1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1164 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1165 bool IsSEH = isAsynchronousEHPersonality(Pers); 1166 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1167 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1168 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1169 if (IsMSVCCXX || IsCoreCLR) 1170 CatchPadMBB->setIsEHFuncletEntry(); 1171 1172 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1173 1174 // Update machine-CFG edge. 1175 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1176 1177 // CatchPads in SEH are not funclets, they are merely markers which indicate 1178 // where to insert register restoration code. 1179 if (IsSEH) { 1180 DAG.setRoot(DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1181 getControlRoot(), DAG.getBasicBlock(NormalDestMBB), 1182 DAG.getBasicBlock(FuncInfo.MF->begin()))); 1183 return; 1184 } 1185 1186 // If this is not a fall-through branch or optimizations are switched off, 1187 // emit the branch. 1188 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1189 TM.getOptLevel() == CodeGenOpt::None) 1190 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1191 getControlRoot(), 1192 DAG.getBasicBlock(NormalDestMBB))); 1193 } 1194 1195 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1196 // Update machine-CFG edge. 1197 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1198 FuncInfo.MBB->addSuccessor(TargetMBB); 1199 1200 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1201 bool IsSEH = isAsynchronousEHPersonality(Pers); 1202 if (IsSEH) { 1203 // If this is not a fall-through branch or optimizations are switched off, 1204 // emit the branch. 1205 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1206 TM.getOptLevel() == CodeGenOpt::None) 1207 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1208 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1209 return; 1210 } 1211 1212 // Figure out the funclet membership for the catchret's successor. 1213 // This will be used by the FuncletLayout pass to determine how to order the 1214 // BB's. 1215 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1216 WinEHFuncInfo &EHInfo = 1217 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 1218 const BasicBlock *SuccessorColor = EHInfo.CatchRetSuccessorColorMap[&I]; 1219 assert(SuccessorColor && "No parent funclet for catchret!"); 1220 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1221 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1222 1223 // Create the terminator node. 1224 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1225 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1226 DAG.getBasicBlock(SuccessorColorMBB)); 1227 DAG.setRoot(Ret); 1228 } 1229 1230 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1231 llvm_unreachable("should never codegen catchendpads"); 1232 } 1233 1234 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1235 // Don't emit any special code for the cleanuppad instruction. It just marks 1236 // the start of a funclet. 1237 FuncInfo.MBB->setIsEHFuncletEntry(); 1238 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1239 } 1240 1241 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1242 /// many places it could ultimately go. In the IR, we have a single unwind 1243 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1244 /// This function skips over imaginary basic blocks that hold catchpad, 1245 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1246 /// basic block destinations. 1247 static void 1248 findUnwindDestinations(FunctionLoweringInfo &FuncInfo, 1249 const BasicBlock *EHPadBB, 1250 SmallVectorImpl<MachineBasicBlock *> &UnwindDests) { 1251 EHPersonality Personality = 1252 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1253 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1254 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1255 while (EHPadBB) { 1256 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1257 if (isa<LandingPadInst>(Pad)) { 1258 // Stop on landingpads. They are not funclets. 1259 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1260 break; 1261 } else if (isa<CleanupPadInst>(Pad)) { 1262 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1263 // personalities. 1264 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1265 UnwindDests.back()->setIsEHFuncletEntry(); 1266 break; 1267 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1268 // Add the catchpad handler to the possible destinations. 1269 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1270 // In MSVC C++, catchblocks are funclets and need prologues. 1271 if (IsMSVCCXX || IsCoreCLR) 1272 UnwindDests.back()->setIsEHFuncletEntry(); 1273 EHPadBB = CPI->getUnwindDest(); 1274 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) { 1275 EHPadBB = CEPI->getUnwindDest(); 1276 } else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) { 1277 EHPadBB = CEPI->getUnwindDest(); 1278 } 1279 } 1280 } 1281 1282 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1283 // Update successor info. 1284 // FIXME: The weights for catchpads will be wrong. 1285 SmallVector<MachineBasicBlock *, 1> UnwindDests; 1286 findUnwindDestinations(FuncInfo, I.getUnwindDest(), UnwindDests); 1287 for (MachineBasicBlock *UnwindDest : UnwindDests) { 1288 UnwindDest->setIsEHPad(); 1289 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest); 1290 } 1291 1292 // Create the terminator node. 1293 SDValue Ret = 1294 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1295 DAG.setRoot(Ret); 1296 } 1297 1298 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1299 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1300 } 1301 1302 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1303 report_fatal_error("visitTerminatePad not yet implemented!"); 1304 } 1305 1306 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1308 auto &DL = DAG.getDataLayout(); 1309 SDValue Chain = getControlRoot(); 1310 SmallVector<ISD::OutputArg, 8> Outs; 1311 SmallVector<SDValue, 8> OutVals; 1312 1313 if (!FuncInfo.CanLowerReturn) { 1314 unsigned DemoteReg = FuncInfo.DemoteRegister; 1315 const Function *F = I.getParent()->getParent(); 1316 1317 // Emit a store of the return value through the virtual register. 1318 // Leave Outs empty so that LowerReturn won't try to load return 1319 // registers the usual way. 1320 SmallVector<EVT, 1> PtrValueVTs; 1321 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1322 PtrValueVTs); 1323 1324 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1325 SDValue RetOp = getValue(I.getOperand(0)); 1326 1327 SmallVector<EVT, 4> ValueVTs; 1328 SmallVector<uint64_t, 4> Offsets; 1329 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1330 unsigned NumValues = ValueVTs.size(); 1331 1332 SmallVector<SDValue, 4> Chains(NumValues); 1333 for (unsigned i = 0; i != NumValues; ++i) { 1334 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1335 RetPtr.getValueType(), RetPtr, 1336 DAG.getIntPtrConstant(Offsets[i], 1337 getCurSDLoc())); 1338 Chains[i] = 1339 DAG.getStore(Chain, getCurSDLoc(), 1340 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1341 // FIXME: better loc info would be nice. 1342 Add, MachinePointerInfo(), false, false, 0); 1343 } 1344 1345 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1346 MVT::Other, Chains); 1347 } else if (I.getNumOperands() != 0) { 1348 SmallVector<EVT, 4> ValueVTs; 1349 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1350 unsigned NumValues = ValueVTs.size(); 1351 if (NumValues) { 1352 SDValue RetOp = getValue(I.getOperand(0)); 1353 1354 const Function *F = I.getParent()->getParent(); 1355 1356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1357 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1358 Attribute::SExt)) 1359 ExtendKind = ISD::SIGN_EXTEND; 1360 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1361 Attribute::ZExt)) 1362 ExtendKind = ISD::ZERO_EXTEND; 1363 1364 LLVMContext &Context = F->getContext(); 1365 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1366 Attribute::InReg); 1367 1368 for (unsigned j = 0; j != NumValues; ++j) { 1369 EVT VT = ValueVTs[j]; 1370 1371 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1372 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1373 1374 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1375 MVT PartVT = TLI.getRegisterType(Context, VT); 1376 SmallVector<SDValue, 4> Parts(NumParts); 1377 getCopyToParts(DAG, getCurSDLoc(), 1378 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1379 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1380 1381 // 'inreg' on function refers to return value 1382 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1383 if (RetInReg) 1384 Flags.setInReg(); 1385 1386 // Propagate extension type if any 1387 if (ExtendKind == ISD::SIGN_EXTEND) 1388 Flags.setSExt(); 1389 else if (ExtendKind == ISD::ZERO_EXTEND) 1390 Flags.setZExt(); 1391 1392 for (unsigned i = 0; i < NumParts; ++i) { 1393 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1394 VT, /*isfixed=*/true, 0, 0)); 1395 OutVals.push_back(Parts[i]); 1396 } 1397 } 1398 } 1399 } 1400 1401 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1402 CallingConv::ID CallConv = 1403 DAG.getMachineFunction().getFunction()->getCallingConv(); 1404 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1405 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1406 1407 // Verify that the target's LowerReturn behaved as expected. 1408 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1409 "LowerReturn didn't return a valid chain!"); 1410 1411 // Update the DAG with the new chain value resulting from return lowering. 1412 DAG.setRoot(Chain); 1413 } 1414 1415 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1416 /// created for it, emit nodes to copy the value into the virtual 1417 /// registers. 1418 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1419 // Skip empty types 1420 if (V->getType()->isEmptyTy()) 1421 return; 1422 1423 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1424 if (VMI != FuncInfo.ValueMap.end()) { 1425 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1426 CopyValueToVirtualRegister(V, VMI->second); 1427 } 1428 } 1429 1430 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1431 /// the current basic block, add it to ValueMap now so that we'll get a 1432 /// CopyTo/FromReg. 1433 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1434 // No need to export constants. 1435 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1436 1437 // Already exported? 1438 if (FuncInfo.isExportedInst(V)) return; 1439 1440 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1441 CopyValueToVirtualRegister(V, Reg); 1442 } 1443 1444 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1445 const BasicBlock *FromBB) { 1446 // The operands of the setcc have to be in this block. We don't know 1447 // how to export them from some other block. 1448 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1449 // Can export from current BB. 1450 if (VI->getParent() == FromBB) 1451 return true; 1452 1453 // Is already exported, noop. 1454 return FuncInfo.isExportedInst(V); 1455 } 1456 1457 // If this is an argument, we can export it if the BB is the entry block or 1458 // if it is already exported. 1459 if (isa<Argument>(V)) { 1460 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1461 return true; 1462 1463 // Otherwise, can only export this if it is already exported. 1464 return FuncInfo.isExportedInst(V); 1465 } 1466 1467 // Otherwise, constants can always be exported. 1468 return true; 1469 } 1470 1471 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1472 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1473 const MachineBasicBlock *Dst) const { 1474 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1475 if (!BPI) 1476 return 0; 1477 const BasicBlock *SrcBB = Src->getBasicBlock(); 1478 const BasicBlock *DstBB = Dst->getBasicBlock(); 1479 return BPI->getEdgeWeight(SrcBB, DstBB); 1480 } 1481 1482 void SelectionDAGBuilder:: 1483 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1484 uint32_t Weight /* = 0 */) { 1485 if (!Weight) 1486 Weight = getEdgeWeight(Src, Dst); 1487 Src->addSuccessor(Dst, Weight); 1488 } 1489 1490 1491 static bool InBlock(const Value *V, const BasicBlock *BB) { 1492 if (const Instruction *I = dyn_cast<Instruction>(V)) 1493 return I->getParent() == BB; 1494 return true; 1495 } 1496 1497 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1498 /// This function emits a branch and is used at the leaves of an OR or an 1499 /// AND operator tree. 1500 /// 1501 void 1502 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1503 MachineBasicBlock *TBB, 1504 MachineBasicBlock *FBB, 1505 MachineBasicBlock *CurBB, 1506 MachineBasicBlock *SwitchBB, 1507 uint32_t TWeight, 1508 uint32_t FWeight) { 1509 const BasicBlock *BB = CurBB->getBasicBlock(); 1510 1511 // If the leaf of the tree is a comparison, merge the condition into 1512 // the caseblock. 