 3595 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3596 } 3597 3598 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3599 if (I.isAtomic()) 3600 return visitAtomicLoad(I); 3601 3602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3603 const Value *SV = I.getOperand(0); 3604 if (TLI.supportSwiftError()) { 3605 // Swifterror values can come from either a function parameter with 3606 // swifterror attribute or an alloca with swifterror attribute. 3607 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3608 if (Arg->hasSwiftErrorAttr()) 3609 return visitLoadFromSwiftError(I); 3610 } 3611 3612 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3613 if (Alloca->isSwiftError()) 3614 return visitLoadFromSwiftError(I); 3615 } 3616 } 3617 3618 SDValue Ptr = getValue(SV); 3619 3620 Type *Ty = I.getType(); 3621 3622 bool isVolatile = I.isVolatile(); 3623 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3624 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3625 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3626 unsigned Alignment = I.getAlignment(); 3627 3628 AAMDNodes AAInfo; 3629 I.getAAMetadata(AAInfo); 3630 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3631 3632 SmallVector<EVT, 4> ValueVTs; 3633 SmallVector<uint64_t, 4> Offsets; 3634 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3635 unsigned NumValues = ValueVTs.size(); 3636 if (NumValues == 0) 3637 return; 3638 3639 SDValue Root; 3640 bool ConstantMemory = false; 3641 if (isVolatile || NumValues > MaxParallelChains) 3642 // Serialize volatile loads with other side effects. 3643 Root = getRoot(); 3644 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3645 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3646 // Do not serialize (non-volatile) loads of constant memory with anything. 3647 Root = DAG.getEntryNode(); 3648 ConstantMemory = true; 3649 } else { 3650 // Do not serialize non-volatile loads against each other. 3651 Root = DAG.getRoot(); 3652 } 3653 3654 SDLoc dl = getCurSDLoc(); 3655 3656 if (isVolatile) 3657 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3658 3659 // An aggregate load cannot wrap around the address space, so offsets to its 3660 // parts don't wrap either. 3661 SDNodeFlags Flags; 3662 Flags.setNoUnsignedWrap(true); 3663 3664 SmallVector<SDValue, 4> Values(NumValues); 3665 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3666 EVT PtrVT = Ptr.getValueType(); 3667 unsigned ChainI = 0; 3668 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3669 // Serializing loads here may result in excessive register pressure, and 3670 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3671 // could recover a bit by hoisting nodes upward in the chain by recognizing 3672 // they are side-effect free or do not alias. The optimizer should really 3673 // avoid this case by converting large object/array copies to llvm.memcpy 3674 // (MaxParallelChains should always remain as failsafe). 3675 if (ChainI == MaxParallelChains) { 3676 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3677 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3678 makeArrayRef(Chains.data(), ChainI)); 3679 Root = Chain; 3680 ChainI = 0; 3681 } 3682 SDValue A = DAG.getNode(ISD::ADD, dl, 3683 PtrVT, Ptr, 3684 DAG.getConstant(Offsets[i], dl, PtrVT), 3685 Flags); 3686 auto MMOFlags = MachineMemOperand::MONone; 3687 if (isVolatile) 3688 MMOFlags |= MachineMemOperand::MOVolatile; 3689 if (isNonTemporal) 3690 MMOFlags |= MachineMemOperand::MONonTemporal; 3691 if (isInvariant) 3692 MMOFlags |= MachineMemOperand::MOInvariant; 3693 if (isDereferenceable) 3694 MMOFlags |= MachineMemOperand::MODereferenceable; 3695 MMOFlags |= TLI.getMMOFlags(I); 3696 3697 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3698 MachinePointerInfo(SV, Offsets[i]), Alignment, 3699 MMOFlags, AAInfo, Ranges); 3700 3701 Values[i] = L; 3702 Chains[ChainI] = L.getValue(1); 3703 } 3704 3705 if (!ConstantMemory) { 3706 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3707 makeArrayRef(Chains.data(), ChainI)); 3708 if (isVolatile) 3709 DAG.setRoot(Chain); 3710 else 3711 PendingLoads.push_back(Chain); 3712 } 3713 3714 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3715 DAG.getVTList(ValueVTs), Values)); 3716 } 3717 3718 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3719 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3720 "call visitStoreToSwiftError when backend supports swifterror"); 3721 3722 SmallVector<EVT, 4> ValueVTs; 3723 SmallVector<uint64_t, 4> Offsets; 3724 const Value *SrcV = I.getOperand(0); 3725 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3726 SrcV->getType(), ValueVTs, &Offsets); 3727 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3728 "expect a single EVT for swifterror"); 3729 3730 SDValue Src = getValue(SrcV); 3731 // Create a virtual register, then update the virtual register. 3732 unsigned VReg; bool CreatedVReg; 3733 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3734 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3735 // Chain can be getRoot or getControlRoot. 3736 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3737 SDValue(Src.getNode(), Src.getResNo())); 3738 DAG.setRoot(CopyNode); 3739 if (CreatedVReg) 3740 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3741 } 3742 3743 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3744 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3745 "call visitLoadFromSwiftError when backend supports swifterror"); 3746 3747 assert(!I.isVolatile() && 3748 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3749 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3750 "Support volatile, non temporal, invariant for load_from_swift_error"); 3751 3752 const Value *SV = I.getOperand(0); 3753 Type *Ty = I.getType(); 3754 AAMDNodes AAInfo; 3755 I.getAAMetadata(AAInfo); 3756 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3757 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3758 "load_from_swift_error should not be constant memory"); 3759 3760 SmallVector<EVT, 4> ValueVTs; 3761 SmallVector<uint64_t, 4> Offsets; 3762 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3763 ValueVTs, &Offsets); 3764 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3765 "expect a single EVT for swifterror"); 3766 3767 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3768 SDValue L = DAG.getCopyFromReg( 3769 getRoot(), getCurSDLoc(), 3770 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3771 ValueVTs[0]); 3772 3773 setValue(&I, L); 3774 } 3775 3776 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3777 if (I.isAtomic()) 3778 return visitAtomicStore(I); 3779 3780 const Value *SrcV = I.getOperand(0); 3781 const Value *PtrV = I.getOperand(1); 3782 3783 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3784 if (TLI.supportSwiftError()) { 3785 // Swifterror values can come from either a function parameter with 3786 // swifterror attribute or an alloca with swifterror attribute. 3787 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3788 if (Arg->hasSwiftErrorAttr()) 3789 return visitStoreToSwiftError(I); 3790 } 3791 3792 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3793 if (Alloca->isSwiftError()) 3794 return visitStoreToSwiftError(I); 3795 } 3796 } 3797 3798 SmallVector<EVT, 4> ValueVTs; 3799 SmallVector<uint64_t, 4> Offsets; 3800 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3801 SrcV->getType(), ValueVTs, &Offsets); 3802 unsigned NumValues = ValueVTs.size(); 3803 if (NumValues == 0) 3804 return; 3805 3806 // Get the lowered operands. Note that we do this after 3807 // checking if NumResults is zero, because with zero results 3808 // the operands won't have values in the map. 3809 SDValue Src = getValue(SrcV); 3810 SDValue Ptr = getValue(PtrV); 3811 3812 SDValue Root = getRoot(); 3813 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3814 SDLoc dl = getCurSDLoc(); 3815 EVT PtrVT = Ptr.getValueType(); 3816 unsigned Alignment = I.getAlignment(); 3817 AAMDNodes AAInfo; 3818 I.getAAMetadata(AAInfo); 3819 3820 auto MMOFlags = MachineMemOperand::MONone; 3821 if (I.isVolatile()) 3822 MMOFlags |= MachineMemOperand::MOVolatile; 3823 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3824 MMOFlags |= MachineMemOperand::MONonTemporal; 3825 MMOFlags |= TLI.getMMOFlags(I); 3826 3827 // An aggregate load cannot wrap around the address space, so offsets to its 3828 // parts don't wrap either. 3829 SDNodeFlags Flags; 3830 Flags.setNoUnsignedWrap(true); 3831 3832 unsigned ChainI = 0; 3833 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3834 // See visitLoad comments. 3835 if (ChainI == MaxParallelChains) { 3836 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3837 makeArrayRef(Chains.data(), ChainI)); 3838 Root = Chain; 3839 ChainI = 0; 3840 } 3841 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3842 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3843 SDValue St = DAG.getStore( 3844 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3845 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3846 Chains[ChainI] = St; 3847 } 3848 3849 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3850 makeArrayRef(Chains.data(), ChainI)); 3851 DAG.setRoot(StoreNode); 3852 } 3853 3854 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3855 bool IsCompressing) { 3856 SDLoc sdl = getCurSDLoc(); 3857 3858 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3859 unsigned& Alignment) { 3860 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3861 Src0 = I.getArgOperand(0); 3862 Ptr = I.getArgOperand(1); 3863 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3864 Mask = I.getArgOperand(3); 3865 }; 3866 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3867 unsigned& Alignment) { 3868 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3869 Src0 = I.getArgOperand(0); 3870 Ptr = I.getArgOperand(1); 3871 Mask = I.getArgOperand(2); 3872 Alignment = 0; 3873 }; 3874 3875 Value *PtrOperand, *MaskOperand, *Src0Operand; 3876 unsigned Alignment; 3877 if (IsCompressing) 3878 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3879 else 3880 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3881 3882 SDValue Ptr = getValue(PtrOperand); 3883 SDValue Src0 = getValue(Src0Operand); 3884 SDValue Mask = getValue(MaskOperand); 3885 3886 EVT VT = Src0.getValueType(); 3887 if (!Alignment) 3888 Alignment = DAG.getEVTAlignment(VT); 3889 3890 AAMDNodes AAInfo; 3891 I.getAAMetadata(AAInfo); 3892 3893 MachineMemOperand *MMO = 3894 DAG.getMachineFunction(). 3895 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3896 MachineMemOperand::MOStore, VT.getStoreSize(), 3897 Alignment, AAInfo); 3898 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3899 MMO, false /* Truncating */, 3900 IsCompressing); 3901 DAG.setRoot(StoreNode); 3902 setValue(&I, StoreNode); 3903 } 3904 3905 // Get a uniform base for the Gather/Scatter intrinsic. 3906 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3907 // We try to represent it as a base pointer + vector of indices. 3908 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3909 // The first operand of the GEP may be a single pointer or a vector of pointers 3910 // Example: 3911 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3912 // or 3913 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3914 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3915 // 3916 // When the first GEP operand is a single pointer - it is the uniform base we 3917 // are looking for. If first operand of the GEP is a splat vector - we 3918 // extract the splat value and use it as a uniform base. 3919 // In all other cases the function returns 'false'. 3920 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3921 SDValue &Scale, SelectionDAGBuilder* SDB) { 3922 SelectionDAG& DAG = SDB->DAG; 3923 LLVMContext &Context = *DAG.getContext(); 3924 3925 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3926 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3927 if (!GEP) 3928 return false; 3929 3930 const Value *GEPPtr = GEP->getPointerOperand(); 3931 if (!GEPPtr->getType()->isVectorTy()) 3932 Ptr = GEPPtr; 3933 else if (!(Ptr = getSplatValue(GEPPtr))) 3934 return false; 3935 3936 unsigned FinalIndex = GEP->getNumOperands() - 1; 3937 Value *IndexVal = GEP->getOperand(FinalIndex); 3938 3939 // Ensure all the other indices are 0. 3940 for (unsigned i = 1; i < FinalIndex; ++i) { 3941 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3942 if (!C || !C->isZero()) 3943 return false; 3944 } 3945 3946 // The operands of the GEP may be defined in another basic block. 3947 // In this case we'll not find nodes for the operands. 3948 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3949 return false; 3950 3951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3952 const DataLayout &DL = DAG.getDataLayout(); 3953 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3954 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3955 Base = SDB->getValue(Ptr); 3956 Index = SDB->getValue(IndexVal); 3957 3958 if (!Index.getValueType().isVector()) { 3959 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3960 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3961 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3962 } 3963 return true; 3964 } 3965 3966 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3967 SDLoc sdl = getCurSDLoc(); 3968 3969 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3970 const Value *Ptr = I.getArgOperand(1); 3971 SDValue Src0 = getValue(I.getArgOperand(0)); 3972 SDValue Mask = getValue(I.getArgOperand(3)); 3973 EVT VT = Src0.getValueType(); 3974 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3975 if (!Alignment) 3976 Alignment = DAG.getEVTAlignment(VT); 3977 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3978 3979 AAMDNodes AAInfo; 3980 I.getAAMetadata(AAInfo); 3981 3982 SDValue Base; 3983 SDValue Index; 3984 SDValue Scale; 3985 const Value *BasePtr = Ptr; 3986 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 3987 3988 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3989 MachineMemOperand *MMO = DAG.getMachineFunction(). 3990 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3991 MachineMemOperand::MOStore, VT.getStoreSize(), 3992 Alignment, AAInfo); 3993 if (!UniformBase) { 3994 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3995 Index = getValue(Ptr); 3996 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3997 } 3998 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 3999 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4000 Ops, MMO); 4001 DAG.setRoot(Scatter); 4002 setValue(&I, Scatter); 4003 } 4004 4005 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4006 SDLoc sdl = getCurSDLoc(); 4007 4008 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4009 unsigned& Alignment) { 4010 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4011 Ptr = I.getArgOperand(0); 4012 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4013 Mask = I.getArgOperand(2); 4014 Src0 = I.getArgOperand(3); 4015 }; 4016 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4017 unsigned& Alignment) { 4018 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4019 Ptr = I.getArgOperand(0); 4020 Alignment = 0; 4021 Mask = I.getArgOperand(1); 4022 Src0 = I.getArgOperand(2); 4023 }; 4024 4025 Value *PtrOperand, *MaskOperand, *Src0Operand; 4026 unsigned Alignment; 4027 if (IsExpanding) 4028 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4029 else 4030 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4031 4032 SDValue Ptr = getValue(PtrOperand); 4033 SDValue Src0 = getValue(Src0Operand); 4034 SDValue Mask = getValue(MaskOperand); 4035 4036 EVT VT = Src0.getValueType(); 4037 if (!Alignment) 4038 Alignment = DAG.getEVTAlignment(VT); 4039 4040 AAMDNodes AAInfo; 4041 I.getAAMetadata(AAInfo); 4042 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4043 4044 // Do not serialize masked loads of constant memory with anything. 4045 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4046 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4047 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4048 4049 MachineMemOperand *MMO = 4050 DAG.getMachineFunction(). 4051 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4052 MachineMemOperand::MOLoad, VT.getStoreSize(), 4053 Alignment, AAInfo, Ranges); 4054 4055 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4056 ISD::NON_EXTLOAD, IsExpanding); 4057 if (AddToChain) { 4058 SDValue OutChain = Load.getValue(1); 4059 DAG.setRoot(OutChain); 4060 } 4061 setValue(&I, Load); 4062 } 4063 4064 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4065 SDLoc sdl = getCurSDLoc(); 4066 4067 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4068 const Value *Ptr = I.getArgOperand(0); 4069 SDValue Src0 = getValue(I.getArgOperand(3)); 4070 SDValue Mask = getValue(I.getArgOperand(2)); 4071 4072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4073 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4074 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4075 if (!Alignment) 4076 Alignment = DAG.getEVTAlignment(VT); 4077 4078 AAMDNodes AAInfo; 4079 I.getAAMetadata(AAInfo); 4080 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4081 4082 SDValue Root = DAG.getRoot(); 4083 SDValue Base; 4084 SDValue Index; 4085 SDValue Scale; 4086 const Value *BasePtr = Ptr; 4087 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4088 bool ConstantMemory = false; 4089 if (UniformBase && 4090 AA && AA->pointsToConstantMemory(MemoryLocation( 4091 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4092 AAInfo))) { 4093 // Do not serialize (non-volatile) loads of constant memory with anything. 4094 Root = DAG.getEntryNode(); 4095 ConstantMemory = true; 4096 } 4097 4098 MachineMemOperand *MMO = 4099 DAG.getMachineFunction(). 4100 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4101 MachineMemOperand::MOLoad, VT.getStoreSize(), 4102 Alignment, AAInfo, Ranges); 4103 4104 if (!UniformBase) { 4105 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4106 Index = getValue(Ptr); 4107 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4108 } 4109 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4110 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4111 Ops, MMO); 4112 4113 SDValue OutChain = Gather.getValue(1); 4114 if (!ConstantMemory) 4115 PendingLoads.push_back(OutChain); 4116 setValue(&I, Gather); 4117 } 4118 4119 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4120 SDLoc dl = getCurSDLoc(); 4121 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4122 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4123 SyncScope::ID SSID = I.getSyncScopeID(); 4124 4125 SDValue InChain = getRoot(); 4126 4127 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4128 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4129 SDValue L = DAG.getAtomicCmpSwap( 4130 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4131 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4132 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4133 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4134 4135 SDValue OutChain = L.getValue(2); 4136 4137 setValue(&I, L); 4138 DAG.setRoot(OutChain); 4139 } 4140 4141 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4142 SDLoc dl = getCurSDLoc(); 4143 ISD::NodeType NT; 4144 switch (I.getOperation()) { 4145 default: llvm_unreachable("Unknown atomicrmw operation"); 4146 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4147 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4148 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4149 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4150 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4151 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4152 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4153 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4154 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4155 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4156 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4157 } 4158 AtomicOrdering Order = I.getOrdering(); 4159 SyncScope::ID SSID = I.getSyncScopeID(); 4160 4161 SDValue InChain = getRoot(); 4162 4163 SDValue L = 4164 DAG.getAtomic(NT, dl, 4165 getValue(I.getValOperand()).getSimpleValueType(), 4166 InChain, 4167 getValue(I.getPointerOperand()), 4168 getValue(I.getValOperand()), 4169 I.getPointerOperand(), 4170 /* Alignment=*/ 0, Order, SSID); 4171 4172 SDValue OutChain = L.getValue(1); 4173 4174 setValue(&I, L); 4175 DAG.setRoot(OutChain); 4176 } 4177 4178 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4179 SDLoc dl = getCurSDLoc(); 4180 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4181 SDValue Ops[3]; 4182 Ops[0] = getRoot(); 4183 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4184 TLI.getFenceOperandTy(DAG.getDataLayout())); 4185 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4186 TLI.getFenceOperandTy(DAG.getDataLayout())); 4187 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4188 } 4189 4190 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4191 SDLoc dl = getCurSDLoc(); 4192 AtomicOrdering Order = I.getOrdering(); 4193 SyncScope::ID SSID = I.getSyncScopeID(); 4194 4195 SDValue InChain = getRoot(); 4196 4197 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4198 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4199 4200 if (!TLI.supportsUnalignedAtomics() && 4201 I.getAlignment() < VT.getStoreSize()) 4202 report_fatal_error("Cannot generate unaligned atomic load"); 4203 4204 MachineMemOperand *MMO = 4205 DAG.getMachineFunction(). 4206 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4207 MachineMemOperand::MOVolatile | 4208 MachineMemOperand::MOLoad, 4209 VT.getStoreSize(), 4210 I.getAlignment() ? I.getAlignment() : 4211 DAG.getEVTAlignment(VT), 4212 AAMDNodes(), nullptr, SSID, Order); 4213 4214 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4215 SDValue L = 4216 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4217 getValue(I.getPointerOperand()), MMO); 4218 4219 SDValue OutChain = L.getValue(1); 4220 4221 setValue(&I, L); 4222 DAG.setRoot(OutChain); 4223 } 4224 4225 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4226 SDLoc dl = getCurSDLoc(); 4227 4228 AtomicOrdering Order = I.getOrdering(); 4229 SyncScope::ID SSID = I.getSyncScopeID(); 4230 4231 SDValue InChain = getRoot(); 4232 4233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4234 EVT VT = 4235 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4236 4237 if (I.getAlignment() < VT.getStoreSize()) 4238 report_fatal_error("Cannot generate unaligned atomic store"); 4239 4240 SDValue OutChain = 4241 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4242 InChain, 4243 getValue(I.getPointerOperand()), 4244 getValue(I.getValueOperand()), 4245 I.getPointerOperand(), I.getAlignment(), 4246 Order, SSID); 4247 4248 DAG.setRoot(OutChain); 4249 } 4250 4251 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4252 /// node. 4253 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4254 unsigned Intrinsic) { 4255 // Ignore the callsite's attributes. A specific call site may be marked with 4256 // readnone, but the lowering code will expect the chain based on the 4257 // definition. 4258 const Function *F = I.getCalledFunction(); 4259 bool HasChain = !F->doesNotAccessMemory(); 4260 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4261 4262 // Build the operand list. 4263 SmallVector<SDValue, 8> Ops; 4264 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4265 if (OnlyLoad) { 4266 // We don't need to serialize loads against other loads. 4267 Ops.push_back(DAG.getRoot()); 4268 } else { 4269 Ops.push_back(getRoot()); 4270 } 4271 } 4272 4273 // Info is set by getTgtMemInstrinsic 4274 TargetLowering::IntrinsicInfo Info; 4275 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4276 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4277 DAG.getMachineFunction(), 4278 Intrinsic); 4279 4280 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4281 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4282 Info.opc == ISD::INTRINSIC_W_CHAIN) 4283 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4284 TLI.getPointerTy(DAG.getDataLayout()))); 4285 4286 // Add all operands of the call to the operand list. 4287 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4288 SDValue Op = getValue(I.getArgOperand(i)); 4289 Ops.push_back(Op); 4290 } 4291 4292 SmallVector<EVT, 4> ValueVTs; 4293 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4294 4295 if (HasChain) 4296 ValueVTs.push_back(MVT::Other); 4297 4298 SDVTList VTs = DAG.getVTList(ValueVTs); 4299 4300 // Create the node. 4301 SDValue Result; 4302 if (IsTgtIntrinsic) { 4303 // This is target intrinsic that touches memory 4304 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4305 Ops, Info.memVT, 4306 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4307 Info.flags, Info.size); 4308 } else if (!HasChain) { 4309 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4310 } else if (!I.getType()->isVoidTy()) { 4311 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4312 } else { 4313 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4314 } 4315 4316 if (HasChain) { 4317 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4318 if (OnlyLoad) 4319 PendingLoads.push_back(Chain); 4320 else 4321 DAG.setRoot(Chain); 4322 } 4323 4324 if (!I.getType()->isVoidTy()) { 4325 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4326 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4327 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4328 } else 4329 Result = lowerRangeToAssertZExt(DAG, I, Result); 4330 4331 setValue(&I, Result); 4332 } 4333 } 4334 4335 /// GetSignificand - Get the significand and build it into a floating-point 4336 /// number with exponent of 1: 4337 /// 4338 /// Op = (Op & 0x007fffff) | 0x3f800000; 4339 /// 4340 /// where Op is the hexadecimal representation of floating point value. 4341 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4342 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4343 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4344 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4345 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4346 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4347 } 4348 4349 /// GetExponent - Get the exponent: 4350 /// 4351 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4352 /// 4353 /// where Op is the hexadecimal representation of floating point value. 4354 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4355 const TargetLowering &TLI, const SDLoc &dl) { 4356 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4357 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4358 SDValue t1 = DAG.getNode( 4359 ISD::SRL, dl, MVT::i32, t0, 4360 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4361 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4362 DAG.getConstant(127, dl, MVT::i32)); 4363 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4364 } 4365 4366 /// getF32Constant - Get 32-bit floating point constant. 4367 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4368 const SDLoc &dl) { 4369 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4370 MVT::f32); 4371 } 4372 4373 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4374 SelectionDAG &DAG) { 4375 // TODO: What fast-math-flags should be set on the floating-point nodes? 4376 4377 // IntegerPartOfX = ((int32_t)(t0); 4378 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4379 4380 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4381 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4382 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4383 4384 // IntegerPartOfX <<= 23; 4385 IntegerPartOfX = DAG.getNode( 4386 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4387 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4388 DAG.getDataLayout()))); 4389 4390 SDValue TwoToFractionalPartOfX; 4391 if (LimitFloatPrecision <= 6) { 4392 // For floating-point precision of 6: 4393 // 4394 // TwoToFractionalPartOfX = 4395 // 0.997535578f + 4396 // (0.735607626f + 0.252464424f * x) * x; 4397 // 4398 // error 0.0144103317, which is 6 bits 4399 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4400 getF32Constant(DAG, 0x3e814304, dl)); 4401 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4402 getF32Constant(DAG, 0x3f3c50c8, dl)); 4403 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4404 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4405 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4406 } else if (LimitFloatPrecision <= 12) { 4407 // For floating-point precision of 12: 4408 // 4409 // TwoToFractionalPartOfX = 4410 // 0.999892986f + 4411 // (0.696457318f + 4412 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4413 // 4414 // error 0.000107046256, which is 13 to 14 bits 4415 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4416 getF32Constant(DAG, 0x3da235e3, dl)); 4417 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4418 getF32Constant(DAG, 0x3e65b8f3, dl)); 4419 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4420 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4421 getF32Constant(DAG, 0x3f324b07, dl)); 4422 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4423 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4424 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4425 } else { // LimitFloatPrecision <= 18 4426 // For floating-point precision of 18: 4427 // 4428 // TwoToFractionalPartOfX = 4429 // 0.999999982f + 4430 // (0.693148872f + 4431 // (0.240227044f + 4432 // (0.554906021e-1f + 4433 // (0.961591928e-2f + 4434 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4435 // error 2.47208000*10^(-7), which is better than 18 bits 4436 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4437 getF32Constant(DAG, 0x3924b03e, dl)); 4438 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4439 getF32Constant(DAG, 0x3ab24b87, dl)); 4440 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4441 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4442 getF32Constant(DAG, 0x3c1d8c17, dl)); 4443 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4444 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4445 getF32Constant(DAG, 0x3d634a1d, dl)); 4446 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4447 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4448 getF32Constant(DAG, 0x3e75fe14, dl)); 4449 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4450 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4451 getF32Constant(DAG, 0x3f317234, dl)); 4452 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4453 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4454 getF32Constant(DAG, 0x3f800000, dl)); 4455 } 4456 4457 // Add the exponent into the result in integer domain. 