xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision bee79cdcc6aa855f4abcaa1f7e7f9df54538496b)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 // Return the calling convention if the Value passed requires ABI mangling as it
155 // is a parameter to a function or a return value from a function which is not
156 // an intrinsic.
157 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
158   if (auto *R = dyn_cast<ReturnInst>(V))
159     return R->getParent()->getParent()->getCallingConv();
160 
161   if (auto *CI = dyn_cast<CallInst>(V)) {
162     const bool IsInlineAsm = CI->isInlineAsm();
163     const bool IsIndirectFunctionCall =
164         !IsInlineAsm && !CI->getCalledFunction();
165 
166     // It is possible that the call instruction is an inline asm statement or an
167     // indirect function call in which case the return value of
168     // getCalledFunction() would be nullptr.
169     const bool IsInstrinsicCall =
170         !IsInlineAsm && !IsIndirectFunctionCall &&
171         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
172 
173     if (!IsInlineAsm && !IsInstrinsicCall)
174       return CI->getCallingConv();
175   }
176 
177   return None;
178 }
179 
180 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
181                                       const SDValue *Parts, unsigned NumParts,
182                                       MVT PartVT, EVT ValueVT, const Value *V,
183                                       Optional<CallingConv::ID> CC);
184 
185 /// getCopyFromParts - Create a value that contains the specified legal parts
186 /// combined into the value they represent.  If the parts combine to a type
187 /// larger than ValueVT then AssertOp can be used to specify whether the extra
188 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
189 /// (ISD::AssertSext).
190 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
191                                 const SDValue *Parts, unsigned NumParts,
192                                 MVT PartVT, EVT ValueVT, const Value *V,
193                                 Optional<CallingConv::ID> CC = None,
194                                 Optional<ISD::NodeType> AssertOp = None) {
195   // Let the target assemble the parts if it wants to
196   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
197   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
198                                                    PartVT, ValueVT, CC))
199     return Val;
200 
201   if (ValueVT.isVector())
202     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
203                                   CC);
204 
205   assert(NumParts > 0 && "No parts to assemble!");
206   SDValue Val = Parts[0];
207 
208   if (NumParts > 1) {
209     // Assemble the value from multiple parts.
210     if (ValueVT.isInteger()) {
211       unsigned PartBits = PartVT.getSizeInBits();
212       unsigned ValueBits = ValueVT.getSizeInBits();
213 
214       // Assemble the power of 2 part.
215       unsigned RoundParts =
216           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
217       unsigned RoundBits = PartBits * RoundParts;
218       EVT RoundVT = RoundBits == ValueBits ?
219         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
220       SDValue Lo, Hi;
221 
222       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
223 
224       if (RoundParts > 2) {
225         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
226                               PartVT, HalfVT, V);
227         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
228                               RoundParts / 2, PartVT, HalfVT, V);
229       } else {
230         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
231         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
232       }
233 
234       if (DAG.getDataLayout().isBigEndian())
235         std::swap(Lo, Hi);
236 
237       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
238 
239       if (RoundParts < NumParts) {
240         // Assemble the trailing non-power-of-2 part.
241         unsigned OddParts = NumParts - RoundParts;
242         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
243         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
244                               OddVT, V, CC);
245 
246         // Combine the round and odd parts.
247         Lo = Val;
248         if (DAG.getDataLayout().isBigEndian())
249           std::swap(Lo, Hi);
250         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
251         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
252         Hi =
253             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
254                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
255                                         TLI.getPointerTy(DAG.getDataLayout())));
256         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
257         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
258       }
259     } else if (PartVT.isFloatingPoint()) {
260       // FP split into multiple FP parts (for ppcf128)
261       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
262              "Unexpected split");
263       SDValue Lo, Hi;
264       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
265       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
266       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
267         std::swap(Lo, Hi);
268       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
269     } else {
270       // FP split into integer parts (soft fp)
271       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
272              !PartVT.isVector() && "Unexpected split");
273       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
274       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
275     }
276   }
277 
278   // There is now one part, held in Val.  Correct it to match ValueVT.
279   // PartEVT is the type of the register class that holds the value.
280   // ValueVT is the type of the inline asm operation.
281   EVT PartEVT = Val.getValueType();
282 
283   if (PartEVT == ValueVT)
284     return Val;
285 
286   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
287       ValueVT.bitsLT(PartEVT)) {
288     // For an FP value in an integer part, we need to truncate to the right
289     // width first.
290     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
291     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
292   }
293 
294   // Handle types that have the same size.
295   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
296     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
297 
298   // Handle types with different sizes.
299   if (PartEVT.isInteger() && ValueVT.isInteger()) {
300     if (ValueVT.bitsLT(PartEVT)) {
301       // For a truncate, see if we have any information to
302       // indicate whether the truncated bits will always be
303       // zero or sign-extension.
304       if (AssertOp.hasValue())
305         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
306                           DAG.getValueType(ValueVT));
307       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
308     }
309     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
310   }
311 
312   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
313     // FP_ROUND's are always exact here.
314     if (ValueVT.bitsLT(Val.getValueType()))
315       return DAG.getNode(
316           ISD::FP_ROUND, DL, ValueVT, Val,
317           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
318 
319     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
320   }
321 
322   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
323   // then truncating.
324   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
325       ValueVT.bitsLT(PartEVT)) {
326     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
327     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
328   }
329 
330   report_fatal_error("Unknown mismatch in getCopyFromParts!");
331 }
332 
333 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
334                                               const Twine &ErrMsg) {
335   const Instruction *I = dyn_cast_or_null<Instruction>(V);
336   if (!V)
337     return Ctx.emitError(ErrMsg);
338 
339   const char *AsmError = ", possible invalid constraint for vector type";
340   if (const CallInst *CI = dyn_cast<CallInst>(I))
341     if (CI->isInlineAsm())
342       return Ctx.emitError(I, ErrMsg + AsmError);
343 
344   return Ctx.emitError(I, ErrMsg);
345 }
346 
347 /// getCopyFromPartsVector - Create a value that contains the specified legal
348 /// parts combined into the value they represent.  If the parts combine to a
349 /// type larger than ValueVT then AssertOp can be used to specify whether the
350 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
351 /// ValueVT (ISD::AssertSext).
352 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
353                                       const SDValue *Parts, unsigned NumParts,
354                                       MVT PartVT, EVT ValueVT, const Value *V,
355                                       Optional<CallingConv::ID> CallConv) {
356   assert(ValueVT.isVector() && "Not a vector value");
357   assert(NumParts > 0 && "No parts to assemble!");
358   const bool IsABIRegCopy = CallConv.hasValue();
359 
360   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
361   SDValue Val = Parts[0];
362 
363   // Handle a multi-element vector.
364   if (NumParts > 1) {
365     EVT IntermediateVT;
366     MVT RegisterVT;
367     unsigned NumIntermediates;
368     unsigned NumRegs;
369 
370     if (IsABIRegCopy) {
371       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
372           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
373           NumIntermediates, RegisterVT);
374     } else {
375       NumRegs =
376           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
377                                      NumIntermediates, RegisterVT);
378     }
379 
380     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
381     NumParts = NumRegs; // Silence a compiler warning.
382     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
383     assert(RegisterVT.getSizeInBits() ==
384            Parts[0].getSimpleValueType().getSizeInBits() &&
385            "Part type sizes don't match!");
386 
387     // Assemble the parts into intermediate operands.
388     SmallVector<SDValue, 8> Ops(NumIntermediates);
389     if (NumIntermediates == NumParts) {
390       // If the register was not expanded, truncate or copy the value,
391       // as appropriate.
392       for (unsigned i = 0; i != NumParts; ++i)
393         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
394                                   PartVT, IntermediateVT, V, CallConv);
395     } else if (NumParts > 0) {
396       // If the intermediate type was expanded, build the intermediate
397       // operands from the parts.
398       assert(NumParts % NumIntermediates == 0 &&
399              "Must expand into a divisible number of parts!");
400       unsigned Factor = NumParts / NumIntermediates;
401       for (unsigned i = 0; i != NumIntermediates; ++i)
402         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
403                                   PartVT, IntermediateVT, V, CallConv);
404     }
405 
406     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
407     // intermediate operands.
408     EVT BuiltVectorTy =
409         IntermediateVT.isVector()
410             ? EVT::getVectorVT(
411                   *DAG.getContext(), IntermediateVT.getScalarType(),
412                   IntermediateVT.getVectorElementCount() * NumParts)
413             : EVT::getVectorVT(*DAG.getContext(),
414                                IntermediateVT.getScalarType(),
415                                NumIntermediates);
416     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
417                                                 : ISD::BUILD_VECTOR,
418                       DL, BuiltVectorTy, Ops);
419   }
420 
421   // There is now one part, held in Val.  Correct it to match ValueVT.
422   EVT PartEVT = Val.getValueType();
423 
424   if (PartEVT == ValueVT)
425     return Val;
426 
427   if (PartEVT.isVector()) {
428     // If the element type of the source/dest vectors are the same, but the
429     // parts vector has more elements than the value vector, then we have a
430     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
431     // elements we want.
432     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
433       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
434               ValueVT.getVectorElementCount().getKnownMinValue()) &&
435              (PartEVT.getVectorElementCount().isScalable() ==
436               ValueVT.getVectorElementCount().isScalable()) &&
437              "Cannot narrow, it would be a lossy transformation");
438       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
439                          DAG.getVectorIdxConstant(0, DL));
440     }
441 
442     // Vector/Vector bitcast.
443     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
444       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445 
446     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
447       "Cannot handle this kind of promotion");
448     // Promoted vector extract
449     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
450 
451   }
452 
453   // Trivial bitcast if the types are the same size and the destination
454   // vector type is legal.
455   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
456       TLI.isTypeLegal(ValueVT))
457     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458 
459   if (ValueVT.getVectorNumElements() != 1) {
460      // Certain ABIs require that vectors are passed as integers. For vectors
461      // are the same size, this is an obvious bitcast.
462      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
463        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
464      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
465        // Bitcast Val back the original type and extract the corresponding
466        // vector we want.
467        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
468        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
469                                            ValueVT.getVectorElementType(), Elts);
470        Val = DAG.getBitcast(WiderVecType, Val);
471        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
472                           DAG.getVectorIdxConstant(0, DL));
473      }
474 
475      diagnosePossiblyInvalidConstraint(
476          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
477      return DAG.getUNDEF(ValueVT);
478   }
479 
480   // Handle cases such as i8 -> <1 x i1>
481   EVT ValueSVT = ValueVT.getVectorElementType();
482   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
483     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
484       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
485     else
486       Val = ValueVT.isFloatingPoint()
487                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
488                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
489   }
490 
491   return DAG.getBuildVector(ValueVT, DL, Val);
492 }
493 
494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
495                                  SDValue Val, SDValue *Parts, unsigned NumParts,
496                                  MVT PartVT, const Value *V,
497                                  Optional<CallingConv::ID> CallConv);
498 
499 /// getCopyToParts - Create a series of nodes that contain the specified value
500 /// split into legal parts.  If the parts contain more bits than Val, then, for
501 /// integers, ExtendKind can be used to specify how to generate the extra bits.
502 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
503                            SDValue *Parts, unsigned NumParts, MVT PartVT,
504                            const Value *V,
505                            Optional<CallingConv::ID> CallConv = None,
506                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
507   // Let the target split the parts if it wants to
508   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
509   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
510                                       CallConv))
511     return;
512   EVT ValueVT = Val.getValueType();
513 
514   // Handle the vector case separately.
515   if (ValueVT.isVector())
516     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
517                                 CallConv);
518 
519   unsigned PartBits = PartVT.getSizeInBits();
520   unsigned OrigNumParts = NumParts;
521   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
522          "Copying to an illegal type!");
523 
524   if (NumParts == 0)
525     return;
526 
527   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
528   EVT PartEVT = PartVT;
529   if (PartEVT == ValueVT) {
530     assert(NumParts == 1 && "No-op copy with multiple parts!");
531     Parts[0] = Val;
532     return;
533   }
534 
535   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
536     // If the parts cover more bits than the value has, promote the value.
537     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
538       assert(NumParts == 1 && "Do not know what to promote to!");
539       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
540     } else {
541       if (ValueVT.isFloatingPoint()) {
542         // FP values need to be bitcast, then extended if they are being put
543         // into a larger container.
544         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
545         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
546       }
547       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
548              ValueVT.isInteger() &&
549              "Unknown mismatch!");
550       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
551       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
552       if (PartVT == MVT::x86mmx)
553         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555   } else if (PartBits == ValueVT.getSizeInBits()) {
556     // Different types of the same size.
557     assert(NumParts == 1 && PartEVT != ValueVT);
558     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
560     // If the parts cover less bits than value has, truncate the value.
561     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
562            ValueVT.isInteger() &&
563            "Unknown mismatch!");
564     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
565     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
566     if (PartVT == MVT::x86mmx)
567       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
568   }
569 
570   // The value may have changed - recompute ValueVT.
571   ValueVT = Val.getValueType();
572   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
573          "Failed to tile the value with PartVT!");
574 
575   if (NumParts == 1) {
576     if (PartEVT != ValueVT) {
577       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
578                                         "scalar-to-vector conversion failed");
579       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
580     }
581 
582     Parts[0] = Val;
583     return;
584   }
585 
586   // Expand the value into multiple parts.
587   if (NumParts & (NumParts - 1)) {
588     // The number of parts is not a power of 2.  Split off and copy the tail.
589     assert(PartVT.isInteger() && ValueVT.isInteger() &&
590            "Do not know what to expand to!");
591     unsigned RoundParts = 1 << Log2_32(NumParts);
592     unsigned RoundBits = RoundParts * PartBits;
593     unsigned OddParts = NumParts - RoundParts;
594     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
595       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
596 
597     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
598                    CallConv);
599 
600     if (DAG.getDataLayout().isBigEndian())
601       // The odd parts were reversed by getCopyToParts - unreverse them.
602       std::reverse(Parts + RoundParts, Parts + NumParts);
603 
604     NumParts = RoundParts;
605     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
606     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
607   }
608 
609   // The number of parts is a power of 2.  Repeatedly bisect the value using
610   // EXTRACT_ELEMENT.
611   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
612                          EVT::getIntegerVT(*DAG.getContext(),
613                                            ValueVT.getSizeInBits()),
614                          Val);
615 
616   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
617     for (unsigned i = 0; i < NumParts; i += StepSize) {
618       unsigned ThisBits = StepSize * PartBits / 2;
619       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
620       SDValue &Part0 = Parts[i];
621       SDValue &Part1 = Parts[i+StepSize/2];
622 
623       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
624                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
625       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
626                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
627 
628       if (ThisBits == PartBits && ThisVT != PartVT) {
629         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
630         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
631       }
632     }
633   }
634 
635   if (DAG.getDataLayout().isBigEndian())
636     std::reverse(Parts, Parts + OrigNumParts);
637 }
638 
639 static SDValue widenVectorToPartType(SelectionDAG &DAG,
640                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
641   if (!PartVT.isFixedLengthVector())
642     return SDValue();
643 
644   EVT ValueVT = Val.getValueType();
645   unsigned PartNumElts = PartVT.getVectorNumElements();
646   unsigned ValueNumElts = ValueVT.getVectorNumElements();
647   if (PartNumElts > ValueNumElts &&
648       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
649     EVT ElementVT = PartVT.getVectorElementType();
650     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
651     // undef elements.
652     SmallVector<SDValue, 16> Ops;
653     DAG.ExtractVectorElements(Val, Ops);
654     SDValue EltUndef = DAG.getUNDEF(ElementVT);
655     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
656       Ops.push_back(EltUndef);
657 
658     // FIXME: Use CONCAT for 2x -> 4x.
659     return DAG.getBuildVector(PartVT, DL, Ops);
660   }
661 
662   return SDValue();
663 }
664 
665 /// getCopyToPartsVector - Create a series of nodes that contain the specified
666 /// value split into legal parts.
667 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
668                                  SDValue Val, SDValue *Parts, unsigned NumParts,
669                                  MVT PartVT, const Value *V,
670                                  Optional<CallingConv::ID> CallConv) {
671   EVT ValueVT = Val.getValueType();
672   assert(ValueVT.isVector() && "Not a vector");
673   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
674   const bool IsABIRegCopy = CallConv.hasValue();
675 
676   if (NumParts == 1) {
677     EVT PartEVT = PartVT;
678     if (PartEVT == ValueVT) {
679       // Nothing to do.
680     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
681       // Bitconvert vector->vector case.
682       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
683     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
684       Val = Widened;
685     } else if (PartVT.isVector() &&
686                PartEVT.getVectorElementType().bitsGE(
687                    ValueVT.getVectorElementType()) &&
688                PartEVT.getVectorElementCount() ==
689                    ValueVT.getVectorElementCount()) {
690 
691       // Promoted vector extract
692       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
693     } else {
694       if (ValueVT.getVectorNumElements() == 1) {
695         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
696                           DAG.getVectorIdxConstant(0, DL));
697       } else {
698         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
699                "lossy conversion of vector to scalar type");
700         EVT IntermediateType =
701             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
702         Val = DAG.getBitcast(IntermediateType, Val);
703         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
704       }
705     }
706 
707     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
708     Parts[0] = Val;
709     return;
710   }
711 
712   // Handle a multi-element vector.
713   EVT IntermediateVT;
714   MVT RegisterVT;
715   unsigned NumIntermediates;
716   unsigned NumRegs;
717   if (IsABIRegCopy) {
718     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
719         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
720         NumIntermediates, RegisterVT);
721   } else {
722     NumRegs =
723         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
724                                    NumIntermediates, RegisterVT);
725   }
726 
727   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
728   NumParts = NumRegs; // Silence a compiler warning.
729   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
730 
731   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
732          "Mixing scalable and fixed vectors when copying in parts");
733 
734   Optional<ElementCount> DestEltCnt;
735 
736   if (IntermediateVT.isVector())
737     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
738   else
739     DestEltCnt = ElementCount::getFixed(NumIntermediates);
740 
741   EVT BuiltVectorTy = EVT::getVectorVT(
742       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
743   if (ValueVT != BuiltVectorTy) {
744     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
745       Val = Widened;
746 
747     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
748   }
749 
750   // Split the vector into intermediate operands.
751   SmallVector<SDValue, 8> Ops(NumIntermediates);
752   for (unsigned i = 0; i != NumIntermediates; ++i) {
753     if (IntermediateVT.isVector()) {
754       // This does something sensible for scalable vectors - see the
755       // definition of EXTRACT_SUBVECTOR for further details.
756       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
757       Ops[i] =
758           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
759                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
760     } else {
761       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
762                            DAG.getVectorIdxConstant(i, DL));
763     }
764   }
765 
766   // Split the intermediate operands into legal parts.
767   if (NumParts == NumIntermediates) {
768     // If the register was not expanded, promote or copy the value,
769     // as appropriate.
770     for (unsigned i = 0; i != NumParts; ++i)
771       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
772   } else if (NumParts > 0) {
773     // If the intermediate type was expanded, split each the value into
774     // legal parts.
775     assert(NumIntermediates != 0 && "division by zero");
776     assert(NumParts % NumIntermediates == 0 &&
777            "Must expand into a divisible number of parts!");
778     unsigned Factor = NumParts / NumIntermediates;
779     for (unsigned i = 0; i != NumIntermediates; ++i)
780       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
781                      CallConv);
782   }
783 }
784 
785 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
786                            EVT valuevt, Optional<CallingConv::ID> CC)
787     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
788       RegCount(1, regs.size()), CallConv(CC) {}
789 
790 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
791                            const DataLayout &DL, unsigned Reg, Type *Ty,
792                            Optional<CallingConv::ID> CC) {
793   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
794 
795   CallConv = CC;
796 
797   for (EVT ValueVT : ValueVTs) {
798     unsigned NumRegs =
799         isABIMangled()
800             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
801             : TLI.getNumRegisters(Context, ValueVT);
802     MVT RegisterVT =
803         isABIMangled()
804             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
805             : TLI.getRegisterType(Context, ValueVT);
806     for (unsigned i = 0; i != NumRegs; ++i)
807       Regs.push_back(Reg + i);
808     RegVTs.push_back(RegisterVT);
809     RegCount.push_back(NumRegs);
810     Reg += NumRegs;
811   }
812 }
813 
814 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
815                                       FunctionLoweringInfo &FuncInfo,
816                                       const SDLoc &dl, SDValue &Chain,
817                                       SDValue *Flag, const Value *V) const {
818   // A Value with type {} or [0 x %t] needs no registers.
819   if (ValueVTs.empty())
820     return SDValue();
821 
822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
823 
824   // Assemble the legal parts into the final values.
825   SmallVector<SDValue, 4> Values(ValueVTs.size());
826   SmallVector<SDValue, 8> Parts;
827   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
828     // Copy the legal parts from the registers.
829     EVT ValueVT = ValueVTs[Value];
830     unsigned NumRegs = RegCount[Value];
831     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
832                                           *DAG.getContext(),
833                                           CallConv.getValue(), RegVTs[Value])
834                                     : RegVTs[Value];
835 
836     Parts.resize(NumRegs);
837     for (unsigned i = 0; i != NumRegs; ++i) {
838       SDValue P;
839       if (!Flag) {
840         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
841       } else {
842         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
843         *Flag = P.getValue(2);
844       }
845 
846       Chain = P.getValue(1);
847       Parts[i] = P;
848 
849       // If the source register was virtual and if we know something about it,
850       // add an assert node.
851       if (!Register::isVirtualRegister(Regs[Part + i]) ||
852           !RegisterVT.isInteger())
853         continue;
854 
855       const FunctionLoweringInfo::LiveOutInfo *LOI =
856         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
857       if (!LOI)
858         continue;
859 
860       unsigned RegSize = RegisterVT.getScalarSizeInBits();
861       unsigned NumSignBits = LOI->NumSignBits;
862       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
863 
864       if (NumZeroBits == RegSize) {
865         // The current value is a zero.
866         // Explicitly express that as it would be easier for
867         // optimizations to kick in.
868         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
869         continue;
870       }
871 
872       // FIXME: We capture more information than the dag can represent.  For
873       // now, just use the tightest assertzext/assertsext possible.
874       bool isSExt;
875       EVT FromVT(MVT::Other);
876       if (NumZeroBits) {
877         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
878         isSExt = false;
879       } else if (NumSignBits > 1) {
880         FromVT =
881             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
882         isSExt = true;
883       } else {
884         continue;
885       }
886       // Add an assertion node.
887       assert(FromVT != MVT::Other);
888       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
889                              RegisterVT, P, DAG.getValueType(FromVT));
890     }
891 
892     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
893                                      RegisterVT, ValueVT, V, CallConv);
894     Part += NumRegs;
895     Parts.clear();
896   }
897 
898   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
899 }
900 
901 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
902                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
903                                  const Value *V,
904                                  ISD::NodeType PreferredExtendType) const {
905   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
906   ISD::NodeType ExtendKind = PreferredExtendType;
907 
908   // Get the list of the values's legal parts.
909   unsigned NumRegs = Regs.size();
910   SmallVector<SDValue, 8> Parts(NumRegs);
911   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
912     unsigned NumParts = RegCount[Value];
913 
914     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
915                                           *DAG.getContext(),
916                                           CallConv.getValue(), RegVTs[Value])
917                                     : RegVTs[Value];
918 
919     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
920       ExtendKind = ISD::ZERO_EXTEND;
921 
922     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
923                    NumParts, RegisterVT, V, CallConv, ExtendKind);
924     Part += NumParts;
925   }
926 
927   // Copy the parts into the registers.
928   SmallVector<SDValue, 8> Chains(NumRegs);
929   for (unsigned i = 0; i != NumRegs; ++i) {
930     SDValue Part;
931     if (!Flag) {
932       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
933     } else {
934       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
935       *Flag = Part.getValue(1);
936     }
937 
938     Chains[i] = Part.getValue(0);
939   }
940 
941   if (NumRegs == 1 || Flag)
942     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
943     // flagged to it. That is the CopyToReg nodes and the user are considered
944     // a single scheduling unit. If we create a TokenFactor and return it as
945     // chain, then the TokenFactor is both a predecessor (operand) of the
946     // user as well as a successor (the TF operands are flagged to the user).
947     // c1, f1 = CopyToReg
948     // c2, f2 = CopyToReg
949     // c3     = TokenFactor c1, c2
950     // ...
951     //        = op c3, ..., f2
952     Chain = Chains[NumRegs-1];
953   else
954     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
955 }
956 
957 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
958                                         unsigned MatchingIdx, const SDLoc &dl,
959                                         SelectionDAG &DAG,
960                                         std::vector<SDValue> &Ops) const {
961   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
962 
963   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
964   if (HasMatching)
965     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
966   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
967     // Put the register class of the virtual registers in the flag word.  That
968     // way, later passes can recompute register class constraints for inline
969     // assembly as well as normal instructions.
970     // Don't do this for tied operands that can use the regclass information
971     // from the def.
972     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
973     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
974     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
975   }
976 
977   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
978   Ops.push_back(Res);
979 
980   if (Code == InlineAsm::Kind_Clobber) {
981     // Clobbers should always have a 1:1 mapping with registers, and may
982     // reference registers that have illegal (e.g. vector) types. Hence, we
983     // shouldn't try to apply any sort of splitting logic to them.
984     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
985            "No 1:1 mapping from clobbers to regs?");
986     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
987     (void)SP;
988     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
989       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
990       assert(
991           (Regs[I] != SP ||
992            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
993           "If we clobbered the stack pointer, MFI should know about it.");
994     }
995     return;
996   }
997 
998   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
999     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
1000     MVT RegisterVT = RegVTs[Value];
1001     for (unsigned i = 0; i != NumRegs; ++i) {
1002       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1003       unsigned TheReg = Regs[Reg++];
1004       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1005     }
1006   }
1007 }
1008 
1009 SmallVector<std::pair<unsigned, unsigned>, 4>
1010 RegsForValue::getRegsAndSizes() const {
1011   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1012   unsigned I = 0;
1013   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1014     unsigned RegCount = std::get<0>(CountAndVT);
1015     MVT RegisterVT = std::get<1>(CountAndVT);
1016     unsigned RegisterSize = RegisterVT.getSizeInBits();
1017     for (unsigned E = I + RegCount; I != E; ++I)
1018       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1019   }
1020   return OutVec;
1021 }
1022 
1023 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1024                                const TargetLibraryInfo *li) {
1025   AA = aa;
1026   GFI = gfi;
1027   LibInfo = li;
1028   DL = &DAG.getDataLayout();
1029   Context = DAG.getContext();
1030   LPadToCallSiteMap.clear();
1031   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1032 }
1033 
1034 void SelectionDAGBuilder::clear() {
1035   NodeMap.clear();
1036   UnusedArgNodeMap.clear();
1037   PendingLoads.clear();
1038   PendingExports.clear();
1039   PendingConstrainedFP.clear();
1040   PendingConstrainedFPStrict.clear();
1041   CurInst = nullptr;
1042   HasTailCall = false;
1043   SDNodeOrder = LowestSDNodeOrder;
1044   StatepointLowering.clear();
1045 }
1046 
1047 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1048   DanglingDebugInfoMap.clear();
1049 }
1050 
1051 // Update DAG root to include dependencies on Pending chains.
1052 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1053   SDValue Root = DAG.getRoot();
1054 
1055   if (Pending.empty())
1056     return Root;
1057 
1058   // Add current root to PendingChains, unless we already indirectly
1059   // depend on it.
1060   if (Root.getOpcode() != ISD::EntryToken) {
1061     unsigned i = 0, e = Pending.size();
1062     for (; i != e; ++i) {
1063       assert(Pending[i].getNode()->getNumOperands() > 1);
1064       if (Pending[i].getNode()->getOperand(0) == Root)
1065         break;  // Don't add the root if we already indirectly depend on it.
1066     }
1067 
1068     if (i == e)
1069       Pending.push_back(Root);
1070   }
1071 
1072   if (Pending.size() == 1)
1073     Root = Pending[0];
1074   else
1075     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1076 
1077   DAG.setRoot(Root);
1078   Pending.clear();
1079   return Root;
1080 }
1081 
1082 SDValue SelectionDAGBuilder::getMemoryRoot() {
1083   return updateRoot(PendingLoads);
1084 }
1085 
1086 SDValue SelectionDAGBuilder::getRoot() {
1087   // Chain up all pending constrained intrinsics together with all
1088   // pending loads, by simply appending them to PendingLoads and
1089   // then calling getMemoryRoot().
1090   PendingLoads.reserve(PendingLoads.size() +
1091                        PendingConstrainedFP.size() +
1092                        PendingConstrainedFPStrict.size());
1093   PendingLoads.append(PendingConstrainedFP.begin(),
1094                       PendingConstrainedFP.end());
1095   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1096                       PendingConstrainedFPStrict.end());
1097   PendingConstrainedFP.clear();
1098   PendingConstrainedFPStrict.clear();
1099   return getMemoryRoot();
1100 }
1101 
1102 SDValue SelectionDAGBuilder::getControlRoot() {
1103   // We need to emit pending fpexcept.strict constrained intrinsics,
1104   // so append them to the PendingExports list.
1105   PendingExports.append(PendingConstrainedFPStrict.begin(),
1106                         PendingConstrainedFPStrict.end());
1107   PendingConstrainedFPStrict.clear();
1108   return updateRoot(PendingExports);
1109 }
1110 
1111 void SelectionDAGBuilder::visit(const Instruction &I) {
1112   // Set up outgoing PHI node register values before emitting the terminator.
1113   if (I.isTerminator()) {
1114     HandlePHINodesInSuccessorBlocks(I.getParent());
1115   }
1116 
1117   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1118   if (!isa<DbgInfoIntrinsic>(I))
1119     ++SDNodeOrder;
1120 
1121   CurInst = &I;
1122 
1123   visit(I.getOpcode(), I);
1124 
1125   if (!I.isTerminator() && !HasTailCall &&
1126       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1127     CopyToExportRegsIfNeeded(&I);
1128 
1129   CurInst = nullptr;
1130 }
1131 
1132 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1133   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1134 }
1135 
1136 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1137   // Note: this doesn't use InstVisitor, because it has to work with
1138   // ConstantExpr's in addition to instructions.
1139   switch (Opcode) {
1140   default: llvm_unreachable("Unknown instruction type encountered!");
1141     // Build the switch statement using the Instruction.def file.
1142 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1143     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1144 #include "llvm/IR/Instruction.def"
1145   }
1146 }
1147 
1148 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1149                                                 const DIExpression *Expr) {
1150   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1151     const DbgValueInst *DI = DDI.getDI();
1152     DIVariable *DanglingVariable = DI->getVariable();
1153     DIExpression *DanglingExpr = DI->getExpression();
1154     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1155       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1156       return true;
1157     }
1158     return false;
1159   };
1160 
1161   for (auto &DDIMI : DanglingDebugInfoMap) {
1162     DanglingDebugInfoVector &DDIV = DDIMI.second;
1163 
1164     // If debug info is to be dropped, run it through final checks to see
1165     // whether it can be salvaged.
1166     for (auto &DDI : DDIV)
1167       if (isMatchingDbgValue(DDI))
1168         salvageUnresolvedDbgValue(DDI);
1169 
1170     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1171   }
1172 }
1173 
1174 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1175 // generate the debug data structures now that we've seen its definition.
1176 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1177                                                    SDValue Val) {
1178   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1179   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1180     return;
1181 
1182   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1183   for (auto &DDI : DDIV) {
1184     const DbgValueInst *DI = DDI.getDI();
1185     assert(DI && "Ill-formed DanglingDebugInfo");
1186     DebugLoc dl = DDI.getdl();
1187     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1188     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1189     DILocalVariable *Variable = DI->getVariable();
1190     DIExpression *Expr = DI->getExpression();
1191     assert(Variable->isValidLocationForIntrinsic(dl) &&
1192            "Expected inlined-at fields to agree");
1193     SDDbgValue *SDV;
1194     if (Val.getNode()) {
1195       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1196       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1197       // we couldn't resolve it directly when examining the DbgValue intrinsic
1198       // in the first place we should not be more successful here). Unless we
1199       // have some test case that prove this to be correct we should avoid
1200       // calling EmitFuncArgumentDbgValue here.
1201       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1202         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1203                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1204         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1205         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1206         // inserted after the definition of Val when emitting the instructions
1207         // after ISel. An alternative could be to teach
1208         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1209         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1210                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1211                    << ValSDNodeOrder << "\n");
1212         SDV = getDbgValue(Val, Variable, Expr, dl,
1213                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1214         DAG.AddDbgValue(SDV, Val.getNode(), false);
1215       } else
1216         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1217                           << "in EmitFuncArgumentDbgValue\n");
1218     } else {
1219       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1220       auto Undef =
1221           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1222       auto SDV =
1223           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1224       DAG.AddDbgValue(SDV, nullptr, false);
1225     }
1226   }
1227   DDIV.clear();
1228 }
1229 
1230 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1231   Value *V = DDI.getDI()->getValue();
1232   DILocalVariable *Var = DDI.getDI()->getVariable();
1233   DIExpression *Expr = DDI.getDI()->getExpression();
1234   DebugLoc DL = DDI.getdl();
1235   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1236   unsigned SDOrder = DDI.getSDNodeOrder();
1237 
1238   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1239   // that DW_OP_stack_value is desired.
1240   assert(isa<DbgValueInst>(DDI.getDI()));
1241   bool StackValue = true;
1242 
1243   // Can this Value can be encoded without any further work?
1244   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1245     return;
1246 
1247   // Attempt to salvage back through as many instructions as possible. Bail if
1248   // a non-instruction is seen, such as a constant expression or global
1249   // variable. FIXME: Further work could recover those too.
1250   while (isa<Instruction>(V)) {
1251     Instruction &VAsInst = *cast<Instruction>(V);
1252     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1253 
1254     // If we cannot salvage any further, and haven't yet found a suitable debug
1255     // expression, bail out.
1256     if (!NewExpr)
1257       break;
1258 
1259     // New value and expr now represent this debuginfo.
1260     V = VAsInst.getOperand(0);
1261     Expr = NewExpr;
1262 
1263     // Some kind of simplification occurred: check whether the operand of the
1264     // salvaged debug expression can be encoded in this DAG.
1265     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1266       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1267                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1268       return;
1269     }
1270   }
1271 
1272   // This was the final opportunity to salvage this debug information, and it
1273   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1274   // any earlier variable location.
1275   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1276   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1277   DAG.AddDbgValue(SDV, nullptr, false);
1278 
1279   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1280                     << "\n");
1281   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1282                     << "\n");
1283 }
1284 
1285 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1286                                            DIExpression *Expr, DebugLoc dl,
1287                                            DebugLoc InstDL, unsigned Order) {
1288   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1289   SDDbgValue *SDV;
1290   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1291       isa<ConstantPointerNull>(V)) {
1292     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1293     DAG.AddDbgValue(SDV, nullptr, false);
1294     return true;
1295   }
1296 
1297   // If the Value is a frame index, we can create a FrameIndex debug value
1298   // without relying on the DAG at all.
1299   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1300     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1301     if (SI != FuncInfo.StaticAllocaMap.end()) {
1302       auto SDV =
1303           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1304                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1305       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1306       // is still available even if the SDNode gets optimized out.
1307       DAG.AddDbgValue(SDV, nullptr, false);
1308       return true;
1309     }
1310   }
1311 
1312   // Do not use getValue() in here; we don't want to generate code at
1313   // this point if it hasn't been done yet.
1314   SDValue N = NodeMap[V];
1315   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1316     N = UnusedArgNodeMap[V];
1317   if (N.getNode()) {
1318     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1319       return true;
1320     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1321     DAG.AddDbgValue(SDV, N.getNode(), false);
1322     return true;
1323   }
1324 
1325   // Special rules apply for the first dbg.values of parameter variables in a
1326   // function. Identify them by the fact they reference Argument Values, that
1327   // they're parameters, and they are parameters of the current function. We
1328   // need to let them dangle until they get an SDNode.
1329   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1330                        !InstDL.getInlinedAt();
1331   if (!IsParamOfFunc) {
1332     // The value is not used in this block yet (or it would have an SDNode).
1333     // We still want the value to appear for the user if possible -- if it has
1334     // an associated VReg, we can refer to that instead.
1335     auto VMI = FuncInfo.ValueMap.find(V);
1336     if (VMI != FuncInfo.ValueMap.end()) {
1337       unsigned Reg = VMI->second;
1338       // If this is a PHI node, it may be split up into several MI PHI nodes
1339       // (in FunctionLoweringInfo::set).
1340       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1341                        V->getType(), None);
1342       if (RFV.occupiesMultipleRegs()) {
1343         unsigned Offset = 0;
1344         unsigned BitsToDescribe = 0;
1345         if (auto VarSize = Var->getSizeInBits())
1346           BitsToDescribe = *VarSize;
1347         if (auto Fragment = Expr->getFragmentInfo())
1348           BitsToDescribe = Fragment->SizeInBits;
1349         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1350           unsigned RegisterSize = RegAndSize.second;
1351           // Bail out if all bits are described already.
1352           if (Offset >= BitsToDescribe)
1353             break;
1354           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1355               ? BitsToDescribe - Offset
1356               : RegisterSize;
1357           auto FragmentExpr = DIExpression::createFragmentExpression(
1358               Expr, Offset, FragmentSize);
1359           if (!FragmentExpr)
1360               continue;
1361           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1362                                     false, dl, SDNodeOrder);
1363           DAG.AddDbgValue(SDV, nullptr, false);
1364           Offset += RegisterSize;
1365         }
1366       } else {
1367         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1368         DAG.AddDbgValue(SDV, nullptr, false);
1369       }
1370       return true;
1371     }
1372   }
1373 
1374   return false;
1375 }
1376 
1377 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1378   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1379   for (auto &Pair : DanglingDebugInfoMap)
1380     for (auto &DDI : Pair.second)
1381       salvageUnresolvedDbgValue(DDI);
1382   clearDanglingDebugInfo();
1383 }
1384 
1385 /// getCopyFromRegs - If there was virtual register allocated for the value V
1386 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1387 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1388   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1389   SDValue Result;
1390 
1391   if (It != FuncInfo.ValueMap.end()) {
1392     Register InReg = It->second;
1393 
1394     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1395                      DAG.getDataLayout(), InReg, Ty,
1396                      None); // This is not an ABI copy.
1397     SDValue Chain = DAG.getEntryNode();
1398     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1399                                  V);
1400     resolveDanglingDebugInfo(V, Result);
1401   }
1402 
1403   return Result;
1404 }
1405 
1406 /// getValue - Return an SDValue for the given Value.
1407 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1408   // If we already have an SDValue for this value, use it. It's important
1409   // to do this first, so that we don't create a CopyFromReg if we already
1410   // have a regular SDValue.
1411   SDValue &N = NodeMap[V];
1412   if (N.getNode()) return N;
1413 
1414   // If there's a virtual register allocated and initialized for this
1415   // value, use it.
1416   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1417     return copyFromReg;
1418 
1419   // Otherwise create a new SDValue and remember it.
1420   SDValue Val = getValueImpl(V);
1421   NodeMap[V] = Val;
1422   resolveDanglingDebugInfo(V, Val);
1423   return Val;
1424 }
1425 
1426 /// getNonRegisterValue - Return an SDValue for the given Value, but
1427 /// don't look in FuncInfo.ValueMap for a virtual register.
1428 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1429   // If we already have an SDValue for this value, use it.
1430   SDValue &N = NodeMap[V];
1431   if (N.getNode()) {
1432     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1433       // Remove the debug location from the node as the node is about to be used
1434       // in a location which may differ from the original debug location.  This
1435       // is relevant to Constant and ConstantFP nodes because they can appear
1436       // as constant expressions inside PHI nodes.
1437       N->setDebugLoc(DebugLoc());
1438     }
1439     return N;
1440   }
1441 
1442   // Otherwise create a new SDValue and remember it.
1443   SDValue Val = getValueImpl(V);
1444   NodeMap[V] = Val;
1445   resolveDanglingDebugInfo(V, Val);
1446   return Val;
1447 }
1448 
1449 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1450 /// Create an SDValue for the given value.
1451 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1452   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1453 
1454   if (const Constant *C = dyn_cast<Constant>(V)) {
1455     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1456 
1457     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1458       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1459 
1460     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1461       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1462 
1463     if (isa<ConstantPointerNull>(C)) {
1464       unsigned AS = V->getType()->getPointerAddressSpace();
1465       return DAG.getConstant(0, getCurSDLoc(),
1466                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1467     }
1468 
1469     if (match(C, m_VScale(DAG.getDataLayout())))
1470       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1471 
1472     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1473       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1474 
1475     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1476       return DAG.getUNDEF(VT);
1477 
1478     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1479       visit(CE->getOpcode(), *CE);
1480       SDValue N1 = NodeMap[V];
1481       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1482       return N1;
1483     }
1484 
1485     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1486       SmallVector<SDValue, 4> Constants;
1487       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1488            OI != OE; ++OI) {
1489         SDNode *Val = getValue(*OI).getNode();
1490         // If the operand is an empty aggregate, there are no values.
1491         if (!Val) continue;
1492         // Add each leaf value from the operand to the Constants list
1493         // to form a flattened list of all the values.
1494         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1495           Constants.push_back(SDValue(Val, i));
1496       }
1497 
1498       return DAG.getMergeValues(Constants, getCurSDLoc());
1499     }
1500 
1501     if (const ConstantDataSequential *CDS =
1502           dyn_cast<ConstantDataSequential>(C)) {
1503       SmallVector<SDValue, 4> Ops;
1504       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1505         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1506         // Add each leaf value from the operand to the Constants list
1507         // to form a flattened list of all the values.