1513 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1514 // The operands of the cmp have to be in this block. We don't know 1515 // how to export them from some other block. If this is the first block 1516 // of the sequence, no exporting is needed. 1517 if (CurBB == SwitchBB || 1518 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1519 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1520 ISD::CondCode Condition; 1521 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1522 Condition = getICmpCondCode(IC->getPredicate()); 1523 } else { 1524 const FCmpInst *FC = cast<FCmpInst>(Cond); 1525 Condition = getFCmpCondCode(FC->getPredicate()); 1526 if (TM.Options.NoNaNsFPMath) 1527 Condition = getFCmpCodeWithoutNaN(Condition); 1528 } 1529 1530 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1531 TBB, FBB, CurBB, TWeight, FWeight); 1532 SwitchCases.push_back(CB); 1533 return; 1534 } 1535 } 1536 1537 // Create a CaseBlock record representing this branch. 1538 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1539 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1540 SwitchCases.push_back(CB); 1541 } 1542 1543 /// Scale down both weights to fit into uint32_t. 1544 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1545 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1546 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1547 NewTrue = NewTrue / Scale; 1548 NewFalse = NewFalse / Scale; 1549 } 1550 1551 /// FindMergedConditions - If Cond is an expression like 1552 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1553 MachineBasicBlock *TBB, 1554 MachineBasicBlock *FBB, 1555 MachineBasicBlock *CurBB, 1556 MachineBasicBlock *SwitchBB, 1557 Instruction::BinaryOps Opc, 1558 uint32_t TWeight, 1559 uint32_t FWeight) { 1560 // If this node is not part of the or/and tree, emit it as a branch. 1561 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1562 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1563 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1564 BOp->getParent() != CurBB->getBasicBlock() || 1565 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1566 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1567 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1568 TWeight, FWeight); 1569 return; 1570 } 1571 1572 // Create TmpBB after CurBB. 1573 MachineFunction::iterator BBI = CurBB; 1574 MachineFunction &MF = DAG.getMachineFunction(); 1575 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1576 CurBB->getParent()->insert(++BBI, TmpBB); 1577 1578 if (Opc == Instruction::Or) { 1579 // Codegen X | Y as: 1580 // BB1: 1581 // jmp_if_X TBB 1582 // jmp TmpBB 1583 // TmpBB: 1584 // jmp_if_Y TBB 1585 // jmp FBB 1586 // 1587 1588 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1589 // The requirement is that 1590 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1591 // = TrueProb for original BB. 1592 // Assuming the original weights are A and B, one choice is to set BB1's 1593 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1594 // assumes that 1595 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1596 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1597 // TmpBB, but the math is more complicated. 1598 1599 uint64_t NewTrueWeight = TWeight; 1600 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1601 ScaleWeights(NewTrueWeight, NewFalseWeight); 1602 // Emit the LHS condition. 1603 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1604 NewTrueWeight, NewFalseWeight); 1605 1606 NewTrueWeight = TWeight; 1607 NewFalseWeight = 2 * (uint64_t)FWeight; 1608 ScaleWeights(NewTrueWeight, NewFalseWeight); 1609 // Emit the RHS condition into TmpBB. 1610 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1611 NewTrueWeight, NewFalseWeight); 1612 } else { 1613 assert(Opc == Instruction::And && "Unknown merge op!"); 1614 // Codegen X & Y as: 1615 // BB1: 1616 // jmp_if_X TmpBB 1617 // jmp FBB 1618 // TmpBB: 1619 // jmp_if_Y TBB 1620 // jmp FBB 1621 // 1622 // This requires creation of TmpBB after CurBB. 1623 1624 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1625 // The requirement is that 1626 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1627 // = FalseProb for original BB. 1628 // Assuming the original weights are A and B, one choice is to set BB1's 1629 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1630 // assumes that 1631 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1632 1633 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1634 uint64_t NewFalseWeight = FWeight; 1635 ScaleWeights(NewTrueWeight, NewFalseWeight); 1636 // Emit the LHS condition. 1637 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1638 NewTrueWeight, NewFalseWeight); 1639 1640 NewTrueWeight = 2 * (uint64_t)TWeight; 1641 NewFalseWeight = FWeight; 1642 ScaleWeights(NewTrueWeight, NewFalseWeight); 1643 // Emit the RHS condition into TmpBB. 1644 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1645 NewTrueWeight, NewFalseWeight); 1646 } 1647 } 1648 1649 /// If the set of cases should be emitted as a series of branches, return true. 1650 /// If we should emit this as a bunch of and/or'd together conditions, return 1651 /// false. 1652 bool 1653 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1654 if (Cases.size() != 2) return true; 1655 1656 // If this is two comparisons of the same values or'd or and'd together, they 1657 // will get folded into a single comparison, so don't emit two blocks. 1658 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1659 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1660 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1661 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1662 return false; 1663 } 1664 1665 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1666 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1667 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1668 Cases[0].CC == Cases[1].CC && 1669 isa<Constant>(Cases[0].CmpRHS) && 1670 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1671 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1672 return false; 1673 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1674 return false; 1675 } 1676 1677 return true; 1678 } 1679 1680 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1681 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1682 1683 // Update machine-CFG edges. 1684 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1685 1686 if (I.isUnconditional()) { 1687 // Update machine-CFG edges. 1688 BrMBB->addSuccessor(Succ0MBB); 1689 1690 // If this is not a fall-through branch or optimizations are switched off, 1691 // emit the branch. 1692 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1693 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1694 MVT::Other, getControlRoot(), 1695 DAG.getBasicBlock(Succ0MBB))); 1696 1697 return; 1698 } 1699 1700 // If this condition is one of the special cases we handle, do special stuff 1701 // now. 1702 const Value *CondVal = I.getCondition(); 1703 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1704 1705 // If this is a series of conditions that are or'd or and'd together, emit 1706 // this as a sequence of branches instead of setcc's with and/or operations. 1707 // As long as jumps are not expensive, this should improve performance. 1708 // For example, instead of something like: 1709 // cmp A, B 1710 // C = seteq 1711 // cmp D, E 1712 // F = setle 1713 // or C, F 1714 // jnz foo 1715 // Emit: 1716 // cmp A, B 1717 // je foo 1718 // cmp D, E 1719 // jle foo 1720 // 1721 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1722 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1723 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1724 !I.getMetadata(LLVMContext::MD_unpredictable) && 1725 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1726 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1727 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1728 getEdgeWeight(BrMBB, Succ1MBB)); 1729 // If the compares in later blocks need to use values not currently 1730 // exported from this block, export them now. This block should always 1731 // be the first entry. 1732 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1733 1734 // Allow some cases to be rejected. 1735 if (ShouldEmitAsBranches(SwitchCases)) { 1736 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1737 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1738 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1739 } 1740 1741 // Emit the branch for this block. 1742 visitSwitchCase(SwitchCases[0], BrMBB); 1743 SwitchCases.erase(SwitchCases.begin()); 1744 return; 1745 } 1746 1747 // Okay, we decided not to do this, remove any inserted MBB's and clear 1748 // SwitchCases. 1749 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1750 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1751 1752 SwitchCases.clear(); 1753 } 1754 } 1755 1756 // Create a CaseBlock record representing this branch. 1757 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1758 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1759 1760 // Use visitSwitchCase to actually insert the fast branch sequence for this 1761 // cond branch. 1762 visitSwitchCase(CB, BrMBB); 1763 } 1764 1765 /// visitSwitchCase - Emits the necessary code to represent a single node in 1766 /// the binary search tree resulting from lowering a switch instruction. 1767 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1768 MachineBasicBlock *SwitchBB) { 1769 SDValue Cond; 1770 SDValue CondLHS = getValue(CB.CmpLHS); 1771 SDLoc dl = getCurSDLoc(); 1772 1773 // Build the setcc now. 1774 if (!CB.CmpMHS) { 1775 // Fold "(X == true)" to X and "(X == false)" to !X to 1776 // handle common cases produced by branch lowering. 1777 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1778 CB.CC == ISD::SETEQ) 1779 Cond = CondLHS; 1780 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1781 CB.CC == ISD::SETEQ) { 1782 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1783 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1784 } else 1785 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1786 } else { 1787 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1788 1789 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1790 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1791 1792 SDValue CmpOp = getValue(CB.CmpMHS); 1793 EVT VT = CmpOp.getValueType(); 1794 1795 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1796 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1797 ISD::SETLE); 1798 } else { 1799 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1800 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1801 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1802 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1803 } 1804 } 1805 1806 // Update successor info 1807 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1808 // TrueBB and FalseBB are always different unless the incoming IR is 1809 // degenerate. This only happens when running llc on weird IR. 1810 if (CB.TrueBB != CB.FalseBB) 1811 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1812 1813 // If the lhs block is the next block, invert the condition so that we can 1814 // fall through to the lhs instead of the rhs block. 1815 if (CB.TrueBB == NextBlock(SwitchBB)) { 1816 std::swap(CB.TrueBB, CB.FalseBB); 1817 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1818 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1819 } 1820 1821 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1822 MVT::Other, getControlRoot(), Cond, 1823 DAG.getBasicBlock(CB.TrueBB)); 1824 1825 // Insert the false branch. Do this even if it's a fall through branch, 1826 // this makes it easier to do DAG optimizations which require inverting 1827 // the branch condition. 