4458 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4459 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4460 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4461 } 4462 4463 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4464 /// limited-precision mode. 4465 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4466 const TargetLowering &TLI) { 4467 if (Op.getValueType() == MVT::f32 && 4468 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4469 4470 // Put the exponent in the right bit position for later addition to the 4471 // final result: 4472 // 4473 // #define LOG2OFe 1.4426950f 4474 // t0 = Op * LOG2OFe 4475 4476 // TODO: What fast-math-flags should be set here? 4477 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4478 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4479 return getLimitedPrecisionExp2(t0, dl, DAG); 4480 } 4481 4482 // No special expansion. 4483 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4484 } 4485 4486 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4487 /// limited-precision mode. 4488 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4489 const TargetLowering &TLI) { 4490 // TODO: What fast-math-flags should be set on the floating-point nodes? 4491 4492 if (Op.getValueType() == MVT::f32 && 4493 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4494 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4495 4496 // Scale the exponent by log(2) [0.69314718f]. 4497 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4498 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4499 getF32Constant(DAG, 0x3f317218, dl)); 4500 4501 // Get the significand and build it into a floating-point number with 4502 // exponent of 1. 4503 SDValue X = GetSignificand(DAG, Op1, dl); 4504 4505 SDValue LogOfMantissa; 4506 if (LimitFloatPrecision <= 6) { 4507 // For floating-point precision of 6: 4508 // 4509 // LogofMantissa = 4510 // -1.1609546f + 4511 // (1.4034025f - 0.23903021f * x) * x; 4512 // 4513 // error 0.0034276066, which is better than 8 bits 4514 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4515 getF32Constant(DAG, 0xbe74c456, dl)); 4516 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4517 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4518 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4519 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4520 getF32Constant(DAG, 0x3f949a29, dl)); 4521 } else if (LimitFloatPrecision <= 12) { 4522 // For floating-point precision of 12: 4523 // 4524 // LogOfMantissa = 4525 // -1.7417939f + 4526 // (2.8212026f + 4527 // (-1.4699568f + 4528 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4529 // 4530 // error 0.000061011436, which is 14 bits 4531 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4532 getF32Constant(DAG, 0xbd67b6d6, dl)); 4533 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4534 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4535 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4536 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4537 getF32Constant(DAG, 0x3fbc278b, dl)); 4538 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4539 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4540 getF32Constant(DAG, 0x40348e95, dl)); 4541 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4542 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4543 getF32Constant(DAG, 0x3fdef31a, dl)); 4544 } else { // LimitFloatPrecision <= 18 4545 // For floating-point precision of 18: 4546 // 4547 // LogOfMantissa = 4548 // -2.1072184f + 4549 // (4.2372794f + 4550 // (-3.7029485f + 4551 // (2.2781945f + 4552 // (-0.87823314f + 4553 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4554 // 4555 // error 0.0000023660568, which is better than 18 bits 4556 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4557 getF32Constant(DAG, 0xbc91e5ac, dl)); 4558 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4559 getF32Constant(DAG, 0x3e4350aa, dl)); 4560 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4561 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4562 getF32Constant(DAG, 0x3f60d3e3, dl)); 4563 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4564 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4565 getF32Constant(DAG, 0x4011cdf0, dl)); 4566 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4567 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4568 getF32Constant(DAG, 0x406cfd1c, dl)); 4569 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4570 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4571 getF32Constant(DAG, 0x408797cb, dl)); 4572 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4573 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4574 getF32Constant(DAG, 0x4006dcab, dl)); 4575 } 4576 4577 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4578 } 4579 4580 // No special expansion. 4581 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4582 } 4583 4584 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4585 /// limited-precision mode. 4586 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4587 const TargetLowering &TLI) { 4588 // TODO: What fast-math-flags should be set on the floating-point nodes? 4589 4590 if (Op.getValueType() == MVT::f32 && 4591 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4592 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4593 4594 // Get the exponent. 4595 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4596 4597 // Get the significand and build it into a floating-point number with 4598 // exponent of 1. 4599 SDValue X = GetSignificand(DAG, Op1, dl); 4600 4601 // Different possible minimax approximations of significand in 4602 // floating-point for various degrees of accuracy over [1,2]. 4603 SDValue Log2ofMantissa; 4604 if (LimitFloatPrecision <= 6) { 4605 // For floating-point precision of 6: 4606 // 4607 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4608 // 4609 // error 0.0049451742, which is more than 7 bits 4610 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4611 getF32Constant(DAG, 0xbeb08fe0, dl)); 4612 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4613 getF32Constant(DAG, 0x40019463, dl)); 4614 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4615 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4616 getF32Constant(DAG, 0x3fd6633d, dl)); 4617 } else if (LimitFloatPrecision <= 12) { 4618 // For floating-point precision of 12: 4619 // 4620 // Log2ofMantissa = 4621 // -2.51285454f + 4622 // (4.07009056f + 4623 // (-2.12067489f + 4624 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4625 // 4626 // error 0.0000876136000, which is better than 13 bits 4627 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4628 getF32Constant(DAG, 0xbda7262e, dl)); 4629 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4630 getF32Constant(DAG, 0x3f25280b, dl)); 4631 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4632 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4633 getF32Constant(DAG, 0x4007b923, dl)); 4634 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4635 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4636 getF32Constant(DAG, 0x40823e2f, dl)); 4637 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4638 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4639 getF32Constant(DAG, 0x4020d29c, dl)); 4640 } else { // LimitFloatPrecision <= 18 4641 // For floating-point precision of 18: 4642 // 4643 // Log2ofMantissa = 4644 // -3.0400495f + 4645 // (6.1129976f + 4646 // (-5.3420409f + 4647 // (3.2865683f + 4648 // (-1.2669343f + 4649 // (0.27515199f - 4650 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4651 // 4652 // error 0.0000018516, which is better than 18 bits 4653 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4654 getF32Constant(DAG, 0xbcd2769e, dl)); 4655 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4656 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4657 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4658 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4659 getF32Constant(DAG, 0x3fa22ae7, dl)); 4660 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4661 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4662 getF32Constant(DAG, 0x40525723, dl)); 4663 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4664 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4665 getF32Constant(DAG, 0x40aaf200, dl)); 4666 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4667 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4668 getF32Constant(DAG, 0x40c39dad, dl)); 4669 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4670 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4671 getF32Constant(DAG, 0x4042902c, dl)); 4672 } 4673 4674 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4675 } 4676 4677 // No special expansion. 4678 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4679 } 4680 4681 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4682 /// limited-precision mode. 4683 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4684 const TargetLowering &TLI) { 4685 // TODO: What fast-math-flags should be set on the floating-point nodes? 4686 4687 if (Op.getValueType() == MVT::f32 && 4688 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4689 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4690 4691 // Scale the exponent by log10(2) [0.30102999f]. 4692 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4693 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4694 getF32Constant(DAG, 0x3e9a209a, dl)); 4695 4696 // Get the significand and build it into a floating-point number with 4697 // exponent of 1. 4698 SDValue X = GetSignificand(DAG, Op1, dl); 4699 4700 SDValue Log10ofMantissa; 4701 if (LimitFloatPrecision <= 6) { 4702 // For floating-point precision of 6: 4703 // 4704 // Log10ofMantissa = 4705 // -0.50419619f + 4706 // (0.60948995f - 0.10380950f * x) * x; 4707 // 4708 // error 0.0014886165, which is 6 bits 4709 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4710 getF32Constant(DAG, 0xbdd49a13, dl)); 4711 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4712 getF32Constant(DAG, 0x3f1c0789, dl)); 4713 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4714 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4715 getF32Constant(DAG, 0x3f011300, dl)); 4716 } else if (LimitFloatPrecision <= 12) { 4717 // For floating-point precision of 12: 4718 // 4719 // Log10ofMantissa = 4720 // -0.64831180f + 4721 // (0.91751397f + 4722 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4723 // 4724 // error 0.00019228036, which is better than 12 bits 4725 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4726 getF32Constant(DAG, 0x3d431f31, dl)); 4727 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4728 getF32Constant(DAG, 0x3ea21fb2, dl)); 4729 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4730 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4731 getF32Constant(DAG, 0x3f6ae232, dl)); 4732 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4733 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4734 getF32Constant(DAG, 0x3f25f7c3, dl)); 4735 } else { // LimitFloatPrecision <= 18 4736 // For floating-point precision of 18: 4737 // 4738 // Log10ofMantissa = 4739 // -0.84299375f + 4740 // (1.5327582f + 4741 // (-1.0688956f + 4742 // (0.49102474f + 4743 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4744 // 4745 // error 0.0000037995730, which is better than 18 bits 4746 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4747 getF32Constant(DAG, 0x3c5d51ce, dl)); 4748 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4749 getF32Constant(DAG, 0x3e00685a, dl)); 4750 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4751 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4752 getF32Constant(DAG, 0x3efb6798, dl)); 4753 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4754 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4755 getF32Constant(DAG, 0x3f88d192, dl)); 4756 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4757 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4758 getF32Constant(DAG, 0x3fc4316c, dl)); 4759 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4760 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4761 getF32Constant(DAG, 0x3f57ce70, dl)); 4762 } 4763 4764 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4765 } 4766 4767 // No special expansion. 4768 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4769 } 4770 4771 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4772 /// limited-precision mode. 4773 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4774 const TargetLowering &TLI) { 4775 if (Op.getValueType() == MVT::f32 && 4776 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4777 return getLimitedPrecisionExp2(Op, dl, DAG); 4778 4779 // No special expansion. 4780 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4781 } 4782 4783 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4784 /// limited-precision mode with x == 10.0f. 4785 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4786 SelectionDAG &DAG, const TargetLowering &TLI) { 4787 bool IsExp10 = false; 4788 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4789 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4790 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4791 APFloat Ten(10.0f); 4792 IsExp10 = LHSC->isExactlyValue(Ten); 4793 } 4794 } 4795 4796 // TODO: What fast-math-flags should be set on the FMUL node? 4797 if (IsExp10) { 4798 // Put the exponent in the right bit position for later addition to the 4799 // final result: 4800 // 4801 // #define LOG2OF10 3.3219281f 4802 // t0 = Op * LOG2OF10; 4803 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4804 getF32Constant(DAG, 0x40549a78, dl)); 4805 return getLimitedPrecisionExp2(t0, dl, DAG); 4806 } 4807 4808 // No special expansion. 4809 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4810 } 4811 4812 /// ExpandPowI - Expand a llvm.powi intrinsic. 4813 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4814 SelectionDAG &DAG) { 4815 // If RHS is a constant, we can expand this out to a multiplication tree, 4816 // otherwise we end up lowering to a call to __powidf2 (for example). When 4817 // optimizing for size, we only want to do this if the expansion would produce 4818 // a small number of multiplies, otherwise we do the full expansion. 4819 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4820 // Get the exponent as a positive value. 4821 unsigned Val = RHSC->getSExtValue(); 4822 if ((int)Val < 0) Val = -Val; 4823 4824 // powi(x, 0) -> 1.0 4825 if (Val == 0) 4826 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4827 4828 const Function &F = DAG.getMachineFunction().getFunction(); 4829 if (!F.optForSize() || 4830 // If optimizing for size, don't insert too many multiplies. 4831 // This inserts up to 5 multiplies. 4832 countPopulation(Val) + Log2_32(Val) < 7) { 4833 // We use the simple binary decomposition method to generate the multiply 4834 // sequence. There are more optimal ways to do this (for example, 4835 // powi(x,15) generates one more multiply than it should), but this has 4836 // the benefit of being both really simple and much better than a libcall. 4837 SDValue Res; // Logically starts equal to 1.0 4838 SDValue CurSquare = LHS; 4839 // TODO: Intrinsics should have fast-math-flags that propagate to these 4840 // nodes. 4841 while (Val) { 4842 if (Val & 1) { 4843 if (Res.getNode()) 4844 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4845 else 4846 Res = CurSquare; // 1.0*CurSquare. 4847 } 4848 4849 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4850 CurSquare, CurSquare); 4851 Val >>= 1; 4852 } 4853 4854 // If the original was negative, invert the result, producing 1/(x*x*x). 4855 if (RHSC->getSExtValue() < 0) 4856 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4857 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4858 return Res; 4859 } 4860 } 4861 4862 // Otherwise, expand to a libcall. 4863 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4864 } 4865 4866 // getUnderlyingArgReg - Find underlying register used for a truncated or 4867 // bitcasted argument. 4868 static unsigned getUnderlyingArgReg(const SDValue &N) { 4869 switch (N.getOpcode()) { 4870 case ISD::CopyFromReg: 4871 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4872 case ISD::BITCAST: 4873 case ISD::AssertZext: 4874 case ISD::AssertSext: 4875 case ISD::TRUNCATE: 4876 return getUnderlyingArgReg(N.getOperand(0)); 4877 default: 4878 return 0; 4879 } 4880 } 4881 4882 /// If the DbgValueInst is a dbg_value of a function argument, create the 4883 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4884 /// instruction selection, they will be inserted to the entry BB. 4885 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4886 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4887 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4888 const Argument *Arg = dyn_cast<Argument>(V); 4889 if (!Arg) 4890 return false; 4891 4892 MachineFunction &MF = DAG.getMachineFunction(); 4893 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4894 4895 bool IsIndirect = false; 4896 Optional<MachineOperand> Op; 4897 // Some arguments' frame index is recorded during argument lowering. 4898 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4899 if (FI != std::numeric_limits<int>::max()) 4900 Op = MachineOperand::CreateFI(FI); 4901 4902 if (!Op && N.getNode()) { 4903 unsigned Reg = getUnderlyingArgReg(N); 4904 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4905 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4906 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4907 if (PR) 4908 Reg = PR; 4909 } 4910 if (Reg) { 4911 Op = MachineOperand::CreateReg(Reg, false); 4912 IsIndirect = IsDbgDeclare; 4913 } 4914 } 4915 4916 if (!Op && N.getNode()) 4917 // Check if frame index is available. 4918 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4919 if (FrameIndexSDNode *FINode = 4920 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4921 Op = MachineOperand::CreateFI(FINode->getIndex()); 4922 4923 if (!Op) { 4924 // Check if ValueMap has reg number. 4925 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4926 if (VMI != FuncInfo.ValueMap.end()) { 4927 const auto &TLI = DAG.getTargetLoweringInfo(); 4928 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4929 V->getType(), isABIRegCopy(V)); 4930 if (RFV.occupiesMultipleRegs()) { 4931 unsigned Offset = 0; 4932 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4933 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4934 auto FragmentExpr = DIExpression::createFragmentExpression( 4935 Expr, Offset, RegAndSize.second); 4936 if (!FragmentExpr) 4937 continue; 4938 FuncInfo.ArgDbgValues.push_back( 4939 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4940 Op->getReg(), Variable, *FragmentExpr)); 4941 Offset += RegAndSize.second; 4942 } 4943 return true; 4944 } 4945 Op = MachineOperand::CreateReg(VMI->second, false); 4946 IsIndirect = IsDbgDeclare; 4947 } 4948 } 4949 4950 if (!Op) 4951 return false; 4952 4953 assert(Variable->isValidLocationForIntrinsic(DL) && 4954 "Expected inlined-at fields to agree"); 4955 IsIndirect = (Op->isReg()) ? IsIndirect : true; 4956 FuncInfo.ArgDbgValues.push_back( 4957 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4958 *Op, Variable, Expr)); 4959 4960 return true; 4961 } 4962 4963 /// Return the appropriate SDDbgValue based on N. 4964 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4965 DILocalVariable *Variable, 4966 DIExpression *Expr, 4967 const DebugLoc &dl, 4968 unsigned DbgSDNodeOrder) { 4969 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4970 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4971 // stack slot locations as such instead of as indirectly addressed 4972 // locations. 4973 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4974 DbgSDNodeOrder); 4975 } 4976 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4977 DbgSDNodeOrder); 4978 } 4979 4980 // VisualStudio defines setjmp as _setjmp 4981 #if defined(_MSC_VER) && defined(setjmp) && \ 4982 !defined(setjmp_undefined_for_msvc) 4983 # pragma push_macro("setjmp") 4984 # undef setjmp 4985 # define setjmp_undefined_for_msvc 4986 #endif 4987 4988 /// Lower the call to the specified intrinsic function. If we want to emit this 4989 /// as a call to a named external function, return the name. Otherwise, lower it 4990 /// and return null. 4991 const char * 4992 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4994 SDLoc sdl = getCurSDLoc(); 4995 DebugLoc dl = getCurDebugLoc(); 4996 SDValue Res; 4997 4998 switch (Intrinsic) { 4999 default: 5000 // By default, turn this into a target intrinsic node. 5001 visitTargetIntrinsic(I, Intrinsic); 5002 return nullptr; 5003 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5004 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5005 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5006 case Intrinsic::returnaddress: 5007 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5008 TLI.getPointerTy(DAG.getDataLayout()), 5009 getValue(I.getArgOperand(0)))); 5010 return nullptr; 5011 case Intrinsic::addressofreturnaddress: 5012 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5013 TLI.getPointerTy(DAG.getDataLayout()))); 5014 return nullptr; 5015 case Intrinsic::frameaddress: 5016 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5017 TLI.getPointerTy(DAG.getDataLayout()), 5018 getValue(I.getArgOperand(0)))); 5019 return nullptr; 5020 case Intrinsic::read_register: { 5021 Value *Reg = I.getArgOperand(0); 5022 SDValue Chain = getRoot(); 5023 SDValue RegName = 5024 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5025 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5026 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5027 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5028 setValue(&I, Res); 5029 DAG.setRoot(Res.getValue(1)); 5030 return nullptr; 5031 } 5032 case Intrinsic::write_register: { 5033 Value *Reg = I.getArgOperand(0); 5034 Value *RegValue = I.getArgOperand(1); 5035 SDValue Chain = getRoot(); 5036 SDValue RegName = 5037 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5038 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5039 RegName, getValue(RegValue))); 5040 return nullptr; 5041 } 5042 case Intrinsic::setjmp: 5043 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5044 case Intrinsic::longjmp: 5045 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5046 case Intrinsic::memcpy: { 5047 const auto &MCI = cast<MemCpyInst>(I); 5048 SDValue Op1 = getValue(I.getArgOperand(0)); 5049 SDValue Op2 = getValue(I.getArgOperand(1)); 5050 SDValue Op3 = getValue(I.getArgOperand(2)); 5051 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5052 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5053 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5054 unsigned Align = MinAlign(DstAlign, SrcAlign); 5055 bool isVol = MCI.isVolatile(); 5056 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5057 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5058 // node. 5059 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5060 false, isTC, 5061 MachinePointerInfo(I.getArgOperand(0)), 5062 MachinePointerInfo(I.getArgOperand(1))); 5063 updateDAGForMaybeTailCall(MC); 5064 return nullptr; 5065 } 5066 case Intrinsic::memset: { 5067 const auto &MSI = cast<MemSetInst>(I); 5068 SDValue Op1 = getValue(I.getArgOperand(0)); 5069 SDValue Op2 = getValue(I.getArgOperand(1)); 5070 SDValue Op3 = getValue(I.getArgOperand(2)); 5071 // @llvm.memset defines 0 and 1 to both mean no alignment. 5072 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5073 bool isVol = MSI.isVolatile(); 5074 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5075 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5076 isTC, MachinePointerInfo(I.getArgOperand(0))); 5077 updateDAGForMaybeTailCall(MS); 5078 return nullptr; 5079 } 5080 case Intrinsic::memmove: { 5081 const auto &MMI = cast<MemMoveInst>(I); 5082 SDValue Op1 = getValue(I.getArgOperand(0)); 5083 SDValue Op2 = getValue(I.getArgOperand(1)); 5084 SDValue Op3 = getValue(I.getArgOperand(2)); 5085 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5086 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5087 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5088 unsigned Align = MinAlign(DstAlign, SrcAlign); 5089 bool isVol = MMI.isVolatile(); 5090 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5091 // FIXME: Support passing different dest/src alignments to the memmove DAG 5092 // node. 5093 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5094 isTC, MachinePointerInfo(I.getArgOperand(0)), 5095 MachinePointerInfo(I.getArgOperand(1))); 5096 updateDAGForMaybeTailCall(MM); 5097 return nullptr; 5098 } 5099 case Intrinsic::memcpy_element_unordered_atomic: { 5100 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5101 SDValue Dst = getValue(MI.getRawDest()); 5102 SDValue Src = getValue(MI.getRawSource()); 5103 SDValue Length = getValue(MI.getLength()); 5104 5105 unsigned DstAlign = MI.getDestAlignment(); 5106 unsigned SrcAlign = MI.getSourceAlignment(); 5107 Type *LengthTy = MI.getLength()->getType(); 5108 unsigned ElemSz = MI.getElementSizeInBytes(); 5109 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5110 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5111 SrcAlign, Length, LengthTy, ElemSz, isTC, 5112 MachinePointerInfo(MI.getRawDest()), 5113 MachinePointerInfo(MI.getRawSource())); 5114 updateDAGForMaybeTailCall(MC); 5115 return nullptr; 5116 } 5117 case Intrinsic::memmove_element_unordered_atomic: { 5118 auto &MI = cast<AtomicMemMoveInst>(I); 5119 SDValue Dst = getValue(MI.getRawDest()); 5120 SDValue Src = getValue(MI.getRawSource()); 5121 SDValue Length = getValue(MI.getLength()); 5122 5123 unsigned DstAlign = MI.getDestAlignment(); 5124 unsigned SrcAlign = MI.getSourceAlignment(); 5125 Type *LengthTy = MI.getLength()->getType(); 5126 unsigned ElemSz = MI.getElementSizeInBytes(); 5127 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5128 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5129 SrcAlign, Length, LengthTy, ElemSz, isTC, 5130 MachinePointerInfo(MI.getRawDest()), 5131 MachinePointerInfo(MI.getRawSource())); 5132 updateDAGForMaybeTailCall(MC); 5133 return nullptr; 5134 } 5135 case Intrinsic::memset_element_unordered_atomic: { 5136 auto &MI = cast<AtomicMemSetInst>(I); 5137 SDValue Dst = getValue(MI.getRawDest()); 5138 SDValue Val = getValue(MI.getValue()); 5139 SDValue Length = getValue(MI.getLength()); 5140 5141 unsigned DstAlign = MI.getDestAlignment(); 5142 Type *LengthTy = MI.getLength()->getType(); 5143 unsigned ElemSz = MI.getElementSizeInBytes(); 5144 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5145 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5146 LengthTy, ElemSz, isTC, 5147 MachinePointerInfo(MI.getRawDest())); 5148 updateDAGForMaybeTailCall(MC); 5149 return nullptr; 5150 } 5151 case Intrinsic::dbg_addr: 5152 case Intrinsic::dbg_declare: { 5153 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5154 DILocalVariable *Variable = DI.getVariable(); 5155 DIExpression *Expression = DI.getExpression(); 5156 dropDanglingDebugInfo(Variable, Expression); 5157 assert(Variable && "Missing variable"); 5158 5159 // Check if address has undef value. 5160 const Value *Address = DI.getVariableLocation(); 5161 if (!Address || isa<UndefValue>(Address) || 5162 (Address->use_empty() && !isa<Argument>(Address))) { 5163 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5164 return nullptr; 5165 } 5166 5167 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5168 5169 // Check if this variable can be described by a frame index, typically 5170 // either as a static alloca or a byval parameter. 5171 int FI = std::numeric_limits<int>::max(); 5172 if (const auto *AI = 5173 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5174 if (AI->isStaticAlloca()) { 5175 auto I = FuncInfo.StaticAllocaMap.find(AI); 5176 if (I != FuncInfo.StaticAllocaMap.end()) 5177 FI = I->second; 5178 } 5179 } else if (const auto *Arg = dyn_cast<Argument>( 5180 Address->stripInBoundsConstantOffsets())) { 5181 FI = FuncInfo.getArgumentFrameIndex(Arg); 5182 } 5183 5184 // llvm.dbg.addr is control dependent and always generates indirect 5185 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5186 // the MachineFunction variable table. 5187 if (FI != std::numeric_limits<int>::max()) { 5188 if (Intrinsic == Intrinsic::dbg_addr) { 5189 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5190 FI, dl, SDNodeOrder); 5191 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5192 } 5193 return nullptr; 5194 } 5195 5196 SDValue &N = NodeMap[Address]; 5197 if (!N.getNode() && isa<Argument>(Address)) 5198 // Check unused arguments map. 5199 N = UnusedArgNodeMap[Address]; 5200 SDDbgValue *SDV; 5201 if (N.getNode()) { 5202 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5203 Address = BCI->getOperand(0); 5204 // Parameters are handled specially. 5205 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5206 if (isParameter && FINode) { 5207 // Byval parameter. We have a frame index at this point. 5208 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5209 FINode->getIndex(), dl, SDNodeOrder); 5210 } else if (isa<Argument>(Address)) { 5211 // Address is an argument, so try to emit its dbg value using 5212 // virtual register info from the FuncInfo.ValueMap. 5213 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5214 return nullptr; 5215 } else { 5216 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5217 true, dl, SDNodeOrder); 5218 } 5219 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5220 } else { 5221 // If Address is an argument then try to emit its dbg value using 5222 // virtual register info from the FuncInfo.ValueMap. 