1508         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1509           Ops.push_back(SDValue(Val, i));
1510       }
1511 
1512       if (isa<ArrayType>(CDS->getType()))
1513         return DAG.getMergeValues(Ops, getCurSDLoc());
1514       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1515     }
1516 
1517     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1518       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1519              "Unknown struct or array constant!");
1520 
1521       SmallVector<EVT, 4> ValueVTs;
1522       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1523       unsigned NumElts = ValueVTs.size();
1524       if (NumElts == 0)
1525         return SDValue(); // empty struct
1526       SmallVector<SDValue, 4> Constants(NumElts);
1527       for (unsigned i = 0; i != NumElts; ++i) {
1528         EVT EltVT = ValueVTs[i];
1529         if (isa<UndefValue>(C))
1530           Constants[i] = DAG.getUNDEF(EltVT);
1531         else if (EltVT.isFloatingPoint())
1532           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1533         else
1534           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1535       }
1536 
1537       return DAG.getMergeValues(Constants, getCurSDLoc());
1538     }
1539 
1540     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1541       return DAG.getBlockAddress(BA, VT);
1542 
1543     VectorType *VecTy = cast<VectorType>(V->getType());
1544 
1545     // Now that we know the number and type of the elements, get that number of
1546     // elements into the Ops array based on what kind of constant it is.
1547     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1548       SmallVector<SDValue, 16> Ops;
1549       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1550       for (unsigned i = 0; i != NumElements; ++i)
1551         Ops.push_back(getValue(CV->getOperand(i)));
1552 
1553       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1554     } else if (isa<ConstantAggregateZero>(C)) {
1555       EVT EltVT =
1556           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1557 
1558       SDValue Op;
1559       if (EltVT.isFloatingPoint())
1560         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1561       else
1562         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1563 
1564       if (isa<ScalableVectorType>(VecTy))
1565         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1566       else {
1567         SmallVector<SDValue, 16> Ops;
1568         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1569         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1570       }
1571     }
1572     llvm_unreachable("Unknown vector constant");
1573   }
1574 
1575   // If this is a static alloca, generate it as the frameindex instead of
1576   // computation.
1577   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1578     DenseMap<const AllocaInst*, int>::iterator SI =
1579       FuncInfo.StaticAllocaMap.find(AI);
1580     if (SI != FuncInfo.StaticAllocaMap.end())
1581       return DAG.getFrameIndex(SI->second,
1582                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1583   }
1584 
1585   // If this is an instruction which fast-isel has deferred, select it now.
1586   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1587     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1588 
1589     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1590                      Inst->getType(), getABIRegCopyCC(V));
1591     SDValue Chain = DAG.getEntryNode();
1592     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1593   }
1594 
1595   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1596     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1597   }
1598   llvm_unreachable("Can't get register for value!");
1599 }
1600 
1601 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1602   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1603   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1604   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1605   bool IsSEH = isAsynchronousEHPersonality(Pers);
1606   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1607   if (!IsSEH)
1608     CatchPadMBB->setIsEHScopeEntry();
1609   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1610   if (IsMSVCCXX || IsCoreCLR)
1611     CatchPadMBB->setIsEHFuncletEntry();
1612 }
1613 
1614 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1615   // Update machine-CFG edge.
1616   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1617   FuncInfo.MBB->addSuccessor(TargetMBB);
1618 
1619   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1620   bool IsSEH = isAsynchronousEHPersonality(Pers);
1621   if (IsSEH) {
1622     // If this is not a fall-through branch or optimizations are switched off,
1623     // emit the branch.
1624     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1625         TM.getOptLevel() == CodeGenOpt::None)
1626       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1627                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1628     return;
1629   }
1630 
1631   // Figure out the funclet membership for the catchret's successor.
1632   // This will be used by the FuncletLayout pass to determine how to order the
1633   // BB's.
1634   // A 'catchret' returns to the outer scope's color.
1635   Value *ParentPad = I.getCatchSwitchParentPad();
1636   const BasicBlock *SuccessorColor;
1637   if (isa<ConstantTokenNone>(ParentPad))
1638     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1639   else
1640     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1641   assert(SuccessorColor && "No parent funclet for catchret!");
1642   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1643   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1644 
1645   // Create the terminator node.
1646   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1647                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1648                             DAG.getBasicBlock(SuccessorColorMBB));
1649   DAG.setRoot(Ret);
1650 }
1651 
1652 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1653   // Don't emit any special code for the cleanuppad instruction. It just marks
1654   // the start of an EH scope/funclet.
1655   FuncInfo.MBB->setIsEHScopeEntry();
1656   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1657   if (Pers != EHPersonality::Wasm_CXX) {
1658     FuncInfo.MBB->setIsEHFuncletEntry();
1659     FuncInfo.MBB->setIsCleanupFuncletEntry();
1660   }
1661 }
1662 
1663 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1664 // the control flow always stops at the single catch pad, as it does for a
1665 // cleanup pad. In case the exception caught is not of the types the catch pad
1666 // catches, it will be rethrown by a rethrow.
1667 static void findWasmUnwindDestinations(
1668     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1669     BranchProbability Prob,
1670     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1671         &UnwindDests) {
1672   while (EHPadBB) {
1673     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1674     if (isa<CleanupPadInst>(Pad)) {
1675       // Stop on cleanup pads.
1676       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1677       UnwindDests.back().first->setIsEHScopeEntry();
1678       break;
1679     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1680       // Add the catchpad handlers to the possible destinations. We don't
1681       // continue to the unwind destination of the catchswitch for wasm.
1682       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1683         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1684         UnwindDests.back().first->setIsEHScopeEntry();
1685       }
1686       break;
1687     } else {
1688       continue;
1689     }
1690   }
1691 }
1692 
1693 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1694 /// many places it could ultimately go. In the IR, we have a single unwind
1695 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1696 /// This function skips over imaginary basic blocks that hold catchswitch
1697 /// instructions, and finds all the "real" machine
1698 /// basic block destinations. As those destinations may not be successors of
1699 /// EHPadBB, here we also calculate the edge probability to those destinations.
1700 /// The passed-in Prob is the edge probability to EHPadBB.
1701 static void findUnwindDestinations(
1702     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1703     BranchProbability Prob,
1704     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1705         &UnwindDests) {
1706   EHPersonality Personality =
1707     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1708   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1709   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1710   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1711   bool IsSEH = isAsynchronousEHPersonality(Personality);
1712 
1713   if (IsWasmCXX) {
1714     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1715     assert(UnwindDests.size() <= 1 &&
1716            "There should be at most one unwind destination for wasm");
1717     return;
1718   }
1719 
1720   while (EHPadBB) {
1721     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1722     BasicBlock *NewEHPadBB = nullptr;
1723     if (isa<LandingPadInst>(Pad)) {
1724       // Stop on landingpads. They are not funclets.
1725       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1726       break;
1727     } else if (isa<CleanupPadInst>(Pad)) {
1728       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1729       // personalities.
1730       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1731       UnwindDests.back().first->setIsEHScopeEntry();
1732       UnwindDests.back().first->setIsEHFuncletEntry();
1733       break;
1734     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1735       // Add the catchpad handlers to the possible destinations.
1736       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1737         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1738         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1739         if (IsMSVCCXX || IsCoreCLR)
1740           UnwindDests.back().first->setIsEHFuncletEntry();
1741         if (!IsSEH)
1742           UnwindDests.back().first->setIsEHScopeEntry();
1743       }
1744       NewEHPadBB = CatchSwitch->getUnwindDest();
1745     } else {
1746       continue;
1747     }
1748 
1749     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1750     if (BPI && NewEHPadBB)
1751       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1752     EHPadBB = NewEHPadBB;
1753   }
1754 }
1755 
1756 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1757   // Update successor info.
1758   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1759   auto UnwindDest = I.getUnwindDest();
1760   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1761   BranchProbability UnwindDestProb =
1762       (BPI && UnwindDest)
1763           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1764           : BranchProbability::getZero();
1765   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1766   for (auto &UnwindDest : UnwindDests) {
1767     UnwindDest.first->setIsEHPad();
1768     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1769   }
1770   FuncInfo.MBB->normalizeSuccProbs();
1771 
1772   // Create the terminator node.
1773   SDValue Ret =
1774       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1775   DAG.setRoot(Ret);
1776 }
1777 
1778 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1779   report_fatal_error("visitCatchSwitch not yet implemented!");
1780 }
1781 
1782 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1784   auto &DL = DAG.getDataLayout();
1785   SDValue Chain = getControlRoot();
1786   SmallVector<ISD::OutputArg, 8> Outs;
1787   SmallVector<SDValue, 8> OutVals;
1788 
1789   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1790   // lower
1791   //
1792   //   %val = call <ty> @llvm.experimental.deoptimize()
1793   //   ret <ty> %val
1794   //
1795   // differently.
1796   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1797     LowerDeoptimizingReturn();
1798     return;
1799   }
1800 
1801   if (!FuncInfo.CanLowerReturn) {
1802     unsigned DemoteReg = FuncInfo.DemoteRegister;
1803     const Function *F = I.getParent()->getParent();
1804 
1805     // Emit a store of the return value through the virtual register.
1806     // Leave Outs empty so that LowerReturn won't try to load return
1807     // registers the usual way.
1808     SmallVector<EVT, 1> PtrValueVTs;
1809     ComputeValueVTs(TLI, DL,
1810                     F->getReturnType()->getPointerTo(
1811                         DAG.getDataLayout().getAllocaAddrSpace()),
1812                     PtrValueVTs);
1813 
1814     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1815                                         DemoteReg, PtrValueVTs[0]);
1816     SDValue RetOp = getValue(I.getOperand(0));
1817 
1818     SmallVector<EVT, 4> ValueVTs, MemVTs;
1819     SmallVector<uint64_t, 4> Offsets;
1820     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1821                     &Offsets);
1822     unsigned NumValues = ValueVTs.size();
1823 
1824     SmallVector<SDValue, 4> Chains(NumValues);
1825     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1826     for (unsigned i = 0; i != NumValues; ++i) {
1827       // An aggregate return value cannot wrap around the address space, so
1828       // offsets to its parts don't wrap either.
1829       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1830                                            TypeSize::Fixed(Offsets[i]));
1831 
1832       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1833       if (MemVTs[i] != ValueVTs[i])
1834         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1835       Chains[i] = DAG.getStore(
1836           Chain, getCurSDLoc(), Val,
1837           // FIXME: better loc info would be nice.
1838           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1839           commonAlignment(BaseAlign, Offsets[i]));
1840     }
1841 
1842     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1843                         MVT::Other, Chains);
1844   } else if (I.getNumOperands() != 0) {
1845     SmallVector<EVT, 4> ValueVTs;
1846     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1847     unsigned NumValues = ValueVTs.size();
1848     if (NumValues) {
1849       SDValue RetOp = getValue(I.getOperand(0));
1850 
1851       const Function *F = I.getParent()->getParent();
1852 
1853       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1854           I.getOperand(0)->getType(), F->getCallingConv(),
1855           /*IsVarArg*/ false);
1856 
1857       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1858       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1859                                           Attribute::SExt))
1860         ExtendKind = ISD::SIGN_EXTEND;
1861       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1862                                                Attribute::ZExt))
1863         ExtendKind = ISD::ZERO_EXTEND;
1864 
1865       LLVMContext &Context = F->getContext();
1866       bool RetInReg = F->getAttributes().hasAttribute(
1867           AttributeList::ReturnIndex, Attribute::InReg);
1868 
1869       for (unsigned j = 0; j != NumValues; ++j) {
1870         EVT VT = ValueVTs[j];
1871 
1872         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1873           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1874 
1875         CallingConv::ID CC = F->getCallingConv();
1876 
1877         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1878         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1879         SmallVector<SDValue, 4> Parts(NumParts);
1880         getCopyToParts(DAG, getCurSDLoc(),
1881                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1882                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1883 
1884         // 'inreg' on function refers to return value
1885         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1886         if (RetInReg)
1887           Flags.setInReg();
1888 
1889         if (I.getOperand(0)->getType()->isPointerTy()) {
1890           Flags.setPointer();
1891           Flags.setPointerAddrSpace(
1892               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1893         }
1894 
1895         if (NeedsRegBlock) {
1896           Flags.setInConsecutiveRegs();
1897           if (j == NumValues - 1)
1898             Flags.setInConsecutiveRegsLast();
1899         }
1900 
1901         // Propagate extension type if any
1902         if (ExtendKind == ISD::SIGN_EXTEND)
1903           Flags.setSExt();
1904         else if (ExtendKind == ISD::ZERO_EXTEND)
1905           Flags.setZExt();
1906 
1907         for (unsigned i = 0; i < NumParts; ++i) {
1908           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1909                                         VT, /*isfixed=*/true, 0, 0));
1910           OutVals.push_back(Parts[i]);
1911         }
1912       }
1913     }
1914   }
1915 
1916   // Push in swifterror virtual register as the last element of Outs. This makes
1917   // sure swifterror virtual register will be returned in the swifterror
1918   // physical register.
1919   const Function *F = I.getParent()->getParent();
1920   if (TLI.supportSwiftError() &&
1921       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1922     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1923     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1924     Flags.setSwiftError();
1925     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1926                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1927                                   true /*isfixed*/, 1 /*origidx*/,
1928                                   0 /*partOffs*/));
1929     // Create SDNode for the swifterror virtual register.
1930     OutVals.push_back(
1931         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1932                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1933                         EVT(TLI.getPointerTy(DL))));
1934   }
1935 
1936   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1937   CallingConv::ID CallConv =
1938     DAG.getMachineFunction().getFunction().getCallingConv();
1939   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1940       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1941 
1942   // Verify that the target's LowerReturn behaved as expected.
1943   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1944          "LowerReturn didn't return a valid chain!");
1945 
1946   // Update the DAG with the new chain value resulting from return lowering.
1947   DAG.setRoot(Chain);
1948 }
1949 
1950 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1951 /// created for it, emit nodes to copy the value into the virtual
1952 /// registers.
1953 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1954   // Skip empty types
1955   if (V->getType()->isEmptyTy())
1956     return;
1957 
1958   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1959   if (VMI != FuncInfo.ValueMap.end()) {
1960     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1961     CopyValueToVirtualRegister(V, VMI->second);
1962   }
1963 }
1964 
1965 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1966 /// the current basic block, add it to ValueMap now so that we'll get a
1967 /// CopyTo/FromReg.
1968 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1969   // No need to export constants.
1970   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1971 
1972   // Already exported?
1973   if (FuncInfo.isExportedInst(V)) return;
1974 
1975   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1976   CopyValueToVirtualRegister(V, Reg);
1977 }
1978 
1979 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1980                                                      const BasicBlock *FromBB) {
1981   // The operands of the setcc have to be in this block.  We don't know
1982   // how to export them from some other block.
1983   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1984     // Can export from current BB.
1985     if (VI->getParent() == FromBB)
1986       return true;
1987 
1988     // Is already exported, noop.
1989     return FuncInfo.isExportedInst(V);
1990   }
1991 
1992   // If this is an argument, we can export it if the BB is the entry block or
1993   // if it is already exported.
1994   if (isa<Argument>(V)) {
1995     if (FromBB == &FromBB->getParent()->getEntryBlock())
1996       return true;
1997 
1998     // Otherwise, can only export this if it is already exported.
1999     return FuncInfo.isExportedInst(V);
2000   }
2001 
2002   // Otherwise, constants can always be exported.
2003   return true;
2004 }
2005 
2006 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2007 BranchProbability
2008 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2009                                         const MachineBasicBlock *Dst) const {
2010   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2011   const BasicBlock *SrcBB = Src->getBasicBlock();
2012   const BasicBlock *DstBB = Dst->getBasicBlock();
2013   if (!BPI) {
2014     // If BPI is not available, set the default probability as 1 / N, where N is
2015     // the number of successors.
2016     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2017     return BranchProbability(1, SuccSize);
2018   }
2019   return BPI->getEdgeProbability(SrcBB, DstBB);
2020 }
2021 
2022 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2023                                                MachineBasicBlock *Dst,
2024                                                BranchProbability Prob) {
2025   if (!FuncInfo.BPI)
2026     Src->addSuccessorWithoutProb(Dst);
2027   else {
2028     if (Prob.isUnknown())
2029       Prob = getEdgeProbability(Src, Dst);
2030     Src->addSuccessor(Dst, Prob);
2031   }
2032 }
2033 
2034 static bool InBlock(const Value *V, const BasicBlock *BB) {
2035   if (const Instruction *I = dyn_cast<Instruction>(V))
2036     return I->getParent() == BB;
2037   return true;
2038 }
2039 
2040 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2041 /// This function emits a branch and is used at the leaves of an OR or an
2042 /// AND operator tree.
2043 void
2044 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2045                                                   MachineBasicBlock *TBB,
2046                                                   MachineBasicBlock *FBB,
2047                                                   MachineBasicBlock *CurBB,
2048                                                   MachineBasicBlock *SwitchBB,
2049                                                   BranchProbability TProb,
2050                                                   BranchProbability FProb,
2051                                                   bool InvertCond) {
2052   const BasicBlock *BB = CurBB->getBasicBlock();
2053 
2054   // If the leaf of the tree is a comparison, merge the condition into
2055   // the caseblock.
2056   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2057     // The operands of the cmp have to be in this block.  We don't know
2058     // how to export them from some other block.  If this is the first block
2059     // of the sequence, no exporting is needed.
2060     if (CurBB == SwitchBB ||
2061         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2062          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2063       ISD::CondCode Condition;
2064       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2065         ICmpInst::Predicate Pred =
2066             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2067         Condition = getICmpCondCode(Pred);
2068       } else {
2069         const FCmpInst *FC = cast<FCmpInst>(Cond);
2070         FCmpInst::Predicate Pred =
2071             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2072         Condition = getFCmpCondCode(Pred);
2073         if (TM.Options.NoNaNsFPMath)
2074           Condition = getFCmpCodeWithoutNaN(Condition);
2075       }
2076 
2077       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2078                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2079       SL->SwitchCases.push_back(CB);
2080       return;
2081     }
2082   }
2083 
2084   // Create a CaseBlock record representing this branch.
2085   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2086   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2087                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2088   SL->SwitchCases.push_back(CB);
2089 }
2090 
2091 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2092                                                MachineBasicBlock *TBB,
2093                                                MachineBasicBlock *FBB,
2094                                                MachineBasicBlock *CurBB,
2095                                                MachineBasicBlock *SwitchBB,
2096                                                Instruction::BinaryOps Opc,
2097                                                BranchProbability TProb,
2098                                                BranchProbability FProb,
2099                                                bool InvertCond) {
2100   // Skip over not part of the tree and remember to invert op and operands at
2101   // next level.
2102   Value *NotCond;
2103   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2104       InBlock(NotCond, CurBB->getBasicBlock())) {
2105     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2106                          !InvertCond);
2107     return;
2108   }
2109 
2110   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2111   // Compute the effective opcode for Cond, taking into account whether it needs
2112   // to be inverted, e.g.
2113   //   and (not (or A, B)), C
2114   // gets lowered as
2115   //   and (and (not A, not B), C)
2116   unsigned BOpc = 0;
2117   if (BOp) {
2118     BOpc = BOp->getOpcode();
2119     if (InvertCond) {
2120       if (BOpc == Instruction::And)
2121         BOpc = Instruction::Or;
2122       else if (BOpc == Instruction::Or)
2123         BOpc = Instruction::And;
2124     }
2125   }
2126 
2127   // If this node is not part of the or/and tree, emit it as a branch.
2128   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2129       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2130       BOp->getParent() != CurBB->getBasicBlock() ||
2131       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2132       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2133     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2134                                  TProb, FProb, InvertCond);
2135     return;
2136   }
2137 
2138   //  Create TmpBB after CurBB.
2139   MachineFunction::iterator BBI(CurBB);
2140   MachineFunction &MF = DAG.getMachineFunction();
2141   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2142   CurBB->getParent()->insert(++BBI, TmpBB);
2143 
2144   if (Opc == Instruction::Or) {
2145     // Codegen X | Y as:
2146     // BB1:
2147     //   jmp_if_X TBB
2148     //   jmp TmpBB
2149     // TmpBB:
2150     //   jmp_if_Y TBB
2151     //   jmp FBB
2152     //
2153 
2154     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2155     // The requirement is that
2156     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2157     //     = TrueProb for original BB.
2158     // Assuming the original probabilities are A and B, one choice is to set
2159     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2160     // A/(1+B) and 2B/(1+B). This choice assumes that
2161     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2162     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2163     // TmpBB, but the math is more complicated.
2164 
2165     auto NewTrueProb = TProb / 2;
2166     auto NewFalseProb = TProb / 2 + FProb;
2167     // Emit the LHS condition.
2168     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2169                          NewTrueProb, NewFalseProb, InvertCond);
2170 
2171     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2172     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2173     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2174     // Emit the RHS condition into TmpBB.
2175     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2176                          Probs[0], Probs[1], InvertCond);
2177   } else {
2178     assert(Opc == Instruction::And && "Unknown merge op!");
2179     // Codegen X & Y as:
2180     // BB1:
2181     //   jmp_if_X TmpBB
2182     //   jmp FBB
2183     // TmpBB:
2184     //   jmp_if_Y TBB
2185     //   jmp FBB
2186     //
2187     //  This requires creation of TmpBB after CurBB.
2188 
2189     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2190     // The requirement is that
2191     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2192     //     = FalseProb for original BB.
2193     // Assuming the original probabilities are A and B, one choice is to set
2194     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2195     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2196     // TrueProb for BB1 * FalseProb for TmpBB.
2197 
2198     auto NewTrueProb = TProb + FProb / 2;
2199     auto NewFalseProb = FProb / 2;
2200     // Emit the LHS condition.
2201     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2202                          NewTrueProb, NewFalseProb, InvertCond);
2203 
2204     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2205     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2206     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2207     // Emit the RHS condition into TmpBB.
2208     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2209                          Probs[0], Probs[1], InvertCond);
2210   }
2211 }
2212 
2213 /// If the set of cases should be emitted as a series of branches, return true.
2214 /// If we should emit this as a bunch of and/or'd together conditions, return
2215 /// false.
2216 bool
2217 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2218   if (Cases.size() != 2) return true;
2219 
2220   // If this is two comparisons of the same values or'd or and'd together, they
2221   // will get folded into a single comparison, so don't emit two blocks.
2222   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2223        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2224       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2225        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2226     return false;
2227   }
2228 
2229   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2230   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2231   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2232       Cases[0].CC == Cases[1].CC &&
2233       isa<Constant>(Cases[0].CmpRHS) &&
2234       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2235     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2236       return false;
2237     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2238       return false;
2239   }
2240 
2241   return true;
2242 }
2243 
2244 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2245   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2246 
2247   // Update machine-CFG edges.
2248   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2249 
2250   if (I.isUnconditional()) {
2251     // Update machine-CFG edges.
2252     BrMBB->addSuccessor(Succ0MBB);
2253 
2254     // If this is not a fall-through branch or optimizations are switched off,
2255     // emit the branch.
2256     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2257       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2258                               MVT::Other, getControlRoot(),
2259                               DAG.getBasicBlock(Succ0MBB)));
2260 
2261     return;
2262   }
2263 
2264   // If this condition is one of the special cases we handle, do special stuff
2265   // now.
2266   const Value *CondVal = I.getCondition();
2267   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2268 
2269   // If this is a series of conditions that are or'd or and'd together, emit
2270   // this as a sequence of branches instead of setcc's with and/or operations.
2271   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2272   // unpredictable branches, and vector extracts because those jumps are likely
2273   // expensive for any target), this should improve performance.
2274   // For example, instead of something like:
2275   //     cmp A, B
2276   //     C = seteq
2277   //     cmp D, E
2278   //     F = setle
2279   //     or C, F
2280   //     jnz foo
2281   // Emit:
2282   //     cmp A, B
2283   //     je foo
2284   //     cmp D, E
2285   //     jle foo
2286   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2287     Instruction::BinaryOps Opcode = BOp->getOpcode();
2288     Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1);
2289     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2290         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2291         (Opcode == Instruction::And || Opcode == Instruction::Or) &&
2292         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2293           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2294       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2295                            Opcode,
2296                            getEdgeProbability(BrMBB, Succ0MBB),
2297                            getEdgeProbability(BrMBB, Succ1MBB),
2298                            /*InvertCond=*/false);
2299       // If the compares in later blocks need to use values not currently
2300       // exported from this block, export them now.  This block should always
2301       // be the first entry.
2302       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2303 
2304       // Allow some cases to be rejected.
2305       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2306         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2307           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2308           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2309         }
2310 
2311         // Emit the branch for this block.
2312         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2313         SL->SwitchCases.erase(SL->SwitchCases.begin());
2314         return;
2315       }
2316 
2317       // Okay, we decided not to do this, remove any inserted MBB's and clear
2318       // SwitchCases.
2319       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2320         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2321 
2322       SL->SwitchCases.clear();
2323     }
2324   }
2325 
2326   // Create a CaseBlock record representing this branch.
2327   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2328                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2329 
2330   // Use visitSwitchCase to actually insert the fast branch sequence for this
2331   // cond branch.
2332   visitSwitchCase(CB, BrMBB);
2333 }
2334 
2335 /// visitSwitchCase - Emits the necessary code to represent a single node in
2336 /// the binary search tree resulting from lowering a switch instruction.
2337 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2338                                           MachineBasicBlock *SwitchBB) {
2339   SDValue Cond;
2340   SDValue CondLHS = getValue(CB.CmpLHS);
2341   SDLoc dl = CB.DL;
2342 
2343   if (CB.CC == ISD::SETTRUE) {
2344     // Branch or fall through to TrueBB.
2345     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2346     SwitchBB->normalizeSuccProbs();
2347     if (CB.TrueBB != NextBlock(SwitchBB)) {
2348       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2349                               DAG.getBasicBlock(CB.TrueBB)));
2350     }
2351     return;
2352   }
2353 
2354   auto &TLI = DAG.getTargetLoweringInfo();
2355   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2356 
2357   // Build the setcc now.
2358   if (!CB.CmpMHS) {
2359     // Fold "(X == true)" to X and "(X == false)" to !X to
2360     // handle common cases produced by branch lowering.
2361     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2362         CB.CC == ISD::SETEQ)
2363       Cond = CondLHS;
2364     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2365              CB.CC == ISD::SETEQ) {
2366       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2367       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2368     } else {
2369       SDValue CondRHS = getValue(CB.CmpRHS);
2370 
2371       // If a pointer's DAG type is larger than its memory type then the DAG
2372       // values are zero-extended. This breaks signed comparisons so truncate
2373       // back to the underlying type before doing the compare.
2374       if (CondLHS.getValueType() != MemVT) {
2375         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2376         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2377       }
2378       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2379     }
2380   } else {
2381     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2382 
2383     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2384     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2385 
2386     SDValue CmpOp = getValue(CB.CmpMHS);
2387     EVT VT = CmpOp.getValueType();
2388 
2389     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2390       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2391                           ISD::SETLE);
2392     } else {
2393       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2394                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2395       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2396                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2397     }
2398   }
2399 
2400   // Update successor info
2401   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2402   // TrueBB and FalseBB are always different unless the incoming IR is
2403   // degenerate. This only happens when running llc on weird IR.
2404   if (CB.TrueBB != CB.FalseBB)
2405     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2406   SwitchBB->normalizeSuccProbs();
2407 
2408   // If the lhs block is the next block, invert the condition so that we can
2409   // fall through to the lhs instead of the rhs block.
2410   if (CB.TrueBB == NextBlock(SwitchBB)) {
2411     std::swap(CB.TrueBB, CB.FalseBB);
2412     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2413     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2414   }
2415 
2416   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2417                                MVT::Other, getControlRoot(), Cond,
2418                                DAG.getBasicBlock(CB.TrueBB));
2419 
2420   // Insert the false branch. Do this even if it's a fall through branch,
2421   // this makes it easier to do DAG optimizations which require inverting
2422   // the branch condition.
2423   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2424                        DAG.getBasicBlock(CB.FalseBB));
2425 
2426   DAG.setRoot(BrCond);
2427 }
2428 
2429 /// visitJumpTable - Emit JumpTable node in the current MBB
2430 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2431   // Emit the code for the jump table
2432   assert(JT.Reg != -1U && "Should lower JT Header first!");
2433   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2434   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2435                                      JT.Reg, PTy);
2436   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2437   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2438                                     MVT::Other, Index.getValue(1),
2439                                     Table, Index);
2440   DAG.setRoot(BrJumpTable);
2441 }
2442 
2443 /// visitJumpTableHeader - This function emits necessary code to produce index
2444 /// in the JumpTable from switch case.
2445 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2446                                                JumpTableHeader &JTH,
2447                                                MachineBasicBlock *SwitchBB) {
2448   SDLoc dl = getCurSDLoc();
2449 
2450   // Subtract the lowest switch case value from the value being switched on.
2451   SDValue SwitchOp = getValue(JTH.SValue);
2452   EVT VT = SwitchOp.getValueType();
2453   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2454                             DAG.getConstant(JTH.First, dl, VT));
2455 
2456   // The SDNode we just created, which holds the value being switched on minus
2457   // the smallest case value, needs to be copied to a virtual register so it
2458   // can be used as an index into the jump table in a subsequent basic block.
2459   // This value may be smaller or larger than the target's pointer type, and
2460   // therefore require extension or truncating.
2461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2462   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2463 
2464   unsigned JumpTableReg =
2465       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2466   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2467                                     JumpTableReg, SwitchOp);
2468   JT.Reg = JumpTableReg;
2469 
2470   if (!JTH.OmitRangeCheck) {
2471     // Emit the range check for the jump table, and branch to the default block
2472     // for the switch statement if the value being switched on exceeds the
2473     // largest case in the switch.
2474     SDValue CMP = DAG.getSetCC(
2475         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2476                                    Sub.getValueType()),
2477         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2478 
2479     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2480                                  MVT::Other, CopyTo, CMP,
2481                                  DAG.getBasicBlock(JT.Default));
2482 
2483     // Avoid emitting unnecessary branches to the next block.
2484     if (JT.MBB != NextBlock(SwitchBB))
2485       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2486                            DAG.getBasicBlock(JT.MBB));
2487 
2488     DAG.setRoot(BrCond);
2489   } else {
2490     // Avoid emitting unnecessary branches to the next block.
2491     if (JT.MBB != NextBlock(SwitchBB))
2492       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2493                               DAG.getBasicBlock(JT.MBB)));
2494     else
2495       DAG.setRoot(CopyTo);
2496   }
2497 }
2498 
2499 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2500 /// variable if there exists one.
2501 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2502                                  SDValue &Chain) {
2503   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2504   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2505   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2506   MachineFunction &MF = DAG.getMachineFunction();
2507   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2508   MachineSDNode *Node =
2509       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2510   if (Global) {
2511     MachinePointerInfo MPInfo(Global);
2512     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2513                  MachineMemOperand::MODereferenceable;
2514     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2515         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2516     DAG.setNodeMemRefs(Node, {MemRef});
2517   }
2518   if (PtrTy != PtrMemTy)
2519     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2520   return SDValue(Node, 0);
2521 }
2522 
2523 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2524 /// tail spliced into a stack protector check success bb.
2525 ///
2526 /// For a high level explanation of how this fits into the stack protector
2527 /// generation see the comment on the declaration of class
2528 /// StackProtectorDescriptor.
2529 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2530                                                   MachineBasicBlock *ParentBB) {
2531 
2532   // First create the loads to the guard/stack slot for the comparison.
2533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2534   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2535   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2536 
2537   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2538   int FI = MFI.getStackProtectorIndex();
2539 
2540   SDValue Guard;
2541   SDLoc dl = getCurSDLoc();
2542   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2543   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2544   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2545 
2546   // Generate code to load the content of the guard slot.
2547   SDValue GuardVal = DAG.getLoad(
2548       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2549       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2550       MachineMemOperand::MOVolatile);
2551 
2552   if (TLI.useStackGuardXorFP())
2553     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2554 
2555   // Retrieve guard check function, nullptr if instrumentation is inlined.
2556   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2557     // The target provides a guard check function to validate the guard value.
2558     // Generate a call to that function with the content of the guard slot as
2559     // argument.
2560     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2561     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2562 
2563     TargetLowering::ArgListTy Args;
2564     TargetLowering::ArgListEntry Entry;
2565     Entry.Node = GuardVal;
2566     Entry.Ty = FnTy->getParamType(0);
2567     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2568       Entry.IsInReg = true;
2569     Args.push_back(Entry);
2570 
2571     TargetLowering::CallLoweringInfo CLI(DAG);
2572     CLI.setDebugLoc(getCurSDLoc())
2573         .setChain(DAG.getEntryNode())
2574         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2575                    getValue(GuardCheckFn), std::move(Args));
2576 
2577     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2578     DAG.setRoot(Result.second);
2579     return;
2580   }
2581 
2582   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2583   // Otherwise, emit a volatile load to retrieve the stack guard value.
2584   SDValue Chain = DAG.getEntryNode();
2585   if (TLI.useLoadStackGuardNode()) {
2586     Guard = getLoadStackGuard(DAG, dl, Chain);
2587   } else {
2588     const Value *IRGuard = TLI.getSDagStackGuard(M);
2589     SDValue GuardPtr = getValue(IRGuard);
2590 
2591     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2592                         MachinePointerInfo(IRGuard, 0), Align,
2593                         MachineMemOperand::MOVolatile);
2594   }
2595 
2596   // Perform the comparison via a getsetcc.
2597   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2598                                                         *DAG.getContext(),
2599                                                         Guard.getValueType()),
2600                              Guard, GuardVal, ISD::SETNE);
2601 
2602   // If the guard/stackslot do not equal, branch to failure MBB.
2603   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2604                                MVT::Other, GuardVal.getOperand(0),
2605                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2606   // Otherwise branch to success MBB.
2607   SDValue Br = DAG.getNode(ISD::BR, dl,
2608                            MVT::Other, BrCond,
2609                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2610 
2611   DAG.setRoot(Br);
2612 }
2613 
2614 /// Codegen the failure basic block for a stack protector check.
2615 ///
2616 /// A failure stack protector machine basic block consists simply of a call to
2617 /// __stack_chk_fail().
2618 ///
2619 /// For a high level explanation of how this fits into the stack protector
2620 /// generation see the comment on the declaration of class
2621 /// StackProtectorDescriptor.
2622 void
2623 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2625   TargetLowering::MakeLibCallOptions CallOptions;
2626   CallOptions.setDiscardResult(true);
2627   SDValue Chain =
2628       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2629                       None, CallOptions, getCurSDLoc()).second;
2630   // On PS4, the "return address" must still be within the calling function,
2631   // even if it's at the very end, so emit an explicit TRAP here.
2632   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2633   if (TM.getTargetTriple().isPS4CPU())
2634     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2635   // WebAssembly needs an unreachable instruction after a non-returning call,
2636   // because the function return type can be different from __stack_chk_fail's
2637   // return type (void).
2638   if (TM.getTargetTriple().isWasm())
2639     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2640 
2641   DAG.setRoot(Chain);
2642 }
2643 
2644 /// visitBitTestHeader - This function emits necessary code to produce value
2645 /// suitable for "bit tests"
2646 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2647                                              MachineBasicBlock *SwitchBB) {
2648   SDLoc dl = getCurSDLoc();
2649 
2650   // Subtract the minimum value.
2651   SDValue SwitchOp = getValue(B.SValue);
2652   EVT VT = SwitchOp.getValueType();
2653   SDValue RangeSub =
2654       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2655 
2656   // Determine the type of the test operands.
2657   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2658   bool UsePtrType = false;
2659   if (!TLI.isTypeLegal(VT)) {
2660     UsePtrType = true;
2661   } else {
2662     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2663       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2664         // Switch table case range are encoded into series of masks.
2665         // Just use pointer type, it's guaranteed to fit.
2666         UsePtrType = true;
2667         break;
2668       }
2669   }
2670   SDValue Sub = RangeSub;
2671   if (UsePtrType) {
2672     VT = TLI.getPointerTy(DAG.getDataLayout());
2673     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2674   }
2675 
2676   B.RegVT = VT.getSimpleVT();
2677   B.Reg = FuncInfo.CreateReg(B.RegVT);
2678   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2679 
2680   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2681 
2682   if (!B.OmitRangeCheck)
2683     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2684   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2685   SwitchBB->normalizeSuccProbs();
2686 
2687   SDValue Root = CopyTo;
2688   if (!B.OmitRangeCheck) {
2689     // Conditional branch to the default block.
2690     SDValue RangeCmp = DAG.getSetCC(dl,
2691         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2692                                RangeSub.getValueType()),
2693         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2694         ISD::SETUGT);
2695 
2696     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2697                        DAG.getBasicBlock(B.Default));
2698   }
2699 
2700   // Avoid emitting unnecessary branches to the next block.
2701   if (MBB != NextBlock(SwitchBB))
2702     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2703 
2704   DAG.setRoot(Root);
2705 }
2706 
2707 /// visitBitTestCase - this function produces one "bit test"
2708 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2709                                            MachineBasicBlock* NextMBB,
2710                                            BranchProbability BranchProbToNext,
2711                                            unsigned Reg,
2712                                            BitTestCase &B,
2713                                            MachineBasicBlock *SwitchBB) {
2714   SDLoc dl = getCurSDLoc();
2715   MVT VT = BB.RegVT;
2716   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2717   SDValue Cmp;
2718   unsigned PopCount = countPopulation(B.Mask);
2719   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2720   if (PopCount == 1) {
2721     // Testing for a single bit; just compare the shift count with what it
2722     // would need to be to shift a 1 bit in that position.
2723     Cmp = DAG.getSetCC(
2724         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2725         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2726         ISD::SETEQ);
2727   } else if (PopCount == BB.Range) {
2728     // There is only one zero bit in the range, test for it directly.
2729     Cmp = DAG.getSetCC(
2730         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2731         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2732         ISD::SETNE);
2733   } else {
2734     // Make desired shift
2735     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2736                                     DAG.getConstant(1, dl, VT), ShiftOp);
2737 
2738     // Emit bit tests and jumps
2739     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2740                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2741     Cmp = DAG.getSetCC(
2742         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2743         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2744   }
2745 
2746   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2747   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2748   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2749   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2750   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2751   // one as they are relative probabilities (and thus work more like weights),
2752   // and hence we need to normalize them to let the sum of them become one.
2753   SwitchBB->normalizeSuccProbs();
2754 
2755   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2756                               MVT::Other, getControlRoot(),
2757                               Cmp, DAG.getBasicBlock(B.TargetBB));
2758 
2759   // Avoid emitting unnecessary branches to the next block.
2760   if (NextMBB != NextBlock(SwitchBB))
2761     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2762                         DAG.getBasicBlock(NextMBB));
2763 
2764   DAG.setRoot(BrAnd);
2765 }
2766 
2767 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2768   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2769 
2770   // Retrieve successors. Look through artificial IR level blocks like
2771   // catchswitch for successors.
2772   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2773   const BasicBlock *EHPadBB = I.getSuccessor(1);
2774 
2775   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2776   // have to do anything here to lower funclet bundles.
2777   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2778                                         LLVMContext::OB_gc_transition,
2779                                         LLVMContext::OB_gc_live,
2780                                         LLVMContext::OB_funclet,
2781                                         LLVMContext::OB_cfguardtarget}) &&
2782          "Cannot lower invokes with arbitrary operand bundles yet!");
2783 
2784   const Value *Callee(I.getCalledOperand());
2785   const Function *Fn = dyn_cast<Function>(Callee);
2786   if (isa<InlineAsm>(Callee))
2787     visitInlineAsm(I);
2788   else if (Fn && Fn->isIntrinsic()) {
2789     switch (Fn->getIntrinsicID()) {
2790     default:
2791       llvm_unreachable("Cannot invoke this intrinsic");
2792     case Intrinsic::donothing:
2793       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2794       break;
2795     case Intrinsic::experimental_patchpoint_void:
2796     case Intrinsic::experimental_patchpoint_i64:
2797       visitPatchpoint(I, EHPadBB);
2798       break;
2799     case Intrinsic::experimental_gc_statepoint:
2800       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2801       break;
2802     case Intrinsic::wasm_rethrow_in_catch: {
2803       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2804       // special because it can be invoked, so we manually lower it to a DAG
2805       // node here.
2806       SmallVector<SDValue, 8> Ops;
2807       Ops.push_back(getRoot()); // inchain
2808       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2809       Ops.push_back(
2810           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2811                                 TLI.getPointerTy(DAG.getDataLayout())));
2812       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2813       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2814       break;
2815     }
2816     }
2817   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2818     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2819     // Eventually we will support lowering the @llvm.experimental.deoptimize
2820     // intrinsic, and right now there are no plans to support other intrinsics
2821     // with deopt state.
2822     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2823   } else {
2824     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2825   }
2826 
2827   // If the value of the invoke is used outside of its defining block, make it
2828   // available as a virtual register.
2829   // We already took care of the exported value for the statepoint instruction
2830   // during call to the LowerStatepoint.
2831   if (!isa<GCStatepointInst>(I)) {
2832     CopyToExportRegsIfNeeded(&I);
2833   }
2834 
2835   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2836   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2837   BranchProbability EHPadBBProb =
2838       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2839           : BranchProbability::getZero();
2840   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2841 
2842   // Update successor info.
2843   addSuccessorWithProb(InvokeMBB, Return);
2844   for (auto &UnwindDest : UnwindDests) {
2845     UnwindDest.first->setIsEHPad();
2846     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2847   }
2848   InvokeMBB->normalizeSuccProbs();
2849 
2850   // Drop into normal successor.
