xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision bdf77209b98ee6c9bb56bbfa8498a54492ccb8b9)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/ConstantRange.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfoMetadata.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Function.h"
82 #include "llvm/IR/GetElementPtrTypeIterator.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsAArch64.h"
90 #include "llvm/IR/IntrinsicsWebAssembly.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PatternMatch.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/MC/MCContext.h"
101 #include "llvm/MC/MCSymbol.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/BranchProbability.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/CodeGen.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MachineValueType.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetIntrinsicInfo.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstring>
122 #include <iterator>
123 #include <limits>
124 #include <numeric>
125 #include <tuple>
126 #include <utility>
127 #include <vector>
128 
129 using namespace llvm;
130 using namespace PatternMatch;
131 using namespace SwitchCG;
132 
133 #define DEBUG_TYPE "isel"
134 
135 /// LimitFloatPrecision - Generate low-precision inline sequences for
136 /// some float libcalls (6, 8 or 12 bits).
137 static unsigned LimitFloatPrecision;
138 
139 static cl::opt<unsigned, true>
140     LimitFPPrecision("limit-float-precision",
141                      cl::desc("Generate low-precision inline sequences "
142                               "for some float libcalls"),
143                      cl::location(LimitFloatPrecision), cl::Hidden,
144                      cl::init(0));
145 
146 static cl::opt<unsigned> SwitchPeelThreshold(
147     "switch-peel-threshold", cl::Hidden, cl::init(66),
148     cl::desc("Set the case probability threshold for peeling the case from a "
149              "switch statement. A value greater than 100 will void this "
150              "optimization"));
151 
152 // Limit the width of DAG chains. This is important in general to prevent
153 // DAG-based analysis from blowing up. For example, alias analysis and
154 // load clustering may not complete in reasonable time. It is difficult to
155 // recognize and avoid this situation within each individual analysis, and
156 // future analyses are likely to have the same behavior. Limiting DAG width is
157 // the safe approach and will be especially important with global DAGs.
158 //
159 // MaxParallelChains default is arbitrarily high to avoid affecting
160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
161 // sequence over this should have been converted to llvm.memcpy by the
162 // frontend. It is easy to induce this behavior with .ll code such as:
163 // %buffer = alloca [4096 x i8]
164 // %data = load [4096 x i8]* %argPtr
165 // store [4096 x i8] %data, [4096 x i8]* %buffer
166 static const unsigned MaxParallelChains = 64;
167 
168 // Return the calling convention if the Value passed requires ABI mangling as it
169 // is a parameter to a function or a return value from a function which is not
170 // an intrinsic.
171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
172   if (auto *R = dyn_cast<ReturnInst>(V))
173     return R->getParent()->getParent()->getCallingConv();
174 
175   if (auto *CI = dyn_cast<CallInst>(V)) {
176     const bool IsInlineAsm = CI->isInlineAsm();
177     const bool IsIndirectFunctionCall =
178         !IsInlineAsm && !CI->getCalledFunction();
179 
180     // It is possible that the call instruction is an inline asm statement or an
181     // indirect function call in which case the return value of
182     // getCalledFunction() would be nullptr.
183     const bool IsInstrinsicCall =
184         !IsInlineAsm && !IsIndirectFunctionCall &&
185         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
186 
187     if (!IsInlineAsm && !IsInstrinsicCall)
188       return CI->getCallingConv();
189   }
190 
191   return None;
192 }
193 
194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
195                                       const SDValue *Parts, unsigned NumParts,
196                                       MVT PartVT, EVT ValueVT, const Value *V,
197                                       Optional<CallingConv::ID> CC);
198 
199 /// getCopyFromParts - Create a value that contains the specified legal parts
200 /// combined into the value they represent.  If the parts combine to a type
201 /// larger than ValueVT then AssertOp can be used to specify whether the extra
202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
203 /// (ISD::AssertSext).
204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
205                                 const SDValue *Parts, unsigned NumParts,
206                                 MVT PartVT, EVT ValueVT, const Value *V,
207                                 Optional<CallingConv::ID> CC = None,
208                                 Optional<ISD::NodeType> AssertOp = None) {
209   if (ValueVT.isVector())
210     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
211                                   CC);
212 
213   assert(NumParts > 0 && "No parts to assemble!");
214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
215   SDValue Val = Parts[0];
216 
217   if (NumParts > 1) {
218     // Assemble the value from multiple parts.
219     if (ValueVT.isInteger()) {
220       unsigned PartBits = PartVT.getSizeInBits();
221       unsigned ValueBits = ValueVT.getSizeInBits();
222 
223       // Assemble the power of 2 part.
224       unsigned RoundParts =
225           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
226       unsigned RoundBits = PartBits * RoundParts;
227       EVT RoundVT = RoundBits == ValueBits ?
228         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
229       SDValue Lo, Hi;
230 
231       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
232 
233       if (RoundParts > 2) {
234         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
235                               PartVT, HalfVT, V);
236         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
237                               RoundParts / 2, PartVT, HalfVT, V);
238       } else {
239         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
240         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
241       }
242 
243       if (DAG.getDataLayout().isBigEndian())
244         std::swap(Lo, Hi);
245 
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
247 
248       if (RoundParts < NumParts) {
249         // Assemble the trailing non-power-of-2 part.
250         unsigned OddParts = NumParts - RoundParts;
251         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
252         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
253                               OddVT, V, CC);
254 
255         // Combine the round and odd parts.
256         Lo = Val;
257         if (DAG.getDataLayout().isBigEndian())
258           std::swap(Lo, Hi);
259         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
260         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
261         Hi =
262             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
263                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
264                                         TLI.getPointerTy(DAG.getDataLayout())));
265         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
266         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
267       }
268     } else if (PartVT.isFloatingPoint()) {
269       // FP split into multiple FP parts (for ppcf128)
270       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
271              "Unexpected split");
272       SDValue Lo, Hi;
273       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
274       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
275       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
276         std::swap(Lo, Hi);
277       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
278     } else {
279       // FP split into integer parts (soft fp)
280       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
281              !PartVT.isVector() && "Unexpected split");
282       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
283       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
284     }
285   }
286 
287   // There is now one part, held in Val.  Correct it to match ValueVT.
288   // PartEVT is the type of the register class that holds the value.
289   // ValueVT is the type of the inline asm operation.
290   EVT PartEVT = Val.getValueType();
291 
292   if (PartEVT == ValueVT)
293     return Val;
294 
295   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
296       ValueVT.bitsLT(PartEVT)) {
297     // For an FP value in an integer part, we need to truncate to the right
298     // width first.
299     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
300     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
301   }
302 
303   // Handle types that have the same size.
304   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
305     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306 
307   // Handle types with different sizes.
308   if (PartEVT.isInteger() && ValueVT.isInteger()) {
309     if (ValueVT.bitsLT(PartEVT)) {
310       // For a truncate, see if we have any information to
311       // indicate whether the truncated bits will always be
312       // zero or sign-extension.
313       if (AssertOp.hasValue())
314         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
315                           DAG.getValueType(ValueVT));
316       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317     }
318     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
319   }
320 
321   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
322     // FP_ROUND's are always exact here.
323     if (ValueVT.bitsLT(Val.getValueType()))
324       return DAG.getNode(
325           ISD::FP_ROUND, DL, ValueVT, Val,
326           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
327 
328     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
329   }
330 
331   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
332   // then truncating.
333   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
334       ValueVT.bitsLT(PartEVT)) {
335     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
336     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
337   }
338 
339   report_fatal_error("Unknown mismatch in getCopyFromParts!");
340 }
341 
342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
343                                               const Twine &ErrMsg) {
344   const Instruction *I = dyn_cast_or_null<Instruction>(V);
345   if (!V)
346     return Ctx.emitError(ErrMsg);
347 
348   const char *AsmError = ", possible invalid constraint for vector type";
349   if (const CallInst *CI = dyn_cast<CallInst>(I))
350     if (isa<InlineAsm>(CI->getCalledValue()))
351       return Ctx.emitError(I, ErrMsg + AsmError);
352 
353   return Ctx.emitError(I, ErrMsg);
354 }
355 
356 /// getCopyFromPartsVector - Create a value that contains the specified legal
357 /// parts combined into the value they represent.  If the parts combine to a
358 /// type larger than ValueVT then AssertOp can be used to specify whether the
359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
360 /// ValueVT (ISD::AssertSext).
361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
362                                       const SDValue *Parts, unsigned NumParts,
363                                       MVT PartVT, EVT ValueVT, const Value *V,
364                                       Optional<CallingConv::ID> CallConv) {
365   assert(ValueVT.isVector() && "Not a vector value");
366   assert(NumParts > 0 && "No parts to assemble!");
367   const bool IsABIRegCopy = CallConv.hasValue();
368 
369   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
370   SDValue Val = Parts[0];
371 
372   // Handle a multi-element vector.
373   if (NumParts > 1) {
374     EVT IntermediateVT;
375     MVT RegisterVT;
376     unsigned NumIntermediates;
377     unsigned NumRegs;
378 
379     if (IsABIRegCopy) {
380       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
381           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
382           NumIntermediates, RegisterVT);
383     } else {
384       NumRegs =
385           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
386                                      NumIntermediates, RegisterVT);
387     }
388 
389     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390     NumParts = NumRegs; // Silence a compiler warning.
391     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392     assert(RegisterVT.getSizeInBits() ==
393            Parts[0].getSimpleValueType().getSizeInBits() &&
394            "Part type sizes don't match!");
395 
396     // Assemble the parts into intermediate operands.
397     SmallVector<SDValue, 8> Ops(NumIntermediates);
398     if (NumIntermediates == NumParts) {
399       // If the register was not expanded, truncate or copy the value,
400       // as appropriate.
401       for (unsigned i = 0; i != NumParts; ++i)
402         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
403                                   PartVT, IntermediateVT, V);
404     } else if (NumParts > 0) {
405       // If the intermediate type was expanded, build the intermediate
406       // operands from the parts.
407       assert(NumParts % NumIntermediates == 0 &&
408              "Must expand into a divisible number of parts!");
409       unsigned Factor = NumParts / NumIntermediates;
410       for (unsigned i = 0; i != NumIntermediates; ++i)
411         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
412                                   PartVT, IntermediateVT, V);
413     }
414 
415     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
416     // intermediate operands.
417     EVT BuiltVectorTy =
418         IntermediateVT.isVector()
419             ? EVT::getVectorVT(
420                   *DAG.getContext(), IntermediateVT.getScalarType(),
421                   IntermediateVT.getVectorElementCount() * NumParts)
422             : EVT::getVectorVT(*DAG.getContext(),
423                                IntermediateVT.getScalarType(),
424                                NumIntermediates);
425     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
426                                                 : ISD::BUILD_VECTOR,
427                       DL, BuiltVectorTy, Ops);
428   }
429 
430   // There is now one part, held in Val.  Correct it to match ValueVT.
431   EVT PartEVT = Val.getValueType();
432 
433   if (PartEVT == ValueVT)
434     return Val;
435 
436   if (PartEVT.isVector()) {
437     // If the element type of the source/dest vectors are the same, but the
438     // parts vector has more elements than the value vector, then we have a
439     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
440     // elements we want.
441     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
442       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
443              "Cannot narrow, it would be a lossy transformation");
444       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
445                          DAG.getVectorIdxConstant(0, DL));
446     }
447 
448     // Vector/Vector bitcast.
449     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
450       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
451 
452     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
453       "Cannot handle this kind of promotion");
454     // Promoted vector extract
455     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
456 
457   }
458 
459   // Trivial bitcast if the types are the same size and the destination
460   // vector type is legal.
461   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
462       TLI.isTypeLegal(ValueVT))
463     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
464 
465   if (ValueVT.getVectorNumElements() != 1) {
466      // Certain ABIs require that vectors are passed as integers. For vectors
467      // are the same size, this is an obvious bitcast.
468      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
469        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
470      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
471        // Bitcast Val back the original type and extract the corresponding
472        // vector we want.
473        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
474        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
475                                            ValueVT.getVectorElementType(), Elts);
476        Val = DAG.getBitcast(WiderVecType, Val);
477        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
478                           DAG.getVectorIdxConstant(0, DL));
479      }
480 
481      diagnosePossiblyInvalidConstraint(
482          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
483      return DAG.getUNDEF(ValueVT);
484   }
485 
486   // Handle cases such as i8 -> <1 x i1>
487   EVT ValueSVT = ValueVT.getVectorElementType();
488   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
489     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
490       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
491     else
492       Val = ValueVT.isFloatingPoint()
493                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
494                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
495   }
496 
497   return DAG.getBuildVector(ValueVT, DL, Val);
498 }
499 
500 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
501                                  SDValue Val, SDValue *Parts, unsigned NumParts,
502                                  MVT PartVT, const Value *V,
503                                  Optional<CallingConv::ID> CallConv);
504 
505 /// getCopyToParts - Create a series of nodes that contain the specified value
506 /// split into legal parts.  If the parts contain more bits than Val, then, for
507 /// integers, ExtendKind can be used to specify how to generate the extra bits.
508 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
509                            SDValue *Parts, unsigned NumParts, MVT PartVT,
510                            const Value *V,
511                            Optional<CallingConv::ID> CallConv = None,
512                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
513   EVT ValueVT = Val.getValueType();
514 
515   // Handle the vector case separately.
516   if (ValueVT.isVector())
517     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
518                                 CallConv);
519 
520   unsigned PartBits = PartVT.getSizeInBits();
521   unsigned OrigNumParts = NumParts;
522   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
523          "Copying to an illegal type!");
524 
525   if (NumParts == 0)
526     return;
527 
528   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
529   EVT PartEVT = PartVT;
530   if (PartEVT == ValueVT) {
531     assert(NumParts == 1 && "No-op copy with multiple parts!");
532     Parts[0] = Val;
533     return;
534   }
535 
536   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
537     // If the parts cover more bits than the value has, promote the value.
538     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
539       assert(NumParts == 1 && "Do not know what to promote to!");
540       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
541     } else {
542       if (ValueVT.isFloatingPoint()) {
543         // FP values need to be bitcast, then extended if they are being put
544         // into a larger container.
545         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
546         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
547       }
548       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
549              ValueVT.isInteger() &&
550              "Unknown mismatch!");
551       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
552       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
553       if (PartVT == MVT::x86mmx)
554         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
555     }
556   } else if (PartBits == ValueVT.getSizeInBits()) {
557     // Different types of the same size.
558     assert(NumParts == 1 && PartEVT != ValueVT);
559     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
561     // If the parts cover less bits than value has, truncate the value.
562     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
563            ValueVT.isInteger() &&
564            "Unknown mismatch!");
565     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
566     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
567     if (PartVT == MVT::x86mmx)
568       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569   }
570 
571   // The value may have changed - recompute ValueVT.
572   ValueVT = Val.getValueType();
573   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
574          "Failed to tile the value with PartVT!");
575 
576   if (NumParts == 1) {
577     if (PartEVT != ValueVT) {
578       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
579                                         "scalar-to-vector conversion failed");
580       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
581     }
582 
583     Parts[0] = Val;
584     return;
585   }
586 
587   // Expand the value into multiple parts.
588   if (NumParts & (NumParts - 1)) {
589     // The number of parts is not a power of 2.  Split off and copy the tail.
590     assert(PartVT.isInteger() && ValueVT.isInteger() &&
591            "Do not know what to expand to!");
592     unsigned RoundParts = 1 << Log2_32(NumParts);
593     unsigned RoundBits = RoundParts * PartBits;
594     unsigned OddParts = NumParts - RoundParts;
595     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
596       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
597 
598     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
599                    CallConv);
600 
601     if (DAG.getDataLayout().isBigEndian())
602       // The odd parts were reversed by getCopyToParts - unreverse them.
603       std::reverse(Parts + RoundParts, Parts + NumParts);
604 
605     NumParts = RoundParts;
606     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
607     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
608   }
609 
610   // The number of parts is a power of 2.  Repeatedly bisect the value using
611   // EXTRACT_ELEMENT.
612   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
613                          EVT::getIntegerVT(*DAG.getContext(),
614                                            ValueVT.getSizeInBits()),
615                          Val);
616 
617   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618     for (unsigned i = 0; i < NumParts; i += StepSize) {
619       unsigned ThisBits = StepSize * PartBits / 2;
620       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
621       SDValue &Part0 = Parts[i];
622       SDValue &Part1 = Parts[i+StepSize/2];
623 
624       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
625                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
626       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
628 
629       if (ThisBits == PartBits && ThisVT != PartVT) {
630         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
631         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
632       }
633     }
634   }
635 
636   if (DAG.getDataLayout().isBigEndian())
637     std::reverse(Parts, Parts + OrigNumParts);
638 }
639 
640 static SDValue widenVectorToPartType(SelectionDAG &DAG,
641                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
642   if (!PartVT.isVector())
643     return SDValue();
644 
645   EVT ValueVT = Val.getValueType();
646   unsigned PartNumElts = PartVT.getVectorNumElements();
647   unsigned ValueNumElts = ValueVT.getVectorNumElements();
648   if (PartNumElts > ValueNumElts &&
649       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
650     EVT ElementVT = PartVT.getVectorElementType();
651     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
652     // undef elements.
653     SmallVector<SDValue, 16> Ops;
654     DAG.ExtractVectorElements(Val, Ops);
655     SDValue EltUndef = DAG.getUNDEF(ElementVT);
656     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
657       Ops.push_back(EltUndef);
658 
659     // FIXME: Use CONCAT for 2x -> 4x.
660     return DAG.getBuildVector(PartVT, DL, Ops);
661   }
662 
663   return SDValue();
664 }
665 
666 /// getCopyToPartsVector - Create a series of nodes that contain the specified
667 /// value split into legal parts.
668 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
669                                  SDValue Val, SDValue *Parts, unsigned NumParts,
670                                  MVT PartVT, const Value *V,
671                                  Optional<CallingConv::ID> CallConv) {
672   EVT ValueVT = Val.getValueType();
673   assert(ValueVT.isVector() && "Not a vector");
674   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
675   const bool IsABIRegCopy = CallConv.hasValue();
676 
677   if (NumParts == 1) {
678     EVT PartEVT = PartVT;
679     if (PartEVT == ValueVT) {
680       // Nothing to do.
681     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
682       // Bitconvert vector->vector case.
683       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
684     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
685       Val = Widened;
686     } else if (PartVT.isVector() &&
687                PartEVT.getVectorElementType().bitsGE(
688                  ValueVT.getVectorElementType()) &&
689                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
690 
691       // Promoted vector extract
692       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
693     } else {
694       if (ValueVT.getVectorNumElements() == 1) {
695         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
696                           DAG.getVectorIdxConstant(0, DL));
697       } else {
698         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
699                "lossy conversion of vector to scalar type");
700         EVT IntermediateType =
701             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
702         Val = DAG.getBitcast(IntermediateType, Val);
703         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
704       }
705     }
706 
707     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
708     Parts[0] = Val;
709     return;
710   }
711 
712   // Handle a multi-element vector.
713   EVT IntermediateVT;
714   MVT RegisterVT;
715   unsigned NumIntermediates;
716   unsigned NumRegs;
717   if (IsABIRegCopy) {
718     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
719         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
720         NumIntermediates, RegisterVT);
721   } else {
722     NumRegs =
723         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
724                                    NumIntermediates, RegisterVT);
725   }
726 
727   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
728   NumParts = NumRegs; // Silence a compiler warning.
729   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
730 
731   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
732     IntermediateVT.getVectorNumElements() : 1;
733 
734   // Convert the vector to the appropriate type if necessary.
735   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
736 
737   EVT BuiltVectorTy = EVT::getVectorVT(
738       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
739   if (ValueVT != BuiltVectorTy) {
740     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
741       Val = Widened;
742 
743     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
744   }
745 
746   // Split the vector into intermediate operands.
747   SmallVector<SDValue, 8> Ops(NumIntermediates);
748   for (unsigned i = 0; i != NumIntermediates; ++i) {
749     if (IntermediateVT.isVector()) {
750       Ops[i] =
751           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
752                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
753     } else {
754       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
755                            DAG.getVectorIdxConstant(i, DL));
756     }
757   }
758 
759   // Split the intermediate operands into legal parts.
760   if (NumParts == NumIntermediates) {
761     // If the register was not expanded, promote or copy the value,
762     // as appropriate.
763     for (unsigned i = 0; i != NumParts; ++i)
764       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
765   } else if (NumParts > 0) {
766     // If the intermediate type was expanded, split each the value into
767     // legal parts.
768     assert(NumIntermediates != 0 && "division by zero");
769     assert(NumParts % NumIntermediates == 0 &&
770            "Must expand into a divisible number of parts!");
771     unsigned Factor = NumParts / NumIntermediates;
772     for (unsigned i = 0; i != NumIntermediates; ++i)
773       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
774                      CallConv);
775   }
776 }
777 
778 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
779                            EVT valuevt, Optional<CallingConv::ID> CC)
780     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
781       RegCount(1, regs.size()), CallConv(CC) {}
782 
783 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
784                            const DataLayout &DL, unsigned Reg, Type *Ty,
785                            Optional<CallingConv::ID> CC) {
786   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
787 
788   CallConv = CC;
789 
790   for (EVT ValueVT : ValueVTs) {
791     unsigned NumRegs =
792         isABIMangled()
793             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
794             : TLI.getNumRegisters(Context, ValueVT);
795     MVT RegisterVT =
796         isABIMangled()
797             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
798             : TLI.getRegisterType(Context, ValueVT);
799     for (unsigned i = 0; i != NumRegs; ++i)
800       Regs.push_back(Reg + i);
801     RegVTs.push_back(RegisterVT);
802     RegCount.push_back(NumRegs);
803     Reg += NumRegs;
804   }
805 }
806 
807 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
808                                       FunctionLoweringInfo &FuncInfo,
809                                       const SDLoc &dl, SDValue &Chain,
810                                       SDValue *Flag, const Value *V) const {
811   // A Value with type {} or [0 x %t] needs no registers.
812   if (ValueVTs.empty())
813     return SDValue();
814 
815   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
816 
817   // Assemble the legal parts into the final values.
818   SmallVector<SDValue, 4> Values(ValueVTs.size());
819   SmallVector<SDValue, 8> Parts;
820   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
821     // Copy the legal parts from the registers.
822     EVT ValueVT = ValueVTs[Value];
823     unsigned NumRegs = RegCount[Value];
824     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
825                                           *DAG.getContext(),
826                                           CallConv.getValue(), RegVTs[Value])
827                                     : RegVTs[Value];
828 
829     Parts.resize(NumRegs);
830     for (unsigned i = 0; i != NumRegs; ++i) {
831       SDValue P;
832       if (!Flag) {
833         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
834       } else {
835         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
836         *Flag = P.getValue(2);
837       }
838 
839       Chain = P.getValue(1);
840       Parts[i] = P;
841 
842       // If the source register was virtual and if we know something about it,
843       // add an assert node.
844       if (!Register::isVirtualRegister(Regs[Part + i]) ||
845           !RegisterVT.isInteger())
846         continue;
847 
848       const FunctionLoweringInfo::LiveOutInfo *LOI =
849         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
850       if (!LOI)
851         continue;
852 
853       unsigned RegSize = RegisterVT.getScalarSizeInBits();
854       unsigned NumSignBits = LOI->NumSignBits;
855       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
856 
857       if (NumZeroBits == RegSize) {
858         // The current value is a zero.
859         // Explicitly express that as it would be easier for
860         // optimizations to kick in.
861         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
862         continue;
863       }
864 
865       // FIXME: We capture more information than the dag can represent.  For
866       // now, just use the tightest assertzext/assertsext possible.
867       bool isSExt;
868       EVT FromVT(MVT::Other);
869       if (NumZeroBits) {
870         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
871         isSExt = false;
872       } else if (NumSignBits > 1) {
873         FromVT =
874             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
875         isSExt = true;
876       } else {
877         continue;
878       }
879       // Add an assertion node.
880       assert(FromVT != MVT::Other);
881       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
882                              RegisterVT, P, DAG.getValueType(FromVT));
883     }
884 
885     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
886                                      RegisterVT, ValueVT, V, CallConv);
887     Part += NumRegs;
888     Parts.clear();
889   }
890 
891   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
892 }
893 
894 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
895                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
896                                  const Value *V,
897                                  ISD::NodeType PreferredExtendType) const {
898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
899   ISD::NodeType ExtendKind = PreferredExtendType;
900 
901   // Get the list of the values's legal parts.
902   unsigned NumRegs = Regs.size();
903   SmallVector<SDValue, 8> Parts(NumRegs);
904   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
905     unsigned NumParts = RegCount[Value];
906 
907     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
908                                           *DAG.getContext(),
909                                           CallConv.getValue(), RegVTs[Value])
910                                     : RegVTs[Value];
911 
912     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
913       ExtendKind = ISD::ZERO_EXTEND;
914 
915     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
916                    NumParts, RegisterVT, V, CallConv, ExtendKind);
917     Part += NumParts;
918   }
919 
920   // Copy the parts into the registers.
921   SmallVector<SDValue, 8> Chains(NumRegs);
922   for (unsigned i = 0; i != NumRegs; ++i) {
923     SDValue Part;
924     if (!Flag) {
925       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
926     } else {
927       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
928       *Flag = Part.getValue(1);
929     }
930 
931     Chains[i] = Part.getValue(0);
932   }
933 
934   if (NumRegs == 1 || Flag)
935     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
936     // flagged to it. That is the CopyToReg nodes and the user are considered
937     // a single scheduling unit. If we create a TokenFactor and return it as
938     // chain, then the TokenFactor is both a predecessor (operand) of the
939     // user as well as a successor (the TF operands are flagged to the user).
940     // c1, f1 = CopyToReg
941     // c2, f2 = CopyToReg
942     // c3     = TokenFactor c1, c2
943     // ...
944     //        = op c3, ..., f2
945     Chain = Chains[NumRegs-1];
946   else
947     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
948 }
949 
950 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
951                                         unsigned MatchingIdx, const SDLoc &dl,
952                                         SelectionDAG &DAG,
953                                         std::vector<SDValue> &Ops) const {
954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
955 
956   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
957   if (HasMatching)
958     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
959   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
960     // Put the register class of the virtual registers in the flag word.  That
961     // way, later passes can recompute register class constraints for inline
962     // assembly as well as normal instructions.
963     // Don't do this for tied operands that can use the regclass information
964     // from the def.
965     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
966     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
967     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
968   }
969 
970   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
971   Ops.push_back(Res);
972 
973   if (Code == InlineAsm::Kind_Clobber) {
974     // Clobbers should always have a 1:1 mapping with registers, and may
975     // reference registers that have illegal (e.g. vector) types. Hence, we
976     // shouldn't try to apply any sort of splitting logic to them.
977     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
978            "No 1:1 mapping from clobbers to regs?");
979     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
980     (void)SP;
981     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
982       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
983       assert(
984           (Regs[I] != SP ||
985            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
986           "If we clobbered the stack pointer, MFI should know about it.");
987     }
988     return;
989   }
990 
991   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
992     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
993     MVT RegisterVT = RegVTs[Value];
994     for (unsigned i = 0; i != NumRegs; ++i) {
995       assert(Reg < Regs.size() && "Mismatch in # registers expected");
996       unsigned TheReg = Regs[Reg++];
997       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
998     }
999   }
1000 }
1001 
1002 SmallVector<std::pair<unsigned, unsigned>, 4>
1003 RegsForValue::getRegsAndSizes() const {
1004   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1005   unsigned I = 0;
1006   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1007     unsigned RegCount = std::get<0>(CountAndVT);
1008     MVT RegisterVT = std::get<1>(CountAndVT);
1009     unsigned RegisterSize = RegisterVT.getSizeInBits();
1010     for (unsigned E = I + RegCount; I != E; ++I)
1011       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1012   }
1013   return OutVec;
1014 }
1015 
1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1017                                const TargetLibraryInfo *li) {
1018   AA = aa;
1019   GFI = gfi;
1020   LibInfo = li;
1021   DL = &DAG.getDataLayout();
1022   Context = DAG.getContext();
1023   LPadToCallSiteMap.clear();
1024   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1025 }
1026 
1027 void SelectionDAGBuilder::clear() {
1028   NodeMap.clear();
1029   UnusedArgNodeMap.clear();
1030   PendingLoads.clear();
1031   PendingExports.clear();
1032   PendingConstrainedFP.clear();
1033   PendingConstrainedFPStrict.clear();
1034   CurInst = nullptr;
1035   HasTailCall = false;
1036   SDNodeOrder = LowestSDNodeOrder;
1037   StatepointLowering.clear();
1038 }
1039 
1040 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1041   DanglingDebugInfoMap.clear();
1042 }
1043 
1044 // Update DAG root to include dependencies on Pending chains.
1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1046   SDValue Root = DAG.getRoot();
1047 
1048   if (Pending.empty())
1049     return Root;
1050 
1051   // Add current root to PendingChains, unless we already indirectly
1052   // depend on it.
1053   if (Root.getOpcode() != ISD::EntryToken) {
1054     unsigned i = 0, e = Pending.size();
1055     for (; i != e; ++i) {
1056       assert(Pending[i].getNode()->getNumOperands() > 1);
1057       if (Pending[i].getNode()->getOperand(0) == Root)
1058         break;  // Don't add the root if we already indirectly depend on it.
1059     }
1060 
1061     if (i == e)
1062       Pending.push_back(Root);
1063   }
1064 
1065   if (Pending.size() == 1)
1066     Root = Pending[0];
1067   else
1068     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1069 
1070   DAG.setRoot(Root);
1071   Pending.clear();
1072   return Root;
1073 }
1074 
1075 SDValue SelectionDAGBuilder::getMemoryRoot() {
1076   return updateRoot(PendingLoads);
1077 }
1078 
1079 SDValue SelectionDAGBuilder::getRoot() {
1080   // Chain up all pending constrained intrinsics together with all
1081   // pending loads, by simply appending them to PendingLoads and
1082   // then calling getMemoryRoot().
1083   PendingLoads.reserve(PendingLoads.size() +
1084                        PendingConstrainedFP.size() +
1085                        PendingConstrainedFPStrict.size());
1086   PendingLoads.append(PendingConstrainedFP.begin(),
1087                       PendingConstrainedFP.end());
1088   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1089                       PendingConstrainedFPStrict.end());
1090   PendingConstrainedFP.clear();
1091   PendingConstrainedFPStrict.clear();
1092   return getMemoryRoot();
1093 }
1094 
1095 SDValue SelectionDAGBuilder::getControlRoot() {
1096   // We need to emit pending fpexcept.strict constrained intrinsics,
1097   // so append them to the PendingExports list.
1098   PendingExports.append(PendingConstrainedFPStrict.begin(),
1099                         PendingConstrainedFPStrict.end());
1100   PendingConstrainedFPStrict.clear();
1101   return updateRoot(PendingExports);
1102 }
1103 
1104 void SelectionDAGBuilder::visit(const Instruction &I) {
1105   // Set up outgoing PHI node register values before emitting the terminator.
1106   if (I.isTerminator()) {
1107     HandlePHINodesInSuccessorBlocks(I.getParent());
1108   }
1109 
1110   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1111   if (!isa<DbgInfoIntrinsic>(I))
1112     ++SDNodeOrder;
1113 
1114   CurInst = &I;
1115 
1116   visit(I.getOpcode(), I);
1117 
1118   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1119     // ConstrainedFPIntrinsics handle their own FMF.
1120     if (!isa<ConstrainedFPIntrinsic>(&I)) {
1121       // Propagate the fast-math-flags of this IR instruction to the DAG node that
1122       // maps to this instruction.
1123       // TODO: We could handle all flags (nsw, etc) here.
1124       // TODO: If an IR instruction maps to >1 node, only the final node will have
1125       //       flags set.
1126       if (SDNode *Node = getNodeForIRValue(&I)) {
1127         SDNodeFlags IncomingFlags;
1128         IncomingFlags.copyFMF(*FPMO);
1129         if (!Node->getFlags().isDefined())
1130           Node->setFlags(IncomingFlags);
1131         else
1132           Node->intersectFlagsWith(IncomingFlags);
1133       }
1134     }
1135   }
1136 
1137   if (!I.isTerminator() && !HasTailCall &&
1138       !isStatepoint(&I)) // statepoints handle their exports internally
1139     CopyToExportRegsIfNeeded(&I);
1140 
1141   CurInst = nullptr;
1142 }
1143 
1144 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1145   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1146 }
1147 
1148 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1149   // Note: this doesn't use InstVisitor, because it has to work with
1150   // ConstantExpr's in addition to instructions.
1151   switch (Opcode) {
1152   default: llvm_unreachable("Unknown instruction type encountered!");
1153     // Build the switch statement using the Instruction.def file.
1154 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1155     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1156 #include "llvm/IR/Instruction.def"
1157   }
1158 }
1159 
1160 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1161                                                 const DIExpression *Expr) {
1162   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1163     const DbgValueInst *DI = DDI.getDI();
1164     DIVariable *DanglingVariable = DI->getVariable();
1165     DIExpression *DanglingExpr = DI->getExpression();
1166     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1167       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1168       return true;
1169     }
1170     return false;
1171   };
1172 
1173   for (auto &DDIMI : DanglingDebugInfoMap) {
1174     DanglingDebugInfoVector &DDIV = DDIMI.second;
1175 
1176     // If debug info is to be dropped, run it through final checks to see
1177     // whether it can be salvaged.
1178     for (auto &DDI : DDIV)
1179       if (isMatchingDbgValue(DDI))
1180         salvageUnresolvedDbgValue(DDI);
1181 
1182     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1183   }
1184 }
1185 
1186 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1187 // generate the debug data structures now that we've seen its definition.
1188 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1189                                                    SDValue Val) {
1190   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1191   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1192     return;
1193 
1194   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1195   for (auto &DDI : DDIV) {
1196     const DbgValueInst *DI = DDI.getDI();
1197     assert(DI && "Ill-formed DanglingDebugInfo");
1198     DebugLoc dl = DDI.getdl();
1199     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1200     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1201     DILocalVariable *Variable = DI->getVariable();
1202     DIExpression *Expr = DI->getExpression();
1203     assert(Variable->isValidLocationForIntrinsic(dl) &&
1204            "Expected inlined-at fields to agree");
1205     SDDbgValue *SDV;
1206     if (Val.getNode()) {
1207       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1208       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1209       // we couldn't resolve it directly when examining the DbgValue intrinsic
1210       // in the first place we should not be more successful here). Unless we
1211       // have some test case that prove this to be correct we should avoid
1212       // calling EmitFuncArgumentDbgValue here.
1213       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1214         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1215                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1216         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1217         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1218         // inserted after the definition of Val when emitting the instructions
1219         // after ISel. An alternative could be to teach
1220         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1221         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1222                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1223                    << ValSDNodeOrder << "\n");
1224         SDV = getDbgValue(Val, Variable, Expr, dl,
1225                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1226         DAG.AddDbgValue(SDV, Val.getNode(), false);
1227       } else
1228         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1229                           << "in EmitFuncArgumentDbgValue\n");
1230     } else {
1231       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1232       auto Undef =
1233           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1234       auto SDV =
1235           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1236       DAG.AddDbgValue(SDV, nullptr, false);
1237     }
1238   }
1239   DDIV.clear();
1240 }
1241 
1242 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1243   Value *V = DDI.getDI()->getValue();
1244   DILocalVariable *Var = DDI.getDI()->getVariable();
1245   DIExpression *Expr = DDI.getDI()->getExpression();
1246   DebugLoc DL = DDI.getdl();
1247   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1248   unsigned SDOrder = DDI.getSDNodeOrder();
1249 
1250   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1251   // that DW_OP_stack_value is desired.
1252   assert(isa<DbgValueInst>(DDI.getDI()));
1253   bool StackValue = true;
1254 
1255   // Can this Value can be encoded without any further work?
1256   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1257     return;
1258 
1259   // Attempt to salvage back through as many instructions as possible. Bail if
1260   // a non-instruction is seen, such as a constant expression or global
1261   // variable. FIXME: Further work could recover those too.
1262   while (isa<Instruction>(V)) {
1263     Instruction &VAsInst = *cast<Instruction>(V);
1264     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1265 
1266     // If we cannot salvage any further, and haven't yet found a suitable debug
1267     // expression, bail out.
1268     if (!NewExpr)
1269       break;
1270 
1271     // New value and expr now represent this debuginfo.
1272     V = VAsInst.getOperand(0);
1273     Expr = NewExpr;
1274 
1275     // Some kind of simplification occurred: check whether the operand of the
1276     // salvaged debug expression can be encoded in this DAG.
1277     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1278       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1279                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1280       return;
1281     }
1282   }
1283 
1284   // This was the final opportunity to salvage this debug information, and it
1285   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1286   // any earlier variable location.
1287   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1288   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1289   DAG.AddDbgValue(SDV, nullptr, false);
1290 
1291   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1292                     << "\n");
1293   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1294                     << "\n");
1295 }
1296 
1297 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1298                                            DIExpression *Expr, DebugLoc dl,
1299                                            DebugLoc InstDL, unsigned Order) {
1300   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1301   SDDbgValue *SDV;
1302   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1303       isa<ConstantPointerNull>(V)) {
1304     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1305     DAG.AddDbgValue(SDV, nullptr, false);
1306     return true;
1307   }
1308 
1309   // If the Value is a frame index, we can create a FrameIndex debug value
1310   // without relying on the DAG at all.
1311   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1312     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1313     if (SI != FuncInfo.StaticAllocaMap.end()) {
1314       auto SDV =
1315           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1316                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1317       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1318       // is still available even if the SDNode gets optimized out.
1319       DAG.AddDbgValue(SDV, nullptr, false);
1320       return true;
1321     }
1322   }
1323 
1324   // Do not use getValue() in here; we don't want to generate code at
1325   // this point if it hasn't been done yet.
1326   SDValue N = NodeMap[V];
1327   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1328     N = UnusedArgNodeMap[V];
1329   if (N.getNode()) {
1330     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1331       return true;
1332     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1333     DAG.AddDbgValue(SDV, N.getNode(), false);
1334     return true;
1335   }
1336 
1337   // Special rules apply for the first dbg.values of parameter variables in a
1338   // function. Identify them by the fact they reference Argument Values, that
1339   // they're parameters, and they are parameters of the current function. We
1340   // need to let them dangle until they get an SDNode.
1341   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1342                        !InstDL.getInlinedAt();
1343   if (!IsParamOfFunc) {
1344     // The value is not used in this block yet (or it would have an SDNode).
1345     // We still want the value to appear for the user if possible -- if it has
1346     // an associated VReg, we can refer to that instead.
1347     auto VMI = FuncInfo.ValueMap.find(V);
1348     if (VMI != FuncInfo.ValueMap.end()) {
1349       unsigned Reg = VMI->second;
1350       // If this is a PHI node, it may be split up into several MI PHI nodes
1351       // (in FunctionLoweringInfo::set).
1352       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1353                        V->getType(), None);
1354       if (RFV.occupiesMultipleRegs()) {
1355         unsigned Offset = 0;
1356         unsigned BitsToDescribe = 0;
1357         if (auto VarSize = Var->getSizeInBits())
1358           BitsToDescribe = *VarSize;
1359         if (auto Fragment = Expr->getFragmentInfo())
1360           BitsToDescribe = Fragment->SizeInBits;
1361         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1362           unsigned RegisterSize = RegAndSize.second;
1363           // Bail out if all bits are described already.
1364           if (Offset >= BitsToDescribe)
1365             break;
1366           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1367               ? BitsToDescribe - Offset
1368               : RegisterSize;
1369           auto FragmentExpr = DIExpression::createFragmentExpression(
1370               Expr, Offset, FragmentSize);
1371           if (!FragmentExpr)
1372               continue;
1373           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1374                                     false, dl, SDNodeOrder);
1375           DAG.AddDbgValue(SDV, nullptr, false);
1376           Offset += RegisterSize;
1377         }
1378       } else {
1379         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1380         DAG.AddDbgValue(SDV, nullptr, false);
1381       }
1382       return true;
1383     }
1384   }
1385 
1386   return false;
1387 }
1388 
1389 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1390   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1391   for (auto &Pair : DanglingDebugInfoMap)
1392     for (auto &DDI : Pair.second)
1393       salvageUnresolvedDbgValue(DDI);
1394   clearDanglingDebugInfo();
1395 }
1396 
1397 /// getCopyFromRegs - If there was virtual register allocated for the value V
1398 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1399 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1400   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1401   SDValue Result;
1402 
1403   if (It != FuncInfo.ValueMap.end()) {
1404     unsigned InReg = It->second;
1405 
1406     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1407                      DAG.getDataLayout(), InReg, Ty,
1408                      None); // This is not an ABI copy.
1409     SDValue Chain = DAG.getEntryNode();
1410     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1411                                  V);
1412     resolveDanglingDebugInfo(V, Result);
1413   }
1414 
1415   return Result;
1416 }
1417 
1418 /// getValue - Return an SDValue for the given Value.
1419 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1420   // If we already have an SDValue for this value, use it. It's important
1421   // to do this first, so that we don't create a CopyFromReg if we already
1422   // have a regular SDValue.
1423   SDValue &N = NodeMap[V];
1424   if (N.getNode()) return N;
1425 
1426   // If there's a virtual register allocated and initialized for this
1427   // value, use it.
1428   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1429     return copyFromReg;
1430 
1431   // Otherwise create a new SDValue and remember it.