5223 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5224 N)) { 5225 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5226 } 5227 } 5228 return nullptr; 5229 } 5230 case Intrinsic::dbg_label: { 5231 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5232 DILabel *Label = DI.getLabel(); 5233 assert(Label && "Missing label"); 5234 5235 SDDbgLabel *SDV; 5236 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5237 DAG.AddDbgLabel(SDV); 5238 return nullptr; 5239 } 5240 case Intrinsic::dbg_value: { 5241 const DbgValueInst &DI = cast<DbgValueInst>(I); 5242 assert(DI.getVariable() && "Missing variable"); 5243 5244 DILocalVariable *Variable = DI.getVariable(); 5245 DIExpression *Expression = DI.getExpression(); 5246 dropDanglingDebugInfo(Variable, Expression); 5247 const Value *V = DI.getValue(); 5248 if (!V) 5249 return nullptr; 5250 5251 SDDbgValue *SDV; 5252 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5253 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5254 DAG.AddDbgValue(SDV, nullptr, false); 5255 return nullptr; 5256 } 5257 5258 // Do not use getValue() in here; we don't want to generate code at 5259 // this point if it hasn't been done yet. 5260 SDValue N = NodeMap[V]; 5261 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5262 N = UnusedArgNodeMap[V]; 5263 if (N.getNode()) { 5264 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5265 return nullptr; 5266 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5267 DAG.AddDbgValue(SDV, N.getNode(), false); 5268 return nullptr; 5269 } 5270 5271 // PHI nodes have already been selected, so we should know which VReg that 5272 // is assigns to already. 5273 if (isa<PHINode>(V)) { 5274 auto VMI = FuncInfo.ValueMap.find(V); 5275 if (VMI != FuncInfo.ValueMap.end()) { 5276 unsigned Reg = VMI->second; 5277 // The PHI node may be split up into several MI PHI nodes (in 5278 // FunctionLoweringInfo::set). 5279 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5280 V->getType(), false); 5281 if (RFV.occupiesMultipleRegs()) { 5282 unsigned Offset = 0; 5283 unsigned BitsToDescribe = 0; 5284 if (auto VarSize = Variable->getSizeInBits()) 5285 BitsToDescribe = *VarSize; 5286 if (auto Fragment = Expression->getFragmentInfo()) 5287 BitsToDescribe = Fragment->SizeInBits; 5288 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5289 unsigned RegisterSize = RegAndSize.second; 5290 // Bail out if all bits are described already. 5291 if (Offset >= BitsToDescribe) 5292 break; 5293 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5294 ? BitsToDescribe - Offset 5295 : RegisterSize; 5296 auto FragmentExpr = DIExpression::createFragmentExpression( 5297 Expression, Offset, FragmentSize); 5298 if (!FragmentExpr) 5299 continue; 5300 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5301 false, dl, SDNodeOrder); 5302 DAG.AddDbgValue(SDV, nullptr, false); 5303 Offset += RegisterSize; 5304 } 5305 } else { 5306 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5307 SDNodeOrder); 5308 DAG.AddDbgValue(SDV, nullptr, false); 5309 } 5310 return nullptr; 5311 } 5312 } 5313 5314 // TODO: When we get here we will either drop the dbg.value completely, or 5315 // we try to move it forward by letting it dangle for awhile. So we should 5316 // probably add an extra DbgValue to the DAG here, with a reference to 5317 // "noreg", to indicate that we have lost the debug location for the 5318 // variable. 5319 5320 if (!V->use_empty() ) { 5321 // Do not call getValue(V) yet, as we don't want to generate code. 5322 // Remember it for later. 5323 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5324 DanglingDebugInfoMap[V].push_back(DDI); 5325 return nullptr; 5326 } 5327 5328 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5329 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5330 return nullptr; 5331 } 5332 5333 case Intrinsic::eh_typeid_for: { 5334 // Find the type id for the given typeinfo. 5335 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5336 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5337 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5338 setValue(&I, Res); 5339 return nullptr; 5340 } 5341 5342 case Intrinsic::eh_return_i32: 5343 case Intrinsic::eh_return_i64: 5344 DAG.getMachineFunction().setCallsEHReturn(true); 5345 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5346 MVT::Other, 5347 getControlRoot(), 5348 getValue(I.getArgOperand(0)), 5349 getValue(I.getArgOperand(1)))); 5350 return nullptr; 5351 case Intrinsic::eh_unwind_init: 5352 DAG.getMachineFunction().setCallsUnwindInit(true); 5353 return nullptr; 5354 case Intrinsic::eh_dwarf_cfa: 5355 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5356 TLI.getPointerTy(DAG.getDataLayout()), 5357 getValue(I.getArgOperand(0)))); 5358 return nullptr; 5359 case Intrinsic::eh_sjlj_callsite: { 5360 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5361 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5362 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5363 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5364 5365 MMI.setCurrentCallSite(CI->getZExtValue()); 5366 return nullptr; 5367 } 5368 case Intrinsic::eh_sjlj_functioncontext: { 5369 // Get and store the index of the function context. 5370 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5371 AllocaInst *FnCtx = 5372 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5373 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5374 MFI.setFunctionContextIndex(FI); 5375 return nullptr; 5376 } 5377 case Intrinsic::eh_sjlj_setjmp: { 5378 SDValue Ops[2]; 5379 Ops[0] = getRoot(); 5380 Ops[1] = getValue(I.getArgOperand(0)); 5381 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5382 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5383 setValue(&I, Op.getValue(0)); 5384 DAG.setRoot(Op.getValue(1)); 5385 return nullptr; 5386 } 5387 case Intrinsic::eh_sjlj_longjmp: 5388 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5389 getRoot(), getValue(I.getArgOperand(0)))); 5390 return nullptr; 5391 case Intrinsic::eh_sjlj_setup_dispatch: 5392 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5393 getRoot())); 5394 return nullptr; 5395 case Intrinsic::masked_gather: 5396 visitMaskedGather(I); 5397 return nullptr; 5398 case Intrinsic::masked_load: 5399 visitMaskedLoad(I); 5400 return nullptr; 5401 case Intrinsic::masked_scatter: 5402 visitMaskedScatter(I); 5403 return nullptr; 5404 case Intrinsic::masked_store: 5405 visitMaskedStore(I); 5406 return nullptr; 5407 case Intrinsic::masked_expandload: 5408 visitMaskedLoad(I, true /* IsExpanding */); 5409 return nullptr; 5410 case Intrinsic::masked_compressstore: 5411 visitMaskedStore(I, true /* IsCompressing */); 5412 return nullptr; 5413 case Intrinsic::x86_mmx_pslli_w: 5414 case Intrinsic::x86_mmx_pslli_d: 5415 case Intrinsic::x86_mmx_pslli_q: 5416 case Intrinsic::x86_mmx_psrli_w: 5417 case Intrinsic::x86_mmx_psrli_d: 5418 case Intrinsic::x86_mmx_psrli_q: 5419 case Intrinsic::x86_mmx_psrai_w: 5420 case Intrinsic::x86_mmx_psrai_d: { 5421 SDValue ShAmt = getValue(I.getArgOperand(1)); 5422 if (isa<ConstantSDNode>(ShAmt)) { 5423 visitTargetIntrinsic(I, Intrinsic); 5424 return nullptr; 5425 } 5426 unsigned NewIntrinsic = 0; 5427 EVT ShAmtVT = MVT::v2i32; 5428 switch (Intrinsic) { 5429 case Intrinsic::x86_mmx_pslli_w: 5430 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5431 break; 5432 case Intrinsic::x86_mmx_pslli_d: 5433 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5434 break; 5435 case Intrinsic::x86_mmx_pslli_q: 5436 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5437 break; 5438 case Intrinsic::x86_mmx_psrli_w: 5439 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5440 break; 5441 case Intrinsic::x86_mmx_psrli_d: 5442 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5443 break; 5444 case Intrinsic::x86_mmx_psrli_q: 5445 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5446 break; 5447 case Intrinsic::x86_mmx_psrai_w: 5448 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5449 break; 5450 case Intrinsic::x86_mmx_psrai_d: 5451 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5452 break; 5453 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5454 } 5455 5456 // The vector shift intrinsics with scalars uses 32b shift amounts but 5457 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5458 // to be zero. 5459 // We must do this early because v2i32 is not a legal type. 5460 SDValue ShOps[2]; 5461 ShOps[0] = ShAmt; 5462 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5463 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5464 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5465 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5466 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5467 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5468 getValue(I.getArgOperand(0)), ShAmt); 5469 setValue(&I, Res); 5470 return nullptr; 5471 } 5472 case Intrinsic::powi: 5473 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5474 getValue(I.getArgOperand(1)), DAG)); 5475 return nullptr; 5476 case Intrinsic::log: 5477 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5478 return nullptr; 5479 case Intrinsic::log2: 5480 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5481 return nullptr; 5482 case Intrinsic::log10: 5483 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5484 return nullptr; 5485 case Intrinsic::exp: 5486 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5487 return nullptr; 5488 case Intrinsic::exp2: 5489 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5490 return nullptr; 5491 case Intrinsic::pow: 5492 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5493 getValue(I.getArgOperand(1)), DAG, TLI)); 5494 return nullptr; 5495 case Intrinsic::sqrt: 5496 case Intrinsic::fabs: 5497 case Intrinsic::sin: 5498 case Intrinsic::cos: 5499 case Intrinsic::floor: 5500 case Intrinsic::ceil: 5501 case Intrinsic::trunc: 5502 case Intrinsic::rint: 5503 case Intrinsic::nearbyint: 5504 case Intrinsic::round: 5505 case Intrinsic::canonicalize: { 5506 unsigned Opcode; 5507 switch (Intrinsic) { 5508 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5509 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5510 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5511 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5512 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5513 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5514 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5515 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5516 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5517 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5518 case Intrinsic::round: Opcode = ISD::FROUND; break; 5519 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5520 } 5521 5522 setValue(&I, DAG.getNode(Opcode, sdl, 5523 getValue(I.getArgOperand(0)).getValueType(), 5524 getValue(I.getArgOperand(0)))); 5525 return nullptr; 5526 } 5527 case Intrinsic::minnum: { 5528 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5529 unsigned Opc = 5530 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5531 ? ISD::FMINNAN 5532 : ISD::FMINNUM; 5533 setValue(&I, DAG.getNode(Opc, sdl, VT, 5534 getValue(I.getArgOperand(0)), 5535 getValue(I.getArgOperand(1)))); 5536 return nullptr; 5537 } 5538 case Intrinsic::maxnum: { 5539 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5540 unsigned Opc = 5541 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5542 ? ISD::FMAXNAN 5543 : ISD::FMAXNUM; 5544 setValue(&I, DAG.getNode(Opc, sdl, VT, 5545 getValue(I.getArgOperand(0)), 5546 getValue(I.getArgOperand(1)))); 5547 return nullptr; 5548 } 5549 case Intrinsic::copysign: 5550 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5551 getValue(I.getArgOperand(0)).getValueType(), 5552 getValue(I.getArgOperand(0)), 5553 getValue(I.getArgOperand(1)))); 5554 return nullptr; 5555 case Intrinsic::fma: 5556 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5557 getValue(I.getArgOperand(0)).getValueType(), 5558 getValue(I.getArgOperand(0)), 5559 getValue(I.getArgOperand(1)), 5560 getValue(I.getArgOperand(2)))); 5561 return nullptr; 5562 case Intrinsic::experimental_constrained_fadd: 5563 case Intrinsic::experimental_constrained_fsub: 5564 case Intrinsic::experimental_constrained_fmul: 5565 case Intrinsic::experimental_constrained_fdiv: 5566 case Intrinsic::experimental_constrained_frem: 5567 case Intrinsic::experimental_constrained_fma: 5568 case Intrinsic::experimental_constrained_sqrt: 5569 case Intrinsic::experimental_constrained_pow: 5570 case Intrinsic::experimental_constrained_powi: 5571 case Intrinsic::experimental_constrained_sin: 5572 case Intrinsic::experimental_constrained_cos: 5573 case Intrinsic::experimental_constrained_exp: 5574 case Intrinsic::experimental_constrained_exp2: 5575 case Intrinsic::experimental_constrained_log: 5576 case Intrinsic::experimental_constrained_log10: 5577 case Intrinsic::experimental_constrained_log2: 5578 case Intrinsic::experimental_constrained_rint: 5579 case Intrinsic::experimental_constrained_nearbyint: 5580 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5581 return nullptr; 5582 case Intrinsic::fmuladd: { 5583 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5584 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5585 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5586 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5587 getValue(I.getArgOperand(0)).getValueType(), 5588 getValue(I.getArgOperand(0)), 5589 getValue(I.getArgOperand(1)), 5590 getValue(I.getArgOperand(2)))); 5591 } else { 5592 // TODO: Intrinsic calls should have fast-math-flags. 5593 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5594 getValue(I.getArgOperand(0)).getValueType(), 5595 getValue(I.getArgOperand(0)), 5596 getValue(I.getArgOperand(1))); 5597 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5598 getValue(I.getArgOperand(0)).getValueType(), 5599 Mul, 5600 getValue(I.getArgOperand(2))); 5601 setValue(&I, Add); 5602 } 5603 return nullptr; 5604 } 5605 case Intrinsic::convert_to_fp16: 5606 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5607 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5608 getValue(I.getArgOperand(0)), 5609 DAG.getTargetConstant(0, sdl, 5610 MVT::i32)))); 5611 return nullptr; 5612 case Intrinsic::convert_from_fp16: 5613 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5614 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5615 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5616 getValue(I.getArgOperand(0))))); 5617 return nullptr; 5618 case Intrinsic::pcmarker: { 5619 SDValue Tmp = getValue(I.getArgOperand(0)); 5620 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5621 return nullptr; 5622 } 5623 case Intrinsic::readcyclecounter: { 5624 SDValue Op = getRoot(); 5625 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5626 DAG.getVTList(MVT::i64, MVT::Other), Op); 5627 setValue(&I, Res); 5628 DAG.setRoot(Res.getValue(1)); 5629 return nullptr; 5630 } 5631 case Intrinsic::bitreverse: 5632 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5633 getValue(I.getArgOperand(0)).getValueType(), 5634 getValue(I.getArgOperand(0)))); 5635 return nullptr; 5636 case Intrinsic::bswap: 5637 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5638 getValue(I.getArgOperand(0)).getValueType(), 5639 getValue(I.getArgOperand(0)))); 5640 return nullptr; 5641 case Intrinsic::cttz: { 5642 SDValue Arg = getValue(I.getArgOperand(0)); 5643 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5644 EVT Ty = Arg.getValueType(); 5645 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5646 sdl, Ty, Arg)); 5647 return nullptr; 5648 } 5649 case Intrinsic::ctlz: { 5650 SDValue Arg = getValue(I.getArgOperand(0)); 5651 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5652 EVT Ty = Arg.getValueType(); 5653 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5654 sdl, Ty, Arg)); 5655 return nullptr; 5656 } 5657 case Intrinsic::ctpop: { 5658 SDValue Arg = getValue(I.getArgOperand(0)); 5659 EVT Ty = Arg.getValueType(); 5660 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5661 return nullptr; 5662 } 5663 case Intrinsic::fshl: 5664 case Intrinsic::fshr: { 5665 bool IsFSHL = Intrinsic == Intrinsic::fshl; 5666 SDValue X = getValue(I.getArgOperand(0)); 5667 SDValue Y = getValue(I.getArgOperand(1)); 5668 SDValue Z = getValue(I.getArgOperand(2)); 5669 EVT VT = X.getValueType(); 5670 5671 // TODO: When X == Y, this is rotate. Create the node directly if legal. 5672 5673 // Get the shift amount and inverse shift amount, modulo the bit-width. 5674 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 5675 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 5676 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, Z); 5677 SDValue InvShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 5678 5679 // fshl: (X << (Z % BW)) | (Y >> ((BW - Z) % BW)) 5680 // fshr: (X << ((BW - Z) % BW)) | (Y >> (Z % BW)) 5681 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 5682 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5683 SDValue Res = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 5684 5685 // If (Z % BW == 0), then (BW - Z) % BW is also zero, so the result would 5686 // be X | Y. If X == Y (rotate), that's fine. If not, we have to select. 5687 if (X != Y) { 5688 SDValue Zero = DAG.getConstant(0, sdl, VT); 5689 EVT CCVT = MVT::i1; 5690 if (VT.isVector()) 5691 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 5692 // For fshl, 0 shift returns the 1st arg (X). 5693 // For fshr, 0 shift returns the 2nd arg (Y). 5694 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 5695 Res = DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Res); 5696 } 5697 setValue(&I, Res); 5698 return nullptr; 5699 } 5700 case Intrinsic::stacksave: { 5701 SDValue Op = getRoot(); 5702 Res = DAG.getNode( 5703 ISD::STACKSAVE, sdl, 5704 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5705 setValue(&I, Res); 5706 DAG.setRoot(Res.getValue(1)); 5707 return nullptr; 5708 } 5709 case Intrinsic::stackrestore: 5710 Res = getValue(I.getArgOperand(0)); 5711 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5712 return nullptr; 5713 case Intrinsic::get_dynamic_area_offset: { 5714 SDValue Op = getRoot(); 5715 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5716 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5717 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5718 // target. 5719 if (PtrTy != ResTy) 5720 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5721 " intrinsic!"); 5722 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5723 Op); 5724 DAG.setRoot(Op); 5725 setValue(&I, Res); 5726 return nullptr; 5727 } 5728 case Intrinsic::stackguard: { 5729 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5730 MachineFunction &MF = DAG.getMachineFunction(); 5731 const Module &M = *MF.getFunction().getParent(); 5732 SDValue Chain = getRoot(); 5733 if (TLI.useLoadStackGuardNode()) { 5734 Res = getLoadStackGuard(DAG, sdl, Chain); 5735 } else { 5736 const Value *Global = TLI.getSDagStackGuard(M); 5737 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5738 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5739 MachinePointerInfo(Global, 0), Align, 5740 MachineMemOperand::MOVolatile); 5741 } 5742 if (TLI.useStackGuardXorFP()) 5743 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5744 DAG.setRoot(Chain); 5745 setValue(&I, Res); 5746 return nullptr; 5747 } 5748 case Intrinsic::stackprotector: { 5749 // Emit code into the DAG to store the stack guard onto the stack. 5750 MachineFunction &MF = DAG.getMachineFunction(); 5751 MachineFrameInfo &MFI = MF.getFrameInfo(); 5752 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5753 SDValue Src, Chain = getRoot(); 5754 5755 if (TLI.useLoadStackGuardNode()) 5756 Src = getLoadStackGuard(DAG, sdl, Chain); 5757 else 5758 Src = getValue(I.getArgOperand(0)); // The guard's value. 5759 5760 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5761 5762 int FI = FuncInfo.StaticAllocaMap[Slot]; 5763 MFI.setStackProtectorIndex(FI); 5764 5765 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5766 5767 // Store the stack protector onto the stack. 5768 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5769 DAG.getMachineFunction(), FI), 5770 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5771 setValue(&I, Res); 5772 DAG.setRoot(Res); 5773 return nullptr; 5774 } 5775 case Intrinsic::objectsize: { 5776 // If we don't know by now, we're never going to know. 5777 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5778 5779 assert(CI && "Non-constant type in __builtin_object_size?"); 5780 5781 SDValue Arg = getValue(I.getCalledValue()); 5782 EVT Ty = Arg.getValueType(); 5783 5784 if (CI->isZero()) 5785 Res = DAG.getConstant(-1ULL, sdl, Ty); 5786 else 5787 Res = DAG.getConstant(0, sdl, Ty); 5788 5789 setValue(&I, Res); 5790 return nullptr; 5791 } 5792 case Intrinsic::annotation: 5793 case Intrinsic::ptr_annotation: 5794 case Intrinsic::launder_invariant_group: 5795 case Intrinsic::strip_invariant_group: 5796 // Drop the intrinsic, but forward the value 5797 setValue(&I, getValue(I.getOperand(0))); 5798 return nullptr; 5799 case Intrinsic::assume: 5800 case Intrinsic::var_annotation: 5801 case Intrinsic::sideeffect: 5802 // Discard annotate attributes, assumptions, and artificial side-effects. 5803 return nullptr; 5804 5805 case Intrinsic::codeview_annotation: { 5806 // Emit a label associated with this metadata. 5807 MachineFunction &MF = DAG.getMachineFunction(); 5808 MCSymbol *Label = 5809 MF.getMMI().getContext().createTempSymbol("annotation", true); 5810 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5811 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5812 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5813 DAG.setRoot(Res); 5814 return nullptr; 5815 } 5816 5817 case Intrinsic::init_trampoline: { 5818 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5819 5820 SDValue Ops[6]; 5821 Ops[0] = getRoot(); 5822 Ops[1] = getValue(I.getArgOperand(0)); 5823 Ops[2] = getValue(I.getArgOperand(1)); 5824 Ops[3] = getValue(I.getArgOperand(2)); 5825 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5826 Ops[5] = DAG.getSrcValue(F); 5827 5828 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5829 5830 DAG.setRoot(Res); 5831 return nullptr; 5832 } 5833 case Intrinsic::adjust_trampoline: 5834 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5835 TLI.getPointerTy(DAG.getDataLayout()), 5836 getValue(I.getArgOperand(0)))); 5837 return nullptr; 5838 case Intrinsic::gcroot: { 5839 assert(DAG.getMachineFunction().getFunction().hasGC() && 5840 "only valid in functions with gc specified, enforced by Verifier"); 5841 assert(GFI && "implied by previous"); 5842 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5843 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5844 5845 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5846 GFI->addStackRoot(FI->getIndex(), TypeMap); 5847 return nullptr; 5848 } 5849 case Intrinsic::gcread: 5850 case Intrinsic::gcwrite: 5851 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5852 case Intrinsic::flt_rounds: 5853 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5854 return nullptr; 5855 5856 case Intrinsic::expect: 5857 // Just replace __builtin_expect(exp, c) with EXP. 5858 setValue(&I, getValue(I.getArgOperand(0))); 5859 return nullptr; 5860 5861 case Intrinsic::debugtrap: 5862 case Intrinsic::trap: { 5863 StringRef TrapFuncName = 5864 I.getAttributes() 5865 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5866 .getValueAsString(); 5867 if (TrapFuncName.empty()) { 5868 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5869 ISD::TRAP : ISD::DEBUGTRAP; 5870 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5871 return nullptr; 5872 } 5873 TargetLowering::ArgListTy Args; 5874 5875 TargetLowering::CallLoweringInfo CLI(DAG); 5876 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5877 CallingConv::C, I.getType(), 5878 DAG.getExternalSymbol(TrapFuncName.data(), 5879 TLI.getPointerTy(DAG.getDataLayout())), 5880 std::move(Args)); 5881 5882 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5883 DAG.setRoot(Result.second); 5884 return nullptr; 5885 } 5886 5887 case Intrinsic::uadd_with_overflow: 5888 case Intrinsic::sadd_with_overflow: 5889 case Intrinsic::usub_with_overflow: 5890 case Intrinsic::ssub_with_overflow: 5891 case Intrinsic::umul_with_overflow: 5892 case Intrinsic::smul_with_overflow: { 5893 ISD::NodeType Op; 5894 switch (Intrinsic) { 5895 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5896 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5897 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5898 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5899 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5900 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5901 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5902 } 5903 SDValue Op1 = getValue(I.getArgOperand(0)); 5904 SDValue Op2 = getValue(I.getArgOperand(1)); 5905 5906 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5907 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5908 return nullptr; 5909 } 5910 case Intrinsic::prefetch: { 5911 SDValue Ops[5]; 5912 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5913 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5914 Ops[0] = DAG.getRoot(); 5915 Ops[1] = getValue(I.getArgOperand(0)); 5916 Ops[2] = getValue(I.getArgOperand(1)); 5917 Ops[3] = getValue(I.getArgOperand(2)); 5918 Ops[4] = getValue(I.getArgOperand(3)); 5919 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5920 DAG.getVTList(MVT::Other), Ops, 5921 EVT::getIntegerVT(*Context, 8), 5922 MachinePointerInfo(I.getArgOperand(0)), 5923 0, /* align */ 5924 Flags); 5925 5926 // Chain the prefetch in parallell with any pending loads, to stay out of 5927 // the way of later optimizations. 5928 PendingLoads.push_back(Result); 5929 Result = getRoot(); 5930 DAG.setRoot(Result); 5931 return nullptr; 5932 } 5933 case Intrinsic::lifetime_start: 5934 case Intrinsic::lifetime_end: { 5935 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5936 // Stack coloring is not enabled in O0, discard region information. 5937 if (TM.getOptLevel() == CodeGenOpt::None) 5938 return nullptr; 5939 5940 SmallVector<Value *, 4> Allocas; 5941 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5942 5943 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5944 E = Allocas.end(); Object != E; ++Object) { 5945 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5946 5947 // Could not find an Alloca. 5948 if (!LifetimeObject) 5949 continue; 5950 5951 // First check that the Alloca is static, otherwise it won't have a 5952 // valid frame index. 5953 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5954 if (SI == FuncInfo.StaticAllocaMap.end()) 5955 return nullptr; 5956 5957 int FI = SI->second; 5958 5959 SDValue Ops[2]; 5960 Ops[0] = getRoot(); 5961 Ops[1] = 5962 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5963 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5964 5965 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5966 DAG.setRoot(Res); 5967 } 5968 return nullptr; 5969 } 5970 case Intrinsic::invariant_start: 5971 // Discard region information. 5972 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5973 return nullptr; 5974 case Intrinsic::invariant_end: 5975 // Discard region information. 5976 return nullptr; 5977 case Intrinsic::clear_cache: 5978 return TLI.getClearCacheBuiltinName(); 5979 case Intrinsic::donothing: 5980 // ignore 5981 return nullptr; 5982 case Intrinsic::experimental_stackmap: 5983 visitStackmap(I); 5984 return nullptr; 5985 case Intrinsic::experimental_patchpoint_void: 5986 case Intrinsic::experimental_patchpoint_i64: 5987 visitPatchpoint(&I); 5988 return nullptr; 5989 case Intrinsic::experimental_gc_statepoint: 5990 LowerStatepoint(ImmutableStatepoint(&I)); 5991 return nullptr; 5992 case Intrinsic::experimental_gc_result: 5993 visitGCResult(cast<GCResultInst>(I)); 5994 return nullptr; 5995 case Intrinsic::experimental_gc_relocate: 5996 visitGCRelocate(cast<GCRelocateInst>(I)); 5997 return nullptr; 5998 case Intrinsic::instrprof_increment: 5999 llvm_unreachable("instrprof failed to lower an increment"); 6000 case Intrinsic::instrprof_value_profile: 6001 llvm_unreachable("instrprof failed to lower a value profiling call"); 6002 case Intrinsic::localescape: { 6003 MachineFunction &MF = DAG.getMachineFunction(); 6004 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6005 6006 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6007 // is the same on all targets. 6008 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6009 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6010 if (isa<ConstantPointerNull>(Arg)) 6011 continue; // Skip null pointers. They represent a hole in index space. 6012 AllocaInst *Slot = cast<AllocaInst>(Arg); 6013 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6014 "can only escape static allocas"); 6015 int FI = FuncInfo.StaticAllocaMap[Slot]; 6016 MCSymbol *FrameAllocSym = 6017 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6018 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6019 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6020 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6021 .addSym(FrameAllocSym) 6022 .addFrameIndex(FI); 6023 } 6024 6025 return nullptr; 6026 } 6027 6028 case Intrinsic::localrecover: { 6029 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6030 MachineFunction &MF = DAG.getMachineFunction(); 6031 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6032 6033 // Get the symbol that defines the frame offset. 6034 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6035 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6036 unsigned IdxVal = 6037 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6038 MCSymbol *FrameAllocSym = 6039 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6040 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6041 6042 // Create a MCSymbol for the label to avoid any target lowering 6043 // that would make this PC relative. 6044 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6045 SDValue OffsetVal = 6046 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6047 6048 // Add the offset to the FP. 6049 Value *FP = I.getArgOperand(1); 6050 SDValue FPVal = getValue(FP); 6051 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6052 setValue(&I, Add); 6053 6054 return nullptr; 6055 } 6056 6057 case Intrinsic::eh_exceptionpointer: 6058 case Intrinsic::eh_exceptioncode: { 6059 // Get the exception pointer vreg, copy from it, and resize it to fit. 6060 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6061 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6062 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6063 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6064 SDValue N = 6065 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6066 if (Intrinsic == Intrinsic::eh_exceptioncode) 6067 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6068 setValue(&I, N); 6069 return nullptr; 6070 } 6071 case Intrinsic::xray_customevent: { 6072 // Here we want to make sure that the intrinsic behaves as if it has a 6073 // specific calling convention, and only for x86_64. 6074 // FIXME: Support other platforms later. 6075 const auto &Triple = DAG.getTarget().getTargetTriple(); 6076 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6077 return nullptr; 6078 6079 SDLoc DL = getCurSDLoc(); 6080 SmallVector<SDValue, 8> Ops; 6081 6082 // We want to say that we always want the arguments in registers. 