2851   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2852                           DAG.getBasicBlock(Return)));
2853 }
2854 
2855 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2856   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2857 
2858   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2859   // have to do anything here to lower funclet bundles.
2860   assert(!I.hasOperandBundlesOtherThan(
2861              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2862          "Cannot lower callbrs with arbitrary operand bundles yet!");
2863 
2864   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2865   visitInlineAsm(I);
2866   CopyToExportRegsIfNeeded(&I);
2867 
2868   // Retrieve successors.
2869   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2870 
2871   // Update successor info.
2872   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2873   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2874     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2875     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2876     Target->setIsInlineAsmBrIndirectTarget();
2877   }
2878   CallBrMBB->normalizeSuccProbs();
2879 
2880   // Drop into default successor.
2881   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2882                           MVT::Other, getControlRoot(),
2883                           DAG.getBasicBlock(Return)));
2884 }
2885 
2886 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2887   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2888 }
2889 
2890 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2891   assert(FuncInfo.MBB->isEHPad() &&
2892          "Call to landingpad not in landing pad!");
2893 
2894   // If there aren't registers to copy the values into (e.g., during SjLj
2895   // exceptions), then don't bother to create these DAG nodes.
2896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2897   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2898   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2899       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2900     return;
2901 
2902   // If landingpad's return type is token type, we don't create DAG nodes
2903   // for its exception pointer and selector value. The extraction of exception
2904   // pointer or selector value from token type landingpads is not currently
2905   // supported.
2906   if (LP.getType()->isTokenTy())
2907     return;
2908 
2909   SmallVector<EVT, 2> ValueVTs;
2910   SDLoc dl = getCurSDLoc();
2911   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2912   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2913 
2914   // Get the two live-in registers as SDValues. The physregs have already been
2915   // copied into virtual registers.
2916   SDValue Ops[2];
2917   if (FuncInfo.ExceptionPointerVirtReg) {
2918     Ops[0] = DAG.getZExtOrTrunc(
2919         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2920                            FuncInfo.ExceptionPointerVirtReg,
2921                            TLI.getPointerTy(DAG.getDataLayout())),
2922         dl, ValueVTs[0]);
2923   } else {
2924     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2925   }
2926   Ops[1] = DAG.getZExtOrTrunc(
2927       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2928                          FuncInfo.ExceptionSelectorVirtReg,
2929                          TLI.getPointerTy(DAG.getDataLayout())),
2930       dl, ValueVTs[1]);
2931 
2932   // Merge into one.
2933   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2934                             DAG.getVTList(ValueVTs), Ops);
2935   setValue(&LP, Res);
2936 }
2937 
2938 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2939                                            MachineBasicBlock *Last) {
2940   // Update JTCases.
2941   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2942     if (SL->JTCases[i].first.HeaderBB == First)
2943       SL->JTCases[i].first.HeaderBB = Last;
2944 
2945   // Update BitTestCases.
2946   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2947     if (SL->BitTestCases[i].Parent == First)
2948       SL->BitTestCases[i].Parent = Last;
2949 }
2950 
2951 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2952   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2953 
2954   // Update machine-CFG edges with unique successors.
2955   SmallSet<BasicBlock*, 32> Done;
2956   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2957     BasicBlock *BB = I.getSuccessor(i);
2958     bool Inserted = Done.insert(BB).second;
2959     if (!Inserted)
2960         continue;
2961 
2962     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2963     addSuccessorWithProb(IndirectBrMBB, Succ);
2964   }
2965   IndirectBrMBB->normalizeSuccProbs();
2966 
2967   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2968                           MVT::Other, getControlRoot(),
2969                           getValue(I.getAddress())));
2970 }
2971 
2972 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2973   if (!DAG.getTarget().Options.TrapUnreachable)
2974     return;
2975 
2976   // We may be able to ignore unreachable behind a noreturn call.
2977   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2978     const BasicBlock &BB = *I.getParent();
2979     if (&I != &BB.front()) {
2980       BasicBlock::const_iterator PredI =
2981         std::prev(BasicBlock::const_iterator(&I));
2982       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2983         if (Call->doesNotReturn())
2984           return;
2985       }
2986     }
2987   }
2988 
2989   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2990 }
2991 
2992 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
2993   SDNodeFlags Flags;
2994 
2995   SDValue Op = getValue(I.getOperand(0));
2996   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
2997                                     Op, Flags);
2998   setValue(&I, UnNodeValue);
2999 }
3000 
3001 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3002   SDNodeFlags Flags;
3003   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3004     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3005     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3006   }
3007   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3008     Flags.setExact(ExactOp->isExact());
3009   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3010     Flags.copyFMF(*FPOp);
3011 
3012   SDValue Op1 = getValue(I.getOperand(0));
3013   SDValue Op2 = getValue(I.getOperand(1));
3014   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3015                                      Op1, Op2, Flags);
3016   setValue(&I, BinNodeValue);
3017 }
3018 
3019 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3020   SDValue Op1 = getValue(I.getOperand(0));
3021   SDValue Op2 = getValue(I.getOperand(1));
3022 
3023   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3024       Op1.getValueType(), DAG.getDataLayout());
3025 
3026   // Coerce the shift amount to the right type if we can.
3027   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3028     unsigned ShiftSize = ShiftTy.getSizeInBits();
3029     unsigned Op2Size = Op2.getValueSizeInBits();
3030     SDLoc DL = getCurSDLoc();
3031 
3032     // If the operand is smaller than the shift count type, promote it.
3033     if (ShiftSize > Op2Size)
3034       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3035 
3036     // If the operand is larger than the shift count type but the shift
3037     // count type has enough bits to represent any shift value, truncate
3038     // it now. This is a common case and it exposes the truncate to
3039     // optimization early.
3040     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3041       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3042     // Otherwise we'll need to temporarily settle for some other convenient
3043     // type.  Type legalization will make adjustments once the shiftee is split.
3044     else
3045       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3046   }
3047 
3048   bool nuw = false;
3049   bool nsw = false;
3050   bool exact = false;
3051 
3052   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3053 
3054     if (const OverflowingBinaryOperator *OFBinOp =
3055             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3056       nuw = OFBinOp->hasNoUnsignedWrap();
3057       nsw = OFBinOp->hasNoSignedWrap();
3058     }
3059     if (const PossiblyExactOperator *ExactOp =
3060             dyn_cast<const PossiblyExactOperator>(&I))
3061       exact = ExactOp->isExact();
3062   }
3063   SDNodeFlags Flags;
3064   Flags.setExact(exact);
3065   Flags.setNoSignedWrap(nsw);
3066   Flags.setNoUnsignedWrap(nuw);
3067   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3068                             Flags);
3069   setValue(&I, Res);
3070 }
3071 
3072 void SelectionDAGBuilder::visitSDiv(const User &I) {
3073   SDValue Op1 = getValue(I.getOperand(0));
3074   SDValue Op2 = getValue(I.getOperand(1));
3075 
3076   SDNodeFlags Flags;
3077   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3078                  cast<PossiblyExactOperator>(&I)->isExact());
3079   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3080                            Op2, Flags));
3081 }
3082 
3083 void SelectionDAGBuilder::visitICmp(const User &I) {
3084   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3085   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3086     predicate = IC->getPredicate();
3087   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3088     predicate = ICmpInst::Predicate(IC->getPredicate());
3089   SDValue Op1 = getValue(I.getOperand(0));
3090   SDValue Op2 = getValue(I.getOperand(1));
3091   ISD::CondCode Opcode = getICmpCondCode(predicate);
3092 
3093   auto &TLI = DAG.getTargetLoweringInfo();
3094   EVT MemVT =
3095       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3096 
3097   // If a pointer's DAG type is larger than its memory type then the DAG values
3098   // are zero-extended. This breaks signed comparisons so truncate back to the
3099   // underlying type before doing the compare.
3100   if (Op1.getValueType() != MemVT) {
3101     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3102     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3103   }
3104 
3105   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3106                                                         I.getType());
3107   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3108 }
3109 
3110 void SelectionDAGBuilder::visitFCmp(const User &I) {
3111   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3112   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3113     predicate = FC->getPredicate();
3114   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3115     predicate = FCmpInst::Predicate(FC->getPredicate());
3116   SDValue Op1 = getValue(I.getOperand(0));
3117   SDValue Op2 = getValue(I.getOperand(1));
3118 
3119   ISD::CondCode Condition = getFCmpCondCode(predicate);
3120   auto *FPMO = cast<FPMathOperator>(&I);
3121   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3122     Condition = getFCmpCodeWithoutNaN(Condition);
3123 
3124   SDNodeFlags Flags;
3125   Flags.copyFMF(*FPMO);
3126 
3127   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3128                                                         I.getType());
3129   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition, Flags));
3130 }
3131 
3132 // Check if the condition of the select has one use or two users that are both
3133 // selects with the same condition.
3134 static bool hasOnlySelectUsers(const Value *Cond) {
3135   return llvm::all_of(Cond->users(), [](const Value *V) {
3136     return isa<SelectInst>(V);
3137   });
3138 }
3139 
3140 void SelectionDAGBuilder::visitSelect(const User &I) {
3141   SmallVector<EVT, 4> ValueVTs;
3142   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3143                   ValueVTs);
3144   unsigned NumValues = ValueVTs.size();
3145   if (NumValues == 0) return;
3146 
3147   SmallVector<SDValue, 4> Values(NumValues);
3148   SDValue Cond     = getValue(I.getOperand(0));
3149   SDValue LHSVal   = getValue(I.getOperand(1));
3150   SDValue RHSVal   = getValue(I.getOperand(2));
3151   SmallVector<SDValue, 1> BaseOps(1, Cond);
3152   ISD::NodeType OpCode =
3153       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3154 
3155   bool IsUnaryAbs = false;
3156 
3157   SDNodeFlags Flags;
3158   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3159     Flags.copyFMF(*FPOp);
3160 
3161   // Min/max matching is only viable if all output VTs are the same.
3162   if (is_splat(ValueVTs)) {
3163     EVT VT = ValueVTs[0];
3164     LLVMContext &Ctx = *DAG.getContext();
3165     auto &TLI = DAG.getTargetLoweringInfo();
3166 
3167     // We care about the legality of the operation after it has been type
3168     // legalized.
3169     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3170       VT = TLI.getTypeToTransformTo(Ctx, VT);
3171 
3172     // If the vselect is legal, assume we want to leave this as a vector setcc +
3173     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3174     // min/max is legal on the scalar type.
3175     bool UseScalarMinMax = VT.isVector() &&
3176       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3177 
3178     Value *LHS, *RHS;
3179     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3180     ISD::NodeType Opc = ISD::DELETED_NODE;
3181     switch (SPR.Flavor) {
3182     case SPF_UMAX:    Opc = ISD::UMAX; break;
3183     case SPF_UMIN:    Opc = ISD::UMIN; break;
3184     case SPF_SMAX:    Opc = ISD::SMAX; break;
3185     case SPF_SMIN:    Opc = ISD::SMIN; break;
3186     case SPF_FMINNUM:
3187       switch (SPR.NaNBehavior) {
3188       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3189       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3190       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3191       case SPNB_RETURNS_ANY: {
3192         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3193           Opc = ISD::FMINNUM;
3194         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3195           Opc = ISD::FMINIMUM;
3196         else if (UseScalarMinMax)
3197           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3198             ISD::FMINNUM : ISD::FMINIMUM;
3199         break;
3200       }
3201       }
3202       break;
3203     case SPF_FMAXNUM:
3204       switch (SPR.NaNBehavior) {
3205       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3206       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3207       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3208       case SPNB_RETURNS_ANY:
3209 
3210         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3211           Opc = ISD::FMAXNUM;
3212         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3213           Opc = ISD::FMAXIMUM;
3214         else if (UseScalarMinMax)
3215           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3216             ISD::FMAXNUM : ISD::FMAXIMUM;
3217         break;
3218       }
3219       break;
3220     case SPF_ABS:
3221       IsUnaryAbs = true;
3222       Opc = ISD::ABS;
3223       break;
3224     case SPF_NABS:
3225       // TODO: we need to produce sub(0, abs(X)).
3226     default: break;
3227     }
3228 
3229     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3230         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3231          (UseScalarMinMax &&
3232           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3233         // If the underlying comparison instruction is used by any other
3234         // instruction, the consumed instructions won't be destroyed, so it is
3235         // not profitable to convert to a min/max.
3236         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3237       OpCode = Opc;
3238       LHSVal = getValue(LHS);
3239       RHSVal = getValue(RHS);
3240       BaseOps.clear();
3241     }
3242 
3243     if (IsUnaryAbs) {
3244       OpCode = Opc;
3245       LHSVal = getValue(LHS);
3246       BaseOps.clear();
3247     }
3248   }
3249 
3250   if (IsUnaryAbs) {
3251     for (unsigned i = 0; i != NumValues; ++i) {
3252       Values[i] =
3253           DAG.getNode(OpCode, getCurSDLoc(),
3254                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3255                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3256     }
3257   } else {
3258     for (unsigned i = 0; i != NumValues; ++i) {
3259       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3260       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3261       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3262       Values[i] = DAG.getNode(
3263           OpCode, getCurSDLoc(),
3264           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3265     }
3266   }
3267 
3268   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3269                            DAG.getVTList(ValueVTs), Values));
3270 }
3271 
3272 void SelectionDAGBuilder::visitTrunc(const User &I) {
3273   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3274   SDValue N = getValue(I.getOperand(0));
3275   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3276                                                         I.getType());
3277   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3278 }
3279 
3280 void SelectionDAGBuilder::visitZExt(const User &I) {
3281   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3282   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3283   SDValue N = getValue(I.getOperand(0));
3284   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3285                                                         I.getType());
3286   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3287 }
3288 
3289 void SelectionDAGBuilder::visitSExt(const User &I) {
3290   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3291   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3292   SDValue N = getValue(I.getOperand(0));
3293   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3294                                                         I.getType());
3295   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3296 }
3297 
3298 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3299   // FPTrunc is never a no-op cast, no need to check
3300   SDValue N = getValue(I.getOperand(0));
3301   SDLoc dl = getCurSDLoc();
3302   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3303   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3304   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3305                            DAG.getTargetConstant(
3306                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3307 }
3308 
3309 void SelectionDAGBuilder::visitFPExt(const User &I) {
3310   // FPExt is never a no-op cast, no need to check
3311   SDValue N = getValue(I.getOperand(0));
3312   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3313                                                         I.getType());
3314   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3315 }
3316 
3317 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3318   // FPToUI is never a no-op cast, no need to check
3319   SDValue N = getValue(I.getOperand(0));
3320   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3321                                                         I.getType());
3322   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3323 }
3324 
3325 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3326   // FPToSI is never a no-op cast, no need to check
3327   SDValue N = getValue(I.getOperand(0));
3328   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3329                                                         I.getType());
3330   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3331 }
3332 
3333 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3334   // UIToFP is never a no-op cast, no need to check
3335   SDValue N = getValue(I.getOperand(0));
3336   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3337                                                         I.getType());
3338   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3339 }
3340 
3341 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3342   // SIToFP is never a no-op cast, no need to check
3343   SDValue N = getValue(I.getOperand(0));
3344   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3345                                                         I.getType());
3346   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3347 }
3348 
3349 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3350   // What to do depends on the size of the integer and the size of the pointer.
3351   // We can either truncate, zero extend, or no-op, accordingly.
3352   SDValue N = getValue(I.getOperand(0));
3353   auto &TLI = DAG.getTargetLoweringInfo();
3354   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3355                                                         I.getType());
3356   EVT PtrMemVT =
3357       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3358   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3359   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3360   setValue(&I, N);
3361 }
3362 
3363 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3364   // What to do depends on the size of the integer and the size of the pointer.
3365   // We can either truncate, zero extend, or no-op, accordingly.
3366   SDValue N = getValue(I.getOperand(0));
3367   auto &TLI = DAG.getTargetLoweringInfo();
3368   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3369   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3370   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3371   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3372   setValue(&I, N);
3373 }
3374 
3375 void SelectionDAGBuilder::visitBitCast(const User &I) {
3376   SDValue N = getValue(I.getOperand(0));
3377   SDLoc dl = getCurSDLoc();
3378   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3379                                                         I.getType());
3380 
3381   // BitCast assures us that source and destination are the same size so this is
3382   // either a BITCAST or a no-op.
3383   if (DestVT != N.getValueType())
3384     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3385                              DestVT, N)); // convert types.
3386   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3387   // might fold any kind of constant expression to an integer constant and that
3388   // is not what we are looking for. Only recognize a bitcast of a genuine
3389   // constant integer as an opaque constant.
3390   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3391     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3392                                  /*isOpaque*/true));
3393   else
3394     setValue(&I, N);            // noop cast.
3395 }
3396 
3397 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3398   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3399   const Value *SV = I.getOperand(0);
3400   SDValue N = getValue(SV);
3401   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3402 
3403   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3404   unsigned DestAS = I.getType()->getPointerAddressSpace();
3405 
3406   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3407     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3408 
3409   setValue(&I, N);
3410 }
3411 
3412 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3413   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3414   SDValue InVec = getValue(I.getOperand(0));
3415   SDValue InVal = getValue(I.getOperand(1));
3416   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3417                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3418   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3419                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3420                            InVec, InVal, InIdx));
3421 }
3422 
3423 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3425   SDValue InVec = getValue(I.getOperand(0));
3426   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3427                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3428   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3429                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3430                            InVec, InIdx));
3431 }
3432 
3433 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3434   SDValue Src1 = getValue(I.getOperand(0));
3435   SDValue Src2 = getValue(I.getOperand(1));
3436   ArrayRef<int> Mask;
3437   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3438     Mask = SVI->getShuffleMask();
3439   else
3440     Mask = cast<ConstantExpr>(I).getShuffleMask();
3441   SDLoc DL = getCurSDLoc();
3442   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3443   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3444   EVT SrcVT = Src1.getValueType();
3445 
3446   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3447       VT.isScalableVector()) {
3448     // Canonical splat form of first element of first input vector.
3449     SDValue FirstElt =
3450         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3451                     DAG.getVectorIdxConstant(0, DL));
3452     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3453     return;
3454   }
3455 
3456   // For now, we only handle splats for scalable vectors.
3457   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3458   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3459   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3460 
3461   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3462   unsigned MaskNumElts = Mask.size();
3463 
3464   if (SrcNumElts == MaskNumElts) {
3465     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3466     return;
3467   }
3468 
3469   // Normalize the shuffle vector since mask and vector length don't match.
3470   if (SrcNumElts < MaskNumElts) {
3471     // Mask is longer than the source vectors. We can use concatenate vector to
3472     // make the mask and vectors lengths match.
3473 
3474     if (MaskNumElts % SrcNumElts == 0) {
3475       // Mask length is a multiple of the source vector length.
3476       // Check if the shuffle is some kind of concatenation of the input
3477       // vectors.
3478       unsigned NumConcat = MaskNumElts / SrcNumElts;
3479       bool IsConcat = true;
3480       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3481       for (unsigned i = 0; i != MaskNumElts; ++i) {
3482         int Idx = Mask[i];
3483         if (Idx < 0)
3484           continue;
3485         // Ensure the indices in each SrcVT sized piece are sequential and that
3486         // the same source is used for the whole piece.
3487         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3488             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3489              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3490           IsConcat = false;
3491           break;
3492         }
3493         // Remember which source this index came from.
3494         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3495       }
3496 
3497       // The shuffle is concatenating multiple vectors together. Just emit
3498       // a CONCAT_VECTORS operation.
3499       if (IsConcat) {
3500         SmallVector<SDValue, 8> ConcatOps;
3501         for (auto Src : ConcatSrcs) {
3502           if (Src < 0)
3503             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3504           else if (Src == 0)
3505             ConcatOps.push_back(Src1);
3506           else
3507             ConcatOps.push_back(Src2);
3508         }
3509         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3510         return;
3511       }
3512     }
3513 
3514     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3515     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3516     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3517                                     PaddedMaskNumElts);
3518 
3519     // Pad both vectors with undefs to make them the same length as the mask.
3520     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3521 
3522     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3523     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3524     MOps1[0] = Src1;
3525     MOps2[0] = Src2;
3526 
3527     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3528     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3529 
3530     // Readjust mask for new input vector length.
3531     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3532     for (unsigned i = 0; i != MaskNumElts; ++i) {
3533       int Idx = Mask[i];
3534       if (Idx >= (int)SrcNumElts)
3535         Idx -= SrcNumElts - PaddedMaskNumElts;
3536       MappedOps[i] = Idx;
3537     }
3538 
3539     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3540 
3541     // If the concatenated vector was padded, extract a subvector with the
3542     // correct number of elements.
3543     if (MaskNumElts != PaddedMaskNumElts)
3544       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3545                            DAG.getVectorIdxConstant(0, DL));
3546 
3547     setValue(&I, Result);
3548     return;
3549   }
3550 
3551   if (SrcNumElts > MaskNumElts) {
3552     // Analyze the access pattern of the vector to see if we can extract
3553     // two subvectors and do the shuffle.
3554     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3555     bool CanExtract = true;
3556     for (int Idx : Mask) {
3557       unsigned Input = 0;
3558       if (Idx < 0)
3559         continue;
3560 
3561       if (Idx >= (int)SrcNumElts) {
3562         Input = 1;
3563         Idx -= SrcNumElts;
3564       }
3565 
3566       // If all the indices come from the same MaskNumElts sized portion of
3567       // the sources we can use extract. Also make sure the extract wouldn't
3568       // extract past the end of the source.
3569       int NewStartIdx = alignDown(Idx, MaskNumElts);
3570       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3571           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3572         CanExtract = false;
3573       // Make sure we always update StartIdx as we use it to track if all
3574       // elements are undef.
3575       StartIdx[Input] = NewStartIdx;
3576     }
3577 
3578     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3579       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3580       return;
3581     }
3582     if (CanExtract) {
3583       // Extract appropriate subvector and generate a vector shuffle
3584       for (unsigned Input = 0; Input < 2; ++Input) {
3585         SDValue &Src = Input == 0 ? Src1 : Src2;
3586         if (StartIdx[Input] < 0)
3587           Src = DAG.getUNDEF(VT);
3588         else {
3589           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3590                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3591         }
3592       }
3593 
3594       // Calculate new mask.
3595       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3596       for (int &Idx : MappedOps) {
3597         if (Idx >= (int)SrcNumElts)
3598           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3599         else if (Idx >= 0)
3600           Idx -= StartIdx[0];
3601       }
3602 
3603       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3604       return;
3605     }
3606   }
3607 
3608   // We can't use either concat vectors or extract subvectors so fall back to
3609   // replacing the shuffle with extract and build vector.
3610   // to insert and build vector.
3611   EVT EltVT = VT.getVectorElementType();
3612   SmallVector<SDValue,8> Ops;
3613   for (int Idx : Mask) {
3614     SDValue Res;
3615 
3616     if (Idx < 0) {
3617       Res = DAG.getUNDEF(EltVT);
3618     } else {
3619       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3620       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3621 
3622       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3623                         DAG.getVectorIdxConstant(Idx, DL));
3624     }
3625 
3626     Ops.push_back(Res);
3627   }
3628 
3629   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3630 }
3631 
3632 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3633   ArrayRef<unsigned> Indices;
3634   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3635     Indices = IV->getIndices();
3636   else
3637     Indices = cast<ConstantExpr>(&I)->getIndices();
3638 
3639   const Value *Op0 = I.getOperand(0);
3640   const Value *Op1 = I.getOperand(1);
3641   Type *AggTy = I.getType();
3642   Type *ValTy = Op1->getType();
3643   bool IntoUndef = isa<UndefValue>(Op0);
3644   bool FromUndef = isa<UndefValue>(Op1);
3645 
3646   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3647 
3648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3649   SmallVector<EVT, 4> AggValueVTs;
3650   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3651   SmallVector<EVT, 4> ValValueVTs;
3652   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3653 
3654   unsigned NumAggValues = AggValueVTs.size();
3655   unsigned NumValValues = ValValueVTs.size();
3656   SmallVector<SDValue, 4> Values(NumAggValues);
3657 
3658   // Ignore an insertvalue that produces an empty object
3659   if (!NumAggValues) {
3660     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3661     return;
3662   }
3663 
3664   SDValue Agg = getValue(Op0);
3665   unsigned i = 0;
3666   // Copy the beginning value(s) from the original aggregate.
3667   for (; i != LinearIndex; ++i)
3668     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3669                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3670   // Copy values from the inserted value(s).
3671   if (NumValValues) {
3672     SDValue Val = getValue(Op1);
3673     for (; i != LinearIndex + NumValValues; ++i)
3674       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3675                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3676   }
3677   // Copy remaining value(s) from the original aggregate.
3678   for (; i != NumAggValues; ++i)
3679     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3680                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3681 
3682   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3683                            DAG.getVTList(AggValueVTs), Values));
3684 }
3685 
3686 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3687   ArrayRef<unsigned> Indices;
3688   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3689     Indices = EV->getIndices();
3690   else
3691     Indices = cast<ConstantExpr>(&I)->getIndices();
3692 
3693   const Value *Op0 = I.getOperand(0);
3694   Type *AggTy = Op0->getType();
3695   Type *ValTy = I.getType();
3696   bool OutOfUndef = isa<UndefValue>(Op0);
3697 
3698   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3699 
3700   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3701   SmallVector<EVT, 4> ValValueVTs;
3702   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3703 
3704   unsigned NumValValues = ValValueVTs.size();
3705 
3706   // Ignore a extractvalue that produces an empty object
3707   if (!NumValValues) {
3708     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3709     return;
3710   }
3711 
3712   SmallVector<SDValue, 4> Values(NumValValues);
3713 
3714   SDValue Agg = getValue(Op0);
3715   // Copy out the selected value(s).
3716   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3717     Values[i - LinearIndex] =
3718       OutOfUndef ?
3719         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3720         SDValue(Agg.getNode(), Agg.getResNo() + i);
3721 
3722   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3723                            DAG.getVTList(ValValueVTs), Values));
3724 }
3725 
3726 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3727   Value *Op0 = I.getOperand(0);
3728   // Note that the pointer operand may be a vector of pointers. Take the scalar
3729   // element which holds a pointer.
3730   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3731   SDValue N = getValue(Op0);
3732   SDLoc dl = getCurSDLoc();
3733   auto &TLI = DAG.getTargetLoweringInfo();
3734 
3735   // Normalize Vector GEP - all scalar operands should be converted to the
3736   // splat vector.
3737   bool IsVectorGEP = I.getType()->isVectorTy();
3738   ElementCount VectorElementCount =
3739       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3740                   : ElementCount::getFixed(0);
3741 
3742   if (IsVectorGEP && !N.getValueType().isVector()) {
3743     LLVMContext &Context = *DAG.getContext();
3744     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3745     if (VectorElementCount.isScalable())
3746       N = DAG.getSplatVector(VT, dl, N);
3747     else
3748       N = DAG.getSplatBuildVector(VT, dl, N);
3749   }
3750 
3751   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3752        GTI != E; ++GTI) {
3753     const Value *Idx = GTI.getOperand();
3754     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3755       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3756       if (Field) {
3757         // N = N + Offset
3758         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3759 
3760         // In an inbounds GEP with an offset that is nonnegative even when
3761         // interpreted as signed, assume there is no unsigned overflow.
3762         SDNodeFlags Flags;
3763         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3764           Flags.setNoUnsignedWrap(true);
3765 
3766         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3767                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3768       }
3769     } else {
3770       // IdxSize is the width of the arithmetic according to IR semantics.
3771       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3772       // (and fix up the result later).
3773       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3774       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3775       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3776       // We intentionally mask away the high bits here; ElementSize may not
3777       // fit in IdxTy.
3778       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3779       bool ElementScalable = ElementSize.isScalable();
3780 
3781       // If this is a scalar constant or a splat vector of constants,
3782       // handle it quickly.
3783       const auto *C = dyn_cast<Constant>(Idx);
3784       if (C && isa<VectorType>(C->getType()))
3785         C = C->getSplatValue();
3786 
3787       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3788       if (CI && CI->isZero())
3789         continue;
3790       if (CI && !ElementScalable) {
3791         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3792         LLVMContext &Context = *DAG.getContext();
3793         SDValue OffsVal;
3794         if (IsVectorGEP)
3795           OffsVal = DAG.getConstant(
3796               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3797         else
3798           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3799 
3800         // In an inbounds GEP with an offset that is nonnegative even when
3801         // interpreted as signed, assume there is no unsigned overflow.
3802         SDNodeFlags Flags;
3803         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3804           Flags.setNoUnsignedWrap(true);
3805 
3806         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3807 
3808         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3809         continue;
3810       }
3811 
3812       // N = N + Idx * ElementMul;
3813       SDValue IdxN = getValue(Idx);
3814 
3815       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3816         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3817                                   VectorElementCount);
3818         if (VectorElementCount.isScalable())
3819           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3820         else
3821           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3822       }
3823 
3824       // If the index is smaller or larger than intptr_t, truncate or extend
3825       // it.
3826       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3827 
3828       if (ElementScalable) {
3829         EVT VScaleTy = N.getValueType().getScalarType();
3830         SDValue VScale = DAG.getNode(
3831             ISD::VSCALE, dl, VScaleTy,
3832             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3833         if (IsVectorGEP)
3834           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3835         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3836       } else {
3837         // If this is a multiply by a power of two, turn it into a shl
3838         // immediately.  This is a very common case.
3839         if (ElementMul != 1) {
3840           if (ElementMul.isPowerOf2()) {
3841             unsigned Amt = ElementMul.logBase2();
3842             IdxN = DAG.getNode(ISD::SHL, dl,
3843                                N.getValueType(), IdxN,
3844                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3845           } else {
3846             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3847                                             IdxN.getValueType());
3848             IdxN = DAG.getNode(ISD::MUL, dl,
3849                                N.getValueType(), IdxN, Scale);
3850           }
3851         }
3852       }
3853 
3854       N = DAG.getNode(ISD::ADD, dl,
3855                       N.getValueType(), N, IdxN);
3856     }
3857   }
3858 
3859   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3860   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3861   if (IsVectorGEP) {
3862     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3863     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3864   }
3865 
3866   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3867     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3868 
3869   setValue(&I, N);
3870 }
3871 
3872 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3873   // If this is a fixed sized alloca in the entry block of the function,
3874   // allocate it statically on the stack.
3875   if (FuncInfo.StaticAllocaMap.count(&I))
3876     return;   // getValue will auto-populate this.
3877 
3878   SDLoc dl = getCurSDLoc();
3879   Type *Ty = I.getAllocatedType();
3880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3881   auto &DL = DAG.getDataLayout();
3882   uint64_t TySize = DL.getTypeAllocSize(Ty);
3883   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3884 
3885   SDValue AllocSize = getValue(I.getArraySize());
3886 
3887   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3888   if (AllocSize.getValueType() != IntPtr)
3889     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3890 
3891   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3892                           AllocSize,
3893                           DAG.getConstant(TySize, dl, IntPtr));
3894 
3895   // Handle alignment.  If the requested alignment is less than or equal to
3896   // the stack alignment, ignore it.  If the size is greater than or equal to
3897   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3898   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3899   if (*Alignment <= StackAlign)
3900     Alignment = None;
3901 
3902   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3903   // Round the size of the allocation up to the stack alignment size
3904   // by add SA-1 to the size. This doesn't overflow because we're computing
3905   // an address inside an alloca.
3906   SDNodeFlags Flags;
3907   Flags.setNoUnsignedWrap(true);
3908   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3909                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3910 
3911   // Mask out the low bits for alignment purposes.
3912   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3913                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3914 
3915   SDValue Ops[] = {
3916       getRoot(), AllocSize,
3917       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3918   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3919   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3920   setValue(&I, DSA);
3921   DAG.setRoot(DSA.getValue(1));
3922 
3923   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3924 }
3925 
3926 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3927   if (I.isAtomic())
3928     return visitAtomicLoad(I);
3929 
3930   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3931   const Value *SV = I.getOperand(0);
3932   if (TLI.supportSwiftError()) {
3933     // Swifterror values can come from either a function parameter with
3934     // swifterror attribute or an alloca with swifterror attribute.
3935     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3936       if (Arg->hasSwiftErrorAttr())
3937         return visitLoadFromSwiftError(I);
3938     }
3939 
3940     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3941       if (Alloca->isSwiftError())
3942         return visitLoadFromSwiftError(I);
3943     }
3944   }
3945 
3946   SDValue Ptr = getValue(SV);
3947 
3948   Type *Ty = I.getType();
3949   Align Alignment = I.getAlign();
3950 
3951   AAMDNodes AAInfo;
3952   I.getAAMetadata(AAInfo);
3953   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3954 
3955   SmallVector<EVT, 4> ValueVTs, MemVTs;
3956   SmallVector<uint64_t, 4> Offsets;
3957   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3958   unsigned NumValues = ValueVTs.size();
3959   if (NumValues == 0)
3960     return;
3961 
3962   bool isVolatile = I.isVolatile();
3963 
3964   SDValue Root;
3965   bool ConstantMemory = false;
3966   if (isVolatile)
3967     // Serialize volatile loads with other side effects.
3968     Root = getRoot();
3969   else if (NumValues > MaxParallelChains)
3970     Root = getMemoryRoot();
3971   else if (AA &&
3972            AA->pointsToConstantMemory(MemoryLocation(
3973                SV,
3974                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3975                AAInfo))) {
3976     // Do not serialize (non-volatile) loads of constant memory with anything.
3977     Root = DAG.getEntryNode();
3978     ConstantMemory = true;
3979   } else {
3980     // Do not serialize non-volatile loads against each other.
3981     Root = DAG.getRoot();
3982   }
3983 
3984   SDLoc dl = getCurSDLoc();
3985 
3986   if (isVolatile)
3987     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3988 
3989   // An aggregate load cannot wrap around the address space, so offsets to its
3990   // parts don't wrap either.
3991   SDNodeFlags Flags;
3992   Flags.setNoUnsignedWrap(true);
3993 
3994   SmallVector<SDValue, 4> Values(NumValues);
3995   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3996   EVT PtrVT = Ptr.getValueType();
3997 
3998   MachineMemOperand::Flags MMOFlags
3999     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4000 
4001   unsigned ChainI = 0;
4002   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4003     // Serializing loads here may result in excessive register pressure, and
4004     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4005     // could recover a bit by hoisting nodes upward in the chain by recognizing
4006     // they are side-effect free or do not alias. The optimizer should really
4007     // avoid this case by converting large object/array copies to llvm.memcpy
4008     // (MaxParallelChains should always remain as failsafe).
4009     if (ChainI == MaxParallelChains) {
4010       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4011       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4012                                   makeArrayRef(Chains.data(), ChainI));
4013       Root = Chain;
4014       ChainI = 0;
4015     }
4016     SDValue A = DAG.getNode(ISD::ADD, dl,
4017                             PtrVT, Ptr,
4018                             DAG.getConstant(Offsets[i], dl, PtrVT),
4019                             Flags);
4020 
4021     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4022                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4023                             MMOFlags, AAInfo, Ranges);
4024     Chains[ChainI] = L.getValue(1);
4025 
4026     if (MemVTs[i] != ValueVTs[i])
4027       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4028 
4029     Values[i] = L;
4030   }
4031 
4032   if (!ConstantMemory) {
4033     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4034                                 makeArrayRef(Chains.data(), ChainI));
4035     if (isVolatile)
4036       DAG.setRoot(Chain);
4037     else
4038       PendingLoads.push_back(Chain);
4039   }
4040 
4041   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4042                            DAG.getVTList(ValueVTs), Values));
4043 }
4044 
4045 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4046   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4047          "call visitStoreToSwiftError when backend supports swifterror");
4048 
4049   SmallVector<EVT, 4> ValueVTs;
4050   SmallVector<uint64_t, 4> Offsets;
4051   const Value *SrcV = I.getOperand(0);
4052   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4053                   SrcV->getType(), ValueVTs, &Offsets);
4054   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4055          "expect a single EVT for swifterror");
4056 
4057   SDValue Src = getValue(SrcV);
4058   // Create a virtual register, then update the virtual register.
4059   Register VReg =
4060       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4061   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4062   // Chain can be getRoot or getControlRoot.
4063   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4064                                       SDValue(Src.getNode(), Src.getResNo()));
4065   DAG.setRoot(CopyNode);
4066 }
4067 
4068 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4069   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4070          "call visitLoadFromSwiftError when backend supports swifterror");
4071 
4072   assert(!I.isVolatile() &&
4073          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4074          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4075          "Support volatile, non temporal, invariant for load_from_swift_error");
4076 
4077   const Value *SV = I.getOperand(0);
4078   Type *Ty = I.getType();
4079   AAMDNodes AAInfo;
4080   I.getAAMetadata(AAInfo);
4081   assert(
4082       (!AA ||
4083        !AA->pointsToConstantMemory(MemoryLocation(
4084            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4085            AAInfo))) &&
4086       "load_from_swift_error should not be constant memory");
4087 
4088   SmallVector<EVT, 4> ValueVTs;
4089   SmallVector<uint64_t, 4> Offsets;
4090   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4091                   ValueVTs, &Offsets);
4092   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4093          "expect a single EVT for swifterror");
4094 
4095   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4096   SDValue L = DAG.getCopyFromReg(
4097       getRoot(), getCurSDLoc(),
4098       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4099 
4100   setValue(&I, L);
4101 }
4102 
4103 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4104   if (I.isAtomic())
4105     return visitAtomicStore(I);
4106 
4107   const Value *SrcV = I.getOperand(0);
4108   const Value *PtrV = I.getOperand(1);
4109 
4110   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4111   if (TLI.supportSwiftError()) {
4112     // Swifterror values can come from either a function parameter with
4113     // swifterror attribute or an alloca with swifterror attribute.
4114     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4115       if (Arg->hasSwiftErrorAttr())
4116         return visitStoreToSwiftError(I);
4117     }
4118 
4119     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4120       if (Alloca->isSwiftError())
4121         return visitStoreToSwiftError(I);
4122     }
4123   }
4124 
4125   SmallVector<EVT, 4> ValueVTs, MemVTs;
4126   SmallVector<uint64_t, 4> Offsets;
4127   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4128                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4129   unsigned NumValues = ValueVTs.size();
4130   if (NumValues == 0)
4131     return;
4132 
4133   // Get the lowered operands. Note that we do this after
4134   // checking if NumResults is zero, because with zero results
4135   // the operands won't have values in the map.
4136   SDValue Src = getValue(SrcV);
4137   SDValue Ptr = getValue(PtrV);
4138 
4139   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4140   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4141   SDLoc dl = getCurSDLoc();
4142   Align Alignment = I.getAlign();
4143   AAMDNodes AAInfo;
4144   I.getAAMetadata(AAInfo);
4145 
4146   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4147 
4148   // An aggregate load cannot wrap around the address space, so offsets to its
4149   // parts don't wrap either.
4150   SDNodeFlags Flags;
4151   Flags.setNoUnsignedWrap(true);
4152 
4153   unsigned ChainI = 0;
4154   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4155     // See visitLoad comments.
4156     if (ChainI == MaxParallelChains) {
4157       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4158                                   makeArrayRef(Chains.data(), ChainI));
4159       Root = Chain;
4160       ChainI = 0;
4161     }
4162     SDValue Add =
4163         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4164     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4165     if (MemVTs[i] != ValueVTs[i])
4166       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4167     SDValue St =
4168         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4169                      Alignment, MMOFlags, AAInfo);
4170     Chains[ChainI] = St;
4171   }
4172 
4173   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4174                                   makeArrayRef(Chains.data(), ChainI));
4175   DAG.setRoot(StoreNode);
4176 }
4177 
4178 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4179                                            bool IsCompressing) {
4180   SDLoc sdl = getCurSDLoc();
4181 
4182   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4183                                MaybeAlign &Alignment) {
4184     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4185     Src0 = I.getArgOperand(0);
4186     Ptr = I.getArgOperand(1);
4187     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4188     Mask = I.getArgOperand(3);
4189   };
4190   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4191                                     MaybeAlign &Alignment) {
4192     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4193     Src0 = I.getArgOperand(0);
4194     Ptr = I.getArgOperand(1);
4195     Mask = I.getArgOperand(2);
4196     Alignment = None;
4197   };
4198 
4199   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4200   MaybeAlign Alignment;
4201   if (IsCompressing)
4202     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4203   else
4204     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4205 
4206   SDValue Ptr = getValue(PtrOperand);
4207   SDValue Src0 = getValue(Src0Operand);
4208   SDValue Mask = getValue(MaskOperand);
4209   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4210 
4211   EVT VT = Src0.getValueType();
4212   if (!Alignment)
4213     Alignment = DAG.getEVTAlign(VT);
4214 
4215   AAMDNodes AAInfo;
4216   I.getAAMetadata(AAInfo);
4217 
4218   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4219       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4220       // TODO: Make MachineMemOperands aware of scalable
4221       // vectors.
4222       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4223   SDValue StoreNode =
4224       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4225                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4226   DAG.setRoot(StoreNode);
4227   setValue(&I, StoreNode);
4228 }
4229 
4230 // Get a uniform base for the Gather/Scatter intrinsic.
4231 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4232 // We try to represent it as a base pointer + vector of indices.
4233 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4234 // The first operand of the GEP may be a single pointer or a vector of pointers
4235 // Example:
4236 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4237 //  or
4238 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4239 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4240 //
4241 // When the first GEP operand is a single pointer - it is the uniform base we
4242 // are looking for. If first operand of the GEP is a splat vector - we
4243 // extract the splat value and use it as a uniform base.