1828 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1829 DAG.getBasicBlock(CB.FalseBB)); 1830 1831 DAG.setRoot(BrCond); 1832 } 1833 1834 /// visitJumpTable - Emit JumpTable node in the current MBB 1835 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1836 // Emit the code for the jump table 1837 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1838 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1839 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1840 JT.Reg, PTy); 1841 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1842 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1843 MVT::Other, Index.getValue(1), 1844 Table, Index); 1845 DAG.setRoot(BrJumpTable); 1846 } 1847 1848 /// visitJumpTableHeader - This function emits necessary code to produce index 1849 /// in the JumpTable from switch case. 1850 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1851 JumpTableHeader &JTH, 1852 MachineBasicBlock *SwitchBB) { 1853 SDLoc dl = getCurSDLoc(); 1854 1855 // Subtract the lowest switch case value from the value being switched on and 1856 // conditional branch to default mbb if the result is greater than the 1857 // difference between smallest and largest cases. 1858 SDValue SwitchOp = getValue(JTH.SValue); 1859 EVT VT = SwitchOp.getValueType(); 1860 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1861 DAG.getConstant(JTH.First, dl, VT)); 1862 1863 // The SDNode we just created, which holds the value being switched on minus 1864 // the smallest case value, needs to be copied to a virtual register so it 1865 // can be used as an index into the jump table in a subsequent basic block. 1866 // This value may be smaller or larger than the target's pointer type, and 1867 // therefore require extension or truncating. 1868 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1869 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1870 1871 unsigned JumpTableReg = 1872 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1873 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1874 JumpTableReg, SwitchOp); 1875 JT.Reg = JumpTableReg; 1876 1877 // Emit the range check for the jump table, and branch to the default block 1878 // for the switch statement if the value being switched on exceeds the largest 1879 // case in the switch. 1880 SDValue CMP = DAG.getSetCC( 1881 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1882 Sub.getValueType()), 1883 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1884 1885 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1886 MVT::Other, CopyTo, CMP, 1887 DAG.getBasicBlock(JT.Default)); 1888 1889 // Avoid emitting unnecessary branches to the next block. 1890 if (JT.MBB != NextBlock(SwitchBB)) 1891 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1892 DAG.getBasicBlock(JT.MBB)); 1893 1894 DAG.setRoot(BrCond); 1895 } 1896 1897 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1898 /// tail spliced into a stack protector check success bb. 1899 /// 1900 /// For a high level explanation of how this fits into the stack protector 1901 /// generation see the comment on the declaration of class 1902 /// StackProtectorDescriptor. 1903 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1904 MachineBasicBlock *ParentBB) { 1905 1906 // First create the loads to the guard/stack slot for the comparison. 1907 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1908 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1909 1910 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1911 int FI = MFI->getStackProtectorIndex(); 1912 1913 const Value *IRGuard = SPD.getGuard(); 1914 SDValue GuardPtr = getValue(IRGuard); 1915 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1916 1917 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1918 1919 SDValue Guard; 1920 SDLoc dl = getCurSDLoc(); 1921 1922 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1923 // guard value from the virtual register holding the value. Otherwise, emit a 1924 // volatile load to retrieve the stack guard value. 1925 unsigned GuardReg = SPD.getGuardReg(); 1926 1927 if (GuardReg && TLI.useLoadStackGuardNode()) 1928 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1929 PtrTy); 1930 else 1931 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1932 GuardPtr, MachinePointerInfo(IRGuard, 0), 1933 true, false, false, Align); 1934 1935 SDValue StackSlot = DAG.getLoad( 1936 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1937 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1938 false, false, Align); 1939 1940 // Perform the comparison via a subtract/getsetcc. 1941 EVT VT = Guard.getValueType(); 1942 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1943 1944 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1945 *DAG.getContext(), 1946 Sub.getValueType()), 1947 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1948 1949 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1950 // branch to failure MBB. 1951 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1952 MVT::Other, StackSlot.getOperand(0), 1953 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1954 // Otherwise branch to success MBB. 1955 SDValue Br = DAG.getNode(ISD::BR, dl, 1956 MVT::Other, BrCond, 1957 DAG.getBasicBlock(SPD.getSuccessMBB())); 1958 1959 DAG.setRoot(Br); 1960 } 1961 1962 /// Codegen the failure basic block for a stack protector check. 1963 /// 1964 /// A failure stack protector machine basic block consists simply of a call to 1965 /// __stack_chk_fail(). 1966 /// 1967 /// For a high level explanation of how this fits into the stack protector 1968 /// generation see the comment on the declaration of class 1969 /// StackProtectorDescriptor. 1970 void 1971 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1973 SDValue Chain = 1974 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1975 nullptr, 0, false, getCurSDLoc(), false, false).second; 1976 DAG.setRoot(Chain); 1977 } 1978 1979 /// visitBitTestHeader - This function emits necessary code to produce value 1980 /// suitable for "bit tests" 1981 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1982 MachineBasicBlock *SwitchBB) { 1983 SDLoc dl = getCurSDLoc(); 1984 1985 // Subtract the minimum value 1986 SDValue SwitchOp = getValue(B.SValue); 1987 EVT VT = SwitchOp.getValueType(); 1988 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1989 DAG.getConstant(B.First, dl, VT)); 1990 1991 // Check range 1992 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1993 SDValue RangeCmp = DAG.getSetCC( 1994 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1995 Sub.getValueType()), 1996 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1997 1998 // Determine the type of the test operands. 1999 bool UsePtrType = false; 2000 if (!TLI.isTypeLegal(VT)) 2001 UsePtrType = true; 2002 else { 2003 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2004 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2005 // Switch table case range are encoded into series of masks. 2006 // Just use pointer type, it's guaranteed to fit. 2007 UsePtrType = true; 2008 break; 2009 } 2010 } 2011 if (UsePtrType) { 2012 VT = TLI.getPointerTy(DAG.getDataLayout()); 2013 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2014 } 2015 2016 B.RegVT = VT.getSimpleVT(); 2017 B.Reg = FuncInfo.CreateReg(B.RegVT); 2018 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2019 2020 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2021 2022 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 2023 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 2024 2025 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2026 MVT::Other, CopyTo, RangeCmp, 2027 DAG.getBasicBlock(B.Default)); 2028 2029 // Avoid emitting unnecessary branches to the next block. 2030 if (MBB != NextBlock(SwitchBB)) 2031 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2032 DAG.getBasicBlock(MBB)); 2033 2034 DAG.setRoot(BrRange); 2035 } 2036 2037 /// visitBitTestCase - this function produces one "bit test" 2038 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2039 MachineBasicBlock* NextMBB, 2040 uint32_t BranchWeightToNext, 2041 unsigned Reg, 2042 BitTestCase &B, 2043 MachineBasicBlock *SwitchBB) { 2044 SDLoc dl = getCurSDLoc(); 2045 MVT VT = BB.RegVT; 2046 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2047 SDValue Cmp; 2048 unsigned PopCount = countPopulation(B.Mask); 2049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2050 if (PopCount == 1) { 2051 // Testing for a single bit; just compare the shift count with what it 2052 // would need to be to shift a 1 bit in that position. 2053 Cmp = DAG.getSetCC( 2054 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2055 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2056 ISD::SETEQ); 2057 } else if (PopCount == BB.Range) { 2058 // There is only one zero bit in the range, test for it directly. 2059 Cmp = DAG.getSetCC( 2060 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2061 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2062 ISD::SETNE); 2063 } else { 2064 // Make desired shift 2065 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2066 DAG.getConstant(1, dl, VT), ShiftOp); 2067 2068 // Emit bit tests and jumps 2069 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2070 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2071 Cmp = DAG.getSetCC( 2072 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2073 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2074 } 2075 2076 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2077 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2078 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2079 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2080 2081 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2082 MVT::Other, getControlRoot(), 2083 Cmp, DAG.getBasicBlock(B.TargetBB)); 2084 2085 // Avoid emitting unnecessary branches to the next block. 2086 if (NextMBB != NextBlock(SwitchBB)) 2087 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2088 DAG.getBasicBlock(NextMBB)); 2089 2090 DAG.setRoot(BrAnd); 2091 } 2092 2093 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2094 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2095 2096 // Retrieve successors. Look through artificial IR level blocks like catchpads 2097 // and catchendpads for successors. 2098 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2099 const BasicBlock *EHPadBB = I.getSuccessor(1); 2100 2101 const Value *Callee(I.getCalledValue()); 2102 const Function *Fn = dyn_cast<Function>(Callee); 2103 if (isa<InlineAsm>(Callee)) 2104 visitInlineAsm(&I); 2105 else if (Fn && Fn->isIntrinsic()) { 2106 switch (Fn->getIntrinsicID()) { 2107 default: 2108 llvm_unreachable("Cannot invoke this intrinsic"); 2109 case Intrinsic::donothing: 2110 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2111 break; 2112 case Intrinsic::experimental_patchpoint_void: 2113 case Intrinsic::experimental_patchpoint_i64: 2114 visitPatchpoint(&I, EHPadBB); 2115 break; 2116 case Intrinsic::experimental_gc_statepoint: 2117 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2118 break; 2119 } 2120 } else 2121 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2122 2123 // If the value of the invoke is used outside of its defining block, make it 2124 // available as a virtual register. 2125 // We already took care of the exported value for the statepoint instruction 2126 // during call to the LowerStatepoint. 2127 if (!isStatepoint(I)) { 2128 CopyToExportRegsIfNeeded(&I); 2129 } 2130 2131 SmallVector<MachineBasicBlock *, 1> UnwindDests; 2132 findUnwindDestinations(FuncInfo, EHPadBB, UnwindDests); 2133 2134 // Update successor info. 2135 // FIXME: The weights for catchpads will be wrong. 2136 addSuccessorWithWeight(InvokeMBB, Return); 2137 for (MachineBasicBlock *UnwindDest : UnwindDests) { 2138 UnwindDest->setIsEHPad(); 2139 addSuccessorWithWeight(InvokeMBB, UnwindDest); 2140 } 2141 2142 // Drop into normal successor. 2143 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2144 MVT::Other, getControlRoot(), 2145 DAG.getBasicBlock(Return))); 2146 } 2147 2148 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2149 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2150 } 2151 2152 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2153 assert(FuncInfo.MBB->isEHPad() && 2154 "Call to landingpad not in landing pad!"); 2155 2156 MachineBasicBlock *MBB = FuncInfo.MBB; 2157 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2158 AddLandingPadInfo(LP, MMI, MBB); 2159 2160 // If there aren't registers to copy the values into (e.g., during SjLj 2161 // exceptions), then don't bother to create these DAG nodes. 