6083 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6084 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6085 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6086 SDValue Chain = getRoot(); 6087 Ops.push_back(LogEntryVal); 6088 Ops.push_back(StrSizeVal); 6089 Ops.push_back(Chain); 6090 6091 // We need to enforce the calling convention for the callsite, so that 6092 // argument ordering is enforced correctly, and that register allocation can 6093 // see that some registers may be assumed clobbered and have to preserve 6094 // them across calls to the intrinsic. 6095 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6096 DL, NodeTys, Ops); 6097 SDValue patchableNode = SDValue(MN, 0); 6098 DAG.setRoot(patchableNode); 6099 setValue(&I, patchableNode); 6100 return nullptr; 6101 } 6102 case Intrinsic::xray_typedevent: { 6103 // Here we want to make sure that the intrinsic behaves as if it has a 6104 // specific calling convention, and only for x86_64. 6105 // FIXME: Support other platforms later. 6106 const auto &Triple = DAG.getTarget().getTargetTriple(); 6107 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6108 return nullptr; 6109 6110 SDLoc DL = getCurSDLoc(); 6111 SmallVector<SDValue, 8> Ops; 6112 6113 // We want to say that we always want the arguments in registers. 6114 // It's unclear to me how manipulating the selection DAG here forces callers 6115 // to provide arguments in registers instead of on the stack. 6116 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6117 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6118 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6119 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6120 SDValue Chain = getRoot(); 6121 Ops.push_back(LogTypeId); 6122 Ops.push_back(LogEntryVal); 6123 Ops.push_back(StrSizeVal); 6124 Ops.push_back(Chain); 6125 6126 // We need to enforce the calling convention for the callsite, so that 6127 // argument ordering is enforced correctly, and that register allocation can 6128 // see that some registers may be assumed clobbered and have to preserve 6129 // them across calls to the intrinsic. 6130 MachineSDNode *MN = DAG.getMachineNode( 6131 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6132 SDValue patchableNode = SDValue(MN, 0); 6133 DAG.setRoot(patchableNode); 6134 setValue(&I, patchableNode); 6135 return nullptr; 6136 } 6137 case Intrinsic::experimental_deoptimize: 6138 LowerDeoptimizeCall(&I); 6139 return nullptr; 6140 6141 case Intrinsic::experimental_vector_reduce_fadd: 6142 case Intrinsic::experimental_vector_reduce_fmul: 6143 case Intrinsic::experimental_vector_reduce_add: 6144 case Intrinsic::experimental_vector_reduce_mul: 6145 case Intrinsic::experimental_vector_reduce_and: 6146 case Intrinsic::experimental_vector_reduce_or: 6147 case Intrinsic::experimental_vector_reduce_xor: 6148 case Intrinsic::experimental_vector_reduce_smax: 6149 case Intrinsic::experimental_vector_reduce_smin: 6150 case Intrinsic::experimental_vector_reduce_umax: 6151 case Intrinsic::experimental_vector_reduce_umin: 6152 case Intrinsic::experimental_vector_reduce_fmax: 6153 case Intrinsic::experimental_vector_reduce_fmin: 6154 visitVectorReduce(I, Intrinsic); 6155 return nullptr; 6156 6157 case Intrinsic::icall_branch_funnel: { 6158 SmallVector<SDValue, 16> Ops; 6159 Ops.push_back(DAG.getRoot()); 6160 Ops.push_back(getValue(I.getArgOperand(0))); 6161 6162 int64_t Offset; 6163 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6164 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6165 if (!Base) 6166 report_fatal_error( 6167 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6168 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6169 6170 struct BranchFunnelTarget { 6171 int64_t Offset; 6172 SDValue Target; 6173 }; 6174 SmallVector<BranchFunnelTarget, 8> Targets; 6175 6176 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6177 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6178 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6179 if (ElemBase != Base) 6180 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6181 "to the same GlobalValue"); 6182 6183 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6184 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6185 if (!GA) 6186 report_fatal_error( 6187 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6188 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6189 GA->getGlobal(), getCurSDLoc(), 6190 Val.getValueType(), GA->getOffset())}); 6191 } 6192 llvm::sort(Targets.begin(), Targets.end(), 6193 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6194 return T1.Offset < T2.Offset; 6195 }); 6196 6197 for (auto &T : Targets) { 6198 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6199 Ops.push_back(T.Target); 6200 } 6201 6202 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6203 getCurSDLoc(), MVT::Other, Ops), 6204 0); 6205 DAG.setRoot(N); 6206 setValue(&I, N); 6207 HasTailCall = true; 6208 return nullptr; 6209 } 6210 6211 case Intrinsic::wasm_landingpad_index: { 6212 // TODO store landing pad index in a map, which will be used when generating 6213 // LSDA information 6214 return nullptr; 6215 } 6216 } 6217 } 6218 6219 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6220 const ConstrainedFPIntrinsic &FPI) { 6221 SDLoc sdl = getCurSDLoc(); 6222 unsigned Opcode; 6223 switch (FPI.getIntrinsicID()) { 6224 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6225 case Intrinsic::experimental_constrained_fadd: 6226 Opcode = ISD::STRICT_FADD; 6227 break; 6228 case Intrinsic::experimental_constrained_fsub: 6229 Opcode = ISD::STRICT_FSUB; 6230 break; 6231 case Intrinsic::experimental_constrained_fmul: 6232 Opcode = ISD::STRICT_FMUL; 6233 break; 6234 case Intrinsic::experimental_constrained_fdiv: 6235 Opcode = ISD::STRICT_FDIV; 6236 break; 6237 case Intrinsic::experimental_constrained_frem: 6238 Opcode = ISD::STRICT_FREM; 6239 break; 6240 case Intrinsic::experimental_constrained_fma: 6241 Opcode = ISD::STRICT_FMA; 6242 break; 6243 case Intrinsic::experimental_constrained_sqrt: 6244 Opcode = ISD::STRICT_FSQRT; 6245 break; 6246 case Intrinsic::experimental_constrained_pow: 6247 Opcode = ISD::STRICT_FPOW; 6248 break; 6249 case Intrinsic::experimental_constrained_powi: 6250 Opcode = ISD::STRICT_FPOWI; 6251 break; 6252 case Intrinsic::experimental_constrained_sin: 6253 Opcode = ISD::STRICT_FSIN; 6254 break; 6255 case Intrinsic::experimental_constrained_cos: 6256 Opcode = ISD::STRICT_FCOS; 6257 break; 6258 case Intrinsic::experimental_constrained_exp: 6259 Opcode = ISD::STRICT_FEXP; 6260 break; 6261 case Intrinsic::experimental_constrained_exp2: 6262 Opcode = ISD::STRICT_FEXP2; 6263 break; 6264 case Intrinsic::experimental_constrained_log: 6265 Opcode = ISD::STRICT_FLOG; 6266 break; 6267 case Intrinsic::experimental_constrained_log10: 6268 Opcode = ISD::STRICT_FLOG10; 6269 break; 6270 case Intrinsic::experimental_constrained_log2: 6271 Opcode = ISD::STRICT_FLOG2; 6272 break; 6273 case Intrinsic::experimental_constrained_rint: 6274 Opcode = ISD::STRICT_FRINT; 6275 break; 6276 case Intrinsic::experimental_constrained_nearbyint: 6277 Opcode = ISD::STRICT_FNEARBYINT; 6278 break; 6279 } 6280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6281 SDValue Chain = getRoot(); 6282 SmallVector<EVT, 4> ValueVTs; 6283 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6284 ValueVTs.push_back(MVT::Other); // Out chain 6285 6286 SDVTList VTs = DAG.getVTList(ValueVTs); 6287 SDValue Result; 6288 if (FPI.isUnaryOp()) 6289 Result = DAG.getNode(Opcode, sdl, VTs, 6290 { Chain, getValue(FPI.getArgOperand(0)) }); 6291 else if (FPI.isTernaryOp()) 6292 Result = DAG.getNode(Opcode, sdl, VTs, 6293 { Chain, getValue(FPI.getArgOperand(0)), 6294 getValue(FPI.getArgOperand(1)), 6295 getValue(FPI.getArgOperand(2)) }); 6296 else 6297 Result = DAG.getNode(Opcode, sdl, VTs, 6298 { Chain, getValue(FPI.getArgOperand(0)), 6299 getValue(FPI.getArgOperand(1)) }); 6300 6301 assert(Result.getNode()->getNumValues() == 2); 6302 SDValue OutChain = Result.getValue(1); 6303 DAG.setRoot(OutChain); 6304 SDValue FPResult = Result.getValue(0); 6305 setValue(&FPI, FPResult); 6306 } 6307 6308 std::pair<SDValue, SDValue> 6309 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6310 const BasicBlock *EHPadBB) { 6311 MachineFunction &MF = DAG.getMachineFunction(); 6312 MachineModuleInfo &MMI = MF.getMMI(); 6313 MCSymbol *BeginLabel = nullptr; 6314 6315 if (EHPadBB) { 6316 // Insert a label before the invoke call to mark the try range. This can be 6317 // used to detect deletion of the invoke via the MachineModuleInfo. 6318 BeginLabel = MMI.getContext().createTempSymbol(); 6319 6320 // For SjLj, keep track of which landing pads go with which invokes 6321 // so as to maintain the ordering of pads in the LSDA. 6322 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6323 if (CallSiteIndex) { 6324 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6325 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6326 6327 // Now that the call site is handled, stop tracking it. 6328 MMI.setCurrentCallSite(0); 6329 } 6330 6331 // Both PendingLoads and PendingExports must be flushed here; 6332 // this call might not return. 6333 (void)getRoot(); 6334 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6335 6336 CLI.setChain(getRoot()); 6337 } 6338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6339 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6340 6341 assert((CLI.IsTailCall || Result.second.getNode()) && 6342 "Non-null chain expected with non-tail call!"); 6343 assert((Result.second.getNode() || !Result.first.getNode()) && 6344 "Null value expected with tail call!"); 6345 6346 if (!Result.second.getNode()) { 6347 // As a special case, a null chain means that a tail call has been emitted 6348 // and the DAG root is already updated. 6349 HasTailCall = true; 6350 6351 // Since there's no actual continuation from this block, nothing can be 6352 // relying on us setting vregs for them. 6353 PendingExports.clear(); 6354 } else { 6355 DAG.setRoot(Result.second); 6356 } 6357 6358 if (EHPadBB) { 6359 // Insert a label at the end of the invoke call to mark the try range. This 6360 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6361 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6362 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6363 6364 // Inform MachineModuleInfo of range. 6365 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6366 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6367 // actually use outlined funclets and their LSDA info style. 6368 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6369 assert(CLI.CS); 6370 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6371 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6372 BeginLabel, EndLabel); 6373 } else { 6374 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6375 } 6376 } 6377 6378 return Result; 6379 } 6380 6381 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6382 bool isTailCall, 6383 const BasicBlock *EHPadBB) { 6384 auto &DL = DAG.getDataLayout(); 6385 FunctionType *FTy = CS.getFunctionType(); 6386 Type *RetTy = CS.getType(); 6387 6388 TargetLowering::ArgListTy Args; 6389 Args.reserve(CS.arg_size()); 6390 6391 const Value *SwiftErrorVal = nullptr; 6392 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6393 6394 // We can't tail call inside a function with a swifterror argument. Lowering 6395 // does not support this yet. It would have to move into the swifterror 6396 // register before the call. 6397 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6398 if (TLI.supportSwiftError() && 6399 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6400 isTailCall = false; 6401 6402 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6403 i != e; ++i) { 6404 TargetLowering::ArgListEntry Entry; 6405 const Value *V = *i; 6406 6407 // Skip empty types 6408 if (V->getType()->isEmptyTy()) 6409 continue; 6410 6411 SDValue ArgNode = getValue(V); 6412 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6413 6414 Entry.setAttributes(&CS, i - CS.arg_begin()); 6415 6416 // Use swifterror virtual register as input to the call. 6417 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6418 SwiftErrorVal = V; 6419 // We find the virtual register for the actual swifterror argument. 6420 // Instead of using the Value, we use the virtual register instead. 6421 Entry.Node = DAG.getRegister(FuncInfo 6422 .getOrCreateSwiftErrorVRegUseAt( 6423 CS.getInstruction(), FuncInfo.MBB, V) 6424 .first, 6425 EVT(TLI.getPointerTy(DL))); 6426 } 6427 6428 Args.push_back(Entry); 6429 6430 // If we have an explicit sret argument that is an Instruction, (i.e., it 6431 // might point to function-local memory), we can't meaningfully tail-call. 6432 if (Entry.IsSRet && isa<Instruction>(V)) 6433 isTailCall = false; 6434 } 6435 6436 // Check if target-independent constraints permit a tail call here. 6437 // Target-dependent constraints are checked within TLI->LowerCallTo. 6438 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6439 isTailCall = false; 6440 6441 // Disable tail calls if there is an swifterror argument. Targets have not 6442 // been updated to support tail calls. 6443 if (TLI.supportSwiftError() && SwiftErrorVal) 6444 isTailCall = false; 6445 6446 TargetLowering::CallLoweringInfo CLI(DAG); 6447 CLI.setDebugLoc(getCurSDLoc()) 6448 .setChain(getRoot()) 6449 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6450 .setTailCall(isTailCall) 6451 .setConvergent(CS.isConvergent()); 6452 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6453 6454 if (Result.first.getNode()) { 6455 const Instruction *Inst = CS.getInstruction(); 6456 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6457 setValue(Inst, Result.first); 6458 } 6459 6460 // The last element of CLI.InVals has the SDValue for swifterror return. 6461 // Here we copy it to a virtual register and update SwiftErrorMap for 6462 // book-keeping. 6463 if (SwiftErrorVal && TLI.supportSwiftError()) { 6464 // Get the last element of InVals. 6465 SDValue Src = CLI.InVals.back(); 6466 unsigned VReg; bool CreatedVReg; 6467 std::tie(VReg, CreatedVReg) = 6468 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6469 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6470 // We update the virtual register for the actual swifterror argument. 6471 if (CreatedVReg) 6472 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6473 DAG.setRoot(CopyNode); 6474 } 6475 } 6476 6477 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6478 SelectionDAGBuilder &Builder) { 6479 // Check to see if this load can be trivially constant folded, e.g. if the 6480 // input is from a string literal. 6481 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6482 // Cast pointer to the type we really want to load. 6483 Type *LoadTy = 6484 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6485 if (LoadVT.isVector()) 6486 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6487 6488 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6489 PointerType::getUnqual(LoadTy)); 6490 6491 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6492 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6493 return Builder.getValue(LoadCst); 6494 } 6495 6496 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6497 // still constant memory, the input chain can be the entry node. 6498 SDValue Root; 6499 bool ConstantMemory = false; 6500 6501 // Do not serialize (non-volatile) loads of constant memory with anything. 6502 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6503 Root = Builder.DAG.getEntryNode(); 6504 ConstantMemory = true; 6505 } else { 6506 // Do not serialize non-volatile loads against each other. 6507 Root = Builder.DAG.getRoot(); 6508 } 6509 6510 SDValue Ptr = Builder.getValue(PtrVal); 6511 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6512 Ptr, MachinePointerInfo(PtrVal), 6513 /* Alignment = */ 1); 6514 6515 if (!ConstantMemory) 6516 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6517 return LoadVal; 6518 } 6519 6520 /// Record the value for an instruction that produces an integer result, 6521 /// converting the type where necessary. 6522 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6523 SDValue Value, 6524 bool IsSigned) { 6525 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6526 I.getType(), true); 6527 if (IsSigned) 6528 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6529 else 6530 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6531 setValue(&I, Value); 6532 } 6533 6534 /// See if we can lower a memcmp call into an optimized form. If so, return 6535 /// true and lower it. Otherwise return false, and it will be lowered like a 6536 /// normal call. 6537 /// The caller already checked that \p I calls the appropriate LibFunc with a 6538 /// correct prototype. 6539 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6540 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6541 const Value *Size = I.getArgOperand(2); 6542 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6543 if (CSize && CSize->getZExtValue() == 0) { 6544 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6545 I.getType(), true); 6546 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6547 return true; 6548 } 6549 6550 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6551 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6552 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6553 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6554 if (Res.first.getNode()) { 6555 processIntegerCallValue(I, Res.first, true); 6556 PendingLoads.push_back(Res.second); 6557 return true; 6558 } 6559 6560 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6561 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6562 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6563 return false; 6564 6565 // If the target has a fast compare for the given size, it will return a 6566 // preferred load type for that size. Require that the load VT is legal and 6567 // that the target supports unaligned loads of that type. Otherwise, return 6568 // INVALID. 6569 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6571 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6572 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6573 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6574 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6575 // TODO: Check alignment of src and dest ptrs. 6576 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6577 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6578 if (!TLI.isTypeLegal(LVT) || 6579 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6580 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6581 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6582 } 6583 6584 return LVT; 6585 }; 6586 6587 // This turns into unaligned loads. We only do this if the target natively 6588 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6589 // we'll only produce a small number of byte loads. 6590 MVT LoadVT; 6591 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6592 switch (NumBitsToCompare) { 6593 default: 6594 return false; 6595 case 16: 6596 LoadVT = MVT::i16; 6597 break; 6598 case 32: 6599 LoadVT = MVT::i32; 6600 break; 6601 case 64: 6602 case 128: 6603 case 256: 6604 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6605 break; 6606 } 6607 6608 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6609 return false; 6610 6611 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6612 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6613 6614 // Bitcast to a wide integer type if the loads are vectors. 6615 if (LoadVT.isVector()) { 6616 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6617 LoadL = DAG.getBitcast(CmpVT, LoadL); 6618 LoadR = DAG.getBitcast(CmpVT, LoadR); 6619 } 6620 6621 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6622 processIntegerCallValue(I, Cmp, false); 6623 return true; 6624 } 6625 6626 /// See if we can lower a memchr call into an optimized form. If so, return 6627 /// true and lower it. Otherwise return false, and it will be lowered like a 6628 /// normal call. 6629 /// The caller already checked that \p I calls the appropriate LibFunc with a 6630 /// correct prototype. 6631 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6632 const Value *Src = I.getArgOperand(0); 6633 const Value *Char = I.getArgOperand(1); 6634 const Value *Length = I.getArgOperand(2); 6635 6636 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6637 std::pair<SDValue, SDValue> Res = 6638 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6639 getValue(Src), getValue(Char), getValue(Length), 6640 MachinePointerInfo(Src)); 6641 if (Res.first.getNode()) { 6642 setValue(&I, Res.first); 6643 PendingLoads.push_back(Res.second); 6644 return true; 6645 } 6646 6647 return false; 6648 } 6649 6650 /// See if we can lower a mempcpy call into an optimized form. If so, return 6651 /// true and lower it. Otherwise return false, and it will be lowered like a 6652 /// normal call. 6653 /// The caller already checked that \p I calls the appropriate LibFunc with a 6654 /// correct prototype. 6655 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6656 SDValue Dst = getValue(I.getArgOperand(0)); 6657 SDValue Src = getValue(I.getArgOperand(1)); 6658 SDValue Size = getValue(I.getArgOperand(2)); 6659 6660 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6661 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6662 unsigned Align = std::min(DstAlign, SrcAlign); 6663 if (Align == 0) // Alignment of one or both could not be inferred. 6664 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6665 6666 bool isVol = false; 6667 SDLoc sdl = getCurSDLoc(); 6668 6669 // In the mempcpy context we need to pass in a false value for isTailCall 6670 // because the return pointer needs to be adjusted by the size of 6671 // the copied memory. 6672 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6673 false, /*isTailCall=*/false, 6674 MachinePointerInfo(I.getArgOperand(0)), 6675 MachinePointerInfo(I.getArgOperand(1))); 6676 assert(MC.getNode() != nullptr && 6677 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6678 DAG.setRoot(MC); 6679 6680 // Check if Size needs to be truncated or extended. 6681 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6682 6683 // Adjust return pointer to point just past the last dst byte. 6684 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6685 Dst, Size); 6686 setValue(&I, DstPlusSize); 6687 return true; 6688 } 6689 6690 /// See if we can lower a strcpy call into an optimized form. If so, return 6691 /// true and lower it, otherwise return false and it will be lowered like a 6692 /// normal call. 6693 /// The caller already checked that \p I calls the appropriate LibFunc with a 6694 /// correct prototype. 6695 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6696 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6697 6698 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6699 std::pair<SDValue, SDValue> Res = 6700 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6701 getValue(Arg0), getValue(Arg1), 6702 MachinePointerInfo(Arg0), 6703 MachinePointerInfo(Arg1), isStpcpy); 6704 if (Res.first.getNode()) { 6705 setValue(&I, Res.first); 6706 DAG.setRoot(Res.second); 6707 return true; 6708 } 6709 6710 return false; 6711 } 6712 6713 /// See if we can lower a strcmp call into an optimized form. If so, return 6714 /// true and lower it, otherwise return false and it will be lowered like a 6715 /// normal call. 6716 /// The caller already checked that \p I calls the appropriate LibFunc with a 6717 /// correct prototype. 6718 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6719 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6720 6721 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6722 std::pair<SDValue, SDValue> Res = 6723 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6724 getValue(Arg0), getValue(Arg1), 6725 MachinePointerInfo(Arg0), 6726 MachinePointerInfo(Arg1)); 6727 if (Res.first.getNode()) { 6728 processIntegerCallValue(I, Res.first, true); 6729 PendingLoads.push_back(Res.second); 6730 return true; 6731 } 6732 6733 return false; 6734 } 6735 6736 /// See if we can lower a strlen call into an optimized form. If so, return 6737 /// true and lower it, otherwise return false and it will be lowered like a 6738 /// normal call. 6739 /// The caller already checked that \p I calls the appropriate LibFunc with a 6740 /// correct prototype. 6741 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6742 const Value *Arg0 = I.getArgOperand(0); 6743 6744 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6745 std::pair<SDValue, SDValue> Res = 6746 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6747 getValue(Arg0), MachinePointerInfo(Arg0)); 6748 if (Res.first.getNode()) { 6749 processIntegerCallValue(I, Res.first, false); 6750 PendingLoads.push_back(Res.second); 6751 return true; 6752 } 6753 6754 return false; 6755 } 6756 6757 /// See if we can lower a strnlen call into an optimized form. If so, return 6758 /// true and lower it, otherwise return false and it will be lowered like a 6759 /// normal call. 6760 /// The caller already checked that \p I calls the appropriate LibFunc with a 6761 /// correct prototype. 6762 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6763 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6764 6765 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6766 std::pair<SDValue, SDValue> Res = 6767 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6768 getValue(Arg0), getValue(Arg1), 6769 MachinePointerInfo(Arg0)); 6770 if (Res.first.getNode()) { 6771 processIntegerCallValue(I, Res.first, false); 6772 PendingLoads.push_back(Res.second); 6773 return true; 6774 } 6775 6776 return false; 6777 } 6778 6779 /// See if we can lower a unary floating-point operation into an SDNode with 6780 /// the specified Opcode. If so, return true and lower it, otherwise return 6781 /// false and it will be lowered like a normal call. 6782 /// The caller already checked that \p I calls the appropriate LibFunc with a 6783 /// correct prototype. 6784 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6785 unsigned Opcode) { 6786 // We already checked this call's prototype; verify it doesn't modify errno. 6787 if (!I.onlyReadsMemory()) 6788 return false; 6789 6790 SDValue Tmp = getValue(I.getArgOperand(0)); 6791 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6792 return true; 6793 } 6794 6795 /// See if we can lower a binary floating-point operation into an SDNode with 6796 /// the specified Opcode. If so, return true and lower it. Otherwise return 6797 /// false, and it will be lowered like a normal call. 6798 /// The caller already checked that \p I calls the appropriate LibFunc with a 6799 /// correct prototype. 6800 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6801 unsigned Opcode) { 6802 // We already checked this call's prototype; verify it doesn't modify errno. 6803 if (!I.onlyReadsMemory()) 6804 return false; 6805 6806 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6807 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6808 EVT VT = Tmp0.getValueType(); 6809 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6810 return true; 6811 } 6812 6813 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6814 // Handle inline assembly differently. 6815 if (isa<InlineAsm>(I.getCalledValue())) { 6816 visitInlineAsm(&I); 6817 return; 6818 } 6819 6820 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6821 computeUsesVAFloatArgument(I, MMI); 6822 6823 const char *RenameFn = nullptr; 6824 if (Function *F = I.getCalledFunction()) { 6825 if (F->isDeclaration()) { 6826 // Is this an LLVM intrinsic or a target-specific intrinsic? 6827 unsigned IID = F->getIntrinsicID(); 6828 if (!IID) 6829 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 6830 IID = II->getIntrinsicID(F); 6831 6832 if (IID) { 6833 RenameFn = visitIntrinsicCall(I, IID); 6834 if (!RenameFn) 6835 return; 6836 } 6837 } 6838 6839 // Check for well-known libc/libm calls. If the function is internal, it 6840 // can't be a library call. Don't do the check if marked as nobuiltin for 6841 // some reason or the call site requires strict floating point semantics. 6842 LibFunc Func; 6843 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6844 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6845 LibInfo->hasOptimizedCodeGen(Func)) { 6846 switch (Func) { 6847 default: break; 6848 case LibFunc_copysign: 6849 case LibFunc_copysignf: 6850 case LibFunc_copysignl: 6851 // We already checked this call's prototype; verify it doesn't modify 6852 // errno. 6853 if (I.onlyReadsMemory()) { 6854 SDValue LHS = getValue(I.getArgOperand(0)); 6855 SDValue RHS = getValue(I.getArgOperand(1)); 6856 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6857 LHS.getValueType(), LHS, RHS)); 6858 return; 6859 } 6860 break; 6861 case LibFunc_fabs: 6862 case LibFunc_fabsf: 6863 case LibFunc_fabsl: 6864 if (visitUnaryFloatCall(I, ISD::FABS)) 6865 return; 6866 break; 6867 case LibFunc_fmin: 6868 case LibFunc_fminf: 6869 case LibFunc_fminl: 6870 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6871 return; 6872 break; 6873 case LibFunc_fmax: 6874 case LibFunc_fmaxf: 6875 case LibFunc_fmaxl: 6876 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6877 return; 6878 break; 6879 case LibFunc_sin: 6880 case LibFunc_sinf: 6881 case LibFunc_sinl: 6882 if (visitUnaryFloatCall(I, ISD::FSIN)) 6883 return; 6884 break; 6885 case LibFunc_cos: 6886 case LibFunc_cosf: 6887 case LibFunc_cosl: 6888 if (visitUnaryFloatCall(I, ISD::FCOS)) 6889 return; 6890 break; 6891 case LibFunc_sqrt: 6892 case LibFunc_sqrtf: 6893 case LibFunc_sqrtl: 6894 case LibFunc_sqrt_finite: 6895 case LibFunc_sqrtf_finite: 6896 case LibFunc_sqrtl_finite: 6897 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6898 return; 6899 break; 6900 case LibFunc_floor: 6901 case LibFunc_floorf: 6902 case LibFunc_floorl: 6903 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6904 return; 6905 break; 6906 case LibFunc_nearbyint: 6907 case LibFunc_nearbyintf: 6908 case LibFunc_nearbyintl: 6909 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6910 return; 6911 break; 6912 case LibFunc_ceil: 6913 case LibFunc_ceilf: 6914 case LibFunc_ceill: 6915 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6916 return; 6917 break; 6918 case LibFunc_rint: 6919 case LibFunc_rintf: 6920 case LibFunc_rintl: 6921 if (visitUnaryFloatCall(I, ISD::FRINT)) 6922 return; 6923 break; 6924 case LibFunc_round: 6925 case LibFunc_roundf: 6926 case LibFunc_roundl: 6927 if (visitUnaryFloatCall(I, ISD::FROUND)) 6928 return; 6929 break; 6930 case LibFunc_trunc: 6931 case LibFunc_truncf: 6932 case LibFunc_truncl: 6933 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6934 return; 6935 break; 6936 case LibFunc_log2: 6937 case LibFunc_log2f: 6938 case LibFunc_log2l: 6939 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6940 return; 6941 break; 6942 case LibFunc_exp2: 6943 case LibFunc_exp2f: 6944 case LibFunc_exp2l: 6945 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6946 return; 6947 break; 6948 case LibFunc_memcmp: 6949 if (visitMemCmpCall(I)) 6950 return; 6951 break; 6952 case LibFunc_mempcpy: 6953 if (visitMemPCpyCall(I)) 6954 return; 6955 break; 6956 case LibFunc_memchr: 6957 if (visitMemChrCall(I)) 6958 return; 6959 break; 6960 case LibFunc_strcpy: 6961 if (visitStrCpyCall(I, false)) 6962 return; 6963 break; 6964 case LibFunc_stpcpy: 6965 if (visitStrCpyCall(I, true)) 6966 return; 6967 break; 6968 case LibFunc_strcmp: 6969 if (visitStrCmpCall(I)) 6970 return; 6971 break; 6972 case LibFunc_strlen: 6973 if (visitStrLenCall(I)) 6974 return; 6975 break; 6976 case LibFunc_strnlen: 6977 if (visitStrNLenCall(I)) 6978 return; 6979 break; 6980 } 6981 } 6982 } 6983 6984 SDValue Callee; 6985 if (!RenameFn) 6986 Callee = getValue(I.getCalledValue()); 6987 else 6988 Callee = DAG.getExternalSymbol( 6989 RenameFn, 6990 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6991 6992 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6993 // have to do anything here to lower funclet bundles. 