4244 // In all other cases the function returns 'false'.
4245 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4246                            ISD::MemIndexType &IndexType, SDValue &Scale,
4247                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4248   SelectionDAG& DAG = SDB->DAG;
4249   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4250   const DataLayout &DL = DAG.getDataLayout();
4251 
4252   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4253 
4254   // Handle splat constant pointer.
4255   if (auto *C = dyn_cast<Constant>(Ptr)) {
4256     C = C->getSplatValue();
4257     if (!C)
4258       return false;
4259 
4260     Base = SDB->getValue(C);
4261 
4262     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4263     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4264     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4265     IndexType = ISD::SIGNED_SCALED;
4266     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4267     return true;
4268   }
4269 
4270   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4271   if (!GEP || GEP->getParent() != CurBB)
4272     return false;
4273 
4274   if (GEP->getNumOperands() != 2)
4275     return false;
4276 
4277   const Value *BasePtr = GEP->getPointerOperand();
4278   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4279 
4280   // Make sure the base is scalar and the index is a vector.
4281   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4282     return false;
4283 
4284   Base = SDB->getValue(BasePtr);
4285   Index = SDB->getValue(IndexVal);
4286   IndexType = ISD::SIGNED_SCALED;
4287   Scale = DAG.getTargetConstant(
4288               DL.getTypeAllocSize(GEP->getResultElementType()),
4289               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4290   return true;
4291 }
4292 
4293 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4294   SDLoc sdl = getCurSDLoc();
4295 
4296   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4297   const Value *Ptr = I.getArgOperand(1);
4298   SDValue Src0 = getValue(I.getArgOperand(0));
4299   SDValue Mask = getValue(I.getArgOperand(3));
4300   EVT VT = Src0.getValueType();
4301   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4302                         ->getMaybeAlignValue()
4303                         .getValueOr(DAG.getEVTAlign(VT));
4304   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4305 
4306   AAMDNodes AAInfo;
4307   I.getAAMetadata(AAInfo);
4308 
4309   SDValue Base;
4310   SDValue Index;
4311   ISD::MemIndexType IndexType;
4312   SDValue Scale;
4313   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4314                                     I.getParent());
4315 
4316   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4317   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4318       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4319       // TODO: Make MachineMemOperands aware of scalable
4320       // vectors.
4321       MemoryLocation::UnknownSize, Alignment, AAInfo);
4322   if (!UniformBase) {
4323     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4324     Index = getValue(Ptr);
4325     IndexType = ISD::SIGNED_SCALED;
4326     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4327   }
4328   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4329   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4330                                          Ops, MMO, IndexType);
4331   DAG.setRoot(Scatter);
4332   setValue(&I, Scatter);
4333 }
4334 
4335 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4336   SDLoc sdl = getCurSDLoc();
4337 
4338   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4339                               MaybeAlign &Alignment) {
4340     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4341     Ptr = I.getArgOperand(0);
4342     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4343     Mask = I.getArgOperand(2);
4344     Src0 = I.getArgOperand(3);
4345   };
4346   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4347                                  MaybeAlign &Alignment) {
4348     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4349     Ptr = I.getArgOperand(0);
4350     Alignment = None;
4351     Mask = I.getArgOperand(1);
4352     Src0 = I.getArgOperand(2);
4353   };
4354 
4355   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4356   MaybeAlign Alignment;
4357   if (IsExpanding)
4358     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4359   else
4360     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4361 
4362   SDValue Ptr = getValue(PtrOperand);
4363   SDValue Src0 = getValue(Src0Operand);
4364   SDValue Mask = getValue(MaskOperand);
4365   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4366 
4367   EVT VT = Src0.getValueType();
4368   if (!Alignment)
4369     Alignment = DAG.getEVTAlign(VT);
4370 
4371   AAMDNodes AAInfo;
4372   I.getAAMetadata(AAInfo);
4373   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4374 
4375   // Do not serialize masked loads of constant memory with anything.
4376   MemoryLocation ML;
4377   if (VT.isScalableVector())
4378     ML = MemoryLocation(PtrOperand);
4379   else
4380     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4381                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4382                            AAInfo);
4383   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4384 
4385   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4386 
4387   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4388       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4389       // TODO: Make MachineMemOperands aware of scalable
4390       // vectors.
4391       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4392 
4393   SDValue Load =
4394       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4395                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4396   if (AddToChain)
4397     PendingLoads.push_back(Load.getValue(1));
4398   setValue(&I, Load);
4399 }
4400 
4401 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4402   SDLoc sdl = getCurSDLoc();
4403 
4404   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4405   const Value *Ptr = I.getArgOperand(0);
4406   SDValue Src0 = getValue(I.getArgOperand(3));
4407   SDValue Mask = getValue(I.getArgOperand(2));
4408 
4409   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4410   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4411   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4412                         ->getMaybeAlignValue()
4413                         .getValueOr(DAG.getEVTAlign(VT));
4414 
4415   AAMDNodes AAInfo;
4416   I.getAAMetadata(AAInfo);
4417   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4418 
4419   SDValue Root = DAG.getRoot();
4420   SDValue Base;
4421   SDValue Index;
4422   ISD::MemIndexType IndexType;
4423   SDValue Scale;
4424   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4425                                     I.getParent());
4426   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4427   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4428       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4429       // TODO: Make MachineMemOperands aware of scalable
4430       // vectors.
4431       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4432 
4433   if (!UniformBase) {
4434     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4435     Index = getValue(Ptr);
4436     IndexType = ISD::SIGNED_SCALED;
4437     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4438   }
4439   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4440   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4441                                        Ops, MMO, IndexType);
4442 
4443   PendingLoads.push_back(Gather.getValue(1));
4444   setValue(&I, Gather);
4445 }
4446 
4447 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4448   SDLoc dl = getCurSDLoc();
4449   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4450   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4451   SyncScope::ID SSID = I.getSyncScopeID();
4452 
4453   SDValue InChain = getRoot();
4454 
4455   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4456   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4457 
4458   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4459   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4460 
4461   MachineFunction &MF = DAG.getMachineFunction();
4462   MachineMemOperand *MMO = MF.getMachineMemOperand(
4463       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4464       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4465       FailureOrdering);
4466 
4467   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4468                                    dl, MemVT, VTs, InChain,
4469                                    getValue(I.getPointerOperand()),
4470                                    getValue(I.getCompareOperand()),
4471                                    getValue(I.getNewValOperand()), MMO);
4472 
4473   SDValue OutChain = L.getValue(2);
4474 
4475   setValue(&I, L);
4476   DAG.setRoot(OutChain);
4477 }
4478 
4479 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4480   SDLoc dl = getCurSDLoc();
4481   ISD::NodeType NT;
4482   switch (I.getOperation()) {
4483   default: llvm_unreachable("Unknown atomicrmw operation");
4484   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4485   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4486   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4487   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4488   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4489   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4490   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4491   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4492   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4493   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4494   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4495   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4496   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4497   }
4498   AtomicOrdering Ordering = I.getOrdering();
4499   SyncScope::ID SSID = I.getSyncScopeID();
4500 
4501   SDValue InChain = getRoot();
4502 
4503   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4504   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4505   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4506 
4507   MachineFunction &MF = DAG.getMachineFunction();
4508   MachineMemOperand *MMO = MF.getMachineMemOperand(
4509       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4510       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4511 
4512   SDValue L =
4513     DAG.getAtomic(NT, dl, MemVT, InChain,
4514                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4515                   MMO);
4516 
4517   SDValue OutChain = L.getValue(1);
4518 
4519   setValue(&I, L);
4520   DAG.setRoot(OutChain);
4521 }
4522 
4523 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4524   SDLoc dl = getCurSDLoc();
4525   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4526   SDValue Ops[3];
4527   Ops[0] = getRoot();
4528   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4529                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4530   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4531                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4532   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4533 }
4534 
4535 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4536   SDLoc dl = getCurSDLoc();
4537   AtomicOrdering Order = I.getOrdering();
4538   SyncScope::ID SSID = I.getSyncScopeID();
4539 
4540   SDValue InChain = getRoot();
4541 
4542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4543   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4544   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4545 
4546   if (!TLI.supportsUnalignedAtomics() &&
4547       I.getAlignment() < MemVT.getSizeInBits() / 8)
4548     report_fatal_error("Cannot generate unaligned atomic load");
4549 
4550   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4551 
4552   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4553       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4554       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4555 
4556   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4557 
4558   SDValue Ptr = getValue(I.getPointerOperand());
4559 
4560   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4561     // TODO: Once this is better exercised by tests, it should be merged with
4562     // the normal path for loads to prevent future divergence.
4563     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4564     if (MemVT != VT)
4565       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4566 
4567     setValue(&I, L);
4568     SDValue OutChain = L.getValue(1);
4569     if (!I.isUnordered())
4570       DAG.setRoot(OutChain);
4571     else
4572       PendingLoads.push_back(OutChain);
4573     return;
4574   }
4575 
4576   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4577                             Ptr, MMO);
4578 
4579   SDValue OutChain = L.getValue(1);
4580   if (MemVT != VT)
4581     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4582 
4583   setValue(&I, L);
4584   DAG.setRoot(OutChain);
4585 }
4586 
4587 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4588   SDLoc dl = getCurSDLoc();
4589 
4590   AtomicOrdering Ordering = I.getOrdering();
4591   SyncScope::ID SSID = I.getSyncScopeID();
4592 
4593   SDValue InChain = getRoot();
4594 
4595   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4596   EVT MemVT =
4597       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4598 
4599   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4600     report_fatal_error("Cannot generate unaligned atomic store");
4601 
4602   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4603 
4604   MachineFunction &MF = DAG.getMachineFunction();
4605   MachineMemOperand *MMO = MF.getMachineMemOperand(
4606       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4607       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4608 
4609   SDValue Val = getValue(I.getValueOperand());
4610   if (Val.getValueType() != MemVT)
4611     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4612   SDValue Ptr = getValue(I.getPointerOperand());
4613 
4614   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4615     // TODO: Once this is better exercised by tests, it should be merged with
4616     // the normal path for stores to prevent future divergence.
4617     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4618     DAG.setRoot(S);
4619     return;
4620   }
4621   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4622                                    Ptr, Val, MMO);
4623 
4624 
4625   DAG.setRoot(OutChain);
4626 }
4627 
4628 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4629 /// node.
4630 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4631                                                unsigned Intrinsic) {
4632   // Ignore the callsite's attributes. A specific call site may be marked with
4633   // readnone, but the lowering code will expect the chain based on the
4634   // definition.
4635   const Function *F = I.getCalledFunction();
4636   bool HasChain = !F->doesNotAccessMemory();
4637   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4638 
4639   // Build the operand list.
4640   SmallVector<SDValue, 8> Ops;
4641   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4642     if (OnlyLoad) {
4643       // We don't need to serialize loads against other loads.
4644       Ops.push_back(DAG.getRoot());
4645     } else {
4646       Ops.push_back(getRoot());
4647     }
4648   }
4649 
4650   // Info is set by getTgtMemInstrinsic
4651   TargetLowering::IntrinsicInfo Info;
4652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4653   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4654                                                DAG.getMachineFunction(),
4655                                                Intrinsic);
4656 
4657   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4658   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4659       Info.opc == ISD::INTRINSIC_W_CHAIN)
4660     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4661                                         TLI.getPointerTy(DAG.getDataLayout())));
4662 
4663   // Add all operands of the call to the operand list.
4664   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4665     const Value *Arg = I.getArgOperand(i);
4666     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4667       Ops.push_back(getValue(Arg));
4668       continue;
4669     }
4670 
4671     // Use TargetConstant instead of a regular constant for immarg.
4672     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4673     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4674       assert(CI->getBitWidth() <= 64 &&
4675              "large intrinsic immediates not handled");
4676       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4677     } else {
4678       Ops.push_back(
4679           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4680     }
4681   }
4682 
4683   SmallVector<EVT, 4> ValueVTs;
4684   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4685 
4686   if (HasChain)
4687     ValueVTs.push_back(MVT::Other);
4688 
4689   SDVTList VTs = DAG.getVTList(ValueVTs);
4690 
4691   // Create the node.
4692   SDValue Result;
4693   if (IsTgtIntrinsic) {
4694     // This is target intrinsic that touches memory
4695     AAMDNodes AAInfo;
4696     I.getAAMetadata(AAInfo);
4697     Result =
4698         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4699                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4700                                 Info.align, Info.flags, Info.size, AAInfo);
4701   } else if (!HasChain) {
4702     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4703   } else if (!I.getType()->isVoidTy()) {
4704     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4705   } else {
4706     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4707   }
4708 
4709   if (HasChain) {
4710     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4711     if (OnlyLoad)
4712       PendingLoads.push_back(Chain);
4713     else
4714       DAG.setRoot(Chain);
4715   }
4716 
4717   if (!I.getType()->isVoidTy()) {
4718     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4719       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4720       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4721     } else
4722       Result = lowerRangeToAssertZExt(DAG, I, Result);
4723 
4724     MaybeAlign Alignment = I.getRetAlign();
4725     if (!Alignment)
4726       Alignment = F->getAttributes().getRetAlignment();
4727     // Insert `assertalign` node if there's an alignment.
4728     if (InsertAssertAlign && Alignment) {
4729       Result =
4730           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4731     }
4732 
4733     setValue(&I, Result);
4734   }
4735 }
4736 
4737 /// GetSignificand - Get the significand and build it into a floating-point
4738 /// number with exponent of 1:
4739 ///
4740 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4741 ///
4742 /// where Op is the hexadecimal representation of floating point value.
4743 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4744   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4745                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4746   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4747                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4748   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4749 }
4750 
4751 /// GetExponent - Get the exponent:
4752 ///
4753 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4754 ///
4755 /// where Op is the hexadecimal representation of floating point value.
4756 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4757                            const TargetLowering &TLI, const SDLoc &dl) {
4758   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4759                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4760   SDValue t1 = DAG.getNode(
4761       ISD::SRL, dl, MVT::i32, t0,
4762       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4763   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4764                            DAG.getConstant(127, dl, MVT::i32));
4765   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4766 }
4767 
4768 /// getF32Constant - Get 32-bit floating point constant.
4769 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4770                               const SDLoc &dl) {
4771   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4772                            MVT::f32);
4773 }
4774 
4775 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4776                                        SelectionDAG &DAG) {
4777   // TODO: What fast-math-flags should be set on the floating-point nodes?
4778 
4779   //   IntegerPartOfX = ((int32_t)(t0);
4780   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4781 
4782   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4783   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4784   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4785 
4786   //   IntegerPartOfX <<= 23;
4787   IntegerPartOfX = DAG.getNode(
4788       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4789       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4790                                   DAG.getDataLayout())));
4791 
4792   SDValue TwoToFractionalPartOfX;
4793   if (LimitFloatPrecision <= 6) {
4794     // For floating-point precision of 6:
4795     //
4796     //   TwoToFractionalPartOfX =
4797     //     0.997535578f +
4798     //       (0.735607626f + 0.252464424f * x) * x;
4799     //
4800     // error 0.0144103317, which is 6 bits
4801     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4802                              getF32Constant(DAG, 0x3e814304, dl));
4803     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4804                              getF32Constant(DAG, 0x3f3c50c8, dl));
4805     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4806     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4807                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4808   } else if (LimitFloatPrecision <= 12) {
4809     // For floating-point precision of 12:
4810     //
4811     //   TwoToFractionalPartOfX =
4812     //     0.999892986f +
4813     //       (0.696457318f +
4814     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4815     //
4816     // error 0.000107046256, which is 13 to 14 bits
4817     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4818                              getF32Constant(DAG, 0x3da235e3, dl));
4819     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4820                              getF32Constant(DAG, 0x3e65b8f3, dl));
4821     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4822     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4823                              getF32Constant(DAG, 0x3f324b07, dl));
4824     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4825     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4826                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4827   } else { // LimitFloatPrecision <= 18
4828     // For floating-point precision of 18:
4829     //
4830     //   TwoToFractionalPartOfX =
4831     //     0.999999982f +
4832     //       (0.693148872f +
4833     //         (0.240227044f +
4834     //           (0.554906021e-1f +
4835     //             (0.961591928e-2f +
4836     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4837     // error 2.47208000*10^(-7), which is better than 18 bits
4838     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4839                              getF32Constant(DAG, 0x3924b03e, dl));
4840     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4841                              getF32Constant(DAG, 0x3ab24b87, dl));
4842     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4843     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4844                              getF32Constant(DAG, 0x3c1d8c17, dl));
4845     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4846     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4847                              getF32Constant(DAG, 0x3d634a1d, dl));
4848     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4849     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4850                              getF32Constant(DAG, 0x3e75fe14, dl));
4851     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4852     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4853                               getF32Constant(DAG, 0x3f317234, dl));
4854     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4855     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4856                                          getF32Constant(DAG, 0x3f800000, dl));
4857   }
4858 
4859   // Add the exponent into the result in integer domain.
4860   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4861   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4862                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4863 }
4864 
4865 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4866 /// limited-precision mode.
4867 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4868                          const TargetLowering &TLI, SDNodeFlags Flags) {
4869   if (Op.getValueType() == MVT::f32 &&
4870       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4871 
4872     // Put the exponent in the right bit position for later addition to the
4873     // final result:
4874     //
4875     // t0 = Op * log2(e)
4876 
4877     // TODO: What fast-math-flags should be set here?
4878     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4879                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4880     return getLimitedPrecisionExp2(t0, dl, DAG);
4881   }
4882 
4883   // No special expansion.
4884   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
4885 }
4886 
4887 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4888 /// limited-precision mode.
4889 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4890                          const TargetLowering &TLI, SDNodeFlags Flags) {
4891   // TODO: What fast-math-flags should be set on the floating-point nodes?
4892 
4893   if (Op.getValueType() == MVT::f32 &&
4894       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4895     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4896 
4897     // Scale the exponent by log(2).
4898     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4899     SDValue LogOfExponent =
4900         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4901                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4902 
4903     // Get the significand and build it into a floating-point number with
4904     // exponent of 1.
4905     SDValue X = GetSignificand(DAG, Op1, dl);
4906 
4907     SDValue LogOfMantissa;
4908     if (LimitFloatPrecision <= 6) {
4909       // For floating-point precision of 6:
4910       //
4911       //   LogofMantissa =
4912       //     -1.1609546f +
4913       //       (1.4034025f - 0.23903021f * x) * x;
4914       //
4915       // error 0.0034276066, which is better than 8 bits
4916       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4917                                getF32Constant(DAG, 0xbe74c456, dl));
4918       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4919                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4920       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4921       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4922                                   getF32Constant(DAG, 0x3f949a29, dl));
4923     } else if (LimitFloatPrecision <= 12) {
4924       // For floating-point precision of 12:
4925       //
4926       //   LogOfMantissa =
4927       //     -1.7417939f +
4928       //       (2.8212026f +
4929       //         (-1.4699568f +
4930       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4931       //
4932       // error 0.000061011436, which is 14 bits
4933       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4934                                getF32Constant(DAG, 0xbd67b6d6, dl));
4935       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4936                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4937       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4938       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4939                                getF32Constant(DAG, 0x3fbc278b, dl));
4940       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4941       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4942                                getF32Constant(DAG, 0x40348e95, dl));
4943       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4944       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4945                                   getF32Constant(DAG, 0x3fdef31a, dl));
4946     } else { // LimitFloatPrecision <= 18
4947       // For floating-point precision of 18:
4948       //
4949       //   LogOfMantissa =
4950       //     -2.1072184f +
4951       //       (4.2372794f +
4952       //         (-3.7029485f +
4953       //           (2.2781945f +
4954       //             (-0.87823314f +
4955       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4956       //
4957       // error 0.0000023660568, which is better than 18 bits
4958       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4959                                getF32Constant(DAG, 0xbc91e5ac, dl));
4960       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4961                                getF32Constant(DAG, 0x3e4350aa, dl));
4962       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4963       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4964                                getF32Constant(DAG, 0x3f60d3e3, dl));
4965       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4966       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4967                                getF32Constant(DAG, 0x4011cdf0, dl));
4968       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4969       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4970                                getF32Constant(DAG, 0x406cfd1c, dl));
4971       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4972       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4973                                getF32Constant(DAG, 0x408797cb, dl));
4974       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4975       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4976                                   getF32Constant(DAG, 0x4006dcab, dl));
4977     }
4978 
4979     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4980   }
4981 
4982   // No special expansion.
4983   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
4984 }
4985 
4986 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4987 /// limited-precision mode.
4988 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4989                           const TargetLowering &TLI, SDNodeFlags Flags) {
4990   // TODO: What fast-math-flags should be set on the floating-point nodes?
4991 
4992   if (Op.getValueType() == MVT::f32 &&
4993       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4994     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4995 
4996     // Get the exponent.
4997     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4998 
4999     // Get the significand and build it into a floating-point number with
5000     // exponent of 1.
5001     SDValue X = GetSignificand(DAG, Op1, dl);
5002 
5003     // Different possible minimax approximations of significand in
5004     // floating-point for various degrees of accuracy over [1,2].
5005     SDValue Log2ofMantissa;
5006     if (LimitFloatPrecision <= 6) {
5007       // For floating-point precision of 6:
5008       //
5009       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5010       //
5011       // error 0.0049451742, which is more than 7 bits
5012       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5013                                getF32Constant(DAG, 0xbeb08fe0, dl));
5014       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5015                                getF32Constant(DAG, 0x40019463, dl));
5016       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5017       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5018                                    getF32Constant(DAG, 0x3fd6633d, dl));
5019     } else if (LimitFloatPrecision <= 12) {
5020       // For floating-point precision of 12:
5021       //
5022       //   Log2ofMantissa =
5023       //     -2.51285454f +
5024       //       (4.07009056f +
5025       //         (-2.12067489f +
5026       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5027       //
5028       // error 0.0000876136000, which is better than 13 bits
5029       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5030                                getF32Constant(DAG, 0xbda7262e, dl));
5031       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5032                                getF32Constant(DAG, 0x3f25280b, dl));
5033       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5034       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5035                                getF32Constant(DAG, 0x4007b923, dl));
5036       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5037       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5038                                getF32Constant(DAG, 0x40823e2f, dl));
5039       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5040       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5041                                    getF32Constant(DAG, 0x4020d29c, dl));
5042     } else { // LimitFloatPrecision <= 18
5043       // For floating-point precision of 18:
5044       //
5045       //   Log2ofMantissa =
5046       //     -3.0400495f +
5047       //       (6.1129976f +
5048       //         (-5.3420409f +
5049       //           (3.2865683f +
5050       //             (-1.2669343f +
5051       //               (0.27515199f -
5052       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5053       //
5054       // error 0.0000018516, which is better than 18 bits
5055       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5056                                getF32Constant(DAG, 0xbcd2769e, dl));
5057       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5058                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5059       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5060       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5061                                getF32Constant(DAG, 0x3fa22ae7, dl));
5062       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5063       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5064                                getF32Constant(DAG, 0x40525723, dl));
5065       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5066       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5067                                getF32Constant(DAG, 0x40aaf200, dl));
5068       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5069       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5070                                getF32Constant(DAG, 0x40c39dad, dl));
5071       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5072       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5073                                    getF32Constant(DAG, 0x4042902c, dl));
5074     }
5075 
5076     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5077   }
5078 
5079   // No special expansion.
5080   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5081 }
5082 
5083 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5084 /// limited-precision mode.
5085 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5086                            const TargetLowering &TLI, SDNodeFlags Flags) {
5087   // TODO: What fast-math-flags should be set on the floating-point nodes?
5088 
5089   if (Op.getValueType() == MVT::f32 &&
5090       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5091     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5092 
5093     // Scale the exponent by log10(2) [0.30102999f].
5094     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5095     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5096                                         getF32Constant(DAG, 0x3e9a209a, dl));
5097 
5098     // Get the significand and build it into a floating-point number with
5099     // exponent of 1.
5100     SDValue X = GetSignificand(DAG, Op1, dl);
5101 
5102     SDValue Log10ofMantissa;
5103     if (LimitFloatPrecision <= 6) {
5104       // For floating-point precision of 6:
5105       //
5106       //   Log10ofMantissa =
5107       //     -0.50419619f +
5108       //       (0.60948995f - 0.10380950f * x) * x;
5109       //
5110       // error 0.0014886165, which is 6 bits
5111       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5112                                getF32Constant(DAG, 0xbdd49a13, dl));
5113       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5114                                getF32Constant(DAG, 0x3f1c0789, dl));
5115       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5116       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5117                                     getF32Constant(DAG, 0x3f011300, dl));
5118     } else if (LimitFloatPrecision <= 12) {
5119       // For floating-point precision of 12:
5120       //
5121       //   Log10ofMantissa =
5122       //     -0.64831180f +
5123       //       (0.91751397f +
5124       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5125       //
5126       // error 0.00019228036, which is better than 12 bits
5127       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5128                                getF32Constant(DAG, 0x3d431f31, dl));
5129       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5130                                getF32Constant(DAG, 0x3ea21fb2, dl));
5131       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5132       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5133                                getF32Constant(DAG, 0x3f6ae232, dl));
5134       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5135       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5136                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5137     } else { // LimitFloatPrecision <= 18
5138       // For floating-point precision of 18:
5139       //
5140       //   Log10ofMantissa =
5141       //     -0.84299375f +
5142       //       (1.5327582f +
5143       //         (-1.0688956f +
5144       //           (0.49102474f +
5145       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5146       //
5147       // error 0.0000037995730, which is better than 18 bits
5148       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5149                                getF32Constant(DAG, 0x3c5d51ce, dl));
5150       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5151                                getF32Constant(DAG, 0x3e00685a, dl));
5152       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5153       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5154                                getF32Constant(DAG, 0x3efb6798, dl));
5155       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5156       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5157                                getF32Constant(DAG, 0x3f88d192, dl));
5158       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5159       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5160                                getF32Constant(DAG, 0x3fc4316c, dl));
5161       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5162       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5163                                     getF32Constant(DAG, 0x3f57ce70, dl));
5164     }
5165 
5166     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5167   }
5168 
5169   // No special expansion.
5170   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5171 }
5172 
5173 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5174 /// limited-precision mode.
5175 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5176                           const TargetLowering &TLI, SDNodeFlags Flags) {
5177   if (Op.getValueType() == MVT::f32 &&
5178       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5179     return getLimitedPrecisionExp2(Op, dl, DAG);
5180 
5181   // No special expansion.
5182   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5183 }
5184 
5185 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5186 /// limited-precision mode with x == 10.0f.
5187 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5188                          SelectionDAG &DAG, const TargetLowering &TLI,
5189                          SDNodeFlags Flags) {
5190   bool IsExp10 = false;
5191   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5192       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5193     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5194       APFloat Ten(10.0f);
5195       IsExp10 = LHSC->isExactlyValue(Ten);
5196     }
5197   }
5198 
5199   // TODO: What fast-math-flags should be set on the FMUL node?
5200   if (IsExp10) {
5201     // Put the exponent in the right bit position for later addition to the
5202     // final result:
5203     //
5204     //   #define LOG2OF10 3.3219281f
5205     //   t0 = Op * LOG2OF10;
5206     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5207                              getF32Constant(DAG, 0x40549a78, dl));
5208     return getLimitedPrecisionExp2(t0, dl, DAG);
5209   }
5210 
5211   // No special expansion.
5212   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5213 }
5214 
5215 /// ExpandPowI - Expand a llvm.powi intrinsic.
5216 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5217                           SelectionDAG &DAG) {
5218   // If RHS is a constant, we can expand this out to a multiplication tree,
5219   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5220   // optimizing for size, we only want to do this if the expansion would produce
5221   // a small number of multiplies, otherwise we do the full expansion.
5222   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5223     // Get the exponent as a positive value.
5224     unsigned Val = RHSC->getSExtValue();
5225     if ((int)Val < 0) Val = -Val;
5226 
5227     // powi(x, 0) -> 1.0
5228     if (Val == 0)
5229       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5230 
5231     bool OptForSize = DAG.shouldOptForSize();
5232     if (!OptForSize ||
5233         // If optimizing for size, don't insert too many multiplies.
5234         // This inserts up to 5 multiplies.
5235         countPopulation(Val) + Log2_32(Val) < 7) {
5236       // We use the simple binary decomposition method to generate the multiply
5237       // sequence.  There are more optimal ways to do this (for example,
5238       // powi(x,15) generates one more multiply than it should), but this has
5239       // the benefit of being both really simple and much better than a libcall.
5240       SDValue Res;  // Logically starts equal to 1.0
5241       SDValue CurSquare = LHS;
5242       // TODO: Intrinsics should have fast-math-flags that propagate to these
5243       // nodes.
5244       while (Val) {
5245         if (Val & 1) {
5246           if (Res.getNode())
5247             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5248           else
5249             Res = CurSquare;  // 1.0*CurSquare.
5250         }
5251 
5252         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5253                                 CurSquare, CurSquare);
5254         Val >>= 1;
5255       }
5256 
5257       // If the original was negative, invert the result, producing 1/(x*x*x).
5258       if (RHSC->getSExtValue() < 0)
5259         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5260                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5261       return Res;
5262     }
5263   }
5264 
5265   // Otherwise, expand to a libcall.
5266   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5267 }
5268 
5269 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5270                             SDValue LHS, SDValue RHS, SDValue Scale,
5271                             SelectionDAG &DAG, const TargetLowering &TLI) {
5272   EVT VT = LHS.getValueType();
5273   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5274   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5275   LLVMContext &Ctx = *DAG.getContext();
5276 
5277   // If the type is legal but the operation isn't, this node might survive all
5278   // the way to operation legalization. If we end up there and we do not have
5279   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5280   // node.
5281 
5282   // Coax the legalizer into expanding the node during type legalization instead
5283   // by bumping the size by one bit. This will force it to Promote, enabling the
5284   // early expansion and avoiding the need to expand later.
5285 
5286   // We don't have to do this if Scale is 0; that can always be expanded, unless
5287   // it's a saturating signed operation. Those can experience true integer
5288   // division overflow, a case which we must avoid.
5289 
5290   // FIXME: We wouldn't have to do this (or any of the early
5291   // expansion/promotion) if it was possible to expand a libcall of an
5292   // illegal type during operation legalization. But it's not, so things
5293   // get a bit hacky.
5294   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5295   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5296       (TLI.isTypeLegal(VT) ||
5297        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5298     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5299         Opcode, VT, ScaleInt);
5300     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5301       EVT PromVT;
5302       if (VT.isScalarInteger())
5303         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5304       else if (VT.isVector()) {
5305         PromVT = VT.getVectorElementType();
5306         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5307         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5308       } else
5309         llvm_unreachable("Wrong VT for DIVFIX?");
5310       if (Signed) {
5311         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5312         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5313       } else {
5314         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5315         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5316       }
5317       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5318       // For saturating operations, we need to shift up the LHS to get the
5319       // proper saturation width, and then shift down again afterwards.
5320       if (Saturating)
5321         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5322                           DAG.getConstant(1, DL, ShiftTy));
5323       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5324       if (Saturating)
5325         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5326                           DAG.getConstant(1, DL, ShiftTy));
5327       return DAG.getZExtOrTrunc(Res, DL, VT);
5328     }
5329   }
5330 
5331   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5332 }
5333 
5334 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5335 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5336 static void
5337 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5338                      const SDValue &N) {
5339   switch (N.getOpcode()) {
5340   case ISD::CopyFromReg: {
5341     SDValue Op = N.getOperand(1);
5342     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5343                       Op.getValueType().getSizeInBits());
5344     return;
5345   }
5346   case ISD::BITCAST:
5347   case ISD::AssertZext:
5348   case ISD::AssertSext:
5349   case ISD::TRUNCATE:
5350     getUnderlyingArgRegs(Regs, N.getOperand(0));
5351     return;
5352   case ISD::BUILD_PAIR:
5353   case ISD::BUILD_VECTOR:
5354   case ISD::CONCAT_VECTORS:
5355     for (SDValue Op : N->op_values())
5356       getUnderlyingArgRegs(Regs, Op);
5357     return;
5358   default:
5359     return;
5360   }
5361 }
5362 
5363 /// If the DbgValueInst is a dbg_value of a function argument, create the
5364 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5365 /// instruction selection, they will be inserted to the entry BB.
5366 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5367     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5368     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5369   const Argument *Arg = dyn_cast<Argument>(V);
5370   if (!Arg)
5371     return false;
5372 
5373   if (!IsDbgDeclare) {
5374     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5375     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5376     // the entry block.
5377     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5378     if (!IsInEntryBlock)
5379       return false;
5380 
5381     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5382     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5383     // variable that also is a param.
5384     //
5385     // Although, if we are at the top of the entry block already, we can still
5386     // emit using ArgDbgValue. This might catch some situations when the
5387     // dbg.value refers to an argument that isn't used in the entry block, so
5388     // any CopyToReg node would be optimized out and the only way to express
5389     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5390     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5391     // we should only emit as ArgDbgValue if the Variable is an argument to the
5392     // current function, and the dbg.value intrinsic is found in the entry
5393     // block.
5394     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5395         !DL->getInlinedAt();
5396     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5397     if (!IsInPrologue && !VariableIsFunctionInputArg)
5398       return false;
5399 
5400     // Here we assume that a function argument on IR level only can be used to
5401     // describe one input parameter on source level. If we for example have
5402     // source code like this
5403     //
5404     //    struct A { long x, y; };
5405     //    void foo(struct A a, long b) {
5406     //      ...
5407     //      b = a.x;
5408     //      ...
5409     //    }
5410     //
5411     // and IR like this
5412     //
5413     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5414     //  entry:
5415     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5416     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5417     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5418     //    ...
5419     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5420     //    ...
5421     //
5422     // then the last dbg.value is describing a parameter "b" using a value that
5423     // is an argument. But since we already has used %a1 to describe a parameter
5424     // we should not handle that last dbg.value here (that would result in an
5425     // incorrect hoisting of the DBG_VALUE to the function entry).
5426     // Notice that we allow one dbg.value per IR level argument, to accommodate
5427     // for the situation with fragments above.
5428     if (VariableIsFunctionInputArg) {
5429       unsigned ArgNo = Arg->getArgNo();
5430       if (ArgNo >= FuncInfo.DescribedArgs.size())
5431         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5432       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5433         return false;
5434       FuncInfo.DescribedArgs.set(ArgNo);
5435     }
5436   }
5437 
5438   MachineFunction &MF = DAG.getMachineFunction();
5439   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5440 
5441   bool IsIndirect = false;
5442   Optional<MachineOperand> Op;
5443   // Some arguments' frame index is recorded during argument lowering.
5444   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5445   if (FI != std::numeric_limits<int>::max())
5446     Op = MachineOperand::CreateFI(FI);
5447 
5448   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5449   if (!Op && N.getNode()) {
5450     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5451     Register Reg;
5452     if (ArgRegsAndSizes.size() == 1)
5453       Reg = ArgRegsAndSizes.front().first;
5454 
5455     if (Reg && Reg.isVirtual()) {
5456       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5457       Register PR = RegInfo.getLiveInPhysReg(Reg);
5458       if (PR)
5459         Reg = PR;
5460     }
5461     if (Reg) {
5462       Op = MachineOperand::CreateReg(Reg, false);
5463       IsIndirect = IsDbgDeclare;
5464     }
5465   }
5466 
5467   if (!Op && N.getNode()) {
5468     // Check if frame index is available.
5469     SDValue LCandidate = peekThroughBitcasts(N);
5470     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5471       if (FrameIndexSDNode *FINode =
5472           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5473         Op = MachineOperand::CreateFI(FINode->getIndex());
5474   }
5475 
5476   if (!Op) {
5477     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5478     auto splitMultiRegDbgValue
5479       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5480       unsigned Offset = 0;
5481       for (auto RegAndSize : SplitRegs) {
5482         // If the expression is already a fragment, the current register
5483         // offset+size might extend beyond the fragment. In this case, only
5484         // the register bits that are inside the fragment are relevant.
5485         int RegFragmentSizeInBits = RegAndSize.second;
5486         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5487           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5488           // The register is entirely outside the expression fragment,
5489           // so is irrelevant for debug info.
5490           if (Offset >= ExprFragmentSizeInBits)
5491             break;
5492           // The register is partially outside the expression fragment, only
5493           // the low bits within the fragment are relevant for debug info.
5494           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5495             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5496           }
5497         }
5498 
5499         auto FragmentExpr = DIExpression::createFragmentExpression(
5500             Expr, Offset, RegFragmentSizeInBits);
5501         Offset += RegAndSize.second;
5502         // If a valid fragment expression cannot be created, the variable's
5503         // correct value cannot be determined and so it is set as Undef.
5504         if (!FragmentExpr) {
5505           SDDbgValue *SDV = DAG.getConstantDbgValue(
5506               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5507           DAG.AddDbgValue(SDV, nullptr, false);
5508           continue;
5509         }
5510         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5511         FuncInfo.ArgDbgValues.push_back(
5512           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5513                   RegAndSize.first, Variable, *FragmentExpr));
5514       }
5515     };
5516 
5517     // Check if ValueMap has reg number.
5518     DenseMap<const Value *, Register>::const_iterator
5519       VMI = FuncInfo.ValueMap.find(V);
5520     if (VMI != FuncInfo.ValueMap.end()) {
5521       const auto &TLI = DAG.getTargetLoweringInfo();
5522       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5523                        V->getType(), getABIRegCopyCC(V));
5524       if (RFV.occupiesMultipleRegs()) {
5525         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5526         return true;
5527       }
5528 
5529       Op = MachineOperand::CreateReg(VMI->second, false);
5530       IsIndirect = IsDbgDeclare;
5531     } else if (ArgRegsAndSizes.size() > 1) {
5532       // This was split due to the calling convention, and no virtual register
5533       // mapping exists for the value.
5534       splitMultiRegDbgValue(ArgRegsAndSizes);
5535       return true;
5536     }
5537   }
5538 
5539   if (!Op)
5540     return false;
5541 
5542   assert(Variable->isValidLocationForIntrinsic(DL) &&
5543          "Expected inlined-at fields to agree");
5544   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5545   FuncInfo.ArgDbgValues.push_back(
5546       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5547               *Op, Variable, Expr));
5548 
5549   return true;
5550 }
5551 
5552 /// Return the appropriate SDDbgValue based on N.
5553 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5554                                              DILocalVariable *Variable,
5555                                              DIExpression *Expr,
5556                                              const DebugLoc &dl,
5557                                              unsigned DbgSDNodeOrder) {
5558   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5559     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5560     // stack slot locations.
5561     //
5562     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5563     // debug values here after optimization:
5564     //
5565     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5566     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5567     //
5568     // Both describe the direct values of their associated variables.
5569     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5570                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5571   }
5572   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5573                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5574 }
5575 
5576 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5577   switch (Intrinsic) {
5578   case Intrinsic::smul_fix:
5579     return ISD::SMULFIX;
5580   case Intrinsic::umul_fix:
5581     return ISD::UMULFIX;
5582   case Intrinsic::smul_fix_sat:
5583     return ISD::SMULFIXSAT;
5584   case Intrinsic::umul_fix_sat:
5585     return ISD::UMULFIXSAT;
5586   case Intrinsic::sdiv_fix:
5587     return ISD::SDIVFIX;
5588   case Intrinsic::udiv_fix:
5589     return ISD::UDIVFIX;
5590   case Intrinsic::sdiv_fix_sat:
5591     return ISD::SDIVFIXSAT;
5592   case Intrinsic::udiv_fix_sat:
5593     return ISD::UDIVFIXSAT;
5594   default:
5595     llvm_unreachable("Unhandled fixed point intrinsic");
5596   }
5597 }
5598 
5599 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5600                                            const char *FunctionName) {
5601   assert(FunctionName && "FunctionName must not be nullptr");
5602   SDValue Callee = DAG.getExternalSymbol(
5603       FunctionName,
5604       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5605   LowerCallTo(I, Callee, I.isTailCall());
5606 }
5607 
5608 /// Given a @llvm.call.preallocated.setup, return the corresponding
5609 /// preallocated call.
5610 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5611   assert(cast<CallBase>(PreallocatedSetup)
5612                  ->getCalledFunction()
5613                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5614          "expected call_preallocated_setup Value");
5615   for (auto *U : PreallocatedSetup->users()) {
5616     auto *UseCall = cast<CallBase>(U);
5617     const Function *Fn = UseCall->getCalledFunction();
5618     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5619       return UseCall;
5620     }
5621   }
5622   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5623 }
5624 
5625 /// Lower the call to the specified intrinsic function.
5626 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5627                                              unsigned Intrinsic) {
5628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5629   SDLoc sdl = getCurSDLoc();
5630   DebugLoc dl = getCurDebugLoc();
5631   SDValue Res;
5632 
5633   SDNodeFlags Flags;
5634   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5635     Flags.copyFMF(*FPOp);
5636 
5637   switch (Intrinsic) {
5638   default:
5639     // By default, turn this into a target intrinsic node.