1432   SDValue Val = getValueImpl(V);
1433   NodeMap[V] = Val;
1434   resolveDanglingDebugInfo(V, Val);
1435   return Val;
1436 }
1437 
1438 // Return true if SDValue exists for the given Value
1439 bool SelectionDAGBuilder::findValue(const Value *V) const {
1440   return (NodeMap.find(V) != NodeMap.end()) ||
1441     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1442 }
1443 
1444 /// getNonRegisterValue - Return an SDValue for the given Value, but
1445 /// don't look in FuncInfo.ValueMap for a virtual register.
1446 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1447   // If we already have an SDValue for this value, use it.
1448   SDValue &N = NodeMap[V];
1449   if (N.getNode()) {
1450     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1451       // Remove the debug location from the node as the node is about to be used
1452       // in a location which may differ from the original debug location.  This
1453       // is relevant to Constant and ConstantFP nodes because they can appear
1454       // as constant expressions inside PHI nodes.
1455       N->setDebugLoc(DebugLoc());
1456     }
1457     return N;
1458   }
1459 
1460   // Otherwise create a new SDValue and remember it.
1461   SDValue Val = getValueImpl(V);
1462   NodeMap[V] = Val;
1463   resolveDanglingDebugInfo(V, Val);
1464   return Val;
1465 }
1466 
1467 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1468 /// Create an SDValue for the given value.
1469 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1470   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1471 
1472   if (const Constant *C = dyn_cast<Constant>(V)) {
1473     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1474 
1475     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1476       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1477 
1478     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1479       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1480 
1481     if (isa<ConstantPointerNull>(C)) {
1482       unsigned AS = V->getType()->getPointerAddressSpace();
1483       return DAG.getConstant(0, getCurSDLoc(),
1484                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1485     }
1486 
1487     if (match(C, m_VScale(DAG.getDataLayout())))
1488       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1489 
1490     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1491       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1492 
1493     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1494       return DAG.getUNDEF(VT);
1495 
1496     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1497       visit(CE->getOpcode(), *CE);
1498       SDValue N1 = NodeMap[V];
1499       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1500       return N1;
1501     }
1502 
1503     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1504       SmallVector<SDValue, 4> Constants;
1505       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1506            OI != OE; ++OI) {
1507         SDNode *Val = getValue(*OI).getNode();
1508         // If the operand is an empty aggregate, there are no values.
1509         if (!Val) continue;
1510         // Add each leaf value from the operand to the Constants list
1511         // to form a flattened list of all the values.
1512         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1513           Constants.push_back(SDValue(Val, i));
1514       }
1515 
1516       return DAG.getMergeValues(Constants, getCurSDLoc());
1517     }
1518 
1519     if (const ConstantDataSequential *CDS =
1520           dyn_cast<ConstantDataSequential>(C)) {
1521       SmallVector<SDValue, 4> Ops;
1522       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1523         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1524         // Add each leaf value from the operand to the Constants list
1525         // to form a flattened list of all the values.
1526         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1527           Ops.push_back(SDValue(Val, i));
1528       }
1529 
1530       if (isa<ArrayType>(CDS->getType()))
1531         return DAG.getMergeValues(Ops, getCurSDLoc());
1532       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1533     }
1534 
1535     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1536       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1537              "Unknown struct or array constant!");
1538 
1539       SmallVector<EVT, 4> ValueVTs;
1540       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1541       unsigned NumElts = ValueVTs.size();
1542       if (NumElts == 0)
1543         return SDValue(); // empty struct
1544       SmallVector<SDValue, 4> Constants(NumElts);
1545       for (unsigned i = 0; i != NumElts; ++i) {
1546         EVT EltVT = ValueVTs[i];
1547         if (isa<UndefValue>(C))
1548           Constants[i] = DAG.getUNDEF(EltVT);
1549         else if (EltVT.isFloatingPoint())
1550           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1551         else
1552           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1553       }
1554 
1555       return DAG.getMergeValues(Constants, getCurSDLoc());
1556     }
1557 
1558     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1559       return DAG.getBlockAddress(BA, VT);
1560 
1561     VectorType *VecTy = cast<VectorType>(V->getType());
1562     unsigned NumElements = VecTy->getNumElements();
1563 
1564     // Now that we know the number and type of the elements, get that number of
1565     // elements into the Ops array based on what kind of constant it is.
1566     SmallVector<SDValue, 16> Ops;
1567     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1568       for (unsigned i = 0; i != NumElements; ++i)
1569         Ops.push_back(getValue(CV->getOperand(i)));
1570     } else {
1571       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1572       EVT EltVT =
1573           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1574 
1575       SDValue Op;
1576       if (EltVT.isFloatingPoint())
1577         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1578       else
1579         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1580       Ops.assign(NumElements, Op);
1581     }
1582 
1583     // Create a BUILD_VECTOR node.
1584     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1585   }
1586 
1587   // If this is a static alloca, generate it as the frameindex instead of
1588   // computation.
1589   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1590     DenseMap<const AllocaInst*, int>::iterator SI =
1591       FuncInfo.StaticAllocaMap.find(AI);
1592     if (SI != FuncInfo.StaticAllocaMap.end())
1593       return DAG.getFrameIndex(SI->second,
1594                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1595   }
1596 
1597   // If this is an instruction which fast-isel has deferred, select it now.
1598   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1599     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1600 
1601     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1602                      Inst->getType(), getABIRegCopyCC(V));
1603     SDValue Chain = DAG.getEntryNode();
1604     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1605   }
1606 
1607   llvm_unreachable("Can't get register for value!");
1608 }
1609 
1610 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1611   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1612   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1613   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1614   bool IsSEH = isAsynchronousEHPersonality(Pers);
1615   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1616   if (!IsSEH)
1617     CatchPadMBB->setIsEHScopeEntry();
1618   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1619   if (IsMSVCCXX || IsCoreCLR)
1620     CatchPadMBB->setIsEHFuncletEntry();
1621 }
1622 
1623 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1624   // Update machine-CFG edge.
1625   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1626   FuncInfo.MBB->addSuccessor(TargetMBB);
1627 
1628   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1629   bool IsSEH = isAsynchronousEHPersonality(Pers);
1630   if (IsSEH) {
1631     // If this is not a fall-through branch or optimizations are switched off,
1632     // emit the branch.
1633     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1634         TM.getOptLevel() == CodeGenOpt::None)
1635       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1636                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1637     return;
1638   }
1639 
1640   // Figure out the funclet membership for the catchret's successor.
1641   // This will be used by the FuncletLayout pass to determine how to order the
1642   // BB's.
1643   // A 'catchret' returns to the outer scope's color.
1644   Value *ParentPad = I.getCatchSwitchParentPad();
1645   const BasicBlock *SuccessorColor;
1646   if (isa<ConstantTokenNone>(ParentPad))
1647     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1648   else
1649     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1650   assert(SuccessorColor && "No parent funclet for catchret!");
1651   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1652   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1653 
1654   // Create the terminator node.
1655   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1656                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1657                             DAG.getBasicBlock(SuccessorColorMBB));
1658   DAG.setRoot(Ret);
1659 }
1660 
1661 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1662   // Don't emit any special code for the cleanuppad instruction. It just marks
1663   // the start of an EH scope/funclet.
1664   FuncInfo.MBB->setIsEHScopeEntry();
1665   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1666   if (Pers != EHPersonality::Wasm_CXX) {
1667     FuncInfo.MBB->setIsEHFuncletEntry();
1668     FuncInfo.MBB->setIsCleanupFuncletEntry();
1669   }
1670 }
1671 
1672 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1673 // the control flow always stops at the single catch pad, as it does for a
1674 // cleanup pad. In case the exception caught is not of the types the catch pad
1675 // catches, it will be rethrown by a rethrow.
1676 static void findWasmUnwindDestinations(
1677     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1678     BranchProbability Prob,
1679     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1680         &UnwindDests) {
1681   while (EHPadBB) {
1682     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1683     if (isa<CleanupPadInst>(Pad)) {
1684       // Stop on cleanup pads.
1685       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1686       UnwindDests.back().first->setIsEHScopeEntry();
1687       break;
1688     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1689       // Add the catchpad handlers to the possible destinations. We don't
1690       // continue to the unwind destination of the catchswitch for wasm.
1691       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1692         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1693         UnwindDests.back().first->setIsEHScopeEntry();
1694       }
1695       break;
1696     } else {
1697       continue;
1698     }
1699   }
1700 }
1701 
1702 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1703 /// many places it could ultimately go. In the IR, we have a single unwind
1704 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1705 /// This function skips over imaginary basic blocks that hold catchswitch
1706 /// instructions, and finds all the "real" machine
1707 /// basic block destinations. As those destinations may not be successors of
1708 /// EHPadBB, here we also calculate the edge probability to those destinations.
1709 /// The passed-in Prob is the edge probability to EHPadBB.
1710 static void findUnwindDestinations(
1711     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1712     BranchProbability Prob,
1713     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1714         &UnwindDests) {
1715   EHPersonality Personality =
1716     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1717   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1718   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1719   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1720   bool IsSEH = isAsynchronousEHPersonality(Personality);
1721 
1722   if (IsWasmCXX) {
1723     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1724     assert(UnwindDests.size() <= 1 &&
1725            "There should be at most one unwind destination for wasm");
1726     return;
1727   }
1728 
1729   while (EHPadBB) {
1730     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1731     BasicBlock *NewEHPadBB = nullptr;
1732     if (isa<LandingPadInst>(Pad)) {
1733       // Stop on landingpads. They are not funclets.
1734       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1735       break;
1736     } else if (isa<CleanupPadInst>(Pad)) {
1737       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1738       // personalities.
1739       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1740       UnwindDests.back().first->setIsEHScopeEntry();
1741       UnwindDests.back().first->setIsEHFuncletEntry();
1742       break;
1743     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1744       // Add the catchpad handlers to the possible destinations.
1745       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1746         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1747         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1748         if (IsMSVCCXX || IsCoreCLR)
1749           UnwindDests.back().first->setIsEHFuncletEntry();
1750         if (!IsSEH)
1751           UnwindDests.back().first->setIsEHScopeEntry();
1752       }
1753       NewEHPadBB = CatchSwitch->getUnwindDest();
1754     } else {
1755       continue;
1756     }
1757 
1758     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1759     if (BPI && NewEHPadBB)
1760       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1761     EHPadBB = NewEHPadBB;
1762   }
1763 }
1764 
1765 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1766   // Update successor info.
1767   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1768   auto UnwindDest = I.getUnwindDest();
1769   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1770   BranchProbability UnwindDestProb =
1771       (BPI && UnwindDest)
1772           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1773           : BranchProbability::getZero();
1774   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1775   for (auto &UnwindDest : UnwindDests) {
1776     UnwindDest.first->setIsEHPad();
1777     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1778   }
1779   FuncInfo.MBB->normalizeSuccProbs();
1780 
1781   // Create the terminator node.
1782   SDValue Ret =
1783       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1784   DAG.setRoot(Ret);
1785 }
1786 
1787 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1788   report_fatal_error("visitCatchSwitch not yet implemented!");
1789 }
1790 
1791 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1792   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1793   auto &DL = DAG.getDataLayout();
1794   SDValue Chain = getControlRoot();
1795   SmallVector<ISD::OutputArg, 8> Outs;
1796   SmallVector<SDValue, 8> OutVals;
1797 
1798   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1799   // lower
1800   //
1801   //   %val = call <ty> @llvm.experimental.deoptimize()
1802   //   ret <ty> %val
1803   //
1804   // differently.
1805   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1806     LowerDeoptimizingReturn();
1807     return;
1808   }
1809 
1810   if (!FuncInfo.CanLowerReturn) {
1811     unsigned DemoteReg = FuncInfo.DemoteRegister;
1812     const Function *F = I.getParent()->getParent();
1813 
1814     // Emit a store of the return value through the virtual register.
1815     // Leave Outs empty so that LowerReturn won't try to load return
1816     // registers the usual way.
1817     SmallVector<EVT, 1> PtrValueVTs;
1818     ComputeValueVTs(TLI, DL,
1819                     F->getReturnType()->getPointerTo(
1820                         DAG.getDataLayout().getAllocaAddrSpace()),
1821                     PtrValueVTs);
1822 
1823     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1824                                         DemoteReg, PtrValueVTs[0]);
1825     SDValue RetOp = getValue(I.getOperand(0));
1826 
1827     SmallVector<EVT, 4> ValueVTs, MemVTs;
1828     SmallVector<uint64_t, 4> Offsets;
1829     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1830                     &Offsets);
1831     unsigned NumValues = ValueVTs.size();
1832 
1833     SmallVector<SDValue, 4> Chains(NumValues);
1834     for (unsigned i = 0; i != NumValues; ++i) {
1835       // An aggregate return value cannot wrap around the address space, so
1836       // offsets to its parts don't wrap either.
1837       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1838 
1839       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1840       if (MemVTs[i] != ValueVTs[i])
1841         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1842       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1843           // FIXME: better loc info would be nice.
1844           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1845     }
1846 
1847     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1848                         MVT::Other, Chains);
1849   } else if (I.getNumOperands() != 0) {
1850     SmallVector<EVT, 4> ValueVTs;
1851     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1852     unsigned NumValues = ValueVTs.size();
1853     if (NumValues) {
1854       SDValue RetOp = getValue(I.getOperand(0));
1855 
1856       const Function *F = I.getParent()->getParent();
1857 
1858       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1859           I.getOperand(0)->getType(), F->getCallingConv(),
1860           /*IsVarArg*/ false);
1861 
1862       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1863       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1864                                           Attribute::SExt))
1865         ExtendKind = ISD::SIGN_EXTEND;
1866       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1867                                                Attribute::ZExt))
1868         ExtendKind = ISD::ZERO_EXTEND;
1869 
1870       LLVMContext &Context = F->getContext();
1871       bool RetInReg = F->getAttributes().hasAttribute(
1872           AttributeList::ReturnIndex, Attribute::InReg);
1873 
1874       for (unsigned j = 0; j != NumValues; ++j) {
1875         EVT VT = ValueVTs[j];
1876 
1877         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1878           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1879 
1880         CallingConv::ID CC = F->getCallingConv();
1881 
1882         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1883         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1884         SmallVector<SDValue, 4> Parts(NumParts);
1885         getCopyToParts(DAG, getCurSDLoc(),
1886                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1887                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1888 
1889         // 'inreg' on function refers to return value
1890         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1891         if (RetInReg)
1892           Flags.setInReg();
1893 
1894         if (I.getOperand(0)->getType()->isPointerTy()) {
1895           Flags.setPointer();
1896           Flags.setPointerAddrSpace(
1897               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1898         }
1899 
1900         if (NeedsRegBlock) {
1901           Flags.setInConsecutiveRegs();
1902           if (j == NumValues - 1)
1903             Flags.setInConsecutiveRegsLast();
1904         }
1905 
1906         // Propagate extension type if any
1907         if (ExtendKind == ISD::SIGN_EXTEND)
1908           Flags.setSExt();
1909         else if (ExtendKind == ISD::ZERO_EXTEND)
1910           Flags.setZExt();
1911 
1912         for (unsigned i = 0; i < NumParts; ++i) {
1913           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1914                                         VT, /*isfixed=*/true, 0, 0));
1915           OutVals.push_back(Parts[i]);
1916         }
1917       }
1918     }
1919   }
1920 
1921   // Push in swifterror virtual register as the last element of Outs. This makes
1922   // sure swifterror virtual register will be returned in the swifterror
1923   // physical register.
1924   const Function *F = I.getParent()->getParent();
1925   if (TLI.supportSwiftError() &&
1926       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1927     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1928     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1929     Flags.setSwiftError();
1930     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1931                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1932                                   true /*isfixed*/, 1 /*origidx*/,
1933                                   0 /*partOffs*/));
1934     // Create SDNode for the swifterror virtual register.
1935     OutVals.push_back(
1936         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1937                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1938                         EVT(TLI.getPointerTy(DL))));
1939   }
1940 
1941   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1942   CallingConv::ID CallConv =
1943     DAG.getMachineFunction().getFunction().getCallingConv();
1944   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1945       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1946 
1947   // Verify that the target's LowerReturn behaved as expected.
1948   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1949          "LowerReturn didn't return a valid chain!");
1950 
1951   // Update the DAG with the new chain value resulting from return lowering.
1952   DAG.setRoot(Chain);
1953 }
1954 
1955 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1956 /// created for it, emit nodes to copy the value into the virtual
1957 /// registers.
1958 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1959   // Skip empty types
1960   if (V->getType()->isEmptyTy())
1961     return;
1962 
1963   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1964   if (VMI != FuncInfo.ValueMap.end()) {
1965     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1966     CopyValueToVirtualRegister(V, VMI->second);
1967   }
1968 }
1969 
1970 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1971 /// the current basic block, add it to ValueMap now so that we'll get a
1972 /// CopyTo/FromReg.
1973 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1974   // No need to export constants.
1975   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1976 
1977   // Already exported?
1978   if (FuncInfo.isExportedInst(V)) return;
1979 
1980   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1981   CopyValueToVirtualRegister(V, Reg);
1982 }
1983 
1984 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1985                                                      const BasicBlock *FromBB) {
1986   // The operands of the setcc have to be in this block.  We don't know
1987   // how to export them from some other block.
1988   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1989     // Can export from current BB.
1990     if (VI->getParent() == FromBB)
1991       return true;
1992 
1993     // Is already exported, noop.
1994     return FuncInfo.isExportedInst(V);
1995   }
1996 
1997   // If this is an argument, we can export it if the BB is the entry block or
1998   // if it is already exported.
1999   if (isa<Argument>(V)) {
2000     if (FromBB == &FromBB->getParent()->getEntryBlock())
2001       return true;
2002 
2003     // Otherwise, can only export this if it is already exported.
2004     return FuncInfo.isExportedInst(V);
2005   }
2006 
2007   // Otherwise, constants can always be exported.
2008   return true;
2009 }
2010 
2011 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2012 BranchProbability
2013 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2014                                         const MachineBasicBlock *Dst) const {
2015   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2016   const BasicBlock *SrcBB = Src->getBasicBlock();
2017   const BasicBlock *DstBB = Dst->getBasicBlock();
2018   if (!BPI) {
2019     // If BPI is not available, set the default probability as 1 / N, where N is
2020     // the number of successors.
2021     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2022     return BranchProbability(1, SuccSize);
2023   }
2024   return BPI->getEdgeProbability(SrcBB, DstBB);
2025 }
2026 
2027 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2028                                                MachineBasicBlock *Dst,
2029                                                BranchProbability Prob) {
2030   if (!FuncInfo.BPI)
2031     Src->addSuccessorWithoutProb(Dst);
2032   else {
2033     if (Prob.isUnknown())
2034       Prob = getEdgeProbability(Src, Dst);
2035     Src->addSuccessor(Dst, Prob);
2036   }
2037 }
2038 
2039 static bool InBlock(const Value *V, const BasicBlock *BB) {
2040   if (const Instruction *I = dyn_cast<Instruction>(V))
2041     return I->getParent() == BB;
2042   return true;
2043 }
2044 
2045 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2046 /// This function emits a branch and is used at the leaves of an OR or an
2047 /// AND operator tree.
2048 void
2049 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2050                                                   MachineBasicBlock *TBB,
2051                                                   MachineBasicBlock *FBB,
2052                                                   MachineBasicBlock *CurBB,
2053                                                   MachineBasicBlock *SwitchBB,
2054                                                   BranchProbability TProb,
2055                                                   BranchProbability FProb,
2056                                                   bool InvertCond) {
2057   const BasicBlock *BB = CurBB->getBasicBlock();
2058 
2059   // If the leaf of the tree is a comparison, merge the condition into
2060   // the caseblock.
2061   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2062     // The operands of the cmp have to be in this block.  We don't know
2063     // how to export them from some other block.  If this is the first block
2064     // of the sequence, no exporting is needed.
2065     if (CurBB == SwitchBB ||
2066         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2067          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2068       ISD::CondCode Condition;
2069       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2070         ICmpInst::Predicate Pred =
2071             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2072         Condition = getICmpCondCode(Pred);
2073       } else {
2074         const FCmpInst *FC = cast<FCmpInst>(Cond);
2075         FCmpInst::Predicate Pred =
2076             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2077         Condition = getFCmpCondCode(Pred);
2078         if (TM.Options.NoNaNsFPMath)
2079           Condition = getFCmpCodeWithoutNaN(Condition);
2080       }
2081 
2082       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2083                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2084       SL->SwitchCases.push_back(CB);
2085       return;
2086     }
2087   }
2088 
2089   // Create a CaseBlock record representing this branch.
2090   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2091   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2092                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2093   SL->SwitchCases.push_back(CB);
2094 }
2095 
2096 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2097                                                MachineBasicBlock *TBB,
2098                                                MachineBasicBlock *FBB,
2099                                                MachineBasicBlock *CurBB,
2100                                                MachineBasicBlock *SwitchBB,
2101                                                Instruction::BinaryOps Opc,
2102                                                BranchProbability TProb,
2103                                                BranchProbability FProb,
2104                                                bool InvertCond) {
2105   // Skip over not part of the tree and remember to invert op and operands at
2106   // next level.
2107   Value *NotCond;
2108   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2109       InBlock(NotCond, CurBB->getBasicBlock())) {
2110     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2111                          !InvertCond);
2112     return;
2113   }
2114 
2115   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2116   // Compute the effective opcode for Cond, taking into account whether it needs
2117   // to be inverted, e.g.
2118   //   and (not (or A, B)), C
2119   // gets lowered as
2120   //   and (and (not A, not B), C)
2121   unsigned BOpc = 0;
2122   if (BOp) {
2123     BOpc = BOp->getOpcode();
2124     if (InvertCond) {
2125       if (BOpc == Instruction::And)
2126         BOpc = Instruction::Or;
2127       else if (BOpc == Instruction::Or)
2128         BOpc = Instruction::And;
2129     }
2130   }
2131 
2132   // If this node is not part of the or/and tree, emit it as a branch.
2133   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2134       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2135       BOp->getParent() != CurBB->getBasicBlock() ||
2136       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2137       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2138     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2139                                  TProb, FProb, InvertCond);
2140     return;
2141   }
2142 
2143   //  Create TmpBB after CurBB.
2144   MachineFunction::iterator BBI(CurBB);
2145   MachineFunction &MF = DAG.getMachineFunction();
2146   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2147   CurBB->getParent()->insert(++BBI, TmpBB);
2148 
2149   if (Opc == Instruction::Or) {
2150     // Codegen X | Y as:
2151     // BB1:
2152     //   jmp_if_X TBB
2153     //   jmp TmpBB
2154     // TmpBB:
2155     //   jmp_if_Y TBB
2156     //   jmp FBB
2157     //
2158 
2159     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2160     // The requirement is that
2161     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2162     //     = TrueProb for original BB.
2163     // Assuming the original probabilities are A and B, one choice is to set
2164     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2165     // A/(1+B) and 2B/(1+B). This choice assumes that
2166     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2167     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2168     // TmpBB, but the math is more complicated.
2169 
2170     auto NewTrueProb = TProb / 2;
2171     auto NewFalseProb = TProb / 2 + FProb;
2172     // Emit the LHS condition.
2173     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2174                          NewTrueProb, NewFalseProb, InvertCond);
2175 
2176     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2177     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2178     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2179     // Emit the RHS condition into TmpBB.
2180     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2181                          Probs[0], Probs[1], InvertCond);
2182   } else {
2183     assert(Opc == Instruction::And && "Unknown merge op!");
2184     // Codegen X & Y as:
2185     // BB1:
2186     //   jmp_if_X TmpBB
2187     //   jmp FBB
2188     // TmpBB:
2189     //   jmp_if_Y TBB
2190     //   jmp FBB
2191     //
2192     //  This requires creation of TmpBB after CurBB.
2193 
2194     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2195     // The requirement is that
2196     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2197     //     = FalseProb for original BB.
2198     // Assuming the original probabilities are A and B, one choice is to set
2199     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2200     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2201     // TrueProb for BB1 * FalseProb for TmpBB.
2202 
2203     auto NewTrueProb = TProb + FProb / 2;
2204     auto NewFalseProb = FProb / 2;
2205     // Emit the LHS condition.
2206     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2207                          NewTrueProb, NewFalseProb, InvertCond);
2208 
2209     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2210     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2211     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2212     // Emit the RHS condition into TmpBB.
2213     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2214                          Probs[0], Probs[1], InvertCond);
2215   }
2216 }
2217 
2218 /// If the set of cases should be emitted as a series of branches, return true.
2219 /// If we should emit this as a bunch of and/or'd together conditions, return
2220 /// false.
2221 bool
2222 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2223   if (Cases.size() != 2) return true;
2224 
2225   // If this is two comparisons of the same values or'd or and'd together, they
2226   // will get folded into a single comparison, so don't emit two blocks.
2227   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2228        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2229       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2230        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2231     return false;
2232   }
2233 
2234   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2235   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2236   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2237       Cases[0].CC == Cases[1].CC &&
2238       isa<Constant>(Cases[0].CmpRHS) &&
2239       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2240     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2241       return false;
2242     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2243       return false;
2244   }
2245 
2246   return true;
2247 }
2248 
2249 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2250   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2251 
2252   // Update machine-CFG edges.
2253   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2254 
2255   if (I.isUnconditional()) {
2256     // Update machine-CFG edges.
2257     BrMBB->addSuccessor(Succ0MBB);
2258 
2259     // If this is not a fall-through branch or optimizations are switched off,
2260     // emit the branch.
2261     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2262       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2263                               MVT::Other, getControlRoot(),
2264                               DAG.getBasicBlock(Succ0MBB)));
2265 
2266     return;
2267   }
2268 
2269   // If this condition is one of the special cases we handle, do special stuff
2270   // now.
2271   const Value *CondVal = I.getCondition();
2272   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2273 
2274   // If this is a series of conditions that are or'd or and'd together, emit
2275   // this as a sequence of branches instead of setcc's with and/or operations.
2276   // As long as jumps are not expensive, this should improve performance.
2277   // For example, instead of something like:
2278   //     cmp A, B
2279   //     C = seteq
2280   //     cmp D, E
2281   //     F = setle
2282   //     or C, F
2283   //     jnz foo
2284   // Emit:
2285   //     cmp A, B
2286   //     je foo
2287   //     cmp D, E
2288   //     jle foo
2289   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2290     Instruction::BinaryOps Opcode = BOp->getOpcode();
2291     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2292         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2293         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2294       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2295                            Opcode,
2296                            getEdgeProbability(BrMBB, Succ0MBB),
2297                            getEdgeProbability(BrMBB, Succ1MBB),
2298                            /*InvertCond=*/false);
2299       // If the compares in later blocks need to use values not currently
2300       // exported from this block, export them now.  This block should always
2301       // be the first entry.
2302       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2303 
2304       // Allow some cases to be rejected.
2305       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2306         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2307           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2308           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2309         }
2310 
2311         // Emit the branch for this block.
2312         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2313         SL->SwitchCases.erase(SL->SwitchCases.begin());
2314         return;
2315       }
2316 
2317       // Okay, we decided not to do this, remove any inserted MBB's and clear
2318       // SwitchCases.
2319       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2320         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2321 
2322       SL->SwitchCases.clear();
2323     }
2324   }
2325 
2326   // Create a CaseBlock record representing this branch.
2327   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2328                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2329 
2330   // Use visitSwitchCase to actually insert the fast branch sequence for this
2331   // cond branch.
2332   visitSwitchCase(CB, BrMBB);
2333 }
2334 
2335 /// visitSwitchCase - Emits the necessary code to represent a single node in
2336 /// the binary search tree resulting from lowering a switch instruction.
2337 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2338                                           MachineBasicBlock *SwitchBB) {
2339   SDValue Cond;
2340   SDValue CondLHS = getValue(CB.CmpLHS);
2341   SDLoc dl = CB.DL;
2342 
2343   if (CB.CC == ISD::SETTRUE) {
2344     // Branch or fall through to TrueBB.
2345     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2346     SwitchBB->normalizeSuccProbs();
2347     if (CB.TrueBB != NextBlock(SwitchBB)) {
2348       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2349                               DAG.getBasicBlock(CB.TrueBB)));
2350     }
2351     return;
2352   }
2353 
2354   auto &TLI = DAG.getTargetLoweringInfo();
2355   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2356 
2357   // Build the setcc now.
2358   if (!CB.CmpMHS) {
2359     // Fold "(X == true)" to X and "(X == false)" to !X to
2360     // handle common cases produced by branch lowering.
2361     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2362         CB.CC == ISD::SETEQ)
2363       Cond = CondLHS;
2364     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2365              CB.CC == ISD::SETEQ) {
2366       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2367       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2368     } else {
2369       SDValue CondRHS = getValue(CB.CmpRHS);
2370 
2371       // If a pointer's DAG type is larger than its memory type then the DAG
2372       // values are zero-extended. This breaks signed comparisons so truncate
2373       // back to the underlying type before doing the compare.
2374       if (CondLHS.getValueType() != MemVT) {
2375         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2376         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2377       }
2378       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2379     }
2380   } else {
2381     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2382 
2383     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2384     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2385 
2386     SDValue CmpOp = getValue(CB.CmpMHS);
2387     EVT VT = CmpOp.getValueType();
2388 
2389     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2390       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2391                           ISD::SETLE);
2392     } else {
2393       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2394                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2395       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2396                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2397     }
2398   }
2399 
2400   // Update successor info
2401   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2402   // TrueBB and FalseBB are always different unless the incoming IR is
2403   // degenerate. This only happens when running llc on weird IR.
2404   if (CB.TrueBB != CB.FalseBB)
2405     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2406   SwitchBB->normalizeSuccProbs();
2407 
2408   // If the lhs block is the next block, invert the condition so that we can
2409   // fall through to the lhs instead of the rhs block.
2410   if (CB.TrueBB == NextBlock(SwitchBB)) {
2411     std::swap(CB.TrueBB, CB.FalseBB);
2412     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2413     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2414   }
2415 
2416   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2417                                MVT::Other, getControlRoot(), Cond,
2418                                DAG.getBasicBlock(CB.TrueBB));
2419 
2420   // Insert the false branch. Do this even if it's a fall through branch,
2421   // this makes it easier to do DAG optimizations which require inverting
2422   // the branch condition.
2423   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2424                        DAG.getBasicBlock(CB.FalseBB));
2425 
2426   DAG.setRoot(BrCond);
2427 }
2428 
2429 /// visitJumpTable - Emit JumpTable node in the current MBB
2430 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2431   // Emit the code for the jump table
2432   assert(JT.Reg != -1U && "Should lower JT Header first!");
2433   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2434   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2435                                      JT.Reg, PTy);
2436   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2437   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2438                                     MVT::Other, Index.getValue(1),
2439                                     Table, Index);
2440   DAG.setRoot(BrJumpTable);
2441 }
2442 
2443 /// visitJumpTableHeader - This function emits necessary code to produce index
2444 /// in the JumpTable from switch case.
2445 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2446                                                JumpTableHeader &JTH,
2447                                                MachineBasicBlock *SwitchBB) {
2448   SDLoc dl = getCurSDLoc();
2449 
2450   // Subtract the lowest switch case value from the value being switched on.
2451   SDValue SwitchOp = getValue(JTH.SValue);
2452   EVT VT = SwitchOp.getValueType();
2453   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2454                             DAG.getConstant(JTH.First, dl, VT));
2455 
2456   // The SDNode we just created, which holds the value being switched on minus
2457   // the smallest case value, needs to be copied to a virtual register so it
2458   // can be used as an index into the jump table in a subsequent basic block.
2459   // This value may be smaller or larger than the target's pointer type, and
2460   // therefore require extension or truncating.
2461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2462   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2463 
2464   unsigned JumpTableReg =
2465       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2466   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2467                                     JumpTableReg, SwitchOp);
2468   JT.Reg = JumpTableReg;
2469 
2470   if (!JTH.OmitRangeCheck) {
2471     // Emit the range check for the jump table, and branch to the default block
2472     // for the switch statement if the value being switched on exceeds the
2473     // largest case in the switch.
2474     SDValue CMP = DAG.getSetCC(
2475         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2476                                    Sub.getValueType()),
2477         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2478 
2479     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2480                                  MVT::Other, CopyTo, CMP,
2481                                  DAG.getBasicBlock(JT.Default));
2482 
2483     // Avoid emitting unnecessary branches to the next block.
2484     if (JT.MBB != NextBlock(SwitchBB))
2485       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2486                            DAG.getBasicBlock(JT.MBB));
2487 
2488     DAG.setRoot(BrCond);
2489   } else {
2490     // Avoid emitting unnecessary branches to the next block.
2491     if (JT.MBB != NextBlock(SwitchBB))
2492       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2493                               DAG.getBasicBlock(JT.MBB)));
2494     else
2495       DAG.setRoot(CopyTo);
2496   }
2497 }
2498 
2499 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2500 /// variable if there exists one.
2501 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2502                                  SDValue &Chain) {
2503   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2504   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2505   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2506   MachineFunction &MF = DAG.getMachineFunction();
2507   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2508   MachineSDNode *Node =
2509       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2510   if (Global) {
2511     MachinePointerInfo MPInfo(Global);
2512     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2513                  MachineMemOperand::MODereferenceable;
2514     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2515         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2516     DAG.setNodeMemRefs(Node, {MemRef});
2517   }
2518   if (PtrTy != PtrMemTy)
2519     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2520   return SDValue(Node, 0);
2521 }
2522 
2523 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2524 /// tail spliced into a stack protector check success bb.
2525 ///
2526 /// For a high level explanation of how this fits into the stack protector
2527 /// generation see the comment on the declaration of class
2528 /// StackProtectorDescriptor.
2529 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2530                                                   MachineBasicBlock *ParentBB) {
2531 
2532   // First create the loads to the guard/stack slot for the comparison.
2533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2534   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2535   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2536 
2537   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2538   int FI = MFI.getStackProtectorIndex();
2539 
2540   SDValue Guard;
2541   SDLoc dl = getCurSDLoc();
2542   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2543   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2544   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2545 
2546   // Generate code to load the content of the guard slot.
2547   SDValue GuardVal = DAG.getLoad(
2548       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2549       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2550       MachineMemOperand::MOVolatile);
2551 
2552   if (TLI.useStackGuardXorFP())
2553     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2554 
2555   // Retrieve guard check function, nullptr if instrumentation is inlined.
2556   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2557     // The target provides a guard check function to validate the guard value.
2558     // Generate a call to that function with the content of the guard slot as
2559     // argument.
2560     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2561     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2562 
2563     TargetLowering::ArgListTy Args;
2564     TargetLowering::ArgListEntry Entry;
2565     Entry.Node = GuardVal;
2566     Entry.Ty = FnTy->getParamType(0);
2567     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2568       Entry.IsInReg = true;
2569     Args.push_back(Entry);
2570 
2571     TargetLowering::CallLoweringInfo CLI(DAG);
2572     CLI.setDebugLoc(getCurSDLoc())
2573         .setChain(DAG.getEntryNode())
2574         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2575                    getValue(GuardCheckFn), std::move(Args));
2576 
2577     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2578     DAG.setRoot(Result.second);
2579     return;
2580   }
2581 
2582   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2583   // Otherwise, emit a volatile load to retrieve the stack guard value.
2584   SDValue Chain = DAG.getEntryNode();
2585   if (TLI.useLoadStackGuardNode()) {
2586     Guard = getLoadStackGuard(DAG, dl, Chain);
2587   } else {
2588     const Value *IRGuard = TLI.getSDagStackGuard(M);
2589     SDValue GuardPtr = getValue(IRGuard);
2590 
2591     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2592                         MachinePointerInfo(IRGuard, 0), Align,
2593                         MachineMemOperand::MOVolatile);
2594   }
2595 
2596   // Perform the comparison via a getsetcc.
2597   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2598                                                         *DAG.getContext(),
2599                                                         Guard.getValueType()),
2600                              Guard, GuardVal, ISD::SETNE);
2601 
2602   // If the guard/stackslot do not equal, branch to failure MBB.
2603   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2604                                MVT::Other, GuardVal.getOperand(0),
2605                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2606   // Otherwise branch to success MBB.
2607   SDValue Br = DAG.getNode(ISD::BR, dl,
2608                            MVT::Other, BrCond,
2609                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2610 
2611   DAG.setRoot(Br);
2612 }
2613 
2614 /// Codegen the failure basic block for a stack protector check.
2615 ///
2616 /// A failure stack protector machine basic block consists simply of a call to
2617 /// __stack_chk_fail().
2618 ///
2619 /// For a high level explanation of how this fits into the stack protector
2620 /// generation see the comment on the declaration of class
2621 /// StackProtectorDescriptor.
2622 void
2623 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2625   TargetLowering::MakeLibCallOptions CallOptions;
2626   CallOptions.setDiscardResult(true);
2627   SDValue Chain =
2628       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2629                       None, CallOptions, getCurSDLoc()).second;
2630   // On PS4, the "return address" must still be within the calling function,
2631   // even if it's at the very end, so emit an explicit TRAP here.
2632   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2633   if (TM.getTargetTriple().isPS4CPU())
2634     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2635 
2636   DAG.setRoot(Chain);
2637 }
2638 
2639 /// visitBitTestHeader - This function emits necessary code to produce value
2640 /// suitable for "bit tests"
2641 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2642                                              MachineBasicBlock *SwitchBB) {
2643   SDLoc dl = getCurSDLoc();
2644 
2645   // Subtract the minimum value.
2646   SDValue SwitchOp = getValue(B.SValue);
2647   EVT VT = SwitchOp.getValueType();
2648   SDValue RangeSub =
2649       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2650 
2651   // Determine the type of the test operands.
2652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2653   bool UsePtrType = false;
2654   if (!TLI.isTypeLegal(VT)) {
2655     UsePtrType = true;
2656   } else {
2657     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2658       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2659         // Switch table case range are encoded into series of masks.
2660         // Just use pointer type, it's guaranteed to fit.
2661         UsePtrType = true;
2662         break;
2663       }
2664   }
2665   SDValue Sub = RangeSub;
2666   if (UsePtrType) {
2667     VT = TLI.getPointerTy(DAG.getDataLayout());
2668     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2669   }
2670 
2671   B.RegVT = VT.getSimpleVT();
2672   B.Reg = FuncInfo.CreateReg(B.RegVT);
2673   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2674 
2675   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2676 
2677   if (!B.OmitRangeCheck)
2678     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2679   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2680   SwitchBB->normalizeSuccProbs();
2681 
2682   SDValue Root = CopyTo;
2683   if (!B.OmitRangeCheck) {
2684     // Conditional branch to the default block.
2685     SDValue RangeCmp = DAG.getSetCC(dl,
2686         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2687                                RangeSub.getValueType()),
2688         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2689         ISD::SETUGT);
2690 
2691     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2692                        DAG.getBasicBlock(B.Default));
2693   }
2694 
2695   // Avoid emitting unnecessary branches to the next block.
2696   if (MBB != NextBlock(SwitchBB))
2697     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2698 
2699   DAG.setRoot(Root);
2700 }
2701 
2702 /// visitBitTestCase - this function produces one "bit test"
2703 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2704                                            MachineBasicBlock* NextMBB,
2705                                            BranchProbability BranchProbToNext,
2706                                            unsigned Reg,
2707                                            BitTestCase &B,
2708                                            MachineBasicBlock *SwitchBB) {
2709   SDLoc dl = getCurSDLoc();
2710   MVT VT = BB.RegVT;
2711   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2712   SDValue Cmp;
2713   unsigned PopCount = countPopulation(B.Mask);
2714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2715   if (PopCount == 1) {
2716     // Testing for a single bit; just compare the shift count with what it
2717     // would need to be to shift a 1 bit in that position.
2718     Cmp = DAG.getSetCC(
2719         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2720         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2721         ISD::SETEQ);
2722   } else if (PopCount == BB.Range) {
2723     // There is only one zero bit in the range, test for it directly.
2724     Cmp = DAG.getSetCC(
2725         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2726         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2727         ISD::SETNE);
2728   } else {
2729     // Make desired shift
2730     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2731                                     DAG.getConstant(1, dl, VT), ShiftOp);
2732 
2733     // Emit bit tests and jumps
2734     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2735                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2736     Cmp = DAG.getSetCC(
2737         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2738         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2739   }
2740 
2741   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2742   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2743   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2744   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2745   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2746   // one as they are relative probabilities (and thus work more like weights),
2747   // and hence we need to normalize them to let the sum of them become one.
2748   SwitchBB->normalizeSuccProbs();
2749 
2750   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2751                               MVT::Other, getControlRoot(),
2752                               Cmp, DAG.getBasicBlock(B.TargetBB));
2753 
2754   // Avoid emitting unnecessary branches to the next block.
2755   if (NextMBB != NextBlock(SwitchBB))
2756     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2757                         DAG.getBasicBlock(NextMBB));
2758 
2759   DAG.setRoot(BrAnd);
2760 }
2761 
2762 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2763   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2764 
2765   // Retrieve successors. Look through artificial IR level blocks like
2766   // catchswitch for successors.
2767   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2768   const BasicBlock *EHPadBB = I.getSuccessor(1);
2769 
2770   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2771   // have to do anything here to lower funclet bundles.