2162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2163 if (TLI.getExceptionPointerRegister() == 0 && 2164 TLI.getExceptionSelectorRegister() == 0) 2165 return; 2166 2167 SmallVector<EVT, 2> ValueVTs; 2168 SDLoc dl = getCurSDLoc(); 2169 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2170 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2171 2172 // Get the two live-in registers as SDValues. The physregs have already been 2173 // copied into virtual registers. 2174 SDValue Ops[2]; 2175 if (FuncInfo.ExceptionPointerVirtReg) { 2176 Ops[0] = DAG.getZExtOrTrunc( 2177 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2178 FuncInfo.ExceptionPointerVirtReg, 2179 TLI.getPointerTy(DAG.getDataLayout())), 2180 dl, ValueVTs[0]); 2181 } else { 2182 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2183 } 2184 Ops[1] = DAG.getZExtOrTrunc( 2185 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2186 FuncInfo.ExceptionSelectorVirtReg, 2187 TLI.getPointerTy(DAG.getDataLayout())), 2188 dl, ValueVTs[1]); 2189 2190 // Merge into one. 2191 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2192 DAG.getVTList(ValueVTs), Ops); 2193 setValue(&LP, Res); 2194 } 2195 2196 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2197 #ifndef NDEBUG 2198 for (const CaseCluster &CC : Clusters) 2199 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2200 #endif 2201 2202 std::sort(Clusters.begin(), Clusters.end(), 2203 [](const CaseCluster &a, const CaseCluster &b) { 2204 return a.Low->getValue().slt(b.Low->getValue()); 2205 }); 2206 2207 // Merge adjacent clusters with the same destination. 2208 const unsigned N = Clusters.size(); 2209 unsigned DstIndex = 0; 2210 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2211 CaseCluster &CC = Clusters[SrcIndex]; 2212 const ConstantInt *CaseVal = CC.Low; 2213 MachineBasicBlock *Succ = CC.MBB; 2214 2215 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2216 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2217 // If this case has the same successor and is a neighbour, merge it into 2218 // the previous cluster. 2219 Clusters[DstIndex - 1].High = CaseVal; 2220 Clusters[DstIndex - 1].Weight += CC.Weight; 2221 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2222 } else { 2223 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2224 sizeof(Clusters[SrcIndex])); 2225 } 2226 } 2227 Clusters.resize(DstIndex); 2228 } 2229 2230 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2231 MachineBasicBlock *Last) { 2232 // Update JTCases. 2233 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2234 if (JTCases[i].first.HeaderBB == First) 2235 JTCases[i].first.HeaderBB = Last; 2236 2237 // Update BitTestCases. 2238 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2239 if (BitTestCases[i].Parent == First) 2240 BitTestCases[i].Parent = Last; 2241 } 2242 2243 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2244 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2245 2246 // Update machine-CFG edges with unique successors. 2247 SmallSet<BasicBlock*, 32> Done; 2248 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2249 BasicBlock *BB = I.getSuccessor(i); 2250 bool Inserted = Done.insert(BB).second; 2251 if (!Inserted) 2252 continue; 2253 2254 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2255 addSuccessorWithWeight(IndirectBrMBB, Succ); 2256 } 2257 2258 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2259 MVT::Other, getControlRoot(), 2260 getValue(I.getAddress()))); 2261 } 2262 2263 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2264 if (DAG.getTarget().Options.TrapUnreachable) 2265 DAG.setRoot( 2266 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2267 } 2268 2269 void SelectionDAGBuilder::visitFSub(const User &I) { 2270 // -0.0 - X --> fneg 2271 Type *Ty = I.getType(); 2272 if (isa<Constant>(I.getOperand(0)) && 2273 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2274 SDValue Op2 = getValue(I.getOperand(1)); 2275 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2276 Op2.getValueType(), Op2)); 2277 return; 2278 } 2279 2280 visitBinary(I, ISD::FSUB); 2281 } 2282 2283 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2284 SDValue Op1 = getValue(I.getOperand(0)); 2285 SDValue Op2 = getValue(I.getOperand(1)); 2286 2287 bool nuw = false; 2288 bool nsw = false; 2289 bool exact = false; 2290 FastMathFlags FMF; 2291 2292 if (const OverflowingBinaryOperator *OFBinOp = 2293 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2294 nuw = OFBinOp->hasNoUnsignedWrap(); 2295 nsw = OFBinOp->hasNoSignedWrap(); 2296 } 2297 if (const PossiblyExactOperator *ExactOp = 2298 dyn_cast<const PossiblyExactOperator>(&I)) 2299 exact = ExactOp->isExact(); 2300 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2301 FMF = FPOp->getFastMathFlags(); 2302 2303 SDNodeFlags Flags; 2304 Flags.setExact(exact); 2305 Flags.setNoSignedWrap(nsw); 2306 Flags.setNoUnsignedWrap(nuw); 2307 if (EnableFMFInDAG) { 2308 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2309 Flags.setNoInfs(FMF.noInfs()); 2310 Flags.setNoNaNs(FMF.noNaNs()); 2311 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2312 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2313 } 2314 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2315 Op1, Op2, &Flags); 2316 setValue(&I, BinNodeValue); 2317 } 2318 2319 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2320 SDValue Op1 = getValue(I.getOperand(0)); 2321 SDValue Op2 = getValue(I.getOperand(1)); 2322 2323 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2324 Op2.getValueType(), DAG.getDataLayout()); 2325 2326 // Coerce the shift amount to the right type if we can. 2327 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2328 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2329 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2330 SDLoc DL = getCurSDLoc(); 2331 2332 // If the operand is smaller than the shift count type, promote it. 2333 if (ShiftSize > Op2Size) 2334 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2335 2336 // If the operand is larger than the shift count type but the shift 2337 // count type has enough bits to represent any shift value, truncate 2338 // it now. This is a common case and it exposes the truncate to 2339 // optimization early. 2340 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2341 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2342 // Otherwise we'll need to temporarily settle for some other convenient 2343 // type. Type legalization will make adjustments once the shiftee is split. 2344 else 2345 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2346 } 2347 2348 bool nuw = false; 2349 bool nsw = false; 2350 bool exact = false; 2351 2352 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2353 2354 if (const OverflowingBinaryOperator *OFBinOp = 2355 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2356 nuw = OFBinOp->hasNoUnsignedWrap(); 2357 nsw = OFBinOp->hasNoSignedWrap(); 2358 } 2359 if (const PossiblyExactOperator *ExactOp = 2360 dyn_cast<const PossiblyExactOperator>(&I)) 2361 exact = ExactOp->isExact(); 2362 } 2363 SDNodeFlags Flags; 2364 Flags.setExact(exact); 2365 Flags.setNoSignedWrap(nsw); 2366 Flags.setNoUnsignedWrap(nuw); 2367 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2368 &Flags); 2369 setValue(&I, Res); 2370 } 2371 2372 void SelectionDAGBuilder::visitSDiv(const User &I) { 2373 SDValue Op1 = getValue(I.getOperand(0)); 2374 SDValue Op2 = getValue(I.getOperand(1)); 2375 2376 SDNodeFlags Flags; 2377 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2378 cast<PossiblyExactOperator>(&I)->isExact()); 2379 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2380 Op2, &Flags)); 2381 } 2382 2383 void SelectionDAGBuilder::visitICmp(const User &I) { 2384 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2385 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2386 predicate = IC->getPredicate(); 2387 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2388 predicate = ICmpInst::Predicate(IC->getPredicate()); 2389 SDValue Op1 = getValue(I.getOperand(0)); 2390 SDValue Op2 = getValue(I.getOperand(1)); 2391 ISD::CondCode Opcode = getICmpCondCode(predicate); 2392 2393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2394 I.getType()); 2395 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2396 } 2397 2398 void SelectionDAGBuilder::visitFCmp(const User &I) { 2399 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2400 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2401 predicate = FC->getPredicate(); 2402 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2403 predicate = FCmpInst::Predicate(FC->getPredicate()); 2404 SDValue Op1 = getValue(I.getOperand(0)); 2405 SDValue Op2 = getValue(I.getOperand(1)); 2406 ISD::CondCode Condition = getFCmpCondCode(predicate); 2407 2408 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2409 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2410 // further optimization, but currently FMF is only applicable to binary nodes. 2411 if (TM.Options.NoNaNsFPMath) 2412 Condition = getFCmpCodeWithoutNaN(Condition); 2413 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2414 I.getType()); 2415 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2416 } 2417 2418 void SelectionDAGBuilder::visitSelect(const User &I) { 2419 SmallVector<EVT, 4> ValueVTs; 2420 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2421 ValueVTs); 2422 unsigned NumValues = ValueVTs.size(); 2423 if (NumValues == 0) return; 2424 2425 SmallVector<SDValue, 4> Values(NumValues); 2426 SDValue Cond = getValue(I.getOperand(0)); 2427 SDValue LHSVal = getValue(I.getOperand(1)); 2428 SDValue RHSVal = getValue(I.getOperand(2)); 2429 auto BaseOps = {Cond}; 2430 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2431 ISD::VSELECT : ISD::SELECT; 2432 2433 // Min/max matching is only viable if all output VTs are the same. 2434 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2435 EVT VT = ValueVTs[0]; 2436 LLVMContext &Ctx = *DAG.getContext(); 2437 auto &TLI = DAG.getTargetLoweringInfo(); 2438 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2439 VT = TLI.getTypeToTransformTo(Ctx, VT); 2440 2441 Value *LHS, *RHS; 2442 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2443 ISD::NodeType Opc = ISD::DELETED_NODE; 2444 switch (SPR.Flavor) { 2445 case SPF_UMAX: Opc = ISD::UMAX; break; 2446 case SPF_UMIN: Opc = ISD::UMIN; break; 2447 case SPF_SMAX: Opc = ISD::SMAX; break; 2448 case SPF_SMIN: Opc = ISD::SMIN; break; 2449 case SPF_FMINNUM: 2450 switch (SPR.NaNBehavior) { 2451 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2452 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2453 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2454 case SPNB_RETURNS_ANY: 2455 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2456 : ISD::FMINNAN; 2457 break; 2458 } 2459 break; 2460 case SPF_FMAXNUM: 2461 switch (SPR.NaNBehavior) { 2462 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2463 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2464 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2465 case SPNB_RETURNS_ANY: 2466 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2467 : ISD::FMAXNAN; 2468 break; 2469 } 2470 break; 2471 default: break; 2472 } 2473 2474 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2475 // If the underlying comparison instruction is used by any other instruction, 2476 // the consumed instructions won't be destroyed, so it is not profitable 2477 // to convert to a min/max. 2478 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2479 OpCode = Opc; 2480 LHSVal = getValue(LHS); 2481 RHSVal = getValue(RHS); 2482 BaseOps = {}; 2483 } 2484 } 2485 2486 for (unsigned i = 0; i != NumValues; ++i) { 2487 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2488 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2489 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2490 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2491 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2492 Ops); 2493 } 2494 2495 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2496 DAG.getVTList(ValueVTs), Values)); 2497 } 2498 2499 void SelectionDAGBuilder::visitTrunc(const User &I) { 2500 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2501 SDValue N = getValue(I.getOperand(0)); 2502 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2503 I.getType()); 2504 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2505 } 2506 2507 void SelectionDAGBuilder::visitZExt(const User &I) { 2508 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2509 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2510 SDValue N = getValue(I.getOperand(0)); 2511 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2512 I.getType()); 2513 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2514 } 2515 2516 void SelectionDAGBuilder::visitSExt(const User &I) { 2517 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2518 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2519 SDValue N = getValue(I.getOperand(0)); 2520 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2521 I.getType()); 2522 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2523 } 2524 2525 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2526 // FPTrunc is never a no-op cast, no need to check 2527 SDValue N = getValue(I.getOperand(0)); 2528 SDLoc dl = getCurSDLoc(); 2529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2530 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2531 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2532 DAG.getTargetConstant( 2533 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2534 } 2535 2536 void SelectionDAGBuilder::visitFPExt(const User &I) { 2537 // FPExt is never a no-op cast, no need to check 2538 SDValue N = getValue(I.getOperand(0)); 2539 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2540 I.getType()); 2541 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2542 } 2543 2544 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2545 // FPToUI is never a no-op cast, no need to check 2546 SDValue N = getValue(I.getOperand(0)); 2547 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2548 I.getType()); 2549 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2550 } 2551 2552 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2553 // FPToSI is never a no-op cast, no need to check 2554 SDValue N = getValue(I.getOperand(0)); 2555 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2556 I.getType()); 2557 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2558 } 2559 2560 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2561 // UIToFP is never a no-op cast, no need to check 2562 SDValue N = getValue(I.getOperand(0)); 2563 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2564 I.getType()); 2565 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2566 } 2567 2568 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2569 // SIToFP is never a no-op cast, no need to check 2570 SDValue N = getValue(I.getOperand(0)); 2571 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2572 I.getType()); 2573 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2574 } 2575 2576 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2577 // What to do depends on the size of the integer and the size of the pointer. 2578 // We can either truncate, zero extend, or no-op, accordingly. 2579 SDValue N = getValue(I.getOperand(0)); 2580 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2581 I.getType()); 2582 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2583 } 2584 2585 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2586 // What to do depends on the size of the integer and the size of the pointer. 2587 // We can either truncate, zero extend, or no-op, accordingly. 2588 SDValue N = getValue(I.getOperand(0)); 2589 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2590 I.getType()); 2591 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2592 } 2593 2594 void SelectionDAGBuilder::visitBitCast(const User &I) { 2595 SDValue N = getValue(I.getOperand(0)); 2596 SDLoc dl = getCurSDLoc(); 2597 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2598 I.getType()); 2599 2600 // BitCast assures us that source and destination are the same size so this is 2601 // either a BITCAST or a no-op. 2602 if (DestVT != N.getValueType()) 2603 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2604 DestVT, N)); // convert types. 2605 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2606 // might fold any kind of constant expression to an integer constant and that 2607 // is not what we are looking for. Only regcognize a bitcast of a genuine 2608 // constant integer as an opaque constant. 2609 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2610 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2611 /*isOpaque*/true)); 2612 else 2613 setValue(&I, N); // noop cast. 2614 } 2615 2616 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2618 const Value *SV = I.getOperand(0); 2619 SDValue N = getValue(SV); 2620 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2621 2622 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2623 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2624 2625 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2626 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2627 2628 setValue(&I, N); 2629 } 2630 2631 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2633 SDValue InVec = getValue(I.getOperand(0)); 2634 SDValue InVal = getValue(I.getOperand(1)); 2635 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2636 TLI.getVectorIdxTy(DAG.getDataLayout())); 2637 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2638 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2639 InVec, InVal, InIdx)); 2640 } 2641 2642 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2644 SDValue InVec = getValue(I.getOperand(0)); 2645 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2646 TLI.getVectorIdxTy(DAG.getDataLayout())); 2647 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2648 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2649 InVec, InIdx)); 2650 } 2651 2652 // Utility for visitShuffleVector - Return true if every element in Mask, 2653 // beginning from position Pos and ending in Pos+Size, falls within the 2654 // specified sequential range [L, L+Pos). or is undef. 2655 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2656 unsigned Pos, unsigned Size, int Low) { 2657 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2658 if (Mask[i] >= 0 && Mask[i] != Low) 2659 return false; 2660 return true; 2661 } 2662 2663 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2664 SDValue Src1 = getValue(I.getOperand(0)); 2665 SDValue Src2 = getValue(I.getOperand(1)); 2666 2667 SmallVector<int, 8> Mask; 2668 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2669 unsigned MaskNumElts = Mask.size(); 2670 2671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2672 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2673 EVT SrcVT = Src1.getValueType(); 2674 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2675 2676 if (SrcNumElts == MaskNumElts) { 2677 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2678 &Mask[0])); 2679 return; 2680 } 2681 2682 // Normalize the shuffle vector since mask and vector length don't match. 2683 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2684 // Mask is longer than the source vectors and is a multiple of the source 2685 // vectors. We can use concatenate vector to make the mask and vectors 2686 // lengths match. 2687 if (SrcNumElts*2 == MaskNumElts) { 2688 // First check for Src1 in low and Src2 in high 2689 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2690 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2691 // The shuffle is concatenating two vectors together. 2692 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2693 VT, Src1, Src2)); 2694 return; 2695 } 2696 // Then check for Src2 in low and Src1 in high 2697 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2698 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2699 // The shuffle is concatenating two vectors together. 2700 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2701 VT, Src2, Src1)); 2702 return; 2703 } 2704 } 2705 2706 // Pad both vectors with undefs to make them the same length as the mask. 2707 unsigned NumConcat = MaskNumElts / SrcNumElts; 2708 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2709 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2710 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2711 2712 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2713 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2714 MOps1[0] = Src1; 2715 MOps2[0] = Src2; 2716 2717 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2718 getCurSDLoc(), VT, MOps1); 2719 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2720 getCurSDLoc(), VT, MOps2); 2721 2722 // Readjust mask for new input vector length. 2723 SmallVector<int, 8> MappedOps; 2724 for (unsigned i = 0; i != MaskNumElts; ++i) { 2725 int Idx = Mask[i]; 2726 if (Idx >= (int)SrcNumElts) 2727 Idx -= SrcNumElts - MaskNumElts; 2728 MappedOps.push_back(Idx); 2729 } 2730 2731 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2732 &MappedOps[0])); 2733 return; 2734 } 2735 2736 if (SrcNumElts > MaskNumElts) { 2737 // Analyze the access pattern of the vector to see if we can extract 2738 // two subvectors and do the shuffle. The analysis is done by calculating 2739 // the range of elements the mask access on both vectors. 2740 int MinRange[2] = { static_cast<int>(SrcNumElts), 2741 static_cast<int>(SrcNumElts)}; 2742 int MaxRange[2] = {-1, -1}; 2743 2744 for (unsigned i = 0; i != MaskNumElts; ++i) { 2745 int Idx = Mask[i]; 2746 unsigned Input = 0; 2747 if (Idx < 0) 2748 continue; 2749 2750 if (Idx >= (int)SrcNumElts) { 2751 Input = 1; 2752 Idx -= SrcNumElts; 2753 } 2754 if (Idx > MaxRange[Input]) 2755 MaxRange[Input] = Idx; 2756 if (Idx < MinRange[Input]) 2757 MinRange[Input] = Idx; 2758 } 2759 2760 // Check if the access is smaller than the vector size and can we find 2761 // a reasonable extract index. 2762 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2763 // Extract. 2764 int StartIdx[2]; // StartIdx to extract from 2765 for (unsigned Input = 0; Input < 2; ++Input) { 2766 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2767 RangeUse[Input] = 0; // Unused 2768 StartIdx[Input] = 0; 2769 continue; 2770 } 2771 2772 // Find a good start index that is a multiple of the mask length. Then 2773 // see if the rest of the elements are in range. 2774 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2775 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2776 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2777 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2778 } 2779 2780 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2781 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2782 return; 2783 } 2784 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2785 // Extract appropriate subvector and generate a vector shuffle 2786 for (unsigned Input = 0; Input < 2; ++Input) { 2787 SDValue &Src = Input == 0 ? Src1 : Src2; 2788 if (RangeUse[Input] == 0) 2789 Src = DAG.getUNDEF(VT); 2790 else { 2791 SDLoc dl = getCurSDLoc(); 2792 Src = DAG.getNode( 2793 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2794 DAG.getConstant(StartIdx[Input], dl, 2795 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2796 } 2797 } 2798 2799 // Calculate new mask. 2800 SmallVector<int, 8> MappedOps; 2801 for (unsigned i = 0; i != MaskNumElts; ++i) { 2802 int Idx = Mask[i]; 2803 if (Idx >= 0) { 2804 if (Idx < (int)SrcNumElts) 2805 Idx -= StartIdx[0]; 2806 else 2807 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2808 } 2809 MappedOps.push_back(Idx); 2810 } 2811 2812 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2813 &MappedOps[0])); 2814 return; 2815 } 2816 } 2817 2818 // We can't use either concat vectors or extract subvectors so fall back to 2819 // replacing the shuffle with extract and build vector. 2820 // to insert and build vector. 