5640     visitTargetIntrinsic(I, Intrinsic);
5641     return;
5642   case Intrinsic::vscale: {
5643     match(&I, m_VScale(DAG.getDataLayout()));
5644     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5645     setValue(&I,
5646              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5647     return;
5648   }
5649   case Intrinsic::vastart:  visitVAStart(I); return;
5650   case Intrinsic::vaend:    visitVAEnd(I); return;
5651   case Intrinsic::vacopy:   visitVACopy(I); return;
5652   case Intrinsic::returnaddress:
5653     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5654                              TLI.getPointerTy(DAG.getDataLayout()),
5655                              getValue(I.getArgOperand(0))));
5656     return;
5657   case Intrinsic::addressofreturnaddress:
5658     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5659                              TLI.getPointerTy(DAG.getDataLayout())));
5660     return;
5661   case Intrinsic::sponentry:
5662     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5663                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5664     return;
5665   case Intrinsic::frameaddress:
5666     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5667                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5668                              getValue(I.getArgOperand(0))));
5669     return;
5670   case Intrinsic::read_volatile_register:
5671   case Intrinsic::read_register: {
5672     Value *Reg = I.getArgOperand(0);
5673     SDValue Chain = getRoot();
5674     SDValue RegName =
5675         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5676     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5677     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5678       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5679     setValue(&I, Res);
5680     DAG.setRoot(Res.getValue(1));
5681     return;
5682   }
5683   case Intrinsic::write_register: {
5684     Value *Reg = I.getArgOperand(0);
5685     Value *RegValue = I.getArgOperand(1);
5686     SDValue Chain = getRoot();
5687     SDValue RegName =
5688         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5689     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5690                             RegName, getValue(RegValue)));
5691     return;
5692   }
5693   case Intrinsic::memcpy: {
5694     const auto &MCI = cast<MemCpyInst>(I);
5695     SDValue Op1 = getValue(I.getArgOperand(0));
5696     SDValue Op2 = getValue(I.getArgOperand(1));
5697     SDValue Op3 = getValue(I.getArgOperand(2));
5698     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5699     Align DstAlign = MCI.getDestAlign().valueOrOne();
5700     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5701     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5702     bool isVol = MCI.isVolatile();
5703     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5704     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5705     // node.
5706     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5707     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5708                                /* AlwaysInline */ false, isTC,
5709                                MachinePointerInfo(I.getArgOperand(0)),
5710                                MachinePointerInfo(I.getArgOperand(1)));
5711     updateDAGForMaybeTailCall(MC);
5712     return;
5713   }
5714   case Intrinsic::memcpy_inline: {
5715     const auto &MCI = cast<MemCpyInlineInst>(I);
5716     SDValue Dst = getValue(I.getArgOperand(0));
5717     SDValue Src = getValue(I.getArgOperand(1));
5718     SDValue Size = getValue(I.getArgOperand(2));
5719     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5720     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5721     Align DstAlign = MCI.getDestAlign().valueOrOne();
5722     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5723     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5724     bool isVol = MCI.isVolatile();
5725     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5726     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5727     // node.
5728     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5729                                /* AlwaysInline */ true, isTC,
5730                                MachinePointerInfo(I.getArgOperand(0)),
5731                                MachinePointerInfo(I.getArgOperand(1)));
5732     updateDAGForMaybeTailCall(MC);
5733     return;
5734   }
5735   case Intrinsic::memset: {
5736     const auto &MSI = cast<MemSetInst>(I);
5737     SDValue Op1 = getValue(I.getArgOperand(0));
5738     SDValue Op2 = getValue(I.getArgOperand(1));
5739     SDValue Op3 = getValue(I.getArgOperand(2));
5740     // @llvm.memset defines 0 and 1 to both mean no alignment.
5741     Align Alignment = MSI.getDestAlign().valueOrOne();
5742     bool isVol = MSI.isVolatile();
5743     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5744     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5745     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5746                                MachinePointerInfo(I.getArgOperand(0)));
5747     updateDAGForMaybeTailCall(MS);
5748     return;
5749   }
5750   case Intrinsic::memmove: {
5751     const auto &MMI = cast<MemMoveInst>(I);
5752     SDValue Op1 = getValue(I.getArgOperand(0));
5753     SDValue Op2 = getValue(I.getArgOperand(1));
5754     SDValue Op3 = getValue(I.getArgOperand(2));
5755     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5756     Align DstAlign = MMI.getDestAlign().valueOrOne();
5757     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5758     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5759     bool isVol = MMI.isVolatile();
5760     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5761     // FIXME: Support passing different dest/src alignments to the memmove DAG
5762     // node.
5763     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5764     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5765                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5766                                 MachinePointerInfo(I.getArgOperand(1)));
5767     updateDAGForMaybeTailCall(MM);
5768     return;
5769   }
5770   case Intrinsic::memcpy_element_unordered_atomic: {
5771     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5772     SDValue Dst = getValue(MI.getRawDest());
5773     SDValue Src = getValue(MI.getRawSource());
5774     SDValue Length = getValue(MI.getLength());
5775 
5776     unsigned DstAlign = MI.getDestAlignment();
5777     unsigned SrcAlign = MI.getSourceAlignment();
5778     Type *LengthTy = MI.getLength()->getType();
5779     unsigned ElemSz = MI.getElementSizeInBytes();
5780     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5781     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5782                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5783                                      MachinePointerInfo(MI.getRawDest()),
5784                                      MachinePointerInfo(MI.getRawSource()));
5785     updateDAGForMaybeTailCall(MC);
5786     return;
5787   }
5788   case Intrinsic::memmove_element_unordered_atomic: {
5789     auto &MI = cast<AtomicMemMoveInst>(I);
5790     SDValue Dst = getValue(MI.getRawDest());
5791     SDValue Src = getValue(MI.getRawSource());
5792     SDValue Length = getValue(MI.getLength());
5793 
5794     unsigned DstAlign = MI.getDestAlignment();
5795     unsigned SrcAlign = MI.getSourceAlignment();
5796     Type *LengthTy = MI.getLength()->getType();
5797     unsigned ElemSz = MI.getElementSizeInBytes();
5798     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5799     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5800                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5801                                       MachinePointerInfo(MI.getRawDest()),
5802                                       MachinePointerInfo(MI.getRawSource()));
5803     updateDAGForMaybeTailCall(MC);
5804     return;
5805   }
5806   case Intrinsic::memset_element_unordered_atomic: {
5807     auto &MI = cast<AtomicMemSetInst>(I);
5808     SDValue Dst = getValue(MI.getRawDest());
5809     SDValue Val = getValue(MI.getValue());
5810     SDValue Length = getValue(MI.getLength());
5811 
5812     unsigned DstAlign = MI.getDestAlignment();
5813     Type *LengthTy = MI.getLength()->getType();
5814     unsigned ElemSz = MI.getElementSizeInBytes();
5815     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5816     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5817                                      LengthTy, ElemSz, isTC,
5818                                      MachinePointerInfo(MI.getRawDest()));
5819     updateDAGForMaybeTailCall(MC);
5820     return;
5821   }
5822   case Intrinsic::call_preallocated_setup: {
5823     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5824     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5825     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5826                               getRoot(), SrcValue);
5827     setValue(&I, Res);
5828     DAG.setRoot(Res);
5829     return;
5830   }
5831   case Intrinsic::call_preallocated_arg: {
5832     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5833     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5834     SDValue Ops[3];
5835     Ops[0] = getRoot();
5836     Ops[1] = SrcValue;
5837     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5838                                    MVT::i32); // arg index
5839     SDValue Res = DAG.getNode(
5840         ISD::PREALLOCATED_ARG, sdl,
5841         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5842     setValue(&I, Res);
5843     DAG.setRoot(Res.getValue(1));
5844     return;
5845   }
5846   case Intrinsic::dbg_addr:
5847   case Intrinsic::dbg_declare: {
5848     const auto &DI = cast<DbgVariableIntrinsic>(I);
5849     DILocalVariable *Variable = DI.getVariable();
5850     DIExpression *Expression = DI.getExpression();
5851     dropDanglingDebugInfo(Variable, Expression);
5852     assert(Variable && "Missing variable");
5853     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5854                       << "\n");
5855     // Check if address has undef value.
5856     const Value *Address = DI.getVariableLocation();
5857     if (!Address || isa<UndefValue>(Address) ||
5858         (Address->use_empty() && !isa<Argument>(Address))) {
5859       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5860                         << " (bad/undef/unused-arg address)\n");
5861       return;
5862     }
5863 
5864     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5865 
5866     // Check if this variable can be described by a frame index, typically
5867     // either as a static alloca or a byval parameter.
5868     int FI = std::numeric_limits<int>::max();
5869     if (const auto *AI =
5870             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5871       if (AI->isStaticAlloca()) {
5872         auto I = FuncInfo.StaticAllocaMap.find(AI);
5873         if (I != FuncInfo.StaticAllocaMap.end())
5874           FI = I->second;
5875       }
5876     } else if (const auto *Arg = dyn_cast<Argument>(
5877                    Address->stripInBoundsConstantOffsets())) {
5878       FI = FuncInfo.getArgumentFrameIndex(Arg);
5879     }
5880 
5881     // llvm.dbg.addr is control dependent and always generates indirect
5882     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5883     // the MachineFunction variable table.
5884     if (FI != std::numeric_limits<int>::max()) {
5885       if (Intrinsic == Intrinsic::dbg_addr) {
5886         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5887             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5888         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5889       } else {
5890         LLVM_DEBUG(dbgs() << "Skipping " << DI
5891                           << " (variable info stashed in MF side table)\n");
5892       }
5893       return;
5894     }
5895 
5896     SDValue &N = NodeMap[Address];
5897     if (!N.getNode() && isa<Argument>(Address))
5898       // Check unused arguments map.
5899       N = UnusedArgNodeMap[Address];
5900     SDDbgValue *SDV;
5901     if (N.getNode()) {
5902       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5903         Address = BCI->getOperand(0);
5904       // Parameters are handled specially.
5905       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5906       if (isParameter && FINode) {
5907         // Byval parameter. We have a frame index at this point.
5908         SDV =
5909             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5910                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5911       } else if (isa<Argument>(Address)) {
5912         // Address is an argument, so try to emit its dbg value using
5913         // virtual register info from the FuncInfo.ValueMap.
5914         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5915         return;
5916       } else {
5917         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5918                               true, dl, SDNodeOrder);
5919       }
5920       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5921     } else {
5922       // If Address is an argument then try to emit its dbg value using
5923       // virtual register info from the FuncInfo.ValueMap.
5924       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5925                                     N)) {
5926         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5927                           << " (could not emit func-arg dbg_value)\n");
5928       }
5929     }
5930     return;
5931   }
5932   case Intrinsic::dbg_label: {
5933     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5934     DILabel *Label = DI.getLabel();
5935     assert(Label && "Missing label");
5936 
5937     SDDbgLabel *SDV;
5938     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5939     DAG.AddDbgLabel(SDV);
5940     return;
5941   }
5942   case Intrinsic::dbg_value: {
5943     const DbgValueInst &DI = cast<DbgValueInst>(I);
5944     assert(DI.getVariable() && "Missing variable");
5945 
5946     DILocalVariable *Variable = DI.getVariable();
5947     DIExpression *Expression = DI.getExpression();
5948     dropDanglingDebugInfo(Variable, Expression);
5949     const Value *V = DI.getValue();
5950     if (!V)
5951       return;
5952 
5953     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5954         SDNodeOrder))
5955       return;
5956 
5957     // TODO: Dangling debug info will eventually either be resolved or produce
5958     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5959     // between the original dbg.value location and its resolved DBG_VALUE, which
5960     // we should ideally fill with an extra Undef DBG_VALUE.
5961 
5962     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5963     return;
5964   }
5965 
5966   case Intrinsic::eh_typeid_for: {
5967     // Find the type id for the given typeinfo.
5968     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5969     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5970     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5971     setValue(&I, Res);
5972     return;
5973   }
5974 
5975   case Intrinsic::eh_return_i32:
5976   case Intrinsic::eh_return_i64:
5977     DAG.getMachineFunction().setCallsEHReturn(true);
5978     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5979                             MVT::Other,
5980                             getControlRoot(),
5981                             getValue(I.getArgOperand(0)),
5982                             getValue(I.getArgOperand(1))));
5983     return;
5984   case Intrinsic::eh_unwind_init:
5985     DAG.getMachineFunction().setCallsUnwindInit(true);
5986     return;
5987   case Intrinsic::eh_dwarf_cfa:
5988     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5989                              TLI.getPointerTy(DAG.getDataLayout()),
5990                              getValue(I.getArgOperand(0))));
5991     return;
5992   case Intrinsic::eh_sjlj_callsite: {
5993     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5994     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5995     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5996     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5997 
5998     MMI.setCurrentCallSite(CI->getZExtValue());
5999     return;
6000   }
6001   case Intrinsic::eh_sjlj_functioncontext: {
6002     // Get and store the index of the function context.
6003     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6004     AllocaInst *FnCtx =
6005       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6006     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6007     MFI.setFunctionContextIndex(FI);
6008     return;
6009   }
6010   case Intrinsic::eh_sjlj_setjmp: {
6011     SDValue Ops[2];
6012     Ops[0] = getRoot();
6013     Ops[1] = getValue(I.getArgOperand(0));
6014     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6015                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6016     setValue(&I, Op.getValue(0));
6017     DAG.setRoot(Op.getValue(1));
6018     return;
6019   }
6020   case Intrinsic::eh_sjlj_longjmp:
6021     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6022                             getRoot(), getValue(I.getArgOperand(0))));
6023     return;
6024   case Intrinsic::eh_sjlj_setup_dispatch:
6025     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6026                             getRoot()));
6027     return;
6028   case Intrinsic::masked_gather:
6029     visitMaskedGather(I);
6030     return;
6031   case Intrinsic::masked_load:
6032     visitMaskedLoad(I);
6033     return;
6034   case Intrinsic::masked_scatter:
6035     visitMaskedScatter(I);
6036     return;
6037   case Intrinsic::masked_store:
6038     visitMaskedStore(I);
6039     return;
6040   case Intrinsic::masked_expandload:
6041     visitMaskedLoad(I, true /* IsExpanding */);
6042     return;
6043   case Intrinsic::masked_compressstore:
6044     visitMaskedStore(I, true /* IsCompressing */);
6045     return;
6046   case Intrinsic::powi:
6047     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6048                             getValue(I.getArgOperand(1)), DAG));
6049     return;
6050   case Intrinsic::log:
6051     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6052     return;
6053   case Intrinsic::log2:
6054     setValue(&I,
6055              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6056     return;
6057   case Intrinsic::log10:
6058     setValue(&I,
6059              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6060     return;
6061   case Intrinsic::exp:
6062     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6063     return;
6064   case Intrinsic::exp2:
6065     setValue(&I,
6066              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6067     return;
6068   case Intrinsic::pow:
6069     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6070                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6071     return;
6072   case Intrinsic::sqrt:
6073   case Intrinsic::fabs:
6074   case Intrinsic::sin:
6075   case Intrinsic::cos:
6076   case Intrinsic::floor:
6077   case Intrinsic::ceil:
6078   case Intrinsic::trunc:
6079   case Intrinsic::rint:
6080   case Intrinsic::nearbyint:
6081   case Intrinsic::round:
6082   case Intrinsic::roundeven:
6083   case Intrinsic::canonicalize: {
6084     unsigned Opcode;
6085     switch (Intrinsic) {
6086     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6087     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6088     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6089     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6090     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6091     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6092     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6093     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6094     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6095     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6096     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6097     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6098     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6099     }
6100 
6101     setValue(&I, DAG.getNode(Opcode, sdl,
6102                              getValue(I.getArgOperand(0)).getValueType(),
6103                              getValue(I.getArgOperand(0)), Flags));
6104     return;
6105   }
6106   case Intrinsic::lround:
6107   case Intrinsic::llround:
6108   case Intrinsic::lrint:
6109   case Intrinsic::llrint: {
6110     unsigned Opcode;
6111     switch (Intrinsic) {
6112     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6113     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6114     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6115     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6116     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6117     }
6118 
6119     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6120     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6121                              getValue(I.getArgOperand(0))));
6122     return;
6123   }
6124   case Intrinsic::minnum:
6125     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6126                              getValue(I.getArgOperand(0)).getValueType(),
6127                              getValue(I.getArgOperand(0)),
6128                              getValue(I.getArgOperand(1)), Flags));
6129     return;
6130   case Intrinsic::maxnum:
6131     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6132                              getValue(I.getArgOperand(0)).getValueType(),
6133                              getValue(I.getArgOperand(0)),
6134                              getValue(I.getArgOperand(1)), Flags));
6135     return;
6136   case Intrinsic::minimum:
6137     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6138                              getValue(I.getArgOperand(0)).getValueType(),
6139                              getValue(I.getArgOperand(0)),
6140                              getValue(I.getArgOperand(1)), Flags));
6141     return;
6142   case Intrinsic::maximum:
6143     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6144                              getValue(I.getArgOperand(0)).getValueType(),
6145                              getValue(I.getArgOperand(0)),
6146                              getValue(I.getArgOperand(1)), Flags));
6147     return;
6148   case Intrinsic::copysign:
6149     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6150                              getValue(I.getArgOperand(0)).getValueType(),
6151                              getValue(I.getArgOperand(0)),
6152                              getValue(I.getArgOperand(1)), Flags));
6153     return;
6154   case Intrinsic::fma:
6155     setValue(&I, DAG.getNode(
6156                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6157                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6158                      getValue(I.getArgOperand(2)), Flags));
6159     return;
6160 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6161   case Intrinsic::INTRINSIC:
6162 #include "llvm/IR/ConstrainedOps.def"
6163     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6164     return;
6165   case Intrinsic::fmuladd: {
6166     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6167     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6168         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6169       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6170                                getValue(I.getArgOperand(0)).getValueType(),
6171                                getValue(I.getArgOperand(0)),
6172                                getValue(I.getArgOperand(1)),
6173                                getValue(I.getArgOperand(2)), Flags));
6174     } else {
6175       // TODO: Intrinsic calls should have fast-math-flags.
6176       SDValue Mul = DAG.getNode(
6177           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6178           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6179       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6180                                 getValue(I.getArgOperand(0)).getValueType(),
6181                                 Mul, getValue(I.getArgOperand(2)), Flags);
6182       setValue(&I, Add);
6183     }
6184     return;
6185   }
6186   case Intrinsic::convert_to_fp16:
6187     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6188                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6189                                          getValue(I.getArgOperand(0)),
6190                                          DAG.getTargetConstant(0, sdl,
6191                                                                MVT::i32))));
6192     return;
6193   case Intrinsic::convert_from_fp16:
6194     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6195                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6196                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6197                                          getValue(I.getArgOperand(0)))));
6198     return;
6199   case Intrinsic::pcmarker: {
6200     SDValue Tmp = getValue(I.getArgOperand(0));
6201     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6202     return;
6203   }
6204   case Intrinsic::readcyclecounter: {
6205     SDValue Op = getRoot();
6206     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6207                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6208     setValue(&I, Res);
6209     DAG.setRoot(Res.getValue(1));
6210     return;
6211   }
6212   case Intrinsic::bitreverse:
6213     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6214                              getValue(I.getArgOperand(0)).getValueType(),
6215                              getValue(I.getArgOperand(0))));
6216     return;
6217   case Intrinsic::bswap:
6218     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6219                              getValue(I.getArgOperand(0)).getValueType(),
6220                              getValue(I.getArgOperand(0))));
6221     return;
6222   case Intrinsic::cttz: {
6223     SDValue Arg = getValue(I.getArgOperand(0));
6224     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6225     EVT Ty = Arg.getValueType();
6226     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6227                              sdl, Ty, Arg));
6228     return;
6229   }
6230   case Intrinsic::ctlz: {
6231     SDValue Arg = getValue(I.getArgOperand(0));
6232     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6233     EVT Ty = Arg.getValueType();
6234     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6235                              sdl, Ty, Arg));
6236     return;
6237   }
6238   case Intrinsic::ctpop: {
6239     SDValue Arg = getValue(I.getArgOperand(0));
6240     EVT Ty = Arg.getValueType();
6241     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6242     return;
6243   }
6244   case Intrinsic::fshl:
6245   case Intrinsic::fshr: {
6246     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6247     SDValue X = getValue(I.getArgOperand(0));
6248     SDValue Y = getValue(I.getArgOperand(1));
6249     SDValue Z = getValue(I.getArgOperand(2));
6250     EVT VT = X.getValueType();
6251 
6252     if (X == Y) {
6253       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6254       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6255     } else {
6256       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6257       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6258     }
6259     return;
6260   }
6261   case Intrinsic::sadd_sat: {
6262     SDValue Op1 = getValue(I.getArgOperand(0));
6263     SDValue Op2 = getValue(I.getArgOperand(1));
6264     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6265     return;
6266   }
6267   case Intrinsic::uadd_sat: {
6268     SDValue Op1 = getValue(I.getArgOperand(0));
6269     SDValue Op2 = getValue(I.getArgOperand(1));
6270     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6271     return;
6272   }
6273   case Intrinsic::ssub_sat: {
6274     SDValue Op1 = getValue(I.getArgOperand(0));
6275     SDValue Op2 = getValue(I.getArgOperand(1));
6276     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6277     return;
6278   }
6279   case Intrinsic::usub_sat: {
6280     SDValue Op1 = getValue(I.getArgOperand(0));
6281     SDValue Op2 = getValue(I.getArgOperand(1));
6282     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6283     return;
6284   }
6285   case Intrinsic::sshl_sat: {
6286     SDValue Op1 = getValue(I.getArgOperand(0));
6287     SDValue Op2 = getValue(I.getArgOperand(1));
6288     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6289     return;
6290   }
6291   case Intrinsic::ushl_sat: {
6292     SDValue Op1 = getValue(I.getArgOperand(0));
6293     SDValue Op2 = getValue(I.getArgOperand(1));
6294     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6295     return;
6296   }
6297   case Intrinsic::smul_fix:
6298   case Intrinsic::umul_fix:
6299   case Intrinsic::smul_fix_sat:
6300   case Intrinsic::umul_fix_sat: {
6301     SDValue Op1 = getValue(I.getArgOperand(0));
6302     SDValue Op2 = getValue(I.getArgOperand(1));
6303     SDValue Op3 = getValue(I.getArgOperand(2));
6304     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6305                              Op1.getValueType(), Op1, Op2, Op3));
6306     return;
6307   }
6308   case Intrinsic::sdiv_fix:
6309   case Intrinsic::udiv_fix:
6310   case Intrinsic::sdiv_fix_sat:
6311   case Intrinsic::udiv_fix_sat: {
6312     SDValue Op1 = getValue(I.getArgOperand(0));
6313     SDValue Op2 = getValue(I.getArgOperand(1));
6314     SDValue Op3 = getValue(I.getArgOperand(2));
6315     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6316                               Op1, Op2, Op3, DAG, TLI));
6317     return;
6318   }
6319   case Intrinsic::smax: {
6320     SDValue Op1 = getValue(I.getArgOperand(0));
6321     SDValue Op2 = getValue(I.getArgOperand(1));
6322     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6323     return;
6324   }
6325   case Intrinsic::smin: {
6326     SDValue Op1 = getValue(I.getArgOperand(0));
6327     SDValue Op2 = getValue(I.getArgOperand(1));
6328     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6329     return;
6330   }
6331   case Intrinsic::umax: {
6332     SDValue Op1 = getValue(I.getArgOperand(0));
6333     SDValue Op2 = getValue(I.getArgOperand(1));
6334     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6335     return;
6336   }
6337   case Intrinsic::umin: {
6338     SDValue Op1 = getValue(I.getArgOperand(0));
6339     SDValue Op2 = getValue(I.getArgOperand(1));
6340     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6341     return;
6342   }
6343   case Intrinsic::abs: {
6344     // TODO: Preserve "int min is poison" arg in SDAG?
6345     SDValue Op1 = getValue(I.getArgOperand(0));
6346     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6347     return;
6348   }
6349   case Intrinsic::stacksave: {
6350     SDValue Op = getRoot();
6351     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6352     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6353     setValue(&I, Res);
6354     DAG.setRoot(Res.getValue(1));
6355     return;
6356   }
6357   case Intrinsic::stackrestore:
6358     Res = getValue(I.getArgOperand(0));
6359     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6360     return;
6361   case Intrinsic::get_dynamic_area_offset: {
6362     SDValue Op = getRoot();
6363     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6364     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6365     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6366     // target.
6367     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6368       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6369                          " intrinsic!");
6370     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6371                       Op);
6372     DAG.setRoot(Op);
6373     setValue(&I, Res);
6374     return;
6375   }
6376   case Intrinsic::stackguard: {
6377     MachineFunction &MF = DAG.getMachineFunction();
6378     const Module &M = *MF.getFunction().getParent();
6379     SDValue Chain = getRoot();
6380     if (TLI.useLoadStackGuardNode()) {
6381       Res = getLoadStackGuard(DAG, sdl, Chain);
6382     } else {
6383       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6384       const Value *Global = TLI.getSDagStackGuard(M);
6385       Align Align = DL->getPrefTypeAlign(Global->getType());
6386       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6387                         MachinePointerInfo(Global, 0), Align,
6388                         MachineMemOperand::MOVolatile);
6389     }
6390     if (TLI.useStackGuardXorFP())
6391       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6392     DAG.setRoot(Chain);
6393     setValue(&I, Res);
6394     return;
6395   }
6396   case Intrinsic::stackprotector: {
6397     // Emit code into the DAG to store the stack guard onto the stack.
6398     MachineFunction &MF = DAG.getMachineFunction();
6399     MachineFrameInfo &MFI = MF.getFrameInfo();
6400     SDValue Src, Chain = getRoot();
6401 
6402     if (TLI.useLoadStackGuardNode())
6403       Src = getLoadStackGuard(DAG, sdl, Chain);
6404     else
6405       Src = getValue(I.getArgOperand(0));   // The guard's value.
6406 
6407     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6408 
6409     int FI = FuncInfo.StaticAllocaMap[Slot];
6410     MFI.setStackProtectorIndex(FI);
6411     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6412 
6413     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6414 
6415     // Store the stack protector onto the stack.
6416     Res = DAG.getStore(
6417         Chain, sdl, Src, FIN,
6418         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6419         MaybeAlign(), MachineMemOperand::MOVolatile);
6420     setValue(&I, Res);
6421     DAG.setRoot(Res);
6422     return;
6423   }
6424   case Intrinsic::objectsize:
6425     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6426 
6427   case Intrinsic::is_constant:
6428     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6429 
6430   case Intrinsic::annotation:
6431   case Intrinsic::ptr_annotation:
6432   case Intrinsic::launder_invariant_group:
6433   case Intrinsic::strip_invariant_group:
6434     // Drop the intrinsic, but forward the value
6435     setValue(&I, getValue(I.getOperand(0)));
6436     return;
6437   case Intrinsic::assume:
6438   case Intrinsic::var_annotation:
6439   case Intrinsic::sideeffect:
6440     // Discard annotate attributes, assumptions, and artificial side-effects.
6441     return;
6442 
6443   case Intrinsic::codeview_annotation: {
6444     // Emit a label associated with this metadata.
6445     MachineFunction &MF = DAG.getMachineFunction();
6446     MCSymbol *Label =
6447         MF.getMMI().getContext().createTempSymbol("annotation", true);
6448     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6449     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6450     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6451     DAG.setRoot(Res);
6452     return;
6453   }
6454 
6455   case Intrinsic::init_trampoline: {
6456     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6457 
6458     SDValue Ops[6];
6459     Ops[0] = getRoot();
6460     Ops[1] = getValue(I.getArgOperand(0));
6461     Ops[2] = getValue(I.getArgOperand(1));
6462     Ops[3] = getValue(I.getArgOperand(2));
6463     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6464     Ops[5] = DAG.getSrcValue(F);
6465 
6466     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6467 
6468     DAG.setRoot(Res);
6469     return;
6470   }
6471   case Intrinsic::adjust_trampoline:
6472     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6473                              TLI.getPointerTy(DAG.getDataLayout()),
6474                              getValue(I.getArgOperand(0))));
6475     return;
6476   case Intrinsic::gcroot: {
6477     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6478            "only valid in functions with gc specified, enforced by Verifier");
6479     assert(GFI && "implied by previous");
6480     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6481     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6482 
6483     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6484     GFI->addStackRoot(FI->getIndex(), TypeMap);
6485     return;
6486   }
6487   case Intrinsic::gcread:
6488   case Intrinsic::gcwrite:
6489     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6490   case Intrinsic::flt_rounds:
6491     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6492     setValue(&I, Res);
6493     DAG.setRoot(Res.getValue(1));
6494     return;
6495 
6496   case Intrinsic::expect:
6497     // Just replace __builtin_expect(exp, c) with EXP.
6498     setValue(&I, getValue(I.getArgOperand(0)));
6499     return;
6500 
6501   case Intrinsic::debugtrap:
6502   case Intrinsic::trap: {
6503     StringRef TrapFuncName =
6504         I.getAttributes()
6505             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6506             .getValueAsString();
6507     if (TrapFuncName.empty()) {
6508       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6509         ISD::TRAP : ISD::DEBUGTRAP;
6510       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6511       return;
6512     }
6513     TargetLowering::ArgListTy Args;
6514 
6515     TargetLowering::CallLoweringInfo CLI(DAG);
6516     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6517         CallingConv::C, I.getType(),
6518         DAG.getExternalSymbol(TrapFuncName.data(),
6519                               TLI.getPointerTy(DAG.getDataLayout())),
6520         std::move(Args));
6521 
6522     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6523     DAG.setRoot(Result.second);
6524     return;
6525   }
6526 
6527   case Intrinsic::uadd_with_overflow:
6528   case Intrinsic::sadd_with_overflow:
6529   case Intrinsic::usub_with_overflow:
6530   case Intrinsic::ssub_with_overflow:
6531   case Intrinsic::umul_with_overflow:
6532   case Intrinsic::smul_with_overflow: {
6533     ISD::NodeType Op;
6534     switch (Intrinsic) {
6535     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6536     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6537     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6538     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6539     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6540     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6541     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6542     }
6543     SDValue Op1 = getValue(I.getArgOperand(0));
6544     SDValue Op2 = getValue(I.getArgOperand(1));
6545 
6546     EVT ResultVT = Op1.getValueType();
6547     EVT OverflowVT = MVT::i1;
6548     if (ResultVT.isVector())
6549       OverflowVT = EVT::getVectorVT(
6550           *Context, OverflowVT, ResultVT.getVectorNumElements());
6551 
6552     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6553     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6554     return;
6555   }
6556   case Intrinsic::prefetch: {
6557     SDValue Ops[5];
6558     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6559     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6560     Ops[0] = DAG.getRoot();
6561     Ops[1] = getValue(I.getArgOperand(0));
6562     Ops[2] = getValue(I.getArgOperand(1));
6563     Ops[3] = getValue(I.getArgOperand(2));
6564     Ops[4] = getValue(I.getArgOperand(3));
6565     SDValue Result = DAG.getMemIntrinsicNode(
6566         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6567         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6568         /* align */ None, Flags);
6569 
6570     // Chain the prefetch in parallell with any pending loads, to stay out of
6571     // the way of later optimizations.
6572     PendingLoads.push_back(Result);
6573     Result = getRoot();
6574     DAG.setRoot(Result);
6575     return;
6576   }
6577   case Intrinsic::lifetime_start:
6578   case Intrinsic::lifetime_end: {
6579     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6580     // Stack coloring is not enabled in O0, discard region information.
6581     if (TM.getOptLevel() == CodeGenOpt::None)
6582       return;
6583 
6584     const int64_t ObjectSize =
6585         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6586     Value *const ObjectPtr = I.getArgOperand(1);
6587     SmallVector<const Value *, 4> Allocas;
6588     getUnderlyingObjects(ObjectPtr, Allocas);
6589 
6590     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6591            E = Allocas.end(); Object != E; ++Object) {
6592       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6593 
6594       // Could not find an Alloca.
6595       if (!LifetimeObject)
6596         continue;
6597 
6598       // First check that the Alloca is static, otherwise it won't have a
6599       // valid frame index.
6600       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6601       if (SI == FuncInfo.StaticAllocaMap.end())
6602         return;
6603 
6604       const int FrameIndex = SI->second;
6605       int64_t Offset;
6606       if (GetPointerBaseWithConstantOffset(
6607               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6608         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6609       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6610                                 Offset);
6611       DAG.setRoot(Res);
6612     }
6613     return;
6614   }
6615   case Intrinsic::invariant_start:
6616     // Discard region information.
6617     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6618     return;
6619   case Intrinsic::invariant_end:
6620     // Discard region information.
6621     return;
6622   case Intrinsic::clear_cache:
6623     /// FunctionName may be null.
6624     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6625       lowerCallToExternalSymbol(I, FunctionName);
6626     return;
6627   case Intrinsic::donothing:
6628     // ignore
6629     return;
6630   case Intrinsic::experimental_stackmap:
6631     visitStackmap(I);
6632     return;
6633   case Intrinsic::experimental_patchpoint_void:
6634   case Intrinsic::experimental_patchpoint_i64:
6635     visitPatchpoint(I);
6636     return;
6637   case Intrinsic::experimental_gc_statepoint:
6638     LowerStatepoint(cast<GCStatepointInst>(I));
6639     return;
6640   case Intrinsic::experimental_gc_result:
6641     visitGCResult(cast<GCResultInst>(I));
6642     return;
6643   case Intrinsic::experimental_gc_relocate:
6644     visitGCRelocate(cast<GCRelocateInst>(I));
6645     return;
6646   case Intrinsic::instrprof_increment:
6647     llvm_unreachable("instrprof failed to lower an increment");
6648   case Intrinsic::instrprof_value_profile:
6649     llvm_unreachable("instrprof failed to lower a value profiling call");
6650   case Intrinsic::localescape: {
6651     MachineFunction &MF = DAG.getMachineFunction();
6652     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6653 
6654     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6655     // is the same on all targets.
6656     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6657       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6658       if (isa<ConstantPointerNull>(Arg))
6659         continue; // Skip null pointers. They represent a hole in index space.
6660       AllocaInst *Slot = cast<AllocaInst>(Arg);
6661       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6662              "can only escape static allocas");
6663       int FI = FuncInfo.StaticAllocaMap[Slot];
6664       MCSymbol *FrameAllocSym =
6665           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6666               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6667       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6668               TII->get(TargetOpcode::LOCAL_ESCAPE))
6669           .addSym(FrameAllocSym)
6670           .addFrameIndex(FI);
6671     }
6672 
6673     return;
6674   }
6675 
6676   case Intrinsic::localrecover: {
6677     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6678     MachineFunction &MF = DAG.getMachineFunction();
6679 
6680     // Get the symbol that defines the frame offset.
6681     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6682     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6683     unsigned IdxVal =
6684         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6685     MCSymbol *FrameAllocSym =
6686         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6687             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6688 
6689     Value *FP = I.getArgOperand(1);
6690     SDValue FPVal = getValue(FP);
6691     EVT PtrVT = FPVal.getValueType();
6692 
6693     // Create a MCSymbol for the label to avoid any target lowering
6694     // that would make this PC relative.
6695     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6696     SDValue OffsetVal =
6697         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6698 
6699     // Add the offset to the FP.
6700     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6701     setValue(&I, Add);
6702 
6703     return;
6704   }
6705 
6706   case Intrinsic::eh_exceptionpointer:
6707   case Intrinsic::eh_exceptioncode: {
6708     // Get the exception pointer vreg, copy from it, and resize it to fit.
6709     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6710     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6711     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6712     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6713     SDValue N =
6714         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6715     if (Intrinsic == Intrinsic::eh_exceptioncode)
6716       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6717     setValue(&I, N);
6718     return;
6719   }
6720   case Intrinsic::xray_customevent: {
6721     // Here we want to make sure that the intrinsic behaves as if it has a
6722     // specific calling convention, and only for x86_64.
6723     // FIXME: Support other platforms later.
6724     const auto &Triple = DAG.getTarget().getTargetTriple();
6725     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6726       return;
6727 
6728     SDLoc DL = getCurSDLoc();
6729     SmallVector<SDValue, 8> Ops;
6730 
6731     // We want to say that we always want the arguments in registers.
6732     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6733     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6734     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6735     SDValue Chain = getRoot();
6736     Ops.push_back(LogEntryVal);
6737     Ops.push_back(StrSizeVal);
6738     Ops.push_back(Chain);
6739 
6740     // We need to enforce the calling convention for the callsite, so that
6741     // argument ordering is enforced correctly, and that register allocation can
6742     // see that some registers may be assumed clobbered and have to preserve
6743     // them across calls to the intrinsic.
6744     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6745                                            DL, NodeTys, Ops);
6746     SDValue patchableNode = SDValue(MN, 0);
6747     DAG.setRoot(patchableNode);
6748     setValue(&I, patchableNode);
6749     return;
6750   }
6751   case Intrinsic::xray_typedevent: {
6752     // Here we want to make sure that the intrinsic behaves as if it has a
6753     // specific calling convention, and only for x86_64.
6754     // FIXME: Support other platforms later.
6755     const auto &Triple = DAG.getTarget().getTargetTriple();
6756     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6757       return;
6758 
6759     SDLoc DL = getCurSDLoc();
6760     SmallVector<SDValue, 8> Ops;
6761 
6762     // We want to say that we always want the arguments in registers.
6763     // It's unclear to me how manipulating the selection DAG here forces callers
6764     // to provide arguments in registers instead of on the stack.
6765     SDValue LogTypeId = getValue(I.getArgOperand(0));
6766     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6767     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6768     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6769     SDValue Chain = getRoot();
6770     Ops.push_back(LogTypeId);
6771     Ops.push_back(LogEntryVal);
6772     Ops.push_back(StrSizeVal);
6773     Ops.push_back(Chain);
6774 
6775     // We need to enforce the calling convention for the callsite, so that
6776     // argument ordering is enforced correctly, and that register allocation can
6777     // see that some registers may be assumed clobbered and have to preserve
6778     // them across calls to the intrinsic.
6779     MachineSDNode *MN = DAG.getMachineNode(
6780         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6781     SDValue patchableNode = SDValue(MN, 0);
6782     DAG.setRoot(patchableNode);
6783     setValue(&I, patchableNode);
6784     return;
6785   }
6786   case Intrinsic::experimental_deoptimize:
6787     LowerDeoptimizeCall(&I);
6788     return;
6789 
6790   case Intrinsic::experimental_vector_reduce_v2_fadd:
6791   case Intrinsic::experimental_vector_reduce_v2_fmul:
6792   case Intrinsic::experimental_vector_reduce_add:
6793   case Intrinsic::experimental_vector_reduce_mul:
6794   case Intrinsic::experimental_vector_reduce_and:
6795   case Intrinsic::experimental_vector_reduce_or:
6796   case Intrinsic::experimental_vector_reduce_xor:
6797   case Intrinsic::experimental_vector_reduce_smax:
6798   case Intrinsic::experimental_vector_reduce_smin:
6799   case Intrinsic::experimental_vector_reduce_umax:
6800   case Intrinsic::experimental_vector_reduce_umin:
6801   case Intrinsic::experimental_vector_reduce_fmax:
6802   case Intrinsic::experimental_vector_reduce_fmin:
6803     visitVectorReduce(I, Intrinsic);
6804     return;
6805 
6806   case Intrinsic::icall_branch_funnel: {
6807     SmallVector<SDValue, 16> Ops;
6808     Ops.push_back(getValue(I.getArgOperand(0)));
6809 
6810     int64_t Offset;
6811     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6812         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6813     if (!Base)
6814       report_fatal_error(
6815           "llvm.icall.branch.funnel operand must be a GlobalValue");
6816     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6817 
6818     struct BranchFunnelTarget {
6819       int64_t Offset;
6820       SDValue Target;
6821     };
6822     SmallVector<BranchFunnelTarget, 8> Targets;
6823 
6824     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6825       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6826           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6827       if (ElemBase != Base)
6828         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6829                            "to the same GlobalValue");
6830 
6831       SDValue Val = getValue(I.getArgOperand(Op + 1));
6832       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6833       if (!GA)
6834         report_fatal_error(
6835             "llvm.icall.branch.funnel operand must be a GlobalValue");
6836       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6837                                      GA->getGlobal(), getCurSDLoc(),
6838                                      Val.getValueType(), GA->getOffset())});
6839     }
6840     llvm::sort(Targets,
6841                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6842                  return T1.Offset < T2.Offset;
6843                });
6844 
6845     for (auto &T : Targets) {
6846       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6847       Ops.push_back(T.Target);
6848     }
6849 
6850     Ops.push_back(DAG.getRoot()); // Chain
6851     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6852                                  getCurSDLoc(), MVT::Other, Ops),
6853               0);
6854     DAG.setRoot(N);
6855     setValue(&I, N);
6856     HasTailCall = true;
6857     return;
6858   }
6859 
6860   case Intrinsic::wasm_landingpad_index:
6861     // Information this intrinsic contained has been transferred to
6862     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6863     // delete it now.