6994 assert(!I.hasOperandBundlesOtherThan( 6995 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6996 "Cannot lower calls with arbitrary operand bundles!"); 6997 6998 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6999 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7000 else 7001 // Check if we can potentially perform a tail call. More detailed checking 7002 // is be done within LowerCallTo, after more information about the call is 7003 // known. 7004 LowerCallTo(&I, Callee, I.isTailCall()); 7005 } 7006 7007 namespace { 7008 7009 /// AsmOperandInfo - This contains information for each constraint that we are 7010 /// lowering. 7011 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7012 public: 7013 /// CallOperand - If this is the result output operand or a clobber 7014 /// this is null, otherwise it is the incoming operand to the CallInst. 7015 /// This gets modified as the asm is processed. 7016 SDValue CallOperand; 7017 7018 /// AssignedRegs - If this is a register or register class operand, this 7019 /// contains the set of register corresponding to the operand. 7020 RegsForValue AssignedRegs; 7021 7022 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7023 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7024 } 7025 7026 /// Whether or not this operand accesses memory 7027 bool hasMemory(const TargetLowering &TLI) const { 7028 // Indirect operand accesses access memory. 7029 if (isIndirect) 7030 return true; 7031 7032 for (const auto &Code : Codes) 7033 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7034 return true; 7035 7036 return false; 7037 } 7038 7039 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7040 /// corresponds to. If there is no Value* for this operand, it returns 7041 /// MVT::Other. 7042 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7043 const DataLayout &DL) const { 7044 if (!CallOperandVal) return MVT::Other; 7045 7046 if (isa<BasicBlock>(CallOperandVal)) 7047 return TLI.getPointerTy(DL); 7048 7049 llvm::Type *OpTy = CallOperandVal->getType(); 7050 7051 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7052 // If this is an indirect operand, the operand is a pointer to the 7053 // accessed type. 7054 if (isIndirect) { 7055 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7056 if (!PtrTy) 7057 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7058 OpTy = PtrTy->getElementType(); 7059 } 7060 7061 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7062 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7063 if (STy->getNumElements() == 1) 7064 OpTy = STy->getElementType(0); 7065 7066 // If OpTy is not a single value, it may be a struct/union that we 7067 // can tile with integers. 7068 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7069 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7070 switch (BitSize) { 7071 default: break; 7072 case 1: 7073 case 8: 7074 case 16: 7075 case 32: 7076 case 64: 7077 case 128: 7078 OpTy = IntegerType::get(Context, BitSize); 7079 break; 7080 } 7081 } 7082 7083 return TLI.getValueType(DL, OpTy, true); 7084 } 7085 }; 7086 7087 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7088 7089 } // end anonymous namespace 7090 7091 /// Make sure that the output operand \p OpInfo and its corresponding input 7092 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7093 /// out). 7094 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7095 SDISelAsmOperandInfo &MatchingOpInfo, 7096 SelectionDAG &DAG) { 7097 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7098 return; 7099 7100 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7101 const auto &TLI = DAG.getTargetLoweringInfo(); 7102 7103 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7104 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7105 OpInfo.ConstraintVT); 7106 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7107 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7108 MatchingOpInfo.ConstraintVT); 7109 if ((OpInfo.ConstraintVT.isInteger() != 7110 MatchingOpInfo.ConstraintVT.isInteger()) || 7111 (MatchRC.second != InputRC.second)) { 7112 // FIXME: error out in a more elegant fashion 7113 report_fatal_error("Unsupported asm: input constraint" 7114 " with a matching output constraint of" 7115 " incompatible type!"); 7116 } 7117 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7118 } 7119 7120 /// Get a direct memory input to behave well as an indirect operand. 7121 /// This may introduce stores, hence the need for a \p Chain. 7122 /// \return The (possibly updated) chain. 7123 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7124 SDISelAsmOperandInfo &OpInfo, 7125 SelectionDAG &DAG) { 7126 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7127 7128 // If we don't have an indirect input, put it in the constpool if we can, 7129 // otherwise spill it to a stack slot. 7130 // TODO: This isn't quite right. We need to handle these according to 7131 // the addressing mode that the constraint wants. Also, this may take 7132 // an additional register for the computation and we don't want that 7133 // either. 7134 7135 // If the operand is a float, integer, or vector constant, spill to a 7136 // constant pool entry to get its address. 7137 const Value *OpVal = OpInfo.CallOperandVal; 7138 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7139 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7140 OpInfo.CallOperand = DAG.getConstantPool( 7141 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7142 return Chain; 7143 } 7144 7145 // Otherwise, create a stack slot and emit a store to it before the asm. 7146 Type *Ty = OpVal->getType(); 7147 auto &DL = DAG.getDataLayout(); 7148 uint64_t TySize = DL.getTypeAllocSize(Ty); 7149 unsigned Align = DL.getPrefTypeAlignment(Ty); 7150 MachineFunction &MF = DAG.getMachineFunction(); 7151 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7152 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7153 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7154 MachinePointerInfo::getFixedStack(MF, SSFI)); 7155 OpInfo.CallOperand = StackSlot; 7156 7157 return Chain; 7158 } 7159 7160 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7161 /// specified operand. We prefer to assign virtual registers, to allow the 7162 /// register allocator to handle the assignment process. However, if the asm 7163 /// uses features that we can't model on machineinstrs, we have SDISel do the 7164 /// allocation. This produces generally horrible, but correct, code. 7165 /// 7166 /// OpInfo describes the operand. 7167 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7168 const SDLoc &DL, 7169 SDISelAsmOperandInfo &OpInfo) { 7170 LLVMContext &Context = *DAG.getContext(); 7171 7172 MachineFunction &MF = DAG.getMachineFunction(); 7173 SmallVector<unsigned, 4> Regs; 7174 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7175 7176 // If this is a constraint for a single physreg, or a constraint for a 7177 // register class, find it. 7178 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7179 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 7180 OpInfo.ConstraintVT); 7181 7182 unsigned NumRegs = 1; 7183 if (OpInfo.ConstraintVT != MVT::Other) { 7184 // If this is a FP input in an integer register (or visa versa) insert a bit 7185 // cast of the input value. More generally, handle any case where the input 7186 // value disagrees with the register class we plan to stick this in. 7187 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7188 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7189 // Try to convert to the first EVT that the reg class contains. If the 7190 // types are identical size, use a bitcast to convert (e.g. two differing 7191 // vector types). 7192 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7193 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7194 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7195 RegVT, OpInfo.CallOperand); 7196 OpInfo.ConstraintVT = RegVT; 7197 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7198 // If the input is a FP value and we want it in FP registers, do a 7199 // bitcast to the corresponding integer type. This turns an f64 value 7200 // into i64, which can be passed with two i32 values on a 32-bit 7201 // machine. 7202 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7203 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7204 RegVT, OpInfo.CallOperand); 7205 OpInfo.ConstraintVT = RegVT; 7206 } 7207 } 7208 7209 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7210 } 7211 7212 MVT RegVT; 7213 EVT ValueVT = OpInfo.ConstraintVT; 7214 7215 // If this is a constraint for a specific physical register, like {r17}, 7216 // assign it now. 7217 if (unsigned AssignedReg = PhysReg.first) { 7218 const TargetRegisterClass *RC = PhysReg.second; 7219 if (OpInfo.ConstraintVT == MVT::Other) 7220 ValueVT = *TRI.legalclasstypes_begin(*RC); 7221 7222 // Get the actual register value type. This is important, because the user 7223 // may have asked for (e.g.) the AX register in i32 type. We need to 7224 // remember that AX is actually i16 to get the right extension. 7225 RegVT = *TRI.legalclasstypes_begin(*RC); 7226 7227 // This is a explicit reference to a physical register. 7228 Regs.push_back(AssignedReg); 7229 7230 // If this is an expanded reference, add the rest of the regs to Regs. 7231 if (NumRegs != 1) { 7232 TargetRegisterClass::iterator I = RC->begin(); 7233 for (; *I != AssignedReg; ++I) 7234 assert(I != RC->end() && "Didn't find reg!"); 7235 7236 // Already added the first reg. 7237 --NumRegs; ++I; 7238 for (; NumRegs; --NumRegs, ++I) { 7239 assert(I != RC->end() && "Ran out of registers to allocate!"); 7240 Regs.push_back(*I); 7241 } 7242 } 7243 7244 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7245 return; 7246 } 7247 7248 // Otherwise, if this was a reference to an LLVM register class, create vregs 7249 // for this reference. 7250 if (const TargetRegisterClass *RC = PhysReg.second) { 7251 RegVT = *TRI.legalclasstypes_begin(*RC); 7252 if (OpInfo.ConstraintVT == MVT::Other) 7253 ValueVT = RegVT; 7254 7255 // Create the appropriate number of virtual registers. 7256 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7257 for (; NumRegs; --NumRegs) 7258 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7259 7260 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7261 return; 7262 } 7263 7264 // Otherwise, we couldn't allocate enough registers for this. 7265 } 7266 7267 static unsigned 7268 findMatchingInlineAsmOperand(unsigned OperandNo, 7269 const std::vector<SDValue> &AsmNodeOperands) { 7270 // Scan until we find the definition we already emitted of this operand. 7271 unsigned CurOp = InlineAsm::Op_FirstOperand; 7272 for (; OperandNo; --OperandNo) { 7273 // Advance to the next operand. 7274 unsigned OpFlag = 7275 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7276 assert((InlineAsm::isRegDefKind(OpFlag) || 7277 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7278 InlineAsm::isMemKind(OpFlag)) && 7279 "Skipped past definitions?"); 7280 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7281 } 7282 return CurOp; 7283 } 7284 7285 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7286 /// \return true if it has succeeded, false otherwise 7287 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7288 MVT RegVT, SelectionDAG &DAG) { 7289 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7290 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7291 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7292 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7293 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7294 else 7295 return false; 7296 } 7297 return true; 7298 } 7299 7300 namespace { 7301 7302 class ExtraFlags { 7303 unsigned Flags = 0; 7304 7305 public: 7306 explicit ExtraFlags(ImmutableCallSite CS) { 7307 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7308 if (IA->hasSideEffects()) 7309 Flags |= InlineAsm::Extra_HasSideEffects; 7310 if (IA->isAlignStack()) 7311 Flags |= InlineAsm::Extra_IsAlignStack; 7312 if (CS.isConvergent()) 7313 Flags |= InlineAsm::Extra_IsConvergent; 7314 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7315 } 7316 7317 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7318 // Ideally, we would only check against memory constraints. However, the 7319 // meaning of an Other constraint can be target-specific and we can't easily 7320 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7321 // for Other constraints as well. 7322 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7323 OpInfo.ConstraintType == TargetLowering::C_Other) { 7324 if (OpInfo.Type == InlineAsm::isInput) 7325 Flags |= InlineAsm::Extra_MayLoad; 7326 else if (OpInfo.Type == InlineAsm::isOutput) 7327 Flags |= InlineAsm::Extra_MayStore; 7328 else if (OpInfo.Type == InlineAsm::isClobber) 7329 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7330 } 7331 } 7332 7333 unsigned get() const { return Flags; } 7334 }; 7335 7336 } // end anonymous namespace 7337 7338 /// visitInlineAsm - Handle a call to an InlineAsm object. 7339 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7340 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7341 7342 /// ConstraintOperands - Information about all of the constraints. 7343 SDISelAsmOperandInfoVector ConstraintOperands; 7344 7345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7346 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7347 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7348 7349 bool hasMemory = false; 7350 7351 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7352 ExtraFlags ExtraInfo(CS); 7353 7354 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7355 unsigned ResNo = 0; // ResNo - The result number of the next output. 7356 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7357 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7358 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7359 7360 MVT OpVT = MVT::Other; 7361 7362 // Compute the value type for each operand. 7363 if (OpInfo.Type == InlineAsm::isInput || 7364 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7365 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7366 7367 // Process the call argument. BasicBlocks are labels, currently appearing 7368 // only in asm's. 7369 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7370 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7371 } else { 7372 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7373 } 7374 7375 OpVT = 7376 OpInfo 7377 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7378 .getSimpleVT(); 7379 } 7380 7381 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7382 // The return value of the call is this value. As such, there is no 7383 // corresponding argument. 7384 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7385 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7386 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7387 STy->getElementType(ResNo)); 7388 } else { 7389 assert(ResNo == 0 && "Asm only has one result!"); 7390 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7391 } 7392 ++ResNo; 7393 } 7394 7395 OpInfo.ConstraintVT = OpVT; 7396 7397 if (!hasMemory) 7398 hasMemory = OpInfo.hasMemory(TLI); 7399 7400 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7401 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7402 auto TargetConstraint = TargetConstraints[i]; 7403 7404 // Compute the constraint code and ConstraintType to use. 7405 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7406 7407 ExtraInfo.update(TargetConstraint); 7408 } 7409 7410 SDValue Chain, Flag; 7411 7412 // We won't need to flush pending loads if this asm doesn't touch 7413 // memory and is nonvolatile. 7414 if (hasMemory || IA->hasSideEffects()) 7415 Chain = getRoot(); 7416 else 7417 Chain = DAG.getRoot(); 7418 7419 // Second pass over the constraints: compute which constraint option to use 7420 // and assign registers to constraints that want a specific physreg. 7421 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7422 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7423 7424 // If this is an output operand with a matching input operand, look up the 7425 // matching input. If their types mismatch, e.g. one is an integer, the 7426 // other is floating point, or their sizes are different, flag it as an 7427 // error. 7428 if (OpInfo.hasMatchingInput()) { 7429 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7430 patchMatchingInput(OpInfo, Input, DAG); 7431 } 7432 7433 // Compute the constraint code and ConstraintType to use. 7434 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7435 7436 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7437 OpInfo.Type == InlineAsm::isClobber) 7438 continue; 7439 7440 // If this is a memory input, and if the operand is not indirect, do what we 7441 // need to provide an address for the memory input. 7442 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7443 !OpInfo.isIndirect) { 7444 assert((OpInfo.isMultipleAlternative || 7445 (OpInfo.Type == InlineAsm::isInput)) && 7446 "Can only indirectify direct input operands!"); 7447 7448 // Memory operands really want the address of the value. 7449 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7450 7451 // There is no longer a Value* corresponding to this operand. 7452 OpInfo.CallOperandVal = nullptr; 7453 7454 // It is now an indirect operand. 7455 OpInfo.isIndirect = true; 7456 } 7457 7458 // If this constraint is for a specific register, allocate it before 7459 // anything else. 7460 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7461 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7462 } 7463 7464 // Third pass - Loop over all of the operands, assigning virtual or physregs 7465 // to register class operands. 7466 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7467 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7468 7469 // C_Register operands have already been allocated, Other/Memory don't need 7470 // to be. 7471 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7472 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7473 } 7474 7475 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7476 std::vector<SDValue> AsmNodeOperands; 7477 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7478 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7479 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7480 7481 // If we have a !srcloc metadata node associated with it, we want to attach 7482 // this to the ultimately generated inline asm machineinstr. To do this, we 7483 // pass in the third operand as this (potentially null) inline asm MDNode. 7484 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7485 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7486 7487 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7488 // bits as operand 3. 7489 AsmNodeOperands.push_back(DAG.getTargetConstant( 7490 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7491 7492 // Loop over all of the inputs, copying the operand values into the 7493 // appropriate registers and processing the output regs. 7494 RegsForValue RetValRegs; 7495 7496 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7497 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7498 7499 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7500 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7501 7502 switch (OpInfo.Type) { 7503 case InlineAsm::isOutput: 7504 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7505 OpInfo.ConstraintType != TargetLowering::C_Register) { 7506 // Memory output, or 'other' output (e.g. 'X' constraint). 7507 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7508 7509 unsigned ConstraintID = 7510 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7511 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7512 "Failed to convert memory constraint code to constraint id."); 7513 7514 // Add information to the INLINEASM node to know about this output. 7515 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7516 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7517 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7518 MVT::i32)); 7519 AsmNodeOperands.push_back(OpInfo.CallOperand); 7520 break; 7521 } 7522 7523 // Otherwise, this is a register or register class output. 7524 7525 // Copy the output from the appropriate register. Find a register that 7526 // we can use. 7527 if (OpInfo.AssignedRegs.Regs.empty()) { 7528 emitInlineAsmError( 7529 CS, "couldn't allocate output register for constraint '" + 7530 Twine(OpInfo.ConstraintCode) + "'"); 7531 return; 7532 } 7533 7534 // If this is an indirect operand, store through the pointer after the 7535 // asm. 7536 if (OpInfo.isIndirect) { 7537 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7538 OpInfo.CallOperandVal)); 7539 } else { 7540 // This is the result value of the call. 7541 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7542 // Concatenate this output onto the outputs list. 7543 RetValRegs.append(OpInfo.AssignedRegs); 7544 } 7545 7546 // Add information to the INLINEASM node to know that this register is 7547 // set. 7548 OpInfo.AssignedRegs 7549 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7550 ? InlineAsm::Kind_RegDefEarlyClobber 7551 : InlineAsm::Kind_RegDef, 7552 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7553 break; 7554 7555 case InlineAsm::isInput: { 7556 SDValue InOperandVal = OpInfo.CallOperand; 7557 7558 if (OpInfo.isMatchingInputConstraint()) { 7559 // If this is required to match an output register we have already set, 7560 // just use its register. 7561 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7562 AsmNodeOperands); 7563 unsigned OpFlag = 7564 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7565 if (InlineAsm::isRegDefKind(OpFlag) || 7566 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7567 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7568 if (OpInfo.isIndirect) { 7569 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7570 emitInlineAsmError(CS, "inline asm not supported yet:" 7571 " don't know how to handle tied " 7572 "indirect register inputs"); 7573 return; 7574 } 7575 7576 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7577 SmallVector<unsigned, 4> Regs; 7578 7579 if (!createVirtualRegs(Regs, 7580 InlineAsm::getNumOperandRegisters(OpFlag), 7581 RegVT, DAG)) { 7582 emitInlineAsmError(CS, "inline asm error: This value type register " 7583 "class is not natively supported!"); 7584 return; 7585 } 7586 7587 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7588 7589 SDLoc dl = getCurSDLoc(); 7590 // Use the produced MatchedRegs object to 7591 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7592 CS.getInstruction()); 7593 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7594 true, OpInfo.getMatchedOperand(), dl, 7595 DAG, AsmNodeOperands); 7596 break; 7597 } 7598 7599 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7600 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7601 "Unexpected number of operands"); 7602 // Add information to the INLINEASM node to know about this input. 7603 // See InlineAsm.h isUseOperandTiedToDef. 7604 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7605 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7606 OpInfo.getMatchedOperand()); 7607 AsmNodeOperands.push_back(DAG.getTargetConstant( 7608 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7609 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7610 break; 7611 } 7612 7613 // Treat indirect 'X' constraint as memory. 7614 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7615 OpInfo.isIndirect) 7616 OpInfo.ConstraintType = TargetLowering::C_Memory; 7617 7618 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7619 std::vector<SDValue> Ops; 7620 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7621 Ops, DAG); 7622 if (Ops.empty()) { 7623 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7624 Twine(OpInfo.ConstraintCode) + "'"); 7625 return; 7626 } 7627 7628 // Add information to the INLINEASM node to know about this input. 7629 unsigned ResOpType = 7630 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7631 AsmNodeOperands.push_back(DAG.getTargetConstant( 7632 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7633 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7634 break; 7635 } 7636 7637 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7638 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7639 assert(InOperandVal.getValueType() == 7640 TLI.getPointerTy(DAG.getDataLayout()) && 7641 "Memory operands expect pointer values"); 7642 7643 unsigned ConstraintID = 7644 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7645 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7646 "Failed to convert memory constraint code to constraint id."); 7647 7648 // Add information to the INLINEASM node to know about this input. 7649 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7650 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7651 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7652 getCurSDLoc(), 7653 MVT::i32)); 7654 AsmNodeOperands.push_back(InOperandVal); 7655 break; 7656 } 7657 7658 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7659 OpInfo.ConstraintType == TargetLowering::C_Register) && 7660 "Unknown constraint type!"); 7661 7662 // TODO: Support this. 7663 if (OpInfo.isIndirect) { 7664 emitInlineAsmError( 7665 CS, "Don't know how to handle indirect register inputs yet " 7666 "for constraint '" + 7667 Twine(OpInfo.ConstraintCode) + "'"); 7668 return; 7669 } 7670 7671 // Copy the input into the appropriate registers. 7672 if (OpInfo.AssignedRegs.Regs.empty()) { 7673 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7674 Twine(OpInfo.ConstraintCode) + "'"); 7675 return; 7676 } 7677 7678 SDLoc dl = getCurSDLoc(); 7679 7680 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7681 Chain, &Flag, CS.getInstruction()); 7682 7683 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7684 dl, DAG, AsmNodeOperands); 7685 break; 7686 } 7687 case InlineAsm::isClobber: 7688 // Add the clobbered value to the operand list, so that the register 7689 // allocator is aware that the physreg got clobbered. 7690 if (!OpInfo.AssignedRegs.Regs.empty()) 7691 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7692 false, 0, getCurSDLoc(), DAG, 7693 AsmNodeOperands); 7694 break; 7695 } 7696 } 7697 7698 // Finish up input operands. Set the input chain and add the flag last. 7699 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7700 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7701 7702 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7703 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7704 Flag = Chain.getValue(1); 7705 7706 // If this asm returns a register value, copy the result from that register 7707 // and set it as the value of the call. 7708 if (!RetValRegs.Regs.empty()) { 7709 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7710 Chain, &Flag, CS.getInstruction()); 7711 7712 // FIXME: Why don't we do this for inline asms with MRVs? 7713 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7714 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7715 7716 // If any of the results of the inline asm is a vector, it may have the 7717 // wrong width/num elts. This can happen for register classes that can 7718 // contain multiple different value types. The preg or vreg allocated may 7719 // not have the same VT as was expected. Convert it to the right type 7720 // with bit_convert. 7721 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7722 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7723 ResultType, Val); 7724 7725 } else if (ResultType != Val.getValueType() && 7726 ResultType.isInteger() && Val.getValueType().isInteger()) { 7727 // If a result value was tied to an input value, the computed result may 7728 // have a wider width than the expected result. Extract the relevant 7729 // portion. 7730 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7731 } 7732 7733 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7734 } 7735 7736 setValue(CS.getInstruction(), Val); 7737 // Don't need to use this as a chain in this case. 7738 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7739 return; 7740 } 7741 7742 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7743 7744 // Process indirect outputs, first output all of the flagged copies out of 7745 // physregs. 7746 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7747 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7748 const Value *Ptr = IndirectStoresToEmit[i].second; 7749 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7750 Chain, &Flag, IA); 7751 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7752 } 7753 7754 // Emit the non-flagged stores from the physregs. 