2772   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2773                                         LLVMContext::OB_funclet,
2774                                         LLVMContext::OB_cfguardtarget}) &&
2775          "Cannot lower invokes with arbitrary operand bundles yet!");
2776 
2777   const Value *Callee(I.getCalledValue());
2778   const Function *Fn = dyn_cast<Function>(Callee);
2779   if (isa<InlineAsm>(Callee))
2780     visitInlineAsm(&I);
2781   else if (Fn && Fn->isIntrinsic()) {
2782     switch (Fn->getIntrinsicID()) {
2783     default:
2784       llvm_unreachable("Cannot invoke this intrinsic");
2785     case Intrinsic::donothing:
2786       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2787       break;
2788     case Intrinsic::experimental_patchpoint_void:
2789     case Intrinsic::experimental_patchpoint_i64:
2790       visitPatchpoint(&I, EHPadBB);
2791       break;
2792     case Intrinsic::experimental_gc_statepoint:
2793       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2794       break;
2795     case Intrinsic::wasm_rethrow_in_catch: {
2796       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2797       // special because it can be invoked, so we manually lower it to a DAG
2798       // node here.
2799       SmallVector<SDValue, 8> Ops;
2800       Ops.push_back(getRoot()); // inchain
2801       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2802       Ops.push_back(
2803           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2804                                 TLI.getPointerTy(DAG.getDataLayout())));
2805       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2806       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2807       break;
2808     }
2809     }
2810   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2811     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2812     // Eventually we will support lowering the @llvm.experimental.deoptimize
2813     // intrinsic, and right now there are no plans to support other intrinsics
2814     // with deopt state.
2815     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2816   } else {
2817     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2818   }
2819 
2820   // If the value of the invoke is used outside of its defining block, make it
2821   // available as a virtual register.
2822   // We already took care of the exported value for the statepoint instruction
2823   // during call to the LowerStatepoint.
2824   if (!isStatepoint(I)) {
2825     CopyToExportRegsIfNeeded(&I);
2826   }
2827 
2828   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2829   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2830   BranchProbability EHPadBBProb =
2831       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2832           : BranchProbability::getZero();
2833   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2834 
2835   // Update successor info.
2836   addSuccessorWithProb(InvokeMBB, Return);
2837   for (auto &UnwindDest : UnwindDests) {
2838     UnwindDest.first->setIsEHPad();
2839     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2840   }
2841   InvokeMBB->normalizeSuccProbs();
2842 
2843   // Drop into normal successor.
2844   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2845                           DAG.getBasicBlock(Return)));
2846 }
2847 
2848 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2849   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2850 
2851   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2852   // have to do anything here to lower funclet bundles.
2853   assert(!I.hasOperandBundlesOtherThan(
2854              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2855          "Cannot lower callbrs with arbitrary operand bundles yet!");
2856 
2857   assert(isa<InlineAsm>(I.getCalledValue()) &&
2858          "Only know how to handle inlineasm callbr");
2859   visitInlineAsm(&I);
2860   CopyToExportRegsIfNeeded(&I);
2861 
2862   // Retrieve successors.
2863   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2864   Return->setInlineAsmBrDefaultTarget();
2865 
2866   // Update successor info.
2867   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2868   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2869     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2870     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2871     CallBrMBB->addInlineAsmBrIndirectTarget(Target);
2872   }
2873   CallBrMBB->normalizeSuccProbs();
2874 
2875   // Drop into default successor.
2876   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2877                           MVT::Other, getControlRoot(),
2878                           DAG.getBasicBlock(Return)));
2879 }
2880 
2881 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2882   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2883 }
2884 
2885 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2886   assert(FuncInfo.MBB->isEHPad() &&
2887          "Call to landingpad not in landing pad!");
2888 
2889   // If there aren't registers to copy the values into (e.g., during SjLj
2890   // exceptions), then don't bother to create these DAG nodes.
2891   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2892   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2893   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2894       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2895     return;
2896 
2897   // If landingpad's return type is token type, we don't create DAG nodes
2898   // for its exception pointer and selector value. The extraction of exception
2899   // pointer or selector value from token type landingpads is not currently
2900   // supported.
2901   if (LP.getType()->isTokenTy())
2902     return;
2903 
2904   SmallVector<EVT, 2> ValueVTs;
2905   SDLoc dl = getCurSDLoc();
2906   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2907   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2908 
2909   // Get the two live-in registers as SDValues. The physregs have already been
2910   // copied into virtual registers.
2911   SDValue Ops[2];
2912   if (FuncInfo.ExceptionPointerVirtReg) {
2913     Ops[0] = DAG.getZExtOrTrunc(
2914         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2915                            FuncInfo.ExceptionPointerVirtReg,
2916                            TLI.getPointerTy(DAG.getDataLayout())),
2917         dl, ValueVTs[0]);
2918   } else {
2919     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2920   }
2921   Ops[1] = DAG.getZExtOrTrunc(
2922       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2923                          FuncInfo.ExceptionSelectorVirtReg,
2924                          TLI.getPointerTy(DAG.getDataLayout())),
2925       dl, ValueVTs[1]);
2926 
2927   // Merge into one.
2928   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2929                             DAG.getVTList(ValueVTs), Ops);
2930   setValue(&LP, Res);
2931 }
2932 
2933 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2934                                            MachineBasicBlock *Last) {
2935   // Update JTCases.
2936   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2937     if (SL->JTCases[i].first.HeaderBB == First)
2938       SL->JTCases[i].first.HeaderBB = Last;
2939 
2940   // Update BitTestCases.
2941   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2942     if (SL->BitTestCases[i].Parent == First)
2943       SL->BitTestCases[i].Parent = Last;
2944 }
2945 
2946 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2947   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2948 
2949   // Update machine-CFG edges with unique successors.
2950   SmallSet<BasicBlock*, 32> Done;
2951   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2952     BasicBlock *BB = I.getSuccessor(i);
2953     bool Inserted = Done.insert(BB).second;
2954     if (!Inserted)
2955         continue;
2956 
2957     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2958     addSuccessorWithProb(IndirectBrMBB, Succ);
2959   }
2960   IndirectBrMBB->normalizeSuccProbs();
2961 
2962   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2963                           MVT::Other, getControlRoot(),
2964                           getValue(I.getAddress())));
2965 }
2966 
2967 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2968   if (!DAG.getTarget().Options.TrapUnreachable)
2969     return;
2970 
2971   // We may be able to ignore unreachable behind a noreturn call.
2972   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2973     const BasicBlock &BB = *I.getParent();
2974     if (&I != &BB.front()) {
2975       BasicBlock::const_iterator PredI =
2976         std::prev(BasicBlock::const_iterator(&I));
2977       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2978         if (Call->doesNotReturn())
2979           return;
2980       }
2981     }
2982   }
2983 
2984   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2985 }
2986 
2987 void SelectionDAGBuilder::visitFSub(const User &I) {
2988   // -0.0 - X --> fneg
2989   Type *Ty = I.getType();
2990   if (isa<Constant>(I.getOperand(0)) &&
2991       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2992     SDValue Op2 = getValue(I.getOperand(1));
2993     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2994                              Op2.getValueType(), Op2));
2995     return;
2996   }
2997 
2998   visitBinary(I, ISD::FSUB);
2999 }
3000 
3001 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3002   SDNodeFlags Flags;
3003 
3004   SDValue Op = getValue(I.getOperand(0));
3005   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3006                                     Op, Flags);
3007   setValue(&I, UnNodeValue);
3008 }
3009 
3010 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3011   SDNodeFlags Flags;
3012   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3013     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3014     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3015   }
3016   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3017     Flags.setExact(ExactOp->isExact());
3018   }
3019 
3020   SDValue Op1 = getValue(I.getOperand(0));
3021   SDValue Op2 = getValue(I.getOperand(1));
3022   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3023                                      Op1, Op2, Flags);
3024   setValue(&I, BinNodeValue);
3025 }
3026 
3027 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3028   SDValue Op1 = getValue(I.getOperand(0));
3029   SDValue Op2 = getValue(I.getOperand(1));
3030 
3031   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3032       Op1.getValueType(), DAG.getDataLayout());
3033 
3034   // Coerce the shift amount to the right type if we can.
3035   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3036     unsigned ShiftSize = ShiftTy.getSizeInBits();
3037     unsigned Op2Size = Op2.getValueSizeInBits();
3038     SDLoc DL = getCurSDLoc();
3039 
3040     // If the operand is smaller than the shift count type, promote it.
3041     if (ShiftSize > Op2Size)
3042       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3043 
3044     // If the operand is larger than the shift count type but the shift
3045     // count type has enough bits to represent any shift value, truncate
3046     // it now. This is a common case and it exposes the truncate to
3047     // optimization early.
3048     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3049       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3050     // Otherwise we'll need to temporarily settle for some other convenient
3051     // type.  Type legalization will make adjustments once the shiftee is split.
3052     else
3053       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3054   }
3055 
3056   bool nuw = false;
3057   bool nsw = false;
3058   bool exact = false;
3059 
3060   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3061 
3062     if (const OverflowingBinaryOperator *OFBinOp =
3063             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3064       nuw = OFBinOp->hasNoUnsignedWrap();
3065       nsw = OFBinOp->hasNoSignedWrap();
3066     }
3067     if (const PossiblyExactOperator *ExactOp =
3068             dyn_cast<const PossiblyExactOperator>(&I))
3069       exact = ExactOp->isExact();
3070   }
3071   SDNodeFlags Flags;
3072   Flags.setExact(exact);
3073   Flags.setNoSignedWrap(nsw);
3074   Flags.setNoUnsignedWrap(nuw);
3075   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3076                             Flags);
3077   setValue(&I, Res);
3078 }
3079 
3080 void SelectionDAGBuilder::visitSDiv(const User &I) {
3081   SDValue Op1 = getValue(I.getOperand(0));
3082   SDValue Op2 = getValue(I.getOperand(1));
3083 
3084   SDNodeFlags Flags;
3085   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3086                  cast<PossiblyExactOperator>(&I)->isExact());
3087   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3088                            Op2, Flags));
3089 }
3090 
3091 void SelectionDAGBuilder::visitICmp(const User &I) {
3092   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3093   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3094     predicate = IC->getPredicate();
3095   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3096     predicate = ICmpInst::Predicate(IC->getPredicate());
3097   SDValue Op1 = getValue(I.getOperand(0));
3098   SDValue Op2 = getValue(I.getOperand(1));
3099   ISD::CondCode Opcode = getICmpCondCode(predicate);
3100 
3101   auto &TLI = DAG.getTargetLoweringInfo();
3102   EVT MemVT =
3103       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3104 
3105   // If a pointer's DAG type is larger than its memory type then the DAG values
3106   // are zero-extended. This breaks signed comparisons so truncate back to the
3107   // underlying type before doing the compare.
3108   if (Op1.getValueType() != MemVT) {
3109     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3110     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3111   }
3112 
3113   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3114                                                         I.getType());
3115   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3116 }
3117 
3118 void SelectionDAGBuilder::visitFCmp(const User &I) {
3119   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3120   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3121     predicate = FC->getPredicate();
3122   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3123     predicate = FCmpInst::Predicate(FC->getPredicate());
3124   SDValue Op1 = getValue(I.getOperand(0));
3125   SDValue Op2 = getValue(I.getOperand(1));
3126 
3127   ISD::CondCode Condition = getFCmpCondCode(predicate);
3128   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3129   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3130     Condition = getFCmpCodeWithoutNaN(Condition);
3131 
3132   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3133                                                         I.getType());
3134   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3135 }
3136 
3137 // Check if the condition of the select has one use or two users that are both
3138 // selects with the same condition.
3139 static bool hasOnlySelectUsers(const Value *Cond) {
3140   return llvm::all_of(Cond->users(), [](const Value *V) {
3141     return isa<SelectInst>(V);
3142   });
3143 }
3144 
3145 void SelectionDAGBuilder::visitSelect(const User &I) {
3146   SmallVector<EVT, 4> ValueVTs;
3147   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3148                   ValueVTs);
3149   unsigned NumValues = ValueVTs.size();
3150   if (NumValues == 0) return;
3151 
3152   SmallVector<SDValue, 4> Values(NumValues);
3153   SDValue Cond     = getValue(I.getOperand(0));
3154   SDValue LHSVal   = getValue(I.getOperand(1));
3155   SDValue RHSVal   = getValue(I.getOperand(2));
3156   SmallVector<SDValue, 1> BaseOps(1, Cond);
3157   ISD::NodeType OpCode =
3158       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3159 
3160   bool IsUnaryAbs = false;
3161 
3162   // Min/max matching is only viable if all output VTs are the same.
3163   if (is_splat(ValueVTs)) {
3164     EVT VT = ValueVTs[0];
3165     LLVMContext &Ctx = *DAG.getContext();
3166     auto &TLI = DAG.getTargetLoweringInfo();
3167 
3168     // We care about the legality of the operation after it has been type
3169     // legalized.
3170     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3171       VT = TLI.getTypeToTransformTo(Ctx, VT);
3172 
3173     // If the vselect is legal, assume we want to leave this as a vector setcc +
3174     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3175     // min/max is legal on the scalar type.
3176     bool UseScalarMinMax = VT.isVector() &&
3177       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3178 
3179     Value *LHS, *RHS;
3180     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3181     ISD::NodeType Opc = ISD::DELETED_NODE;
3182     switch (SPR.Flavor) {
3183     case SPF_UMAX:    Opc = ISD::UMAX; break;
3184     case SPF_UMIN:    Opc = ISD::UMIN; break;
3185     case SPF_SMAX:    Opc = ISD::SMAX; break;
3186     case SPF_SMIN:    Opc = ISD::SMIN; break;
3187     case SPF_FMINNUM:
3188       switch (SPR.NaNBehavior) {
3189       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3190       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3191       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3192       case SPNB_RETURNS_ANY: {
3193         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3194           Opc = ISD::FMINNUM;
3195         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3196           Opc = ISD::FMINIMUM;
3197         else if (UseScalarMinMax)
3198           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3199             ISD::FMINNUM : ISD::FMINIMUM;
3200         break;
3201       }
3202       }
3203       break;
3204     case SPF_FMAXNUM:
3205       switch (SPR.NaNBehavior) {
3206       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3207       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3208       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3209       case SPNB_RETURNS_ANY:
3210 
3211         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3212           Opc = ISD::FMAXNUM;
3213         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3214           Opc = ISD::FMAXIMUM;
3215         else if (UseScalarMinMax)
3216           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3217             ISD::FMAXNUM : ISD::FMAXIMUM;
3218         break;
3219       }
3220       break;
3221     case SPF_ABS:
3222       IsUnaryAbs = true;
3223       Opc = ISD::ABS;
3224       break;
3225     case SPF_NABS:
3226       // TODO: we need to produce sub(0, abs(X)).
3227     default: break;
3228     }
3229 
3230     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3231         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3232          (UseScalarMinMax &&
3233           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3234         // If the underlying comparison instruction is used by any other
3235         // instruction, the consumed instructions won't be destroyed, so it is
3236         // not profitable to convert to a min/max.
3237         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3238       OpCode = Opc;
3239       LHSVal = getValue(LHS);
3240       RHSVal = getValue(RHS);
3241       BaseOps.clear();
3242     }
3243 
3244     if (IsUnaryAbs) {
3245       OpCode = Opc;
3246       LHSVal = getValue(LHS);
3247       BaseOps.clear();
3248     }
3249   }
3250 
3251   if (IsUnaryAbs) {
3252     for (unsigned i = 0; i != NumValues; ++i) {
3253       Values[i] =
3254           DAG.getNode(OpCode, getCurSDLoc(),
3255                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3256                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3257     }
3258   } else {
3259     for (unsigned i = 0; i != NumValues; ++i) {
3260       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3261       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3262       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3263       Values[i] = DAG.getNode(
3264           OpCode, getCurSDLoc(),
3265           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3266     }
3267   }
3268 
3269   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3270                            DAG.getVTList(ValueVTs), Values));
3271 }
3272 
3273 void SelectionDAGBuilder::visitTrunc(const User &I) {
3274   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3275   SDValue N = getValue(I.getOperand(0));
3276   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3277                                                         I.getType());
3278   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3279 }
3280 
3281 void SelectionDAGBuilder::visitZExt(const User &I) {
3282   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3283   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3284   SDValue N = getValue(I.getOperand(0));
3285   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3286                                                         I.getType());
3287   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3288 }
3289 
3290 void SelectionDAGBuilder::visitSExt(const User &I) {
3291   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3292   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3293   SDValue N = getValue(I.getOperand(0));
3294   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3295                                                         I.getType());
3296   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3297 }
3298 
3299 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3300   // FPTrunc is never a no-op cast, no need to check
3301   SDValue N = getValue(I.getOperand(0));
3302   SDLoc dl = getCurSDLoc();
3303   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3304   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3305   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3306                            DAG.getTargetConstant(
3307                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3308 }
3309 
3310 void SelectionDAGBuilder::visitFPExt(const User &I) {
3311   // FPExt is never a no-op cast, no need to check
3312   SDValue N = getValue(I.getOperand(0));
3313   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3314                                                         I.getType());
3315   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3316 }
3317 
3318 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3319   // FPToUI is never a no-op cast, no need to check
3320   SDValue N = getValue(I.getOperand(0));
3321   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3322                                                         I.getType());
3323   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3324 }
3325 
3326 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3327   // FPToSI is never a no-op cast, no need to check
3328   SDValue N = getValue(I.getOperand(0));
3329   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3330                                                         I.getType());
3331   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3332 }
3333 
3334 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3335   // UIToFP is never a no-op cast, no need to check
3336   SDValue N = getValue(I.getOperand(0));
3337   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3338                                                         I.getType());
3339   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3340 }
3341 
3342 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3343   // SIToFP is never a no-op cast, no need to check
3344   SDValue N = getValue(I.getOperand(0));
3345   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3346                                                         I.getType());
3347   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3348 }
3349 
3350 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3351   // What to do depends on the size of the integer and the size of the pointer.
3352   // We can either truncate, zero extend, or no-op, accordingly.
3353   SDValue N = getValue(I.getOperand(0));
3354   auto &TLI = DAG.getTargetLoweringInfo();
3355   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3356                                                         I.getType());
3357   EVT PtrMemVT =
3358       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3359   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3360   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3361   setValue(&I, N);
3362 }
3363 
3364 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3365   // What to do depends on the size of the integer and the size of the pointer.
3366   // We can either truncate, zero extend, or no-op, accordingly.
3367   SDValue N = getValue(I.getOperand(0));
3368   auto &TLI = DAG.getTargetLoweringInfo();
3369   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3370   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3371   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3372   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3373   setValue(&I, N);
3374 }
3375 
3376 void SelectionDAGBuilder::visitBitCast(const User &I) {
3377   SDValue N = getValue(I.getOperand(0));
3378   SDLoc dl = getCurSDLoc();
3379   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3380                                                         I.getType());
3381 
3382   // BitCast assures us that source and destination are the same size so this is
3383   // either a BITCAST or a no-op.
3384   if (DestVT != N.getValueType())
3385     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3386                              DestVT, N)); // convert types.
3387   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3388   // might fold any kind of constant expression to an integer constant and that
3389   // is not what we are looking for. Only recognize a bitcast of a genuine
3390   // constant integer as an opaque constant.
3391   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3392     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3393                                  /*isOpaque*/true));
3394   else
3395     setValue(&I, N);            // noop cast.
3396 }
3397 
3398 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3399   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3400   const Value *SV = I.getOperand(0);
3401   SDValue N = getValue(SV);
3402   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3403 
3404   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3405   unsigned DestAS = I.getType()->getPointerAddressSpace();
3406 
3407   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3408     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3409 
3410   setValue(&I, N);
3411 }
3412 
3413 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3414   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3415   SDValue InVec = getValue(I.getOperand(0));
3416   SDValue InVal = getValue(I.getOperand(1));
3417   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3418                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3419   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3420                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3421                            InVec, InVal, InIdx));
3422 }
3423 
3424 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3425   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3426   SDValue InVec = getValue(I.getOperand(0));
3427   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3428                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3429   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3430                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3431                            InVec, InIdx));
3432 }
3433 
3434 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3435   SDValue Src1 = getValue(I.getOperand(0));
3436   SDValue Src2 = getValue(I.getOperand(1));
3437   Constant *MaskV = cast<Constant>(I.getOperand(2));
3438   SDLoc DL = getCurSDLoc();
3439   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3440   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3441   EVT SrcVT = Src1.getValueType();
3442   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3443 
3444   if (MaskV->isNullValue() && VT.isScalableVector()) {
3445     // Canonical splat form of first element of first input vector.
3446     SDValue FirstElt =
3447         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3448                     DAG.getVectorIdxConstant(0, DL));
3449     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3450     return;
3451   }
3452 
3453   // For now, we only handle splats for scalable vectors.
3454   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3455   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3456   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3457 
3458   SmallVector<int, 8> Mask;
3459   ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3460   unsigned MaskNumElts = Mask.size();
3461 
3462   if (SrcNumElts == MaskNumElts) {
3463     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3464     return;
3465   }
3466 
3467   // Normalize the shuffle vector since mask and vector length don't match.
3468   if (SrcNumElts < MaskNumElts) {
3469     // Mask is longer than the source vectors. We can use concatenate vector to
3470     // make the mask and vectors lengths match.
3471 
3472     if (MaskNumElts % SrcNumElts == 0) {
3473       // Mask length is a multiple of the source vector length.
3474       // Check if the shuffle is some kind of concatenation of the input
3475       // vectors.
3476       unsigned NumConcat = MaskNumElts / SrcNumElts;
3477       bool IsConcat = true;
3478       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3479       for (unsigned i = 0; i != MaskNumElts; ++i) {
3480         int Idx = Mask[i];
3481         if (Idx < 0)
3482           continue;
3483         // Ensure the indices in each SrcVT sized piece are sequential and that
3484         // the same source is used for the whole piece.
3485         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3486             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3487              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3488           IsConcat = false;
3489           break;
3490         }
3491         // Remember which source this index came from.
3492         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3493       }
3494 
3495       // The shuffle is concatenating multiple vectors together. Just emit
3496       // a CONCAT_VECTORS operation.
3497       if (IsConcat) {
3498         SmallVector<SDValue, 8> ConcatOps;
3499         for (auto Src : ConcatSrcs) {
3500           if (Src < 0)
3501             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3502           else if (Src == 0)
3503             ConcatOps.push_back(Src1);
3504           else
3505             ConcatOps.push_back(Src2);
3506         }
3507         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3508         return;
3509       }
3510     }
3511 
3512     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3513     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3514     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3515                                     PaddedMaskNumElts);
3516 
3517     // Pad both vectors with undefs to make them the same length as the mask.
3518     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3519 
3520     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3521     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3522     MOps1[0] = Src1;
3523     MOps2[0] = Src2;
3524 
3525     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3526     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3527 
3528     // Readjust mask for new input vector length.
3529     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3530     for (unsigned i = 0; i != MaskNumElts; ++i) {
3531       int Idx = Mask[i];
3532       if (Idx >= (int)SrcNumElts)
3533         Idx -= SrcNumElts - PaddedMaskNumElts;
3534       MappedOps[i] = Idx;
3535     }
3536 
3537     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3538 
3539     // If the concatenated vector was padded, extract a subvector with the
3540     // correct number of elements.
3541     if (MaskNumElts != PaddedMaskNumElts)
3542       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3543                            DAG.getVectorIdxConstant(0, DL));
3544 
3545     setValue(&I, Result);
3546     return;
3547   }
3548 
3549   if (SrcNumElts > MaskNumElts) {
3550     // Analyze the access pattern of the vector to see if we can extract
3551     // two subvectors and do the shuffle.
3552     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3553     bool CanExtract = true;
3554     for (int Idx : Mask) {
3555       unsigned Input = 0;
3556       if (Idx < 0)
3557         continue;
3558 
3559       if (Idx >= (int)SrcNumElts) {
3560         Input = 1;
3561         Idx -= SrcNumElts;
3562       }
3563 
3564       // If all the indices come from the same MaskNumElts sized portion of
3565       // the sources we can use extract. Also make sure the extract wouldn't
3566       // extract past the end of the source.
3567       int NewStartIdx = alignDown(Idx, MaskNumElts);
3568       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3569           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3570         CanExtract = false;
3571       // Make sure we always update StartIdx as we use it to track if all
3572       // elements are undef.
3573       StartIdx[Input] = NewStartIdx;
3574     }
3575 
3576     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3577       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3578       return;
3579     }
3580     if (CanExtract) {
3581       // Extract appropriate subvector and generate a vector shuffle
3582       for (unsigned Input = 0; Input < 2; ++Input) {
3583         SDValue &Src = Input == 0 ? Src1 : Src2;
3584         if (StartIdx[Input] < 0)
3585           Src = DAG.getUNDEF(VT);
3586         else {
3587           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3588                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3589         }
3590       }
3591 
3592       // Calculate new mask.
3593       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3594       for (int &Idx : MappedOps) {
3595         if (Idx >= (int)SrcNumElts)
3596           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3597         else if (Idx >= 0)
3598           Idx -= StartIdx[0];
3599       }
3600 
3601       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3602       return;
3603     }
3604   }
3605 
3606   // We can't use either concat vectors or extract subvectors so fall back to
3607   // replacing the shuffle with extract and build vector.
3608   // to insert and build vector.
3609   EVT EltVT = VT.getVectorElementType();
3610   SmallVector<SDValue,8> Ops;
3611   for (int Idx : Mask) {
3612     SDValue Res;
3613 
3614     if (Idx < 0) {
3615       Res = DAG.getUNDEF(EltVT);
3616     } else {
3617       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3618       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3619 
3620       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3621                         DAG.getVectorIdxConstant(Idx, DL));
3622     }
3623 
3624     Ops.push_back(Res);
3625   }
3626 
3627   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3628 }
3629 
3630 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3631   ArrayRef<unsigned> Indices;
3632   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3633     Indices = IV->getIndices();
3634   else
3635     Indices = cast<ConstantExpr>(&I)->getIndices();
3636 
3637   const Value *Op0 = I.getOperand(0);
3638   const Value *Op1 = I.getOperand(1);
3639   Type *AggTy = I.getType();
3640   Type *ValTy = Op1->getType();
3641   bool IntoUndef = isa<UndefValue>(Op0);
3642   bool FromUndef = isa<UndefValue>(Op1);
3643 
3644   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3645 
3646   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3647   SmallVector<EVT, 4> AggValueVTs;
3648   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3649   SmallVector<EVT, 4> ValValueVTs;
3650   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3651 
3652   unsigned NumAggValues = AggValueVTs.size();
3653   unsigned NumValValues = ValValueVTs.size();
3654   SmallVector<SDValue, 4> Values(NumAggValues);
3655 
3656   // Ignore an insertvalue that produces an empty object
3657   if (!NumAggValues) {
3658     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3659     return;
3660   }
3661 
3662   SDValue Agg = getValue(Op0);
3663   unsigned i = 0;
3664   // Copy the beginning value(s) from the original aggregate.
3665   for (; i != LinearIndex; ++i)
3666     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3667                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3668   // Copy values from the inserted value(s).
3669   if (NumValValues) {
3670     SDValue Val = getValue(Op1);
3671     for (; i != LinearIndex + NumValValues; ++i)
3672       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3673                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3674   }
3675   // Copy remaining value(s) from the original aggregate.
3676   for (; i != NumAggValues; ++i)
3677     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3678                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3679 
3680   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3681                            DAG.getVTList(AggValueVTs), Values));
3682 }
3683 
3684 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3685   ArrayRef<unsigned> Indices;
3686   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3687     Indices = EV->getIndices();
3688   else
3689     Indices = cast<ConstantExpr>(&I)->getIndices();
3690 
3691   const Value *Op0 = I.getOperand(0);
3692   Type *AggTy = Op0->getType();
3693   Type *ValTy = I.getType();
3694   bool OutOfUndef = isa<UndefValue>(Op0);
3695 
3696   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3697 
3698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3699   SmallVector<EVT, 4> ValValueVTs;
3700   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3701 
3702   unsigned NumValValues = ValValueVTs.size();
3703 
3704   // Ignore a extractvalue that produces an empty object
3705   if (!NumValValues) {
3706     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3707     return;
3708   }
3709 
3710   SmallVector<SDValue, 4> Values(NumValValues);
3711 
3712   SDValue Agg = getValue(Op0);
3713   // Copy out the selected value(s).
3714   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3715     Values[i - LinearIndex] =
3716       OutOfUndef ?
3717         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3718         SDValue(Agg.getNode(), Agg.getResNo() + i);
3719 
3720   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3721                            DAG.getVTList(ValValueVTs), Values));
3722 }
3723 
3724 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3725   Value *Op0 = I.getOperand(0);
3726   // Note that the pointer operand may be a vector of pointers. Take the scalar
3727   // element which holds a pointer.
3728   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3729   SDValue N = getValue(Op0);
3730   SDLoc dl = getCurSDLoc();
3731   auto &TLI = DAG.getTargetLoweringInfo();
3732   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3733   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3734 
3735   // Normalize Vector GEP - all scalar operands should be converted to the
3736   // splat vector.
3737   bool IsVectorGEP = I.getType()->isVectorTy();
3738   ElementCount VectorElementCount = IsVectorGEP ?
3739     I.getType()->getVectorElementCount() : ElementCount(0, false);
3740 
3741   if (IsVectorGEP && !N.getValueType().isVector()) {
3742     LLVMContext &Context = *DAG.getContext();
3743     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3744     if (VectorElementCount.Scalable)
3745       N = DAG.getSplatVector(VT, dl, N);
3746     else
3747       N = DAG.getSplatBuildVector(VT, dl, N);
3748   }
3749 
3750   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3751        GTI != E; ++GTI) {
3752     const Value *Idx = GTI.getOperand();
3753     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3754       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3755       if (Field) {
3756         // N = N + Offset
3757         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3758 
3759         // In an inbounds GEP with an offset that is nonnegative even when
3760         // interpreted as signed, assume there is no unsigned overflow.
3761         SDNodeFlags Flags;
3762         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3763           Flags.setNoUnsignedWrap(true);
3764 
3765         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3766                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3767       }
3768     } else {
3769       // IdxSize is the width of the arithmetic according to IR semantics.
3770       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3771       // (and fix up the result later).
3772       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3773       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3774       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3775       // We intentionally mask away the high bits here; ElementSize may not
3776       // fit in IdxTy.
3777       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3778       bool ElementScalable = ElementSize.isScalable();
3779 
3780       // If this is a scalar constant or a splat vector of constants,
3781       // handle it quickly.
3782       const auto *C = dyn_cast<Constant>(Idx);
3783       if (C && isa<VectorType>(C->getType()))
3784         C = C->getSplatValue();
3785 
3786       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3787       if (CI && CI->isZero())
3788         continue;
3789       if (CI && !ElementScalable) {
3790         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3791         LLVMContext &Context = *DAG.getContext();
3792         SDValue OffsVal;
3793         if (IsVectorGEP)
3794           OffsVal = DAG.getConstant(
3795               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3796         else
3797           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3798 
3799         // In an inbounds GEP with an offset that is nonnegative even when
3800         // interpreted as signed, assume there is no unsigned overflow.
3801         SDNodeFlags Flags;
3802         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3803           Flags.setNoUnsignedWrap(true);
3804 
3805         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3806 
3807         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3808         continue;
3809       }
3810 
3811       // N = N + Idx * ElementMul;
3812       SDValue IdxN = getValue(Idx);
3813 
3814       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3815         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3816                                   VectorElementCount);
3817         if (VectorElementCount.Scalable)
3818           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3819         else
3820           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3821       }
3822 
3823       // If the index is smaller or larger than intptr_t, truncate or extend
3824       // it.
3825       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3826 
3827       if (ElementScalable) {
3828         EVT VScaleTy = N.getValueType().getScalarType();
3829         SDValue VScale = DAG.getNode(
3830             ISD::VSCALE, dl, VScaleTy,
3831             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3832         if (IsVectorGEP)
3833           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3834         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3835       } else {
3836         // If this is a multiply by a power of two, turn it into a shl
3837         // immediately.  This is a very common case.
3838         if (ElementMul != 1) {
3839           if (ElementMul.isPowerOf2()) {
3840             unsigned Amt = ElementMul.logBase2();
3841             IdxN = DAG.getNode(ISD::SHL, dl,
3842                                N.getValueType(), IdxN,
3843                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3844           } else {
3845             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3846                                             IdxN.getValueType());
3847             IdxN = DAG.getNode(ISD::MUL, dl,
3848                                N.getValueType(), IdxN, Scale);
3849           }
3850         }
3851       }
3852 
3853       N = DAG.getNode(ISD::ADD, dl,
3854                       N.getValueType(), N, IdxN);
3855     }
3856   }
3857 
3858   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3859     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3860 
3861   setValue(&I, N);
3862 }
3863 
3864 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3865   // If this is a fixed sized alloca in the entry block of the function,
3866   // allocate it statically on the stack.
3867   if (FuncInfo.StaticAllocaMap.count(&I))
3868     return;   // getValue will auto-populate this.
3869 
3870   SDLoc dl = getCurSDLoc();
3871   Type *Ty = I.getAllocatedType();
3872   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3873   auto &DL = DAG.getDataLayout();
3874   uint64_t TySize = DL.getTypeAllocSize(Ty);
3875   MaybeAlign Alignment = max(DL.getPrefTypeAlign(Ty), I.getAlign());
3876 
3877   SDValue AllocSize = getValue(I.getArraySize());
3878 
3879   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3880   if (AllocSize.getValueType() != IntPtr)
3881     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3882 
3883   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3884                           AllocSize,
3885                           DAG.getConstant(TySize, dl, IntPtr));
3886 
3887   // Handle alignment.  If the requested alignment is less than or equal to
3888   // the stack alignment, ignore it.  If the size is greater than or equal to
3889   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3890   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3891   if (Alignment <= StackAlign)
3892     Alignment = None;
3893 
3894   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3895   // Round the size of the allocation up to the stack alignment size
3896   // by add SA-1 to the size. This doesn't overflow because we're computing
3897   // an address inside an alloca.
3898   SDNodeFlags Flags;
3899   Flags.setNoUnsignedWrap(true);
3900   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3901                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3902 
3903   // Mask out the low bits for alignment purposes.
3904   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3905                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3906 
3907   SDValue Ops[] = {
3908       getRoot(), AllocSize,
3909       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3910   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3911   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3912   setValue(&I, DSA);
3913   DAG.setRoot(DSA.getValue(1));
3914 
3915   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3916 }
3917 
3918 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3919   if (I.isAtomic())
3920     return visitAtomicLoad(I);
3921 
3922   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3923   const Value *SV = I.getOperand(0);
3924   if (TLI.supportSwiftError()) {
3925     // Swifterror values can come from either a function parameter with
3926     // swifterror attribute or an alloca with swifterror attribute.
3927     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3928       if (Arg->hasSwiftErrorAttr())
3929         return visitLoadFromSwiftError(I);
3930     }
3931 
3932     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3933       if (Alloca->isSwiftError())
3934         return visitLoadFromSwiftError(I);
3935     }
3936   }
3937 
3938   SDValue Ptr = getValue(SV);
3939 
3940   Type *Ty = I.getType();
3941   unsigned Alignment = I.getAlignment();
3942 
3943   AAMDNodes AAInfo;
3944   I.getAAMetadata(AAInfo);
3945   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3946 
3947   SmallVector<EVT, 4> ValueVTs, MemVTs;
3948   SmallVector<uint64_t, 4> Offsets;
3949   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3950   unsigned NumValues = ValueVTs.size();
3951   if (NumValues == 0)
3952     return;
3953 
3954   bool isVolatile = I.isVolatile();
3955 
3956   SDValue Root;
3957   bool ConstantMemory = false;
3958   if (isVolatile)
3959     // Serialize volatile loads with other side effects.
3960     Root = getRoot();
3961   else if (NumValues > MaxParallelChains)
3962     Root = getMemoryRoot();
3963   else if (AA &&
3964            AA->pointsToConstantMemory(MemoryLocation(
3965                SV,
3966                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3967                AAInfo))) {
3968     // Do not serialize (non-volatile) loads of constant memory with anything.
3969     Root = DAG.getEntryNode();
3970     ConstantMemory = true;
3971   } else {
3972     // Do not serialize non-volatile loads against each other.
3973     Root = DAG.getRoot();
3974   }
3975 
3976   SDLoc dl = getCurSDLoc();
3977 
3978   if (isVolatile)
3979     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3980 
3981   // An aggregate load cannot wrap around the address space, so offsets to its
3982   // parts don't wrap either.
3983   SDNodeFlags Flags;
3984   Flags.setNoUnsignedWrap(true);
3985 
3986   SmallVector<SDValue, 4> Values(NumValues);
3987   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3988   EVT PtrVT = Ptr.getValueType();
3989 
3990   MachineMemOperand::Flags MMOFlags
3991     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
3992 
3993   unsigned ChainI = 0;
3994   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3995     // Serializing loads here may result in excessive register pressure, and
3996     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3997     // could recover a bit by hoisting nodes upward in the chain by recognizing
3998     // they are side-effect free or do not alias. The optimizer should really
3999     // avoid this case by converting large object/array copies to llvm.memcpy
4000     // (MaxParallelChains should always remain as failsafe).
4001     if (ChainI == MaxParallelChains) {
4002       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4003       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4004                                   makeArrayRef(Chains.data(), ChainI));
4005       Root = Chain;
4006       ChainI = 0;
4007     }
4008     SDValue A = DAG.getNode(ISD::ADD, dl,
4009                             PtrVT, Ptr,
4010                             DAG.getConstant(Offsets[i], dl, PtrVT),
4011                             Flags);
4012 
4013     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4014                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4015                             MMOFlags, AAInfo, Ranges);
4016     Chains[ChainI] = L.getValue(1);
4017 
4018     if (MemVTs[i] != ValueVTs[i])
4019       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4020 
4021     Values[i] = L;
4022   }
4023 
4024   if (!ConstantMemory) {
4025     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4026                                 makeArrayRef(Chains.data(), ChainI));
4027     if (isVolatile)
4028       DAG.setRoot(Chain);
4029     else
4030       PendingLoads.push_back(Chain);
4031   }
4032 
4033   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4034                            DAG.getVTList(ValueVTs), Values));
4035 }
4036 
4037 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4038   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4039          "call visitStoreToSwiftError when backend supports swifterror");
4040 
4041   SmallVector<EVT, 4> ValueVTs;
4042   SmallVector<uint64_t, 4> Offsets;
4043   const Value *SrcV = I.getOperand(0);
4044   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4045                   SrcV->getType(), ValueVTs, &Offsets);
4046   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4047          "expect a single EVT for swifterror");
4048 
4049   SDValue Src = getValue(SrcV);
4050   // Create a virtual register, then update the virtual register.
4051   Register VReg =
4052       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4053   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4054   // Chain can be getRoot or getControlRoot.
4055   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4056                                       SDValue(Src.getNode(), Src.getResNo()));
4057   DAG.setRoot(CopyNode);
4058 }
4059 
4060 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4061   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4062          "call visitLoadFromSwiftError when backend supports swifterror");
4063 
4064   assert(!I.isVolatile() &&
4065          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4066          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4067          "Support volatile, non temporal, invariant for load_from_swift_error");
4068 
4069   const Value *SV = I.getOperand(0);
4070   Type *Ty = I.getType();
4071   AAMDNodes AAInfo;
4072   I.getAAMetadata(AAInfo);
4073   assert(
4074       (!AA ||
4075        !AA->pointsToConstantMemory(MemoryLocation(
4076            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4077            AAInfo))) &&
4078       "load_from_swift_error should not be constant memory");
4079 
4080   SmallVector<EVT, 4> ValueVTs;
4081   SmallVector<uint64_t, 4> Offsets;
4082   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4083                   ValueVTs, &Offsets);
4084   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4085          "expect a single EVT for swifterror");
4086 
4087   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4088   SDValue L = DAG.getCopyFromReg(
4089       getRoot(), getCurSDLoc(),
4090       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4091 
4092   setValue(&I, L);
4093 }
4094 
4095 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4096   if (I.isAtomic())
4097     return visitAtomicStore(I);
4098 
4099   const Value *SrcV = I.getOperand(0);
4100   const Value *PtrV = I.getOperand(1);
4101 
4102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4103   if (TLI.supportSwiftError()) {
4104     // Swifterror values can come from either a function parameter with
4105     // swifterror attribute or an alloca with swifterror attribute.
4106     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4107       if (Arg->hasSwiftErrorAttr())
4108         return visitStoreToSwiftError(I);
4109     }
4110 
4111     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4112       if (Alloca->isSwiftError())
4113         return visitStoreToSwiftError(I);
4114     }
4115   }
4116 
4117   SmallVector<EVT, 4> ValueVTs, MemVTs;
4118   SmallVector<uint64_t, 4> Offsets;
4119   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4120                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4121   unsigned NumValues = ValueVTs.size();
4122   if (NumValues == 0)
4123     return;
4124 
4125   // Get the lowered operands. Note that we do this after
4126   // checking if NumResults is zero, because with zero results
4127   // the operands won't have values in the map.
4128   SDValue Src = getValue(SrcV);
4129   SDValue Ptr = getValue(PtrV);
4130 
4131   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4132   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4133   SDLoc dl = getCurSDLoc();
4134   unsigned Alignment = I.getAlignment();
4135   AAMDNodes AAInfo;
4136   I.getAAMetadata(AAInfo);
4137 
4138   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4139 
4140   // An aggregate load cannot wrap around the address space, so offsets to its
4141   // parts don't wrap either.