6864     return;
6865 
6866   case Intrinsic::aarch64_settag:
6867   case Intrinsic::aarch64_settag_zero: {
6868     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6869     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6870     SDValue Val = TSI.EmitTargetCodeForSetTag(
6871         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6872         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6873         ZeroMemory);
6874     DAG.setRoot(Val);
6875     setValue(&I, Val);
6876     return;
6877   }
6878   case Intrinsic::ptrmask: {
6879     SDValue Ptr = getValue(I.getOperand(0));
6880     SDValue Const = getValue(I.getOperand(1));
6881 
6882     EVT PtrVT = Ptr.getValueType();
6883     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6884                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6885     return;
6886   }
6887   case Intrinsic::get_active_lane_mask: {
6888     auto DL = getCurSDLoc();
6889     SDValue Index = getValue(I.getOperand(0));
6890     SDValue TripCount = getValue(I.getOperand(1));
6891     Type *ElementTy = I.getOperand(0)->getType();
6892     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6893     unsigned VecWidth = VT.getVectorNumElements();
6894 
6895     SmallVector<SDValue, 16> OpsTripCount;
6896     SmallVector<SDValue, 16> OpsIndex;
6897     SmallVector<SDValue, 16> OpsStepConstants;
6898     for (unsigned i = 0; i < VecWidth; i++) {
6899       OpsTripCount.push_back(TripCount);
6900       OpsIndex.push_back(Index);
6901       OpsStepConstants.push_back(
6902           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
6903     }
6904 
6905     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
6906 
6907     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
6908     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6909     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6910     SDValue VectorInduction = DAG.getNode(
6911        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6912     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
6913     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6914                                  VectorTripCount, ISD::CondCode::SETULT);
6915     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
6916                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
6917                              SetCC));
6918     return;
6919   }
6920   }
6921 }
6922 
6923 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6924     const ConstrainedFPIntrinsic &FPI) {
6925   SDLoc sdl = getCurSDLoc();
6926 
6927   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6928   SmallVector<EVT, 4> ValueVTs;
6929   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6930   ValueVTs.push_back(MVT::Other); // Out chain
6931 
6932   // We do not need to serialize constrained FP intrinsics against
6933   // each other or against (nonvolatile) loads, so they can be
6934   // chained like loads.
6935   SDValue Chain = DAG.getRoot();
6936   SmallVector<SDValue, 4> Opers;
6937   Opers.push_back(Chain);
6938   if (FPI.isUnaryOp()) {
6939     Opers.push_back(getValue(FPI.getArgOperand(0)));
6940   } else if (FPI.isTernaryOp()) {
6941     Opers.push_back(getValue(FPI.getArgOperand(0)));
6942     Opers.push_back(getValue(FPI.getArgOperand(1)));
6943     Opers.push_back(getValue(FPI.getArgOperand(2)));
6944   } else {
6945     Opers.push_back(getValue(FPI.getArgOperand(0)));
6946     Opers.push_back(getValue(FPI.getArgOperand(1)));
6947   }
6948 
6949   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6950     assert(Result.getNode()->getNumValues() == 2);
6951 
6952     // Push node to the appropriate list so that future instructions can be
6953     // chained up correctly.
6954     SDValue OutChain = Result.getValue(1);
6955     switch (EB) {
6956     case fp::ExceptionBehavior::ebIgnore:
6957       // The only reason why ebIgnore nodes still need to be chained is that
6958       // they might depend on the current rounding mode, and therefore must
6959       // not be moved across instruction that may change that mode.
6960       LLVM_FALLTHROUGH;
6961     case fp::ExceptionBehavior::ebMayTrap:
6962       // These must not be moved across calls or instructions that may change
6963       // floating-point exception masks.
6964       PendingConstrainedFP.push_back(OutChain);
6965       break;
6966     case fp::ExceptionBehavior::ebStrict:
6967       // These must not be moved across calls or instructions that may change
6968       // floating-point exception masks or read floating-point exception flags.
6969       // In addition, they cannot be optimized out even if unused.
6970       PendingConstrainedFPStrict.push_back(OutChain);
6971       break;
6972     }
6973   };
6974 
6975   SDVTList VTs = DAG.getVTList(ValueVTs);
6976   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
6977 
6978   SDNodeFlags Flags;
6979   if (EB == fp::ExceptionBehavior::ebIgnore)
6980     Flags.setNoFPExcept(true);
6981 
6982   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
6983     Flags.copyFMF(*FPOp);
6984 
6985   unsigned Opcode;
6986   switch (FPI.getIntrinsicID()) {
6987   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6988 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
6989   case Intrinsic::INTRINSIC:                                                   \
6990     Opcode = ISD::STRICT_##DAGN;                                               \
6991     break;
6992 #include "llvm/IR/ConstrainedOps.def"
6993   case Intrinsic::experimental_constrained_fmuladd: {
6994     Opcode = ISD::STRICT_FMA;
6995     // Break fmuladd into fmul and fadd.
6996     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
6997         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
6998                                         ValueVTs[0])) {
6999       Opers.pop_back();
7000       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7001       pushOutChain(Mul, EB);
7002       Opcode = ISD::STRICT_FADD;
7003       Opers.clear();
7004       Opers.push_back(Mul.getValue(1));
7005       Opers.push_back(Mul.getValue(0));
7006       Opers.push_back(getValue(FPI.getArgOperand(2)));
7007     }
7008     break;
7009   }
7010   }
7011 
7012   // A few strict DAG nodes carry additional operands that are not
7013   // set up by the default code above.
7014   switch (Opcode) {
7015   default: break;
7016   case ISD::STRICT_FP_ROUND:
7017     Opers.push_back(
7018         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7019     break;
7020   case ISD::STRICT_FSETCC:
7021   case ISD::STRICT_FSETCCS: {
7022     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7023     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7024     break;
7025   }
7026   }
7027 
7028   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7029   pushOutChain(Result, EB);
7030 
7031   SDValue FPResult = Result.getValue(0);
7032   setValue(&FPI, FPResult);
7033 }
7034 
7035 std::pair<SDValue, SDValue>
7036 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7037                                     const BasicBlock *EHPadBB) {
7038   MachineFunction &MF = DAG.getMachineFunction();
7039   MachineModuleInfo &MMI = MF.getMMI();
7040   MCSymbol *BeginLabel = nullptr;
7041 
7042   if (EHPadBB) {
7043     // Insert a label before the invoke call to mark the try range.  This can be
7044     // used to detect deletion of the invoke via the MachineModuleInfo.
7045     BeginLabel = MMI.getContext().createTempSymbol();
7046 
7047     // For SjLj, keep track of which landing pads go with which invokes
7048     // so as to maintain the ordering of pads in the LSDA.
7049     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7050     if (CallSiteIndex) {
7051       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7052       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7053 
7054       // Now that the call site is handled, stop tracking it.
7055       MMI.setCurrentCallSite(0);
7056     }
7057 
7058     // Both PendingLoads and PendingExports must be flushed here;
7059     // this call might not return.
7060     (void)getRoot();
7061     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7062 
7063     CLI.setChain(getRoot());
7064   }
7065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7066   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7067 
7068   assert((CLI.IsTailCall || Result.second.getNode()) &&
7069          "Non-null chain expected with non-tail call!");
7070   assert((Result.second.getNode() || !Result.first.getNode()) &&
7071          "Null value expected with tail call!");
7072 
7073   if (!Result.second.getNode()) {
7074     // As a special case, a null chain means that a tail call has been emitted
7075     // and the DAG root is already updated.
7076     HasTailCall = true;
7077 
7078     // Since there's no actual continuation from this block, nothing can be
7079     // relying on us setting vregs for them.
7080     PendingExports.clear();
7081   } else {
7082     DAG.setRoot(Result.second);
7083   }
7084 
7085   if (EHPadBB) {
7086     // Insert a label at the end of the invoke call to mark the try range.  This
7087     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7088     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7089     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7090 
7091     // Inform MachineModuleInfo of range.
7092     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7093     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7094     // actually use outlined funclets and their LSDA info style.
7095     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7096       assert(CLI.CB);
7097       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7098       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7099     } else if (!isScopedEHPersonality(Pers)) {
7100       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7101     }
7102   }
7103 
7104   return Result;
7105 }
7106 
7107 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7108                                       bool isTailCall,
7109                                       const BasicBlock *EHPadBB) {
7110   auto &DL = DAG.getDataLayout();
7111   FunctionType *FTy = CB.getFunctionType();
7112   Type *RetTy = CB.getType();
7113 
7114   TargetLowering::ArgListTy Args;
7115   Args.reserve(CB.arg_size());
7116 
7117   const Value *SwiftErrorVal = nullptr;
7118   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7119 
7120   if (isTailCall) {
7121     // Avoid emitting tail calls in functions with the disable-tail-calls
7122     // attribute.
7123     auto *Caller = CB.getParent()->getParent();
7124     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7125         "true")
7126       isTailCall = false;
7127 
7128     // We can't tail call inside a function with a swifterror argument. Lowering
7129     // does not support this yet. It would have to move into the swifterror
7130     // register before the call.
7131     if (TLI.supportSwiftError() &&
7132         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7133       isTailCall = false;
7134   }
7135 
7136   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7137     TargetLowering::ArgListEntry Entry;
7138     const Value *V = *I;
7139 
7140     // Skip empty types
7141     if (V->getType()->isEmptyTy())
7142       continue;
7143 
7144     SDValue ArgNode = getValue(V);
7145     Entry.Node = ArgNode; Entry.Ty = V->getType();
7146 
7147     Entry.setAttributes(&CB, I - CB.arg_begin());
7148 
7149     // Use swifterror virtual register as input to the call.
7150     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7151       SwiftErrorVal = V;
7152       // We find the virtual register for the actual swifterror argument.
7153       // Instead of using the Value, we use the virtual register instead.
7154       Entry.Node =
7155           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7156                           EVT(TLI.getPointerTy(DL)));
7157     }
7158 
7159     Args.push_back(Entry);
7160 
7161     // If we have an explicit sret argument that is an Instruction, (i.e., it
7162     // might point to function-local memory), we can't meaningfully tail-call.
7163     if (Entry.IsSRet && isa<Instruction>(V))
7164       isTailCall = false;
7165   }
7166 
7167   // If call site has a cfguardtarget operand bundle, create and add an
7168   // additional ArgListEntry.
7169   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7170     TargetLowering::ArgListEntry Entry;
7171     Value *V = Bundle->Inputs[0];
7172     SDValue ArgNode = getValue(V);
7173     Entry.Node = ArgNode;
7174     Entry.Ty = V->getType();
7175     Entry.IsCFGuardTarget = true;
7176     Args.push_back(Entry);
7177   }
7178 
7179   // Check if target-independent constraints permit a tail call here.
7180   // Target-dependent constraints are checked within TLI->LowerCallTo.
7181   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7182     isTailCall = false;
7183 
7184   // Disable tail calls if there is an swifterror argument. Targets have not
7185   // been updated to support tail calls.
7186   if (TLI.supportSwiftError() && SwiftErrorVal)
7187     isTailCall = false;
7188 
7189   TargetLowering::CallLoweringInfo CLI(DAG);
7190   CLI.setDebugLoc(getCurSDLoc())
7191       .setChain(getRoot())
7192       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7193       .setTailCall(isTailCall)
7194       .setConvergent(CB.isConvergent())
7195       .setIsPreallocated(
7196           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7197   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7198 
7199   if (Result.first.getNode()) {
7200     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7201     setValue(&CB, Result.first);
7202   }
7203 
7204   // The last element of CLI.InVals has the SDValue for swifterror return.
7205   // Here we copy it to a virtual register and update SwiftErrorMap for
7206   // book-keeping.
7207   if (SwiftErrorVal && TLI.supportSwiftError()) {
7208     // Get the last element of InVals.
7209     SDValue Src = CLI.InVals.back();
7210     Register VReg =
7211         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7212     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7213     DAG.setRoot(CopyNode);
7214   }
7215 }
7216 
7217 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7218                              SelectionDAGBuilder &Builder) {
7219   // Check to see if this load can be trivially constant folded, e.g. if the
7220   // input is from a string literal.
7221   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7222     // Cast pointer to the type we really want to load.
7223     Type *LoadTy =
7224         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7225     if (LoadVT.isVector())
7226       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7227 
7228     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7229                                          PointerType::getUnqual(LoadTy));
7230 
7231     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7232             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7233       return Builder.getValue(LoadCst);
7234   }
7235 
7236   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7237   // still constant memory, the input chain can be the entry node.
7238   SDValue Root;
7239   bool ConstantMemory = false;
7240 
7241   // Do not serialize (non-volatile) loads of constant memory with anything.
7242   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7243     Root = Builder.DAG.getEntryNode();
7244     ConstantMemory = true;
7245   } else {
7246     // Do not serialize non-volatile loads against each other.
7247     Root = Builder.DAG.getRoot();
7248   }
7249 
7250   SDValue Ptr = Builder.getValue(PtrVal);
7251   SDValue LoadVal =
7252       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7253                           MachinePointerInfo(PtrVal), Align(1));
7254 
7255   if (!ConstantMemory)
7256     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7257   return LoadVal;
7258 }
7259 
7260 /// Record the value for an instruction that produces an integer result,
7261 /// converting the type where necessary.
7262 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7263                                                   SDValue Value,
7264                                                   bool IsSigned) {
7265   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7266                                                     I.getType(), true);
7267   if (IsSigned)
7268     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7269   else
7270     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7271   setValue(&I, Value);
7272 }
7273 
7274 /// See if we can lower a memcmp call into an optimized form. If so, return
7275 /// true and lower it. Otherwise return false, and it will be lowered like a
7276 /// normal call.
7277 /// The caller already checked that \p I calls the appropriate LibFunc with a
7278 /// correct prototype.
7279 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7280   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7281   const Value *Size = I.getArgOperand(2);
7282   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7283   if (CSize && CSize->getZExtValue() == 0) {
7284     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7285                                                           I.getType(), true);
7286     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7287     return true;
7288   }
7289 
7290   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7291   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7292       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7293       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7294   if (Res.first.getNode()) {
7295     processIntegerCallValue(I, Res.first, true);
7296     PendingLoads.push_back(Res.second);
7297     return true;
7298   }
7299 
7300   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7301   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7302   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7303     return false;
7304 
7305   // If the target has a fast compare for the given size, it will return a
7306   // preferred load type for that size. Require that the load VT is legal and
7307   // that the target supports unaligned loads of that type. Otherwise, return
7308   // INVALID.
7309   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7310     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7311     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7312     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7313       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7314       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7315       // TODO: Check alignment of src and dest ptrs.
7316       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7317       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7318       if (!TLI.isTypeLegal(LVT) ||
7319           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7320           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7321         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7322     }
7323 
7324     return LVT;
7325   };
7326 
7327   // This turns into unaligned loads. We only do this if the target natively
7328   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7329   // we'll only produce a small number of byte loads.
7330   MVT LoadVT;
7331   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7332   switch (NumBitsToCompare) {
7333   default:
7334     return false;
7335   case 16:
7336     LoadVT = MVT::i16;
7337     break;
7338   case 32:
7339     LoadVT = MVT::i32;
7340     break;
7341   case 64:
7342   case 128:
7343   case 256:
7344     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7345     break;
7346   }
7347 
7348   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7349     return false;
7350 
7351   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7352   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7353 
7354   // Bitcast to a wide integer type if the loads are vectors.
7355   if (LoadVT.isVector()) {
7356     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7357     LoadL = DAG.getBitcast(CmpVT, LoadL);
7358     LoadR = DAG.getBitcast(CmpVT, LoadR);
7359   }
7360 
7361   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7362   processIntegerCallValue(I, Cmp, false);
7363   return true;
7364 }
7365 
7366 /// See if we can lower a memchr call into an optimized form. If so, return
7367 /// true and lower it. Otherwise return false, and it will be lowered like a
7368 /// normal call.
7369 /// The caller already checked that \p I calls the appropriate LibFunc with a
7370 /// correct prototype.
7371 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7372   const Value *Src = I.getArgOperand(0);
7373   const Value *Char = I.getArgOperand(1);
7374   const Value *Length = I.getArgOperand(2);
7375 
7376   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7377   std::pair<SDValue, SDValue> Res =
7378     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7379                                 getValue(Src), getValue(Char), getValue(Length),
7380                                 MachinePointerInfo(Src));
7381   if (Res.first.getNode()) {
7382     setValue(&I, Res.first);
7383     PendingLoads.push_back(Res.second);
7384     return true;
7385   }
7386 
7387   return false;
7388 }
7389 
7390 /// See if we can lower a mempcpy call into an optimized form. If so, return
7391 /// true and lower it. Otherwise return false, and it will be lowered like a
7392 /// normal call.
7393 /// The caller already checked that \p I calls the appropriate LibFunc with a
7394 /// correct prototype.
7395 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7396   SDValue Dst = getValue(I.getArgOperand(0));
7397   SDValue Src = getValue(I.getArgOperand(1));
7398   SDValue Size = getValue(I.getArgOperand(2));
7399 
7400   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7401   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7402   // DAG::getMemcpy needs Alignment to be defined.
7403   Align Alignment = std::min(DstAlign, SrcAlign);
7404 
7405   bool isVol = false;
7406   SDLoc sdl = getCurSDLoc();
7407 
7408   // In the mempcpy context we need to pass in a false value for isTailCall
7409   // because the return pointer needs to be adjusted by the size of
7410   // the copied memory.
7411   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7412   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7413                              /*isTailCall=*/false,
7414                              MachinePointerInfo(I.getArgOperand(0)),
7415                              MachinePointerInfo(I.getArgOperand(1)));
7416   assert(MC.getNode() != nullptr &&
7417          "** memcpy should not be lowered as TailCall in mempcpy context **");
7418   DAG.setRoot(MC);
7419 
7420   // Check if Size needs to be truncated or extended.
7421   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7422 
7423   // Adjust return pointer to point just past the last dst byte.
7424   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7425                                     Dst, Size);
7426   setValue(&I, DstPlusSize);
7427   return true;
7428 }
7429 
7430 /// See if we can lower a strcpy call into an optimized form.  If so, return
7431 /// true and lower it, otherwise return false and it will be lowered like a
7432 /// normal call.
7433 /// The caller already checked that \p I calls the appropriate LibFunc with a
7434 /// correct prototype.
7435 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7436   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7437 
7438   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7439   std::pair<SDValue, SDValue> Res =
7440     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7441                                 getValue(Arg0), getValue(Arg1),
7442                                 MachinePointerInfo(Arg0),
7443                                 MachinePointerInfo(Arg1), isStpcpy);
7444   if (Res.first.getNode()) {
7445     setValue(&I, Res.first);
7446     DAG.setRoot(Res.second);
7447     return true;
7448   }
7449 
7450   return false;
7451 }
7452 
7453 /// See if we can lower a strcmp call into an optimized form.  If so, return
7454 /// true and lower it, otherwise return false and it will be lowered like a
7455 /// normal call.
7456 /// The caller already checked that \p I calls the appropriate LibFunc with a
7457 /// correct prototype.
7458 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7459   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7460 
7461   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7462   std::pair<SDValue, SDValue> Res =
7463     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7464                                 getValue(Arg0), getValue(Arg1),
7465                                 MachinePointerInfo(Arg0),
7466                                 MachinePointerInfo(Arg1));
7467   if (Res.first.getNode()) {
7468     processIntegerCallValue(I, Res.first, true);
7469     PendingLoads.push_back(Res.second);
7470     return true;
7471   }
7472 
7473   return false;
7474 }
7475 
7476 /// See if we can lower a strlen call into an optimized form.  If so, return
7477 /// true and lower it, otherwise return false and it will be lowered like a
7478 /// normal call.
7479 /// The caller already checked that \p I calls the appropriate LibFunc with a
7480 /// correct prototype.
7481 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7482   const Value *Arg0 = I.getArgOperand(0);
7483 
7484   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7485   std::pair<SDValue, SDValue> Res =
7486     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7487                                 getValue(Arg0), MachinePointerInfo(Arg0));
7488   if (Res.first.getNode()) {
7489     processIntegerCallValue(I, Res.first, false);
7490     PendingLoads.push_back(Res.second);
7491     return true;
7492   }
7493 
7494   return false;
7495 }
7496 
7497 /// See if we can lower a strnlen call into an optimized form.  If so, return
7498 /// true and lower it, otherwise return false and it will be lowered like a
7499 /// normal call.
7500 /// The caller already checked that \p I calls the appropriate LibFunc with a
7501 /// correct prototype.
7502 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7503   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7504 
7505   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7506   std::pair<SDValue, SDValue> Res =
7507     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7508                                  getValue(Arg0), getValue(Arg1),
7509                                  MachinePointerInfo(Arg0));
7510   if (Res.first.getNode()) {
7511     processIntegerCallValue(I, Res.first, false);
7512     PendingLoads.push_back(Res.second);
7513     return true;
7514   }
7515 
7516   return false;
7517 }
7518 
7519 /// See if we can lower a unary floating-point operation into an SDNode with
7520 /// the specified Opcode.  If so, return true and lower it, otherwise return
7521 /// false and it will be lowered like a normal call.
7522 /// The caller already checked that \p I calls the appropriate LibFunc with a
7523 /// correct prototype.
7524 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7525                                               unsigned Opcode) {
7526   // We already checked this call's prototype; verify it doesn't modify errno.
7527   if (!I.onlyReadsMemory())
7528     return false;
7529 
7530   SDNodeFlags Flags;
7531   Flags.copyFMF(cast<FPMathOperator>(I));
7532 
7533   SDValue Tmp = getValue(I.getArgOperand(0));
7534   setValue(&I,
7535            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7536   return true;
7537 }
7538 
7539 /// See if we can lower a binary floating-point operation into an SDNode with
7540 /// the specified Opcode. If so, return true and lower it. Otherwise return
7541 /// false, and it will be lowered like a normal call.
7542 /// The caller already checked that \p I calls the appropriate LibFunc with a
7543 /// correct prototype.
7544 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7545                                                unsigned Opcode) {
7546   // We already checked this call's prototype; verify it doesn't modify errno.
7547   if (!I.onlyReadsMemory())
7548     return false;
7549 
7550   SDNodeFlags Flags;
7551   Flags.copyFMF(cast<FPMathOperator>(I));
7552 
7553   SDValue Tmp0 = getValue(I.getArgOperand(0));
7554   SDValue Tmp1 = getValue(I.getArgOperand(1));
7555   EVT VT = Tmp0.getValueType();
7556   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7557   return true;
7558 }
7559 
7560 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7561   // Handle inline assembly differently.
7562   if (I.isInlineAsm()) {
7563     visitInlineAsm(I);
7564     return;
7565   }
7566 
7567   if (Function *F = I.getCalledFunction()) {
7568     if (F->isDeclaration()) {
7569       // Is this an LLVM intrinsic or a target-specific intrinsic?
7570       unsigned IID = F->getIntrinsicID();
7571       if (!IID)
7572         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7573           IID = II->getIntrinsicID(F);
7574 
7575       if (IID) {
7576         visitIntrinsicCall(I, IID);
7577         return;
7578       }
7579     }
7580 
7581     // Check for well-known libc/libm calls.  If the function is internal, it
7582     // can't be a library call.  Don't do the check if marked as nobuiltin for
7583     // some reason or the call site requires strict floating point semantics.
7584     LibFunc Func;
7585     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7586         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7587         LibInfo->hasOptimizedCodeGen(Func)) {
7588       switch (Func) {
7589       default: break;
7590       case LibFunc_copysign:
7591       case LibFunc_copysignf:
7592       case LibFunc_copysignl:
7593         // We already checked this call's prototype; verify it doesn't modify
7594         // errno.
7595         if (I.onlyReadsMemory()) {
7596           SDValue LHS = getValue(I.getArgOperand(0));
7597           SDValue RHS = getValue(I.getArgOperand(1));
7598           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7599                                    LHS.getValueType(), LHS, RHS));
7600           return;
7601         }
7602         break;
7603       case LibFunc_fabs:
7604       case LibFunc_fabsf:
7605       case LibFunc_fabsl:
7606         if (visitUnaryFloatCall(I, ISD::FABS))
7607           return;
7608         break;
7609       case LibFunc_fmin:
7610       case LibFunc_fminf:
7611       case LibFunc_fminl:
7612         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7613           return;
7614         break;
7615       case LibFunc_fmax:
7616       case LibFunc_fmaxf:
7617       case LibFunc_fmaxl:
7618         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7619           return;
7620         break;
7621       case LibFunc_sin:
7622       case LibFunc_sinf:
7623       case LibFunc_sinl:
7624         if (visitUnaryFloatCall(I, ISD::FSIN))
7625           return;
7626         break;
7627       case LibFunc_cos:
7628       case LibFunc_cosf:
7629       case LibFunc_cosl:
7630         if (visitUnaryFloatCall(I, ISD::FCOS))
7631           return;
7632         break;
7633       case LibFunc_sqrt:
7634       case LibFunc_sqrtf:
7635       case LibFunc_sqrtl:
7636       case LibFunc_sqrt_finite:
7637       case LibFunc_sqrtf_finite:
7638       case LibFunc_sqrtl_finite:
7639         if (visitUnaryFloatCall(I, ISD::FSQRT))
7640           return;
7641         break;
7642       case LibFunc_floor:
7643       case LibFunc_floorf:
7644       case LibFunc_floorl:
7645         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7646           return;
7647         break;
7648       case LibFunc_nearbyint:
7649       case LibFunc_nearbyintf:
7650       case LibFunc_nearbyintl:
7651         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7652           return;
7653         break;
7654       case LibFunc_ceil:
7655       case LibFunc_ceilf:
7656       case LibFunc_ceill:
7657         if (visitUnaryFloatCall(I, ISD::FCEIL))
7658           return;
7659         break;
7660       case LibFunc_rint:
7661       case LibFunc_rintf:
7662       case LibFunc_rintl:
7663         if (visitUnaryFloatCall(I, ISD::FRINT))
7664           return;
7665         break;
7666       case LibFunc_round:
7667       case LibFunc_roundf:
7668       case LibFunc_roundl:
7669         if (visitUnaryFloatCall(I, ISD::FROUND))
7670           return;
7671         break;
7672       case LibFunc_trunc:
7673       case LibFunc_truncf:
7674       case LibFunc_truncl:
7675         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7676           return;
7677         break;
7678       case LibFunc_log2:
7679       case LibFunc_log2f:
7680       case LibFunc_log2l:
7681         if (visitUnaryFloatCall(I, ISD::FLOG2))
7682           return;
7683         break;
7684       case LibFunc_exp2:
7685       case LibFunc_exp2f:
7686       case LibFunc_exp2l:
7687         if (visitUnaryFloatCall(I, ISD::FEXP2))
7688           return;
7689         break;
7690       case LibFunc_memcmp:
7691         if (visitMemCmpCall(I))
7692           return;
7693         break;
7694       case LibFunc_mempcpy:
7695         if (visitMemPCpyCall(I))
7696           return;
7697         break;
7698       case LibFunc_memchr:
7699         if (visitMemChrCall(I))
7700           return;
7701         break;
7702       case LibFunc_strcpy:
7703         if (visitStrCpyCall(I, false))
7704           return;
7705         break;
7706       case LibFunc_stpcpy:
7707         if (visitStrCpyCall(I, true))
7708           return;
7709         break;
7710       case LibFunc_strcmp:
7711         if (visitStrCmpCall(I))
7712           return;
7713         break;
7714       case LibFunc_strlen:
7715         if (visitStrLenCall(I))
7716           return;
7717         break;
7718       case LibFunc_strnlen:
7719         if (visitStrNLenCall(I))
7720           return;
7721         break;
7722       }
7723     }
7724   }
7725 
7726   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7727   // have to do anything here to lower funclet bundles.
7728   // CFGuardTarget bundles are lowered in LowerCallTo.
7729   assert(!I.hasOperandBundlesOtherThan(
7730              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7731               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7732          "Cannot lower calls with arbitrary operand bundles!");
7733 
7734   SDValue Callee = getValue(I.getCalledOperand());
7735 
7736   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7737     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7738   else
7739     // Check if we can potentially perform a tail call. More detailed checking
7740     // is be done within LowerCallTo, after more information about the call is
7741     // known.
7742     LowerCallTo(I, Callee, I.isTailCall());
7743 }
7744 
7745 namespace {
7746 
7747 /// AsmOperandInfo - This contains information for each constraint that we are
7748 /// lowering.
7749 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7750 public:
7751   /// CallOperand - If this is the result output operand or a clobber
7752   /// this is null, otherwise it is the incoming operand to the CallInst.
7753   /// This gets modified as the asm is processed.
7754   SDValue CallOperand;
7755 
7756   /// AssignedRegs - If this is a register or register class operand, this
7757   /// contains the set of register corresponding to the operand.
7758   RegsForValue AssignedRegs;
7759 
7760   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7761     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7762   }
7763 
7764   /// Whether or not this operand accesses memory
7765   bool hasMemory(const TargetLowering &TLI) const {
7766     // Indirect operand accesses access memory.
7767     if (isIndirect)
7768       return true;
7769 
7770     for (const auto &Code : Codes)
7771       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7772         return true;
7773 
7774     return false;
7775   }
7776 
7777   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7778   /// corresponds to.  If there is no Value* for this operand, it returns
7779   /// MVT::Other.
7780   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7781                            const DataLayout &DL) const {
7782     if (!CallOperandVal) return MVT::Other;
7783 
7784     if (isa<BasicBlock>(CallOperandVal))
7785       return TLI.getProgramPointerTy(DL);
7786 
7787     llvm::Type *OpTy = CallOperandVal->getType();
7788 
7789     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7790     // If this is an indirect operand, the operand is a pointer to the
7791     // accessed type.
7792     if (isIndirect) {
7793       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7794       if (!PtrTy)
7795         report_fatal_error("Indirect operand for inline asm not a pointer!");
7796       OpTy = PtrTy->getElementType();
7797     }
7798 
7799     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7800     if (StructType *STy = dyn_cast<StructType>(OpTy))
7801       if (STy->getNumElements() == 1)
7802         OpTy = STy->getElementType(0);
7803 
7804     // If OpTy is not a single value, it may be a struct/union that we
7805     // can tile with integers.
7806     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7807       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7808       switch (BitSize) {
7809       default: break;
7810       case 1:
7811       case 8:
7812       case 16:
7813       case 32:
7814       case 64:
7815       case 128:
7816         OpTy = IntegerType::get(Context, BitSize);
7817         break;
7818       }
7819     }
7820 
7821     return TLI.getValueType(DL, OpTy, true);
7822   }
7823 };
7824 
7825 
7826 } // end anonymous namespace
7827 
7828 /// Make sure that the output operand \p OpInfo and its corresponding input
7829 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7830 /// out).
7831 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7832                                SDISelAsmOperandInfo &MatchingOpInfo,
7833                                SelectionDAG &DAG) {
7834   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7835     return;
7836 
7837   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7838   const auto &TLI = DAG.getTargetLoweringInfo();
7839 
7840   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7841       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7842                                        OpInfo.ConstraintVT);
7843   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7844       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7845                                        MatchingOpInfo.ConstraintVT);
7846   if ((OpInfo.ConstraintVT.isInteger() !=
7847        MatchingOpInfo.ConstraintVT.isInteger()) ||
7848       (MatchRC.second != InputRC.second)) {
7849     // FIXME: error out in a more elegant fashion
7850     report_fatal_error("Unsupported asm: input constraint"
7851                        " with a matching output constraint of"
7852                        " incompatible type!");
7853   }
7854   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7855 }
7856 
7857 /// Get a direct memory input to behave well as an indirect operand.
7858 /// This may introduce stores, hence the need for a \p Chain.
7859 /// \return The (possibly updated) chain.
7860 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7861                                         SDISelAsmOperandInfo &OpInfo,
7862                                         SelectionDAG &DAG) {
7863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7864 
7865   // If we don't have an indirect input, put it in the constpool if we can,
7866   // otherwise spill it to a stack slot.
7867   // TODO: This isn't quite right. We need to handle these according to
7868   // the addressing mode that the constraint wants. Also, this may take
7869   // an additional register for the computation and we don't want that
7870   // either.
7871 
7872   // If the operand is a float, integer, or vector constant, spill to a
7873   // constant pool entry to get its address.
7874   const Value *OpVal = OpInfo.CallOperandVal;
7875   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7876       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7877     OpInfo.CallOperand = DAG.getConstantPool(
7878         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7879     return Chain;
7880   }
7881 
7882   // Otherwise, create a stack slot and emit a store to it before the asm.
7883   Type *Ty = OpVal->getType();
7884   auto &DL = DAG.getDataLayout();
7885   uint64_t TySize = DL.getTypeAllocSize(Ty);
7886   MachineFunction &MF = DAG.getMachineFunction();
7887   int SSFI = MF.getFrameInfo().CreateStackObject(
7888       TySize, DL.getPrefTypeAlign(Ty), false);
7889   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7890   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7891                             MachinePointerInfo::getFixedStack(MF, SSFI),
7892                             TLI.getMemValueType(DL, Ty));
7893   OpInfo.CallOperand = StackSlot;
7894 
7895   return Chain;
7896 }
7897 
7898 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7899 /// specified operand.  We prefer to assign virtual registers, to allow the
7900 /// register allocator to handle the assignment process.  However, if the asm
7901 /// uses features that we can't model on machineinstrs, we have SDISel do the
7902 /// allocation.  This produces generally horrible, but correct, code.
7903 ///
7904 ///   OpInfo describes the operand
7905 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7906 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7907                                  SDISelAsmOperandInfo &OpInfo,
7908                                  SDISelAsmOperandInfo &RefOpInfo) {
7909   LLVMContext &Context = *DAG.getContext();
7910   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7911 
7912   MachineFunction &MF = DAG.getMachineFunction();
7913   SmallVector<unsigned, 4> Regs;
7914   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7915 
7916   // No work to do for memory operations.
7917   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7918     return;
7919 
7920   // If this is a constraint for a single physreg, or a constraint for a
7921   // register class, find it.
7922   unsigned AssignedReg;
7923   const TargetRegisterClass *RC;
7924   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7925       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7926   // RC is unset only on failure. Return immediately.
7927   if (!RC)
7928     return;
7929 
7930   // Get the actual register value type.  This is important, because the user
7931   // may have asked for (e.g.) the AX register in i32 type.  We need to
7932   // remember that AX is actually i16 to get the right extension.
7933   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7934 
7935   if (OpInfo.ConstraintVT != MVT::Other) {
7936     // If this is an FP operand in an integer register (or visa versa), or more
7937     // generally if the operand value disagrees with the register class we plan
7938     // to stick it in, fix the operand type.
7939     //
7940     // If this is an input value, the bitcast to the new type is done now.
7941     // Bitcast for output value is done at the end of visitInlineAsm().
7942     if ((OpInfo.Type == InlineAsm::isOutput ||
7943          OpInfo.Type == InlineAsm::isInput) &&
7944         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7945       // Try to convert to the first EVT that the reg class contains.  If the
7946       // types are identical size, use a bitcast to convert (e.g. two differing
7947       // vector types).  Note: output bitcast is done at the end of
7948       // visitInlineAsm().
7949       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7950         // Exclude indirect inputs while they are unsupported because the code
7951         // to perform the load is missing and thus OpInfo.CallOperand still
7952         // refers to the input address rather than the pointed-to value.
7953         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7954           OpInfo.CallOperand =
7955               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7956         OpInfo.ConstraintVT = RegVT;
7957         // If the operand is an FP value and we want it in integer registers,
7958         // use the corresponding integer type. This turns an f64 value into
7959         // i64, which can be passed with two i32 values on a 32-bit machine.
7960       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7961         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7962         if (OpInfo.Type == InlineAsm::isInput)
7963           OpInfo.CallOperand =
7964               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7965         OpInfo.ConstraintVT = VT;
7966       }
7967     }
7968   }
7969 
7970   // No need to allocate a matching input constraint since the constraint it's
7971   // matching to has already been allocated.
7972   if (OpInfo.isMatchingInputConstraint())
7973     return;
7974 
7975   EVT ValueVT = OpInfo.ConstraintVT;
7976   if (OpInfo.ConstraintVT == MVT::Other)
7977     ValueVT = RegVT;
7978 
7979   // Initialize NumRegs.
7980   unsigned NumRegs = 1;
7981   if (OpInfo.ConstraintVT != MVT::Other)
7982     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7983 
7984   // If this is a constraint for a specific physical register, like {r17},
7985   // assign it now.
7986 
7987   // If this associated to a specific register, initialize iterator to correct
7988   // place. If virtual, make sure we have enough registers
7989 
7990   // Initialize iterator if necessary
7991   TargetRegisterClass::iterator I = RC->begin();
7992   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7993 
7994   // Do not check for single registers.
7995   if (AssignedReg) {
7996       for (; *I != AssignedReg; ++I)
7997         assert(I != RC->end() && "AssignedReg should be member of RC");
7998   }
7999 
8000   for (; NumRegs; --NumRegs, ++I) {
8001     assert(I != RC->end() && "Ran out of registers to allocate!");
8002     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8003     Regs.push_back(R);
8004   }
8005 
8006   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8007 }
8008 
8009 static unsigned
8010 findMatchingInlineAsmOperand(unsigned OperandNo,
8011                              const std::vector<SDValue> &AsmNodeOperands) {
8012   // Scan until we find the definition we already emitted of this operand.
8013   unsigned CurOp = InlineAsm::Op_FirstOperand;
8014   for (; OperandNo; --OperandNo) {
8015     // Advance to the next operand.
8016     unsigned OpFlag =
8017         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8018     assert((InlineAsm::isRegDefKind(OpFlag) ||
8019             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8020             InlineAsm::isMemKind(OpFlag)) &&
8021            "Skipped past definitions?");
8022     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8023   }
8024   return CurOp;
8025 }
8026 
8027 namespace {
8028 
8029 class ExtraFlags {
8030   unsigned Flags = 0;
8031 
8032 public:
8033   explicit ExtraFlags(const CallBase &Call) {
8034     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8035     if (IA->hasSideEffects())
8036       Flags |= InlineAsm::Extra_HasSideEffects;
8037     if (IA->isAlignStack())
8038       Flags |= InlineAsm::Extra_IsAlignStack;
8039     if (Call.isConvergent())
8040       Flags |= InlineAsm::Extra_IsConvergent;
8041     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8042   }
8043 
8044   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8045     // Ideally, we would only check against memory constraints.  However, the
8046     // meaning of an Other constraint can be target-specific and we can't easily
8047     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8048     // for Other constraints as well.
8049     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8050         OpInfo.ConstraintType == TargetLowering::C_Other) {
8051       if (OpInfo.Type == InlineAsm::isInput)
8052         Flags |= InlineAsm::Extra_MayLoad;
8053       else if (OpInfo.Type == InlineAsm::isOutput)
8054         Flags |= InlineAsm::Extra_MayStore;
8055       else if (OpInfo.Type == InlineAsm::isClobber)
8056         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8057     }
8058   }
8059 
8060   unsigned get() const { return Flags; }
8061 };
8062 
8063 } // end anonymous namespace
8064 
8065 /// visitInlineAsm - Handle a call to an InlineAsm object.
8066 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8067   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8068 
8069   /// ConstraintOperands - Information about all of the constraints.
8070   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8071 
8072   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8073   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8074       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8075 
8076   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8077   // AsmDialect, MayLoad, MayStore).
8078   bool HasSideEffect = IA->hasSideEffects();
8079   ExtraFlags ExtraInfo(Call);
8080 
8081   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8082   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8083   unsigned NumMatchingOps = 0;
8084   for (auto &T : TargetConstraints) {
8085     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8086     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8087 
8088     // Compute the value type for each operand.
8089     if (OpInfo.Type == InlineAsm::isInput ||
8090         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8091       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8092 
8093       // Process the call argument. BasicBlocks are labels, currently appearing
8094       // only in asm's.
8095       if (isa<CallBrInst>(Call) &&
8096           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8097                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8098                         NumMatchingOps) &&
8099           (NumMatchingOps == 0 ||
8100            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8101                         NumMatchingOps))) {
8102         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8103         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8104         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8105       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8106         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8107       } else {
8108         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8109       }
8110 
8111       OpInfo.ConstraintVT =
8112           OpInfo
8113               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8114               .getSimpleVT();
8115     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8116       // The return value of the call is this value.  As such, there is no
8117       // corresponding argument.
8118       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8119       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8120         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8121             DAG.getDataLayout(), STy->getElementType(ResNo));
8122       } else {
8123         assert(ResNo == 0 && "Asm only has one result!");
8124         OpInfo.ConstraintVT =
8125             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8126       }
8127       ++ResNo;
8128     } else {
8129       OpInfo.ConstraintVT = MVT::Other;
8130     }
8131 
8132     if (OpInfo.hasMatchingInput())
8133       ++NumMatchingOps;
8134 
8135     if (!HasSideEffect)
8136       HasSideEffect = OpInfo.hasMemory(TLI);
8137 
8138     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8139     // FIXME: Could we compute this on OpInfo rather than T?
8140 
8141     // Compute the constraint code and ConstraintType to use.
8142     TLI.ComputeConstraintToUse(T, SDValue());
8143 
8144     if (T.ConstraintType == TargetLowering::C_Immediate &&
8145         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8146       // We've delayed emitting a diagnostic like the "n" constraint because
8147       // inlining could cause an integer showing up.
8148       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8149                                           "' expects an integer constant "
8150                                           "expression");
8151 
8152     ExtraInfo.update(T);
8153   }
8154 
8155 
8156   // We won't need to flush pending loads if this asm doesn't touch
8157   // memory and is nonvolatile.
8158   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8159 
8160   bool IsCallBr = isa<CallBrInst>(Call);
8161   if (IsCallBr) {
8162     // If this is a callbr we need to flush pending exports since inlineasm_br
8163     // is a terminator. We need to do this before nodes are glued to
8164     // the inlineasm_br node.
8165     Chain = getControlRoot();
8166   }
8167 
8168   // Second pass over the constraints: compute which constraint option to use.
8169   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8170     // If this is an output operand with a matching input operand, look up the
8171     // matching input. If their types mismatch, e.g. one is an integer, the
8172     // other is floating point, or their sizes are different, flag it as an
8173     // error.
8174     if (OpInfo.hasMatchingInput()) {
8175       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8176       patchMatchingInput(OpInfo, Input, DAG);
8177     }
8178 
8179     // Compute the constraint code and ConstraintType to use.
8180     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8181 
8182     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8183         OpInfo.Type == InlineAsm::isClobber)
8184       continue;
8185 
8186     // If this is a memory input, and if the operand is not indirect, do what we
8187     // need to provide an address for the memory input.