2821 EVT EltVT = VT.getVectorElementType(); 2822 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2823 SDLoc dl = getCurSDLoc(); 2824 SmallVector<SDValue,8> Ops; 2825 for (unsigned i = 0; i != MaskNumElts; ++i) { 2826 int Idx = Mask[i]; 2827 SDValue Res; 2828 2829 if (Idx < 0) { 2830 Res = DAG.getUNDEF(EltVT); 2831 } else { 2832 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2833 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2834 2835 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2836 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2837 } 2838 2839 Ops.push_back(Res); 2840 } 2841 2842 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2843 } 2844 2845 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2846 const Value *Op0 = I.getOperand(0); 2847 const Value *Op1 = I.getOperand(1); 2848 Type *AggTy = I.getType(); 2849 Type *ValTy = Op1->getType(); 2850 bool IntoUndef = isa<UndefValue>(Op0); 2851 bool FromUndef = isa<UndefValue>(Op1); 2852 2853 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2854 2855 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2856 SmallVector<EVT, 4> AggValueVTs; 2857 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2858 SmallVector<EVT, 4> ValValueVTs; 2859 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2860 2861 unsigned NumAggValues = AggValueVTs.size(); 2862 unsigned NumValValues = ValValueVTs.size(); 2863 SmallVector<SDValue, 4> Values(NumAggValues); 2864 2865 // Ignore an insertvalue that produces an empty object 2866 if (!NumAggValues) { 2867 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2868 return; 2869 } 2870 2871 SDValue Agg = getValue(Op0); 2872 unsigned i = 0; 2873 // Copy the beginning value(s) from the original aggregate. 2874 for (; i != LinearIndex; ++i) 2875 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2876 SDValue(Agg.getNode(), Agg.getResNo() + i); 2877 // Copy values from the inserted value(s). 2878 if (NumValValues) { 2879 SDValue Val = getValue(Op1); 2880 for (; i != LinearIndex + NumValValues; ++i) 2881 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2882 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2883 } 2884 // Copy remaining value(s) from the original aggregate. 2885 for (; i != NumAggValues; ++i) 2886 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2887 SDValue(Agg.getNode(), Agg.getResNo() + i); 2888 2889 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2890 DAG.getVTList(AggValueVTs), Values)); 2891 } 2892 2893 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2894 const Value *Op0 = I.getOperand(0); 2895 Type *AggTy = Op0->getType(); 2896 Type *ValTy = I.getType(); 2897 bool OutOfUndef = isa<UndefValue>(Op0); 2898 2899 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2900 2901 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2902 SmallVector<EVT, 4> ValValueVTs; 2903 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2904 2905 unsigned NumValValues = ValValueVTs.size(); 2906 2907 // Ignore a extractvalue that produces an empty object 2908 if (!NumValValues) { 2909 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2910 return; 2911 } 2912 2913 SmallVector<SDValue, 4> Values(NumValValues); 2914 2915 SDValue Agg = getValue(Op0); 2916 // Copy out the selected value(s). 2917 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2918 Values[i - LinearIndex] = 2919 OutOfUndef ? 2920 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2921 SDValue(Agg.getNode(), Agg.getResNo() + i); 2922 2923 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2924 DAG.getVTList(ValValueVTs), Values)); 2925 } 2926 2927 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2928 Value *Op0 = I.getOperand(0); 2929 // Note that the pointer operand may be a vector of pointers. Take the scalar 2930 // element which holds a pointer. 2931 Type *Ty = Op0->getType()->getScalarType(); 2932 unsigned AS = Ty->getPointerAddressSpace(); 2933 SDValue N = getValue(Op0); 2934 SDLoc dl = getCurSDLoc(); 2935 2936 // Normalize Vector GEP - all scalar operands should be converted to the 2937 // splat vector. 2938 unsigned VectorWidth = I.getType()->isVectorTy() ? 2939 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2940 2941 if (VectorWidth && !N.getValueType().isVector()) { 2942 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2943 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2944 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2945 } 2946 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2947 OI != E; ++OI) { 2948 const Value *Idx = *OI; 2949 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2950 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2951 if (Field) { 2952 // N = N + Offset 2953 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2954 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2955 DAG.getConstant(Offset, dl, N.getValueType())); 2956 } 2957 2958 Ty = StTy->getElementType(Field); 2959 } else { 2960 Ty = cast<SequentialType>(Ty)->getElementType(); 2961 MVT PtrTy = 2962 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2963 unsigned PtrSize = PtrTy.getSizeInBits(); 2964 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2965 2966 // If this is a scalar constant or a splat vector of constants, 2967 // handle it quickly. 2968 const auto *CI = dyn_cast<ConstantInt>(Idx); 2969 if (!CI && isa<ConstantDataVector>(Idx) && 2970 cast<ConstantDataVector>(Idx)->getSplatValue()) 2971 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2972 2973 if (CI) { 2974 if (CI->isZero()) 2975 continue; 2976 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2977 SDValue OffsVal = VectorWidth ? 2978 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2979 DAG.getConstant(Offs, dl, PtrTy); 2980 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2981 continue; 2982 } 2983 2984 // N = N + Idx * ElementSize; 2985 SDValue IdxN = getValue(Idx); 2986 2987 if (!IdxN.getValueType().isVector() && VectorWidth) { 2988 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2989 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2990 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2991 } 2992 // If the index is smaller or larger than intptr_t, truncate or extend 2993 // it. 2994 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2995 2996 // If this is a multiply by a power of two, turn it into a shl 2997 // immediately. This is a very common case. 2998 if (ElementSize != 1) { 2999 if (ElementSize.isPowerOf2()) { 3000 unsigned Amt = ElementSize.logBase2(); 3001 IdxN = DAG.getNode(ISD::SHL, dl, 3002 N.getValueType(), IdxN, 3003 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3004 } else { 3005 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3006 IdxN = DAG.getNode(ISD::MUL, dl, 3007 N.getValueType(), IdxN, Scale); 3008 } 3009 } 3010 3011 N = DAG.getNode(ISD::ADD, dl, 3012 N.getValueType(), N, IdxN); 3013 } 3014 } 3015 3016 setValue(&I, N); 3017 } 3018 3019 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3020 // If this is a fixed sized alloca in the entry block of the function, 3021 // allocate it statically on the stack. 3022 if (FuncInfo.StaticAllocaMap.count(&I)) 3023 return; // getValue will auto-populate this. 3024 3025 SDLoc dl = getCurSDLoc(); 3026 Type *Ty = I.getAllocatedType(); 3027 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3028 auto &DL = DAG.getDataLayout(); 3029 uint64_t TySize = DL.getTypeAllocSize(Ty); 3030 unsigned Align = 3031 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3032 3033 SDValue AllocSize = getValue(I.getArraySize()); 3034 3035 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3036 if (AllocSize.getValueType() != IntPtr) 3037 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3038 3039 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3040 AllocSize, 3041 DAG.getConstant(TySize, dl, IntPtr)); 3042 3043 // Handle alignment. If the requested alignment is less than or equal to 3044 // the stack alignment, ignore it. If the size is greater than or equal to 3045 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3046 unsigned StackAlign = 3047 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3048 if (Align <= StackAlign) 3049 Align = 0; 3050 3051 // Round the size of the allocation up to the stack alignment size 3052 // by add SA-1 to the size. 3053 AllocSize = DAG.getNode(ISD::ADD, dl, 3054 AllocSize.getValueType(), AllocSize, 3055 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3056 3057 // Mask out the low bits for alignment purposes. 3058 AllocSize = DAG.getNode(ISD::AND, dl, 3059 AllocSize.getValueType(), AllocSize, 3060 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3061 dl)); 3062 3063 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3064 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3065 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3066 setValue(&I, DSA); 3067 DAG.setRoot(DSA.getValue(1)); 3068 3069 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3070 } 3071 3072 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3073 if (I.isAtomic()) 3074 return visitAtomicLoad(I); 3075 3076 const Value *SV = I.getOperand(0); 3077 SDValue Ptr = getValue(SV); 3078 3079 Type *Ty = I.getType(); 3080 3081 bool isVolatile = I.isVolatile(); 3082 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3083 3084 // The IR notion of invariant_load only guarantees that all *non-faulting* 3085 // invariant loads result in the same value. The MI notion of invariant load 3086 // guarantees that the load can be legally moved to any location within its 3087 // containing function. The MI notion of invariant_load is stronger than the 3088 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3089 // with a guarantee that the location being loaded from is dereferenceable 3090 // throughout the function's lifetime. 3091 3092 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3093 isDereferenceablePointer(SV, DAG.getDataLayout()); 3094 unsigned Alignment = I.getAlignment(); 3095 3096 AAMDNodes AAInfo; 3097 I.getAAMetadata(AAInfo); 3098 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3099 3100 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3101 SmallVector<EVT, 4> ValueVTs; 3102 SmallVector<uint64_t, 4> Offsets; 3103 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3104 unsigned NumValues = ValueVTs.size(); 3105 if (NumValues == 0) 3106 return; 3107 3108 SDValue Root; 3109 bool ConstantMemory = false; 3110 if (isVolatile || NumValues > MaxParallelChains) 3111 // Serialize volatile loads with other side effects. 3112 Root = getRoot(); 3113 else if (AA->pointsToConstantMemory(MemoryLocation( 3114 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3115 // Do not serialize (non-volatile) loads of constant memory with anything. 3116 Root = DAG.getEntryNode(); 3117 ConstantMemory = true; 3118 } else { 3119 // Do not serialize non-volatile loads against each other. 3120 Root = DAG.getRoot(); 3121 } 3122 3123 SDLoc dl = getCurSDLoc(); 3124 3125 if (isVolatile) 3126 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3127 3128 SmallVector<SDValue, 4> Values(NumValues); 3129 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3130 EVT PtrVT = Ptr.getValueType(); 3131 unsigned ChainI = 0; 3132 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3133 // Serializing loads here may result in excessive register pressure, and 3134 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3135 // could recover a bit by hoisting nodes upward in the chain by recognizing 3136 // they are side-effect free or do not alias. The optimizer should really 3137 // avoid this case by converting large object/array copies to llvm.memcpy 3138 // (MaxParallelChains should always remain as failsafe). 3139 if (ChainI == MaxParallelChains) { 3140 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3141 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3142 makeArrayRef(Chains.data(), ChainI)); 3143 Root = Chain; 3144 ChainI = 0; 3145 } 3146 SDValue A = DAG.getNode(ISD::ADD, dl, 3147 PtrVT, Ptr, 3148 DAG.getConstant(Offsets[i], dl, PtrVT)); 3149 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3150 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3151 isNonTemporal, isInvariant, Alignment, AAInfo, 3152 Ranges); 3153 3154 Values[i] = L; 3155 Chains[ChainI] = L.getValue(1); 3156 } 3157 3158 if (!ConstantMemory) { 3159 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3160 makeArrayRef(Chains.data(), ChainI)); 3161 if (isVolatile) 3162 DAG.setRoot(Chain); 3163 else 3164 PendingLoads.push_back(Chain); 3165 } 3166 3167 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3168 DAG.getVTList(ValueVTs), Values)); 3169 } 3170 3171 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3172 if (I.isAtomic()) 3173 return visitAtomicStore(I); 3174 3175 const Value *SrcV = I.getOperand(0); 3176 const Value *PtrV = I.getOperand(1); 3177 3178 SmallVector<EVT, 4> ValueVTs; 3179 SmallVector<uint64_t, 4> Offsets; 3180 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3181 SrcV->getType(), ValueVTs, &Offsets); 3182 unsigned NumValues = ValueVTs.size(); 3183 if (NumValues == 0) 3184 return; 3185 3186 // Get the lowered operands. Note that we do this after 3187 // checking if NumResults is zero, because with zero results 3188 // the operands won't have values in the map. 3189 SDValue Src = getValue(SrcV); 3190 SDValue Ptr = getValue(PtrV); 3191 3192 SDValue Root = getRoot(); 3193 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3194 EVT PtrVT = Ptr.getValueType(); 3195 bool isVolatile = I.isVolatile(); 3196 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3197 unsigned Alignment = I.getAlignment(); 3198 SDLoc dl = getCurSDLoc(); 3199 3200 AAMDNodes AAInfo; 3201 I.getAAMetadata(AAInfo); 3202 3203 unsigned ChainI = 0; 3204 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3205 // See visitLoad comments. 