4142   SDNodeFlags Flags;
4143   Flags.setNoUnsignedWrap(true);
4144 
4145   unsigned ChainI = 0;
4146   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4147     // See visitLoad comments.
4148     if (ChainI == MaxParallelChains) {
4149       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4150                                   makeArrayRef(Chains.data(), ChainI));
4151       Root = Chain;
4152       ChainI = 0;
4153     }
4154     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4155     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4156     if (MemVTs[i] != ValueVTs[i])
4157       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4158     SDValue St =
4159         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4160                      Alignment, MMOFlags, AAInfo);
4161     Chains[ChainI] = St;
4162   }
4163 
4164   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4165                                   makeArrayRef(Chains.data(), ChainI));
4166   DAG.setRoot(StoreNode);
4167 }
4168 
4169 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4170                                            bool IsCompressing) {
4171   SDLoc sdl = getCurSDLoc();
4172 
4173   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4174                            unsigned& Alignment) {
4175     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4176     Src0 = I.getArgOperand(0);
4177     Ptr = I.getArgOperand(1);
4178     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4179     Mask = I.getArgOperand(3);
4180   };
4181   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4182                            unsigned& Alignment) {
4183     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4184     Src0 = I.getArgOperand(0);
4185     Ptr = I.getArgOperand(1);
4186     Mask = I.getArgOperand(2);
4187     Alignment = 0;
4188   };
4189 
4190   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4191   unsigned Alignment;
4192   if (IsCompressing)
4193     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4194   else
4195     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4196 
4197   SDValue Ptr = getValue(PtrOperand);
4198   SDValue Src0 = getValue(Src0Operand);
4199   SDValue Mask = getValue(MaskOperand);
4200   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4201 
4202   EVT VT = Src0.getValueType();
4203   if (!Alignment)
4204     Alignment = DAG.getEVTAlignment(VT);
4205 
4206   AAMDNodes AAInfo;
4207   I.getAAMetadata(AAInfo);
4208 
4209   MachineMemOperand *MMO =
4210     DAG.getMachineFunction().
4211     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4212                           MachineMemOperand::MOStore,
4213                           // TODO: Make MachineMemOperands aware of scalable
4214                           // vectors.
4215                           VT.getStoreSize().getKnownMinSize(),
4216                           Alignment, AAInfo);
4217   SDValue StoreNode =
4218       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4219                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4220   DAG.setRoot(StoreNode);
4221   setValue(&I, StoreNode);
4222 }
4223 
4224 // Get a uniform base for the Gather/Scatter intrinsic.
4225 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4226 // We try to represent it as a base pointer + vector of indices.
4227 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4228 // The first operand of the GEP may be a single pointer or a vector of pointers
4229 // Example:
4230 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4231 //  or
4232 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4233 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4234 //
4235 // When the first GEP operand is a single pointer - it is the uniform base we
4236 // are looking for. If first operand of the GEP is a splat vector - we
4237 // extract the splat value and use it as a uniform base.
4238 // In all other cases the function returns 'false'.
4239 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4240                            ISD::MemIndexType &IndexType, SDValue &Scale,
4241                            SelectionDAGBuilder *SDB) {
4242   SelectionDAG& DAG = SDB->DAG;
4243   LLVMContext &Context = *DAG.getContext();
4244 
4245   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4246   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4247   if (!GEP)
4248     return false;
4249 
4250   const Value *BasePtr = GEP->getPointerOperand();
4251   if (BasePtr->getType()->isVectorTy()) {
4252     BasePtr = getSplatValue(BasePtr);
4253     if (!BasePtr)
4254       return false;
4255   }
4256 
4257   unsigned FinalIndex = GEP->getNumOperands() - 1;
4258   Value *IndexVal = GEP->getOperand(FinalIndex);
4259   gep_type_iterator GTI = gep_type_begin(*GEP);
4260 
4261   // Ensure all the other indices are 0.
4262   for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) {
4263     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4264     if (!C)
4265       return false;
4266     if (isa<VectorType>(C->getType()))
4267       C = C->getSplatValue();
4268     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4269     if (!CI || !CI->isZero())
4270       return false;
4271   }
4272 
4273   // The operands of the GEP may be defined in another basic block.
4274   // In this case we'll not find nodes for the operands.
4275   if (!SDB->findValue(BasePtr))
4276     return false;
4277   Constant *C = dyn_cast<Constant>(IndexVal);
4278   if (!C && !SDB->findValue(IndexVal))
4279     return false;
4280 
4281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4282   const DataLayout &DL = DAG.getDataLayout();
4283   StructType *STy = GTI.getStructTypeOrNull();
4284 
4285   if (STy) {
4286     const StructLayout *SL = DL.getStructLayout(STy);
4287     unsigned Field = cast<Constant>(IndexVal)->getUniqueInteger().getZExtValue();
4288     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4289     Index = DAG.getConstant(SL->getElementOffset(Field),
4290                             SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4291   } else {
4292     Scale = DAG.getTargetConstant(
4293                 DL.getTypeAllocSize(GEP->getResultElementType()),
4294                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4295     Index = SDB->getValue(IndexVal);
4296   }
4297   Base = SDB->getValue(BasePtr);
4298   IndexType = ISD::SIGNED_SCALED;
4299 
4300   if (STy || !Index.getValueType().isVector()) {
4301     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4302     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4303     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4304   }
4305   return true;
4306 }
4307 
4308 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4309   SDLoc sdl = getCurSDLoc();
4310 
4311   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4312   const Value *Ptr = I.getArgOperand(1);
4313   SDValue Src0 = getValue(I.getArgOperand(0));
4314   SDValue Mask = getValue(I.getArgOperand(3));
4315   EVT VT = Src0.getValueType();
4316   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4317   if (!Alignment)
4318     Alignment = DAG.getEVTAlignment(VT);
4319   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4320 
4321   AAMDNodes AAInfo;
4322   I.getAAMetadata(AAInfo);
4323 
4324   SDValue Base;
4325   SDValue Index;
4326   ISD::MemIndexType IndexType;
4327   SDValue Scale;
4328   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this);
4329 
4330   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4331   MachineMemOperand *MMO = DAG.getMachineFunction().
4332     getMachineMemOperand(MachinePointerInfo(AS),
4333                          MachineMemOperand::MOStore,
4334                          // TODO: Make MachineMemOperands aware of scalable
4335                          // vectors.
4336                          MemoryLocation::UnknownSize,
4337                          Alignment, AAInfo);
4338   if (!UniformBase) {
4339     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4340     Index = getValue(Ptr);
4341     IndexType = ISD::SIGNED_SCALED;
4342     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4343   }
4344   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4345   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4346                                          Ops, MMO, IndexType);
4347   DAG.setRoot(Scatter);
4348   setValue(&I, Scatter);
4349 }
4350 
4351 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4352   SDLoc sdl = getCurSDLoc();
4353 
4354   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4355                            unsigned& Alignment) {
4356     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4357     Ptr = I.getArgOperand(0);
4358     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4359     Mask = I.getArgOperand(2);
4360     Src0 = I.getArgOperand(3);
4361   };
4362   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4363                            unsigned& Alignment) {
4364     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4365     Ptr = I.getArgOperand(0);
4366     Alignment = 0;
4367     Mask = I.getArgOperand(1);
4368     Src0 = I.getArgOperand(2);
4369   };
4370 
4371   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4372   unsigned Alignment;
4373   if (IsExpanding)
4374     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4375   else
4376     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4377 
4378   SDValue Ptr = getValue(PtrOperand);
4379   SDValue Src0 = getValue(Src0Operand);
4380   SDValue Mask = getValue(MaskOperand);
4381   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4382 
4383   EVT VT = Src0.getValueType();
4384   if (!Alignment)
4385     Alignment = DAG.getEVTAlignment(VT);
4386 
4387   AAMDNodes AAInfo;
4388   I.getAAMetadata(AAInfo);
4389   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4390 
4391   // Do not serialize masked loads of constant memory with anything.
4392   MemoryLocation ML;
4393   if (VT.isScalableVector())
4394     ML = MemoryLocation(PtrOperand);
4395   else
4396     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4397                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4398                            AAInfo);
4399   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4400 
4401   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4402 
4403   MachineMemOperand *MMO =
4404     DAG.getMachineFunction().
4405     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4406                           MachineMemOperand::MOLoad,
4407                           // TODO: Make MachineMemOperands aware of scalable
4408                           // vectors.
4409                           VT.getStoreSize().getKnownMinSize(),
4410                           Alignment, AAInfo, Ranges);
4411 
4412   SDValue Load =
4413       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4414                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4415   if (AddToChain)
4416     PendingLoads.push_back(Load.getValue(1));
4417   setValue(&I, Load);
4418 }
4419 
4420 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4421   SDLoc sdl = getCurSDLoc();
4422 
4423   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4424   const Value *Ptr = I.getArgOperand(0);
4425   SDValue Src0 = getValue(I.getArgOperand(3));
4426   SDValue Mask = getValue(I.getArgOperand(2));
4427 
4428   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4429   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4430   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4431   if (!Alignment)
4432     Alignment = DAG.getEVTAlignment(VT);
4433 
4434   AAMDNodes AAInfo;
4435   I.getAAMetadata(AAInfo);
4436   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4437 
4438   SDValue Root = DAG.getRoot();
4439   SDValue Base;
4440   SDValue Index;
4441   ISD::MemIndexType IndexType;
4442   SDValue Scale;
4443   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this);
4444   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4445   MachineMemOperand *MMO =
4446     DAG.getMachineFunction().
4447     getMachineMemOperand(MachinePointerInfo(AS),
4448                          MachineMemOperand::MOLoad,
4449                          // TODO: Make MachineMemOperands aware of scalable
4450                          // vectors.
4451                          MemoryLocation::UnknownSize,
4452                          Alignment, AAInfo, Ranges);
4453 
4454   if (!UniformBase) {
4455     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4456     Index = getValue(Ptr);
4457     IndexType = ISD::SIGNED_SCALED;
4458     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4459   }
4460   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4461   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4462                                        Ops, MMO, IndexType);
4463 
4464   PendingLoads.push_back(Gather.getValue(1));
4465   setValue(&I, Gather);
4466 }
4467 
4468 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4469   SDLoc dl = getCurSDLoc();
4470   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4471   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4472   SyncScope::ID SSID = I.getSyncScopeID();
4473 
4474   SDValue InChain = getRoot();
4475 
4476   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4477   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4478 
4479   auto Alignment = DAG.getEVTAlignment(MemVT);
4480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4481   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4482 
4483   MachineFunction &MF = DAG.getMachineFunction();
4484   MachineMemOperand *MMO =
4485     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4486                             Flags, MemVT.getStoreSize(), Alignment,
4487                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4488                             FailureOrdering);
4489 
4490   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4491                                    dl, MemVT, VTs, InChain,
4492                                    getValue(I.getPointerOperand()),
4493                                    getValue(I.getCompareOperand()),
4494                                    getValue(I.getNewValOperand()), MMO);
4495 
4496   SDValue OutChain = L.getValue(2);
4497 
4498   setValue(&I, L);
4499   DAG.setRoot(OutChain);
4500 }
4501 
4502 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4503   SDLoc dl = getCurSDLoc();
4504   ISD::NodeType NT;
4505   switch (I.getOperation()) {
4506   default: llvm_unreachable("Unknown atomicrmw operation");
4507   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4508   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4509   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4510   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4511   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4512   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4513   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4514   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4515   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4516   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4517   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4518   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4519   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4520   }
4521   AtomicOrdering Ordering = I.getOrdering();
4522   SyncScope::ID SSID = I.getSyncScopeID();
4523 
4524   SDValue InChain = getRoot();
4525 
4526   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4527   auto Alignment = DAG.getEVTAlignment(MemVT);
4528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4529   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4530 
4531   MachineFunction &MF = DAG.getMachineFunction();
4532   MachineMemOperand *MMO =
4533     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4534                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4535                             nullptr, SSID, Ordering);
4536 
4537   SDValue L =
4538     DAG.getAtomic(NT, dl, MemVT, InChain,
4539                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4540                   MMO);
4541 
4542   SDValue OutChain = L.getValue(1);
4543 
4544   setValue(&I, L);
4545   DAG.setRoot(OutChain);
4546 }
4547 
4548 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4549   SDLoc dl = getCurSDLoc();
4550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4551   SDValue Ops[3];
4552   Ops[0] = getRoot();
4553   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4554                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4555   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4556                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4557   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4558 }
4559 
4560 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4561   SDLoc dl = getCurSDLoc();
4562   AtomicOrdering Order = I.getOrdering();
4563   SyncScope::ID SSID = I.getSyncScopeID();
4564 
4565   SDValue InChain = getRoot();
4566 
4567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4568   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4569   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4570 
4571   if (!TLI.supportsUnalignedAtomics() &&
4572       I.getAlignment() < MemVT.getSizeInBits() / 8)
4573     report_fatal_error("Cannot generate unaligned atomic load");
4574 
4575   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4576 
4577   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4578       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4579       I.getAlign().getValueOr(DAG.getEVTAlign(MemVT)), AAMDNodes(), nullptr,
4580       SSID, Order);
4581 
4582   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4583 
4584   SDValue Ptr = getValue(I.getPointerOperand());
4585 
4586   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4587     // TODO: Once this is better exercised by tests, it should be merged with
4588     // the normal path for loads to prevent future divergence.
4589     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4590     if (MemVT != VT)
4591       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4592 
4593     setValue(&I, L);
4594     SDValue OutChain = L.getValue(1);
4595     if (!I.isUnordered())
4596       DAG.setRoot(OutChain);
4597     else
4598       PendingLoads.push_back(OutChain);
4599     return;
4600   }
4601 
4602   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4603                             Ptr, MMO);
4604 
4605   SDValue OutChain = L.getValue(1);
4606   if (MemVT != VT)
4607     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4608 
4609   setValue(&I, L);
4610   DAG.setRoot(OutChain);
4611 }
4612 
4613 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4614   SDLoc dl = getCurSDLoc();
4615 
4616   AtomicOrdering Ordering = I.getOrdering();
4617   SyncScope::ID SSID = I.getSyncScopeID();
4618 
4619   SDValue InChain = getRoot();
4620 
4621   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4622   EVT MemVT =
4623       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4624 
4625   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4626     report_fatal_error("Cannot generate unaligned atomic store");
4627 
4628   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4629 
4630   MachineFunction &MF = DAG.getMachineFunction();
4631   MachineMemOperand *MMO = MF.getMachineMemOperand(
4632       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4633       *I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4634 
4635   SDValue Val = getValue(I.getValueOperand());
4636   if (Val.getValueType() != MemVT)
4637     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4638   SDValue Ptr = getValue(I.getPointerOperand());
4639 
4640   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4641     // TODO: Once this is better exercised by tests, it should be merged with
4642     // the normal path for stores to prevent future divergence.
4643     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4644     DAG.setRoot(S);
4645     return;
4646   }
4647   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4648                                    Ptr, Val, MMO);
4649 
4650 
4651   DAG.setRoot(OutChain);
4652 }
4653 
4654 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4655 /// node.
4656 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4657                                                unsigned Intrinsic) {
4658   // Ignore the callsite's attributes. A specific call site may be marked with
4659   // readnone, but the lowering code will expect the chain based on the
4660   // definition.
4661   const Function *F = I.getCalledFunction();
4662   bool HasChain = !F->doesNotAccessMemory();
4663   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4664 
4665   // Build the operand list.
4666   SmallVector<SDValue, 8> Ops;
4667   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4668     if (OnlyLoad) {
4669       // We don't need to serialize loads against other loads.
4670       Ops.push_back(DAG.getRoot());
4671     } else {
4672       Ops.push_back(getRoot());
4673     }
4674   }
4675 
4676   // Info is set by getTgtMemInstrinsic
4677   TargetLowering::IntrinsicInfo Info;
4678   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4679   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4680                                                DAG.getMachineFunction(),
4681                                                Intrinsic);
4682 
4683   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4684   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4685       Info.opc == ISD::INTRINSIC_W_CHAIN)
4686     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4687                                         TLI.getPointerTy(DAG.getDataLayout())));
4688 
4689   // Add all operands of the call to the operand list.
4690   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4691     const Value *Arg = I.getArgOperand(i);
4692     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4693       Ops.push_back(getValue(Arg));
4694       continue;
4695     }
4696 
4697     // Use TargetConstant instead of a regular constant for immarg.
4698     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4699     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4700       assert(CI->getBitWidth() <= 64 &&
4701              "large intrinsic immediates not handled");
4702       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4703     } else {
4704       Ops.push_back(
4705           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4706     }
4707   }
4708 
4709   SmallVector<EVT, 4> ValueVTs;
4710   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4711 
4712   if (HasChain)
4713     ValueVTs.push_back(MVT::Other);
4714 
4715   SDVTList VTs = DAG.getVTList(ValueVTs);
4716 
4717   // Create the node.
4718   SDValue Result;
4719   if (IsTgtIntrinsic) {
4720     // This is target intrinsic that touches memory
4721     AAMDNodes AAInfo;
4722     I.getAAMetadata(AAInfo);
4723     Result = DAG.getMemIntrinsicNode(
4724         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4725         MachinePointerInfo(Info.ptrVal, Info.offset),
4726         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4727   } else if (!HasChain) {
4728     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4729   } else if (!I.getType()->isVoidTy()) {
4730     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4731   } else {
4732     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4733   }
4734 
4735   if (HasChain) {
4736     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4737     if (OnlyLoad)
4738       PendingLoads.push_back(Chain);
4739     else
4740       DAG.setRoot(Chain);
4741   }
4742 
4743   if (!I.getType()->isVoidTy()) {
4744     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4745       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4746       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4747     } else
4748       Result = lowerRangeToAssertZExt(DAG, I, Result);
4749 
4750     setValue(&I, Result);
4751   }
4752 }
4753 
4754 /// GetSignificand - Get the significand and build it into a floating-point
4755 /// number with exponent of 1:
4756 ///
4757 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4758 ///
4759 /// where Op is the hexadecimal representation of floating point value.
4760 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4761   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4762                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4763   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4764                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4765   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4766 }
4767 
4768 /// GetExponent - Get the exponent:
4769 ///
4770 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4771 ///
4772 /// where Op is the hexadecimal representation of floating point value.
4773 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4774                            const TargetLowering &TLI, const SDLoc &dl) {
4775   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4776                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4777   SDValue t1 = DAG.getNode(
4778       ISD::SRL, dl, MVT::i32, t0,
4779       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4780   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4781                            DAG.getConstant(127, dl, MVT::i32));
4782   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4783 }
4784 
4785 /// getF32Constant - Get 32-bit floating point constant.
4786 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4787                               const SDLoc &dl) {
4788   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4789                            MVT::f32);
4790 }
4791 
4792 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4793                                        SelectionDAG &DAG) {
4794   // TODO: What fast-math-flags should be set on the floating-point nodes?
4795 
4796   //   IntegerPartOfX = ((int32_t)(t0);
4797   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4798 
4799   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4800   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4801   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4802 
4803   //   IntegerPartOfX <<= 23;
4804   IntegerPartOfX = DAG.getNode(
4805       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4806       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4807                                   DAG.getDataLayout())));
4808 
4809   SDValue TwoToFractionalPartOfX;
4810   if (LimitFloatPrecision <= 6) {
4811     // For floating-point precision of 6:
4812     //
4813     //   TwoToFractionalPartOfX =
4814     //     0.997535578f +
4815     //       (0.735607626f + 0.252464424f * x) * x;
4816     //
4817     // error 0.0144103317, which is 6 bits
4818     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4819                              getF32Constant(DAG, 0x3e814304, dl));
4820     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4821                              getF32Constant(DAG, 0x3f3c50c8, dl));
4822     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4823     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4824                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4825   } else if (LimitFloatPrecision <= 12) {
4826     // For floating-point precision of 12:
4827     //
4828     //   TwoToFractionalPartOfX =
4829     //     0.999892986f +
4830     //       (0.696457318f +
4831     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4832     //
4833     // error 0.000107046256, which is 13 to 14 bits
4834     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4835                              getF32Constant(DAG, 0x3da235e3, dl));
4836     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4837                              getF32Constant(DAG, 0x3e65b8f3, dl));
4838     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4839     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4840                              getF32Constant(DAG, 0x3f324b07, dl));
4841     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4842     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4843                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4844   } else { // LimitFloatPrecision <= 18
4845     // For floating-point precision of 18:
4846     //
4847     //   TwoToFractionalPartOfX =
4848     //     0.999999982f +
4849     //       (0.693148872f +
4850     //         (0.240227044f +
4851     //           (0.554906021e-1f +
4852     //             (0.961591928e-2f +
4853     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4854     // error 2.47208000*10^(-7), which is better than 18 bits
4855     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4856                              getF32Constant(DAG, 0x3924b03e, dl));
4857     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4858                              getF32Constant(DAG, 0x3ab24b87, dl));
4859     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4860     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4861                              getF32Constant(DAG, 0x3c1d8c17, dl));
4862     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4863     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4864                              getF32Constant(DAG, 0x3d634a1d, dl));
4865     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4866     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4867                              getF32Constant(DAG, 0x3e75fe14, dl));
4868     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4869     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4870                               getF32Constant(DAG, 0x3f317234, dl));
4871     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4872     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4873                                          getF32Constant(DAG, 0x3f800000, dl));
4874   }
4875 
4876   // Add the exponent into the result in integer domain.
4877   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4878   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4879                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4880 }
4881 
4882 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4883 /// limited-precision mode.
4884 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4885                          const TargetLowering &TLI) {
4886   if (Op.getValueType() == MVT::f32 &&
4887       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4888 
4889     // Put the exponent in the right bit position for later addition to the
4890     // final result:
4891     //
4892     // t0 = Op * log2(e)
4893 
4894     // TODO: What fast-math-flags should be set here?
4895     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4896                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4897     return getLimitedPrecisionExp2(t0, dl, DAG);
4898   }
4899 
4900   // No special expansion.
4901   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4902 }
4903 
4904 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4905 /// limited-precision mode.
4906 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4907                          const TargetLowering &TLI) {
4908   // TODO: What fast-math-flags should be set on the floating-point nodes?
4909 
4910   if (Op.getValueType() == MVT::f32 &&
4911       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4912     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4913 
4914     // Scale the exponent by log(2).
4915     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4916     SDValue LogOfExponent =
4917         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4918                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4919 
4920     // Get the significand and build it into a floating-point number with
4921     // exponent of 1.
4922     SDValue X = GetSignificand(DAG, Op1, dl);
4923 
4924     SDValue LogOfMantissa;
4925     if (LimitFloatPrecision <= 6) {
4926       // For floating-point precision of 6:
4927       //
4928       //   LogofMantissa =
4929       //     -1.1609546f +
4930       //       (1.4034025f - 0.23903021f * x) * x;
4931       //
4932       // error 0.0034276066, which is better than 8 bits
4933       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4934                                getF32Constant(DAG, 0xbe74c456, dl));
4935       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4936                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4937       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4938       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4939                                   getF32Constant(DAG, 0x3f949a29, dl));
4940     } else if (LimitFloatPrecision <= 12) {
4941       // For floating-point precision of 12:
4942       //
4943       //   LogOfMantissa =
4944       //     -1.7417939f +
4945       //       (2.8212026f +
4946       //         (-1.4699568f +
4947       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4948       //
4949       // error 0.000061011436, which is 14 bits
4950       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4951                                getF32Constant(DAG, 0xbd67b6d6, dl));
4952       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4953                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4954       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4955       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4956                                getF32Constant(DAG, 0x3fbc278b, dl));
4957       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4958       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4959                                getF32Constant(DAG, 0x40348e95, dl));
4960       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4961       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4962                                   getF32Constant(DAG, 0x3fdef31a, dl));
4963     } else { // LimitFloatPrecision <= 18
4964       // For floating-point precision of 18:
4965       //
4966       //   LogOfMantissa =
4967       //     -2.1072184f +
4968       //       (4.2372794f +
4969       //         (-3.7029485f +
4970       //           (2.2781945f +
4971       //             (-0.87823314f +
4972       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4973       //
4974       // error 0.0000023660568, which is better than 18 bits
4975       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4976                                getF32Constant(DAG, 0xbc91e5ac, dl));
4977       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4978                                getF32Constant(DAG, 0x3e4350aa, dl));
4979       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4980       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4981                                getF32Constant(DAG, 0x3f60d3e3, dl));
4982       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4983       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4984                                getF32Constant(DAG, 0x4011cdf0, dl));
4985       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4986       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4987                                getF32Constant(DAG, 0x406cfd1c, dl));
4988       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4989       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4990                                getF32Constant(DAG, 0x408797cb, dl));
4991       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4992       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4993                                   getF32Constant(DAG, 0x4006dcab, dl));
4994     }
4995 
4996     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4997   }
4998 
4999   // No special expansion.
5000   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5001 }
5002 
5003 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5004 /// limited-precision mode.
5005 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5006                           const TargetLowering &TLI) {
5007   // TODO: What fast-math-flags should be set on the floating-point nodes?
5008 
5009   if (Op.getValueType() == MVT::f32 &&
5010       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5011     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5012 
5013     // Get the exponent.
5014     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5015 
5016     // Get the significand and build it into a floating-point number with
5017     // exponent of 1.
5018     SDValue X = GetSignificand(DAG, Op1, dl);
5019 
5020     // Different possible minimax approximations of significand in
5021     // floating-point for various degrees of accuracy over [1,2].
5022     SDValue Log2ofMantissa;
5023     if (LimitFloatPrecision <= 6) {
5024       // For floating-point precision of 6:
5025       //
5026       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5027       //
5028       // error 0.0049451742, which is more than 7 bits
5029       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5030                                getF32Constant(DAG, 0xbeb08fe0, dl));
5031       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5032                                getF32Constant(DAG, 0x40019463, dl));
5033       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5034       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5035                                    getF32Constant(DAG, 0x3fd6633d, dl));
5036     } else if (LimitFloatPrecision <= 12) {
5037       // For floating-point precision of 12:
5038       //
5039       //   Log2ofMantissa =
5040       //     -2.51285454f +
5041       //       (4.07009056f +
5042       //         (-2.12067489f +
5043       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5044       //
5045       // error 0.0000876136000, which is better than 13 bits
5046       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5047                                getF32Constant(DAG, 0xbda7262e, dl));
5048       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5049                                getF32Constant(DAG, 0x3f25280b, dl));
5050       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5051       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5052                                getF32Constant(DAG, 0x4007b923, dl));
5053       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5054       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5055                                getF32Constant(DAG, 0x40823e2f, dl));
5056       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5057       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5058                                    getF32Constant(DAG, 0x4020d29c, dl));
5059     } else { // LimitFloatPrecision <= 18
5060       // For floating-point precision of 18:
5061       //
5062       //   Log2ofMantissa =
5063       //     -3.0400495f +
5064       //       (6.1129976f +
5065       //         (-5.3420409f +
5066       //           (3.2865683f +
5067       //             (-1.2669343f +
5068       //               (0.27515199f -
5069       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5070       //
5071       // error 0.0000018516, which is better than 18 bits
5072       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5073                                getF32Constant(DAG, 0xbcd2769e, dl));
5074       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5075                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5076       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5077       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5078                                getF32Constant(DAG, 0x3fa22ae7, dl));
5079       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5080       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5081                                getF32Constant(DAG, 0x40525723, dl));
5082       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5083       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5084                                getF32Constant(DAG, 0x40aaf200, dl));
5085       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5086       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5087                                getF32Constant(DAG, 0x40c39dad, dl));
5088       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5089       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5090                                    getF32Constant(DAG, 0x4042902c, dl));
5091     }
5092 
5093     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5094   }
5095 
5096   // No special expansion.
5097   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5098 }
5099 
5100 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5101 /// limited-precision mode.
5102 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5103                            const TargetLowering &TLI) {
5104   // TODO: What fast-math-flags should be set on the floating-point nodes?
5105 
5106   if (Op.getValueType() == MVT::f32 &&
5107       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5108     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5109 
5110     // Scale the exponent by log10(2) [0.30102999f].
5111     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5112     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5113                                         getF32Constant(DAG, 0x3e9a209a, dl));
5114 
5115     // Get the significand and build it into a floating-point number with
5116     // exponent of 1.
5117     SDValue X = GetSignificand(DAG, Op1, dl);
5118 
5119     SDValue Log10ofMantissa;
5120     if (LimitFloatPrecision <= 6) {
5121       // For floating-point precision of 6:
5122       //
5123       //   Log10ofMantissa =
5124       //     -0.50419619f +
5125       //       (0.60948995f - 0.10380950f * x) * x;
5126       //
5127       // error 0.0014886165, which is 6 bits
5128       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5129                                getF32Constant(DAG, 0xbdd49a13, dl));
5130       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5131                                getF32Constant(DAG, 0x3f1c0789, dl));
5132       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5133       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5134                                     getF32Constant(DAG, 0x3f011300, dl));
5135     } else if (LimitFloatPrecision <= 12) {
5136       // For floating-point precision of 12:
5137       //
5138       //   Log10ofMantissa =
5139       //     -0.64831180f +
5140       //       (0.91751397f +
5141       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5142       //
5143       // error 0.00019228036, which is better than 12 bits
5144       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5145                                getF32Constant(DAG, 0x3d431f31, dl));
5146       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5147                                getF32Constant(DAG, 0x3ea21fb2, dl));
5148       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5149       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5150                                getF32Constant(DAG, 0x3f6ae232, dl));
5151       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5152       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5153                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5154     } else { // LimitFloatPrecision <= 18
5155       // For floating-point precision of 18:
5156       //
5157       //   Log10ofMantissa =
5158       //     -0.84299375f +
5159       //       (1.5327582f +
5160       //         (-1.0688956f +
5161       //           (0.49102474f +
5162       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5163       //
5164       // error 0.0000037995730, which is better than 18 bits
5165       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5166                                getF32Constant(DAG, 0x3c5d51ce, dl));
5167       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5168                                getF32Constant(DAG, 0x3e00685a, dl));
5169       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5170       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5171                                getF32Constant(DAG, 0x3efb6798, dl));
5172       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5173       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5174                                getF32Constant(DAG, 0x3f88d192, dl));
5175       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5176       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5177                                getF32Constant(DAG, 0x3fc4316c, dl));
5178       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5179       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5180                                     getF32Constant(DAG, 0x3f57ce70, dl));
5181     }
5182 
5183     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5184   }
5185 
5186   // No special expansion.
5187   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5188 }
5189 
5190 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5191 /// limited-precision mode.
5192 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5193                           const TargetLowering &TLI) {
5194   if (Op.getValueType() == MVT::f32 &&
5195       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5196     return getLimitedPrecisionExp2(Op, dl, DAG);
5197 
5198   // No special expansion.
5199   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5200 }
5201 
5202 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5203 /// limited-precision mode with x == 10.0f.
5204 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5205                          SelectionDAG &DAG, const TargetLowering &TLI) {
5206   bool IsExp10 = false;
5207   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5208       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5209     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5210       APFloat Ten(10.0f);
5211       IsExp10 = LHSC->isExactlyValue(Ten);
5212     }
5213   }
5214 
5215   // TODO: What fast-math-flags should be set on the FMUL node?
5216   if (IsExp10) {
5217     // Put the exponent in the right bit position for later addition to the
5218     // final result:
5219     //
5220     //   #define LOG2OF10 3.3219281f
5221     //   t0 = Op * LOG2OF10;
5222     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5223                              getF32Constant(DAG, 0x40549a78, dl));
5224     return getLimitedPrecisionExp2(t0, dl, DAG);
5225   }
5226 
5227   // No special expansion.
5228   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5229 }
5230 
5231 /// ExpandPowI - Expand a llvm.powi intrinsic.
5232 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5233                           SelectionDAG &DAG) {
5234   // If RHS is a constant, we can expand this out to a multiplication tree,
5235   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5236   // optimizing for size, we only want to do this if the expansion would produce
5237   // a small number of multiplies, otherwise we do the full expansion.
5238   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5239     // Get the exponent as a positive value.
5240     unsigned Val = RHSC->getSExtValue();
5241     if ((int)Val < 0) Val = -Val;
5242 
5243     // powi(x, 0) -> 1.0
5244     if (Val == 0)
5245       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5246 
5247     bool OptForSize = DAG.shouldOptForSize();
5248     if (!OptForSize ||
5249         // If optimizing for size, don't insert too many multiplies.
5250         // This inserts up to 5 multiplies.
5251         countPopulation(Val) + Log2_32(Val) < 7) {
5252       // We use the simple binary decomposition method to generate the multiply
5253       // sequence.  There are more optimal ways to do this (for example,
5254       // powi(x,15) generates one more multiply than it should), but this has
5255       // the benefit of being both really simple and much better than a libcall.
5256       SDValue Res;  // Logically starts equal to 1.0
5257       SDValue CurSquare = LHS;
5258       // TODO: Intrinsics should have fast-math-flags that propagate to these
5259       // nodes.
5260       while (Val) {
5261         if (Val & 1) {
5262           if (Res.getNode())
5263             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5264           else
5265             Res = CurSquare;  // 1.0*CurSquare.
5266         }
5267 
5268         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5269                                 CurSquare, CurSquare);
5270         Val >>= 1;
5271       }
5272 
5273       // If the original was negative, invert the result, producing 1/(x*x*x).
5274       if (RHSC->getSExtValue() < 0)
5275         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5276                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5277       return Res;
5278     }
5279   }
5280 
5281   // Otherwise, expand to a libcall.
5282   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5283 }
5284 
5285 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5286                             SDValue LHS, SDValue RHS, SDValue Scale,
5287                             SelectionDAG &DAG, const TargetLowering &TLI) {
5288   EVT VT = LHS.getValueType();
5289   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5290   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5291   LLVMContext &Ctx = *DAG.getContext();
5292 
5293   // If the type is legal but the operation isn't, this node might survive all
5294   // the way to operation legalization. If we end up there and we do not have
5295   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5296   // node.
5297 
5298   // Coax the legalizer into expanding the node during type legalization instead
5299   // by bumping the size by one bit. This will force it to Promote, enabling the
5300   // early expansion and avoiding the need to expand later.
5301 
5302   // We don't have to do this if Scale is 0; that can always be expanded, unless
5303   // it's a saturating signed operation. Those can experience true integer
5304   // division overflow, a case which we must avoid.
5305 
5306   // FIXME: We wouldn't have to do this (or any of the early
5307   // expansion/promotion) if it was possible to expand a libcall of an
5308   // illegal type during operation legalization. But it's not, so things
5309   // get a bit hacky.
5310   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5311   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5312       (TLI.isTypeLegal(VT) ||
5313        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5314     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5315         Opcode, VT, ScaleInt);
5316     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5317       EVT PromVT;
5318       if (VT.isScalarInteger())
5319         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5320       else if (VT.isVector()) {
5321         PromVT = VT.getVectorElementType();
5322         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5323         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5324       } else
5325         llvm_unreachable("Wrong VT for DIVFIX?");
5326       if (Signed) {
5327         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5328         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5329       } else {
5330         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5331         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5332       }
5333       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5334       // For saturating operations, we need to shift up the LHS to get the
5335       // proper saturation width, and then shift down again afterwards.
5336       if (Saturating)
5337         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5338                           DAG.getConstant(1, DL, ShiftTy));
5339       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5340       if (Saturating)
5341         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5342                           DAG.getConstant(1, DL, ShiftTy));
5343       return DAG.getZExtOrTrunc(Res, DL, VT);
5344     }
5345   }
5346 
5347   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5348 }
5349 
5350 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5351 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5352 static void
5353 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5354                      const SDValue &N) {
5355   switch (N.getOpcode()) {
5356   case ISD::CopyFromReg: {
5357     SDValue Op = N.getOperand(1);
5358     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5359                       Op.getValueType().getSizeInBits());
5360     return;
5361   }
5362   case ISD::BITCAST:
5363   case ISD::AssertZext:
5364   case ISD::AssertSext:
5365   case ISD::TRUNCATE:
5366     getUnderlyingArgRegs(Regs, N.getOperand(0));
5367     return;
5368   case ISD::BUILD_PAIR:
5369   case ISD::BUILD_VECTOR:
5370   case ISD::CONCAT_VECTORS:
5371     for (SDValue Op : N->op_values())
5372       getUnderlyingArgRegs(Regs, Op);
5373     return;
5374   default:
5375     return;
5376   }
5377 }
5378 
5379 /// If the DbgValueInst is a dbg_value of a function argument, create the
5380 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5381 /// instruction selection, they will be inserted to the entry BB.
5382 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5383     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5384     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5385   const Argument *Arg = dyn_cast<Argument>(V);
5386   if (!Arg)
5387     return false;
5388 
5389   if (!IsDbgDeclare) {
5390     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5391     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5392     // the entry block.
5393     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5394     if (!IsInEntryBlock)
5395       return false;
5396 
5397     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5398     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5399     // variable that also is a param.
5400     //
5401     // Although, if we are at the top of the entry block already, we can still
5402     // emit using ArgDbgValue. This might catch some situations when the
5403     // dbg.value refers to an argument that isn't used in the entry block, so
5404     // any CopyToReg node would be optimized out and the only way to express
5405     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5406     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5407     // we should only emit as ArgDbgValue if the Variable is an argument to the
5408     // current function, and the dbg.value intrinsic is found in the entry
5409     // block.
5410     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5411         !DL->getInlinedAt();
5412     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5413     if (!IsInPrologue && !VariableIsFunctionInputArg)
5414       return false;
5415 
5416     // Here we assume that a function argument on IR level only can be used to
5417     // describe one input parameter on source level. If we for example have
5418     // source code like this
5419     //
5420     //    struct A { long x, y; };
5421     //    void foo(struct A a, long b) {
5422     //      ...
5423     //      b = a.x;
5424     //      ...
5425     //    }
5426     //
5427     // and IR like this
5428     //
5429     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5430     //  entry:
5431     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5432     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5433     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5434     //    ...
5435     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5436     //    ...
5437     //
5438     // then the last dbg.value is describing a parameter "b" using a value that
5439     // is an argument. But since we already has used %a1 to describe a parameter
5440     // we should not handle that last dbg.value here (that would result in an
5441     // incorrect hoisting of the DBG_VALUE to the function entry).
5442     // Notice that we allow one dbg.value per IR level argument, to accommodate
5443     // for the situation with fragments above.
5444     if (VariableIsFunctionInputArg) {
5445       unsigned ArgNo = Arg->getArgNo();
5446       if (ArgNo >= FuncInfo.DescribedArgs.size())
5447         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5448       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5449         return false;
5450       FuncInfo.DescribedArgs.set(ArgNo);
5451     }
5452   }
5453 
5454   MachineFunction &MF = DAG.getMachineFunction();
5455   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5456 
5457   bool IsIndirect = false;
5458   Optional<MachineOperand> Op;
5459   // Some arguments' frame index is recorded during argument lowering.
5460   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5461   if (FI != std::numeric_limits<int>::max())
5462     Op = MachineOperand::CreateFI(FI);
5463 
5464   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5465   if (!Op && N.getNode()) {
5466     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5467     Register Reg;
5468     if (ArgRegsAndSizes.size() == 1)
5469       Reg = ArgRegsAndSizes.front().first;
5470 
5471     if (Reg && Reg.isVirtual()) {
5472       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5473       Register PR = RegInfo.getLiveInPhysReg(Reg);
5474       if (PR)
5475         Reg = PR;
5476     }
5477     if (Reg) {
5478       Op = MachineOperand::CreateReg(Reg, false);
5479       IsIndirect = IsDbgDeclare;
5480     }
5481   }
5482 
5483   if (!Op && N.getNode()) {
5484     // Check if frame index is available.
5485     SDValue LCandidate = peekThroughBitcasts(N);
5486     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5487       if (FrameIndexSDNode *FINode =
5488           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5489         Op = MachineOperand::CreateFI(FINode->getIndex());
5490   }
5491 
5492   if (!Op) {
5493     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5494     auto splitMultiRegDbgValue
5495       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5496       unsigned Offset = 0;
5497       for (auto RegAndSize : SplitRegs) {
5498         // If the expression is already a fragment, the current register
5499         // offset+size might extend beyond the fragment. In this case, only
5500         // the register bits that are inside the fragment are relevant.
5501         int RegFragmentSizeInBits = RegAndSize.second;
5502         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5503           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5504           // The register is entirely outside the expression fragment,
5505           // so is irrelevant for debug info.
5506           if (Offset >= ExprFragmentSizeInBits)
5507             break;
5508           // The register is partially outside the expression fragment, only
5509           // the low bits within the fragment are relevant for debug info.
5510           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5511             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5512           }
5513         }
5514 
5515         auto FragmentExpr = DIExpression::createFragmentExpression(
5516             Expr, Offset, RegFragmentSizeInBits);
5517         Offset += RegAndSize.second;
5518         // If a valid fragment expression cannot be created, the variable's
5519         // correct value cannot be determined and so it is set as Undef.
5520         if (!FragmentExpr) {
5521           SDDbgValue *SDV = DAG.getConstantDbgValue(
5522               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5523           DAG.AddDbgValue(SDV, nullptr, false);
5524           continue;
5525         }
5526         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5527         FuncInfo.ArgDbgValues.push_back(
5528           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5529                   RegAndSize.first, Variable, *FragmentExpr));
5530       }
5531     };
5532 
5533     // Check if ValueMap has reg number.