8188     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8189         !OpInfo.isIndirect) {
8190       assert((OpInfo.isMultipleAlternative ||
8191               (OpInfo.Type == InlineAsm::isInput)) &&
8192              "Can only indirectify direct input operands!");
8193 
8194       // Memory operands really want the address of the value.
8195       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8196 
8197       // There is no longer a Value* corresponding to this operand.
8198       OpInfo.CallOperandVal = nullptr;
8199 
8200       // It is now an indirect operand.
8201       OpInfo.isIndirect = true;
8202     }
8203 
8204   }
8205 
8206   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8207   std::vector<SDValue> AsmNodeOperands;
8208   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8209   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8210       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8211 
8212   // If we have a !srcloc metadata node associated with it, we want to attach
8213   // this to the ultimately generated inline asm machineinstr.  To do this, we
8214   // pass in the third operand as this (potentially null) inline asm MDNode.
8215   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8216   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8217 
8218   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8219   // bits as operand 3.
8220   AsmNodeOperands.push_back(DAG.getTargetConstant(
8221       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8222 
8223   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8224   // this, assign virtual and physical registers for inputs and otput.
8225   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8226     // Assign Registers.
8227     SDISelAsmOperandInfo &RefOpInfo =
8228         OpInfo.isMatchingInputConstraint()
8229             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8230             : OpInfo;
8231     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8232 
8233     auto DetectWriteToReservedRegister = [&]() {
8234       const MachineFunction &MF = DAG.getMachineFunction();
8235       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8236       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8237         if (Register::isPhysicalRegister(Reg) &&
8238             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8239           const char *RegName = TRI.getName(Reg);
8240           emitInlineAsmError(Call, "write to reserved register '" +
8241                                        Twine(RegName) + "'");
8242           return true;
8243         }
8244       }
8245       return false;
8246     };
8247 
8248     switch (OpInfo.Type) {
8249     case InlineAsm::isOutput:
8250       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8251         unsigned ConstraintID =
8252             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8253         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8254                "Failed to convert memory constraint code to constraint id.");
8255 
8256         // Add information to the INLINEASM node to know about this output.
8257         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8258         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8259         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8260                                                         MVT::i32));
8261         AsmNodeOperands.push_back(OpInfo.CallOperand);
8262       } else {
8263         // Otherwise, this outputs to a register (directly for C_Register /
8264         // C_RegisterClass, and a target-defined fashion for
8265         // C_Immediate/C_Other). Find a register that we can use.
8266         if (OpInfo.AssignedRegs.Regs.empty()) {
8267           emitInlineAsmError(
8268               Call, "couldn't allocate output register for constraint '" +
8269                         Twine(OpInfo.ConstraintCode) + "'");
8270           return;
8271         }
8272 
8273         if (DetectWriteToReservedRegister())
8274           return;
8275 
8276         // Add information to the INLINEASM node to know that this register is
8277         // set.
8278         OpInfo.AssignedRegs.AddInlineAsmOperands(
8279             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8280                                   : InlineAsm::Kind_RegDef,
8281             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8282       }
8283       break;
8284 
8285     case InlineAsm::isInput: {
8286       SDValue InOperandVal = OpInfo.CallOperand;
8287 
8288       if (OpInfo.isMatchingInputConstraint()) {
8289         // If this is required to match an output register we have already set,
8290         // just use its register.
8291         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8292                                                   AsmNodeOperands);
8293         unsigned OpFlag =
8294           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8295         if (InlineAsm::isRegDefKind(OpFlag) ||
8296             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8297           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8298           if (OpInfo.isIndirect) {
8299             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8300             emitInlineAsmError(Call, "inline asm not supported yet: "
8301                                      "don't know how to handle tied "
8302                                      "indirect register inputs");
8303             return;
8304           }
8305 
8306           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8307           SmallVector<unsigned, 4> Regs;
8308 
8309           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8310             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8311             MachineRegisterInfo &RegInfo =
8312                 DAG.getMachineFunction().getRegInfo();
8313             for (unsigned i = 0; i != NumRegs; ++i)
8314               Regs.push_back(RegInfo.createVirtualRegister(RC));
8315           } else {
8316             emitInlineAsmError(Call,
8317                                "inline asm error: This value type register "
8318                                "class is not natively supported!");
8319             return;
8320           }
8321 
8322           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8323 
8324           SDLoc dl = getCurSDLoc();
8325           // Use the produced MatchedRegs object to
8326           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8327           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8328                                            true, OpInfo.getMatchedOperand(), dl,
8329                                            DAG, AsmNodeOperands);
8330           break;
8331         }
8332 
8333         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8334         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8335                "Unexpected number of operands");
8336         // Add information to the INLINEASM node to know about this input.
8337         // See InlineAsm.h isUseOperandTiedToDef.
8338         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8339         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8340                                                     OpInfo.getMatchedOperand());
8341         AsmNodeOperands.push_back(DAG.getTargetConstant(
8342             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8343         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8344         break;
8345       }
8346 
8347       // Treat indirect 'X' constraint as memory.
8348       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8349           OpInfo.isIndirect)
8350         OpInfo.ConstraintType = TargetLowering::C_Memory;
8351 
8352       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8353           OpInfo.ConstraintType == TargetLowering::C_Other) {
8354         std::vector<SDValue> Ops;
8355         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8356                                           Ops, DAG);
8357         if (Ops.empty()) {
8358           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8359             if (isa<ConstantSDNode>(InOperandVal)) {
8360               emitInlineAsmError(Call, "value out of range for constraint '" +
8361                                            Twine(OpInfo.ConstraintCode) + "'");
8362               return;
8363             }
8364 
8365           emitInlineAsmError(Call,
8366                              "invalid operand for inline asm constraint '" +
8367                                  Twine(OpInfo.ConstraintCode) + "'");
8368           return;
8369         }
8370 
8371         // Add information to the INLINEASM node to know about this input.
8372         unsigned ResOpType =
8373           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8374         AsmNodeOperands.push_back(DAG.getTargetConstant(
8375             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8376         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8377         break;
8378       }
8379 
8380       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8381         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8382         assert(InOperandVal.getValueType() ==
8383                    TLI.getPointerTy(DAG.getDataLayout()) &&
8384                "Memory operands expect pointer values");
8385 
8386         unsigned ConstraintID =
8387             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8388         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8389                "Failed to convert memory constraint code to constraint id.");
8390 
8391         // Add information to the INLINEASM node to know about this input.
8392         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8393         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8394         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8395                                                         getCurSDLoc(),
8396                                                         MVT::i32));
8397         AsmNodeOperands.push_back(InOperandVal);
8398         break;
8399       }
8400 
8401       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8402               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8403              "Unknown constraint type!");
8404 
8405       // TODO: Support this.
8406       if (OpInfo.isIndirect) {
8407         emitInlineAsmError(
8408             Call, "Don't know how to handle indirect register inputs yet "
8409                   "for constraint '" +
8410                       Twine(OpInfo.ConstraintCode) + "'");
8411         return;
8412       }
8413 
8414       // Copy the input into the appropriate registers.
8415       if (OpInfo.AssignedRegs.Regs.empty()) {
8416         emitInlineAsmError(Call,
8417                            "couldn't allocate input reg for constraint '" +
8418                                Twine(OpInfo.ConstraintCode) + "'");
8419         return;
8420       }
8421 
8422       if (DetectWriteToReservedRegister())
8423         return;
8424 
8425       SDLoc dl = getCurSDLoc();
8426 
8427       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8428                                         &Call);
8429 
8430       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8431                                                dl, DAG, AsmNodeOperands);
8432       break;
8433     }
8434     case InlineAsm::isClobber:
8435       // Add the clobbered value to the operand list, so that the register
8436       // allocator is aware that the physreg got clobbered.
8437       if (!OpInfo.AssignedRegs.Regs.empty())
8438         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8439                                                  false, 0, getCurSDLoc(), DAG,
8440                                                  AsmNodeOperands);
8441       break;
8442     }
8443   }
8444 
8445   // Finish up input operands.  Set the input chain and add the flag last.
8446   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8447   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8448 
8449   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8450   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8451                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8452   Flag = Chain.getValue(1);
8453 
8454   // Do additional work to generate outputs.
8455 
8456   SmallVector<EVT, 1> ResultVTs;
8457   SmallVector<SDValue, 1> ResultValues;
8458   SmallVector<SDValue, 8> OutChains;
8459 
8460   llvm::Type *CallResultType = Call.getType();
8461   ArrayRef<Type *> ResultTypes;
8462   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8463     ResultTypes = StructResult->elements();
8464   else if (!CallResultType->isVoidTy())
8465     ResultTypes = makeArrayRef(CallResultType);
8466 
8467   auto CurResultType = ResultTypes.begin();
8468   auto handleRegAssign = [&](SDValue V) {
8469     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8470     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8471     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8472     ++CurResultType;
8473     // If the type of the inline asm call site return value is different but has
8474     // same size as the type of the asm output bitcast it.  One example of this
8475     // is for vectors with different width / number of elements.  This can
8476     // happen for register classes that can contain multiple different value
8477     // types.  The preg or vreg allocated may not have the same VT as was
8478     // expected.
8479     //
8480     // This can also happen for a return value that disagrees with the register
8481     // class it is put in, eg. a double in a general-purpose register on a
8482     // 32-bit machine.
8483     if (ResultVT != V.getValueType() &&
8484         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8485       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8486     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8487              V.getValueType().isInteger()) {
8488       // If a result value was tied to an input value, the computed result
8489       // may have a wider width than the expected result.  Extract the
8490       // relevant portion.
8491       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8492     }
8493     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8494     ResultVTs.push_back(ResultVT);
8495     ResultValues.push_back(V);
8496   };
8497 
8498   // Deal with output operands.
8499   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8500     if (OpInfo.Type == InlineAsm::isOutput) {
8501       SDValue Val;
8502       // Skip trivial output operands.
8503       if (OpInfo.AssignedRegs.Regs.empty())
8504         continue;
8505 
8506       switch (OpInfo.ConstraintType) {
8507       case TargetLowering::C_Register:
8508       case TargetLowering::C_RegisterClass:
8509         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8510                                                   Chain, &Flag, &Call);
8511         break;
8512       case TargetLowering::C_Immediate:
8513       case TargetLowering::C_Other:
8514         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8515                                               OpInfo, DAG);
8516         break;
8517       case TargetLowering::C_Memory:
8518         break; // Already handled.
8519       case TargetLowering::C_Unknown:
8520         assert(false && "Unexpected unknown constraint");
8521       }
8522 
8523       // Indirect output manifest as stores. Record output chains.
8524       if (OpInfo.isIndirect) {
8525         const Value *Ptr = OpInfo.CallOperandVal;
8526         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8527         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8528                                      MachinePointerInfo(Ptr));
8529         OutChains.push_back(Store);
8530       } else {
8531         // generate CopyFromRegs to associated registers.
8532         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8533         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8534           for (const SDValue &V : Val->op_values())
8535             handleRegAssign(V);
8536         } else
8537           handleRegAssign(Val);
8538       }
8539     }
8540   }
8541 
8542   // Set results.
8543   if (!ResultValues.empty()) {
8544     assert(CurResultType == ResultTypes.end() &&
8545            "Mismatch in number of ResultTypes");
8546     assert(ResultValues.size() == ResultTypes.size() &&
8547            "Mismatch in number of output operands in asm result");
8548 
8549     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8550                             DAG.getVTList(ResultVTs), ResultValues);
8551     setValue(&Call, V);
8552   }
8553 
8554   // Collect store chains.
8555   if (!OutChains.empty())
8556     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8557 
8558   // Only Update Root if inline assembly has a memory effect.
8559   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8560     DAG.setRoot(Chain);
8561 }
8562 
8563 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8564                                              const Twine &Message) {
8565   LLVMContext &Ctx = *DAG.getContext();
8566   Ctx.emitError(&Call, Message);
8567 
8568   // Make sure we leave the DAG in a valid state
8569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8570   SmallVector<EVT, 1> ValueVTs;
8571   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8572 
8573   if (ValueVTs.empty())
8574     return;
8575 
8576   SmallVector<SDValue, 1> Ops;
8577   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8578     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8579 
8580   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8581 }
8582 
8583 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8584   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8585                           MVT::Other, getRoot(),
8586                           getValue(I.getArgOperand(0)),
8587                           DAG.getSrcValue(I.getArgOperand(0))));
8588 }
8589 
8590 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8591   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8592   const DataLayout &DL = DAG.getDataLayout();
8593   SDValue V = DAG.getVAArg(
8594       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8595       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8596       DL.getABITypeAlign(I.getType()).value());
8597   DAG.setRoot(V.getValue(1));
8598 
8599   if (I.getType()->isPointerTy())
8600     V = DAG.getPtrExtOrTrunc(
8601         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8602   setValue(&I, V);
8603 }
8604 
8605 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8606   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8607                           MVT::Other, getRoot(),
8608                           getValue(I.getArgOperand(0)),
8609                           DAG.getSrcValue(I.getArgOperand(0))));
8610 }
8611 
8612 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8613   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8614                           MVT::Other, getRoot(),
8615                           getValue(I.getArgOperand(0)),
8616                           getValue(I.getArgOperand(1)),
8617                           DAG.getSrcValue(I.getArgOperand(0)),
8618                           DAG.getSrcValue(I.getArgOperand(1))));
8619 }
8620 
8621 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8622                                                     const Instruction &I,
8623                                                     SDValue Op) {
8624   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8625   if (!Range)
8626     return Op;
8627 
8628   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8629   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8630     return Op;
8631 
8632   APInt Lo = CR.getUnsignedMin();
8633   if (!Lo.isMinValue())
8634     return Op;
8635 
8636   APInt Hi = CR.getUnsignedMax();
8637   unsigned Bits = std::max(Hi.getActiveBits(),
8638                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8639 
8640   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8641 
8642   SDLoc SL = getCurSDLoc();
8643 
8644   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8645                              DAG.getValueType(SmallVT));
8646   unsigned NumVals = Op.getNode()->getNumValues();
8647   if (NumVals == 1)
8648     return ZExt;
8649 
8650   SmallVector<SDValue, 4> Ops;
8651 
8652   Ops.push_back(ZExt);
8653   for (unsigned I = 1; I != NumVals; ++I)
8654     Ops.push_back(Op.getValue(I));
8655 
8656   return DAG.getMergeValues(Ops, SL);
8657 }
8658 
8659 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8660 /// the call being lowered.
8661 ///
8662 /// This is a helper for lowering intrinsics that follow a target calling
8663 /// convention or require stack pointer adjustment. Only a subset of the
8664 /// intrinsic's operands need to participate in the calling convention.
8665 void SelectionDAGBuilder::populateCallLoweringInfo(
8666     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8667     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8668     bool IsPatchPoint) {
8669   TargetLowering::ArgListTy Args;
8670   Args.reserve(NumArgs);
8671 
8672   // Populate the argument list.
8673   // Attributes for args start at offset 1, after the return attribute.
8674   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8675        ArgI != ArgE; ++ArgI) {
8676     const Value *V = Call->getOperand(ArgI);
8677 
8678     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8679 
8680     TargetLowering::ArgListEntry Entry;
8681     Entry.Node = getValue(V);
8682     Entry.Ty = V->getType();
8683     Entry.setAttributes(Call, ArgI);
8684     Args.push_back(Entry);
8685   }
8686 
8687   CLI.setDebugLoc(getCurSDLoc())
8688       .setChain(getRoot())
8689       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8690       .setDiscardResult(Call->use_empty())
8691       .setIsPatchPoint(IsPatchPoint)
8692       .setIsPreallocated(
8693           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8694 }
8695 
8696 /// Add a stack map intrinsic call's live variable operands to a stackmap
8697 /// or patchpoint target node's operand list.
8698 ///
8699 /// Constants are converted to TargetConstants purely as an optimization to
8700 /// avoid constant materialization and register allocation.
8701 ///
8702 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8703 /// generate addess computation nodes, and so FinalizeISel can convert the
8704 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8705 /// address materialization and register allocation, but may also be required
8706 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8707 /// alloca in the entry block, then the runtime may assume that the alloca's
8708 /// StackMap location can be read immediately after compilation and that the
8709 /// location is valid at any point during execution (this is similar to the
8710 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8711 /// only available in a register, then the runtime would need to trap when
8712 /// execution reaches the StackMap in order to read the alloca's location.
8713 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8714                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8715                                 SelectionDAGBuilder &Builder) {
8716   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8717     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8718     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8719       Ops.push_back(
8720         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8721       Ops.push_back(
8722         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8723     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8724       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8725       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8726           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8727     } else
8728       Ops.push_back(OpVal);
8729   }
8730 }
8731 
8732 /// Lower llvm.experimental.stackmap directly to its target opcode.
8733 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8734   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8735   //                                  [live variables...])
8736 
8737   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8738 
8739   SDValue Chain, InFlag, Callee, NullPtr;
8740   SmallVector<SDValue, 32> Ops;
8741 
8742   SDLoc DL = getCurSDLoc();
8743   Callee = getValue(CI.getCalledOperand());
8744   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8745 
8746   // The stackmap intrinsic only records the live variables (the arguments
8747   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8748   // intrinsic, this won't be lowered to a function call. This means we don't
8749   // have to worry about calling conventions and target specific lowering code.
8750   // Instead we perform the call lowering right here.
8751   //
8752   // chain, flag = CALLSEQ_START(chain, 0, 0)
8753   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8754   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8755   //
8756   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8757   InFlag = Chain.getValue(1);
8758 
8759   // Add the <id> and <numBytes> constants.
8760   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8761   Ops.push_back(DAG.getTargetConstant(
8762                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8763   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8764   Ops.push_back(DAG.getTargetConstant(
8765                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8766                   MVT::i32));
8767 
8768   // Push live variables for the stack map.
8769   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8770 
8771   // We are not pushing any register mask info here on the operands list,
8772   // because the stackmap doesn't clobber anything.
8773 
8774   // Push the chain and the glue flag.
8775   Ops.push_back(Chain);
8776   Ops.push_back(InFlag);
8777 
8778   // Create the STACKMAP node.
8779   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8780   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8781   Chain = SDValue(SM, 0);
8782   InFlag = Chain.getValue(1);
8783 
8784   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8785 
8786   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8787 
8788   // Set the root to the target-lowered call chain.
8789   DAG.setRoot(Chain);
8790 
8791   // Inform the Frame Information that we have a stackmap in this function.
8792   FuncInfo.MF->getFrameInfo().setHasStackMap();
8793 }
8794 
8795 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8796 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8797                                           const BasicBlock *EHPadBB) {
8798   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8799   //                                                 i32 <numBytes>,
8800   //                                                 i8* <target>,
8801   //                                                 i32 <numArgs>,
8802   //                                                 [Args...],
8803   //                                                 [live variables...])
8804 
8805   CallingConv::ID CC = CB.getCallingConv();
8806   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8807   bool HasDef = !CB.getType()->isVoidTy();
8808   SDLoc dl = getCurSDLoc();
8809   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8810 
8811   // Handle immediate and symbolic callees.
8812   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8813     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8814                                    /*isTarget=*/true);
8815   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8816     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8817                                          SDLoc(SymbolicCallee),
8818                                          SymbolicCallee->getValueType(0));
8819 
8820   // Get the real number of arguments participating in the call <numArgs>
8821   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8822   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8823 
8824   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8825   // Intrinsics include all meta-operands up to but not including CC.
8826   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8827   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8828          "Not enough arguments provided to the patchpoint intrinsic");
8829 
8830   // For AnyRegCC the arguments are lowered later on manually.
8831   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8832   Type *ReturnTy =
8833       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8834 
8835   TargetLowering::CallLoweringInfo CLI(DAG);
8836   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8837                            ReturnTy, true);
8838   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8839 
8840   SDNode *CallEnd = Result.second.getNode();
8841   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8842     CallEnd = CallEnd->getOperand(0).getNode();
8843 
8844   /// Get a call instruction from the call sequence chain.
8845   /// Tail calls are not allowed.
8846   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8847          "Expected a callseq node.");
8848   SDNode *Call = CallEnd->getOperand(0).getNode();
8849   bool HasGlue = Call->getGluedNode();
8850 
8851   // Replace the target specific call node with the patchable intrinsic.
8852   SmallVector<SDValue, 8> Ops;
8853 
8854   // Add the <id> and <numBytes> constants.
8855   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8856   Ops.push_back(DAG.getTargetConstant(
8857                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8858   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8859   Ops.push_back(DAG.getTargetConstant(
8860                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8861                   MVT::i32));
8862 
8863   // Add the callee.
8864   Ops.push_back(Callee);
8865 
8866   // Adjust <numArgs> to account for any arguments that have been passed on the
8867   // stack instead.
8868   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8869   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8870   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8871   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8872 
8873   // Add the calling convention
8874   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8875 
8876   // Add the arguments we omitted previously. The register allocator should
8877   // place these in any free register.
8878   if (IsAnyRegCC)
8879     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8880       Ops.push_back(getValue(CB.getArgOperand(i)));
8881 
8882   // Push the arguments from the call instruction up to the register mask.
8883   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8884   Ops.append(Call->op_begin() + 2, e);
8885 
8886   // Push live variables for the stack map.
8887   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8888 
8889   // Push the register mask info.
8890   if (HasGlue)
8891     Ops.push_back(*(Call->op_end()-2));
8892   else
8893     Ops.push_back(*(Call->op_end()-1));
8894 
8895   // Push the chain (this is originally the first operand of the call, but
8896   // becomes now the last or second to last operand).
8897   Ops.push_back(*(Call->op_begin()));
8898 
8899   // Push the glue flag (last operand).
8900   if (HasGlue)
8901     Ops.push_back(*(Call->op_end()-1));
8902 
8903   SDVTList NodeTys;
8904   if (IsAnyRegCC && HasDef) {
8905     // Create the return types based on the intrinsic definition
8906     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8907     SmallVector<EVT, 3> ValueVTs;
8908     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8909     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8910 
8911     // There is always a chain and a glue type at the end
8912     ValueVTs.push_back(MVT::Other);
8913     ValueVTs.push_back(MVT::Glue);
8914     NodeTys = DAG.getVTList(ValueVTs);
8915   } else
8916     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8917 
8918   // Replace the target specific call node with a PATCHPOINT node.
8919   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8920                                          dl, NodeTys, Ops);
8921 
8922   // Update the NodeMap.
8923   if (HasDef) {
8924     if (IsAnyRegCC)
8925       setValue(&CB, SDValue(MN, 0));
8926     else
8927       setValue(&CB, Result.first);
8928   }
8929 
8930   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8931   // call sequence. Furthermore the location of the chain and glue can change
8932   // when the AnyReg calling convention is used and the intrinsic returns a
8933   // value.
8934   if (IsAnyRegCC && HasDef) {
8935     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8936     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8937     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8938   } else
8939     DAG.ReplaceAllUsesWith(Call, MN);
8940   DAG.DeleteNode(Call);
8941 
8942   // Inform the Frame Information that we have a patchpoint in this function.
8943   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8944 }
8945 
8946 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8947                                             unsigned Intrinsic) {
8948   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8949   SDValue Op1 = getValue(I.getArgOperand(0));
8950   SDValue Op2;
8951   if (I.getNumArgOperands() > 1)
8952     Op2 = getValue(I.getArgOperand(1));
8953   SDLoc dl = getCurSDLoc();
8954   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8955   SDValue Res;
8956   SDNodeFlags SDFlags;
8957   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
8958     SDFlags.copyFMF(*FPMO);
8959 
8960   switch (Intrinsic) {
8961   case Intrinsic::experimental_vector_reduce_v2_fadd:
8962     if (SDFlags.hasAllowReassociation())
8963       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8964                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
8965                         SDFlags);
8966     else
8967       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2, SDFlags);
8968     break;
8969   case Intrinsic::experimental_vector_reduce_v2_fmul:
8970     if (SDFlags.hasAllowReassociation())
8971       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8972                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
8973                         SDFlags);
8974     else
8975       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2, SDFlags);
8976     break;
8977   case Intrinsic::experimental_vector_reduce_add:
8978     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8979     break;
8980   case Intrinsic::experimental_vector_reduce_mul:
8981     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8982     break;
8983   case Intrinsic::experimental_vector_reduce_and:
8984     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8985     break;
8986   case Intrinsic::experimental_vector_reduce_or:
8987     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8988     break;
8989   case Intrinsic::experimental_vector_reduce_xor:
8990     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8991     break;
8992   case Intrinsic::experimental_vector_reduce_smax:
8993     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8994     break;
8995   case Intrinsic::experimental_vector_reduce_smin:
8996     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8997     break;
8998   case Intrinsic::experimental_vector_reduce_umax:
8999     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9000     break;
9001   case Intrinsic::experimental_vector_reduce_umin:
9002     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9003     break;
9004   case Intrinsic::experimental_vector_reduce_fmax:
9005     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9006     break;
9007   case Intrinsic::experimental_vector_reduce_fmin:
9008     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9009     break;
9010   default:
9011     llvm_unreachable("Unhandled vector reduce intrinsic");
9012   }
9013   setValue(&I, Res);
9014 }
9015 
9016 /// Returns an AttributeList representing the attributes applied to the return
9017 /// value of the given call.
9018 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9019   SmallVector<Attribute::AttrKind, 2> Attrs;
9020   if (CLI.RetSExt)
9021     Attrs.push_back(Attribute::SExt);
9022   if (CLI.RetZExt)
9023     Attrs.push_back(Attribute::ZExt);
9024   if (CLI.IsInReg)
9025     Attrs.push_back(Attribute::InReg);
9026 
9027   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9028                             Attrs);
9029 }
9030 
9031 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9032 /// implementation, which just calls LowerCall.
9033 /// FIXME: When all targets are
9034 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9035 std::pair<SDValue, SDValue>
9036 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9037   // Handle the incoming return values from the call.
9038   CLI.Ins.clear();
9039   Type *OrigRetTy = CLI.RetTy;
9040   SmallVector<EVT, 4> RetTys;
9041   SmallVector<uint64_t, 4> Offsets;
9042   auto &DL = CLI.DAG.getDataLayout();
9043   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9044 
9045   if (CLI.IsPostTypeLegalization) {
9046     // If we are lowering a libcall after legalization, split the return type.
9047     SmallVector<EVT, 4> OldRetTys;
9048     SmallVector<uint64_t, 4> OldOffsets;
9049     RetTys.swap(OldRetTys);
9050     Offsets.swap(OldOffsets);
9051 
9052     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9053       EVT RetVT = OldRetTys[i];
9054       uint64_t Offset = OldOffsets[i];
9055       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9056       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9057       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9058       RetTys.append(NumRegs, RegisterVT);
9059       for (unsigned j = 0; j != NumRegs; ++j)
9060         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9061     }
9062   }
9063 
9064   SmallVector<ISD::OutputArg, 4> Outs;
9065   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9066 
9067   bool CanLowerReturn =
9068       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9069                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9070 
9071   SDValue DemoteStackSlot;
9072   int DemoteStackIdx = -100;
9073   if (!CanLowerReturn) {
9074     // FIXME: equivalent assert?
9075     // assert(!CS.hasInAllocaArgument() &&
9076     //        "sret demotion is incompatible with inalloca");
9077     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9078     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9079     MachineFunction &MF = CLI.DAG.getMachineFunction();
9080     DemoteStackIdx =
9081         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9082     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9083                                               DL.getAllocaAddrSpace());
9084 
9085     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9086     ArgListEntry Entry;
9087     Entry.Node = DemoteStackSlot;
9088     Entry.Ty = StackSlotPtrType;
9089     Entry.IsSExt = false;
9090     Entry.IsZExt = false;
9091     Entry.IsInReg = false;
9092     Entry.IsSRet = true;
9093     Entry.IsNest = false;
9094     Entry.IsByVal = false;
9095     Entry.IsByRef = false;
9096     Entry.IsReturned = false;
9097     Entry.IsSwiftSelf = false;
9098     Entry.IsSwiftError = false;
9099     Entry.IsCFGuardTarget = false;
9100     Entry.Alignment = Alignment;
9101     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9102     CLI.NumFixedArgs += 1;
9103     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9104 
9105     // sret demotion isn't compatible with tail-calls, since the sret argument
9106     // points into the callers stack frame.
9107     CLI.IsTailCall = false;
9108   } else {
9109     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9110         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9111     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9112       ISD::ArgFlagsTy Flags;
9113       if (NeedsRegBlock) {
9114         Flags.setInConsecutiveRegs();
9115         if (I == RetTys.size() - 1)
9116           Flags.setInConsecutiveRegsLast();
9117       }
9118       EVT VT = RetTys[I];
9119       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9120                                                      CLI.CallConv, VT);
9121       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9122                                                        CLI.CallConv, VT);
9123       for (unsigned i = 0; i != NumRegs; ++i) {
9124         ISD::InputArg MyFlags;
9125         MyFlags.Flags = Flags;
9126         MyFlags.VT = RegisterVT;
9127         MyFlags.ArgVT = VT;
9128         MyFlags.Used = CLI.IsReturnValueUsed;
9129         if (CLI.RetTy->isPointerTy()) {
9130           MyFlags.Flags.setPointer();
9131           MyFlags.Flags.setPointerAddrSpace(
9132               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9133         }
9134         if (CLI.RetSExt)
9135           MyFlags.Flags.setSExt();
9136         if (CLI.RetZExt)
9137           MyFlags.Flags.setZExt();
9138         if (CLI.IsInReg)
9139           MyFlags.Flags.setInReg();
9140         CLI.Ins.push_back(MyFlags);
9141       }
9142     }
9143   }
9144 
9145   // We push in swifterror return as the last element of CLI.Ins.
9146   ArgListTy &Args = CLI.getArgs();
9147   if (supportSwiftError()) {
9148     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9149       if (Args[i].IsSwiftError) {
9150         ISD::InputArg MyFlags;
9151         MyFlags.VT = getPointerTy(DL);
9152         MyFlags.ArgVT = EVT(getPointerTy(DL));
9153         MyFlags.Flags.setSwiftError();
9154         CLI.Ins.push_back(MyFlags);
9155       }
9156     }
9157   }
9158 
9159   // Handle all of the outgoing arguments.
9160   CLI.Outs.clear();
9161   CLI.OutVals.clear();
9162   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9163     SmallVector<EVT, 4> ValueVTs;
9164     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9165     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9166     Type *FinalType = Args[i].Ty;
9167     if (Args[i].IsByVal)
9168       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9169     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9170         FinalType, CLI.CallConv, CLI.IsVarArg);
9171     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9172          ++Value) {
9173       EVT VT = ValueVTs[Value];
9174       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9175       SDValue Op = SDValue(Args[i].Node.getNode(),
9176                            Args[i].Node.getResNo() + Value);
9177       ISD::ArgFlagsTy Flags;
9178 
9179       // Certain targets (such as MIPS), may have a different ABI alignment
9180       // for a type depending on the context. Give the target a chance to
9181       // specify the alignment it wants.
9182       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9183 
9184       if (Args[i].Ty->isPointerTy()) {
9185         Flags.setPointer();
9186         Flags.setPointerAddrSpace(
9187             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9188       }
9189       if (Args[i].IsZExt)
9190         Flags.setZExt();
9191       if (Args[i].IsSExt)
9192         Flags.setSExt();
9193       if (Args[i].IsInReg) {
9194         // If we are using vectorcall calling convention, a structure that is
9195         // passed InReg - is surely an HVA
9196         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9197             isa<StructType>(FinalType)) {
9198           // The first value of a structure is marked
9199           if (0 == Value)
9200             Flags.setHvaStart();
9201           Flags.setHva();
9202         }
9203         // Set InReg Flag
9204         Flags.setInReg();
9205       }
9206       if (Args[i].IsSRet)
9207         Flags.setSRet();
9208       if (Args[i].IsSwiftSelf)
9209         Flags.setSwiftSelf();
9210       if (Args[i].IsSwiftError)
9211         Flags.setSwiftError();
9212       if (Args[i].IsCFGuardTarget)
9213         Flags.setCFGuardTarget();
9214       if (Args[i].IsByVal)
9215         Flags.setByVal();
9216       if (Args[i].IsByRef)
9217         Flags.setByRef();
9218       if (Args[i].IsPreallocated) {
9219         Flags.setPreallocated();
9220         // Set the byval flag for CCAssignFn callbacks that don't know about
9221         // preallocated.  This way we can know how many bytes we should've
9222         // allocated and how many bytes a callee cleanup function will pop.  If
9223         // we port preallocated to more targets, we'll have to add custom
9224         // preallocated handling in the various CC lowering callbacks.
9225         Flags.setByVal();
9226       }
9227       if (Args[i].IsInAlloca) {
9228         Flags.setInAlloca();
9229         // Set the byval flag for CCAssignFn callbacks that don't know about
9230         // inalloca.  This way we can know how many bytes we should've allocated
9231         // and how many bytes a callee cleanup function will pop.  If we port
9232         // inalloca to more targets, we'll have to add custom inalloca handling
9233         // in the various CC lowering callbacks.
9234         Flags.setByVal();
9235       }
9236       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9237         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9238         Type *ElementTy = Ty->getElementType();
9239 
9240         unsigned FrameSize = DL.getTypeAllocSize(
9241             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9242         Flags.setByValSize(FrameSize);
9243 
9244         // info is not there but there are cases it cannot get right.
9245         Align FrameAlign;
9246         if (auto MA = Args[i].Alignment)
9247           FrameAlign = *MA;
9248         else
9249           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9250         Flags.setByValAlign(FrameAlign);
9251       }
9252       if (Args[i].IsNest)
9253         Flags.setNest();
9254       if (NeedsRegBlock)
9255         Flags.setInConsecutiveRegs();
9256       Flags.setOrigAlign(OriginalAlignment);
9257 
9258       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9259                                                  CLI.CallConv, VT);
9260       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9261                                                         CLI.CallConv, VT);
9262       SmallVector<SDValue, 4> Parts(NumParts);
9263       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9264 
9265       if (Args[i].IsSExt)
9266         ExtendKind = ISD::SIGN_EXTEND;
9267       else if (Args[i].IsZExt)
9268         ExtendKind = ISD::ZERO_EXTEND;
9269 
9270       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9271       // for now.
9272       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9273           CanLowerReturn) {
9274         assert((CLI.RetTy == Args[i].Ty ||
9275                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9276                  CLI.RetTy->getPointerAddressSpace() ==
9277                      Args[i].Ty->getPointerAddressSpace())) &&
9278                RetTys.size() == NumValues && "unexpected use of 'returned'");
9279         // Before passing 'returned' to the target lowering code, ensure that
9280         // either the register MVT and the actual EVT are the same size or that
9281         // the return value and argument are extended in the same way; in these
9282         // cases it's safe to pass the argument register value unchanged as the
9283         // return register value (although it's at the target's option whether
9284         // to do so)
9285         // TODO: allow code generation to take advantage of partially preserved
9286         // registers rather than clobbering the entire register when the
9287         // parameter extension method is not compatible with the return
9288         // extension method
9289         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9290             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9291              CLI.RetZExt == Args[i].IsZExt))
9292           Flags.setReturned();
9293       }
9294 
9295       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9296                      CLI.CallConv, ExtendKind);
9297 
9298       for (unsigned j = 0; j != NumParts; ++j) {
9299         // if it isn't first piece, alignment must be 1
9300         // For scalable vectors the scalable part is currently handled
9301         // by individual targets, so we just use the known minimum size here.
9302         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9303                     i < CLI.NumFixedArgs, i,
9304                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9305         if (NumParts > 1 && j == 0)
9306           MyFlags.Flags.setSplit();
9307         else if (j != 0) {
9308           MyFlags.Flags.setOrigAlign(Align(1));
9309           if (j == NumParts - 1)
9310             MyFlags.Flags.setSplitEnd();
9311         }
9312 
9313         CLI.Outs.push_back(MyFlags);
9314         CLI.OutVals.push_back(Parts[j]);
9315       }
9316 
9317       if (NeedsRegBlock && Value == NumValues - 1)
9318         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9319     }
9320   }
9321 
9322   SmallVector<SDValue, 4> InVals;
9323   CLI.Chain = LowerCall(CLI, InVals);
9324 
9325   // Update CLI.InVals to use outside of this function.
9326   CLI.InVals = InVals;
9327 
9328   // Verify that the target's LowerCall behaved as expected.
9329   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9330          "LowerCall didn't return a valid chain!");
9331   assert((!CLI.IsTailCall || InVals.empty()) &&
9332          "LowerCall emitted a return value for a tail call!");
9333   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9334          "LowerCall didn't emit the correct number of values!");
9335 
9336   // For a tail call, the return value is merely live-out and there aren't
9337   // any nodes in the DAG representing it. Return a special value to
9338   // indicate that a tail call has been emitted and no more Instructions
9339   // should be processed in the current block.
9340   if (CLI.IsTailCall) {
9341     CLI.DAG.setRoot(CLI.Chain);
9342     return std::make_pair(SDValue(), SDValue());
9343   }
9344 
9345 #ifndef NDEBUG
9346   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9347     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9348     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9349            "LowerCall emitted a value with the wrong type!");
9350   }
9351 #endif
9352 
9353   SmallVector<SDValue, 4> ReturnValues;
9354   if (!CanLowerReturn) {
9355     // The instruction result is the result of loading from the
9356     // hidden sret parameter.
9357     SmallVector<EVT, 1> PVTs;
9358     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9359 
9360     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9361     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9362     EVT PtrVT = PVTs[0];
9363 
9364     unsigned NumValues = RetTys.size();
9365     ReturnValues.resize(NumValues);
9366     SmallVector<SDValue, 4> Chains(NumValues);
9367 
9368     // An aggregate return value cannot wrap around the address space, so
9369     // offsets to its parts don't wrap either.
9370     SDNodeFlags Flags;
9371     Flags.setNoUnsignedWrap(true);
9372 
9373     MachineFunction &MF = CLI.DAG.getMachineFunction();
9374     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9375     for (unsigned i = 0; i < NumValues; ++i) {
9376       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9377                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9378                                                         PtrVT), Flags);
9379       SDValue L = CLI.DAG.getLoad(
9380           RetTys[i], CLI.DL, CLI.Chain, Add,
9381           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9382                                             DemoteStackIdx, Offsets[i]),
9383           HiddenSRetAlign);
9384       ReturnValues[i] = L;
9385       Chains[i] = L.getValue(1);
9386     }
9387 
9388     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9389   } else {
9390     // Collect the legal value parts into potentially illegal values
9391     // that correspond to the original function's return values.
9392     Optional<ISD::NodeType> AssertOp;
9393     if (CLI.RetSExt)
9394       AssertOp = ISD::AssertSext;
9395     else if (CLI.RetZExt)
9396       AssertOp = ISD::AssertZext;
9397     unsigned CurReg = 0;
9398     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9399       EVT VT = RetTys[I];
9400       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9401                                                      CLI.CallConv, VT);
9402       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9403                                                        CLI.CallConv, VT);
9404 
9405       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9406                                               NumRegs, RegisterVT, VT, nullptr,
9407                                               CLI.CallConv, AssertOp));
9408       CurReg += NumRegs;
9409     }
9410 
9411     // For a function returning void, there is no return value. We can't create
9412     // such a node, so we just return a null return value in that case. In
9413     // that case, nothing will actually look at the value.
9414     if (ReturnValues.empty())
9415       return std::make_pair(SDValue(), CLI.Chain);
9416   }
9417 
9418   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9419                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9420   return std::make_pair(Res, CLI.Chain);
9421 }
9422 
9423 void TargetLowering::LowerOperationWrapper(SDNode *N,
9424                                            SmallVectorImpl<SDValue> &Results,
9425                                            SelectionDAG &DAG) const {
9426   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9427     Results.push_back(Res);
9428 }
9429 
9430 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9431   llvm_unreachable("LowerOperation not implemented for this target!");
9432 }
9433 
9434 void
9435 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9436   SDValue Op = getNonRegisterValue(V);
9437   assert((Op.getOpcode() != ISD::CopyFromReg ||
9438           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9439          "Copy from a reg to the same reg!");
9440   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9441 
9442   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9443   // If this is an InlineAsm we have to match the registers required, not the
9444   // notional registers required by the type.
9445 
9446   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9447                    None); // This is not an ABI copy.
9448   SDValue Chain = DAG.getEntryNode();
9449 
9450   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9451                               FuncInfo.PreferredExtendType.end())
9452                                  ? ISD::ANY_EXTEND
9453                                  : FuncInfo.PreferredExtendType[V];
9454   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9455   PendingExports.push_back(Chain);
9456 }
9457 
9458 #include "llvm/CodeGen/SelectionDAGISel.h"
9459 
9460 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9461 /// entry block, return true.  This includes arguments used by switches, since
9462 /// the switch may expand into multiple basic blocks.
9463 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9464   // With FastISel active, we may be splitting blocks, so force creation
9465   // of virtual registers for all non-dead arguments.
9466   if (FastISel)
9467     return A->use_empty();
9468 
9469   const BasicBlock &Entry = A->getParent()->front();
9470   for (const User *U : A->users())
9471     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9472       return false;  // Use not in entry block.
9473 
9474   return true;
9475 }
9476 
9477 using ArgCopyElisionMapTy =
9478     DenseMap<const Argument *,
9479              std::pair<const AllocaInst *, const StoreInst *>>;
9480 
9481 /// Scan the entry block of the function in FuncInfo for arguments that look
9482 /// like copies into a local alloca. Record any copied arguments in
9483 /// ArgCopyElisionCandidates.