7755 SmallVector<SDValue, 8> OutChains; 7756 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7757 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7758 getValue(StoresToEmit[i].second), 7759 MachinePointerInfo(StoresToEmit[i].second)); 7760 OutChains.push_back(Val); 7761 } 7762 7763 if (!OutChains.empty()) 7764 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7765 7766 DAG.setRoot(Chain); 7767 } 7768 7769 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7770 const Twine &Message) { 7771 LLVMContext &Ctx = *DAG.getContext(); 7772 Ctx.emitError(CS.getInstruction(), Message); 7773 7774 // Make sure we leave the DAG in a valid state 7775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7776 SmallVector<EVT, 1> ValueVTs; 7777 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7778 7779 if (ValueVTs.empty()) 7780 return; 7781 7782 SmallVector<SDValue, 1> Ops; 7783 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 7784 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 7785 7786 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 7787 } 7788 7789 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7790 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7791 MVT::Other, getRoot(), 7792 getValue(I.getArgOperand(0)), 7793 DAG.getSrcValue(I.getArgOperand(0)))); 7794 } 7795 7796 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7798 const DataLayout &DL = DAG.getDataLayout(); 7799 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7800 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7801 DAG.getSrcValue(I.getOperand(0)), 7802 DL.getABITypeAlignment(I.getType())); 7803 setValue(&I, V); 7804 DAG.setRoot(V.getValue(1)); 7805 } 7806 7807 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7808 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7809 MVT::Other, getRoot(), 7810 getValue(I.getArgOperand(0)), 7811 DAG.getSrcValue(I.getArgOperand(0)))); 7812 } 7813 7814 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7815 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7816 MVT::Other, getRoot(), 7817 getValue(I.getArgOperand(0)), 7818 getValue(I.getArgOperand(1)), 7819 DAG.getSrcValue(I.getArgOperand(0)), 7820 DAG.getSrcValue(I.getArgOperand(1)))); 7821 } 7822 7823 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7824 const Instruction &I, 7825 SDValue Op) { 7826 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7827 if (!Range) 7828 return Op; 7829 7830 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7831 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7832 return Op; 7833 7834 APInt Lo = CR.getUnsignedMin(); 7835 if (!Lo.isMinValue()) 7836 return Op; 7837 7838 APInt Hi = CR.getUnsignedMax(); 7839 unsigned Bits = Hi.getActiveBits(); 7840 7841 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7842 7843 SDLoc SL = getCurSDLoc(); 7844 7845 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7846 DAG.getValueType(SmallVT)); 7847 unsigned NumVals = Op.getNode()->getNumValues(); 7848 if (NumVals == 1) 7849 return ZExt; 7850 7851 SmallVector<SDValue, 4> Ops; 7852 7853 Ops.push_back(ZExt); 7854 for (unsigned I = 1; I != NumVals; ++I) 7855 Ops.push_back(Op.getValue(I)); 7856 7857 return DAG.getMergeValues(Ops, SL); 7858 } 7859 7860 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7861 /// the call being lowered. 7862 /// 7863 /// This is a helper for lowering intrinsics that follow a target calling 7864 /// convention or require stack pointer adjustment. Only a subset of the 7865 /// intrinsic's operands need to participate in the calling convention. 7866 void SelectionDAGBuilder::populateCallLoweringInfo( 7867 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7868 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7869 bool IsPatchPoint) { 7870 TargetLowering::ArgListTy Args; 7871 Args.reserve(NumArgs); 7872 7873 // Populate the argument list. 7874 // Attributes for args start at offset 1, after the return attribute. 7875 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7876 ArgI != ArgE; ++ArgI) { 7877 const Value *V = CS->getOperand(ArgI); 7878 7879 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7880 7881 TargetLowering::ArgListEntry Entry; 7882 Entry.Node = getValue(V); 7883 Entry.Ty = V->getType(); 7884 Entry.setAttributes(&CS, ArgI); 7885 Args.push_back(Entry); 7886 } 7887 7888 CLI.setDebugLoc(getCurSDLoc()) 7889 .setChain(getRoot()) 7890 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7891 .setDiscardResult(CS->use_empty()) 7892 .setIsPatchPoint(IsPatchPoint); 7893 } 7894 7895 /// Add a stack map intrinsic call's live variable operands to a stackmap 7896 /// or patchpoint target node's operand list. 7897 /// 7898 /// Constants are converted to TargetConstants purely as an optimization to 7899 /// avoid constant materialization and register allocation. 7900 /// 7901 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7902 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7903 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7904 /// address materialization and register allocation, but may also be required 7905 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7906 /// alloca in the entry block, then the runtime may assume that the alloca's 7907 /// StackMap location can be read immediately after compilation and that the 7908 /// location is valid at any point during execution (this is similar to the 7909 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7910 /// only available in a register, then the runtime would need to trap when 7911 /// execution reaches the StackMap in order to read the alloca's location. 7912 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7913 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7914 SelectionDAGBuilder &Builder) { 7915 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7916 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7917 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7918 Ops.push_back( 7919 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7920 Ops.push_back( 7921 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7922 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7923 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7924 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7925 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7926 } else 7927 Ops.push_back(OpVal); 7928 } 7929 } 7930 7931 /// Lower llvm.experimental.stackmap directly to its target opcode. 7932 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7933 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7934 // [live variables...]) 7935 7936 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7937 7938 SDValue Chain, InFlag, Callee, NullPtr; 7939 SmallVector<SDValue, 32> Ops; 7940 7941 SDLoc DL = getCurSDLoc(); 7942 Callee = getValue(CI.getCalledValue()); 7943 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7944 7945 // The stackmap intrinsic only records the live variables (the arguemnts 7946 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7947 // intrinsic, this won't be lowered to a function call. This means we don't 7948 // have to worry about calling conventions and target specific lowering code. 7949 // Instead we perform the call lowering right here. 7950 // 7951 // chain, flag = CALLSEQ_START(chain, 0, 0) 7952 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7953 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7954 // 7955 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7956 InFlag = Chain.getValue(1); 7957 7958 // Add the <id> and <numBytes> constants. 7959 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7960 Ops.push_back(DAG.getTargetConstant( 7961 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7962 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7963 Ops.push_back(DAG.getTargetConstant( 7964 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7965 MVT::i32)); 7966 7967 // Push live variables for the stack map. 7968 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7969 7970 // We are not pushing any register mask info here on the operands list, 7971 // because the stackmap doesn't clobber anything. 7972 7973 // Push the chain and the glue flag. 7974 Ops.push_back(Chain); 7975 Ops.push_back(InFlag); 7976 7977 // Create the STACKMAP node. 7978 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7979 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7980 Chain = SDValue(SM, 0); 7981 InFlag = Chain.getValue(1); 7982 7983 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7984 7985 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7986 7987 // Set the root to the target-lowered call chain. 7988 DAG.setRoot(Chain); 7989 7990 // Inform the Frame Information that we have a stackmap in this function. 7991 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7992 } 7993 7994 /// Lower llvm.experimental.patchpoint directly to its target opcode. 7995 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7996 const BasicBlock *EHPadBB) { 7997 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7998 // i32 <numBytes>, 7999 // i8* <target>, 8000 // i32 <numArgs>, 8001 // [Args...], 8002 // [live variables...]) 8003 8004 CallingConv::ID CC = CS.getCallingConv(); 8005 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8006 bool HasDef = !CS->getType()->isVoidTy(); 8007 SDLoc dl = getCurSDLoc(); 8008 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8009 8010 // Handle immediate and symbolic callees. 8011 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8012 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8013 /*isTarget=*/true); 8014 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8015 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8016 SDLoc(SymbolicCallee), 8017 SymbolicCallee->getValueType(0)); 8018 8019 // Get the real number of arguments participating in the call <numArgs> 8020 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8021 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8022 8023 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8024 // Intrinsics include all meta-operands up to but not including CC. 8025 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8026 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8027 "Not enough arguments provided to the patchpoint intrinsic"); 8028 8029 // For AnyRegCC the arguments are lowered later on manually. 8030 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8031 Type *ReturnTy = 8032 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8033 8034 TargetLowering::CallLoweringInfo CLI(DAG); 8035 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 8036 true); 8037 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8038 8039 SDNode *CallEnd = Result.second.getNode(); 8040 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8041 CallEnd = CallEnd->getOperand(0).getNode(); 8042 8043 /// Get a call instruction from the call sequence chain. 8044 /// Tail calls are not allowed. 8045 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8046 "Expected a callseq node."); 8047 SDNode *Call = CallEnd->getOperand(0).getNode(); 8048 bool HasGlue = Call->getGluedNode(); 8049 8050 // Replace the target specific call node with the patchable intrinsic. 8051 SmallVector<SDValue, 8> Ops; 8052 8053 // Add the <id> and <numBytes> constants. 8054 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8055 Ops.push_back(DAG.getTargetConstant( 8056 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8057 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8058 Ops.push_back(DAG.getTargetConstant( 8059 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8060 MVT::i32)); 8061 8062 // Add the callee. 8063 Ops.push_back(Callee); 8064 8065 // Adjust <numArgs> to account for any arguments that have been passed on the 8066 // stack instead. 8067 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8068 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8069 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8070 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8071 8072 // Add the calling convention 8073 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8074 8075 // Add the arguments we omitted previously. The register allocator should 8076 // place these in any free register. 8077 if (IsAnyRegCC) 8078 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8079 Ops.push_back(getValue(CS.getArgument(i))); 8080 8081 // Push the arguments from the call instruction up to the register mask. 8082 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8083 Ops.append(Call->op_begin() + 2, e); 8084 8085 // Push live variables for the stack map. 8086 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8087 8088 // Push the register mask info. 8089 if (HasGlue) 8090 Ops.push_back(*(Call->op_end()-2)); 8091 else 8092 Ops.push_back(*(Call->op_end()-1)); 8093 8094 // Push the chain (this is originally the first operand of the call, but 8095 // becomes now the last or second to last operand). 8096 Ops.push_back(*(Call->op_begin())); 8097 8098 // Push the glue flag (last operand). 8099 if (HasGlue) 8100 Ops.push_back(*(Call->op_end()-1)); 8101 8102 SDVTList NodeTys; 8103 if (IsAnyRegCC && HasDef) { 8104 // Create the return types based on the intrinsic definition 8105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8106 SmallVector<EVT, 3> ValueVTs; 8107 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8108 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8109 8110 // There is always a chain and a glue type at the end 8111 ValueVTs.push_back(MVT::Other); 8112 ValueVTs.push_back(MVT::Glue); 8113 NodeTys = DAG.getVTList(ValueVTs); 8114 } else 8115 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8116 8117 // Replace the target specific call node with a PATCHPOINT node. 8118 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8119 dl, NodeTys, Ops); 8120 8121 // Update the NodeMap. 8122 if (HasDef) { 8123 if (IsAnyRegCC) 8124 setValue(CS.getInstruction(), SDValue(MN, 0)); 8125 else 8126 setValue(CS.getInstruction(), Result.first); 8127 } 8128 8129 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8130 // call sequence. Furthermore the location of the chain and glue can change 8131 // when the AnyReg calling convention is used and the intrinsic returns a 8132 // value. 8133 if (IsAnyRegCC && HasDef) { 8134 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8135 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8136 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8137 } else 8138 DAG.ReplaceAllUsesWith(Call, MN); 8139 DAG.DeleteNode(Call); 8140 8141 // Inform the Frame Information that we have a patchpoint in this function. 8142 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8143 } 8144 8145 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8146 unsigned Intrinsic) { 8147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8148 SDValue Op1 = getValue(I.getArgOperand(0)); 8149 SDValue Op2; 8150 if (I.getNumArgOperands() > 1) 8151 Op2 = getValue(I.getArgOperand(1)); 8152 SDLoc dl = getCurSDLoc(); 8153 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8154 SDValue Res; 8155 FastMathFlags FMF; 8156 if (isa<FPMathOperator>(I)) 8157 FMF = I.getFastMathFlags(); 8158 8159 switch (Intrinsic) { 8160 case Intrinsic::experimental_vector_reduce_fadd: 8161 if (FMF.isFast()) 8162 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8163 else 8164 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8165 break; 8166 case Intrinsic::experimental_vector_reduce_fmul: 8167 if (FMF.isFast()) 8168 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8169 else 8170 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8171 break; 8172 case Intrinsic::experimental_vector_reduce_add: 8173 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8174 break; 8175 case Intrinsic::experimental_vector_reduce_mul: 8176 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8177 break; 8178 case Intrinsic::experimental_vector_reduce_and: 8179 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8180 break; 8181 case Intrinsic::experimental_vector_reduce_or: 8182 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8183 break; 8184 case Intrinsic::experimental_vector_reduce_xor: 8185 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8186 break; 8187 case Intrinsic::experimental_vector_reduce_smax: 8188 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8189 break; 8190 case Intrinsic::experimental_vector_reduce_smin: 8191 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8192 break; 8193 case Intrinsic::experimental_vector_reduce_umax: 8194 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8195 break; 8196 case Intrinsic::experimental_vector_reduce_umin: 8197 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8198 break; 8199 case Intrinsic::experimental_vector_reduce_fmax: 8200 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8201 break; 8202 case Intrinsic::experimental_vector_reduce_fmin: 8203 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8204 break; 8205 default: 8206 llvm_unreachable("Unhandled vector reduce intrinsic"); 8207 } 8208 setValue(&I, Res); 8209 } 8210 8211 /// Returns an AttributeList representing the attributes applied to the return 8212 /// value of the given call. 8213 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8214 SmallVector<Attribute::AttrKind, 2> Attrs; 8215 if (CLI.RetSExt) 8216 Attrs.push_back(Attribute::SExt); 8217 if (CLI.RetZExt) 8218 Attrs.push_back(Attribute::ZExt); 8219 if (CLI.IsInReg) 8220 Attrs.push_back(Attribute::InReg); 8221 8222 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8223 Attrs); 8224 } 8225 8226 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8227 /// implementation, which just calls LowerCall. 8228 /// FIXME: When all targets are 8229 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8230 std::pair<SDValue, SDValue> 8231 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8232 // Handle the incoming return values from the call. 8233 CLI.Ins.clear(); 8234 Type *OrigRetTy = CLI.RetTy; 8235 SmallVector<EVT, 4> RetTys; 8236 SmallVector<uint64_t, 4> Offsets; 8237 auto &DL = CLI.DAG.getDataLayout(); 8238 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8239 8240 if (CLI.IsPostTypeLegalization) { 8241 // If we are lowering a libcall after legalization, split the return type. 8242 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8243 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8244 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8245 EVT RetVT = OldRetTys[i]; 8246 uint64_t Offset = OldOffsets[i]; 8247 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8248 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8249 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8250 RetTys.append(NumRegs, RegisterVT); 8251 for (unsigned j = 0; j != NumRegs; ++j) 8252 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8253 } 8254 } 8255 8256 SmallVector<ISD::OutputArg, 4> Outs; 8257 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8258 8259 bool CanLowerReturn = 8260 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8261 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8262 8263 SDValue DemoteStackSlot; 8264 int DemoteStackIdx = -100; 8265 if (!CanLowerReturn) { 8266 // FIXME: equivalent assert? 8267 // assert(!CS.hasInAllocaArgument() && 8268 // "sret demotion is incompatible with inalloca"); 8269 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8270 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8271 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8272 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8273 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8274 8275 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8276 ArgListEntry Entry; 8277 Entry.Node = DemoteStackSlot; 8278 Entry.Ty = StackSlotPtrType; 8279 Entry.IsSExt = false; 8280 Entry.IsZExt = false; 8281 Entry.IsInReg = false; 8282 Entry.IsSRet = true; 8283 Entry.IsNest = false; 8284 Entry.IsByVal = false; 8285 Entry.IsReturned = false; 8286 Entry.IsSwiftSelf = false; 8287 Entry.IsSwiftError = false; 8288 Entry.Alignment = Align; 8289 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8290 CLI.NumFixedArgs += 1; 8291 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8292 8293 // sret demotion isn't compatible with tail-calls, since the sret argument 8294 // points into the callers stack frame. 8295 CLI.IsTailCall = false; 8296 } else { 8297 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8298 EVT VT = RetTys[I]; 8299 MVT RegisterVT = 8300 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8301 unsigned NumRegs = 8302 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8303 for (unsigned i = 0; i != NumRegs; ++i) { 8304 ISD::InputArg MyFlags; 8305 MyFlags.VT = RegisterVT; 8306 MyFlags.ArgVT = VT; 8307 MyFlags.Used = CLI.IsReturnValueUsed; 8308 if (CLI.RetSExt) 8309 MyFlags.Flags.setSExt(); 8310 if (CLI.RetZExt) 8311 MyFlags.Flags.setZExt(); 8312 if (CLI.IsInReg) 8313 MyFlags.Flags.setInReg(); 8314 CLI.Ins.push_back(MyFlags); 8315 } 8316 } 8317 } 8318 8319 // We push in swifterror return as the last element of CLI.Ins. 8320 ArgListTy &Args = CLI.getArgs(); 8321 if (supportSwiftError()) { 8322 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8323 if (Args[i].IsSwiftError) { 8324 ISD::InputArg MyFlags; 8325 MyFlags.VT = getPointerTy(DL); 8326 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8327 MyFlags.Flags.setSwiftError(); 8328 CLI.Ins.push_back(MyFlags); 8329 } 8330 } 8331 } 8332 8333 // Handle all of the outgoing arguments. 8334 CLI.Outs.clear(); 8335 CLI.OutVals.clear(); 8336 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8337 SmallVector<EVT, 4> ValueVTs; 8338 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8339 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8340 Type *FinalType = Args[i].Ty; 8341 if (Args[i].IsByVal) 8342 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8343 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8344 FinalType, CLI.CallConv, CLI.IsVarArg); 8345 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8346 ++Value) { 8347 EVT VT = ValueVTs[Value]; 8348 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8349 SDValue Op = SDValue(Args[i].Node.getNode(), 8350 Args[i].Node.getResNo() + Value); 8351 ISD::ArgFlagsTy Flags; 8352 8353 // Certain targets (such as MIPS), may have a different ABI alignment 8354 // for a type depending on the context. Give the target a chance to 8355 // specify the alignment it wants. 8356 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8357 8358 if (Args[i].IsZExt) 8359 Flags.setZExt(); 8360 if (Args[i].IsSExt) 8361 Flags.setSExt(); 8362 if (Args[i].IsInReg) { 8363 // If we are using vectorcall calling convention, a structure that is 8364 // passed InReg - is surely an HVA 8365 if (CLI.CallConv == CallingConv::X86_VectorCall && 8366 isa<StructType>(FinalType)) { 8367 // The first value of a structure is marked 8368 if (0 == Value) 8369 Flags.setHvaStart(); 8370 Flags.setHva(); 8371 } 8372 // Set InReg Flag 8373 Flags.setInReg(); 8374 } 8375 if (Args[i].IsSRet) 8376 Flags.setSRet(); 8377 if (Args[i].IsSwiftSelf) 8378 Flags.setSwiftSelf(); 8379 if (Args[i].IsSwiftError) 8380 Flags.setSwiftError(); 8381 if (Args[i].IsByVal) 8382 Flags.setByVal(); 8383 if (Args[i].IsInAlloca) { 8384 Flags.setInAlloca(); 8385 // Set the byval flag for CCAssignFn callbacks that don't know about 8386 // inalloca. This way we can know how many bytes we should've allocated 8387 // and how many bytes a callee cleanup function will pop. If we port 8388 // inalloca to more targets, we'll have to add custom inalloca handling 8389 // in the various CC lowering callbacks. 8390 Flags.setByVal(); 8391 } 8392 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8393 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8394 Type *ElementTy = Ty->getElementType(); 8395 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8396 // For ByVal, alignment should come from FE. BE will guess if this 8397 // info is not there but there are cases it cannot get right. 8398 unsigned FrameAlign; 8399 if (Args[i].Alignment) 8400 FrameAlign = Args[i].Alignment; 8401 else 8402 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8403 Flags.setByValAlign(FrameAlign); 8404 } 8405 if (Args[i].IsNest) 8406 Flags.setNest(); 8407 if (NeedsRegBlock) 8408 Flags.setInConsecutiveRegs(); 8409 Flags.setOrigAlign(OriginalAlignment); 8410 8411 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8412 unsigned NumParts = 8413 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8414 SmallVector<SDValue, 4> Parts(NumParts); 8415 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8416 8417 if (Args[i].IsSExt) 8418 ExtendKind = ISD::SIGN_EXTEND; 8419 else if (Args[i].IsZExt) 8420 ExtendKind = ISD::ZERO_EXTEND; 8421 8422 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8423 // for now. 8424 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8425 CanLowerReturn) { 8426 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8427 "unexpected use of 'returned'"); 8428 // Before passing 'returned' to the target lowering code, ensure that 8429 // either the register MVT and the actual EVT are the same size or that 8430 // the return value and argument are extended in the same way; in these 8431 // cases it's safe to pass the argument register value unchanged as the 8432 // return register value (although it's at the target's option whether 8433 // to do so) 8434 // TODO: allow code generation to take advantage of partially preserved 8435 // registers rather than clobbering the entire register when the 8436 // parameter extension method is not compatible with the return 8437 // extension method 8438 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8439 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8440 CLI.RetZExt == Args[i].IsZExt)) 8441 Flags.setReturned(); 8442 } 8443 8444 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8445 CLI.CS.getInstruction(), ExtendKind, true); 8446 8447 for (unsigned j = 0; j != NumParts; ++j) { 8448 // if it isn't first piece, alignment must be 1 8449 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8450 i < CLI.NumFixedArgs, 8451 i, j*Parts[j].getValueType().getStoreSize()); 8452 if (NumParts > 1 && j == 0) 8453 MyFlags.Flags.setSplit(); 8454 else if (j != 0) { 8455 MyFlags.Flags.setOrigAlign(1); 8456 if (j == NumParts - 1) 8457 MyFlags.Flags.setSplitEnd(); 8458 } 8459 8460 CLI.Outs.push_back(MyFlags); 8461 CLI.OutVals.push_back(Parts[j]); 8462 } 8463 8464 if (NeedsRegBlock && Value == NumValues - 1) 8465 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8466 } 8467 } 8468 8469 SmallVector<SDValue, 4> InVals; 8470 CLI.Chain = LowerCall(CLI, InVals); 8471 8472 // Update CLI.InVals to use outside of this function. 8473 CLI.InVals = InVals; 8474 8475 // Verify that the target's LowerCall behaved as expected. 8476 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8477 "LowerCall didn't return a valid chain!"); 8478 assert((!CLI.IsTailCall || InVals.empty()) && 8479 "LowerCall emitted a return value for a tail call!"); 8480 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8481 "LowerCall didn't emit the correct number of values!"); 8482 8483 // For a tail call, the return value is merely live-out and there aren't 8484 // any nodes in the DAG representing it. Return a special value to 8485 // indicate that a tail call has been emitted and no more Instructions 8486 // should be processed in the current block. 8487 if (CLI.IsTailCall) { 8488 CLI.DAG.setRoot(CLI.Chain); 8489 return std::make_pair(SDValue(), SDValue()); 8490 } 8491 8492 #ifndef NDEBUG 8493 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8494 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8495 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8496 "LowerCall emitted a value with the wrong type!"); 8497 } 8498 #endif 8499 8500 SmallVector<SDValue, 4> ReturnValues; 8501 if (!CanLowerReturn) { 8502 // The instruction result is the result of loading from the 8503 // hidden sret parameter. 8504 SmallVector<EVT, 1> PVTs; 8505 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8506 8507 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8508 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8509 EVT PtrVT = PVTs[0]; 8510 8511 unsigned NumValues = RetTys.size(); 8512 ReturnValues.resize(NumValues); 8513 SmallVector<SDValue, 4> Chains(NumValues); 8514 8515 // An aggregate return value cannot wrap around the address space, so 8516 // offsets to its parts don't wrap either. 8517 SDNodeFlags Flags; 8518 Flags.setNoUnsignedWrap(true); 8519 8520 for (unsigned i = 0; i < NumValues; ++i) { 8521 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8522 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8523 PtrVT), Flags); 8524 SDValue L = CLI.DAG.getLoad( 8525 RetTys[i], CLI.DL, CLI.Chain, Add, 8526 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8527 DemoteStackIdx, Offsets[i]), 8528 /* Alignment = */ 1); 8529 ReturnValues[i] = L; 8530 Chains[i] = L.getValue(1); 8531 } 8532 8533 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8534 } else { 8535 // Collect the legal value parts into potentially illegal values 8536 // that correspond to the original function's return values. 8537 Optional<ISD::NodeType> AssertOp; 8538 if (CLI.RetSExt) 8539 AssertOp = ISD::AssertSext; 8540 else if (CLI.RetZExt) 8541 AssertOp = ISD::AssertZext; 8542 unsigned CurReg = 0; 8543 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8544 EVT VT = RetTys[I]; 8545 MVT RegisterVT = 8546 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8547 unsigned NumRegs = 8548 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8549 8550 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8551 NumRegs, RegisterVT, VT, nullptr, 8552 AssertOp, true)); 8553 CurReg += NumRegs; 8554 } 8555 8556 // For a function returning void, there is no return value. We can't create 8557 // such a node, so we just return a null return value in that case. In 8558 // that case, nothing will actually look at the value. 8559 if (ReturnValues.empty()) 8560 return std::make_pair(SDValue(), CLI.Chain); 8561 } 8562 8563 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8564 CLI.DAG.getVTList(RetTys), ReturnValues); 8565 return std::make_pair(Res, CLI.Chain); 8566 } 8567 8568 void TargetLowering::LowerOperationWrapper(SDNode *N, 8569 SmallVectorImpl<SDValue> &Results, 8570 SelectionDAG &DAG) const { 8571 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8572 Results.push_back(Res); 8573 } 8574 8575 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8576 llvm_unreachable("LowerOperation not implemented for this target!"); 8577 } 8578 8579 void 8580 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8581 SDValue Op = getNonRegisterValue(V); 8582 assert((Op.getOpcode() != ISD::CopyFromReg || 8583 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8584 "Copy from a reg to the same reg!"); 8585 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8586 8587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8588 // If this is an InlineAsm we have to match the registers required, not the 8589 // notional registers required by the type. 8590 8591 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8592 V->getType(), isABIRegCopy(V)); 8593 SDValue Chain = DAG.getEntryNode(); 8594 8595 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8596 FuncInfo.PreferredExtendType.end()) 8597 ? ISD::ANY_EXTEND 8598 : FuncInfo.PreferredExtendType[V]; 8599 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8600 PendingExports.push_back(Chain); 8601 } 8602 8603 #include "llvm/CodeGen/SelectionDAGISel.h" 8604 8605 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8606 /// entry block, return true. This includes arguments used by switches, since 8607 /// the switch may expand into multiple basic blocks. 