5534     DenseMap<const Value *, unsigned>::const_iterator
5535       VMI = FuncInfo.ValueMap.find(V);
5536     if (VMI != FuncInfo.ValueMap.end()) {
5537       const auto &TLI = DAG.getTargetLoweringInfo();
5538       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5539                        V->getType(), getABIRegCopyCC(V));
5540       if (RFV.occupiesMultipleRegs()) {
5541         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5542         return true;
5543       }
5544 
5545       Op = MachineOperand::CreateReg(VMI->second, false);
5546       IsIndirect = IsDbgDeclare;
5547     } else if (ArgRegsAndSizes.size() > 1) {
5548       // This was split due to the calling convention, and no virtual register
5549       // mapping exists for the value.
5550       splitMultiRegDbgValue(ArgRegsAndSizes);
5551       return true;
5552     }
5553   }
5554 
5555   if (!Op)
5556     return false;
5557 
5558   assert(Variable->isValidLocationForIntrinsic(DL) &&
5559          "Expected inlined-at fields to agree");
5560   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5561   FuncInfo.ArgDbgValues.push_back(
5562       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5563               *Op, Variable, Expr));
5564 
5565   return true;
5566 }
5567 
5568 /// Return the appropriate SDDbgValue based on N.
5569 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5570                                              DILocalVariable *Variable,
5571                                              DIExpression *Expr,
5572                                              const DebugLoc &dl,
5573                                              unsigned DbgSDNodeOrder) {
5574   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5575     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5576     // stack slot locations.
5577     //
5578     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5579     // debug values here after optimization:
5580     //
5581     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5582     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5583     //
5584     // Both describe the direct values of their associated variables.
5585     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5586                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5587   }
5588   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5589                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5590 }
5591 
5592 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5593   switch (Intrinsic) {
5594   case Intrinsic::smul_fix:
5595     return ISD::SMULFIX;
5596   case Intrinsic::umul_fix:
5597     return ISD::UMULFIX;
5598   case Intrinsic::smul_fix_sat:
5599     return ISD::SMULFIXSAT;
5600   case Intrinsic::umul_fix_sat:
5601     return ISD::UMULFIXSAT;
5602   case Intrinsic::sdiv_fix:
5603     return ISD::SDIVFIX;
5604   case Intrinsic::udiv_fix:
5605     return ISD::UDIVFIX;
5606   case Intrinsic::sdiv_fix_sat:
5607     return ISD::SDIVFIXSAT;
5608   case Intrinsic::udiv_fix_sat:
5609     return ISD::UDIVFIXSAT;
5610   default:
5611     llvm_unreachable("Unhandled fixed point intrinsic");
5612   }
5613 }
5614 
5615 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5616                                            const char *FunctionName) {
5617   assert(FunctionName && "FunctionName must not be nullptr");
5618   SDValue Callee = DAG.getExternalSymbol(
5619       FunctionName,
5620       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5621   LowerCallTo(&I, Callee, I.isTailCall());
5622 }
5623 
5624 /// Lower the call to the specified intrinsic function.
5625 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5626                                              unsigned Intrinsic) {
5627   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5628   SDLoc sdl = getCurSDLoc();
5629   DebugLoc dl = getCurDebugLoc();
5630   SDValue Res;
5631 
5632   switch (Intrinsic) {
5633   default:
5634     // By default, turn this into a target intrinsic node.
5635     visitTargetIntrinsic(I, Intrinsic);
5636     return;
5637   case Intrinsic::vscale: {
5638     match(&I, m_VScale(DAG.getDataLayout()));
5639     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5640     setValue(&I,
5641              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5642     return;
5643   }
5644   case Intrinsic::vastart:  visitVAStart(I); return;
5645   case Intrinsic::vaend:    visitVAEnd(I); return;
5646   case Intrinsic::vacopy:   visitVACopy(I); return;
5647   case Intrinsic::returnaddress:
5648     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5649                              TLI.getPointerTy(DAG.getDataLayout()),
5650                              getValue(I.getArgOperand(0))));
5651     return;
5652   case Intrinsic::addressofreturnaddress:
5653     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5654                              TLI.getPointerTy(DAG.getDataLayout())));
5655     return;
5656   case Intrinsic::sponentry:
5657     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5658                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5659     return;
5660   case Intrinsic::frameaddress:
5661     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5662                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5663                              getValue(I.getArgOperand(0))));
5664     return;
5665   case Intrinsic::read_register: {
5666     Value *Reg = I.getArgOperand(0);
5667     SDValue Chain = getRoot();
5668     SDValue RegName =
5669         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5670     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5671     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5672       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5673     setValue(&I, Res);
5674     DAG.setRoot(Res.getValue(1));
5675     return;
5676   }
5677   case Intrinsic::write_register: {
5678     Value *Reg = I.getArgOperand(0);
5679     Value *RegValue = I.getArgOperand(1);
5680     SDValue Chain = getRoot();
5681     SDValue RegName =
5682         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5683     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5684                             RegName, getValue(RegValue)));
5685     return;
5686   }
5687   case Intrinsic::memcpy: {
5688     const auto &MCI = cast<MemCpyInst>(I);
5689     SDValue Op1 = getValue(I.getArgOperand(0));
5690     SDValue Op2 = getValue(I.getArgOperand(1));
5691     SDValue Op3 = getValue(I.getArgOperand(2));
5692     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5693     Align DstAlign = MCI.getDestAlign().valueOrOne();
5694     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5695     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5696     bool isVol = MCI.isVolatile();
5697     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5698     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5699     // node.
5700     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5701     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5702                                /* AlwaysInline */ false, isTC,
5703                                MachinePointerInfo(I.getArgOperand(0)),
5704                                MachinePointerInfo(I.getArgOperand(1)));
5705     updateDAGForMaybeTailCall(MC);
5706     return;
5707   }
5708   case Intrinsic::memcpy_inline: {
5709     const auto &MCI = cast<MemCpyInlineInst>(I);
5710     SDValue Dst = getValue(I.getArgOperand(0));
5711     SDValue Src = getValue(I.getArgOperand(1));
5712     SDValue Size = getValue(I.getArgOperand(2));
5713     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5714     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5715     Align DstAlign = MCI.getDestAlign().valueOrOne();
5716     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5717     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5718     bool isVol = MCI.isVolatile();
5719     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5720     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5721     // node.
5722     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5723                                /* AlwaysInline */ true, isTC,
5724                                MachinePointerInfo(I.getArgOperand(0)),
5725                                MachinePointerInfo(I.getArgOperand(1)));
5726     updateDAGForMaybeTailCall(MC);
5727     return;
5728   }
5729   case Intrinsic::memset: {
5730     const auto &MSI = cast<MemSetInst>(I);
5731     SDValue Op1 = getValue(I.getArgOperand(0));
5732     SDValue Op2 = getValue(I.getArgOperand(1));
5733     SDValue Op3 = getValue(I.getArgOperand(2));
5734     // @llvm.memset defines 0 and 1 to both mean no alignment.
5735     Align Alignment = MSI.getDestAlign().valueOrOne();
5736     bool isVol = MSI.isVolatile();
5737     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5738     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5739     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5740                                MachinePointerInfo(I.getArgOperand(0)));
5741     updateDAGForMaybeTailCall(MS);
5742     return;
5743   }
5744   case Intrinsic::memmove: {
5745     const auto &MMI = cast<MemMoveInst>(I);
5746     SDValue Op1 = getValue(I.getArgOperand(0));
5747     SDValue Op2 = getValue(I.getArgOperand(1));
5748     SDValue Op3 = getValue(I.getArgOperand(2));
5749     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5750     Align DstAlign = MMI.getDestAlign().valueOrOne();
5751     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5752     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5753     bool isVol = MMI.isVolatile();
5754     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5755     // FIXME: Support passing different dest/src alignments to the memmove DAG
5756     // node.
5757     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5758     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5759                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5760                                 MachinePointerInfo(I.getArgOperand(1)));
5761     updateDAGForMaybeTailCall(MM);
5762     return;
5763   }
5764   case Intrinsic::memcpy_element_unordered_atomic: {
5765     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5766     SDValue Dst = getValue(MI.getRawDest());
5767     SDValue Src = getValue(MI.getRawSource());
5768     SDValue Length = getValue(MI.getLength());
5769 
5770     unsigned DstAlign = MI.getDestAlignment();
5771     unsigned SrcAlign = MI.getSourceAlignment();
5772     Type *LengthTy = MI.getLength()->getType();
5773     unsigned ElemSz = MI.getElementSizeInBytes();
5774     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5775     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5776                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5777                                      MachinePointerInfo(MI.getRawDest()),
5778                                      MachinePointerInfo(MI.getRawSource()));
5779     updateDAGForMaybeTailCall(MC);
5780     return;
5781   }
5782   case Intrinsic::memmove_element_unordered_atomic: {
5783     auto &MI = cast<AtomicMemMoveInst>(I);
5784     SDValue Dst = getValue(MI.getRawDest());
5785     SDValue Src = getValue(MI.getRawSource());
5786     SDValue Length = getValue(MI.getLength());
5787 
5788     unsigned DstAlign = MI.getDestAlignment();
5789     unsigned SrcAlign = MI.getSourceAlignment();
5790     Type *LengthTy = MI.getLength()->getType();
5791     unsigned ElemSz = MI.getElementSizeInBytes();
5792     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5793     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5794                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5795                                       MachinePointerInfo(MI.getRawDest()),
5796                                       MachinePointerInfo(MI.getRawSource()));
5797     updateDAGForMaybeTailCall(MC);
5798     return;
5799   }
5800   case Intrinsic::memset_element_unordered_atomic: {
5801     auto &MI = cast<AtomicMemSetInst>(I);
5802     SDValue Dst = getValue(MI.getRawDest());
5803     SDValue Val = getValue(MI.getValue());
5804     SDValue Length = getValue(MI.getLength());
5805 
5806     unsigned DstAlign = MI.getDestAlignment();
5807     Type *LengthTy = MI.getLength()->getType();
5808     unsigned ElemSz = MI.getElementSizeInBytes();
5809     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5810     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5811                                      LengthTy, ElemSz, isTC,
5812                                      MachinePointerInfo(MI.getRawDest()));
5813     updateDAGForMaybeTailCall(MC);
5814     return;
5815   }
5816   case Intrinsic::dbg_addr:
5817   case Intrinsic::dbg_declare: {
5818     const auto &DI = cast<DbgVariableIntrinsic>(I);
5819     DILocalVariable *Variable = DI.getVariable();
5820     DIExpression *Expression = DI.getExpression();
5821     dropDanglingDebugInfo(Variable, Expression);
5822     assert(Variable && "Missing variable");
5823     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5824                       << "\n");
5825     // Check if address has undef value.
5826     const Value *Address = DI.getVariableLocation();
5827     if (!Address || isa<UndefValue>(Address) ||
5828         (Address->use_empty() && !isa<Argument>(Address))) {
5829       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5830                         << " (bad/undef/unused-arg address)\n");
5831       return;
5832     }
5833 
5834     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5835 
5836     // Check if this variable can be described by a frame index, typically
5837     // either as a static alloca or a byval parameter.
5838     int FI = std::numeric_limits<int>::max();
5839     if (const auto *AI =
5840             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5841       if (AI->isStaticAlloca()) {
5842         auto I = FuncInfo.StaticAllocaMap.find(AI);
5843         if (I != FuncInfo.StaticAllocaMap.end())
5844           FI = I->second;
5845       }
5846     } else if (const auto *Arg = dyn_cast<Argument>(
5847                    Address->stripInBoundsConstantOffsets())) {
5848       FI = FuncInfo.getArgumentFrameIndex(Arg);
5849     }
5850 
5851     // llvm.dbg.addr is control dependent and always generates indirect
5852     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5853     // the MachineFunction variable table.
5854     if (FI != std::numeric_limits<int>::max()) {
5855       if (Intrinsic == Intrinsic::dbg_addr) {
5856         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5857             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5858         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5859       } else {
5860         LLVM_DEBUG(dbgs() << "Skipping " << DI
5861                           << " (variable info stashed in MF side table)\n");
5862       }
5863       return;
5864     }
5865 
5866     SDValue &N = NodeMap[Address];
5867     if (!N.getNode() && isa<Argument>(Address))
5868       // Check unused arguments map.
5869       N = UnusedArgNodeMap[Address];
5870     SDDbgValue *SDV;
5871     if (N.getNode()) {
5872       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5873         Address = BCI->getOperand(0);
5874       // Parameters are handled specially.
5875       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5876       if (isParameter && FINode) {
5877         // Byval parameter. We have a frame index at this point.
5878         SDV =
5879             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5880                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5881       } else if (isa<Argument>(Address)) {
5882         // Address is an argument, so try to emit its dbg value using
5883         // virtual register info from the FuncInfo.ValueMap.
5884         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5885         return;
5886       } else {
5887         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5888                               true, dl, SDNodeOrder);
5889       }
5890       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5891     } else {
5892       // If Address is an argument then try to emit its dbg value using
5893       // virtual register info from the FuncInfo.ValueMap.
5894       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5895                                     N)) {
5896         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5897                           << " (could not emit func-arg dbg_value)\n");
5898       }
5899     }
5900     return;
5901   }
5902   case Intrinsic::dbg_label: {
5903     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5904     DILabel *Label = DI.getLabel();
5905     assert(Label && "Missing label");
5906 
5907     SDDbgLabel *SDV;
5908     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5909     DAG.AddDbgLabel(SDV);
5910     return;
5911   }
5912   case Intrinsic::dbg_value: {
5913     const DbgValueInst &DI = cast<DbgValueInst>(I);
5914     assert(DI.getVariable() && "Missing variable");
5915 
5916     DILocalVariable *Variable = DI.getVariable();
5917     DIExpression *Expression = DI.getExpression();
5918     dropDanglingDebugInfo(Variable, Expression);
5919     const Value *V = DI.getValue();
5920     if (!V)
5921       return;
5922 
5923     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5924         SDNodeOrder))
5925       return;
5926 
5927     // TODO: Dangling debug info will eventually either be resolved or produce
5928     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5929     // between the original dbg.value location and its resolved DBG_VALUE, which
5930     // we should ideally fill with an extra Undef DBG_VALUE.
5931 
5932     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5933     return;
5934   }
5935 
5936   case Intrinsic::eh_typeid_for: {
5937     // Find the type id for the given typeinfo.
5938     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5939     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5940     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5941     setValue(&I, Res);
5942     return;
5943   }
5944 
5945   case Intrinsic::eh_return_i32:
5946   case Intrinsic::eh_return_i64:
5947     DAG.getMachineFunction().setCallsEHReturn(true);
5948     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5949                             MVT::Other,
5950                             getControlRoot(),
5951                             getValue(I.getArgOperand(0)),
5952                             getValue(I.getArgOperand(1))));
5953     return;
5954   case Intrinsic::eh_unwind_init:
5955     DAG.getMachineFunction().setCallsUnwindInit(true);
5956     return;
5957   case Intrinsic::eh_dwarf_cfa:
5958     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5959                              TLI.getPointerTy(DAG.getDataLayout()),
5960                              getValue(I.getArgOperand(0))));
5961     return;
5962   case Intrinsic::eh_sjlj_callsite: {
5963     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5964     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5965     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5966     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5967 
5968     MMI.setCurrentCallSite(CI->getZExtValue());
5969     return;
5970   }
5971   case Intrinsic::eh_sjlj_functioncontext: {
5972     // Get and store the index of the function context.
5973     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5974     AllocaInst *FnCtx =
5975       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5976     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5977     MFI.setFunctionContextIndex(FI);
5978     return;
5979   }
5980   case Intrinsic::eh_sjlj_setjmp: {
5981     SDValue Ops[2];
5982     Ops[0] = getRoot();
5983     Ops[1] = getValue(I.getArgOperand(0));
5984     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5985                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5986     setValue(&I, Op.getValue(0));
5987     DAG.setRoot(Op.getValue(1));
5988     return;
5989   }
5990   case Intrinsic::eh_sjlj_longjmp:
5991     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5992                             getRoot(), getValue(I.getArgOperand(0))));
5993     return;
5994   case Intrinsic::eh_sjlj_setup_dispatch:
5995     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5996                             getRoot()));
5997     return;
5998   case Intrinsic::masked_gather:
5999     visitMaskedGather(I);
6000     return;
6001   case Intrinsic::masked_load:
6002     visitMaskedLoad(I);
6003     return;
6004   case Intrinsic::masked_scatter:
6005     visitMaskedScatter(I);
6006     return;
6007   case Intrinsic::masked_store:
6008     visitMaskedStore(I);
6009     return;
6010   case Intrinsic::masked_expandload:
6011     visitMaskedLoad(I, true /* IsExpanding */);
6012     return;
6013   case Intrinsic::masked_compressstore:
6014     visitMaskedStore(I, true /* IsCompressing */);
6015     return;
6016   case Intrinsic::powi:
6017     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6018                             getValue(I.getArgOperand(1)), DAG));
6019     return;
6020   case Intrinsic::log:
6021     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6022     return;
6023   case Intrinsic::log2:
6024     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6025     return;
6026   case Intrinsic::log10:
6027     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6028     return;
6029   case Intrinsic::exp:
6030     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6031     return;
6032   case Intrinsic::exp2:
6033     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6034     return;
6035   case Intrinsic::pow:
6036     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6037                            getValue(I.getArgOperand(1)), DAG, TLI));
6038     return;
6039   case Intrinsic::sqrt:
6040   case Intrinsic::fabs:
6041   case Intrinsic::sin:
6042   case Intrinsic::cos:
6043   case Intrinsic::floor:
6044   case Intrinsic::ceil:
6045   case Intrinsic::trunc:
6046   case Intrinsic::rint:
6047   case Intrinsic::nearbyint:
6048   case Intrinsic::round:
6049   case Intrinsic::canonicalize: {
6050     unsigned Opcode;
6051     switch (Intrinsic) {
6052     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6053     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6054     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6055     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6056     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6057     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6058     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6059     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6060     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6061     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6062     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6063     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6064     }
6065 
6066     setValue(&I, DAG.getNode(Opcode, sdl,
6067                              getValue(I.getArgOperand(0)).getValueType(),
6068                              getValue(I.getArgOperand(0))));
6069     return;
6070   }
6071   case Intrinsic::lround:
6072   case Intrinsic::llround:
6073   case Intrinsic::lrint:
6074   case Intrinsic::llrint: {
6075     unsigned Opcode;
6076     switch (Intrinsic) {
6077     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6078     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6079     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6080     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6081     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6082     }
6083 
6084     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6085     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6086                              getValue(I.getArgOperand(0))));
6087     return;
6088   }
6089   case Intrinsic::minnum:
6090     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6091                              getValue(I.getArgOperand(0)).getValueType(),
6092                              getValue(I.getArgOperand(0)),
6093                              getValue(I.getArgOperand(1))));
6094     return;
6095   case Intrinsic::maxnum:
6096     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6097                              getValue(I.getArgOperand(0)).getValueType(),
6098                              getValue(I.getArgOperand(0)),
6099                              getValue(I.getArgOperand(1))));
6100     return;
6101   case Intrinsic::minimum:
6102     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6103                              getValue(I.getArgOperand(0)).getValueType(),
6104                              getValue(I.getArgOperand(0)),
6105                              getValue(I.getArgOperand(1))));
6106     return;
6107   case Intrinsic::maximum:
6108     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6109                              getValue(I.getArgOperand(0)).getValueType(),
6110                              getValue(I.getArgOperand(0)),
6111                              getValue(I.getArgOperand(1))));
6112     return;
6113   case Intrinsic::copysign:
6114     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6115                              getValue(I.getArgOperand(0)).getValueType(),
6116                              getValue(I.getArgOperand(0)),
6117                              getValue(I.getArgOperand(1))));
6118     return;
6119   case Intrinsic::fma:
6120     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6121                              getValue(I.getArgOperand(0)).getValueType(),
6122                              getValue(I.getArgOperand(0)),
6123                              getValue(I.getArgOperand(1)),
6124                              getValue(I.getArgOperand(2))));
6125     return;
6126 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6127   case Intrinsic::INTRINSIC:
6128 #include "llvm/IR/ConstrainedOps.def"
6129     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6130     return;
6131   case Intrinsic::fmuladd: {
6132     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6133     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6134         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6135       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6136                                getValue(I.getArgOperand(0)).getValueType(),
6137                                getValue(I.getArgOperand(0)),
6138                                getValue(I.getArgOperand(1)),
6139                                getValue(I.getArgOperand(2))));
6140     } else {
6141       // TODO: Intrinsic calls should have fast-math-flags.
6142       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6143                                 getValue(I.getArgOperand(0)).getValueType(),
6144                                 getValue(I.getArgOperand(0)),
6145                                 getValue(I.getArgOperand(1)));
6146       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6147                                 getValue(I.getArgOperand(0)).getValueType(),
6148                                 Mul,
6149                                 getValue(I.getArgOperand(2)));
6150       setValue(&I, Add);
6151     }
6152     return;
6153   }
6154   case Intrinsic::convert_to_fp16:
6155     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6156                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6157                                          getValue(I.getArgOperand(0)),
6158                                          DAG.getTargetConstant(0, sdl,
6159                                                                MVT::i32))));
6160     return;
6161   case Intrinsic::convert_from_fp16:
6162     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6163                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6164                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6165                                          getValue(I.getArgOperand(0)))));
6166     return;
6167   case Intrinsic::pcmarker: {
6168     SDValue Tmp = getValue(I.getArgOperand(0));
6169     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6170     return;
6171   }
6172   case Intrinsic::readcyclecounter: {
6173     SDValue Op = getRoot();
6174     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6175                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6176     setValue(&I, Res);
6177     DAG.setRoot(Res.getValue(1));
6178     return;
6179   }
6180   case Intrinsic::bitreverse:
6181     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6182                              getValue(I.getArgOperand(0)).getValueType(),
6183                              getValue(I.getArgOperand(0))));
6184     return;
6185   case Intrinsic::bswap:
6186     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6187                              getValue(I.getArgOperand(0)).getValueType(),
6188                              getValue(I.getArgOperand(0))));
6189     return;
6190   case Intrinsic::cttz: {
6191     SDValue Arg = getValue(I.getArgOperand(0));
6192     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6193     EVT Ty = Arg.getValueType();
6194     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6195                              sdl, Ty, Arg));
6196     return;
6197   }
6198   case Intrinsic::ctlz: {
6199     SDValue Arg = getValue(I.getArgOperand(0));
6200     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6201     EVT Ty = Arg.getValueType();
6202     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6203                              sdl, Ty, Arg));
6204     return;
6205   }
6206   case Intrinsic::ctpop: {
6207     SDValue Arg = getValue(I.getArgOperand(0));
6208     EVT Ty = Arg.getValueType();
6209     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6210     return;
6211   }
6212   case Intrinsic::fshl:
6213   case Intrinsic::fshr: {
6214     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6215     SDValue X = getValue(I.getArgOperand(0));
6216     SDValue Y = getValue(I.getArgOperand(1));
6217     SDValue Z = getValue(I.getArgOperand(2));
6218     EVT VT = X.getValueType();
6219     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6220     SDValue Zero = DAG.getConstant(0, sdl, VT);
6221     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6222 
6223     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6224     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6225       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6226       return;
6227     }
6228 
6229     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6230     // avoid the select that is necessary in the general case to filter out
6231     // the 0-shift possibility that leads to UB.
6232     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6233       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6234       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6235         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6236         return;
6237       }
6238 
6239       // Some targets only rotate one way. Try the opposite direction.
6240       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6241       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6242         // Negate the shift amount because it is safe to ignore the high bits.
6243         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6244         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6245         return;
6246       }
6247 
6248       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6249       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6250       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6251       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6252       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6253       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6254       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6255       return;
6256     }
6257 
6258     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6259     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6260     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6261     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6262     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6263     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6264 
6265     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6266     // and that is undefined. We must compare and select to avoid UB.
6267     EVT CCVT = MVT::i1;
6268     if (VT.isVector())
6269       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6270 
6271     // For fshl, 0-shift returns the 1st arg (X).
6272     // For fshr, 0-shift returns the 2nd arg (Y).
6273     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6274     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6275     return;
6276   }
6277   case Intrinsic::sadd_sat: {
6278     SDValue Op1 = getValue(I.getArgOperand(0));
6279     SDValue Op2 = getValue(I.getArgOperand(1));
6280     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6281     return;
6282   }
6283   case Intrinsic::uadd_sat: {
6284     SDValue Op1 = getValue(I.getArgOperand(0));
6285     SDValue Op2 = getValue(I.getArgOperand(1));
6286     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6287     return;
6288   }
6289   case Intrinsic::ssub_sat: {
6290     SDValue Op1 = getValue(I.getArgOperand(0));
6291     SDValue Op2 = getValue(I.getArgOperand(1));
6292     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6293     return;
6294   }
6295   case Intrinsic::usub_sat: {
6296     SDValue Op1 = getValue(I.getArgOperand(0));
6297     SDValue Op2 = getValue(I.getArgOperand(1));
6298     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6299     return;
6300   }
6301   case Intrinsic::smul_fix:
6302   case Intrinsic::umul_fix:
6303   case Intrinsic::smul_fix_sat:
6304   case Intrinsic::umul_fix_sat: {
6305     SDValue Op1 = getValue(I.getArgOperand(0));
6306     SDValue Op2 = getValue(I.getArgOperand(1));
6307     SDValue Op3 = getValue(I.getArgOperand(2));
6308     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6309                              Op1.getValueType(), Op1, Op2, Op3));
6310     return;
6311   }
6312   case Intrinsic::sdiv_fix:
6313   case Intrinsic::udiv_fix:
6314   case Intrinsic::sdiv_fix_sat:
6315   case Intrinsic::udiv_fix_sat: {
6316     SDValue Op1 = getValue(I.getArgOperand(0));
6317     SDValue Op2 = getValue(I.getArgOperand(1));
6318     SDValue Op3 = getValue(I.getArgOperand(2));
6319     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6320                               Op1, Op2, Op3, DAG, TLI));
6321     return;
6322   }
6323   case Intrinsic::stacksave: {
6324     SDValue Op = getRoot();
6325     Res = DAG.getNode(
6326         ISD::STACKSAVE, sdl,
6327         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6328     setValue(&I, Res);
6329     DAG.setRoot(Res.getValue(1));
6330     return;
6331   }
6332   case Intrinsic::stackrestore:
6333     Res = getValue(I.getArgOperand(0));
6334     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6335     return;
6336   case Intrinsic::get_dynamic_area_offset: {
6337     SDValue Op = getRoot();
6338     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6339     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6340     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6341     // target.
6342     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6343       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6344                          " intrinsic!");
6345     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6346                       Op);
6347     DAG.setRoot(Op);
6348     setValue(&I, Res);
6349     return;
6350   }
6351   case Intrinsic::stackguard: {
6352     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6353     MachineFunction &MF = DAG.getMachineFunction();
6354     const Module &M = *MF.getFunction().getParent();
6355     SDValue Chain = getRoot();
6356     if (TLI.useLoadStackGuardNode()) {
6357       Res = getLoadStackGuard(DAG, sdl, Chain);
6358     } else {
6359       const Value *Global = TLI.getSDagStackGuard(M);
6360       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6361       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6362                         MachinePointerInfo(Global, 0), Align,
6363                         MachineMemOperand::MOVolatile);
6364     }
6365     if (TLI.useStackGuardXorFP())
6366       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6367     DAG.setRoot(Chain);
6368     setValue(&I, Res);
6369     return;
6370   }
6371   case Intrinsic::stackprotector: {
6372     // Emit code into the DAG to store the stack guard onto the stack.
6373     MachineFunction &MF = DAG.getMachineFunction();
6374     MachineFrameInfo &MFI = MF.getFrameInfo();
6375     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6376     SDValue Src, Chain = getRoot();
6377 
6378     if (TLI.useLoadStackGuardNode())
6379       Src = getLoadStackGuard(DAG, sdl, Chain);
6380     else
6381       Src = getValue(I.getArgOperand(0));   // The guard's value.
6382 
6383     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6384 
6385     int FI = FuncInfo.StaticAllocaMap[Slot];
6386     MFI.setStackProtectorIndex(FI);
6387 
6388     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6389 
6390     // Store the stack protector onto the stack.
6391     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6392                                                  DAG.getMachineFunction(), FI),
6393                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6394     setValue(&I, Res);
6395     DAG.setRoot(Res);
6396     return;
6397   }
6398   case Intrinsic::objectsize:
6399     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6400 
6401   case Intrinsic::is_constant:
6402     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6403 
6404   case Intrinsic::annotation:
6405   case Intrinsic::ptr_annotation:
6406   case Intrinsic::launder_invariant_group:
6407   case Intrinsic::strip_invariant_group:
6408     // Drop the intrinsic, but forward the value
6409     setValue(&I, getValue(I.getOperand(0)));
6410     return;
6411   case Intrinsic::assume:
6412   case Intrinsic::var_annotation:
6413   case Intrinsic::sideeffect:
6414     // Discard annotate attributes, assumptions, and artificial side-effects.
6415     return;
6416 
6417   case Intrinsic::codeview_annotation: {
6418     // Emit a label associated with this metadata.
6419     MachineFunction &MF = DAG.getMachineFunction();
6420     MCSymbol *Label =
6421         MF.getMMI().getContext().createTempSymbol("annotation", true);
6422     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6423     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6424     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6425     DAG.setRoot(Res);
6426     return;
6427   }
6428 
6429   case Intrinsic::init_trampoline: {
6430     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6431 
6432     SDValue Ops[6];
6433     Ops[0] = getRoot();
6434     Ops[1] = getValue(I.getArgOperand(0));
6435     Ops[2] = getValue(I.getArgOperand(1));
6436     Ops[3] = getValue(I.getArgOperand(2));
6437     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6438     Ops[5] = DAG.getSrcValue(F);
6439 
6440     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6441 
6442     DAG.setRoot(Res);
6443     return;
6444   }
6445   case Intrinsic::adjust_trampoline:
6446     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6447                              TLI.getPointerTy(DAG.getDataLayout()),
6448                              getValue(I.getArgOperand(0))));
6449     return;
6450   case Intrinsic::gcroot: {
6451     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6452            "only valid in functions with gc specified, enforced by Verifier");
6453     assert(GFI && "implied by previous");
6454     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6455     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6456 
6457     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6458     GFI->addStackRoot(FI->getIndex(), TypeMap);
6459     return;
6460   }
6461   case Intrinsic::gcread:
6462   case Intrinsic::gcwrite:
6463     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6464   case Intrinsic::flt_rounds:
6465     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6466     setValue(&I, Res);
6467     DAG.setRoot(Res.getValue(1));
6468     return;
6469 
6470   case Intrinsic::expect:
6471     // Just replace __builtin_expect(exp, c) with EXP.
6472     setValue(&I, getValue(I.getArgOperand(0)));
6473     return;
6474 
6475   case Intrinsic::debugtrap:
6476   case Intrinsic::trap: {
6477     StringRef TrapFuncName =
6478         I.getAttributes()
6479             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6480             .getValueAsString();
6481     if (TrapFuncName.empty()) {
6482       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6483         ISD::TRAP : ISD::DEBUGTRAP;
6484       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6485       return;
6486     }
6487     TargetLowering::ArgListTy Args;
6488 
6489     TargetLowering::CallLoweringInfo CLI(DAG);
6490     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6491         CallingConv::C, I.getType(),
6492         DAG.getExternalSymbol(TrapFuncName.data(),
6493                               TLI.getPointerTy(DAG.getDataLayout())),
6494         std::move(Args));
6495 
6496     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6497     DAG.setRoot(Result.second);
6498     return;
6499   }
6500 
6501   case Intrinsic::uadd_with_overflow:
6502   case Intrinsic::sadd_with_overflow:
6503   case Intrinsic::usub_with_overflow:
6504   case Intrinsic::ssub_with_overflow:
6505   case Intrinsic::umul_with_overflow:
6506   case Intrinsic::smul_with_overflow: {
6507     ISD::NodeType Op;
6508     switch (Intrinsic) {
6509     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6510     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6511     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6512     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6513     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6514     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6515     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6516     }
6517     SDValue Op1 = getValue(I.getArgOperand(0));
6518     SDValue Op2 = getValue(I.getArgOperand(1));
6519 
6520     EVT ResultVT = Op1.getValueType();
6521     EVT OverflowVT = MVT::i1;
6522     if (ResultVT.isVector())
6523       OverflowVT = EVT::getVectorVT(
6524           *Context, OverflowVT, ResultVT.getVectorNumElements());
6525 
6526     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6527     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6528     return;
6529   }
6530   case Intrinsic::prefetch: {
6531     SDValue Ops[5];
6532     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6533     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6534     Ops[0] = DAG.getRoot();
6535     Ops[1] = getValue(I.getArgOperand(0));
6536     Ops[2] = getValue(I.getArgOperand(1));
6537     Ops[3] = getValue(I.getArgOperand(2));
6538     Ops[4] = getValue(I.getArgOperand(3));
6539     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6540                                              DAG.getVTList(MVT::Other), Ops,
6541                                              EVT::getIntegerVT(*Context, 8),
6542                                              MachinePointerInfo(I.getArgOperand(0)),
6543                                              0, /* align */
6544                                              Flags);
6545 
6546     // Chain the prefetch in parallell with any pending loads, to stay out of
6547     // the way of later optimizations.
6548     PendingLoads.push_back(Result);
6549     Result = getRoot();
6550     DAG.setRoot(Result);
6551     return;
6552   }
6553   case Intrinsic::lifetime_start:
6554   case Intrinsic::lifetime_end: {
6555     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6556     // Stack coloring is not enabled in O0, discard region information.
6557     if (TM.getOptLevel() == CodeGenOpt::None)
6558       return;
6559 
6560     const int64_t ObjectSize =
6561         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6562     Value *const ObjectPtr = I.getArgOperand(1);
6563     SmallVector<const Value *, 4> Allocas;
6564     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6565 
6566     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6567            E = Allocas.end(); Object != E; ++Object) {
6568       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6569 
6570       // Could not find an Alloca.
6571       if (!LifetimeObject)
6572         continue;
6573 
6574       // First check that the Alloca is static, otherwise it won't have a
6575       // valid frame index.
6576       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6577       if (SI == FuncInfo.StaticAllocaMap.end())
6578         return;
6579 
6580       const int FrameIndex = SI->second;
6581       int64_t Offset;
6582       if (GetPointerBaseWithConstantOffset(
6583               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6584         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6585       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6586                                 Offset);
6587       DAG.setRoot(Res);
6588     }
6589     return;
6590   }
6591   case Intrinsic::invariant_start:
6592     // Discard region information.
6593     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6594     return;
6595   case Intrinsic::invariant_end:
6596     // Discard region information.
6597     return;
6598   case Intrinsic::clear_cache:
6599     /// FunctionName may be null.
6600     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6601       lowerCallToExternalSymbol(I, FunctionName);
6602     return;
6603   case Intrinsic::donothing:
6604     // ignore
6605     return;
6606   case Intrinsic::experimental_stackmap:
6607     visitStackmap(I);
6608     return;
6609   case Intrinsic::experimental_patchpoint_void:
6610   case Intrinsic::experimental_patchpoint_i64:
6611     visitPatchpoint(&I);
6612     return;
6613   case Intrinsic::experimental_gc_statepoint:
6614     LowerStatepoint(ImmutableStatepoint(&I));
6615     return;
6616   case Intrinsic::experimental_gc_result:
6617     visitGCResult(cast<GCResultInst>(I));
6618     return;
6619   case Intrinsic::experimental_gc_relocate:
6620     visitGCRelocate(cast<GCRelocateInst>(I));
6621     return;
6622   case Intrinsic::instrprof_increment:
6623     llvm_unreachable("instrprof failed to lower an increment");
6624   case Intrinsic::instrprof_value_profile:
6625     llvm_unreachable("instrprof failed to lower a value profiling call");
6626   case Intrinsic::localescape: {
6627     MachineFunction &MF = DAG.getMachineFunction();
6628     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6629 
6630     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6631     // is the same on all targets.
6632     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6633       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6634       if (isa<ConstantPointerNull>(Arg))
6635         continue; // Skip null pointers. They represent a hole in index space.
6636       AllocaInst *Slot = cast<AllocaInst>(Arg);
6637       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6638              "can only escape static allocas");
6639       int FI = FuncInfo.StaticAllocaMap[Slot];
6640       MCSymbol *FrameAllocSym =
6641           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6642               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6643       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6644               TII->get(TargetOpcode::LOCAL_ESCAPE))
6645           .addSym(FrameAllocSym)
6646           .addFrameIndex(FI);
6647     }
6648 
6649     return;
6650   }
6651 
6652   case Intrinsic::localrecover: {
6653     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6654     MachineFunction &MF = DAG.getMachineFunction();
6655     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6656 
6657     // Get the symbol that defines the frame offset.
6658     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6659     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6660     unsigned IdxVal =
6661         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6662     MCSymbol *FrameAllocSym =
6663         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6664             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6665 
6666     // Create a MCSymbol for the label to avoid any target lowering
6667     // that would make this PC relative.
6668     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6669     SDValue OffsetVal =
6670         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6671 
6672     // Add the offset to the FP.
6673     Value *FP = I.getArgOperand(1);
6674     SDValue FPVal = getValue(FP);
6675     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6676     setValue(&I, Add);
6677 
6678     return;
6679   }
6680 
6681   case Intrinsic::eh_exceptionpointer:
6682   case Intrinsic::eh_exceptioncode: {
6683     // Get the exception pointer vreg, copy from it, and resize it to fit.
6684     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6685     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6686     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6687     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6688     SDValue N =
6689         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6690     if (Intrinsic == Intrinsic::eh_exceptioncode)
6691       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6692     setValue(&I, N);
6693     return;
6694   }
6695   case Intrinsic::xray_customevent: {
6696     // Here we want to make sure that the intrinsic behaves as if it has a
6697     // specific calling convention, and only for x86_64.
6698     // FIXME: Support other platforms later.
6699     const auto &Triple = DAG.getTarget().getTargetTriple();
6700     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6701       return;
6702 
6703     SDLoc DL = getCurSDLoc();
6704     SmallVector<SDValue, 8> Ops;
6705 
6706     // We want to say that we always want the arguments in registers.
6707     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6708     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6709     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6710     SDValue Chain = getRoot();
6711     Ops.push_back(LogEntryVal);
6712     Ops.push_back(StrSizeVal);
6713     Ops.push_back(Chain);
6714 
6715     // We need to enforce the calling convention for the callsite, so that
6716     // argument ordering is enforced correctly, and that register allocation can
6717     // see that some registers may be assumed clobbered and have to preserve
6718     // them across calls to the intrinsic.
6719     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6720                                            DL, NodeTys, Ops);
6721     SDValue patchableNode = SDValue(MN, 0);
6722     DAG.setRoot(patchableNode);
6723     setValue(&I, patchableNode);
6724     return;
6725   }
6726   case Intrinsic::xray_typedevent: {
6727     // Here we want to make sure that the intrinsic behaves as if it has a
6728     // specific calling convention, and only for x86_64.
6729     // FIXME: Support other platforms later.
6730     const auto &Triple = DAG.getTarget().getTargetTriple();
6731     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6732       return;
6733 
6734     SDLoc DL = getCurSDLoc();
6735     SmallVector<SDValue, 8> Ops;
6736 
6737     // We want to say that we always want the arguments in registers.
6738     // It's unclear to me how manipulating the selection DAG here forces callers
6739     // to provide arguments in registers instead of on the stack.
6740     SDValue LogTypeId = getValue(I.getArgOperand(0));
6741     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6742     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6743     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6744     SDValue Chain = getRoot();
6745     Ops.push_back(LogTypeId);
6746     Ops.push_back(LogEntryVal);
6747     Ops.push_back(StrSizeVal);
6748     Ops.push_back(Chain);
6749 
6750     // We need to enforce the calling convention for the callsite, so that
6751     // argument ordering is enforced correctly, and that register allocation can
6752     // see that some registers may be assumed clobbered and have to preserve
6753     // them across calls to the intrinsic.