3206 if (ChainI == MaxParallelChains) { 3207 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3208 makeArrayRef(Chains.data(), ChainI)); 3209 Root = Chain; 3210 ChainI = 0; 3211 } 3212 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3213 DAG.getConstant(Offsets[i], dl, PtrVT)); 3214 SDValue St = DAG.getStore(Root, dl, 3215 SDValue(Src.getNode(), Src.getResNo() + i), 3216 Add, MachinePointerInfo(PtrV, Offsets[i]), 3217 isVolatile, isNonTemporal, Alignment, AAInfo); 3218 Chains[ChainI] = St; 3219 } 3220 3221 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3222 makeArrayRef(Chains.data(), ChainI)); 3223 DAG.setRoot(StoreNode); 3224 } 3225 3226 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3227 SDLoc sdl = getCurSDLoc(); 3228 3229 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3230 Value *PtrOperand = I.getArgOperand(1); 3231 SDValue Ptr = getValue(PtrOperand); 3232 SDValue Src0 = getValue(I.getArgOperand(0)); 3233 SDValue Mask = getValue(I.getArgOperand(3)); 3234 EVT VT = Src0.getValueType(); 3235 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3236 if (!Alignment) 3237 Alignment = DAG.getEVTAlignment(VT); 3238 3239 AAMDNodes AAInfo; 3240 I.getAAMetadata(AAInfo); 3241 3242 MachineMemOperand *MMO = 3243 DAG.getMachineFunction(). 3244 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3245 MachineMemOperand::MOStore, VT.getStoreSize(), 3246 Alignment, AAInfo); 3247 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3248 MMO, false); 3249 DAG.setRoot(StoreNode); 3250 setValue(&I, StoreNode); 3251 } 3252 3253 // Get a uniform base for the Gather/Scatter intrinsic. 3254 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3255 // We try to represent it as a base pointer + vector of indices. 3256 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3257 // The first operand of the GEP may be a single pointer or a vector of pointers 3258 // Example: 3259 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3260 // or 3261 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3262 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3263 // 3264 // When the first GEP operand is a single pointer - it is the uniform base we 3265 // are looking for. If first operand of the GEP is a splat vector - we 3266 // extract the spalt value and use it as a uniform base. 3267 // In all other cases the function returns 'false'. 3268 // 3269 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3270 SelectionDAGBuilder* SDB) { 3271 3272 SelectionDAG& DAG = SDB->DAG; 3273 LLVMContext &Context = *DAG.getContext(); 3274 3275 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3276 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3277 if (!GEP || GEP->getNumOperands() > 2) 3278 return false; 3279 3280 Value *GEPPtr = GEP->getPointerOperand(); 3281 if (!GEPPtr->getType()->isVectorTy()) 3282 Ptr = GEPPtr; 3283 else if (!(Ptr = getSplatValue(GEPPtr))) 3284 return false; 3285 3286 Value *IndexVal = GEP->getOperand(1); 3287 3288 // The operands of the GEP may be defined in another basic block. 3289 // In this case we'll not find nodes for the operands. 3290 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3291 return false; 3292 3293 Base = SDB->getValue(Ptr); 3294 Index = SDB->getValue(IndexVal); 3295 3296 // Suppress sign extension. 3297 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3298 if (SDB->findValue(Sext->getOperand(0))) { 3299 IndexVal = Sext->getOperand(0); 3300 Index = SDB->getValue(IndexVal); 3301 } 3302 } 3303 if (!Index.getValueType().isVector()) { 3304 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3305 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3306 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3307 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3308 } 3309 return true; 3310 } 3311 3312 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3313 SDLoc sdl = getCurSDLoc(); 3314 3315 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3316 Value *Ptr = I.getArgOperand(1); 3317 SDValue Src0 = getValue(I.getArgOperand(0)); 3318 SDValue Mask = getValue(I.getArgOperand(3)); 3319 EVT VT = Src0.getValueType(); 3320 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3321 if (!Alignment) 3322 Alignment = DAG.getEVTAlignment(VT); 3323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3324 3325 AAMDNodes AAInfo; 3326 I.getAAMetadata(AAInfo); 3327 3328 SDValue Base; 3329 SDValue Index; 3330 Value *BasePtr = Ptr; 3331 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3332 3333 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3334 MachineMemOperand *MMO = DAG.getMachineFunction(). 3335 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3336 MachineMemOperand::MOStore, VT.getStoreSize(), 3337 Alignment, AAInfo); 3338 if (!UniformBase) { 3339 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3340 Index = getValue(Ptr); 3341 } 3342 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3343 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3344 Ops, MMO); 3345 DAG.setRoot(Scatter); 3346 setValue(&I, Scatter); 3347 } 3348 3349 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3350 SDLoc sdl = getCurSDLoc(); 3351 3352 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3353 Value *PtrOperand = I.getArgOperand(0); 3354 SDValue Ptr = getValue(PtrOperand); 3355 SDValue Src0 = getValue(I.getArgOperand(3)); 3356 SDValue Mask = getValue(I.getArgOperand(2)); 3357 3358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3359 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3360 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3361 if (!Alignment) 3362 Alignment = DAG.getEVTAlignment(VT); 3363 3364 AAMDNodes AAInfo; 3365 I.getAAMetadata(AAInfo); 3366 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3367 3368 SDValue InChain = DAG.getRoot(); 3369 if (AA->pointsToConstantMemory(MemoryLocation( 3370 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3371 AAInfo))) { 3372 // Do not serialize (non-volatile) loads of constant memory with anything. 3373 InChain = DAG.getEntryNode(); 3374 } 3375 3376 MachineMemOperand *MMO = 3377 DAG.getMachineFunction(). 3378 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3379 MachineMemOperand::MOLoad, VT.getStoreSize(), 3380 Alignment, AAInfo, Ranges); 3381 3382 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3383 ISD::NON_EXTLOAD); 3384 SDValue OutChain = Load.getValue(1); 3385 DAG.setRoot(OutChain); 3386 setValue(&I, Load); 3387 } 3388 3389 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3390 SDLoc sdl = getCurSDLoc(); 3391 3392 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3393 Value *Ptr = I.getArgOperand(0); 3394 SDValue Src0 = getValue(I.getArgOperand(3)); 3395 SDValue Mask = getValue(I.getArgOperand(2)); 3396 3397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3398 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3399 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3400 if (!Alignment) 3401 Alignment = DAG.getEVTAlignment(VT); 3402 3403 AAMDNodes AAInfo; 3404 I.getAAMetadata(AAInfo); 3405 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3406 3407 SDValue Root = DAG.getRoot(); 3408 SDValue Base; 3409 SDValue Index; 3410 Value *BasePtr = Ptr; 3411 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3412 bool ConstantMemory = false; 3413 if (UniformBase && 3414 AA->pointsToConstantMemory(MemoryLocation( 3415 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3416 AAInfo))) { 3417 // Do not serialize (non-volatile) loads of constant memory with anything. 3418 Root = DAG.getEntryNode(); 3419 ConstantMemory = true; 3420 } 3421 3422 MachineMemOperand *MMO = 3423 DAG.getMachineFunction(). 3424 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3425 MachineMemOperand::MOLoad, VT.getStoreSize(), 3426 Alignment, AAInfo, Ranges); 3427 3428 if (!UniformBase) { 3429 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3430 Index = getValue(Ptr); 3431 } 3432 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3433 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3434 Ops, MMO); 3435 3436 SDValue OutChain = Gather.getValue(1); 3437 if (!ConstantMemory) 3438 PendingLoads.push_back(OutChain); 3439 setValue(&I, Gather); 3440 } 3441 3442 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3443 SDLoc dl = getCurSDLoc(); 3444 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3445 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3446 SynchronizationScope Scope = I.getSynchScope(); 3447 3448 SDValue InChain = getRoot(); 3449 3450 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3451 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3452 SDValue L = DAG.getAtomicCmpSwap( 3453 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3454 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3455 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3456 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3457 3458 SDValue OutChain = L.getValue(2); 3459 3460 setValue(&I, L); 3461 DAG.setRoot(OutChain); 3462 } 3463 3464 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3465 SDLoc dl = getCurSDLoc(); 3466 ISD::NodeType NT; 3467 switch (I.getOperation()) { 3468 default: llvm_unreachable("Unknown atomicrmw operation"); 3469 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3470 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3471 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3472 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3473 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3474 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3475 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3476 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3477 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3478 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3479 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3480 } 3481 AtomicOrdering Order = I.getOrdering(); 3482 SynchronizationScope Scope = I.getSynchScope(); 3483 3484 SDValue InChain = getRoot(); 3485 3486 SDValue L = 3487 DAG.getAtomic(NT, dl, 3488 getValue(I.getValOperand()).getSimpleValueType(), 3489 InChain, 3490 getValue(I.getPointerOperand()), 3491 getValue(I.getValOperand()), 3492 I.getPointerOperand(), 3493 /* Alignment=*/ 0, Order, Scope); 3494 3495 SDValue OutChain = L.getValue(1); 3496 3497 setValue(&I, L); 3498 DAG.setRoot(OutChain); 3499 } 3500 3501 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3502 SDLoc dl = getCurSDLoc(); 3503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3504 SDValue Ops[3]; 3505 Ops[0] = getRoot(); 3506 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3507 TLI.getPointerTy(DAG.getDataLayout())); 3508 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3509 TLI.getPointerTy(DAG.getDataLayout())); 3510 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3511 } 3512 3513 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3514 SDLoc dl = getCurSDLoc(); 3515 AtomicOrdering Order = I.getOrdering(); 3516 SynchronizationScope Scope = I.getSynchScope(); 3517 3518 SDValue InChain = getRoot(); 3519 3520 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3521 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3522 3523 if (I.getAlignment() < VT.getSizeInBits() / 8) 3524 report_fatal_error("Cannot generate unaligned atomic load"); 3525 3526 MachineMemOperand *MMO = 3527 DAG.getMachineFunction(). 