8608 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8609 // With FastISel active, we may be splitting blocks, so force creation 8610 // of virtual registers for all non-dead arguments. 8611 if (FastISel) 8612 return A->use_empty(); 8613 8614 const BasicBlock &Entry = A->getParent()->front(); 8615 for (const User *U : A->users()) 8616 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8617 return false; // Use not in entry block. 8618 8619 return true; 8620 } 8621 8622 using ArgCopyElisionMapTy = 8623 DenseMap<const Argument *, 8624 std::pair<const AllocaInst *, const StoreInst *>>; 8625 8626 /// Scan the entry block of the function in FuncInfo for arguments that look 8627 /// like copies into a local alloca. Record any copied arguments in 8628 /// ArgCopyElisionCandidates. 8629 static void 8630 findArgumentCopyElisionCandidates(const DataLayout &DL, 8631 FunctionLoweringInfo *FuncInfo, 8632 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8633 // Record the state of every static alloca used in the entry block. Argument 8634 // allocas are all used in the entry block, so we need approximately as many 8635 // entries as we have arguments. 8636 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8637 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8638 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8639 StaticAllocas.reserve(NumArgs * 2); 8640 8641 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8642 if (!V) 8643 return nullptr; 8644 V = V->stripPointerCasts(); 8645 const auto *AI = dyn_cast<AllocaInst>(V); 8646 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8647 return nullptr; 8648 auto Iter = StaticAllocas.insert({AI, Unknown}); 8649 return &Iter.first->second; 8650 }; 8651 8652 // Look for stores of arguments to static allocas. Look through bitcasts and 8653 // GEPs to handle type coercions, as long as the alloca is fully initialized 8654 // by the store. Any non-store use of an alloca escapes it and any subsequent 8655 // unanalyzed store might write it. 8656 // FIXME: Handle structs initialized with multiple stores. 8657 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8658 // Look for stores, and handle non-store uses conservatively. 8659 const auto *SI = dyn_cast<StoreInst>(&I); 8660 if (!SI) { 8661 // We will look through cast uses, so ignore them completely. 8662 if (I.isCast()) 8663 continue; 8664 // Ignore debug info intrinsics, they don't escape or store to allocas. 8665 if (isa<DbgInfoIntrinsic>(I)) 8666 continue; 8667 // This is an unknown instruction. Assume it escapes or writes to all 8668 // static alloca operands. 8669 for (const Use &U : I.operands()) { 8670 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8671 *Info = StaticAllocaInfo::Clobbered; 8672 } 8673 continue; 8674 } 8675 8676 // If the stored value is a static alloca, mark it as escaped. 8677 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8678 *Info = StaticAllocaInfo::Clobbered; 8679 8680 // Check if the destination is a static alloca. 8681 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8682 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8683 if (!Info) 8684 continue; 8685 const AllocaInst *AI = cast<AllocaInst>(Dst); 8686 8687 // Skip allocas that have been initialized or clobbered. 8688 if (*Info != StaticAllocaInfo::Unknown) 8689 continue; 8690 8691 // Check if the stored value is an argument, and that this store fully 8692 // initializes the alloca. Don't elide copies from the same argument twice. 8693 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8694 const auto *Arg = dyn_cast<Argument>(Val); 8695 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8696 Arg->getType()->isEmptyTy() || 8697 DL.getTypeStoreSize(Arg->getType()) != 8698 DL.getTypeAllocSize(AI->getAllocatedType()) || 8699 ArgCopyElisionCandidates.count(Arg)) { 8700 *Info = StaticAllocaInfo::Clobbered; 8701 continue; 8702 } 8703 8704 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8705 << '\n'); 8706 8707 // Mark this alloca and store for argument copy elision. 8708 *Info = StaticAllocaInfo::Elidable; 8709 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8710 8711 // Stop scanning if we've seen all arguments. This will happen early in -O0 8712 // builds, which is useful, because -O0 builds have large entry blocks and 8713 // many allocas. 8714 if (ArgCopyElisionCandidates.size() == NumArgs) 8715 break; 8716 } 8717 } 8718 8719 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8720 /// ArgVal is a load from a suitable fixed stack object. 8721 static void tryToElideArgumentCopy( 8722 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8723 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8724 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8725 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8726 SDValue ArgVal, bool &ArgHasUses) { 8727 // Check if this is a load from a fixed stack object. 8728 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8729 if (!LNode) 8730 return; 8731 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8732 if (!FINode) 8733 return; 8734 8735 // Check that the fixed stack object is the right size and alignment. 8736 // Look at the alignment that the user wrote on the alloca instead of looking 8737 // at the stack object. 8738 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8739 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8740 const AllocaInst *AI = ArgCopyIter->second.first; 8741 int FixedIndex = FINode->getIndex(); 8742 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8743 int OldIndex = AllocaIndex; 8744 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8745 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8746 LLVM_DEBUG( 8747 dbgs() << " argument copy elision failed due to bad fixed stack " 8748 "object size\n"); 8749 return; 8750 } 8751 unsigned RequiredAlignment = AI->getAlignment(); 8752 if (!RequiredAlignment) { 8753 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8754 AI->getAllocatedType()); 8755 } 8756 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8757 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8758 "greater than stack argument alignment (" 8759 << RequiredAlignment << " vs " 8760 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8761 return; 8762 } 8763 8764 // Perform the elision. Delete the old stack object and replace its only use 8765 // in the variable info map. Mark the stack object as mutable. 8766 LLVM_DEBUG({ 8767 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8768 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8769 << '\n'; 8770 }); 8771 MFI.RemoveStackObject(OldIndex); 8772 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8773 AllocaIndex = FixedIndex; 8774 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8775 Chains.push_back(ArgVal.getValue(1)); 8776 8777 // Avoid emitting code for the store implementing the copy. 8778 const StoreInst *SI = ArgCopyIter->second.second; 8779 ElidedArgCopyInstrs.insert(SI); 8780 8781 // Check for uses of the argument again so that we can avoid exporting ArgVal 8782 // if it is't used by anything other than the store. 8783 for (const Value *U : Arg.users()) { 8784 if (U != SI) { 8785 ArgHasUses = true; 8786 break; 8787 } 8788 } 8789 } 8790 8791 void SelectionDAGISel::LowerArguments(const Function &F) { 8792 SelectionDAG &DAG = SDB->DAG; 8793 SDLoc dl = SDB->getCurSDLoc(); 8794 const DataLayout &DL = DAG.getDataLayout(); 8795 SmallVector<ISD::InputArg, 16> Ins; 8796 8797 if (!FuncInfo->CanLowerReturn) { 8798 // Put in an sret pointer parameter before all the other parameters. 8799 SmallVector<EVT, 1> ValueVTs; 8800 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8801 F.getReturnType()->getPointerTo( 8802 DAG.getDataLayout().getAllocaAddrSpace()), 8803 ValueVTs); 8804 8805 // NOTE: Assuming that a pointer will never break down to more than one VT 8806 // or one register. 8807 ISD::ArgFlagsTy Flags; 8808 Flags.setSRet(); 8809 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8810 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8811 ISD::InputArg::NoArgIndex, 0); 8812 Ins.push_back(RetArg); 8813 } 8814 8815 // Look for stores of arguments to static allocas. Mark such arguments with a 8816 // flag to ask the target to give us the memory location of that argument if 8817 // available. 8818 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8819 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8820 8821 // Set up the incoming argument description vector. 8822 for (const Argument &Arg : F.args()) { 8823 unsigned ArgNo = Arg.getArgNo(); 8824 SmallVector<EVT, 4> ValueVTs; 8825 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8826 bool isArgValueUsed = !Arg.use_empty(); 8827 unsigned PartBase = 0; 8828 Type *FinalType = Arg.getType(); 8829 if (Arg.hasAttribute(Attribute::ByVal)) 8830 FinalType = cast<PointerType>(FinalType)->getElementType(); 8831 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8832 FinalType, F.getCallingConv(), F.isVarArg()); 8833 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8834 Value != NumValues; ++Value) { 8835 EVT VT = ValueVTs[Value]; 8836 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8837 ISD::ArgFlagsTy Flags; 8838 8839 // Certain targets (such as MIPS), may have a different ABI alignment 8840 // for a type depending on the context. Give the target a chance to 8841 // specify the alignment it wants. 8842 unsigned OriginalAlignment = 8843 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8844 8845 if (Arg.hasAttribute(Attribute::ZExt)) 8846 Flags.setZExt(); 8847 if (Arg.hasAttribute(Attribute::SExt)) 8848 Flags.setSExt(); 8849 if (Arg.hasAttribute(Attribute::InReg)) { 8850 // If we are using vectorcall calling convention, a structure that is 8851 // passed InReg - is surely an HVA 8852 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8853 isa<StructType>(Arg.getType())) { 8854 // The first value of a structure is marked 8855 if (0 == Value) 8856 Flags.setHvaStart(); 8857 Flags.setHva(); 8858 } 8859 // Set InReg Flag 8860 Flags.setInReg(); 8861 } 8862 if (Arg.hasAttribute(Attribute::StructRet)) 8863 Flags.setSRet(); 8864 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8865 Flags.setSwiftSelf(); 8866 if (Arg.hasAttribute(Attribute::SwiftError)) 8867 Flags.setSwiftError(); 8868 if (Arg.hasAttribute(Attribute::ByVal)) 8869 Flags.setByVal(); 8870 if (Arg.hasAttribute(Attribute::InAlloca)) { 8871 Flags.setInAlloca(); 8872 // Set the byval flag for CCAssignFn callbacks that don't know about 8873 // inalloca. This way we can know how many bytes we should've allocated 8874 // and how many bytes a callee cleanup function will pop. If we port 8875 // inalloca to more targets, we'll have to add custom inalloca handling 8876 // in the various CC lowering callbacks. 8877 Flags.setByVal(); 8878 } 8879 if (F.getCallingConv() == CallingConv::X86_INTR) { 8880 // IA Interrupt passes frame (1st parameter) by value in the stack. 8881 if (ArgNo == 0) 8882 Flags.setByVal(); 8883 } 8884 if (Flags.isByVal() || Flags.isInAlloca()) { 8885 PointerType *Ty = cast<PointerType>(Arg.getType()); 8886 Type *ElementTy = Ty->getElementType(); 8887 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8888 // For ByVal, alignment should be passed from FE. BE will guess if 8889 // this info is not there but there are cases it cannot get right. 8890 unsigned FrameAlign; 8891 if (Arg.getParamAlignment()) 8892 FrameAlign = Arg.getParamAlignment(); 8893 else 8894 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8895 Flags.setByValAlign(FrameAlign); 8896 } 8897 if (Arg.hasAttribute(Attribute::Nest)) 8898 Flags.setNest(); 8899 if (NeedsRegBlock) 8900 Flags.setInConsecutiveRegs(); 8901 Flags.setOrigAlign(OriginalAlignment); 8902 if (ArgCopyElisionCandidates.count(&Arg)) 8903 Flags.setCopyElisionCandidate(); 8904 8905 MVT RegisterVT = 8906 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8907 unsigned NumRegs = 8908 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8909 for (unsigned i = 0; i != NumRegs; ++i) { 8910 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8911 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8912 if (NumRegs > 1 && i == 0) 8913 MyFlags.Flags.setSplit(); 8914 // if it isn't first piece, alignment must be 1 8915 else if (i > 0) { 8916 MyFlags.Flags.setOrigAlign(1); 8917 if (i == NumRegs - 1) 8918 MyFlags.Flags.setSplitEnd(); 8919 } 8920 Ins.push_back(MyFlags); 8921 } 8922 if (NeedsRegBlock && Value == NumValues - 1) 8923 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8924 PartBase += VT.getStoreSize(); 8925 } 8926 } 8927 8928 // Call the target to set up the argument values. 8929 SmallVector<SDValue, 8> InVals; 8930 SDValue NewRoot = TLI->LowerFormalArguments( 8931 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8932 8933 // Verify that the target's LowerFormalArguments behaved as expected. 8934 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8935 "LowerFormalArguments didn't return a valid chain!"); 8936 assert(InVals.size() == Ins.size() && 8937 "LowerFormalArguments didn't emit the correct number of values!"); 8938 LLVM_DEBUG({ 8939 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8940 assert(InVals[i].getNode() && 8941 "LowerFormalArguments emitted a null value!"); 8942 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8943 "LowerFormalArguments emitted a value with the wrong type!"); 8944 } 8945 }); 8946 8947 // Update the DAG with the new chain value resulting from argument lowering. 8948 DAG.setRoot(NewRoot); 8949 8950 // Set up the argument values. 8951 unsigned i = 0; 8952 if (!FuncInfo->CanLowerReturn) { 8953 // Create a virtual register for the sret pointer, and put in a copy 8954 // from the sret argument into it. 8955 SmallVector<EVT, 1> ValueVTs; 8956 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8957 F.getReturnType()->getPointerTo( 8958 DAG.getDataLayout().getAllocaAddrSpace()), 8959 ValueVTs); 8960 MVT VT = ValueVTs[0].getSimpleVT(); 8961 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8962 Optional<ISD::NodeType> AssertOp = None; 8963 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8964 RegVT, VT, nullptr, AssertOp); 8965 8966 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8967 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8968 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8969 FuncInfo->DemoteRegister = SRetReg; 8970 NewRoot = 8971 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8972 DAG.setRoot(NewRoot); 8973 8974 // i indexes lowered arguments. Bump it past the hidden sret argument. 8975 ++i; 8976 } 8977 8978 SmallVector<SDValue, 4> Chains; 8979 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8980 for (const Argument &Arg : F.args()) { 8981 SmallVector<SDValue, 4> ArgValues; 8982 SmallVector<EVT, 4> ValueVTs; 8983 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8984 unsigned NumValues = ValueVTs.size(); 8985 if (NumValues == 0) 8986 continue; 8987 8988 bool ArgHasUses = !Arg.use_empty(); 8989 8990 // Elide the copying store if the target loaded this argument from a 8991 // suitable fixed stack object. 8992 if (Ins[i].Flags.isCopyElisionCandidate()) { 8993 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8994 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8995 InVals[i], ArgHasUses); 8996 } 8997 8998 // If this argument is unused then remember its value. It is used to generate 8999 // debugging information. 9000 bool isSwiftErrorArg = 9001 TLI->supportSwiftError() && 9002 Arg.hasAttribute(Attribute::SwiftError); 9003 if (!ArgHasUses && !isSwiftErrorArg) { 9004 SDB->setUnusedArgValue(&Arg, InVals[i]); 9005 9006 // Also remember any frame index for use in FastISel. 9007 if (FrameIndexSDNode *FI = 9008 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9009 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9010 } 9011 9012 for (unsigned Val = 0; Val != NumValues; ++Val) { 9013 EVT VT = ValueVTs[Val]; 9014 MVT PartVT = 9015 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 9016 unsigned NumParts = 9017 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 9018 9019 // Even an apparant 'unused' swifterror argument needs to be returned. So 9020 // we do generate a copy for it that can be used on return from the 9021 // function. 9022 if (ArgHasUses || isSwiftErrorArg) { 9023 Optional<ISD::NodeType> AssertOp; 9024 if (Arg.hasAttribute(Attribute::SExt)) 9025 AssertOp = ISD::AssertSext; 9026 else if (Arg.hasAttribute(Attribute::ZExt)) 9027 AssertOp = ISD::AssertZext; 9028 9029 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9030 PartVT, VT, nullptr, AssertOp, 9031 true)); 9032 } 9033 9034 i += NumParts; 9035 } 9036 9037 // We don't need to do anything else for unused arguments. 9038 if (ArgValues.empty()) 9039 continue; 9040 9041 // Note down frame index. 9042 if (FrameIndexSDNode *FI = 9043 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9044 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9045 9046 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9047 SDB->getCurSDLoc()); 9048 9049 SDB->setValue(&Arg, Res); 9050 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9051 // We want to associate the argument with the frame index, among 9052 // involved operands, that correspond to the lowest address. The 9053 // getCopyFromParts function, called earlier, is swapping the order of 9054 // the operands to BUILD_PAIR depending on endianness. The result of 9055 // that swapping is that the least significant bits of the argument will 9056 // be in the first operand of the BUILD_PAIR node, and the most 9057 // significant bits will be in the second operand. 9058 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9059 if (LoadSDNode *LNode = 9060 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9061 if (FrameIndexSDNode *FI = 9062 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9063 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9064 } 9065 9066 // Update the SwiftErrorVRegDefMap. 9067 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9068 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9069 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9070 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9071 FuncInfo->SwiftErrorArg, Reg); 9072 } 9073 9074 // If this argument is live outside of the entry block, insert a copy from 9075 // wherever we got it to the vreg that other BB's will reference it as. 9076 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9077 // If we can, though, try to skip creating an unnecessary vreg. 9078 // FIXME: This isn't very clean... it would be nice to make this more 9079 // general. It's also subtly incompatible with the hacks FastISel 9080 // uses with vregs. 9081 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9082 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9083 FuncInfo->ValueMap[&Arg] = Reg; 9084 continue; 9085 } 9086 } 9087 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9088 FuncInfo->InitializeRegForValue(&Arg); 9089 SDB->CopyToExportRegsIfNeeded(&Arg); 9090 } 9091 } 9092 9093 if (!Chains.empty()) { 9094 Chains.push_back(NewRoot); 9095 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9096 } 9097 9098 DAG.setRoot(NewRoot); 9099 9100 assert(i == InVals.size() && "Argument register count mismatch!"); 9101 9102 // If any argument copy elisions occurred and we have debug info, update the 9103 // stale frame indices used in the dbg.declare variable info table. 9104 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9105 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9106 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9107 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9108 if (I != ArgCopyElisionFrameIndexMap.end()) 9109 VI.Slot = I->second; 9110 } 9111 } 9112 9113 // Finally, if the target has anything special to do, allow it to do so. 9114 EmitFunctionEntryCode(); 9115 } 9116 9117 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9118 /// ensure constants are generated when needed. Remember the virtual registers 9119 /// that need to be added to the Machine PHI nodes as input. We cannot just 9120 /// directly add them, because expansion might result in multiple MBB's for one 9121 /// BB. As such, the start of the BB might correspond to a different MBB than 9122 /// the end. 9123 void 9124 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9125 const TerminatorInst *TI = LLVMBB->getTerminator(); 9126 9127 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9128 9129 // Check PHI nodes in successors that expect a value to be available from this 9130 // block. 9131 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9132 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9133 if (!isa<PHINode>(SuccBB->begin())) continue; 9134 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9135 9136 // If this terminator has multiple identical successors (common for 9137 // switches), only handle each succ once. 9138 if (!SuccsHandled.insert(SuccMBB).second) 9139 continue; 9140 9141 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9142 9143 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9144 // nodes and Machine PHI nodes, but the incoming operands have not been 9145 // emitted yet. 9146 for (const PHINode &PN : SuccBB->phis()) { 9147 // Ignore dead phi's. 9148 if (PN.use_empty()) 9149 continue; 9150 9151 // Skip empty types 9152 if (PN.getType()->isEmptyTy()) 9153 continue; 9154 9155 unsigned Reg; 9156 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9157 9158 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9159 unsigned &RegOut = ConstantsOut[C]; 9160 if (RegOut == 0) { 9161 RegOut = FuncInfo.CreateRegs(C->getType()); 9162 CopyValueToVirtualRegister(C, RegOut); 9163 } 9164 Reg = RegOut; 9165 } else { 9166 DenseMap<const Value *, unsigned>::iterator I = 9167 FuncInfo.ValueMap.find(PHIOp); 9168 if (I != FuncInfo.ValueMap.end()) 9169 Reg = I->second; 9170 else { 9171 assert(isa<AllocaInst>(PHIOp) && 9172 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9173 "Didn't codegen value into a register!??"); 9174 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9175 CopyValueToVirtualRegister(PHIOp, Reg); 9176 } 9177 } 9178 9179 // Remember that this register needs to added to the machine PHI node as 9180 // the input for this MBB. 9181 SmallVector<EVT, 4> ValueVTs; 9182 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9183 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9184 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9185 EVT VT = ValueVTs[vti]; 9186 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9187 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9188 FuncInfo.PHINodesToUpdate.push_back( 9189 std::make_pair(&*MBBI++, Reg + i)); 9190 Reg += NumRegisters; 9191 } 9192 } 9193 } 9194 9195 ConstantsOut.clear(); 9196 } 9197 9198 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9199 /// is 0. 9200 MachineBasicBlock * 9201 SelectionDAGBuilder::StackProtectorDescriptor:: 9202 AddSuccessorMBB(const BasicBlock *BB, 9203 MachineBasicBlock *ParentMBB, 9204 bool IsLikely, 9205 MachineBasicBlock *SuccMBB) { 9206 // If SuccBB has not been created yet, create it. 9207 if (!SuccMBB) { 9208 MachineFunction *MF = ParentMBB->getParent(); 9209 MachineFunction::iterator BBI(ParentMBB); 9210 SuccMBB = MF->CreateMachineBasicBlock(BB); 9211 MF->insert(++BBI, SuccMBB); 9212 } 9213 // Add it as a successor of ParentMBB. 9214 ParentMBB->addSuccessor( 9215 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9216 return SuccMBB; 9217 } 9218 9219 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9220 MachineFunction::iterator I(MBB); 9221 if (++I == FuncInfo.MF->end()) 9222 return nullptr; 9223 return &*I; 9224 } 9225 9226 /// During lowering new call nodes can be created (such as memset, etc.). 9227 /// Those will become new roots of the current DAG, but complications arise 9228 /// when they are tail calls. In such cases, the call lowering will update 9229 /// the root, but the builder still needs to know that a tail call has been 9230 /// lowered in order to avoid generating an additional return. 9231 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9232 // If the node is null, we do have a tail call. 9233 if (MaybeTC.getNode() != nullptr) 9234 DAG.setRoot(MaybeTC); 9235 else 9236 HasTailCall = true; 9237 } 9238 9239 uint64_t 9240 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9241 unsigned First, unsigned Last) const { 9242 assert(Last >= First); 9243 const APInt &LowCase = Clusters[First].Low->getValue(); 9244 const APInt &HighCase = Clusters[Last].High->getValue(); 9245 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9246 9247 // FIXME: A range of consecutive cases has 100% density, but only requires one 9248 // comparison to lower. We should discriminate against such consecutive ranges 9249 // in jump tables. 9250 9251 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9252 } 9253 9254 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9255 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9256 unsigned Last) const { 9257 assert(Last >= First); 9258 assert(TotalCases[Last] >= TotalCases[First]); 9259 uint64_t NumCases = 9260 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9261 return NumCases; 9262 } 9263 9264 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9265 unsigned First, unsigned Last, 9266 const SwitchInst *SI, 9267 MachineBasicBlock *DefaultMBB, 9268 CaseCluster &JTCluster) { 9269 assert(First <= Last); 9270 9271 auto Prob = BranchProbability::getZero(); 9272 unsigned NumCmps = 0; 9273 std::vector<MachineBasicBlock*> Table; 9274 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9275 9276 // Initialize probabilities in JTProbs. 9277 for (unsigned I = First; I <= Last; ++I) 9278 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9279 9280 for (unsigned I = First; I <= Last; ++I) { 9281 assert(Clusters[I].Kind == CC_Range); 9282 Prob += Clusters[I].Prob; 9283 const APInt &Low = Clusters[I].Low->getValue(); 9284 const APInt &High = Clusters[I].High->getValue(); 9285 NumCmps += (Low == High) ? 1 : 2; 9286 if (I != First) { 9287 // Fill the gap between this and the previous cluster. 9288 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9289 assert(PreviousHigh.slt(Low)); 9290 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9291 for (uint64_t J = 0; J < Gap; J++) 9292 Table.push_back(DefaultMBB); 9293 } 9294 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9295 for (uint64_t J = 0; J < ClusterSize; ++J) 9296 Table.push_back(Clusters[I].MBB); 9297 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9298 } 9299 9300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9301 unsigned NumDests = JTProbs.size(); 9302 if (TLI.isSuitableForBitTests( 9303 NumDests, NumCmps, Clusters[First].Low->getValue(), 9304 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9305 // Clusters[First..Last] should be lowered as bit tests instead. 9306 return false; 9307 } 9308 9309 // Create the MBB that will load from and jump through the table. 9310 // Note: We create it here, but it's not inserted into the function yet. 9311 MachineFunction *CurMF = FuncInfo.MF; 9312 MachineBasicBlock *JumpTableMBB = 9313 CurMF->CreateMachineBasicBlock(SI->getParent()); 9314 9315 // Add successors. Note: use table order for determinism. 9316 SmallPtrSet<MachineBasicBlock *, 8> Done; 9317 for (MachineBasicBlock *Succ : Table) { 9318 if (Done.count(Succ)) 9319 continue; 9320 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9321 Done.insert(Succ); 9322 } 9323 JumpTableMBB->normalizeSuccProbs(); 9324 9325 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9326 ->createJumpTableIndex(Table); 9327 9328 // Set up the jump table info. 9329 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9330 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9331 Clusters[Last].High->getValue(), SI->getCondition(), 9332 nullptr, false); 9333 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9334 9335 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9336 JTCases.size() - 1, Prob); 9337 return true; 9338 } 9339 9340 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9341 const SwitchInst *SI, 9342 MachineBasicBlock *DefaultMBB) { 9343 #ifndef NDEBUG 9344 // Clusters must be non-empty, sorted, and only contain Range clusters. 9345 assert(!Clusters.empty()); 9346 for (CaseCluster &C : Clusters) 9347 assert(C.Kind == CC_Range); 9348 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9349 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9350 #endif 9351 9352 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9353 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9354 return; 9355 9356 const int64_t N = Clusters.size(); 9357 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9358 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9359 9360 if (N < 2 || N < MinJumpTableEntries) 9361 return; 9362 9363 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9364 SmallVector<unsigned, 8> TotalCases(N); 9365 for (unsigned i = 0; i < N; ++i) { 9366 const APInt &Hi = Clusters[i].High->getValue(); 9367 const APInt &Lo = Clusters[i].Low->getValue(); 9368 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9369 if (i != 0) 9370 TotalCases[i] += TotalCases[i - 1]; 9371 } 9372 9373 // Cheap case: the whole range may be suitable for jump table. 9374 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9375 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9376 assert(NumCases < UINT64_MAX / 100); 9377 assert(Range >= NumCases); 9378 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9379 CaseCluster JTCluster; 9380 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9381 Clusters[0] = JTCluster; 9382 Clusters.resize(1); 9383 return; 9384 } 9385 } 9386 9387 // The algorithm below is not suitable for -O0. 