6754     MachineSDNode *MN = DAG.getMachineNode(
6755         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6756     SDValue patchableNode = SDValue(MN, 0);
6757     DAG.setRoot(patchableNode);
6758     setValue(&I, patchableNode);
6759     return;
6760   }
6761   case Intrinsic::experimental_deoptimize:
6762     LowerDeoptimizeCall(&I);
6763     return;
6764 
6765   case Intrinsic::experimental_vector_reduce_v2_fadd:
6766   case Intrinsic::experimental_vector_reduce_v2_fmul:
6767   case Intrinsic::experimental_vector_reduce_add:
6768   case Intrinsic::experimental_vector_reduce_mul:
6769   case Intrinsic::experimental_vector_reduce_and:
6770   case Intrinsic::experimental_vector_reduce_or:
6771   case Intrinsic::experimental_vector_reduce_xor:
6772   case Intrinsic::experimental_vector_reduce_smax:
6773   case Intrinsic::experimental_vector_reduce_smin:
6774   case Intrinsic::experimental_vector_reduce_umax:
6775   case Intrinsic::experimental_vector_reduce_umin:
6776   case Intrinsic::experimental_vector_reduce_fmax:
6777   case Intrinsic::experimental_vector_reduce_fmin:
6778     visitVectorReduce(I, Intrinsic);
6779     return;
6780 
6781   case Intrinsic::icall_branch_funnel: {
6782     SmallVector<SDValue, 16> Ops;
6783     Ops.push_back(getValue(I.getArgOperand(0)));
6784 
6785     int64_t Offset;
6786     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6787         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6788     if (!Base)
6789       report_fatal_error(
6790           "llvm.icall.branch.funnel operand must be a GlobalValue");
6791     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6792 
6793     struct BranchFunnelTarget {
6794       int64_t Offset;
6795       SDValue Target;
6796     };
6797     SmallVector<BranchFunnelTarget, 8> Targets;
6798 
6799     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6800       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6801           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6802       if (ElemBase != Base)
6803         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6804                            "to the same GlobalValue");
6805 
6806       SDValue Val = getValue(I.getArgOperand(Op + 1));
6807       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6808       if (!GA)
6809         report_fatal_error(
6810             "llvm.icall.branch.funnel operand must be a GlobalValue");
6811       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6812                                      GA->getGlobal(), getCurSDLoc(),
6813                                      Val.getValueType(), GA->getOffset())});
6814     }
6815     llvm::sort(Targets,
6816                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6817                  return T1.Offset < T2.Offset;
6818                });
6819 
6820     for (auto &T : Targets) {
6821       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6822       Ops.push_back(T.Target);
6823     }
6824 
6825     Ops.push_back(DAG.getRoot()); // Chain
6826     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6827                                  getCurSDLoc(), MVT::Other, Ops),
6828               0);
6829     DAG.setRoot(N);
6830     setValue(&I, N);
6831     HasTailCall = true;
6832     return;
6833   }
6834 
6835   case Intrinsic::wasm_landingpad_index:
6836     // Information this intrinsic contained has been transferred to
6837     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6838     // delete it now.
6839     return;
6840 
6841   case Intrinsic::aarch64_settag:
6842   case Intrinsic::aarch64_settag_zero: {
6843     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6844     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6845     SDValue Val = TSI.EmitTargetCodeForSetTag(
6846         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6847         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6848         ZeroMemory);
6849     DAG.setRoot(Val);
6850     setValue(&I, Val);
6851     return;
6852   }
6853   case Intrinsic::ptrmask: {
6854     SDValue Ptr = getValue(I.getOperand(0));
6855     SDValue Const = getValue(I.getOperand(1));
6856 
6857     EVT DestVT =
6858         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6859 
6860     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6861                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6862     return;
6863   }
6864   }
6865 }
6866 
6867 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6868     const ConstrainedFPIntrinsic &FPI) {
6869   SDLoc sdl = getCurSDLoc();
6870 
6871   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6872   SmallVector<EVT, 4> ValueVTs;
6873   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6874   ValueVTs.push_back(MVT::Other); // Out chain
6875 
6876   // We do not need to serialize constrained FP intrinsics against
6877   // each other or against (nonvolatile) loads, so they can be
6878   // chained like loads.
6879   SDValue Chain = DAG.getRoot();
6880   SmallVector<SDValue, 4> Opers;
6881   Opers.push_back(Chain);
6882   if (FPI.isUnaryOp()) {
6883     Opers.push_back(getValue(FPI.getArgOperand(0)));
6884   } else if (FPI.isTernaryOp()) {
6885     Opers.push_back(getValue(FPI.getArgOperand(0)));
6886     Opers.push_back(getValue(FPI.getArgOperand(1)));
6887     Opers.push_back(getValue(FPI.getArgOperand(2)));
6888   } else {
6889     Opers.push_back(getValue(FPI.getArgOperand(0)));
6890     Opers.push_back(getValue(FPI.getArgOperand(1)));
6891   }
6892 
6893   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6894     assert(Result.getNode()->getNumValues() == 2);
6895 
6896     // Push node to the appropriate list so that future instructions can be
6897     // chained up correctly.
6898     SDValue OutChain = Result.getValue(1);
6899     switch (EB) {
6900     case fp::ExceptionBehavior::ebIgnore:
6901       // The only reason why ebIgnore nodes still need to be chained is that
6902       // they might depend on the current rounding mode, and therefore must
6903       // not be moved across instruction that may change that mode.
6904       LLVM_FALLTHROUGH;
6905     case fp::ExceptionBehavior::ebMayTrap:
6906       // These must not be moved across calls or instructions that may change
6907       // floating-point exception masks.
6908       PendingConstrainedFP.push_back(OutChain);
6909       break;
6910     case fp::ExceptionBehavior::ebStrict:
6911       // These must not be moved across calls or instructions that may change
6912       // floating-point exception masks or read floating-point exception flags.
6913       // In addition, they cannot be optimized out even if unused.
6914       PendingConstrainedFPStrict.push_back(OutChain);
6915       break;
6916     }
6917   };
6918 
6919   SDVTList VTs = DAG.getVTList(ValueVTs);
6920   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
6921 
6922   SDNodeFlags Flags;
6923   if (EB == fp::ExceptionBehavior::ebIgnore)
6924     Flags.setNoFPExcept(true);
6925 
6926   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
6927     Flags.copyFMF(*FPOp);
6928 
6929   unsigned Opcode;
6930   switch (FPI.getIntrinsicID()) {
6931   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6932 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
6933   case Intrinsic::INTRINSIC:                                                   \
6934     Opcode = ISD::STRICT_##DAGN;                                               \
6935     break;
6936 #include "llvm/IR/ConstrainedOps.def"
6937   case Intrinsic::experimental_constrained_fmuladd: {
6938     Opcode = ISD::STRICT_FMA;
6939     // Break fmuladd into fmul and fadd.
6940     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
6941         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
6942                                         ValueVTs[0])) {
6943       Opers.pop_back();
6944       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
6945       pushOutChain(Mul, EB);
6946       Opcode = ISD::STRICT_FADD;
6947       Opers.clear();
6948       Opers.push_back(Mul.getValue(1));
6949       Opers.push_back(Mul.getValue(0));
6950       Opers.push_back(getValue(FPI.getArgOperand(2)));
6951     }
6952     break;
6953   }
6954   }
6955 
6956   // A few strict DAG nodes carry additional operands that are not
6957   // set up by the default code above.
6958   switch (Opcode) {
6959   default: break;
6960   case ISD::STRICT_FP_ROUND:
6961     Opers.push_back(
6962         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
6963     break;
6964   case ISD::STRICT_FSETCC:
6965   case ISD::STRICT_FSETCCS: {
6966     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
6967     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
6968     break;
6969   }
6970   }
6971 
6972   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
6973   pushOutChain(Result, EB);
6974 
6975   SDValue FPResult = Result.getValue(0);
6976   setValue(&FPI, FPResult);
6977 }
6978 
6979 std::pair<SDValue, SDValue>
6980 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6981                                     const BasicBlock *EHPadBB) {
6982   MachineFunction &MF = DAG.getMachineFunction();
6983   MachineModuleInfo &MMI = MF.getMMI();
6984   MCSymbol *BeginLabel = nullptr;
6985 
6986   if (EHPadBB) {
6987     // Insert a label before the invoke call to mark the try range.  This can be
6988     // used to detect deletion of the invoke via the MachineModuleInfo.
6989     BeginLabel = MMI.getContext().createTempSymbol();
6990 
6991     // For SjLj, keep track of which landing pads go with which invokes
6992     // so as to maintain the ordering of pads in the LSDA.
6993     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6994     if (CallSiteIndex) {
6995       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6996       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6997 
6998       // Now that the call site is handled, stop tracking it.
6999       MMI.setCurrentCallSite(0);
7000     }
7001 
7002     // Both PendingLoads and PendingExports must be flushed here;
7003     // this call might not return.
7004     (void)getRoot();
7005     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7006 
7007     CLI.setChain(getRoot());
7008   }
7009   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7010   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7011 
7012   assert((CLI.IsTailCall || Result.second.getNode()) &&
7013          "Non-null chain expected with non-tail call!");
7014   assert((Result.second.getNode() || !Result.first.getNode()) &&
7015          "Null value expected with tail call!");
7016 
7017   if (!Result.second.getNode()) {
7018     // As a special case, a null chain means that a tail call has been emitted
7019     // and the DAG root is already updated.
7020     HasTailCall = true;
7021 
7022     // Since there's no actual continuation from this block, nothing can be
7023     // relying on us setting vregs for them.
7024     PendingExports.clear();
7025   } else {
7026     DAG.setRoot(Result.second);
7027   }
7028 
7029   if (EHPadBB) {
7030     // Insert a label at the end of the invoke call to mark the try range.  This
7031     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7032     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7033     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7034 
7035     // Inform MachineModuleInfo of range.
7036     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7037     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7038     // actually use outlined funclets and their LSDA info style.
7039     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7040       assert(CLI.CS);
7041       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7042       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7043                                 BeginLabel, EndLabel);
7044     } else if (!isScopedEHPersonality(Pers)) {
7045       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7046     }
7047   }
7048 
7049   return Result;
7050 }
7051 
7052 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7053                                       bool isTailCall,
7054                                       const BasicBlock *EHPadBB) {
7055   auto &DL = DAG.getDataLayout();
7056   FunctionType *FTy = CS.getFunctionType();
7057   Type *RetTy = CS.getType();
7058 
7059   TargetLowering::ArgListTy Args;
7060   Args.reserve(CS.arg_size());
7061 
7062   const Value *SwiftErrorVal = nullptr;
7063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7064 
7065   if (isTailCall) {
7066     // Avoid emitting tail calls in functions with the disable-tail-calls
7067     // attribute.
7068     auto *Caller = CS.getInstruction()->getParent()->getParent();
7069     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7070         "true")
7071       isTailCall = false;
7072 
7073     // We can't tail call inside a function with a swifterror argument. Lowering
7074     // does not support this yet. It would have to move into the swifterror
7075     // register before the call.
7076     if (TLI.supportSwiftError() &&
7077         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7078       isTailCall = false;
7079   }
7080 
7081   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7082        i != e; ++i) {
7083     TargetLowering::ArgListEntry Entry;
7084     const Value *V = *i;
7085 
7086     // Skip empty types
7087     if (V->getType()->isEmptyTy())
7088       continue;
7089 
7090     SDValue ArgNode = getValue(V);
7091     Entry.Node = ArgNode; Entry.Ty = V->getType();
7092 
7093     Entry.setAttributes(&CS, i - CS.arg_begin());
7094 
7095     // Use swifterror virtual register as input to the call.
7096     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7097       SwiftErrorVal = V;
7098       // We find the virtual register for the actual swifterror argument.
7099       // Instead of using the Value, we use the virtual register instead.
7100       Entry.Node = DAG.getRegister(
7101           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7102           EVT(TLI.getPointerTy(DL)));
7103     }
7104 
7105     Args.push_back(Entry);
7106 
7107     // If we have an explicit sret argument that is an Instruction, (i.e., it
7108     // might point to function-local memory), we can't meaningfully tail-call.
7109     if (Entry.IsSRet && isa<Instruction>(V))
7110       isTailCall = false;
7111   }
7112 
7113   // If call site has a cfguardtarget operand bundle, create and add an
7114   // additional ArgListEntry.
7115   if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7116     TargetLowering::ArgListEntry Entry;
7117     Value *V = Bundle->Inputs[0];
7118     SDValue ArgNode = getValue(V);
7119     Entry.Node = ArgNode;
7120     Entry.Ty = V->getType();
7121     Entry.IsCFGuardTarget = true;
7122     Args.push_back(Entry);
7123   }
7124 
7125   // Check if target-independent constraints permit a tail call here.
7126   // Target-dependent constraints are checked within TLI->LowerCallTo.
7127   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7128     isTailCall = false;
7129 
7130   // Disable tail calls if there is an swifterror argument. Targets have not
7131   // been updated to support tail calls.
7132   if (TLI.supportSwiftError() && SwiftErrorVal)
7133     isTailCall = false;
7134 
7135   TargetLowering::CallLoweringInfo CLI(DAG);
7136   CLI.setDebugLoc(getCurSDLoc())
7137       .setChain(getRoot())
7138       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7139       .setTailCall(isTailCall)
7140       .setConvergent(CS.isConvergent());
7141   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7142 
7143   if (Result.first.getNode()) {
7144     const Instruction *Inst = CS.getInstruction();
7145     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7146     setValue(Inst, Result.first);
7147   }
7148 
7149   // The last element of CLI.InVals has the SDValue for swifterror return.
7150   // Here we copy it to a virtual register and update SwiftErrorMap for
7151   // book-keeping.
7152   if (SwiftErrorVal && TLI.supportSwiftError()) {
7153     // Get the last element of InVals.
7154     SDValue Src = CLI.InVals.back();
7155     Register VReg = SwiftError.getOrCreateVRegDefAt(
7156         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7157     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7158     DAG.setRoot(CopyNode);
7159   }
7160 }
7161 
7162 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7163                              SelectionDAGBuilder &Builder) {
7164   // Check to see if this load can be trivially constant folded, e.g. if the
7165   // input is from a string literal.
7166   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7167     // Cast pointer to the type we really want to load.
7168     Type *LoadTy =
7169         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7170     if (LoadVT.isVector())
7171       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7172 
7173     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7174                                          PointerType::getUnqual(LoadTy));
7175 
7176     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7177             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7178       return Builder.getValue(LoadCst);
7179   }
7180 
7181   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7182   // still constant memory, the input chain can be the entry node.
7183   SDValue Root;
7184   bool ConstantMemory = false;
7185 
7186   // Do not serialize (non-volatile) loads of constant memory with anything.
7187   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7188     Root = Builder.DAG.getEntryNode();
7189     ConstantMemory = true;
7190   } else {
7191     // Do not serialize non-volatile loads against each other.
7192     Root = Builder.DAG.getRoot();
7193   }
7194 
7195   SDValue Ptr = Builder.getValue(PtrVal);
7196   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7197                                         Ptr, MachinePointerInfo(PtrVal),
7198                                         /* Alignment = */ 1);
7199 
7200   if (!ConstantMemory)
7201     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7202   return LoadVal;
7203 }
7204 
7205 /// Record the value for an instruction that produces an integer result,
7206 /// converting the type where necessary.
7207 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7208                                                   SDValue Value,
7209                                                   bool IsSigned) {
7210   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7211                                                     I.getType(), true);
7212   if (IsSigned)
7213     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7214   else
7215     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7216   setValue(&I, Value);
7217 }
7218 
7219 /// See if we can lower a memcmp call into an optimized form. If so, return
7220 /// true and lower it. Otherwise return false, and it will be lowered like a
7221 /// normal call.
7222 /// The caller already checked that \p I calls the appropriate LibFunc with a
7223 /// correct prototype.
7224 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7225   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7226   const Value *Size = I.getArgOperand(2);
7227   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7228   if (CSize && CSize->getZExtValue() == 0) {
7229     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7230                                                           I.getType(), true);
7231     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7232     return true;
7233   }
7234 
7235   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7236   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7237       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7238       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7239   if (Res.first.getNode()) {
7240     processIntegerCallValue(I, Res.first, true);
7241     PendingLoads.push_back(Res.second);
7242     return true;
7243   }
7244 
7245   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7246   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7247   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7248     return false;
7249 
7250   // If the target has a fast compare for the given size, it will return a
7251   // preferred load type for that size. Require that the load VT is legal and
7252   // that the target supports unaligned loads of that type. Otherwise, return
7253   // INVALID.
7254   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7255     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7256     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7257     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7258       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7259       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7260       // TODO: Check alignment of src and dest ptrs.
7261       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7262       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7263       if (!TLI.isTypeLegal(LVT) ||
7264           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7265           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7266         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7267     }
7268 
7269     return LVT;
7270   };
7271 
7272   // This turns into unaligned loads. We only do this if the target natively
7273   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7274   // we'll only produce a small number of byte loads.
7275   MVT LoadVT;
7276   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7277   switch (NumBitsToCompare) {
7278   default:
7279     return false;
7280   case 16:
7281     LoadVT = MVT::i16;
7282     break;
7283   case 32:
7284     LoadVT = MVT::i32;
7285     break;
7286   case 64:
7287   case 128:
7288   case 256:
7289     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7290     break;
7291   }
7292 
7293   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7294     return false;
7295 
7296   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7297   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7298 
7299   // Bitcast to a wide integer type if the loads are vectors.
7300   if (LoadVT.isVector()) {
7301     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7302     LoadL = DAG.getBitcast(CmpVT, LoadL);
7303     LoadR = DAG.getBitcast(CmpVT, LoadR);
7304   }
7305 
7306   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7307   processIntegerCallValue(I, Cmp, false);
7308   return true;
7309 }
7310 
7311 /// See if we can lower a memchr call into an optimized form. If so, return
7312 /// true and lower it. Otherwise return false, and it will be lowered like a
7313 /// normal call.
7314 /// The caller already checked that \p I calls the appropriate LibFunc with a
7315 /// correct prototype.
7316 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7317   const Value *Src = I.getArgOperand(0);
7318   const Value *Char = I.getArgOperand(1);
7319   const Value *Length = I.getArgOperand(2);
7320 
7321   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7322   std::pair<SDValue, SDValue> Res =
7323     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7324                                 getValue(Src), getValue(Char), getValue(Length),
7325                                 MachinePointerInfo(Src));
7326   if (Res.first.getNode()) {
7327     setValue(&I, Res.first);
7328     PendingLoads.push_back(Res.second);
7329     return true;
7330   }
7331 
7332   return false;
7333 }
7334 
7335 /// See if we can lower a mempcpy call into an optimized form. If so, return
7336 /// true and lower it. Otherwise return false, and it will be lowered like a
7337 /// normal call.
7338 /// The caller already checked that \p I calls the appropriate LibFunc with a
7339 /// correct prototype.
7340 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7341   SDValue Dst = getValue(I.getArgOperand(0));
7342   SDValue Src = getValue(I.getArgOperand(1));
7343   SDValue Size = getValue(I.getArgOperand(2));
7344 
7345   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7346   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7347   // DAG::getMemcpy needs Alignment to be defined.
7348   Align Alignment = assumeAligned(std::min(DstAlign, SrcAlign));
7349 
7350   bool isVol = false;
7351   SDLoc sdl = getCurSDLoc();
7352 
7353   // In the mempcpy context we need to pass in a false value for isTailCall
7354   // because the return pointer needs to be adjusted by the size of
7355   // the copied memory.
7356   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7357   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7358                              /*isTailCall=*/false,
7359                              MachinePointerInfo(I.getArgOperand(0)),
7360                              MachinePointerInfo(I.getArgOperand(1)));
7361   assert(MC.getNode() != nullptr &&
7362          "** memcpy should not be lowered as TailCall in mempcpy context **");
7363   DAG.setRoot(MC);
7364 
7365   // Check if Size needs to be truncated or extended.
7366   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7367 
7368   // Adjust return pointer to point just past the last dst byte.
7369   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7370                                     Dst, Size);
7371   setValue(&I, DstPlusSize);
7372   return true;
7373 }
7374 
7375 /// See if we can lower a strcpy call into an optimized form.  If so, return
7376 /// true and lower it, otherwise return false and it will be lowered like a
7377 /// normal call.
7378 /// The caller already checked that \p I calls the appropriate LibFunc with a
7379 /// correct prototype.
7380 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7381   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7382 
7383   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7384   std::pair<SDValue, SDValue> Res =
7385     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7386                                 getValue(Arg0), getValue(Arg1),
7387                                 MachinePointerInfo(Arg0),
7388                                 MachinePointerInfo(Arg1), isStpcpy);
7389   if (Res.first.getNode()) {
7390     setValue(&I, Res.first);
7391     DAG.setRoot(Res.second);
7392     return true;
7393   }
7394 
7395   return false;
7396 }
7397 
7398 /// See if we can lower a strcmp call into an optimized form.  If so, return
7399 /// true and lower it, otherwise return false and it will be lowered like a
7400 /// normal call.
7401 /// The caller already checked that \p I calls the appropriate LibFunc with a
7402 /// correct prototype.
7403 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7404   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7405 
7406   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7407   std::pair<SDValue, SDValue> Res =
7408     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7409                                 getValue(Arg0), getValue(Arg1),
7410                                 MachinePointerInfo(Arg0),
7411                                 MachinePointerInfo(Arg1));
7412   if (Res.first.getNode()) {
7413     processIntegerCallValue(I, Res.first, true);
7414     PendingLoads.push_back(Res.second);
7415     return true;
7416   }
7417 
7418   return false;
7419 }
7420 
7421 /// See if we can lower a strlen call into an optimized form.  If so, return
7422 /// true and lower it, otherwise return false and it will be lowered like a
7423 /// normal call.
7424 /// The caller already checked that \p I calls the appropriate LibFunc with a
7425 /// correct prototype.
7426 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7427   const Value *Arg0 = I.getArgOperand(0);
7428 
7429   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7430   std::pair<SDValue, SDValue> Res =
7431     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7432                                 getValue(Arg0), MachinePointerInfo(Arg0));
7433   if (Res.first.getNode()) {
7434     processIntegerCallValue(I, Res.first, false);
7435     PendingLoads.push_back(Res.second);
7436     return true;
7437   }
7438 
7439   return false;
7440 }
7441 
7442 /// See if we can lower a strnlen call into an optimized form.  If so, return
7443 /// true and lower it, otherwise return false and it will be lowered like a
7444 /// normal call.
7445 /// The caller already checked that \p I calls the appropriate LibFunc with a
7446 /// correct prototype.
7447 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7448   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7449 
7450   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7451   std::pair<SDValue, SDValue> Res =
7452     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7453                                  getValue(Arg0), getValue(Arg1),
7454                                  MachinePointerInfo(Arg0));
7455   if (Res.first.getNode()) {
7456     processIntegerCallValue(I, Res.first, false);
7457     PendingLoads.push_back(Res.second);
7458     return true;
7459   }
7460 
7461   return false;
7462 }
7463 
7464 /// See if we can lower a unary floating-point operation into an SDNode with
7465 /// the specified Opcode.  If so, return true and lower it, otherwise return
7466 /// false and it will be lowered like a normal call.
7467 /// The caller already checked that \p I calls the appropriate LibFunc with a
7468 /// correct prototype.
7469 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7470                                               unsigned Opcode) {
7471   // We already checked this call's prototype; verify it doesn't modify errno.
7472   if (!I.onlyReadsMemory())
7473     return false;
7474 
7475   SDValue Tmp = getValue(I.getArgOperand(0));
7476   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7477   return true;
7478 }
7479 
7480 /// See if we can lower a binary floating-point operation into an SDNode with
7481 /// the specified Opcode. If so, return true and lower it. Otherwise return
7482 /// false, and it will be lowered like a normal call.
7483 /// The caller already checked that \p I calls the appropriate LibFunc with a
7484 /// correct prototype.
7485 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7486                                                unsigned Opcode) {
7487   // We already checked this call's prototype; verify it doesn't modify errno.
7488   if (!I.onlyReadsMemory())
7489     return false;
7490 
7491   SDValue Tmp0 = getValue(I.getArgOperand(0));
7492   SDValue Tmp1 = getValue(I.getArgOperand(1));
7493   EVT VT = Tmp0.getValueType();
7494   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7495   return true;
7496 }
7497 
7498 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7499   // Handle inline assembly differently.
7500   if (isa<InlineAsm>(I.getCalledValue())) {
7501     visitInlineAsm(&I);
7502     return;
7503   }
7504 
7505   if (Function *F = I.getCalledFunction()) {
7506     if (F->isDeclaration()) {
7507       // Is this an LLVM intrinsic or a target-specific intrinsic?
7508       unsigned IID = F->getIntrinsicID();
7509       if (!IID)
7510         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7511           IID = II->getIntrinsicID(F);
7512 
7513       if (IID) {
7514         visitIntrinsicCall(I, IID);
7515         return;
7516       }
7517     }
7518 
7519     // Check for well-known libc/libm calls.  If the function is internal, it
7520     // can't be a library call.  Don't do the check if marked as nobuiltin for
7521     // some reason or the call site requires strict floating point semantics.
7522     LibFunc Func;
7523     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7524         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7525         LibInfo->hasOptimizedCodeGen(Func)) {
7526       switch (Func) {
7527       default: break;
7528       case LibFunc_copysign:
7529       case LibFunc_copysignf:
7530       case LibFunc_copysignl:
7531         // We already checked this call's prototype; verify it doesn't modify
7532         // errno.
7533         if (I.onlyReadsMemory()) {
7534           SDValue LHS = getValue(I.getArgOperand(0));
7535           SDValue RHS = getValue(I.getArgOperand(1));
7536           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7537                                    LHS.getValueType(), LHS, RHS));
7538           return;
7539         }
7540         break;
7541       case LibFunc_fabs:
7542       case LibFunc_fabsf:
7543       case LibFunc_fabsl:
7544         if (visitUnaryFloatCall(I, ISD::FABS))
7545           return;
7546         break;
7547       case LibFunc_fmin:
7548       case LibFunc_fminf:
7549       case LibFunc_fminl:
7550         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7551           return;
7552         break;
7553       case LibFunc_fmax:
7554       case LibFunc_fmaxf:
7555       case LibFunc_fmaxl:
7556         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7557           return;
7558         break;
7559       case LibFunc_sin:
7560       case LibFunc_sinf:
7561       case LibFunc_sinl:
7562         if (visitUnaryFloatCall(I, ISD::FSIN))
7563           return;
7564         break;
7565       case LibFunc_cos:
7566       case LibFunc_cosf:
7567       case LibFunc_cosl:
7568         if (visitUnaryFloatCall(I, ISD::FCOS))
7569           return;
7570         break;
7571       case LibFunc_sqrt:
7572       case LibFunc_sqrtf:
7573       case LibFunc_sqrtl:
7574       case LibFunc_sqrt_finite:
7575       case LibFunc_sqrtf_finite:
7576       case LibFunc_sqrtl_finite:
7577         if (visitUnaryFloatCall(I, ISD::FSQRT))
7578           return;
7579         break;
7580       case LibFunc_floor:
7581       case LibFunc_floorf:
7582       case LibFunc_floorl:
7583         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7584           return;
7585         break;
7586       case LibFunc_nearbyint:
7587       case LibFunc_nearbyintf:
7588       case LibFunc_nearbyintl:
7589         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7590           return;
7591         break;
7592       case LibFunc_ceil:
7593       case LibFunc_ceilf:
7594       case LibFunc_ceill:
7595         if (visitUnaryFloatCall(I, ISD::FCEIL))
7596           return;
7597         break;
7598       case LibFunc_rint:
7599       case LibFunc_rintf:
7600       case LibFunc_rintl:
7601         if (visitUnaryFloatCall(I, ISD::FRINT))
7602           return;
7603         break;
7604       case LibFunc_round:
7605       case LibFunc_roundf:
7606       case LibFunc_roundl:
7607         if (visitUnaryFloatCall(I, ISD::FROUND))
7608           return;
7609         break;
7610       case LibFunc_trunc:
7611       case LibFunc_truncf:
7612       case LibFunc_truncl:
7613         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7614           return;
7615         break;
7616       case LibFunc_log2:
7617       case LibFunc_log2f:
7618       case LibFunc_log2l:
7619         if (visitUnaryFloatCall(I, ISD::FLOG2))
7620           return;
7621         break;
7622       case LibFunc_exp2:
7623       case LibFunc_exp2f:
7624       case LibFunc_exp2l:
7625         if (visitUnaryFloatCall(I, ISD::FEXP2))
7626           return;
7627         break;
7628       case LibFunc_memcmp:
7629         if (visitMemCmpCall(I))
7630           return;
7631         break;
7632       case LibFunc_mempcpy:
7633         if (visitMemPCpyCall(I))
7634           return;
7635         break;
7636       case LibFunc_memchr:
7637         if (visitMemChrCall(I))
7638           return;
7639         break;
7640       case LibFunc_strcpy:
7641         if (visitStrCpyCall(I, false))
7642           return;
7643         break;
7644       case LibFunc_stpcpy:
7645         if (visitStrCpyCall(I, true))
7646           return;
7647         break;
7648       case LibFunc_strcmp:
7649         if (visitStrCmpCall(I))
7650           return;
7651         break;
7652       case LibFunc_strlen:
7653         if (visitStrLenCall(I))
7654           return;
7655         break;
7656       case LibFunc_strnlen:
7657         if (visitStrNLenCall(I))
7658           return;
7659         break;
7660       }
7661     }
7662   }
7663 
7664   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7665   // have to do anything here to lower funclet bundles.
7666   // CFGuardTarget bundles are lowered in LowerCallTo.
7667   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7668                                         LLVMContext::OB_funclet,
7669                                         LLVMContext::OB_cfguardtarget}) &&
7670          "Cannot lower calls with arbitrary operand bundles!");
7671 
7672   SDValue Callee = getValue(I.getCalledValue());
7673 
7674   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7675     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7676   else
7677     // Check if we can potentially perform a tail call. More detailed checking
7678     // is be done within LowerCallTo, after more information about the call is
7679     // known.
7680     LowerCallTo(&I, Callee, I.isTailCall());
7681 }
7682 
7683 namespace {
7684 
7685 /// AsmOperandInfo - This contains information for each constraint that we are
7686 /// lowering.
7687 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7688 public:
7689   /// CallOperand - If this is the result output operand or a clobber
7690   /// this is null, otherwise it is the incoming operand to the CallInst.
7691   /// This gets modified as the asm is processed.
7692   SDValue CallOperand;
7693 
7694   /// AssignedRegs - If this is a register or register class operand, this
7695   /// contains the set of register corresponding to the operand.
7696   RegsForValue AssignedRegs;
7697 
7698   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7699     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7700   }
7701 
7702   /// Whether or not this operand accesses memory
7703   bool hasMemory(const TargetLowering &TLI) const {
7704     // Indirect operand accesses access memory.
7705     if (isIndirect)
7706       return true;
7707 
7708     for (const auto &Code : Codes)
7709       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7710         return true;
7711 
7712     return false;
7713   }
7714 
7715   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7716   /// corresponds to.  If there is no Value* for this operand, it returns
7717   /// MVT::Other.
7718   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7719                            const DataLayout &DL) const {
7720     if (!CallOperandVal) return MVT::Other;
7721 
7722     if (isa<BasicBlock>(CallOperandVal))
7723       return TLI.getPointerTy(DL);
7724 
7725     llvm::Type *OpTy = CallOperandVal->getType();
7726 
7727     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7728     // If this is an indirect operand, the operand is a pointer to the
7729     // accessed type.
7730     if (isIndirect) {
7731       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7732       if (!PtrTy)
7733         report_fatal_error("Indirect operand for inline asm not a pointer!");
7734       OpTy = PtrTy->getElementType();
7735     }
7736 
7737     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7738     if (StructType *STy = dyn_cast<StructType>(OpTy))
7739       if (STy->getNumElements() == 1)
7740         OpTy = STy->getElementType(0);
7741 
7742     // If OpTy is not a single value, it may be a struct/union that we
7743     // can tile with integers.
7744     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7745       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7746       switch (BitSize) {
7747       default: break;
7748       case 1:
7749       case 8:
7750       case 16:
7751       case 32:
7752       case 64:
7753       case 128:
7754         OpTy = IntegerType::get(Context, BitSize);
7755         break;
7756       }
7757     }
7758 
7759     return TLI.getValueType(DL, OpTy, true);
7760   }
7761 };
7762 
7763 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7764 
7765 } // end anonymous namespace
7766 
7767 /// Make sure that the output operand \p OpInfo and its corresponding input
7768 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7769 /// out).
7770 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7771                                SDISelAsmOperandInfo &MatchingOpInfo,
7772                                SelectionDAG &DAG) {
7773   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7774     return;
7775 
7776   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7777   const auto &TLI = DAG.getTargetLoweringInfo();
7778 
7779   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7780       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7781                                        OpInfo.ConstraintVT);
7782   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7783       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7784                                        MatchingOpInfo.ConstraintVT);
7785   if ((OpInfo.ConstraintVT.isInteger() !=
7786        MatchingOpInfo.ConstraintVT.isInteger()) ||
7787       (MatchRC.second != InputRC.second)) {
7788     // FIXME: error out in a more elegant fashion
7789     report_fatal_error("Unsupported asm: input constraint"
7790                        " with a matching output constraint of"
7791                        " incompatible type!");
7792   }
7793   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7794 }
7795 
7796 /// Get a direct memory input to behave well as an indirect operand.
7797 /// This may introduce stores, hence the need for a \p Chain.
7798 /// \return The (possibly updated) chain.
7799 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7800                                         SDISelAsmOperandInfo &OpInfo,
7801                                         SelectionDAG &DAG) {
7802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7803 
7804   // If we don't have an indirect input, put it in the constpool if we can,
7805   // otherwise spill it to a stack slot.
7806   // TODO: This isn't quite right. We need to handle these according to
7807   // the addressing mode that the constraint wants. Also, this may take
7808   // an additional register for the computation and we don't want that
7809   // either.
7810 
7811   // If the operand is a float, integer, or vector constant, spill to a
7812   // constant pool entry to get its address.
7813   const Value *OpVal = OpInfo.CallOperandVal;
7814   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7815       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7816     OpInfo.CallOperand = DAG.getConstantPool(
7817         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7818     return Chain;
7819   }
7820 
7821   // Otherwise, create a stack slot and emit a store to it before the asm.
7822   Type *Ty = OpVal->getType();
7823   auto &DL = DAG.getDataLayout();
7824   uint64_t TySize = DL.getTypeAllocSize(Ty);
7825   unsigned Align = DL.getPrefTypeAlignment(Ty);
7826   MachineFunction &MF = DAG.getMachineFunction();
7827   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7828   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7829   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7830                             MachinePointerInfo::getFixedStack(MF, SSFI),
7831                             TLI.getMemValueType(DL, Ty));
7832   OpInfo.CallOperand = StackSlot;
7833 
7834   return Chain;
7835 }
7836 
7837 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7838 /// specified operand.  We prefer to assign virtual registers, to allow the
7839 /// register allocator to handle the assignment process.  However, if the asm
7840 /// uses features that we can't model on machineinstrs, we have SDISel do the
7841 /// allocation.  This produces generally horrible, but correct, code.
7842 ///
7843 ///   OpInfo describes the operand
7844 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7845 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7846                                  SDISelAsmOperandInfo &OpInfo,
7847                                  SDISelAsmOperandInfo &RefOpInfo) {
7848   LLVMContext &Context = *DAG.getContext();
7849   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7850 
7851   MachineFunction &MF = DAG.getMachineFunction();
7852   SmallVector<unsigned, 4> Regs;
7853   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7854 
7855   // No work to do for memory operations.
7856   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7857     return;
7858 
7859   // If this is a constraint for a single physreg, or a constraint for a
7860   // register class, find it.
7861   unsigned AssignedReg;
7862   const TargetRegisterClass *RC;
7863   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7864       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7865   // RC is unset only on failure. Return immediately.
7866   if (!RC)
7867     return;
7868 
7869   // Get the actual register value type.  This is important, because the user
7870   // may have asked for (e.g.) the AX register in i32 type.  We need to
7871   // remember that AX is actually i16 to get the right extension.
7872   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7873 
7874   if (OpInfo.ConstraintVT != MVT::Other) {
7875     // If this is an FP operand in an integer register (or visa versa), or more
7876     // generally if the operand value disagrees with the register class we plan
7877     // to stick it in, fix the operand type.
7878     //
7879     // If this is an input value, the bitcast to the new type is done now.
7880     // Bitcast for output value is done at the end of visitInlineAsm().
7881     if ((OpInfo.Type == InlineAsm::isOutput ||
7882          OpInfo.Type == InlineAsm::isInput) &&
7883         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7884       // Try to convert to the first EVT that the reg class contains.  If the
7885       // types are identical size, use a bitcast to convert (e.g. two differing
7886       // vector types).  Note: output bitcast is done at the end of
7887       // visitInlineAsm().
7888       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7889         // Exclude indirect inputs while they are unsupported because the code
7890         // to perform the load is missing and thus OpInfo.CallOperand still
7891         // refers to the input address rather than the pointed-to value.
7892         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7893           OpInfo.CallOperand =
7894               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7895         OpInfo.ConstraintVT = RegVT;
7896         // If the operand is an FP value and we want it in integer registers,
7897         // use the corresponding integer type. This turns an f64 value into
7898         // i64, which can be passed with two i32 values on a 32-bit machine.
7899       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7900         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7901         if (OpInfo.Type == InlineAsm::isInput)
7902           OpInfo.CallOperand =
7903               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7904         OpInfo.ConstraintVT = VT;
7905       }
7906     }
7907   }
7908 
7909   // No need to allocate a matching input constraint since the constraint it's
7910   // matching to has already been allocated.
7911   if (OpInfo.isMatchingInputConstraint())
7912     return;
7913 
7914   EVT ValueVT = OpInfo.ConstraintVT;
7915   if (OpInfo.ConstraintVT == MVT::Other)
7916     ValueVT = RegVT;
7917 
7918   // Initialize NumRegs.
7919   unsigned NumRegs = 1;
7920   if (OpInfo.ConstraintVT != MVT::Other)
7921     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7922 
7923   // If this is a constraint for a specific physical register, like {r17},
7924   // assign it now.
7925 
7926   // If this associated to a specific register, initialize iterator to correct
7927   // place. If virtual, make sure we have enough registers
7928 
7929   // Initialize iterator if necessary
7930   TargetRegisterClass::iterator I = RC->begin();
7931   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7932 
7933   // Do not check for single registers.
7934   if (AssignedReg) {
7935       for (; *I != AssignedReg; ++I)
7936         assert(I != RC->end() && "AssignedReg should be member of RC");
7937   }
7938 
7939   for (; NumRegs; --NumRegs, ++I) {
7940     assert(I != RC->end() && "Ran out of registers to allocate!");
7941     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7942     Regs.push_back(R);
7943   }
7944 
7945   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7946 }
7947 
7948 static unsigned
7949 findMatchingInlineAsmOperand(unsigned OperandNo,
7950                              const std::vector<SDValue> &AsmNodeOperands) {
7951   // Scan until we find the definition we already emitted of this operand.
7952   unsigned CurOp = InlineAsm::Op_FirstOperand;
7953   for (; OperandNo; --OperandNo) {
7954     // Advance to the next operand.
7955     unsigned OpFlag =
7956         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7957     assert((InlineAsm::isRegDefKind(OpFlag) ||
7958             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7959             InlineAsm::isMemKind(OpFlag)) &&
7960            "Skipped past definitions?");
7961     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7962   }
7963   return CurOp;
7964 }
7965 
7966 namespace {
7967 
7968 class ExtraFlags {
7969   unsigned Flags = 0;
7970 
7971 public:
7972   explicit ExtraFlags(ImmutableCallSite CS) {
7973     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7974     if (IA->hasSideEffects())
7975       Flags |= InlineAsm::Extra_HasSideEffects;
7976     if (IA->isAlignStack())
7977       Flags |= InlineAsm::Extra_IsAlignStack;
7978     if (CS.isConvergent())
7979       Flags |= InlineAsm::Extra_IsConvergent;
7980     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7981   }
7982 
7983   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7984     // Ideally, we would only check against memory constraints.  However, the
7985     // meaning of an Other constraint can be target-specific and we can't easily
7986     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7987     // for Other constraints as well.
7988     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7989         OpInfo.ConstraintType == TargetLowering::C_Other) {
7990       if (OpInfo.Type == InlineAsm::isInput)
7991         Flags |= InlineAsm::Extra_MayLoad;
7992       else if (OpInfo.Type == InlineAsm::isOutput)
7993         Flags |= InlineAsm::Extra_MayStore;
7994       else if (OpInfo.Type == InlineAsm::isClobber)
7995         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7996     }
7997   }
7998 
7999   unsigned get() const { return Flags; }
8000 };
8001 
8002 } // end anonymous namespace
8003 
8004 /// visitInlineAsm - Handle a call to an InlineAsm object.
8005 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8006   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8007 
8008   /// ConstraintOperands - Information about all of the constraints.
8009   SDISelAsmOperandInfoVector ConstraintOperands;
8010 
8011   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8012   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8013       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8014 
8015   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8016   // AsmDialect, MayLoad, MayStore).
8017   bool HasSideEffect = IA->hasSideEffects();
8018   ExtraFlags ExtraInfo(CS);
8019 
8020   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8021   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8022   unsigned NumMatchingOps = 0;
8023   for (auto &T : TargetConstraints) {
8024     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8025     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8026 
8027     // Compute the value type for each operand.
8028     if (OpInfo.Type == InlineAsm::isInput ||
8029         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8030       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8031 
8032       // Process the call argument. BasicBlocks are labels, currently appearing
8033       // only in asm's.
8034       const Instruction *I = CS.getInstruction();
8035       if (isa<CallBrInst>(I) &&
8036           ArgNo - 1 >= (cast<CallBrInst>(I)->getNumArgOperands() -
8037                         cast<CallBrInst>(I)->getNumIndirectDests() -
8038                         NumMatchingOps) &&
8039           (NumMatchingOps == 0 ||
8040            ArgNo - 1 < (cast<CallBrInst>(I)->getNumArgOperands() -
8041                         NumMatchingOps))) {
8042         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8043         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8044         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8045       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8046         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8047       } else {
8048         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8049       }
8050 
8051       OpInfo.ConstraintVT =
8052           OpInfo
8053               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8054               .getSimpleVT();
8055     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8056       // The return value of the call is this value.  As such, there is no
8057       // corresponding argument.