9484 static void
9485 findArgumentCopyElisionCandidates(const DataLayout &DL,
9486                                   FunctionLoweringInfo *FuncInfo,
9487                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9488   // Record the state of every static alloca used in the entry block. Argument
9489   // allocas are all used in the entry block, so we need approximately as many
9490   // entries as we have arguments.
9491   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9492   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9493   unsigned NumArgs = FuncInfo->Fn->arg_size();
9494   StaticAllocas.reserve(NumArgs * 2);
9495 
9496   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9497     if (!V)
9498       return nullptr;
9499     V = V->stripPointerCasts();
9500     const auto *AI = dyn_cast<AllocaInst>(V);
9501     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9502       return nullptr;
9503     auto Iter = StaticAllocas.insert({AI, Unknown});
9504     return &Iter.first->second;
9505   };
9506 
9507   // Look for stores of arguments to static allocas. Look through bitcasts and
9508   // GEPs to handle type coercions, as long as the alloca is fully initialized
9509   // by the store. Any non-store use of an alloca escapes it and any subsequent
9510   // unanalyzed store might write it.
9511   // FIXME: Handle structs initialized with multiple stores.
9512   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9513     // Look for stores, and handle non-store uses conservatively.
9514     const auto *SI = dyn_cast<StoreInst>(&I);
9515     if (!SI) {
9516       // We will look through cast uses, so ignore them completely.
9517       if (I.isCast())
9518         continue;
9519       // Ignore debug info intrinsics, they don't escape or store to allocas.
9520       if (isa<DbgInfoIntrinsic>(I))
9521         continue;
9522       // This is an unknown instruction. Assume it escapes or writes to all
9523       // static alloca operands.
9524       for (const Use &U : I.operands()) {
9525         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9526           *Info = StaticAllocaInfo::Clobbered;
9527       }
9528       continue;
9529     }
9530 
9531     // If the stored value is a static alloca, mark it as escaped.
9532     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9533       *Info = StaticAllocaInfo::Clobbered;
9534 
9535     // Check if the destination is a static alloca.
9536     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9537     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9538     if (!Info)
9539       continue;
9540     const AllocaInst *AI = cast<AllocaInst>(Dst);
9541 
9542     // Skip allocas that have been initialized or clobbered.
9543     if (*Info != StaticAllocaInfo::Unknown)
9544       continue;
9545 
9546     // Check if the stored value is an argument, and that this store fully
9547     // initializes the alloca. Don't elide copies from the same argument twice.
9548     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9549     const auto *Arg = dyn_cast<Argument>(Val);
9550     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9551         Arg->getType()->isEmptyTy() ||
9552         DL.getTypeStoreSize(Arg->getType()) !=
9553             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9554         ArgCopyElisionCandidates.count(Arg)) {
9555       *Info = StaticAllocaInfo::Clobbered;
9556       continue;
9557     }
9558 
9559     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9560                       << '\n');
9561 
9562     // Mark this alloca and store for argument copy elision.
9563     *Info = StaticAllocaInfo::Elidable;
9564     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9565 
9566     // Stop scanning if we've seen all arguments. This will happen early in -O0
9567     // builds, which is useful, because -O0 builds have large entry blocks and
9568     // many allocas.
9569     if (ArgCopyElisionCandidates.size() == NumArgs)
9570       break;
9571   }
9572 }
9573 
9574 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9575 /// ArgVal is a load from a suitable fixed stack object.
9576 static void tryToElideArgumentCopy(
9577     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9578     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9579     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9580     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9581     SDValue ArgVal, bool &ArgHasUses) {
9582   // Check if this is a load from a fixed stack object.
9583   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9584   if (!LNode)
9585     return;
9586   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9587   if (!FINode)
9588     return;
9589 
9590   // Check that the fixed stack object is the right size and alignment.
9591   // Look at the alignment that the user wrote on the alloca instead of looking
9592   // at the stack object.
9593   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9594   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9595   const AllocaInst *AI = ArgCopyIter->second.first;
9596   int FixedIndex = FINode->getIndex();
9597   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9598   int OldIndex = AllocaIndex;
9599   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9600   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9601     LLVM_DEBUG(
9602         dbgs() << "  argument copy elision failed due to bad fixed stack "
9603                   "object size\n");
9604     return;
9605   }
9606   Align RequiredAlignment = AI->getAlign();
9607   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9608     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9609                          "greater than stack argument alignment ("
9610                       << DebugStr(RequiredAlignment) << " vs "
9611                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9612     return;
9613   }
9614 
9615   // Perform the elision. Delete the old stack object and replace its only use
9616   // in the variable info map. Mark the stack object as mutable.
9617   LLVM_DEBUG({
9618     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9619            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9620            << '\n';
9621   });
9622   MFI.RemoveStackObject(OldIndex);
9623   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9624   AllocaIndex = FixedIndex;
9625   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9626   Chains.push_back(ArgVal.getValue(1));
9627 
9628   // Avoid emitting code for the store implementing the copy.
9629   const StoreInst *SI = ArgCopyIter->second.second;
9630   ElidedArgCopyInstrs.insert(SI);
9631 
9632   // Check for uses of the argument again so that we can avoid exporting ArgVal
9633   // if it is't used by anything other than the store.
9634   for (const Value *U : Arg.users()) {
9635     if (U != SI) {
9636       ArgHasUses = true;
9637       break;
9638     }
9639   }
9640 }
9641 
9642 void SelectionDAGISel::LowerArguments(const Function &F) {
9643   SelectionDAG &DAG = SDB->DAG;
9644   SDLoc dl = SDB->getCurSDLoc();
9645   const DataLayout &DL = DAG.getDataLayout();
9646   SmallVector<ISD::InputArg, 16> Ins;
9647 
9648   // In Naked functions we aren't going to save any registers.
9649   if (F.hasFnAttribute(Attribute::Naked))
9650     return;
9651 
9652   if (!FuncInfo->CanLowerReturn) {
9653     // Put in an sret pointer parameter before all the other parameters.
9654     SmallVector<EVT, 1> ValueVTs;
9655     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9656                     F.getReturnType()->getPointerTo(
9657                         DAG.getDataLayout().getAllocaAddrSpace()),
9658                     ValueVTs);
9659 
9660     // NOTE: Assuming that a pointer will never break down to more than one VT
9661     // or one register.
9662     ISD::ArgFlagsTy Flags;
9663     Flags.setSRet();
9664     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9665     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9666                          ISD::InputArg::NoArgIndex, 0);
9667     Ins.push_back(RetArg);
9668   }
9669 
9670   // Look for stores of arguments to static allocas. Mark such arguments with a
9671   // flag to ask the target to give us the memory location of that argument if
9672   // available.
9673   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9674   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9675                                     ArgCopyElisionCandidates);
9676 
9677   // Set up the incoming argument description vector.
9678   for (const Argument &Arg : F.args()) {
9679     unsigned ArgNo = Arg.getArgNo();
9680     SmallVector<EVT, 4> ValueVTs;
9681     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9682     bool isArgValueUsed = !Arg.use_empty();
9683     unsigned PartBase = 0;
9684     Type *FinalType = Arg.getType();
9685     if (Arg.hasAttribute(Attribute::ByVal))
9686       FinalType = Arg.getParamByValType();
9687     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9688         FinalType, F.getCallingConv(), F.isVarArg());
9689     for (unsigned Value = 0, NumValues = ValueVTs.size();
9690          Value != NumValues; ++Value) {
9691       EVT VT = ValueVTs[Value];
9692       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9693       ISD::ArgFlagsTy Flags;
9694 
9695       // Certain targets (such as MIPS), may have a different ABI alignment
9696       // for a type depending on the context. Give the target a chance to
9697       // specify the alignment it wants.
9698       const Align OriginalAlignment(
9699           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9700 
9701       if (Arg.getType()->isPointerTy()) {
9702         Flags.setPointer();
9703         Flags.setPointerAddrSpace(
9704             cast<PointerType>(Arg.getType())->getAddressSpace());
9705       }
9706       if (Arg.hasAttribute(Attribute::ZExt))
9707         Flags.setZExt();
9708       if (Arg.hasAttribute(Attribute::SExt))
9709         Flags.setSExt();
9710       if (Arg.hasAttribute(Attribute::InReg)) {
9711         // If we are using vectorcall calling convention, a structure that is
9712         // passed InReg - is surely an HVA
9713         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9714             isa<StructType>(Arg.getType())) {
9715           // The first value of a structure is marked
9716           if (0 == Value)
9717             Flags.setHvaStart();
9718           Flags.setHva();
9719         }
9720         // Set InReg Flag
9721         Flags.setInReg();
9722       }
9723       if (Arg.hasAttribute(Attribute::StructRet))
9724         Flags.setSRet();
9725       if (Arg.hasAttribute(Attribute::SwiftSelf))
9726         Flags.setSwiftSelf();
9727       if (Arg.hasAttribute(Attribute::SwiftError))
9728         Flags.setSwiftError();
9729       if (Arg.hasAttribute(Attribute::ByVal))
9730         Flags.setByVal();
9731       if (Arg.hasAttribute(Attribute::ByRef))
9732         Flags.setByRef();
9733       if (Arg.hasAttribute(Attribute::InAlloca)) {
9734         Flags.setInAlloca();
9735         // Set the byval flag for CCAssignFn callbacks that don't know about
9736         // inalloca.  This way we can know how many bytes we should've allocated
9737         // and how many bytes a callee cleanup function will pop.  If we port
9738         // inalloca to more targets, we'll have to add custom inalloca handling
9739         // in the various CC lowering callbacks.
9740         Flags.setByVal();
9741       }
9742       if (Arg.hasAttribute(Attribute::Preallocated)) {
9743         Flags.setPreallocated();
9744         // Set the byval flag for CCAssignFn callbacks that don't know about
9745         // preallocated.  This way we can know how many bytes we should've
9746         // allocated and how many bytes a callee cleanup function will pop.  If
9747         // we port preallocated to more targets, we'll have to add custom
9748         // preallocated handling in the various CC lowering callbacks.
9749         Flags.setByVal();
9750       }
9751 
9752       Type *ArgMemTy = nullptr;
9753       if (F.getCallingConv() == CallingConv::X86_INTR) {
9754         // IA Interrupt passes frame (1st parameter) by value in the stack.
9755         if (ArgNo == 0) {
9756           Flags.setByVal();
9757           // FIXME: Dependence on pointee element type. See bug 46672.
9758           ArgMemTy = Arg.getType()->getPointerElementType();
9759         }
9760       }
9761       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
9762           Flags.isByRef()) {
9763         if (!ArgMemTy)
9764           ArgMemTy = Arg.getPointeeInMemoryValueType();
9765 
9766         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
9767 
9768         // For in-memory arguments, size and alignment should be passed from FE.
9769         // BE will guess if this info is not there but there are cases it cannot
9770         // get right.
9771         MaybeAlign MemAlign = Arg.getParamAlign();
9772         if (!MemAlign)
9773           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
9774 
9775         if (Flags.isByRef()) {
9776           Flags.setByRefSize(MemSize);
9777           Flags.setByRefAlign(*MemAlign);
9778         } else {
9779           Flags.setByValSize(MemSize);
9780           Flags.setByValAlign(*MemAlign);
9781         }
9782       }
9783 
9784       if (Arg.hasAttribute(Attribute::Nest))
9785         Flags.setNest();
9786       if (NeedsRegBlock)
9787         Flags.setInConsecutiveRegs();
9788       Flags.setOrigAlign(OriginalAlignment);
9789       if (ArgCopyElisionCandidates.count(&Arg))
9790         Flags.setCopyElisionCandidate();
9791       if (Arg.hasAttribute(Attribute::Returned))
9792         Flags.setReturned();
9793 
9794       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9795           *CurDAG->getContext(), F.getCallingConv(), VT);
9796       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9797           *CurDAG->getContext(), F.getCallingConv(), VT);
9798       for (unsigned i = 0; i != NumRegs; ++i) {
9799         // For scalable vectors, use the minimum size; individual targets
9800         // are responsible for handling scalable vector arguments and
9801         // return values.
9802         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9803                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9804         if (NumRegs > 1 && i == 0)
9805           MyFlags.Flags.setSplit();
9806         // if it isn't first piece, alignment must be 1
9807         else if (i > 0) {
9808           MyFlags.Flags.setOrigAlign(Align(1));
9809           if (i == NumRegs - 1)
9810             MyFlags.Flags.setSplitEnd();
9811         }
9812         Ins.push_back(MyFlags);
9813       }
9814       if (NeedsRegBlock && Value == NumValues - 1)
9815         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9816       PartBase += VT.getStoreSize().getKnownMinSize();
9817     }
9818   }
9819 
9820   // Call the target to set up the argument values.
9821   SmallVector<SDValue, 8> InVals;
9822   SDValue NewRoot = TLI->LowerFormalArguments(
9823       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9824 
9825   // Verify that the target's LowerFormalArguments behaved as expected.
9826   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9827          "LowerFormalArguments didn't return a valid chain!");
9828   assert(InVals.size() == Ins.size() &&
9829          "LowerFormalArguments didn't emit the correct number of values!");
9830   LLVM_DEBUG({
9831     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9832       assert(InVals[i].getNode() &&
9833              "LowerFormalArguments emitted a null value!");
9834       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9835              "LowerFormalArguments emitted a value with the wrong type!");
9836     }
9837   });
9838 
9839   // Update the DAG with the new chain value resulting from argument lowering.
9840   DAG.setRoot(NewRoot);
9841 
9842   // Set up the argument values.
9843   unsigned i = 0;
9844   if (!FuncInfo->CanLowerReturn) {
9845     // Create a virtual register for the sret pointer, and put in a copy
9846     // from the sret argument into it.
9847     SmallVector<EVT, 1> ValueVTs;
9848     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9849                     F.getReturnType()->getPointerTo(
9850                         DAG.getDataLayout().getAllocaAddrSpace()),
9851                     ValueVTs);
9852     MVT VT = ValueVTs[0].getSimpleVT();
9853     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9854     Optional<ISD::NodeType> AssertOp = None;
9855     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9856                                         nullptr, F.getCallingConv(), AssertOp);
9857 
9858     MachineFunction& MF = SDB->DAG.getMachineFunction();
9859     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9860     Register SRetReg =
9861         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9862     FuncInfo->DemoteRegister = SRetReg;
9863     NewRoot =
9864         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9865     DAG.setRoot(NewRoot);
9866 
9867     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9868     ++i;
9869   }
9870 
9871   SmallVector<SDValue, 4> Chains;
9872   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9873   for (const Argument &Arg : F.args()) {
9874     SmallVector<SDValue, 4> ArgValues;
9875     SmallVector<EVT, 4> ValueVTs;
9876     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9877     unsigned NumValues = ValueVTs.size();
9878     if (NumValues == 0)
9879       continue;
9880 
9881     bool ArgHasUses = !Arg.use_empty();
9882 
9883     // Elide the copying store if the target loaded this argument from a
9884     // suitable fixed stack object.
9885     if (Ins[i].Flags.isCopyElisionCandidate()) {
9886       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9887                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9888                              InVals[i], ArgHasUses);
9889     }
9890 
9891     // If this argument is unused then remember its value. It is used to generate
9892     // debugging information.
9893     bool isSwiftErrorArg =
9894         TLI->supportSwiftError() &&
9895         Arg.hasAttribute(Attribute::SwiftError);
9896     if (!ArgHasUses && !isSwiftErrorArg) {
9897       SDB->setUnusedArgValue(&Arg, InVals[i]);
9898 
9899       // Also remember any frame index for use in FastISel.
9900       if (FrameIndexSDNode *FI =
9901           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9902         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9903     }
9904 
9905     for (unsigned Val = 0; Val != NumValues; ++Val) {
9906       EVT VT = ValueVTs[Val];
9907       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9908                                                       F.getCallingConv(), VT);
9909       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9910           *CurDAG->getContext(), F.getCallingConv(), VT);
9911 
9912       // Even an apparent 'unused' swifterror argument needs to be returned. So
9913       // we do generate a copy for it that can be used on return from the
9914       // function.
9915       if (ArgHasUses || isSwiftErrorArg) {
9916         Optional<ISD::NodeType> AssertOp;
9917         if (Arg.hasAttribute(Attribute::SExt))
9918           AssertOp = ISD::AssertSext;
9919         else if (Arg.hasAttribute(Attribute::ZExt))
9920           AssertOp = ISD::AssertZext;
9921 
9922         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9923                                              PartVT, VT, nullptr,
9924                                              F.getCallingConv(), AssertOp));
9925       }
9926 
9927       i += NumParts;
9928     }
9929 
9930     // We don't need to do anything else for unused arguments.
9931     if (ArgValues.empty())
9932       continue;
9933 
9934     // Note down frame index.
9935     if (FrameIndexSDNode *FI =
9936         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9937       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9938 
9939     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9940                                      SDB->getCurSDLoc());
9941 
9942     SDB->setValue(&Arg, Res);
9943     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9944       // We want to associate the argument with the frame index, among
9945       // involved operands, that correspond to the lowest address. The
9946       // getCopyFromParts function, called earlier, is swapping the order of
9947       // the operands to BUILD_PAIR depending on endianness. The result of
9948       // that swapping is that the least significant bits of the argument will
9949       // be in the first operand of the BUILD_PAIR node, and the most
9950       // significant bits will be in the second operand.
9951       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9952       if (LoadSDNode *LNode =
9953           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9954         if (FrameIndexSDNode *FI =
9955             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9956           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9957     }
9958 
9959     // Analyses past this point are naive and don't expect an assertion.
9960     if (Res.getOpcode() == ISD::AssertZext)
9961       Res = Res.getOperand(0);
9962 
9963     // Update the SwiftErrorVRegDefMap.
9964     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9965       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9966       if (Register::isVirtualRegister(Reg))
9967         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9968                                    Reg);
9969     }
9970 
9971     // If this argument is live outside of the entry block, insert a copy from
9972     // wherever we got it to the vreg that other BB's will reference it as.
9973     if (Res.getOpcode() == ISD::CopyFromReg) {
9974       // If we can, though, try to skip creating an unnecessary vreg.
9975       // FIXME: This isn't very clean... it would be nice to make this more
9976       // general.
9977       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9978       if (Register::isVirtualRegister(Reg)) {
9979         FuncInfo->ValueMap[&Arg] = Reg;
9980         continue;
9981       }
9982     }
9983     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9984       FuncInfo->InitializeRegForValue(&Arg);
9985       SDB->CopyToExportRegsIfNeeded(&Arg);
9986     }
9987   }
9988 
9989   if (!Chains.empty()) {
9990     Chains.push_back(NewRoot);
9991     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9992   }
9993 
9994   DAG.setRoot(NewRoot);
9995 
9996   assert(i == InVals.size() && "Argument register count mismatch!");
9997 
9998   // If any argument copy elisions occurred and we have debug info, update the
9999   // stale frame indices used in the dbg.declare variable info table.
10000   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10001   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10002     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10003       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10004       if (I != ArgCopyElisionFrameIndexMap.end())
10005         VI.Slot = I->second;
10006     }
10007   }
10008 
10009   // Finally, if the target has anything special to do, allow it to do so.
10010   emitFunctionEntryCode();
10011 }
10012 
10013 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10014 /// ensure constants are generated when needed.  Remember the virtual registers
10015 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10016 /// directly add them, because expansion might result in multiple MBB's for one
10017 /// BB.  As such, the start of the BB might correspond to a different MBB than
10018 /// the end.
10019 void
10020 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10021   const Instruction *TI = LLVMBB->getTerminator();
10022 
10023   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10024 
10025   // Check PHI nodes in successors that expect a value to be available from this
10026   // block.
10027   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10028     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10029     if (!isa<PHINode>(SuccBB->begin())) continue;
10030     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10031 
10032     // If this terminator has multiple identical successors (common for
10033     // switches), only handle each succ once.
10034     if (!SuccsHandled.insert(SuccMBB).second)
10035       continue;
10036 
10037     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10038 
10039     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10040     // nodes and Machine PHI nodes, but the incoming operands have not been
10041     // emitted yet.
10042     for (const PHINode &PN : SuccBB->phis()) {
10043       // Ignore dead phi's.
10044       if (PN.use_empty())
10045         continue;
10046 
10047       // Skip empty types
10048       if (PN.getType()->isEmptyTy())
10049         continue;
10050 
10051       unsigned Reg;
10052       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10053 
10054       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10055         unsigned &RegOut = ConstantsOut[C];
10056         if (RegOut == 0) {
10057           RegOut = FuncInfo.CreateRegs(C);
10058           CopyValueToVirtualRegister(C, RegOut);
10059         }
10060         Reg = RegOut;
10061       } else {
10062         DenseMap<const Value *, Register>::iterator I =
10063           FuncInfo.ValueMap.find(PHIOp);
10064         if (I != FuncInfo.ValueMap.end())
10065           Reg = I->second;
10066         else {
10067           assert(isa<AllocaInst>(PHIOp) &&
10068                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10069                  "Didn't codegen value into a register!??");
10070           Reg = FuncInfo.CreateRegs(PHIOp);
10071           CopyValueToVirtualRegister(PHIOp, Reg);
10072         }
10073       }
10074 
10075       // Remember that this register needs to added to the machine PHI node as
10076       // the input for this MBB.
10077       SmallVector<EVT, 4> ValueVTs;
10078       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10079       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10080       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10081         EVT VT = ValueVTs[vti];
10082         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10083         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10084           FuncInfo.PHINodesToUpdate.push_back(
10085               std::make_pair(&*MBBI++, Reg + i));
10086         Reg += NumRegisters;
10087       }
10088     }
10089   }
10090 
10091   ConstantsOut.clear();
10092 }
10093 
10094 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10095 /// is 0.
10096 MachineBasicBlock *
10097 SelectionDAGBuilder::StackProtectorDescriptor::
10098 AddSuccessorMBB(const BasicBlock *BB,
10099                 MachineBasicBlock *ParentMBB,
10100                 bool IsLikely,
10101                 MachineBasicBlock *SuccMBB) {
10102   // If SuccBB has not been created yet, create it.
10103   if (!SuccMBB) {
10104     MachineFunction *MF = ParentMBB->getParent();
10105     MachineFunction::iterator BBI(ParentMBB);
10106     SuccMBB = MF->CreateMachineBasicBlock(BB);
10107     MF->insert(++BBI, SuccMBB);
10108   }
10109   // Add it as a successor of ParentMBB.
10110   ParentMBB->addSuccessor(
10111       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10112   return SuccMBB;
10113 }
10114 
10115 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10116   MachineFunction::iterator I(MBB);
10117   if (++I == FuncInfo.MF->end())
10118     return nullptr;
10119   return &*I;
10120 }
10121 
10122 /// During lowering new call nodes can be created (such as memset, etc.).
10123 /// Those will become new roots of the current DAG, but complications arise
10124 /// when they are tail calls. In such cases, the call lowering will update
10125 /// the root, but the builder still needs to know that a tail call has been
10126 /// lowered in order to avoid generating an additional return.
10127 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10128   // If the node is null, we do have a tail call.
10129   if (MaybeTC.getNode() != nullptr)
10130     DAG.setRoot(MaybeTC);
10131   else
10132     HasTailCall = true;
10133 }
10134 
10135 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10136                                         MachineBasicBlock *SwitchMBB,
10137                                         MachineBasicBlock *DefaultMBB) {
10138   MachineFunction *CurMF = FuncInfo.MF;
10139   MachineBasicBlock *NextMBB = nullptr;
10140   MachineFunction::iterator BBI(W.MBB);
10141   if (++BBI != FuncInfo.MF->end())
10142     NextMBB = &*BBI;
10143 
10144   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10145 
10146   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10147 
10148   if (Size == 2 && W.MBB == SwitchMBB) {
10149     // If any two of the cases has the same destination, and if one value
10150     // is the same as the other, but has one bit unset that the other has set,
10151     // use bit manipulation to do two compares at once.  For example:
10152     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10153     // TODO: This could be extended to merge any 2 cases in switches with 3
10154     // cases.
10155     // TODO: Handle cases where W.CaseBB != SwitchBB.
10156     CaseCluster &Small = *W.FirstCluster;
10157     CaseCluster &Big = *W.LastCluster;
10158 
10159     if (Small.Low == Small.High && Big.Low == Big.High &&
10160         Small.MBB == Big.MBB) {
10161       const APInt &SmallValue = Small.Low->getValue();
10162       const APInt &BigValue = Big.Low->getValue();
10163 
10164       // Check that there is only one bit different.
10165       APInt CommonBit = BigValue ^ SmallValue;
10166       if (CommonBit.isPowerOf2()) {
10167         SDValue CondLHS = getValue(Cond);
10168         EVT VT = CondLHS.getValueType();
10169         SDLoc DL = getCurSDLoc();
10170 
10171         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10172                                  DAG.getConstant(CommonBit, DL, VT));
10173         SDValue Cond = DAG.getSetCC(
10174             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10175             ISD::SETEQ);
10176 
10177         // Update successor info.
10178         // Both Small and Big will jump to Small.BB, so we sum up the
10179         // probabilities.
10180         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10181         if (BPI)
10182           addSuccessorWithProb(
10183               SwitchMBB, DefaultMBB,
10184               // The default destination is the first successor in IR.
10185               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10186         else
10187           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10188 
10189         // Insert the true branch.
10190         SDValue BrCond =
10191             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10192                         DAG.getBasicBlock(Small.MBB));
10193         // Insert the false branch.
10194         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10195                              DAG.getBasicBlock(DefaultMBB));
10196 
10197         DAG.setRoot(BrCond);
10198         return;
10199       }
10200     }
10201   }
10202 
10203   if (TM.getOptLevel() != CodeGenOpt::None) {
10204     // Here, we order cases by probability so the most likely case will be
10205     // checked first. However, two clusters can have the same probability in
10206     // which case their relative ordering is non-deterministic. So we use Low
10207     // as a tie-breaker as clusters are guaranteed to never overlap.
10208     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10209                [](const CaseCluster &a, const CaseCluster &b) {
10210       return a.Prob != b.Prob ?
10211              a.Prob > b.Prob :
10212              a.Low->getValue().slt(b.Low->getValue());
10213     });
10214 
10215     // Rearrange the case blocks so that the last one falls through if possible
10216     // without changing the order of probabilities.
10217     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10218       --I;
10219       if (I->Prob > W.LastCluster->Prob)
10220         break;
10221       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10222         std::swap(*I, *W.LastCluster);
10223         break;
10224       }
10225     }
10226   }
10227 
10228   // Compute total probability.
10229   BranchProbability DefaultProb = W.DefaultProb;
10230   BranchProbability UnhandledProbs = DefaultProb;
10231   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10232     UnhandledProbs += I->Prob;
10233 
10234   MachineBasicBlock *CurMBB = W.MBB;
10235   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10236     bool FallthroughUnreachable = false;
10237     MachineBasicBlock *Fallthrough;
10238     if (I == W.LastCluster) {
10239       // For the last cluster, fall through to the default destination.
10240       Fallthrough = DefaultMBB;
10241       FallthroughUnreachable = isa<UnreachableInst>(
10242           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10243     } else {
10244       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10245       CurMF->insert(BBI, Fallthrough);
10246       // Put Cond in a virtual register to make it available from the new blocks.
10247       ExportFromCurrentBlock(Cond);
10248     }
10249     UnhandledProbs -= I->Prob;
10250 
10251     switch (I->Kind) {
10252       case CC_JumpTable: {
10253         // FIXME: Optimize away range check based on pivot comparisons.
10254         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10255         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10256 
10257         // The jump block hasn't been inserted yet; insert it here.
10258         MachineBasicBlock *JumpMBB = JT->MBB;
10259         CurMF->insert(BBI, JumpMBB);
10260 
10261         auto JumpProb = I->Prob;
10262         auto FallthroughProb = UnhandledProbs;
10263 
10264         // If the default statement is a target of the jump table, we evenly
10265         // distribute the default probability to successors of CurMBB. Also
10266         // update the probability on the edge from JumpMBB to Fallthrough.
10267         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10268                                               SE = JumpMBB->succ_end();
10269              SI != SE; ++SI) {
10270           if (*SI == DefaultMBB) {
10271             JumpProb += DefaultProb / 2;
10272             FallthroughProb -= DefaultProb / 2;
10273             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10274             JumpMBB->normalizeSuccProbs();
10275             break;
10276           }
10277         }
10278 
10279         if (FallthroughUnreachable) {
10280           // Skip the range check if the fallthrough block is unreachable.
10281           JTH->OmitRangeCheck = true;
10282         }
10283 
10284         if (!JTH->OmitRangeCheck)
10285           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10286         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10287         CurMBB->normalizeSuccProbs();
10288 
10289         // The jump table header will be inserted in our current block, do the
10290         // range check, and fall through to our fallthrough block.
10291         JTH->HeaderBB = CurMBB;
10292         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10293 
10294         // If we're in the right place, emit the jump table header right now.
10295         if (CurMBB == SwitchMBB) {
10296           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10297           JTH->Emitted = true;
10298         }
10299         break;
10300       }
10301       case CC_BitTests: {
10302         // FIXME: Optimize away range check based on pivot comparisons.
10303         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10304 
10305         // The bit test blocks haven't been inserted yet; insert them here.
10306         for (BitTestCase &BTC : BTB->Cases)
10307           CurMF->insert(BBI, BTC.ThisBB);
10308 
10309         // Fill in fields of the BitTestBlock.
10310         BTB->Parent = CurMBB;
10311         BTB->Default = Fallthrough;
10312 
10313         BTB->DefaultProb = UnhandledProbs;
10314         // If the cases in bit test don't form a contiguous range, we evenly
10315         // distribute the probability on the edge to Fallthrough to two
10316         // successors of CurMBB.
10317         if (!BTB->ContiguousRange) {
10318           BTB->Prob += DefaultProb / 2;
10319           BTB->DefaultProb -= DefaultProb / 2;
10320         }
10321 
10322         if (FallthroughUnreachable) {
10323           // Skip the range check if the fallthrough block is unreachable.
10324           BTB->OmitRangeCheck = true;
10325         }
10326 
10327         // If we're in the right place, emit the bit test header right now.
10328         if (CurMBB == SwitchMBB) {
10329           visitBitTestHeader(*BTB, SwitchMBB);
10330           BTB->Emitted = true;
10331         }
10332         break;
10333       }
10334       case CC_Range: {
10335         const Value *RHS, *LHS, *MHS;
10336         ISD::CondCode CC;
10337         if (I->Low == I->High) {
10338           // Check Cond == I->Low.
10339           CC = ISD::SETEQ;
10340           LHS = Cond;
10341           RHS=I->Low;
10342           MHS = nullptr;
10343         } else {
10344           // Check I->Low <= Cond <= I->High.
10345           CC = ISD::SETLE;
10346           LHS = I->Low;
10347           MHS = Cond;
10348           RHS = I->High;
10349         }
10350 
10351         // If Fallthrough is unreachable, fold away the comparison.
10352         if (FallthroughUnreachable)
10353           CC = ISD::SETTRUE;
10354 
10355         // The false probability is the sum of all unhandled cases.
10356         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10357                      getCurSDLoc(), I->Prob, UnhandledProbs);
10358 
10359         if (CurMBB == SwitchMBB)
10360           visitSwitchCase(CB, SwitchMBB);
10361         else
10362           SL->SwitchCases.push_back(CB);
10363 
10364         break;
10365       }
10366     }
10367     CurMBB = Fallthrough;
10368   }
10369 }
10370 
10371 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10372                                               CaseClusterIt First,
10373                                               CaseClusterIt Last) {
10374   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10375     if (X.Prob != CC.Prob)
10376       return X.Prob > CC.Prob;
10377 
10378     // Ties are broken by comparing the case value.
10379     return X.Low->getValue().slt(CC.Low->getValue());
10380   });
10381 }
10382 
10383 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10384                                         const SwitchWorkListItem &W,
10385                                         Value *Cond,
10386                                         MachineBasicBlock *SwitchMBB) {
10387   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10388          "Clusters not sorted?");
10389 
10390   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10391 
10392   // Balance the tree based on branch probabilities to create a near-optimal (in
10393   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10394   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10395   CaseClusterIt LastLeft = W.FirstCluster;
10396   CaseClusterIt FirstRight = W.LastCluster;
10397   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10398   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10399 
10400   // Move LastLeft and FirstRight towards each other from opposite directions to
10401   // find a partitioning of the clusters which balances the probability on both
10402   // sides. If LeftProb and RightProb are equal, alternate which side is
10403   // taken to ensure 0-probability nodes are distributed evenly.
10404   unsigned I = 0;
10405   while (LastLeft + 1 < FirstRight) {
10406     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10407       LeftProb += (++LastLeft)->Prob;
10408     else
10409       RightProb += (--FirstRight)->Prob;
10410     I++;
10411   }
10412 
10413   while (true) {
10414     // Our binary search tree differs from a typical BST in that ours can have up
10415     // to three values in each leaf. The pivot selection above doesn't take that
10416     // into account, which means the tree might require more nodes and be less
10417     // efficient. We compensate for this here.
10418 
10419     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10420     unsigned NumRight = W.LastCluster - FirstRight + 1;
10421 
10422     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10423       // If one side has less than 3 clusters, and the other has more than 3,
10424       // consider taking a cluster from the other side.
10425 
10426       if (NumLeft < NumRight) {
10427         // Consider moving the first cluster on the right to the left side.
10428         CaseCluster &CC = *FirstRight;
10429         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10430         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10431         if (LeftSideRank <= RightSideRank) {
10432           // Moving the cluster to the left does not demote it.
10433           ++LastLeft;
10434           ++FirstRight;
10435           continue;
10436         }
10437       } else {
10438         assert(NumRight < NumLeft);
10439         // Consider moving the last element on the left to the right side.
10440         CaseCluster &CC = *LastLeft;
10441         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10442         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10443         if (RightSideRank <= LeftSideRank) {
10444           // Moving the cluster to the right does not demot it.
10445           --LastLeft;
10446           --FirstRight;
10447           continue;
10448         }
10449       }
10450     }
10451     break;
10452   }
10453 
10454   assert(LastLeft + 1 == FirstRight);
10455   assert(LastLeft >= W.FirstCluster);
10456   assert(FirstRight <= W.LastCluster);
10457 
10458   // Use the first element on the right as pivot since we will make less-than
10459   // comparisons against it.
10460   CaseClusterIt PivotCluster = FirstRight;
10461   assert(PivotCluster > W.FirstCluster);
10462   assert(PivotCluster <= W.LastCluster);
10463 
10464   CaseClusterIt FirstLeft = W.FirstCluster;
10465   CaseClusterIt LastRight = W.LastCluster;
10466 
10467   const ConstantInt *Pivot = PivotCluster->Low;
10468 
10469   // New blocks will be inserted immediately after the current one.
10470   MachineFunction::iterator BBI(W.MBB);
10471   ++BBI;
10472 
10473   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10474   // we can branch to its destination directly if it's squeezed exactly in
10475   // between the known lower bound and Pivot - 1.
10476   MachineBasicBlock *LeftMBB;
10477   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10478       FirstLeft->Low == W.GE &&
10479       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10480     LeftMBB = FirstLeft->MBB;
10481   } else {
10482     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10483     FuncInfo.MF->insert(BBI, LeftMBB);
10484     WorkList.push_back(
10485         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10486     // Put Cond in a virtual register to make it available from the new blocks.
10487     ExportFromCurrentBlock(Cond);
10488   }
10489 
10490   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10491   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10492   // directly if RHS.High equals the current upper bound.
10493   MachineBasicBlock *RightMBB;
10494   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10495       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10496     RightMBB = FirstRight->MBB;
10497   } else {
10498     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10499     FuncInfo.MF->insert(BBI, RightMBB);
10500     WorkList.push_back(
10501         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10502     // Put Cond in a virtual register to make it available from the new blocks.
10503     ExportFromCurrentBlock(Cond);
10504   }
10505 
10506   // Create the CaseBlock record that will be used to lower the branch.
10507   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10508                getCurSDLoc(), LeftProb, RightProb);
10509 
10510   if (W.MBB == SwitchMBB)
10511     visitSwitchCase(CB, SwitchMBB);
10512   else
10513     SL->SwitchCases.push_back(CB);
10514 }
10515 
10516 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10517 // from the swith statement.
10518 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10519                                             BranchProbability PeeledCaseProb) {
10520   if (PeeledCaseProb == BranchProbability::getOne())
10521     return BranchProbability::getZero();
10522   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10523 
10524   uint32_t Numerator = CaseProb.getNumerator();
10525   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10526   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10527 }
10528 
10529 // Try to peel the top probability case if it exceeds the threshold.
10530 // Return current MachineBasicBlock for the switch statement if the peeling
10531 // does not occur.
10532 // If the peeling is performed, return the newly created MachineBasicBlock
10533 // for the peeled switch statement. Also update Clusters to remove the peeled
10534 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10535 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10536     const SwitchInst &SI, CaseClusterVector &Clusters,
10537     BranchProbability &PeeledCaseProb) {
10538   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10539   // Don't perform if there is only one cluster or optimizing for size.
10540   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10541       TM.getOptLevel() == CodeGenOpt::None ||
10542       SwitchMBB->getParent()->getFunction().hasMinSize())
10543     return SwitchMBB;
10544 
10545   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10546   unsigned PeeledCaseIndex = 0;
10547   bool SwitchPeeled = false;
10548   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10549     CaseCluster &CC = Clusters[Index];
10550     if (CC.Prob < TopCaseProb)
10551       continue;
10552     TopCaseProb = CC.Prob;
10553     PeeledCaseIndex = Index;
10554     SwitchPeeled = true;
10555   }
10556   if (!SwitchPeeled)
10557     return SwitchMBB;
10558 
10559   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10560                     << TopCaseProb << "\n");
10561 
10562   // Record the MBB for the peeled switch statement.
10563   MachineFunction::iterator BBI(SwitchMBB);
10564   ++BBI;
10565   MachineBasicBlock *PeeledSwitchMBB =
10566       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10567   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10568 
10569   ExportFromCurrentBlock(SI.getCondition());
10570   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10571   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10572                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10573   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10574 
10575   Clusters.erase(PeeledCaseIt);
10576   for (CaseCluster &CC : Clusters) {
10577     LLVM_DEBUG(
10578         dbgs() << "Scale the probablity for one cluster, before scaling: "
10579                << CC.Prob << "\n");
10580     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10581     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10582   }
10583   PeeledCaseProb = TopCaseProb;
10584   return PeeledSwitchMBB;
10585 }
10586 
10587 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10588   // Extract cases from the switch.
10589   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10590   CaseClusterVector Clusters;
10591   Clusters.reserve(SI.getNumCases());
10592   for (auto I : SI.cases()) {
10593     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10594     const ConstantInt *CaseVal = I.getCaseValue();
10595     BranchProbability Prob =
10596         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10597             : BranchProbability(1, SI.getNumCases() + 1);
10598     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10599   }
10600 
10601   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10602 
10603   // Cluster adjacent cases with the same destination. We do this at all
10604   // optimization levels because it's cheap to do and will make codegen faster
10605   // if there are many clusters.
10606   sortAndRangeify(Clusters);
10607 
10608   // The branch probablity of the peeled case.
10609   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10610   MachineBasicBlock *PeeledSwitchMBB =
10611       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10612 
10613   // If there is only the default destination, jump there directly.
10614   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10615   if (Clusters.empty()) {
10616     assert(PeeledSwitchMBB == SwitchMBB);
10617     SwitchMBB->addSuccessor(DefaultMBB);
10618     if (DefaultMBB != NextBlock(SwitchMBB)) {
10619       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10620                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10621     }
10622     return;
10623   }
10624 
10625   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10626   SL->findBitTestClusters(Clusters, &SI);
10627 
10628   LLVM_DEBUG({
10629     dbgs() << "Case clusters: ";
10630     for (const CaseCluster &C : Clusters) {
10631       if (C.Kind == CC_JumpTable)
10632         dbgs() << "JT:";
10633       if (C.Kind == CC_BitTests)
10634         dbgs() << "BT:";
10635 
10636       C.Low->getValue().print(dbgs(), true);
10637       if (C.Low != C.High) {
10638         dbgs() << '-';
10639         C.High->getValue().print(dbgs(), true);
10640       }
10641       dbgs() << ' ';
10642     }
10643     dbgs() << '\n';
10644   });
10645 
10646   assert(!Clusters.empty());
10647   SwitchWorkList WorkList;
10648   CaseClusterIt First = Clusters.begin();
10649   CaseClusterIt Last = Clusters.end() - 1;
10650   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10651   // Scale the branchprobability for DefaultMBB if the peel occurs and
10652   // DefaultMBB is not replaced.
10653   if (PeeledCaseProb != BranchProbability::getZero() &&
10654       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10655     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10656   WorkList.push_back(
10657       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10658 
10659   while (!WorkList.empty()) {
10660     SwitchWorkListItem W = WorkList.back();
10661     WorkList.pop_back();
10662     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10663 
10664     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10665         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10666       // For optimized builds, lower large range as a balanced binary tree.
10667       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10668       continue;
10669     }
10670 
10671     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10672   }
10673 }
10674 
10675 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10676   SmallVector<EVT, 4> ValueVTs;
10677   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10678                   ValueVTs);
10679   unsigned NumValues = ValueVTs.size();
10680   if (NumValues == 0) return;
10681 
10682   SmallVector<SDValue, 4> Values(NumValues);
10683   SDValue Op = getValue(I.getOperand(0));
10684 
10685   for (unsigned i = 0; i != NumValues; ++i)
10686     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10687                             SDValue(Op.getNode(), Op.getResNo() + i));
10688 
10689   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10690                            DAG.getVTList(ValueVTs), Values));
10691 }
10692