9388 if (TM.getOptLevel() == CodeGenOpt::None) 9389 return; 9390 9391 // Split Clusters into minimum number of dense partitions. The algorithm uses 9392 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9393 // for the Case Statement'" (1994), but builds the MinPartitions array in 9394 // reverse order to make it easier to reconstruct the partitions in ascending 9395 // order. In the choice between two optimal partitionings, it picks the one 9396 // which yields more jump tables. 9397 9398 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9399 SmallVector<unsigned, 8> MinPartitions(N); 9400 // LastElement[i] is the last element of the partition starting at i. 9401 SmallVector<unsigned, 8> LastElement(N); 9402 // PartitionsScore[i] is used to break ties when choosing between two 9403 // partitionings resulting in the same number of partitions. 9404 SmallVector<unsigned, 8> PartitionsScore(N); 9405 // For PartitionsScore, a small number of comparisons is considered as good as 9406 // a jump table and a single comparison is considered better than a jump 9407 // table. 9408 enum PartitionScores : unsigned { 9409 NoTable = 0, 9410 Table = 1, 9411 FewCases = 1, 9412 SingleCase = 2 9413 }; 9414 9415 // Base case: There is only one way to partition Clusters[N-1]. 9416 MinPartitions[N - 1] = 1; 9417 LastElement[N - 1] = N - 1; 9418 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9419 9420 // Note: loop indexes are signed to avoid underflow. 9421 for (int64_t i = N - 2; i >= 0; i--) { 9422 // Find optimal partitioning of Clusters[i..N-1]. 9423 // Baseline: Put Clusters[i] into a partition on its own. 9424 MinPartitions[i] = MinPartitions[i + 1] + 1; 9425 LastElement[i] = i; 9426 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9427 9428 // Search for a solution that results in fewer partitions. 9429 for (int64_t j = N - 1; j > i; j--) { 9430 // Try building a partition from Clusters[i..j]. 9431 uint64_t Range = getJumpTableRange(Clusters, i, j); 9432 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9433 assert(NumCases < UINT64_MAX / 100); 9434 assert(Range >= NumCases); 9435 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9436 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9437 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9438 int64_t NumEntries = j - i + 1; 9439 9440 if (NumEntries == 1) 9441 Score += PartitionScores::SingleCase; 9442 else if (NumEntries <= SmallNumberOfEntries) 9443 Score += PartitionScores::FewCases; 9444 else if (NumEntries >= MinJumpTableEntries) 9445 Score += PartitionScores::Table; 9446 9447 // If this leads to fewer partitions, or to the same number of 9448 // partitions with better score, it is a better partitioning. 9449 if (NumPartitions < MinPartitions[i] || 9450 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9451 MinPartitions[i] = NumPartitions; 9452 LastElement[i] = j; 9453 PartitionsScore[i] = Score; 9454 } 9455 } 9456 } 9457 } 9458 9459 // Iterate over the partitions, replacing some with jump tables in-place. 9460 unsigned DstIndex = 0; 9461 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9462 Last = LastElement[First]; 9463 assert(Last >= First); 9464 assert(DstIndex <= First); 9465 unsigned NumClusters = Last - First + 1; 9466 9467 CaseCluster JTCluster; 9468 if (NumClusters >= MinJumpTableEntries && 9469 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9470 Clusters[DstIndex++] = JTCluster; 9471 } else { 9472 for (unsigned I = First; I <= Last; ++I) 9473 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9474 } 9475 } 9476 Clusters.resize(DstIndex); 9477 } 9478 9479 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9480 unsigned First, unsigned Last, 9481 const SwitchInst *SI, 9482 CaseCluster &BTCluster) { 9483 assert(First <= Last); 9484 if (First == Last) 9485 return false; 9486 9487 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9488 unsigned NumCmps = 0; 9489 for (int64_t I = First; I <= Last; ++I) { 9490 assert(Clusters[I].Kind == CC_Range); 9491 Dests.set(Clusters[I].MBB->getNumber()); 9492 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9493 } 9494 unsigned NumDests = Dests.count(); 9495 9496 APInt Low = Clusters[First].Low->getValue(); 9497 APInt High = Clusters[Last].High->getValue(); 9498 assert(Low.slt(High)); 9499 9500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9501 const DataLayout &DL = DAG.getDataLayout(); 9502 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9503 return false; 9504 9505 APInt LowBound; 9506 APInt CmpRange; 9507 9508 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9509 assert(TLI.rangeFitsInWord(Low, High, DL) && 9510 "Case range must fit in bit mask!"); 9511 9512 // Check if the clusters cover a contiguous range such that no value in the 9513 // range will jump to the default statement. 9514 bool ContiguousRange = true; 9515 for (int64_t I = First + 1; I <= Last; ++I) { 9516 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9517 ContiguousRange = false; 9518 break; 9519 } 9520 } 9521 9522 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9523 // Optimize the case where all the case values fit in a word without having 9524 // to subtract minValue. In this case, we can optimize away the subtraction. 9525 LowBound = APInt::getNullValue(Low.getBitWidth()); 9526 CmpRange = High; 9527 ContiguousRange = false; 9528 } else { 9529 LowBound = Low; 9530 CmpRange = High - Low; 9531 } 9532 9533 CaseBitsVector CBV; 9534 auto TotalProb = BranchProbability::getZero(); 9535 for (unsigned i = First; i <= Last; ++i) { 9536 // Find the CaseBits for this destination. 9537 unsigned j; 9538 for (j = 0; j < CBV.size(); ++j) 9539 if (CBV[j].BB == Clusters[i].MBB) 9540 break; 9541 if (j == CBV.size()) 9542 CBV.push_back( 9543 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9544 CaseBits *CB = &CBV[j]; 9545 9546 // Update Mask, Bits and ExtraProb. 9547 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9548 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9549 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9550 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9551 CB->Bits += Hi - Lo + 1; 9552 CB->ExtraProb += Clusters[i].Prob; 9553 TotalProb += Clusters[i].Prob; 9554 } 9555 9556 BitTestInfo BTI; 9557 llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9558 // Sort by probability first, number of bits second, bit mask third. 9559 if (a.ExtraProb != b.ExtraProb) 9560 return a.ExtraProb > b.ExtraProb; 9561 if (a.Bits != b.Bits) 9562 return a.Bits > b.Bits; 9563 return a.Mask < b.Mask; 9564 }); 9565 9566 for (auto &CB : CBV) { 9567 MachineBasicBlock *BitTestBB = 9568 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9569 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9570 } 9571 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9572 SI->getCondition(), -1U, MVT::Other, false, 9573 ContiguousRange, nullptr, nullptr, std::move(BTI), 9574 TotalProb); 9575 9576 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9577 BitTestCases.size() - 1, TotalProb); 9578 return true; 9579 } 9580 9581 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9582 const SwitchInst *SI) { 9583 // Partition Clusters into as few subsets as possible, where each subset has a 9584 // range that fits in a machine word and has <= 3 unique destinations. 9585 9586 #ifndef NDEBUG 9587 // Clusters must be sorted and contain Range or JumpTable clusters. 9588 assert(!Clusters.empty()); 9589 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9590 for (const CaseCluster &C : Clusters) 9591 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9592 for (unsigned i = 1; i < Clusters.size(); ++i) 9593 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9594 #endif 9595 9596 // The algorithm below is not suitable for -O0. 9597 if (TM.getOptLevel() == CodeGenOpt::None) 9598 return; 9599 9600 // If target does not have legal shift left, do not emit bit tests at all. 9601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9602 const DataLayout &DL = DAG.getDataLayout(); 9603 9604 EVT PTy = TLI.getPointerTy(DL); 9605 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9606 return; 9607 9608 int BitWidth = PTy.getSizeInBits(); 9609 const int64_t N = Clusters.size(); 9610 9611 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9612 SmallVector<unsigned, 8> MinPartitions(N); 9613 // LastElement[i] is the last element of the partition starting at i. 9614 SmallVector<unsigned, 8> LastElement(N); 9615 9616 // FIXME: This might not be the best algorithm for finding bit test clusters. 9617 9618 // Base case: There is only one way to partition Clusters[N-1]. 9619 MinPartitions[N - 1] = 1; 9620 LastElement[N - 1] = N - 1; 9621 9622 // Note: loop indexes are signed to avoid underflow. 9623 for (int64_t i = N - 2; i >= 0; --i) { 9624 // Find optimal partitioning of Clusters[i..N-1]. 9625 // Baseline: Put Clusters[i] into a partition on its own. 9626 MinPartitions[i] = MinPartitions[i + 1] + 1; 9627 LastElement[i] = i; 9628 9629 // Search for a solution that results in fewer partitions. 9630 // Note: the search is limited by BitWidth, reducing time complexity. 9631 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9632 // Try building a partition from Clusters[i..j]. 9633 9634 // Check the range. 9635 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9636 Clusters[j].High->getValue(), DL)) 9637 continue; 9638 9639 // Check nbr of destinations and cluster types. 9640 // FIXME: This works, but doesn't seem very efficient. 9641 bool RangesOnly = true; 9642 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9643 for (int64_t k = i; k <= j; k++) { 9644 if (Clusters[k].Kind != CC_Range) { 9645 RangesOnly = false; 9646 break; 9647 } 9648 Dests.set(Clusters[k].MBB->getNumber()); 9649 } 9650 if (!RangesOnly || Dests.count() > 3) 9651 break; 9652 9653 // Check if it's a better partition. 9654 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9655 if (NumPartitions < MinPartitions[i]) { 9656 // Found a better partition. 9657 MinPartitions[i] = NumPartitions; 9658 LastElement[i] = j; 9659 } 9660 } 9661 } 9662 9663 // Iterate over the partitions, replacing with bit-test clusters in-place. 9664 unsigned DstIndex = 0; 9665 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9666 Last = LastElement[First]; 9667 assert(First <= Last); 9668 assert(DstIndex <= First); 9669 9670 CaseCluster BitTestCluster; 9671 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9672 Clusters[DstIndex++] = BitTestCluster; 9673 } else { 9674 size_t NumClusters = Last - First + 1; 9675 std::memmove(&Clusters[DstIndex], &Clusters[First], 9676 sizeof(Clusters[0]) * NumClusters); 9677 DstIndex += NumClusters; 9678 } 9679 } 9680 Clusters.resize(DstIndex); 9681 } 9682 9683 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9684 MachineBasicBlock *SwitchMBB, 9685 MachineBasicBlock *DefaultMBB) { 9686 MachineFunction *CurMF = FuncInfo.MF; 9687 MachineBasicBlock *NextMBB = nullptr; 9688 MachineFunction::iterator BBI(W.MBB); 9689 if (++BBI != FuncInfo.MF->end()) 9690 NextMBB = &*BBI; 9691 9692 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9693 9694 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9695 9696 if (Size == 2 && W.MBB == SwitchMBB) { 9697 // If any two of the cases has the same destination, and if one value 9698 // is the same as the other, but has one bit unset that the other has set, 9699 // use bit manipulation to do two compares at once. For example: 9700 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9701 // TODO: This could be extended to merge any 2 cases in switches with 3 9702 // cases. 9703 // TODO: Handle cases where W.CaseBB != SwitchBB. 9704 CaseCluster &Small = *W.FirstCluster; 9705 CaseCluster &Big = *W.LastCluster; 9706 9707 if (Small.Low == Small.High && Big.Low == Big.High && 9708 Small.MBB == Big.MBB) { 9709 const APInt &SmallValue = Small.Low->getValue(); 9710 const APInt &BigValue = Big.Low->getValue(); 9711 9712 // Check that there is only one bit different. 9713 APInt CommonBit = BigValue ^ SmallValue; 9714 if (CommonBit.isPowerOf2()) { 9715 SDValue CondLHS = getValue(Cond); 9716 EVT VT = CondLHS.getValueType(); 9717 SDLoc DL = getCurSDLoc(); 9718 9719 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9720 DAG.getConstant(CommonBit, DL, VT)); 9721 SDValue Cond = DAG.getSetCC( 9722 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9723 ISD::SETEQ); 9724 9725 // Update successor info. 9726 // Both Small and Big will jump to Small.BB, so we sum up the 9727 // probabilities. 9728 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9729 if (BPI) 9730 addSuccessorWithProb( 9731 SwitchMBB, DefaultMBB, 9732 // The default destination is the first successor in IR. 9733 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9734 else 9735 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9736 9737 // Insert the true branch. 9738 SDValue BrCond = 9739 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9740 DAG.getBasicBlock(Small.MBB)); 9741 // Insert the false branch. 9742 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9743 DAG.getBasicBlock(DefaultMBB)); 9744 9745 DAG.setRoot(BrCond); 9746 return; 9747 } 9748 } 9749 } 9750 9751 if (TM.getOptLevel() != CodeGenOpt::None) { 9752 // Here, we order cases by probability so the most likely case will be 9753 // checked first. However, two clusters can have the same probability in 9754 // which case their relative ordering is non-deterministic. So we use Low 9755 // as a tie-breaker as clusters are guaranteed to never overlap. 9756 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9757 [](const CaseCluster &a, const CaseCluster &b) { 9758 return a.Prob != b.Prob ? 9759 a.Prob > b.Prob : 9760 a.Low->getValue().slt(b.Low->getValue()); 9761 }); 9762 9763 // Rearrange the case blocks so that the last one falls through if possible 9764 // without changing the order of probabilities. 9765 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9766 --I; 9767 if (I->Prob > W.LastCluster->Prob) 9768 break; 9769 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9770 std::swap(*I, *W.LastCluster); 9771 break; 9772 } 9773 } 9774 } 9775 9776 // Compute total probability. 9777 BranchProbability DefaultProb = W.DefaultProb; 9778 BranchProbability UnhandledProbs = DefaultProb; 9779 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9780 UnhandledProbs += I->Prob; 9781 9782 MachineBasicBlock *CurMBB = W.MBB; 9783 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9784 MachineBasicBlock *Fallthrough; 9785 if (I == W.LastCluster) { 9786 // For the last cluster, fall through to the default destination. 9787 Fallthrough = DefaultMBB; 9788 } else { 9789 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9790 CurMF->insert(BBI, Fallthrough); 9791 // Put Cond in a virtual register to make it available from the new blocks. 9792 ExportFromCurrentBlock(Cond); 9793 } 9794 UnhandledProbs -= I->Prob; 9795 9796 switch (I->Kind) { 9797 case CC_JumpTable: { 9798 // FIXME: Optimize away range check based on pivot comparisons. 9799 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9800 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9801 9802 // The jump block hasn't been inserted yet; insert it here. 9803 MachineBasicBlock *JumpMBB = JT->MBB; 9804 CurMF->insert(BBI, JumpMBB); 9805 9806 auto JumpProb = I->Prob; 9807 auto FallthroughProb = UnhandledProbs; 9808 9809 // If the default statement is a target of the jump table, we evenly 9810 // distribute the default probability to successors of CurMBB. Also 9811 // update the probability on the edge from JumpMBB to Fallthrough. 9812 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9813 SE = JumpMBB->succ_end(); 9814 SI != SE; ++SI) { 9815 if (*SI == DefaultMBB) { 9816 JumpProb += DefaultProb / 2; 9817 FallthroughProb -= DefaultProb / 2; 9818 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9819 JumpMBB->normalizeSuccProbs(); 9820 break; 9821 } 9822 } 9823 9824 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9825 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9826 CurMBB->normalizeSuccProbs(); 9827 9828 // The jump table header will be inserted in our current block, do the 9829 // range check, and fall through to our fallthrough block. 9830 JTH->HeaderBB = CurMBB; 9831 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9832 9833 // If we're in the right place, emit the jump table header right now. 9834 if (CurMBB == SwitchMBB) { 9835 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9836 JTH->Emitted = true; 9837 } 9838 break; 9839 } 9840 case CC_BitTests: { 9841 // FIXME: Optimize away range check based on pivot comparisons. 9842 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9843 9844 // The bit test blocks haven't been inserted yet; insert them here. 9845 for (BitTestCase &BTC : BTB->Cases) 9846 CurMF->insert(BBI, BTC.ThisBB); 9847 9848 // Fill in fields of the BitTestBlock. 9849 BTB->Parent = CurMBB; 9850 BTB->Default = Fallthrough; 9851 9852 BTB->DefaultProb = UnhandledProbs; 9853 // If the cases in bit test don't form a contiguous range, we evenly 9854 // distribute the probability on the edge to Fallthrough to two 9855 // successors of CurMBB. 9856 if (!BTB->ContiguousRange) { 9857 BTB->Prob += DefaultProb / 2; 9858 BTB->DefaultProb -= DefaultProb / 2; 9859 } 9860 9861 // If we're in the right place, emit the bit test header right now. 9862 if (CurMBB == SwitchMBB) { 9863 visitBitTestHeader(*BTB, SwitchMBB); 9864 BTB->Emitted = true; 9865 } 9866 break; 9867 } 9868 case CC_Range: { 9869 const Value *RHS, *LHS, *MHS; 9870 ISD::CondCode CC; 9871 if (I->Low == I->High) { 9872 // Check Cond == I->Low. 9873 CC = ISD::SETEQ; 9874 LHS = Cond; 9875 RHS=I->Low; 9876 MHS = nullptr; 9877 } else { 9878 // Check I->Low <= Cond <= I->High. 9879 CC = ISD::SETLE; 9880 LHS = I->Low; 9881 MHS = Cond; 9882 RHS = I->High; 9883 } 9884 9885 // The false probability is the sum of all unhandled cases. 9886 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9887 getCurSDLoc(), I->Prob, UnhandledProbs); 9888 9889 if (CurMBB == SwitchMBB) 9890 visitSwitchCase(CB, SwitchMBB); 9891 else 9892 SwitchCases.push_back(CB); 9893 9894 break; 9895 } 9896 } 9897 CurMBB = Fallthrough; 9898 } 9899 } 9900 9901 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9902 CaseClusterIt First, 9903 CaseClusterIt Last) { 9904 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9905 if (X.Prob != CC.Prob) 9906 return X.Prob > CC.Prob; 9907 9908 // Ties are broken by comparing the case value. 9909 return X.Low->getValue().slt(CC.Low->getValue()); 9910 }); 9911 } 9912 9913 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9914 const SwitchWorkListItem &W, 9915 Value *Cond, 9916 MachineBasicBlock *SwitchMBB) { 9917 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9918 "Clusters not sorted?"); 9919 9920 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9921 9922 // Balance the tree based on branch probabilities to create a near-optimal (in 9923 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9924 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9925 CaseClusterIt LastLeft = W.FirstCluster; 9926 CaseClusterIt FirstRight = W.LastCluster; 9927 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9928 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9929 9930 // Move LastLeft and FirstRight towards each other from opposite directions to 9931 // find a partitioning of the clusters which balances the probability on both 9932 // sides. If LeftProb and RightProb are equal, alternate which side is 9933 // taken to ensure 0-probability nodes are distributed evenly. 9934 unsigned I = 0; 9935 while (LastLeft + 1 < FirstRight) { 9936 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9937 LeftProb += (++LastLeft)->Prob; 9938 else 9939 RightProb += (--FirstRight)->Prob; 9940 I++; 9941 } 9942 9943 while (true) { 9944 // Our binary search tree differs from a typical BST in that ours can have up 9945 // to three values in each leaf. The pivot selection above doesn't take that 9946 // into account, which means the tree might require more nodes and be less 9947 // efficient. We compensate for this here. 9948 9949 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9950 unsigned NumRight = W.LastCluster - FirstRight + 1; 9951 9952 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9953 // If one side has less than 3 clusters, and the other has more than 3, 9954 // consider taking a cluster from the other side. 9955 9956 if (NumLeft < NumRight) { 9957 // Consider moving the first cluster on the right to the left side. 9958 CaseCluster &CC = *FirstRight; 9959 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9960 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9961 if (LeftSideRank <= RightSideRank) { 9962 // Moving the cluster to the left does not demote it. 9963 ++LastLeft; 9964 ++FirstRight; 9965 continue; 9966 } 9967 } else { 9968 assert(NumRight < NumLeft); 9969 // Consider moving the last element on the left to the right side. 9970 CaseCluster &CC = *LastLeft; 9971 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9972 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9973 if (RightSideRank <= LeftSideRank) { 9974 // Moving the cluster to the right does not demot it. 9975 --LastLeft; 9976 --FirstRight; 9977 continue; 9978 } 9979 } 9980 } 9981 break; 9982 } 9983 9984 assert(LastLeft + 1 == FirstRight); 9985 assert(LastLeft >= W.FirstCluster); 9986 assert(FirstRight <= W.LastCluster); 9987 9988 // Use the first element on the right as pivot since we will make less-than 9989 // comparisons against it. 9990 CaseClusterIt PivotCluster = FirstRight; 9991 assert(PivotCluster > W.FirstCluster); 9992 assert(PivotCluster <= W.LastCluster); 9993 9994 CaseClusterIt FirstLeft = W.FirstCluster; 9995 CaseClusterIt LastRight = W.LastCluster; 9996 9997 const ConstantInt *Pivot = PivotCluster->Low; 9998 9999 // New blocks will be inserted immediately after the current one. 10000 MachineFunction::iterator BBI(W.MBB); 10001 ++BBI; 10002 10003 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10004 // we can branch to its destination directly if it's squeezed exactly in 10005 // between the known lower bound and Pivot - 1. 10006 MachineBasicBlock *LeftMBB; 10007 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10008 FirstLeft->Low == W.GE && 10009 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10010 LeftMBB = FirstLeft->MBB; 10011 } else { 10012 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10013 FuncInfo.MF->insert(BBI, LeftMBB); 10014 WorkList.push_back( 10015 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10016 // Put Cond in a virtual register to make it available from the new blocks. 10017 ExportFromCurrentBlock(Cond); 10018 } 10019 10020 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10021 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10022 // directly if RHS.High equals the current upper bound. 10023 MachineBasicBlock *RightMBB; 10024 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10025 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10026 RightMBB = FirstRight->MBB; 10027 } else { 10028 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10029 FuncInfo.MF->insert(BBI, RightMBB); 10030 WorkList.push_back( 10031 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10032 // Put Cond in a virtual register to make it available from the new blocks. 10033 ExportFromCurrentBlock(Cond); 10034 } 10035 10036 // Create the CaseBlock record that will be used to lower the branch. 10037 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10038 getCurSDLoc(), LeftProb, RightProb); 10039 10040 if (W.MBB == SwitchMBB) 10041 visitSwitchCase(CB, SwitchMBB); 10042 else 10043 SwitchCases.push_back(CB); 10044 } 10045 10046 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10047 // from the swith statement. 10048 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10049 BranchProbability PeeledCaseProb) { 10050 if (PeeledCaseProb == BranchProbability::getOne()) 10051 return BranchProbability::getZero(); 10052 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10053 10054 uint32_t Numerator = CaseProb.getNumerator(); 10055 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10056 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10057 } 10058 10059 // Try to peel the top probability case if it exceeds the threshold. 10060 // Return current MachineBasicBlock for the switch statement if the peeling 10061 // does not occur. 10062 // If the peeling is performed, return the newly created MachineBasicBlock 10063 // for the peeled switch statement. Also update Clusters to remove the peeled 10064 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10065 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10066 const SwitchInst &SI, CaseClusterVector &Clusters, 10067 BranchProbability &PeeledCaseProb) { 10068 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10069 // Don't perform if there is only one cluster or optimizing for size. 10070 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10071 TM.getOptLevel() == CodeGenOpt::None || 10072 SwitchMBB->getParent()->getFunction().optForMinSize()) 10073 return SwitchMBB; 10074 10075 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10076 unsigned PeeledCaseIndex = 0; 10077 bool SwitchPeeled = false; 10078 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10079 CaseCluster &CC = Clusters[Index]; 10080 if (CC.Prob < TopCaseProb) 10081 continue; 10082 TopCaseProb = CC.Prob; 10083 PeeledCaseIndex = Index; 10084 SwitchPeeled = true; 10085 } 10086 if (!SwitchPeeled) 10087 return SwitchMBB; 10088 10089 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10090 << TopCaseProb << "\n"); 10091 10092 // Record the MBB for the peeled switch statement. 10093 MachineFunction::iterator BBI(SwitchMBB); 10094 ++BBI; 10095 MachineBasicBlock *PeeledSwitchMBB = 10096 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10097 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10098 10099 ExportFromCurrentBlock(SI.getCondition()); 10100 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10101 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10102 nullptr, nullptr, TopCaseProb.getCompl()}; 10103 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10104 10105 Clusters.erase(PeeledCaseIt); 10106 for (CaseCluster &CC : Clusters) { 10107 LLVM_DEBUG( 10108 dbgs() << "Scale the probablity for one cluster, before scaling: " 10109 << CC.Prob << "\n"); 10110 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10111 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10112 } 10113 PeeledCaseProb = TopCaseProb; 10114 return PeeledSwitchMBB; 10115 } 10116 10117 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10118 // Extract cases from the switch. 10119 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10120 CaseClusterVector Clusters; 10121 Clusters.reserve(SI.getNumCases()); 10122 for (auto I : SI.cases()) { 10123 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10124 const ConstantInt *CaseVal = I.getCaseValue(); 10125 BranchProbability Prob = 10126 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10127 : BranchProbability(1, SI.getNumCases() + 1); 10128 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10129 } 10130 10131 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10132 10133 // Cluster adjacent cases with the same destination. We do this at all 10134 // optimization levels because it's cheap to do and will make codegen faster 10135 // if there are many clusters. 10136 sortAndRangeify(Clusters); 10137 10138 if (TM.getOptLevel() != CodeGenOpt::None) { 10139 // Replace an unreachable default with the most popular destination. 10140 // FIXME: Exploit unreachable default more aggressively. 10141 bool UnreachableDefault = 10142 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10143 if (UnreachableDefault && !Clusters.empty()) { 10144 DenseMap<const BasicBlock *, unsigned> Popularity; 10145 unsigned MaxPop = 0; 10146 const BasicBlock *MaxBB = nullptr; 10147 for (auto I : SI.cases()) { 10148 const BasicBlock *BB = I.getCaseSuccessor(); 10149 if (++Popularity[BB] > MaxPop) { 10150 MaxPop = Popularity[BB]; 10151 MaxBB = BB; 10152 } 10153 } 10154 // Set new default. 10155 assert(MaxPop > 0 && MaxBB); 10156 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10157 10158 // Remove cases that were pointing to the destination that is now the 10159 // default. 10160 CaseClusterVector New; 10161 New.reserve(Clusters.size()); 10162 for (CaseCluster &CC : Clusters) { 10163 if (CC.MBB != DefaultMBB) 10164 New.push_back(CC); 10165 } 10166 Clusters = std::move(New); 10167 } 10168 } 10169 10170 // The branch probablity of the peeled case. 10171 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10172 MachineBasicBlock *PeeledSwitchMBB = 10173 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10174 10175 // If there is only the default destination, jump there directly. 10176 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10177 if (Clusters.empty()) { 10178 assert(PeeledSwitchMBB == SwitchMBB); 10179 SwitchMBB->addSuccessor(DefaultMBB); 10180 if (DefaultMBB != NextBlock(SwitchMBB)) { 10181 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10182 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10183 } 10184 return; 10185 } 10186 10187 findJumpTables(Clusters, &SI, DefaultMBB); 10188 findBitTestClusters(Clusters, &SI); 10189 10190 LLVM_DEBUG({ 10191 dbgs() << "Case clusters: "; 10192 for (const CaseCluster &C : Clusters) { 10193 if (C.Kind == CC_JumpTable) 10194 dbgs() << "JT:"; 10195 if (C.Kind == CC_BitTests) 10196 dbgs() << "BT:"; 10197 10198 C.Low->getValue().print(dbgs(), true); 10199 if (C.Low != C.High) { 10200 dbgs() << '-'; 10201 C.High->getValue().print(dbgs(), true); 10202 } 10203 dbgs() << ' '; 10204 } 10205 dbgs() << '\n'; 10206 }); 10207 10208 assert(!Clusters.empty()); 10209 SwitchWorkList WorkList; 10210 CaseClusterIt First = Clusters.begin(); 10211 CaseClusterIt Last = Clusters.end() - 1; 10212 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10213 // Scale the branchprobability for DefaultMBB if the peel occurs and 10214 // DefaultMBB is not replaced. 10215 if (PeeledCaseProb != BranchProbability::getZero() && 10216 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10217 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10218 WorkList.push_back( 10219 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10220 10221 while (!WorkList.empty()) { 10222 SwitchWorkListItem W = WorkList.back(); 10223 WorkList.pop_back(); 10224 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10225 10226 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10227 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10228 // For optimized builds, lower large range as a balanced binary tree. 10229 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10230 continue; 10231 } 10232 10233 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10234 } 10235 } 10236