8058       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8059       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8060         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8061             DAG.getDataLayout(), STy->getElementType(ResNo));
8062       } else {
8063         assert(ResNo == 0 && "Asm only has one result!");
8064         OpInfo.ConstraintVT =
8065             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8066       }
8067       ++ResNo;
8068     } else {
8069       OpInfo.ConstraintVT = MVT::Other;
8070     }
8071 
8072     if (OpInfo.hasMatchingInput())
8073       ++NumMatchingOps;
8074 
8075     if (!HasSideEffect)
8076       HasSideEffect = OpInfo.hasMemory(TLI);
8077 
8078     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8079     // FIXME: Could we compute this on OpInfo rather than T?
8080 
8081     // Compute the constraint code and ConstraintType to use.
8082     TLI.ComputeConstraintToUse(T, SDValue());
8083 
8084     if (T.ConstraintType == TargetLowering::C_Immediate &&
8085         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8086       // We've delayed emitting a diagnostic like the "n" constraint because
8087       // inlining could cause an integer showing up.
8088       return emitInlineAsmError(
8089           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8090                   "integer constant expression");
8091 
8092     ExtraInfo.update(T);
8093   }
8094 
8095 
8096   // We won't need to flush pending loads if this asm doesn't touch
8097   // memory and is nonvolatile.
8098   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8099 
8100   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8101   if (IsCallBr) {
8102     // If this is a callbr we need to flush pending exports since inlineasm_br
8103     // is a terminator. We need to do this before nodes are glued to
8104     // the inlineasm_br node.
8105     Chain = getControlRoot();
8106   }
8107 
8108   // Second pass over the constraints: compute which constraint option to use.
8109   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8110     // If this is an output operand with a matching input operand, look up the
8111     // matching input. If their types mismatch, e.g. one is an integer, the
8112     // other is floating point, or their sizes are different, flag it as an
8113     // error.
8114     if (OpInfo.hasMatchingInput()) {
8115       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8116       patchMatchingInput(OpInfo, Input, DAG);
8117     }
8118 
8119     // Compute the constraint code and ConstraintType to use.
8120     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8121 
8122     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8123         OpInfo.Type == InlineAsm::isClobber)
8124       continue;
8125 
8126     // If this is a memory input, and if the operand is not indirect, do what we
8127     // need to provide an address for the memory input.
8128     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8129         !OpInfo.isIndirect) {
8130       assert((OpInfo.isMultipleAlternative ||
8131               (OpInfo.Type == InlineAsm::isInput)) &&
8132              "Can only indirectify direct input operands!");
8133 
8134       // Memory operands really want the address of the value.
8135       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8136 
8137       // There is no longer a Value* corresponding to this operand.
8138       OpInfo.CallOperandVal = nullptr;
8139 
8140       // It is now an indirect operand.
8141       OpInfo.isIndirect = true;
8142     }
8143 
8144   }
8145 
8146   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8147   std::vector<SDValue> AsmNodeOperands;
8148   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8149   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8150       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8151 
8152   // If we have a !srcloc metadata node associated with it, we want to attach
8153   // this to the ultimately generated inline asm machineinstr.  To do this, we
8154   // pass in the third operand as this (potentially null) inline asm MDNode.
8155   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8156   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8157 
8158   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8159   // bits as operand 3.
8160   AsmNodeOperands.push_back(DAG.getTargetConstant(
8161       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8162 
8163   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8164   // this, assign virtual and physical registers for inputs and otput.
8165   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8166     // Assign Registers.
8167     SDISelAsmOperandInfo &RefOpInfo =
8168         OpInfo.isMatchingInputConstraint()
8169             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8170             : OpInfo;
8171     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8172 
8173     switch (OpInfo.Type) {
8174     case InlineAsm::isOutput:
8175       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8176         unsigned ConstraintID =
8177             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8178         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8179                "Failed to convert memory constraint code to constraint id.");
8180 
8181         // Add information to the INLINEASM node to know about this output.
8182         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8183         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8184         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8185                                                         MVT::i32));
8186         AsmNodeOperands.push_back(OpInfo.CallOperand);
8187       } else {
8188         // Otherwise, this outputs to a register (directly for C_Register /
8189         // C_RegisterClass, and a target-defined fashion for
8190         // C_Immediate/C_Other). Find a register that we can use.
8191         if (OpInfo.AssignedRegs.Regs.empty()) {
8192           emitInlineAsmError(
8193               CS, "couldn't allocate output register for constraint '" +
8194                       Twine(OpInfo.ConstraintCode) + "'");
8195           return;
8196         }
8197 
8198         // Add information to the INLINEASM node to know that this register is
8199         // set.
8200         OpInfo.AssignedRegs.AddInlineAsmOperands(
8201             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8202                                   : InlineAsm::Kind_RegDef,
8203             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8204       }
8205       break;
8206 
8207     case InlineAsm::isInput: {
8208       SDValue InOperandVal = OpInfo.CallOperand;
8209 
8210       if (OpInfo.isMatchingInputConstraint()) {
8211         // If this is required to match an output register we have already set,
8212         // just use its register.
8213         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8214                                                   AsmNodeOperands);
8215         unsigned OpFlag =
8216           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8217         if (InlineAsm::isRegDefKind(OpFlag) ||
8218             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8219           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8220           if (OpInfo.isIndirect) {
8221             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8222             emitInlineAsmError(CS, "inline asm not supported yet:"
8223                                    " don't know how to handle tied "
8224                                    "indirect register inputs");
8225             return;
8226           }
8227 
8228           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8229           SmallVector<unsigned, 4> Regs;
8230 
8231           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8232             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8233             MachineRegisterInfo &RegInfo =
8234                 DAG.getMachineFunction().getRegInfo();
8235             for (unsigned i = 0; i != NumRegs; ++i)
8236               Regs.push_back(RegInfo.createVirtualRegister(RC));
8237           } else {
8238             emitInlineAsmError(CS, "inline asm error: This value type register "
8239                                    "class is not natively supported!");
8240             return;
8241           }
8242 
8243           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8244 
8245           SDLoc dl = getCurSDLoc();
8246           // Use the produced MatchedRegs object to
8247           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8248                                     CS.getInstruction());
8249           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8250                                            true, OpInfo.getMatchedOperand(), dl,
8251                                            DAG, AsmNodeOperands);
8252           break;
8253         }
8254 
8255         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8256         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8257                "Unexpected number of operands");
8258         // Add information to the INLINEASM node to know about this input.
8259         // See InlineAsm.h isUseOperandTiedToDef.
8260         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8261         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8262                                                     OpInfo.getMatchedOperand());
8263         AsmNodeOperands.push_back(DAG.getTargetConstant(
8264             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8265         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8266         break;
8267       }
8268 
8269       // Treat indirect 'X' constraint as memory.
8270       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8271           OpInfo.isIndirect)
8272         OpInfo.ConstraintType = TargetLowering::C_Memory;
8273 
8274       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8275           OpInfo.ConstraintType == TargetLowering::C_Other) {
8276         std::vector<SDValue> Ops;
8277         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8278                                           Ops, DAG);
8279         if (Ops.empty()) {
8280           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8281             if (isa<ConstantSDNode>(InOperandVal)) {
8282               emitInlineAsmError(CS, "value out of range for constraint '" +
8283                                  Twine(OpInfo.ConstraintCode) + "'");
8284               return;
8285             }
8286 
8287           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8288                                      Twine(OpInfo.ConstraintCode) + "'");
8289           return;
8290         }
8291 
8292         // Add information to the INLINEASM node to know about this input.
8293         unsigned ResOpType =
8294           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8295         AsmNodeOperands.push_back(DAG.getTargetConstant(
8296             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8297         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8298         break;
8299       }
8300 
8301       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8302         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8303         assert(InOperandVal.getValueType() ==
8304                    TLI.getPointerTy(DAG.getDataLayout()) &&
8305                "Memory operands expect pointer values");
8306 
8307         unsigned ConstraintID =
8308             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8309         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8310                "Failed to convert memory constraint code to constraint id.");
8311 
8312         // Add information to the INLINEASM node to know about this input.
8313         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8314         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8315         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8316                                                         getCurSDLoc(),
8317                                                         MVT::i32));
8318         AsmNodeOperands.push_back(InOperandVal);
8319         break;
8320       }
8321 
8322       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8323               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8324              "Unknown constraint type!");
8325 
8326       // TODO: Support this.
8327       if (OpInfo.isIndirect) {
8328         emitInlineAsmError(
8329             CS, "Don't know how to handle indirect register inputs yet "
8330                 "for constraint '" +
8331                     Twine(OpInfo.ConstraintCode) + "'");
8332         return;
8333       }
8334 
8335       // Copy the input into the appropriate registers.
8336       if (OpInfo.AssignedRegs.Regs.empty()) {
8337         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8338                                    Twine(OpInfo.ConstraintCode) + "'");
8339         return;
8340       }
8341 
8342       SDLoc dl = getCurSDLoc();
8343 
8344       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8345                                         Chain, &Flag, CS.getInstruction());
8346 
8347       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8348                                                dl, DAG, AsmNodeOperands);
8349       break;
8350     }
8351     case InlineAsm::isClobber:
8352       // Add the clobbered value to the operand list, so that the register
8353       // allocator is aware that the physreg got clobbered.
8354       if (!OpInfo.AssignedRegs.Regs.empty())
8355         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8356                                                  false, 0, getCurSDLoc(), DAG,
8357                                                  AsmNodeOperands);
8358       break;
8359     }
8360   }
8361 
8362   // Finish up input operands.  Set the input chain and add the flag last.
8363   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8364   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8365 
8366   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8367   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8368                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8369   Flag = Chain.getValue(1);
8370 
8371   // Do additional work to generate outputs.
8372 
8373   SmallVector<EVT, 1> ResultVTs;
8374   SmallVector<SDValue, 1> ResultValues;
8375   SmallVector<SDValue, 8> OutChains;
8376 
8377   llvm::Type *CSResultType = CS.getType();
8378   ArrayRef<Type *> ResultTypes;
8379   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8380     ResultTypes = StructResult->elements();
8381   else if (!CSResultType->isVoidTy())
8382     ResultTypes = makeArrayRef(CSResultType);
8383 
8384   auto CurResultType = ResultTypes.begin();
8385   auto handleRegAssign = [&](SDValue V) {
8386     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8387     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8388     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8389     ++CurResultType;
8390     // If the type of the inline asm call site return value is different but has
8391     // same size as the type of the asm output bitcast it.  One example of this
8392     // is for vectors with different width / number of elements.  This can
8393     // happen for register classes that can contain multiple different value
8394     // types.  The preg or vreg allocated may not have the same VT as was
8395     // expected.
8396     //
8397     // This can also happen for a return value that disagrees with the register
8398     // class it is put in, eg. a double in a general-purpose register on a
8399     // 32-bit machine.
8400     if (ResultVT != V.getValueType() &&
8401         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8402       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8403     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8404              V.getValueType().isInteger()) {
8405       // If a result value was tied to an input value, the computed result
8406       // may have a wider width than the expected result.  Extract the
8407       // relevant portion.
8408       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8409     }
8410     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8411     ResultVTs.push_back(ResultVT);
8412     ResultValues.push_back(V);
8413   };
8414 
8415   // Deal with output operands.
8416   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8417     if (OpInfo.Type == InlineAsm::isOutput) {
8418       SDValue Val;
8419       // Skip trivial output operands.
8420       if (OpInfo.AssignedRegs.Regs.empty())
8421         continue;
8422 
8423       switch (OpInfo.ConstraintType) {
8424       case TargetLowering::C_Register:
8425       case TargetLowering::C_RegisterClass:
8426         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8427             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8428         break;
8429       case TargetLowering::C_Immediate:
8430       case TargetLowering::C_Other:
8431         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8432                                               OpInfo, DAG);
8433         break;
8434       case TargetLowering::C_Memory:
8435         break; // Already handled.
8436       case TargetLowering::C_Unknown:
8437         assert(false && "Unexpected unknown constraint");
8438       }
8439 
8440       // Indirect output manifest as stores. Record output chains.
8441       if (OpInfo.isIndirect) {
8442         const Value *Ptr = OpInfo.CallOperandVal;
8443         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8444         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8445                                      MachinePointerInfo(Ptr));
8446         OutChains.push_back(Store);
8447       } else {
8448         // generate CopyFromRegs to associated registers.
8449         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8450         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8451           for (const SDValue &V : Val->op_values())
8452             handleRegAssign(V);
8453         } else
8454           handleRegAssign(Val);
8455       }
8456     }
8457   }
8458 
8459   // Set results.
8460   if (!ResultValues.empty()) {
8461     assert(CurResultType == ResultTypes.end() &&
8462            "Mismatch in number of ResultTypes");
8463     assert(ResultValues.size() == ResultTypes.size() &&
8464            "Mismatch in number of output operands in asm result");
8465 
8466     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8467                             DAG.getVTList(ResultVTs), ResultValues);
8468     setValue(CS.getInstruction(), V);
8469   }
8470 
8471   // Collect store chains.
8472   if (!OutChains.empty())
8473     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8474 
8475   // Only Update Root if inline assembly has a memory effect.
8476   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8477     DAG.setRoot(Chain);
8478 }
8479 
8480 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8481                                              const Twine &Message) {
8482   LLVMContext &Ctx = *DAG.getContext();
8483   Ctx.emitError(CS.getInstruction(), Message);
8484 
8485   // Make sure we leave the DAG in a valid state
8486   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8487   SmallVector<EVT, 1> ValueVTs;
8488   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8489 
8490   if (ValueVTs.empty())
8491     return;
8492 
8493   SmallVector<SDValue, 1> Ops;
8494   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8495     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8496 
8497   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8498 }
8499 
8500 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8501   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8502                           MVT::Other, getRoot(),
8503                           getValue(I.getArgOperand(0)),
8504                           DAG.getSrcValue(I.getArgOperand(0))));
8505 }
8506 
8507 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8508   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8509   const DataLayout &DL = DAG.getDataLayout();
8510   SDValue V = DAG.getVAArg(
8511       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8512       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8513       DL.getABITypeAlignment(I.getType()));
8514   DAG.setRoot(V.getValue(1));
8515 
8516   if (I.getType()->isPointerTy())
8517     V = DAG.getPtrExtOrTrunc(
8518         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8519   setValue(&I, V);
8520 }
8521 
8522 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8523   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8524                           MVT::Other, getRoot(),
8525                           getValue(I.getArgOperand(0)),
8526                           DAG.getSrcValue(I.getArgOperand(0))));
8527 }
8528 
8529 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8530   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8531                           MVT::Other, getRoot(),
8532                           getValue(I.getArgOperand(0)),
8533                           getValue(I.getArgOperand(1)),
8534                           DAG.getSrcValue(I.getArgOperand(0)),
8535                           DAG.getSrcValue(I.getArgOperand(1))));
8536 }
8537 
8538 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8539                                                     const Instruction &I,
8540                                                     SDValue Op) {
8541   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8542   if (!Range)
8543     return Op;
8544 
8545   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8546   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8547     return Op;
8548 
8549   APInt Lo = CR.getUnsignedMin();
8550   if (!Lo.isMinValue())
8551     return Op;
8552 
8553   APInt Hi = CR.getUnsignedMax();
8554   unsigned Bits = std::max(Hi.getActiveBits(),
8555                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8556 
8557   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8558 
8559   SDLoc SL = getCurSDLoc();
8560 
8561   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8562                              DAG.getValueType(SmallVT));
8563   unsigned NumVals = Op.getNode()->getNumValues();
8564   if (NumVals == 1)
8565     return ZExt;
8566 
8567   SmallVector<SDValue, 4> Ops;
8568 
8569   Ops.push_back(ZExt);
8570   for (unsigned I = 1; I != NumVals; ++I)
8571     Ops.push_back(Op.getValue(I));
8572 
8573   return DAG.getMergeValues(Ops, SL);
8574 }
8575 
8576 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8577 /// the call being lowered.
8578 ///
8579 /// This is a helper for lowering intrinsics that follow a target calling
8580 /// convention or require stack pointer adjustment. Only a subset of the
8581 /// intrinsic's operands need to participate in the calling convention.
8582 void SelectionDAGBuilder::populateCallLoweringInfo(
8583     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8584     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8585     bool IsPatchPoint) {
8586   TargetLowering::ArgListTy Args;
8587   Args.reserve(NumArgs);
8588 
8589   // Populate the argument list.
8590   // Attributes for args start at offset 1, after the return attribute.
8591   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8592        ArgI != ArgE; ++ArgI) {
8593     const Value *V = Call->getOperand(ArgI);
8594 
8595     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8596 
8597     TargetLowering::ArgListEntry Entry;
8598     Entry.Node = getValue(V);
8599     Entry.Ty = V->getType();
8600     Entry.setAttributes(Call, ArgI);
8601     Args.push_back(Entry);
8602   }
8603 
8604   CLI.setDebugLoc(getCurSDLoc())
8605       .setChain(getRoot())
8606       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8607       .setDiscardResult(Call->use_empty())
8608       .setIsPatchPoint(IsPatchPoint);
8609 }
8610 
8611 /// Add a stack map intrinsic call's live variable operands to a stackmap
8612 /// or patchpoint target node's operand list.
8613 ///
8614 /// Constants are converted to TargetConstants purely as an optimization to
8615 /// avoid constant materialization and register allocation.
8616 ///
8617 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8618 /// generate addess computation nodes, and so FinalizeISel can convert the
8619 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8620 /// address materialization and register allocation, but may also be required
8621 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8622 /// alloca in the entry block, then the runtime may assume that the alloca's
8623 /// StackMap location can be read immediately after compilation and that the
8624 /// location is valid at any point during execution (this is similar to the
8625 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8626 /// only available in a register, then the runtime would need to trap when
8627 /// execution reaches the StackMap in order to read the alloca's location.
8628 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8629                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8630                                 SelectionDAGBuilder &Builder) {
8631   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8632     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8633     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8634       Ops.push_back(
8635         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8636       Ops.push_back(
8637         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8638     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8639       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8640       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8641           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8642     } else
8643       Ops.push_back(OpVal);
8644   }
8645 }
8646 
8647 /// Lower llvm.experimental.stackmap directly to its target opcode.
8648 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8649   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8650   //                                  [live variables...])
8651 
8652   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8653 
8654   SDValue Chain, InFlag, Callee, NullPtr;
8655   SmallVector<SDValue, 32> Ops;
8656 
8657   SDLoc DL = getCurSDLoc();
8658   Callee = getValue(CI.getCalledValue());
8659   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8660 
8661   // The stackmap intrinsic only records the live variables (the arguments
8662   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8663   // intrinsic, this won't be lowered to a function call. This means we don't
8664   // have to worry about calling conventions and target specific lowering code.
8665   // Instead we perform the call lowering right here.
8666   //
8667   // chain, flag = CALLSEQ_START(chain, 0, 0)
8668   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8669   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8670   //
8671   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8672   InFlag = Chain.getValue(1);
8673 
8674   // Add the <id> and <numBytes> constants.
8675   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8676   Ops.push_back(DAG.getTargetConstant(
8677                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8678   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8679   Ops.push_back(DAG.getTargetConstant(
8680                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8681                   MVT::i32));
8682 
8683   // Push live variables for the stack map.
8684   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8685 
8686   // We are not pushing any register mask info here on the operands list,
8687   // because the stackmap doesn't clobber anything.
8688 
8689   // Push the chain and the glue flag.
8690   Ops.push_back(Chain);
8691   Ops.push_back(InFlag);
8692 
8693   // Create the STACKMAP node.
8694   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8695   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8696   Chain = SDValue(SM, 0);
8697   InFlag = Chain.getValue(1);
8698 
8699   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8700 
8701   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8702 
8703   // Set the root to the target-lowered call chain.
8704   DAG.setRoot(Chain);
8705 
8706   // Inform the Frame Information that we have a stackmap in this function.
8707   FuncInfo.MF->getFrameInfo().setHasStackMap();
8708 }
8709 
8710 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8711 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8712                                           const BasicBlock *EHPadBB) {
8713   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8714   //                                                 i32 <numBytes>,
8715   //                                                 i8* <target>,
8716   //                                                 i32 <numArgs>,
8717   //                                                 [Args...],
8718   //                                                 [live variables...])
8719 
8720   CallingConv::ID CC = CS.getCallingConv();
8721   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8722   bool HasDef = !CS->getType()->isVoidTy();
8723   SDLoc dl = getCurSDLoc();
8724   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8725 
8726   // Handle immediate and symbolic callees.
8727   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8728     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8729                                    /*isTarget=*/true);
8730   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8731     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8732                                          SDLoc(SymbolicCallee),
8733                                          SymbolicCallee->getValueType(0));
8734 
8735   // Get the real number of arguments participating in the call <numArgs>
8736   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8737   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8738 
8739   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8740   // Intrinsics include all meta-operands up to but not including CC.
8741   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8742   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8743          "Not enough arguments provided to the patchpoint intrinsic");
8744 
8745   // For AnyRegCC the arguments are lowered later on manually.
8746   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8747   Type *ReturnTy =
8748     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8749 
8750   TargetLowering::CallLoweringInfo CLI(DAG);
8751   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8752                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8753   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8754 
8755   SDNode *CallEnd = Result.second.getNode();
8756   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8757     CallEnd = CallEnd->getOperand(0).getNode();
8758 
8759   /// Get a call instruction from the call sequence chain.
8760   /// Tail calls are not allowed.
8761   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8762          "Expected a callseq node.");
8763   SDNode *Call = CallEnd->getOperand(0).getNode();
8764   bool HasGlue = Call->getGluedNode();
8765 
8766   // Replace the target specific call node with the patchable intrinsic.
8767   SmallVector<SDValue, 8> Ops;
8768 
8769   // Add the <id> and <numBytes> constants.
8770   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8771   Ops.push_back(DAG.getTargetConstant(
8772                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8773   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8774   Ops.push_back(DAG.getTargetConstant(
8775                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8776                   MVT::i32));
8777 
8778   // Add the callee.
8779   Ops.push_back(Callee);
8780 
8781   // Adjust <numArgs> to account for any arguments that have been passed on the
8782   // stack instead.
8783   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8784   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8785   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8786   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8787 
8788   // Add the calling convention
8789   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8790 
8791   // Add the arguments we omitted previously. The register allocator should
8792   // place these in any free register.
8793   if (IsAnyRegCC)
8794     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8795       Ops.push_back(getValue(CS.getArgument(i)));
8796 
8797   // Push the arguments from the call instruction up to the register mask.
8798   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8799   Ops.append(Call->op_begin() + 2, e);
8800 
8801   // Push live variables for the stack map.
8802   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8803 
8804   // Push the register mask info.
8805   if (HasGlue)
8806     Ops.push_back(*(Call->op_end()-2));
8807   else
8808     Ops.push_back(*(Call->op_end()-1));
8809 
8810   // Push the chain (this is originally the first operand of the call, but
8811   // becomes now the last or second to last operand).
8812   Ops.push_back(*(Call->op_begin()));
8813 
8814   // Push the glue flag (last operand).
8815   if (HasGlue)
8816     Ops.push_back(*(Call->op_end()-1));
8817 
8818   SDVTList NodeTys;
8819   if (IsAnyRegCC && HasDef) {
8820     // Create the return types based on the intrinsic definition
8821     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8822     SmallVector<EVT, 3> ValueVTs;
8823     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8824     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8825 
8826     // There is always a chain and a glue type at the end
8827     ValueVTs.push_back(MVT::Other);
8828     ValueVTs.push_back(MVT::Glue);
8829     NodeTys = DAG.getVTList(ValueVTs);
8830   } else
8831     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8832 
8833   // Replace the target specific call node with a PATCHPOINT node.
8834   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8835                                          dl, NodeTys, Ops);
8836 
8837   // Update the NodeMap.
8838   if (HasDef) {
8839     if (IsAnyRegCC)
8840       setValue(CS.getInstruction(), SDValue(MN, 0));
8841     else
8842       setValue(CS.getInstruction(), Result.first);
8843   }
8844 
8845   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8846   // call sequence. Furthermore the location of the chain and glue can change
8847   // when the AnyReg calling convention is used and the intrinsic returns a
8848   // value.
8849   if (IsAnyRegCC && HasDef) {
8850     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8851     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8852     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8853   } else
8854     DAG.ReplaceAllUsesWith(Call, MN);
8855   DAG.DeleteNode(Call);
8856 
8857   // Inform the Frame Information that we have a patchpoint in this function.
8858   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8859 }
8860 
8861 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8862                                             unsigned Intrinsic) {
8863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8864   SDValue Op1 = getValue(I.getArgOperand(0));
8865   SDValue Op2;
8866   if (I.getNumArgOperands() > 1)
8867     Op2 = getValue(I.getArgOperand(1));
8868   SDLoc dl = getCurSDLoc();
8869   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8870   SDValue Res;
8871   FastMathFlags FMF;
8872   if (isa<FPMathOperator>(I))
8873     FMF = I.getFastMathFlags();
8874 
8875   switch (Intrinsic) {
8876   case Intrinsic::experimental_vector_reduce_v2_fadd:
8877     if (FMF.allowReassoc())
8878       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8879                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8880     else
8881       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8882     break;
8883   case Intrinsic::experimental_vector_reduce_v2_fmul:
8884     if (FMF.allowReassoc())
8885       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8886                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8887     else
8888       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8889     break;
8890   case Intrinsic::experimental_vector_reduce_add:
8891     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8892     break;
8893   case Intrinsic::experimental_vector_reduce_mul:
8894     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8895     break;
8896   case Intrinsic::experimental_vector_reduce_and:
8897     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8898     break;
8899   case Intrinsic::experimental_vector_reduce_or:
8900     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8901     break;
8902   case Intrinsic::experimental_vector_reduce_xor:
8903     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8904     break;
8905   case Intrinsic::experimental_vector_reduce_smax:
8906     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8907     break;
8908   case Intrinsic::experimental_vector_reduce_smin:
8909     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8910     break;
8911   case Intrinsic::experimental_vector_reduce_umax:
8912     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8913     break;
8914   case Intrinsic::experimental_vector_reduce_umin:
8915     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8916     break;
8917   case Intrinsic::experimental_vector_reduce_fmax:
8918     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8919     break;
8920   case Intrinsic::experimental_vector_reduce_fmin:
8921     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8922     break;
8923   default:
8924     llvm_unreachable("Unhandled vector reduce intrinsic");
8925   }
8926   setValue(&I, Res);
8927 }
8928 
8929 /// Returns an AttributeList representing the attributes applied to the return
8930 /// value of the given call.
8931 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8932   SmallVector<Attribute::AttrKind, 2> Attrs;
8933   if (CLI.RetSExt)
8934     Attrs.push_back(Attribute::SExt);
8935   if (CLI.RetZExt)
8936     Attrs.push_back(Attribute::ZExt);
8937   if (CLI.IsInReg)
8938     Attrs.push_back(Attribute::InReg);
8939 
8940   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8941                             Attrs);
8942 }
8943 
8944 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8945 /// implementation, which just calls LowerCall.
8946 /// FIXME: When all targets are
8947 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8948 std::pair<SDValue, SDValue>
8949 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8950   // Handle the incoming return values from the call.
8951   CLI.Ins.clear();
8952   Type *OrigRetTy = CLI.RetTy;
8953   SmallVector<EVT, 4> RetTys;
8954   SmallVector<uint64_t, 4> Offsets;
8955   auto &DL = CLI.DAG.getDataLayout();
8956   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8957 
8958   if (CLI.IsPostTypeLegalization) {
8959     // If we are lowering a libcall after legalization, split the return type.
8960     SmallVector<EVT, 4> OldRetTys;
8961     SmallVector<uint64_t, 4> OldOffsets;
8962     RetTys.swap(OldRetTys);
8963     Offsets.swap(OldOffsets);
8964 
8965     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8966       EVT RetVT = OldRetTys[i];
8967       uint64_t Offset = OldOffsets[i];
8968       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8969       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8970       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8971       RetTys.append(NumRegs, RegisterVT);
8972       for (unsigned j = 0; j != NumRegs; ++j)
8973         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8974     }
8975   }
8976 
8977   SmallVector<ISD::OutputArg, 4> Outs;
8978   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8979 
8980   bool CanLowerReturn =
8981       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8982                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8983 
8984   SDValue DemoteStackSlot;
8985   int DemoteStackIdx = -100;
8986   if (!CanLowerReturn) {
8987     // FIXME: equivalent assert?
8988     // assert(!CS.hasInAllocaArgument() &&
8989     //        "sret demotion is incompatible with inalloca");
8990     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8991     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8992     MachineFunction &MF = CLI.DAG.getMachineFunction();
8993     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8994     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8995                                               DL.getAllocaAddrSpace());
8996 
8997     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8998     ArgListEntry Entry;
8999     Entry.Node = DemoteStackSlot;
9000     Entry.Ty = StackSlotPtrType;
9001     Entry.IsSExt = false;
9002     Entry.IsZExt = false;
9003     Entry.IsInReg = false;
9004     Entry.IsSRet = true;
9005     Entry.IsNest = false;
9006     Entry.IsByVal = false;
9007     Entry.IsReturned = false;
9008     Entry.IsSwiftSelf = false;
9009     Entry.IsSwiftError = false;
9010     Entry.IsCFGuardTarget = false;
9011     Entry.Alignment = Align;
9012     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9013     CLI.NumFixedArgs += 1;
9014     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9015 
9016     // sret demotion isn't compatible with tail-calls, since the sret argument
9017     // points into the callers stack frame.
9018     CLI.IsTailCall = false;
9019   } else {
9020     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9021         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9022     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9023       ISD::ArgFlagsTy Flags;
9024       if (NeedsRegBlock) {
9025         Flags.setInConsecutiveRegs();
9026         if (I == RetTys.size() - 1)
9027           Flags.setInConsecutiveRegsLast();
9028       }
9029       EVT VT = RetTys[I];
9030       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9031                                                      CLI.CallConv, VT);
9032       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9033                                                        CLI.CallConv, VT);
9034       for (unsigned i = 0; i != NumRegs; ++i) {
9035         ISD::InputArg MyFlags;
9036         MyFlags.Flags = Flags;
9037         MyFlags.VT = RegisterVT;
9038         MyFlags.ArgVT = VT;
9039         MyFlags.Used = CLI.IsReturnValueUsed;
9040         if (CLI.RetTy->isPointerTy()) {
9041           MyFlags.Flags.setPointer();
9042           MyFlags.Flags.setPointerAddrSpace(
9043               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9044         }
9045         if (CLI.RetSExt)
9046           MyFlags.Flags.setSExt();
9047         if (CLI.RetZExt)
9048           MyFlags.Flags.setZExt();
9049         if (CLI.IsInReg)
9050           MyFlags.Flags.setInReg();
9051         CLI.Ins.push_back(MyFlags);
9052       }
9053     }
9054   }
9055 
9056   // We push in swifterror return as the last element of CLI.Ins.
9057   ArgListTy &Args = CLI.getArgs();
9058   if (supportSwiftError()) {
9059     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9060       if (Args[i].IsSwiftError) {
9061         ISD::InputArg MyFlags;
9062         MyFlags.VT = getPointerTy(DL);
9063         MyFlags.ArgVT = EVT(getPointerTy(DL));
9064         MyFlags.Flags.setSwiftError();
9065         CLI.Ins.push_back(MyFlags);
9066       }
9067     }
9068   }
9069 
9070   // Handle all of the outgoing arguments.
9071   CLI.Outs.clear();
9072   CLI.OutVals.clear();
9073   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9074     SmallVector<EVT, 4> ValueVTs;
9075     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9076     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9077     Type *FinalType = Args[i].Ty;
9078     if (Args[i].IsByVal)
9079       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9080     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9081         FinalType, CLI.CallConv, CLI.IsVarArg);
9082     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9083          ++Value) {
9084       EVT VT = ValueVTs[Value];
9085       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9086       SDValue Op = SDValue(Args[i].Node.getNode(),
9087                            Args[i].Node.getResNo() + Value);
9088       ISD::ArgFlagsTy Flags;
9089 
9090       // Certain targets (such as MIPS), may have a different ABI alignment
9091       // for a type depending on the context. Give the target a chance to
9092       // specify the alignment it wants.
9093       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9094 
9095       if (Args[i].Ty->isPointerTy()) {
9096         Flags.setPointer();
9097         Flags.setPointerAddrSpace(
9098             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9099       }
9100       if (Args[i].IsZExt)
9101         Flags.setZExt();
9102       if (Args[i].IsSExt)
9103         Flags.setSExt();
9104       if (Args[i].IsInReg) {
9105         // If we are using vectorcall calling convention, a structure that is
9106         // passed InReg - is surely an HVA
9107         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9108             isa<StructType>(FinalType)) {
9109           // The first value of a structure is marked
9110           if (0 == Value)
9111             Flags.setHvaStart();
9112           Flags.setHva();
9113         }
9114         // Set InReg Flag
9115         Flags.setInReg();
9116       }
9117       if (Args[i].IsSRet)
9118         Flags.setSRet();
9119       if (Args[i].IsSwiftSelf)
9120         Flags.setSwiftSelf();
9121       if (Args[i].IsSwiftError)
9122         Flags.setSwiftError();
9123       if (Args[i].IsCFGuardTarget)
9124         Flags.setCFGuardTarget();
9125       if (Args[i].IsByVal)
9126         Flags.setByVal();
9127       if (Args[i].IsInAlloca) {
9128         Flags.setInAlloca();
9129         // Set the byval flag for CCAssignFn callbacks that don't know about
9130         // inalloca.  This way we can know how many bytes we should've allocated
9131         // and how many bytes a callee cleanup function will pop.  If we port
9132         // inalloca to more targets, we'll have to add custom inalloca handling
9133         // in the various CC lowering callbacks.
9134         Flags.setByVal();
9135       }
9136       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9137         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9138         Type *ElementTy = Ty->getElementType();
9139 
9140         unsigned FrameSize = DL.getTypeAllocSize(
9141             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9142         Flags.setByValSize(FrameSize);
9143 
9144         // info is not there but there are cases it cannot get right.
9145         unsigned FrameAlign;
9146         if (Args[i].Alignment)
9147           FrameAlign = Args[i].Alignment;
9148         else
9149           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9150         Flags.setByValAlign(Align(FrameAlign));
9151       }
9152       if (Args[i].IsNest)
9153         Flags.setNest();
9154       if (NeedsRegBlock)
9155         Flags.setInConsecutiveRegs();
9156       Flags.setOrigAlign(OriginalAlignment);
9157 
9158       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9159                                                  CLI.CallConv, VT);
9160       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9161                                                         CLI.CallConv, VT);
9162       SmallVector<SDValue, 4> Parts(NumParts);
9163       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9164 
9165       if (Args[i].IsSExt)
9166         ExtendKind = ISD::SIGN_EXTEND;
9167       else if (Args[i].IsZExt)
9168         ExtendKind = ISD::ZERO_EXTEND;
9169 
9170       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9171       // for now.
9172       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9173           CanLowerReturn) {
9174         assert((CLI.RetTy == Args[i].Ty ||
9175                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9176                  CLI.RetTy->getPointerAddressSpace() ==
9177                      Args[i].Ty->getPointerAddressSpace())) &&
9178                RetTys.size() == NumValues && "unexpected use of 'returned'");
9179         // Before passing 'returned' to the target lowering code, ensure that
9180         // either the register MVT and the actual EVT are the same size or that
9181         // the return value and argument are extended in the same way; in these
9182         // cases it's safe to pass the argument register value unchanged as the
9183         // return register value (although it's at the target's option whether
9184         // to do so)
9185         // TODO: allow code generation to take advantage of partially preserved
9186         // registers rather than clobbering the entire register when the
9187         // parameter extension method is not compatible with the return
9188         // extension method
9189         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9190             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9191              CLI.RetZExt == Args[i].IsZExt))
9192           Flags.setReturned();
9193       }
9194 
9195       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9196                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9197 
9198       for (unsigned j = 0; j != NumParts; ++j) {
9199         // if it isn't first piece, alignment must be 1
9200         // For scalable vectors the scalable part is currently handled
9201         // by individual targets, so we just use the known minimum size here.
9202         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9203                     i < CLI.NumFixedArgs, i,
9204                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9205         if (NumParts > 1 && j == 0)
9206           MyFlags.Flags.setSplit();
9207         else if (j != 0) {
9208           MyFlags.Flags.setOrigAlign(Align(1));
9209           if (j == NumParts - 1)
9210             MyFlags.Flags.setSplitEnd();
9211         }
9212 
9213         CLI.Outs.push_back(MyFlags);
9214         CLI.OutVals.push_back(Parts[j]);
9215       }
9216 
9217       if (NeedsRegBlock && Value == NumValues - 1)
9218         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9219     }
9220   }
9221 
9222   SmallVector<SDValue, 4> InVals;
9223   CLI.Chain = LowerCall(CLI, InVals);
9224 
9225   // Update CLI.InVals to use outside of this function.
9226   CLI.InVals = InVals;
9227 
9228   // Verify that the target's LowerCall behaved as expected.
9229   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9230          "LowerCall didn't return a valid chain!");
9231   assert((!CLI.IsTailCall || InVals.empty()) &&
9232          "LowerCall emitted a return value for a tail call!");
9233   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9234          "LowerCall didn't emit the correct number of values!");
9235 
9236   // For a tail call, the return value is merely live-out and there aren't
9237   // any nodes in the DAG representing it. Return a special value to
9238   // indicate that a tail call has been emitted and no more Instructions
9239   // should be processed in the current block.
9240   if (CLI.IsTailCall) {
9241     CLI.DAG.setRoot(CLI.Chain);
9242     return std::make_pair(SDValue(), SDValue());
9243   }
9244 
9245 #ifndef NDEBUG
9246   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9247     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9248     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9249            "LowerCall emitted a value with the wrong type!");
9250   }
9251 #endif
9252 
9253   SmallVector<SDValue, 4> ReturnValues;
9254   if (!CanLowerReturn) {
9255     // The instruction result is the result of loading from the
9256     // hidden sret parameter.
9257     SmallVector<EVT, 1> PVTs;
9258     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9259 
9260     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9261     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9262     EVT PtrVT = PVTs[0];
9263 
9264     unsigned NumValues = RetTys.size();
9265     ReturnValues.resize(NumValues);
9266     SmallVector<SDValue, 4> Chains(NumValues);
9267 
9268     // An aggregate return value cannot wrap around the address space, so
9269     // offsets to its parts don't wrap either.
9270     SDNodeFlags Flags;
9271     Flags.setNoUnsignedWrap(true);
9272 
9273     for (unsigned i = 0; i < NumValues; ++i) {
9274       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9275                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9276                                                         PtrVT), Flags);
9277       SDValue L = CLI.DAG.getLoad(
9278           RetTys[i], CLI.DL, CLI.Chain, Add,
9279           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9280                                             DemoteStackIdx, Offsets[i]),
9281           /* Alignment = */ 1);
9282       ReturnValues[i] = L;
9283       Chains[i] = L.getValue(1);
9284     }
9285 
9286     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9287   } else {
9288     // Collect the legal value parts into potentially illegal values
9289     // that correspond to the original function's return values.
9290     Optional<ISD::NodeType> AssertOp;
9291     if (CLI.RetSExt)
9292       AssertOp = ISD::AssertSext;
9293     else if (CLI.RetZExt)
9294       AssertOp = ISD::AssertZext;
9295     unsigned CurReg = 0;
9296     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9297       EVT VT = RetTys[I];
9298       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9299                                                      CLI.CallConv, VT);
9300       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9301                                                        CLI.CallConv, VT);
9302 
9303       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9304                                               NumRegs, RegisterVT, VT, nullptr,
9305                                               CLI.CallConv, AssertOp));
9306       CurReg += NumRegs;
9307     }
9308 
9309     // For a function returning void, there is no return value. We can't create
9310     // such a node, so we just return a null return value in that case. In
9311     // that case, nothing will actually look at the value.
9312     if (ReturnValues.empty())
9313       return std::make_pair(SDValue(), CLI.Chain);
9314   }
9315 
9316   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9317                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9318   return std::make_pair(Res, CLI.Chain);
9319 }
9320 
9321 void TargetLowering::LowerOperationWrapper(SDNode *N,
9322                                            SmallVectorImpl<SDValue> &Results,
9323                                            SelectionDAG &DAG) const {
9324   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9325     Results.push_back(Res);
9326 }
9327 
9328 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9329   llvm_unreachable("LowerOperation not implemented for this target!");
9330 }
9331 
9332 void
9333 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9334   SDValue Op = getNonRegisterValue(V);
9335   assert((Op.getOpcode() != ISD::CopyFromReg ||
9336           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9337          "Copy from a reg to the same reg!");
9338   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9339 
9340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9341   // If this is an InlineAsm we have to match the registers required, not the
9342   // notional registers required by the type.
9343 
9344   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9345                    None); // This is not an ABI copy.
9346   SDValue Chain = DAG.getEntryNode();
9347 
9348   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9349                               FuncInfo.PreferredExtendType.end())
9350                                  ? ISD::ANY_EXTEND
9351                                  : FuncInfo.PreferredExtendType[V];
9352   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9353   PendingExports.push_back(Chain);
9354 }
9355 
9356 #include "llvm/CodeGen/SelectionDAGISel.h"
9357 
9358 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9359 /// entry block, return true.  This includes arguments used by switches, since
9360 /// the switch may expand into multiple basic blocks.
9361 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9362   // With FastISel active, we may be splitting blocks, so force creation
9363   // of virtual registers for all non-dead arguments.
9364   if (FastISel)
9365     return A->use_empty();
9366 
9367   const BasicBlock &Entry = A->getParent()->front();
9368   for (const User *U : A->users())
9369     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9370       return false;  // Use not in entry block.
9371 
9372   return true;
9373 }
9374 
9375 using ArgCopyElisionMapTy =
9376     DenseMap<const Argument *,
9377              std::pair<const AllocaInst *, const StoreInst *>>;
9378 
9379 /// Scan the entry block of the function in FuncInfo for arguments that look
9380 /// like copies into a local alloca. Record any copied arguments in
9381 /// ArgCopyElisionCandidates.
9382 static void
9383 findArgumentCopyElisionCandidates(const DataLayout &DL,
9384                                   FunctionLoweringInfo *FuncInfo,
9385                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9386   // Record the state of every static alloca used in the entry block. Argument
9387   // allocas are all used in the entry block, so we need approximately as many
9388   // entries as we have arguments.
9389   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9390   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9391   unsigned NumArgs = FuncInfo->Fn->arg_size();
9392   StaticAllocas.reserve(NumArgs * 2);
9393 
9394   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9395     if (!V)
9396       return nullptr;
9397     V = V->stripPointerCasts();
9398     const auto *AI = dyn_cast<AllocaInst>(V);
9399     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9400       return nullptr;
9401     auto Iter = StaticAllocas.insert({AI, Unknown});
9402     return &Iter.first->second;
9403   };
9404 
9405   // Look for stores of arguments to static allocas. Look through bitcasts and
9406   // GEPs to handle type coercions, as long as the alloca is fully initialized
9407   // by the store. Any non-store use of an alloca escapes it and any subsequent
9408   // unanalyzed store might write it.
9409   // FIXME: Handle structs initialized with multiple stores.
9410   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9411     // Look for stores, and handle non-store uses conservatively.
9412     const auto *SI = dyn_cast<StoreInst>(&I);
9413     if (!SI) {
9414       // We will look through cast uses, so ignore them completely.
9415       if (I.isCast())
9416         continue;
9417       // Ignore debug info intrinsics, they don't escape or store to allocas.
9418       if (isa<DbgInfoIntrinsic>(I))
9419         continue;
9420       // This is an unknown instruction. Assume it escapes or writes to all
9421       // static alloca operands.
9422       for (const Use &U : I.operands()) {
9423         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9424           *Info = StaticAllocaInfo::Clobbered;
9425       }
9426       continue;
9427     }
9428 
9429     // If the stored value is a static alloca, mark it as escaped.
9430     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9431       *Info = StaticAllocaInfo::Clobbered;
9432 
9433     // Check if the destination is a static alloca.
9434     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9435     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9436     if (!Info)
9437       continue;
9438     const AllocaInst *AI = cast<AllocaInst>(Dst);
9439 
9440     // Skip allocas that have been initialized or clobbered.
9441     if (*Info != StaticAllocaInfo::Unknown)
9442       continue;
9443 
9444     // Check if the stored value is an argument, and that this store fully
9445     // initializes the alloca. Don't elide copies from the same argument twice.
9446     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9447     const auto *Arg = dyn_cast<Argument>(Val);
9448     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9449         Arg->getType()->isEmptyTy() ||
9450         DL.getTypeStoreSize(Arg->getType()) !=
9451             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9452         ArgCopyElisionCandidates.count(Arg)) {
9453       *Info = StaticAllocaInfo::Clobbered;
9454       continue;
9455     }
9456 
9457     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9458                       << '\n');
9459 
9460     // Mark this alloca and store for argument copy elision.
9461     *Info = StaticAllocaInfo::Elidable;
9462     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9463 
9464     // Stop scanning if we've seen all arguments. This will happen early in -O0
9465     // builds, which is useful, because -O0 builds have large entry blocks and
9466     // many allocas.
9467     if (ArgCopyElisionCandidates.size() == NumArgs)
9468       break;
9469   }
9470 }
9471 
9472 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9473 /// ArgVal is a load from a suitable fixed stack object.
9474 static void tryToElideArgumentCopy(
9475     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9476     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9477     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9478     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9479     SDValue ArgVal, bool &ArgHasUses) {
9480   // Check if this is a load from a fixed stack object.
9481   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9482   if (!LNode)
9483     return;
9484   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9485   if (!FINode)
9486     return;
9487 
9488   // Check that the fixed stack object is the right size and alignment.
9489   // Look at the alignment that the user wrote on the alloca instead of looking
9490   // at the stack object.
9491   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9492   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9493   const AllocaInst *AI = ArgCopyIter->second.first;
9494   int FixedIndex = FINode->getIndex();
9495   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9496   int OldIndex = AllocaIndex;
9497   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9498   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9499     LLVM_DEBUG(
9500         dbgs() << "  argument copy elision failed due to bad fixed stack "
9501                   "object size\n");
9502     return;
9503   }
9504   unsigned RequiredAlignment = AI->getAlignment();
9505   if (!RequiredAlignment) {
9506     RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment(
9507         AI->getAllocatedType());
9508   }
9509   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9510     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9511                          "greater than stack argument alignment ("
9512                       << RequiredAlignment << " vs "
9513                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9514     return;
9515   }
9516 
9517   // Perform the elision. Delete the old stack object and replace its only use
9518   // in the variable info map. Mark the stack object as mutable.
9519   LLVM_DEBUG({
9520     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9521            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9522            << '\n';
9523   });
9524   MFI.RemoveStackObject(OldIndex);
9525   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9526   AllocaIndex = FixedIndex;
9527   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9528   Chains.push_back(ArgVal.getValue(1));
9529 
9530   // Avoid emitting code for the store implementing the copy.
9531   const StoreInst *SI = ArgCopyIter->second.second;
9532   ElidedArgCopyInstrs.insert(SI);
9533 
9534   // Check for uses of the argument again so that we can avoid exporting ArgVal
9535   // if it is't used by anything other than the store.
9536   for (const Value *U : Arg.users()) {
9537     if (U != SI) {
9538       ArgHasUses = true;
9539       break;
9540     }
9541   }
9542 }
9543 
9544 void SelectionDAGISel::LowerArguments(const Function &F) {
9545   SelectionDAG &DAG = SDB->DAG;
9546   SDLoc dl = SDB->getCurSDLoc();
9547   const DataLayout &DL = DAG.getDataLayout();
9548   SmallVector<ISD::InputArg, 16> Ins;
9549 
9550   if (!FuncInfo->CanLowerReturn) {
9551     // Put in an sret pointer parameter before all the other parameters.
9552     SmallVector<EVT, 1> ValueVTs;
9553     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9554                     F.getReturnType()->getPointerTo(
9555                         DAG.getDataLayout().getAllocaAddrSpace()),
9556                     ValueVTs);
9557 
9558     // NOTE: Assuming that a pointer will never break down to more than one VT
9559     // or one register.
9560     ISD::ArgFlagsTy Flags;
9561     Flags.setSRet();
9562     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9563     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9564                          ISD::InputArg::NoArgIndex, 0);
9565     Ins.push_back(RetArg);
9566   }
9567 
9568   // Look for stores of arguments to static allocas. Mark such arguments with a
9569   // flag to ask the target to give us the memory location of that argument if
9570   // available.
9571   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9572   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9573                                     ArgCopyElisionCandidates);
9574 
9575   // Set up the incoming argument description vector.
9576   for (const Argument &Arg : F.args()) {
9577     unsigned ArgNo = Arg.getArgNo();
9578     SmallVector<EVT, 4> ValueVTs;
9579     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9580     bool isArgValueUsed = !Arg.use_empty();
9581     unsigned PartBase = 0;
9582     Type *FinalType = Arg.getType();
9583     if (Arg.hasAttribute(Attribute::ByVal))
9584       FinalType = Arg.getParamByValType();
9585     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9586         FinalType, F.getCallingConv(), F.isVarArg());
9587     for (unsigned Value = 0, NumValues = ValueVTs.size();
9588          Value != NumValues; ++Value) {
9589       EVT VT = ValueVTs[Value];
9590       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9591       ISD::ArgFlagsTy Flags;
9592 
9593       // Certain targets (such as MIPS), may have a different ABI alignment
9594       // for a type depending on the context. Give the target a chance to
9595       // specify the alignment it wants.
9596       const Align OriginalAlignment(
9597           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9598 
9599       if (Arg.getType()->isPointerTy()) {
9600         Flags.setPointer();
9601         Flags.setPointerAddrSpace(
9602             cast<PointerType>(Arg.getType())->getAddressSpace());
9603       }
9604       if (Arg.hasAttribute(Attribute::ZExt))
9605         Flags.setZExt();
9606       if (Arg.hasAttribute(Attribute::SExt))
9607         Flags.setSExt();
9608       if (Arg.hasAttribute(Attribute::InReg)) {
9609         // If we are using vectorcall calling convention, a structure that is
9610         // passed InReg - is surely an HVA
9611         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9612             isa<StructType>(Arg.getType())) {
9613           // The first value of a structure is marked
9614           if (0 == Value)
9615             Flags.setHvaStart();
9616           Flags.setHva();
9617         }
9618         // Set InReg Flag
9619         Flags.setInReg();
9620       }
9621       if (Arg.hasAttribute(Attribute::StructRet))
9622         Flags.setSRet();
9623       if (Arg.hasAttribute(Attribute::SwiftSelf))
9624         Flags.setSwiftSelf();
9625       if (Arg.hasAttribute(Attribute::SwiftError))
9626         Flags.setSwiftError();
9627       if (Arg.hasAttribute(Attribute::ByVal))
9628         Flags.setByVal();
9629       if (Arg.hasAttribute(Attribute::InAlloca)) {
9630         Flags.setInAlloca();
9631         // Set the byval flag for CCAssignFn callbacks that don't know about
9632         // inalloca.  This way we can know how many bytes we should've allocated
9633         // and how many bytes a callee cleanup function will pop.  If we port
9634         // inalloca to more targets, we'll have to add custom inalloca handling
9635         // in the various CC lowering callbacks.
9636         Flags.setByVal();
9637       }
9638       if (F.getCallingConv() == CallingConv::X86_INTR) {
9639         // IA Interrupt passes frame (1st parameter) by value in the stack.
9640         if (ArgNo == 0)
9641           Flags.setByVal();
9642       }
9643       if (Flags.isByVal() || Flags.isInAlloca()) {
9644         Type *ElementTy = Arg.getParamByValType();
9645 
9646         // For ByVal, size and alignment should be passed from FE.  BE will
9647         // guess if this info is not there but there are cases it cannot get
9648         // right.
9649         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9650         Flags.setByValSize(FrameSize);
9651 
9652         unsigned FrameAlign;
9653         if (Arg.getParamAlignment())
9654           FrameAlign = Arg.getParamAlignment();
9655         else
9656           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9657         Flags.setByValAlign(Align(FrameAlign));
9658       }
9659       if (Arg.hasAttribute(Attribute::Nest))
9660         Flags.setNest();
9661       if (NeedsRegBlock)
9662         Flags.setInConsecutiveRegs();
9663       Flags.setOrigAlign(OriginalAlignment);
9664       if (ArgCopyElisionCandidates.count(&Arg))
9665         Flags.setCopyElisionCandidate();
9666       if (Arg.hasAttribute(Attribute::Returned))
9667         Flags.setReturned();
9668 
9669       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9670           *CurDAG->getContext(), F.getCallingConv(), VT);
9671       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9672           *CurDAG->getContext(), F.getCallingConv(), VT);
9673       for (unsigned i = 0; i != NumRegs; ++i) {
9674         // For scalable vectors, use the minimum size; individual targets
9675         // are responsible for handling scalable vector arguments and
9676         // return values.
9677         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9678                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9679         if (NumRegs > 1 && i == 0)
9680           MyFlags.Flags.setSplit();
9681         // if it isn't first piece, alignment must be 1
9682         else if (i > 0) {
9683           MyFlags.Flags.setOrigAlign(Align(1));
9684           if (i == NumRegs - 1)
9685             MyFlags.Flags.setSplitEnd();
9686         }
9687         Ins.push_back(MyFlags);
9688       }
9689       if (NeedsRegBlock && Value == NumValues - 1)
9690         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9691       PartBase += VT.getStoreSize().getKnownMinSize();
9692     }
9693   }
9694 
9695   // Call the target to set up the argument values.
9696   SmallVector<SDValue, 8> InVals;
9697   SDValue NewRoot = TLI->LowerFormalArguments(
9698       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9699 
9700   // Verify that the target's LowerFormalArguments behaved as expected.
9701   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9702          "LowerFormalArguments didn't return a valid chain!");
9703   assert(InVals.size() == Ins.size() &&
9704          "LowerFormalArguments didn't emit the correct number of values!");
9705   LLVM_DEBUG({
9706     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9707       assert(InVals[i].getNode() &&
9708              "LowerFormalArguments emitted a null value!");
9709       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9710              "LowerFormalArguments emitted a value with the wrong type!");
9711     }
9712   });
9713 
9714   // Update the DAG with the new chain value resulting from argument lowering.
9715   DAG.setRoot(NewRoot);
9716 
9717   // Set up the argument values.
9718   unsigned i = 0;
9719   if (!FuncInfo->CanLowerReturn) {
9720     // Create a virtual register for the sret pointer, and put in a copy
9721     // from the sret argument into it.
9722     SmallVector<EVT, 1> ValueVTs;
9723     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9724                     F.getReturnType()->getPointerTo(
9725                         DAG.getDataLayout().getAllocaAddrSpace()),
9726                     ValueVTs);
9727     MVT VT = ValueVTs[0].getSimpleVT();
9728     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9729     Optional<ISD::NodeType> AssertOp = None;
9730     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9731                                         nullptr, F.getCallingConv(), AssertOp);
9732 
9733     MachineFunction& MF = SDB->DAG.getMachineFunction();
9734     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9735     Register SRetReg =
9736         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9737     FuncInfo->DemoteRegister = SRetReg;
9738     NewRoot =
9739         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9740     DAG.setRoot(NewRoot);
9741 
9742     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9743     ++i;
9744   }
9745 
9746   SmallVector<SDValue, 4> Chains;
9747   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9748   for (const Argument &Arg : F.args()) {
9749     SmallVector<SDValue, 4> ArgValues;
9750     SmallVector<EVT, 4> ValueVTs;
9751     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9752     unsigned NumValues = ValueVTs.size();
9753     if (NumValues == 0)
9754       continue;
9755 
9756     bool ArgHasUses = !Arg.use_empty();
9757 
9758     // Elide the copying store if the target loaded this argument from a
9759     // suitable fixed stack object.
9760     if (Ins[i].Flags.isCopyElisionCandidate()) {
9761       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9762                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9763                              InVals[i], ArgHasUses);
9764     }
9765 
9766     // If this argument is unused then remember its value. It is used to generate
9767     // debugging information.
9768     bool isSwiftErrorArg =
9769         TLI->supportSwiftError() &&
9770         Arg.hasAttribute(Attribute::SwiftError);
9771     if (!ArgHasUses && !isSwiftErrorArg) {
9772       SDB->setUnusedArgValue(&Arg, InVals[i]);
9773 
9774       // Also remember any frame index for use in FastISel.
9775       if (FrameIndexSDNode *FI =
9776           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9777         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9778     }
9779 
9780     for (unsigned Val = 0; Val != NumValues; ++Val) {
9781       EVT VT = ValueVTs[Val];
9782       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9783                                                       F.getCallingConv(), VT);
9784       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9785           *CurDAG->getContext(), F.getCallingConv(), VT);
9786 
9787       // Even an apparent 'unused' swifterror argument needs to be returned. So
9788       // we do generate a copy for it that can be used on return from the
9789       // function.
9790       if (ArgHasUses || isSwiftErrorArg) {
9791         Optional<ISD::NodeType> AssertOp;
9792         if (Arg.hasAttribute(Attribute::SExt))
9793           AssertOp = ISD::AssertSext;
9794         else if (Arg.hasAttribute(Attribute::ZExt))
9795           AssertOp = ISD::AssertZext;
9796 
9797         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9798                                              PartVT, VT, nullptr,
9799                                              F.getCallingConv(), AssertOp));
9800       }
9801 
9802       i += NumParts;
9803     }
9804 
9805     // We don't need to do anything else for unused arguments.
9806     if (ArgValues.empty())
9807       continue;
9808 
9809     // Note down frame index.
9810     if (FrameIndexSDNode *FI =
9811         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9812       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9813 
9814     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9815                                      SDB->getCurSDLoc());
9816 
9817     SDB->setValue(&Arg, Res);
9818     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9819       // We want to associate the argument with the frame index, among
9820       // involved operands, that correspond to the lowest address. The
9821       // getCopyFromParts function, called earlier, is swapping the order of
9822       // the operands to BUILD_PAIR depending on endianness. The result of
9823       // that swapping is that the least significant bits of the argument will
9824       // be in the first operand of the BUILD_PAIR node, and the most
9825       // significant bits will be in the second operand.
9826       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9827       if (LoadSDNode *LNode =
9828           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9829         if (FrameIndexSDNode *FI =
9830             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9831           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9832     }
9833 
9834     // Analyses past this point are naive and don't expect an assertion.
9835     if (Res.getOpcode() == ISD::AssertZext)
9836       Res = Res.getOperand(0);
9837 
9838     // Update the SwiftErrorVRegDefMap.
9839     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9840       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9841       if (Register::isVirtualRegister(Reg))
9842         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9843                                    Reg);
9844     }
9845 
9846     // If this argument is live outside of the entry block, insert a copy from
9847     // wherever we got it to the vreg that other BB's will reference it as.
9848     if (Res.getOpcode() == ISD::CopyFromReg) {
9849       // If we can, though, try to skip creating an unnecessary vreg.
9850       // FIXME: This isn't very clean... it would be nice to make this more
9851       // general.
9852       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9853       if (Register::isVirtualRegister(Reg)) {
9854         FuncInfo->ValueMap[&Arg] = Reg;
9855         continue;
9856       }
9857     }
9858     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9859       FuncInfo->InitializeRegForValue(&Arg);
9860       SDB->CopyToExportRegsIfNeeded(&Arg);
9861     }
9862   }
9863 
9864   if (!Chains.empty()) {
9865     Chains.push_back(NewRoot);
9866     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9867   }
9868 
9869   DAG.setRoot(NewRoot);
9870 
9871   assert(i == InVals.size() && "Argument register count mismatch!");
9872 
9873   // If any argument copy elisions occurred and we have debug info, update the
9874   // stale frame indices used in the dbg.declare variable info table.
9875   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9876   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9877     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9878       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9879       if (I != ArgCopyElisionFrameIndexMap.end())
9880         VI.Slot = I->second;
9881     }
9882   }
9883 
9884   // Finally, if the target has anything special to do, allow it to do so.
9885   emitFunctionEntryCode();
9886 }
9887 
9888 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9889 /// ensure constants are generated when needed.  Remember the virtual registers
9890 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9891 /// directly add them, because expansion might result in multiple MBB's for one
9892 /// BB.  As such, the start of the BB might correspond to a different MBB than
9893 /// the end.
9894 void
9895 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9896   const Instruction *TI = LLVMBB->getTerminator();
9897 
9898   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9899 
9900   // Check PHI nodes in successors that expect a value to be available from this
9901   // block.
9902   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9903     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9904     if (!isa<PHINode>(SuccBB->begin())) continue;
9905     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9906 
9907     // If this terminator has multiple identical successors (common for
9908     // switches), only handle each succ once.
9909     if (!SuccsHandled.insert(SuccMBB).second)
9910       continue;
9911 
9912     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9913 
9914     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9915     // nodes and Machine PHI nodes, but the incoming operands have not been
9916     // emitted yet.
9917     for (const PHINode &PN : SuccBB->phis()) {
9918       // Ignore dead phi's.
9919       if (PN.use_empty())
9920         continue;
9921 
9922       // Skip empty types
9923       if (PN.getType()->isEmptyTy())
9924         continue;
9925 
9926       unsigned Reg;
9927       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9928 
9929       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9930         unsigned &RegOut = ConstantsOut[C];
9931         if (RegOut == 0) {
9932           RegOut = FuncInfo.CreateRegs(C);
9933           CopyValueToVirtualRegister(C, RegOut);
9934         }
9935         Reg = RegOut;
9936       } else {
9937         DenseMap<const Value *, unsigned>::iterator I =
9938           FuncInfo.ValueMap.find(PHIOp);
9939         if (I != FuncInfo.ValueMap.end())
9940           Reg = I->second;
9941         else {
9942           assert(isa<AllocaInst>(PHIOp) &&
9943                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9944                  "Didn't codegen value into a register!??");
9945           Reg = FuncInfo.CreateRegs(PHIOp);
9946           CopyValueToVirtualRegister(PHIOp, Reg);
9947         }
9948       }
9949 
9950       // Remember that this register needs to added to the machine PHI node as
9951       // the input for this MBB.
9952       SmallVector<EVT, 4> ValueVTs;
9953       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9954       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9955       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9956         EVT VT = ValueVTs[vti];
9957         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9958         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9959           FuncInfo.PHINodesToUpdate.push_back(
9960               std::make_pair(&*MBBI++, Reg + i));
9961         Reg += NumRegisters;
9962       }
9963     }
9964   }
9965 
9966   ConstantsOut.clear();
9967 }
9968 
9969 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9970 /// is 0.
9971 MachineBasicBlock *
9972 SelectionDAGBuilder::StackProtectorDescriptor::
9973 AddSuccessorMBB(const BasicBlock *BB,
9974                 MachineBasicBlock *ParentMBB,
9975                 bool IsLikely,
9976                 MachineBasicBlock *SuccMBB) {
9977   // If SuccBB has not been created yet, create it.
9978   if (!SuccMBB) {
9979     MachineFunction *MF = ParentMBB->getParent();
9980     MachineFunction::iterator BBI(ParentMBB);
9981     SuccMBB = MF->CreateMachineBasicBlock(BB);
9982     MF->insert(++BBI, SuccMBB);
9983   }
9984   // Add it as a successor of ParentMBB.
9985   ParentMBB->addSuccessor(
9986       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9987   return SuccMBB;
9988 }
9989 
9990 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9991   MachineFunction::iterator I(MBB);
9992   if (++I == FuncInfo.MF->end())
9993     return nullptr;
9994   return &*I;
9995 }
9996 
9997 /// During lowering new call nodes can be created (such as memset, etc.).
9998 /// Those will become new roots of the current DAG, but complications arise
9999 /// when they are tail calls. In such cases, the call lowering will update
10000 /// the root, but the builder still needs to know that a tail call has been
10001 /// lowered in order to avoid generating an additional return.
10002 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10003   // If the node is null, we do have a tail call.
10004   if (MaybeTC.getNode() != nullptr)
10005     DAG.setRoot(MaybeTC);
10006   else
10007     HasTailCall = true;
10008 }
10009 
10010 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10011                                         MachineBasicBlock *SwitchMBB,
10012                                         MachineBasicBlock *DefaultMBB) {
10013   MachineFunction *CurMF = FuncInfo.MF;
10014   MachineBasicBlock *NextMBB = nullptr;
10015   MachineFunction::iterator BBI(W.MBB);
10016   if (++BBI != FuncInfo.MF->end())
10017     NextMBB = &*BBI;
10018 
10019   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10020 
10021   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10022 
10023   if (Size == 2 && W.MBB == SwitchMBB) {
10024     // If any two of the cases has the same destination, and if one value
10025     // is the same as the other, but has one bit unset that the other has set,
10026     // use bit manipulation to do two compares at once.  For example:
10027     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10028     // TODO: This could be extended to merge any 2 cases in switches with 3
10029     // cases.
10030     // TODO: Handle cases where W.CaseBB != SwitchBB.
10031     CaseCluster &Small = *W.FirstCluster;
10032     CaseCluster &Big = *W.LastCluster;
10033 
10034     if (Small.Low == Small.High && Big.Low == Big.High &&
10035         Small.MBB == Big.MBB) {
10036       const APInt &SmallValue = Small.Low->getValue();
10037       const APInt &BigValue = Big.Low->getValue();
10038 
10039       // Check that there is only one bit different.
10040       APInt CommonBit = BigValue ^ SmallValue;
10041       if (CommonBit.isPowerOf2()) {
10042         SDValue CondLHS = getValue(Cond);
10043         EVT VT = CondLHS.getValueType();
10044         SDLoc DL = getCurSDLoc();
10045 
10046         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10047                                  DAG.getConstant(CommonBit, DL, VT));
10048         SDValue Cond = DAG.getSetCC(
10049             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10050             ISD::SETEQ);
10051 
10052         // Update successor info.
10053         // Both Small and Big will jump to Small.BB, so we sum up the
10054         // probabilities.
10055         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10056         if (BPI)
10057           addSuccessorWithProb(
10058               SwitchMBB, DefaultMBB,
10059               // The default destination is the first successor in IR.
10060               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10061         else
10062           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10063 
10064         // Insert the true branch.
10065         SDValue BrCond =
10066             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10067                         DAG.getBasicBlock(Small.MBB));
10068         // Insert the false branch.
10069         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10070                              DAG.getBasicBlock(DefaultMBB));
10071 
10072         DAG.setRoot(BrCond);
10073         return;
10074       }
10075     }
10076   }
10077 
10078   if (TM.getOptLevel() != CodeGenOpt::None) {
10079     // Here, we order cases by probability so the most likely case will be
10080     // checked first. However, two clusters can have the same probability in
10081     // which case their relative ordering is non-deterministic. So we use Low
10082     // as a tie-breaker as clusters are guaranteed to never overlap.
10083     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10084                [](const CaseCluster &a, const CaseCluster &b) {
10085       return a.Prob != b.Prob ?
10086              a.Prob > b.Prob :
10087              a.Low->getValue().slt(b.Low->getValue());
10088     });
10089 
10090     // Rearrange the case blocks so that the last one falls through if possible
10091     // without changing the order of probabilities.
10092     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10093       --I;
10094       if (I->Prob > W.LastCluster->Prob)
10095         break;
10096       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10097         std::swap(*I, *W.LastCluster);
10098         break;
10099       }
10100     }
10101   }
10102 
10103   // Compute total probability.
10104   BranchProbability DefaultProb = W.DefaultProb;
10105   BranchProbability UnhandledProbs = DefaultProb;
10106   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10107     UnhandledProbs += I->Prob;
10108 
10109   MachineBasicBlock *CurMBB = W.MBB;
10110   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10111     bool FallthroughUnreachable = false;
10112     MachineBasicBlock *Fallthrough;
10113     if (I == W.LastCluster) {
10114       // For the last cluster, fall through to the default destination.
10115       Fallthrough = DefaultMBB;
10116       FallthroughUnreachable = isa<UnreachableInst>(
10117           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10118     } else {
10119       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10120       CurMF->insert(BBI, Fallthrough);
10121       // Put Cond in a virtual register to make it available from the new blocks.
10122       ExportFromCurrentBlock(Cond);
10123     }
10124     UnhandledProbs -= I->Prob;
10125 
10126     switch (I->Kind) {
10127       case CC_JumpTable: {
10128         // FIXME: Optimize away range check based on pivot comparisons.
10129         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10130         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10131 
10132         // The jump block hasn't been inserted yet; insert it here.
10133         MachineBasicBlock *JumpMBB = JT->MBB;
10134         CurMF->insert(BBI, JumpMBB);
10135 
10136         auto JumpProb = I->Prob;
10137         auto FallthroughProb = UnhandledProbs;
10138 
10139         // If the default statement is a target of the jump table, we evenly
10140         // distribute the default probability to successors of CurMBB. Also
10141         // update the probability on the edge from JumpMBB to Fallthrough.
10142         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10143                                               SE = JumpMBB->succ_end();
10144              SI != SE; ++SI) {
10145           if (*SI == DefaultMBB) {
10146             JumpProb += DefaultProb / 2;
10147             FallthroughProb -= DefaultProb / 2;
10148             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10149             JumpMBB->normalizeSuccProbs();
10150             break;
10151           }
10152         }
10153 
10154         if (FallthroughUnreachable) {
10155           // Skip the range check if the fallthrough block is unreachable.
10156           JTH->OmitRangeCheck = true;
10157         }
10158 
10159         if (!JTH->OmitRangeCheck)
10160           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10161         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10162         CurMBB->normalizeSuccProbs();
10163 
10164         // The jump table header will be inserted in our current block, do the
10165         // range check, and fall through to our fallthrough block.
10166         JTH->HeaderBB = CurMBB;
10167         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10168 
10169         // If we're in the right place, emit the jump table header right now.
10170         if (CurMBB == SwitchMBB) {
10171           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10172           JTH->Emitted = true;
10173         }
10174         break;
10175       }
10176       case CC_BitTests: {
10177         // FIXME: Optimize away range check based on pivot comparisons.
10178         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10179 
10180         // The bit test blocks haven't been inserted yet; insert them here.
10181         for (BitTestCase &BTC : BTB->Cases)
10182           CurMF->insert(BBI, BTC.ThisBB);
10183 
10184         // Fill in fields of the BitTestBlock.
10185         BTB->Parent = CurMBB;
10186         BTB->Default = Fallthrough;
10187 
10188         BTB->DefaultProb = UnhandledProbs;
10189         // If the cases in bit test don't form a contiguous range, we evenly
10190         // distribute the probability on the edge to Fallthrough to two
10191         // successors of CurMBB.
10192         if (!BTB->ContiguousRange) {
10193           BTB->Prob += DefaultProb / 2;
10194           BTB->DefaultProb -= DefaultProb / 2;
10195         }
10196 
10197         if (FallthroughUnreachable) {
10198           // Skip the range check if the fallthrough block is unreachable.
10199           BTB->OmitRangeCheck = true;
10200         }
10201 
10202         // If we're in the right place, emit the bit test header right now.
10203         if (CurMBB == SwitchMBB) {
10204           visitBitTestHeader(*BTB, SwitchMBB);
10205           BTB->Emitted = true;
10206         }
10207         break;
10208       }
10209       case CC_Range: {
10210         const Value *RHS, *LHS, *MHS;
10211         ISD::CondCode CC;
10212         if (I->Low == I->High) {
10213           // Check Cond == I->Low.
10214           CC = ISD::SETEQ;
10215           LHS = Cond;
10216           RHS=I->Low;
10217           MHS = nullptr;
10218         } else {
10219           // Check I->Low <= Cond <= I->High.
10220           CC = ISD::SETLE;
10221           LHS = I->Low;
10222           MHS = Cond;
10223           RHS = I->High;
10224         }
10225 
10226         // If Fallthrough is unreachable, fold away the comparison.
10227         if (FallthroughUnreachable)
10228           CC = ISD::SETTRUE;
10229 
10230         // The false probability is the sum of all unhandled cases.
10231         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10232                      getCurSDLoc(), I->Prob, UnhandledProbs);
10233 
10234         if (CurMBB == SwitchMBB)
10235           visitSwitchCase(CB, SwitchMBB);
10236         else
10237           SL->SwitchCases.push_back(CB);
10238 
10239         break;
10240       }
10241     }
10242     CurMBB = Fallthrough;
10243   }
10244 }
10245 
10246 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10247                                               CaseClusterIt First,
10248                                               CaseClusterIt Last) {
10249   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10250     if (X.Prob != CC.Prob)
10251       return X.Prob > CC.Prob;
10252 
10253     // Ties are broken by comparing the case value.
10254     return X.Low->getValue().slt(CC.Low->getValue());
10255   });
10256 }
10257 
10258 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10259                                         const SwitchWorkListItem &W,
10260                                         Value *Cond,
10261                                         MachineBasicBlock *SwitchMBB) {
10262   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10263          "Clusters not sorted?");
10264 
10265   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10266 
10267   // Balance the tree based on branch probabilities to create a near-optimal (in
10268   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10269   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10270   CaseClusterIt LastLeft = W.FirstCluster;
10271   CaseClusterIt FirstRight = W.LastCluster;
10272   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10273   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10274 
10275   // Move LastLeft and FirstRight towards each other from opposite directions to
10276   // find a partitioning of the clusters which balances the probability on both
10277   // sides. If LeftProb and RightProb are equal, alternate which side is
10278   // taken to ensure 0-probability nodes are distributed evenly.
10279   unsigned I = 0;
10280   while (LastLeft + 1 < FirstRight) {
10281     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10282       LeftProb += (++LastLeft)->Prob;
10283     else
10284       RightProb += (--FirstRight)->Prob;
10285     I++;
10286   }
10287 
10288   while (true) {
10289     // Our binary search tree differs from a typical BST in that ours can have up
10290     // to three values in each leaf. The pivot selection above doesn't take that
10291     // into account, which means the tree might require more nodes and be less
10292     // efficient. We compensate for this here.
10293 
10294     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10295     unsigned NumRight = W.LastCluster - FirstRight + 1;
10296 
10297     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10298       // If one side has less than 3 clusters, and the other has more than 3,
10299       // consider taking a cluster from the other side.
10300 
10301       if (NumLeft < NumRight) {
10302         // Consider moving the first cluster on the right to the left side.
10303         CaseCluster &CC = *FirstRight;
10304         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10305         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10306         if (LeftSideRank <= RightSideRank) {
10307           // Moving the cluster to the left does not demote it.
10308           ++LastLeft;
10309           ++FirstRight;
10310           continue;
10311         }
10312       } else {
10313         assert(NumRight < NumLeft);
10314         // Consider moving the last element on the left to the right side.
10315         CaseCluster &CC = *LastLeft;
10316         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10317         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10318         if (RightSideRank <= LeftSideRank) {
10319           // Moving the cluster to the right does not demot it.
10320           --LastLeft;
10321           --FirstRight;
10322           continue;
10323         }
10324       }
10325     }
10326     break;
10327   }
10328 
10329   assert(LastLeft + 1 == FirstRight);
10330   assert(LastLeft >= W.FirstCluster);
10331   assert(FirstRight <= W.LastCluster);
10332 
10333   // Use the first element on the right as pivot since we will make less-than
10334   // comparisons against it.
10335   CaseClusterIt PivotCluster = FirstRight;
10336   assert(PivotCluster > W.FirstCluster);
10337   assert(PivotCluster <= W.LastCluster);
10338 
10339   CaseClusterIt FirstLeft = W.FirstCluster;
10340   CaseClusterIt LastRight = W.LastCluster;
10341 
10342   const ConstantInt *Pivot = PivotCluster->Low;
10343 
10344   // New blocks will be inserted immediately after the current one.
10345   MachineFunction::iterator BBI(W.MBB);
10346   ++BBI;
10347 
10348   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10349   // we can branch to its destination directly if it's squeezed exactly in
10350   // between the known lower bound and Pivot - 1.
10351   MachineBasicBlock *LeftMBB;
10352   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10353       FirstLeft->Low == W.GE &&
10354       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10355     LeftMBB = FirstLeft->MBB;
10356   } else {
10357     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10358     FuncInfo.MF->insert(BBI, LeftMBB);
10359     WorkList.push_back(
10360         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10361     // Put Cond in a virtual register to make it available from the new blocks.
10362     ExportFromCurrentBlock(Cond);
10363   }
10364 
10365   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10366   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10367   // directly if RHS.High equals the current upper bound.
10368   MachineBasicBlock *RightMBB;
10369   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10370       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10371     RightMBB = FirstRight->MBB;
10372   } else {
10373     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10374     FuncInfo.MF->insert(BBI, RightMBB);
10375     WorkList.push_back(
10376         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10377     // Put Cond in a virtual register to make it available from the new blocks.
10378     ExportFromCurrentBlock(Cond);
10379   }
10380 
10381   // Create the CaseBlock record that will be used to lower the branch.
10382   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10383                getCurSDLoc(), LeftProb, RightProb);
10384 
10385   if (W.MBB == SwitchMBB)
10386     visitSwitchCase(CB, SwitchMBB);
10387   else
10388     SL->SwitchCases.push_back(CB);
10389 }
10390 
10391 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10392 // from the swith statement.
10393 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10394                                             BranchProbability PeeledCaseProb) {
10395   if (PeeledCaseProb == BranchProbability::getOne())
10396     return BranchProbability::getZero();
10397   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10398 
10399   uint32_t Numerator = CaseProb.getNumerator();
10400   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10401   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10402 }
10403 
10404 // Try to peel the top probability case if it exceeds the threshold.
10405 // Return current MachineBasicBlock for the switch statement if the peeling
10406 // does not occur.
10407 // If the peeling is performed, return the newly created MachineBasicBlock
10408 // for the peeled switch statement. Also update Clusters to remove the peeled
10409 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10410 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10411     const SwitchInst &SI, CaseClusterVector &Clusters,
10412     BranchProbability &PeeledCaseProb) {
10413   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10414   // Don't perform if there is only one cluster or optimizing for size.
10415   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10416       TM.getOptLevel() == CodeGenOpt::None ||
10417       SwitchMBB->getParent()->getFunction().hasMinSize())
10418     return SwitchMBB;
10419 
10420   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10421   unsigned PeeledCaseIndex = 0;
10422   bool SwitchPeeled = false;
10423   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10424     CaseCluster &CC = Clusters[Index];
10425     if (CC.Prob < TopCaseProb)
10426       continue;
10427     TopCaseProb = CC.Prob;
10428     PeeledCaseIndex = Index;
10429     SwitchPeeled = true;
10430   }
10431   if (!SwitchPeeled)
10432     return SwitchMBB;
10433 
10434   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10435                     << TopCaseProb << "\n");
10436 
10437   // Record the MBB for the peeled switch statement.
10438   MachineFunction::iterator BBI(SwitchMBB);
10439   ++BBI;
10440   MachineBasicBlock *PeeledSwitchMBB =
10441       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10442   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10443 
10444   ExportFromCurrentBlock(SI.getCondition());
10445   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10446   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10447                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10448   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10449 
10450   Clusters.erase(PeeledCaseIt);
10451   for (CaseCluster &CC : Clusters) {
10452     LLVM_DEBUG(
10453         dbgs() << "Scale the probablity for one cluster, before scaling: "
10454                << CC.Prob << "\n");
10455     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10456     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10457   }
10458   PeeledCaseProb = TopCaseProb;
10459   return PeeledSwitchMBB;
10460 }
10461 
10462 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10463   // Extract cases from the switch.
10464   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10465   CaseClusterVector Clusters;
10466   Clusters.reserve(SI.getNumCases());
10467   for (auto I : SI.cases()) {
10468     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10469     const ConstantInt *CaseVal = I.getCaseValue();
10470     BranchProbability Prob =
10471         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10472             : BranchProbability(1, SI.getNumCases() + 1);
10473     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10474   }
10475 
10476   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10477 
10478   // Cluster adjacent cases with the same destination. We do this at all
10479   // optimization levels because it's cheap to do and will make codegen faster
10480   // if there are many clusters.
10481   sortAndRangeify(Clusters);
10482 
10483   // The branch probablity of the peeled case.
10484   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10485   MachineBasicBlock *PeeledSwitchMBB =
10486       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10487 
10488   // If there is only the default destination, jump there directly.
10489   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10490   if (Clusters.empty()) {
10491     assert(PeeledSwitchMBB == SwitchMBB);
10492     SwitchMBB->addSuccessor(DefaultMBB);
10493     if (DefaultMBB != NextBlock(SwitchMBB)) {
10494       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10495                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10496     }
10497     return;
10498   }
10499 
10500   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10501   SL->findBitTestClusters(Clusters, &SI);
10502 
10503   LLVM_DEBUG({
10504     dbgs() << "Case clusters: ";
10505     for (const CaseCluster &C : Clusters) {
10506       if (C.Kind == CC_JumpTable)
10507         dbgs() << "JT:";
10508       if (C.Kind == CC_BitTests)
10509         dbgs() << "BT:";
10510 
10511       C.Low->getValue().print(dbgs(), true);
10512       if (C.Low != C.High) {
10513         dbgs() << '-';
10514         C.High->getValue().print(dbgs(), true);
10515       }
10516       dbgs() << ' ';
10517     }
10518     dbgs() << '\n';
10519   });
10520 
10521   assert(!Clusters.empty());
10522   SwitchWorkList WorkList;
10523   CaseClusterIt First = Clusters.begin();
10524   CaseClusterIt Last = Clusters.end() - 1;
10525   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10526   // Scale the branchprobability for DefaultMBB if the peel occurs and
10527   // DefaultMBB is not replaced.
10528   if (PeeledCaseProb != BranchProbability::getZero() &&
10529       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10530     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10531   WorkList.push_back(
10532       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10533 
10534   while (!WorkList.empty()) {
10535     SwitchWorkListItem W = WorkList.back();
10536     WorkList.pop_back();
10537     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10538 
10539     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10540         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10541       // For optimized builds, lower large range as a balanced binary tree.
10542       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10543       continue;
10544     }
10545 
10546     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10547   }
10548 }
10549 
10550 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10551   SDNodeFlags Flags;
10552 
10553   SDValue Op = getValue(I.getOperand(0));
10554   if (I.getOperand(0)->getType()->isAggregateType()) {
10555     EVT VT = Op.getValueType();
10556     SmallVector<SDValue, 1> Values;
10557     for (unsigned i = 0; i < Op.getNumOperands(); ++i) {
10558       SDValue Arg(Op.getNode(), i);
10559       SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), VT, Arg, Flags);
10560       Values.push_back(UnNodeValue);
10561     }
10562     SDValue MergedValue = DAG.getMergeValues(Values, getCurSDLoc());
10563     setValue(&I, MergedValue);
10564   } else {
10565     SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), Op.getValueType(),
10566                                       Op, Flags);
10567     setValue(&I, UnNodeValue);
10568   }
10569 }
10570