3528 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3529 MachineMemOperand::MOVolatile | 3530 MachineMemOperand::MOLoad, 3531 VT.getStoreSize(), 3532 I.getAlignment() ? I.getAlignment() : 3533 DAG.getEVTAlignment(VT)); 3534 3535 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3536 SDValue L = 3537 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3538 getValue(I.getPointerOperand()), MMO, 3539 Order, Scope); 3540 3541 SDValue OutChain = L.getValue(1); 3542 3543 setValue(&I, L); 3544 DAG.setRoot(OutChain); 3545 } 3546 3547 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3548 SDLoc dl = getCurSDLoc(); 3549 3550 AtomicOrdering Order = I.getOrdering(); 3551 SynchronizationScope Scope = I.getSynchScope(); 3552 3553 SDValue InChain = getRoot(); 3554 3555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3556 EVT VT = 3557 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3558 3559 if (I.getAlignment() < VT.getSizeInBits() / 8) 3560 report_fatal_error("Cannot generate unaligned atomic store"); 3561 3562 SDValue OutChain = 3563 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3564 InChain, 3565 getValue(I.getPointerOperand()), 3566 getValue(I.getValueOperand()), 3567 I.getPointerOperand(), I.getAlignment(), 3568 Order, Scope); 3569 3570 DAG.setRoot(OutChain); 3571 } 3572 3573 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3574 /// node. 3575 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3576 unsigned Intrinsic) { 3577 bool HasChain = !I.doesNotAccessMemory(); 3578 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3579 3580 // Build the operand list. 3581 SmallVector<SDValue, 8> Ops; 3582 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3583 if (OnlyLoad) { 3584 // We don't need to serialize loads against other loads. 3585 Ops.push_back(DAG.getRoot()); 3586 } else { 3587 Ops.push_back(getRoot()); 3588 } 3589 } 3590 3591 // Info is set by getTgtMemInstrinsic 3592 TargetLowering::IntrinsicInfo Info; 3593 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3594 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3595 3596 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3597 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3598 Info.opc == ISD::INTRINSIC_W_CHAIN) 3599 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3600 TLI.getPointerTy(DAG.getDataLayout()))); 3601 3602 // Add all operands of the call to the operand list. 3603 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3604 SDValue Op = getValue(I.getArgOperand(i)); 3605 Ops.push_back(Op); 3606 } 3607 3608 SmallVector<EVT, 4> ValueVTs; 3609 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3610 3611 if (HasChain) 3612 ValueVTs.push_back(MVT::Other); 3613 3614 SDVTList VTs = DAG.getVTList(ValueVTs); 3615 3616 // Create the node. 3617 SDValue Result; 3618 if (IsTgtIntrinsic) { 3619 // This is target intrinsic that touches memory 3620 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3621 VTs, Ops, Info.memVT, 3622 MachinePointerInfo(Info.ptrVal, Info.offset), 3623 Info.align, Info.vol, 3624 Info.readMem, Info.writeMem, Info.size); 3625 } else if (!HasChain) { 3626 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3627 } else if (!I.getType()->isVoidTy()) { 3628 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3629 } else { 3630 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3631 } 3632 3633 if (HasChain) { 3634 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3635 if (OnlyLoad) 3636 PendingLoads.push_back(Chain); 3637 else 3638 DAG.setRoot(Chain); 3639 } 3640 3641 if (!I.getType()->isVoidTy()) { 3642 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3643 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3644 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3645 } 3646 3647 setValue(&I, Result); 3648 } 3649 } 3650 3651 /// GetSignificand - Get the significand and build it into a floating-point 3652 /// number with exponent of 1: 3653 /// 3654 /// Op = (Op & 0x007fffff) | 0x3f800000; 3655 /// 3656 /// where Op is the hexadecimal representation of floating point value. 3657 static SDValue 3658 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3659 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3660 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3661 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3662 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3663 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3664 } 3665 3666 /// GetExponent - Get the exponent: 3667 /// 3668 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3669 /// 3670 /// where Op is the hexadecimal representation of floating point value. 3671 static SDValue 3672 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3673 SDLoc dl) { 3674 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3675 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3676 SDValue t1 = DAG.getNode( 3677 ISD::SRL, dl, MVT::i32, t0, 3678 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3679 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3680 DAG.getConstant(127, dl, MVT::i32)); 3681 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3682 } 3683 3684 /// getF32Constant - Get 32-bit floating point constant. 3685 static SDValue 3686 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3687 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3688 MVT::f32); 3689 } 3690 3691 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3692 SelectionDAG &DAG) { 3693 // TODO: What fast-math-flags should be set on the floating-point nodes? 3694 3695 // IntegerPartOfX = ((int32_t)(t0); 3696 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3697 3698 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3699 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3700 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3701 3702 // IntegerPartOfX <<= 23; 3703 IntegerPartOfX = DAG.getNode( 3704 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3705 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3706 DAG.getDataLayout()))); 3707 3708 SDValue TwoToFractionalPartOfX; 3709 if (LimitFloatPrecision <= 6) { 3710 // For floating-point precision of 6: 3711 // 3712 // TwoToFractionalPartOfX = 3713 // 0.997535578f + 3714 // (0.735607626f + 0.252464424f * x) * x; 3715 // 3716 // error 0.0144103317, which is 6 bits 3717 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3718 getF32Constant(DAG, 0x3e814304, dl)); 3719 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3720 getF32Constant(DAG, 0x3f3c50c8, dl)); 3721 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3722 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3723 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3724 } else if (LimitFloatPrecision <= 12) { 3725 // For floating-point precision of 12: 3726 // 3727 // TwoToFractionalPartOfX = 3728 // 0.999892986f + 3729 // (0.696457318f + 3730 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3731 // 3732 // error 0.000107046256, which is 13 to 14 bits 3733 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3734 getF32Constant(DAG, 0x3da235e3, dl)); 3735 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3736 getF32Constant(DAG, 0x3e65b8f3, dl)); 3737 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3738 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3739 getF32Constant(DAG, 0x3f324b07, dl)); 3740 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3741 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3742 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3743 } else { // LimitFloatPrecision <= 18 3744 // For floating-point precision of 18: 3745 // 3746 // TwoToFractionalPartOfX = 3747 // 0.999999982f + 3748 // (0.693148872f + 3749 // (0.240227044f + 3750 // (0.554906021e-1f + 3751 // (0.961591928e-2f + 3752 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3753 // error 2.47208000*10^(-7), which is better than 18 bits 3754 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3755 getF32Constant(DAG, 0x3924b03e, dl)); 3756 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3757 getF32Constant(DAG, 0x3ab24b87, dl)); 3758 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3759 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3760 getF32Constant(DAG, 0x3c1d8c17, dl)); 3761 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3762 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3763 getF32Constant(DAG, 0x3d634a1d, dl)); 3764 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3765 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3766 getF32Constant(DAG, 0x3e75fe14, dl)); 3767 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3768 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3769 getF32Constant(DAG, 0x3f317234, dl)); 3770 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3771 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3772 getF32Constant(DAG, 0x3f800000, dl)); 3773 } 3774 3775 // Add the exponent into the result in integer domain. 3776 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3777 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3778 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3779 } 3780 3781 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3782 /// limited-precision mode. 3783 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3784 const TargetLowering &TLI) { 3785 if (Op.getValueType() == MVT::f32 && 3786 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3787 3788 // Put the exponent in the right bit position for later addition to the 3789 // final result: 3790 // 3791 // #define LOG2OFe 1.4426950f 3792 // t0 = Op * LOG2OFe 3793 3794 // TODO: What fast-math-flags should be set here? 3795 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3796 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3797 return getLimitedPrecisionExp2(t0, dl, DAG); 3798 } 3799 3800 // No special expansion. 3801 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3802 } 3803 3804 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3805 /// limited-precision mode. 3806 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3807 const TargetLowering &TLI) { 3808 3809 // TODO: What fast-math-flags should be set on the floating-point nodes? 3810 3811 if (Op.getValueType() == MVT::f32 && 3812 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3813 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3814 3815 // Scale the exponent by log(2) [0.69314718f]. 3816 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3817 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3818 getF32Constant(DAG, 0x3f317218, dl)); 3819 3820 // Get the significand and build it into a floating-point number with 3821 // exponent of 1. 3822 SDValue X = GetSignificand(DAG, Op1, dl); 3823 3824 SDValue LogOfMantissa; 3825 if (LimitFloatPrecision <= 6) { 3826 // For floating-point precision of 6: 3827 // 3828 // LogofMantissa = 3829 // -1.1609546f + 3830 // (1.4034025f - 0.23903021f * x) * x; 3831 // 3832 // error 0.0034276066, which is better than 8 bits 3833 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3834 getF32Constant(DAG, 0xbe74c456, dl)); 3835 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3836 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3837 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3838 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3839 getF32Constant(DAG, 0x3f949a29, dl)); 3840 } else if (LimitFloatPrecision <= 12) { 3841 // For floating-point precision of 12: 3842 // 3843 // LogOfMantissa = 3844 // -1.7417939f + 3845 // (2.8212026f + 3846 // (-1.4699568f + 3847 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3848 // 3849 // error 0.000061011436, which is 14 bits 3850 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3851 getF32Constant(DAG, 0xbd67b6d6, dl)); 3852 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3853 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3854 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3855 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3856 getF32Constant(DAG, 0x3fbc278b, dl)); 3857 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3858 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3859 getF32Constant(DAG, 0x40348e95, dl)); 3860 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3861 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3862 getF32Constant(DAG, 0x3fdef31a, dl)); 3863 } else { // LimitFloatPrecision <= 18 3864 // For floating-point precision of 18: 3865 // 3866 // LogOfMantissa = 3867 // -2.1072184f + 3868 // (4.2372794f + 3869 // (-3.7029485f + 3870 // (2.2781945f + 3871 // (-0.87823314f + 3872 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3873 // 3874 // error 0.0000023660568, which is better than 18 bits 3875 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3876 getF32Constant(DAG, 0xbc91e5ac, dl)); 3877 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3878 getF32Constant(DAG, 0x3e4350aa, dl)); 3879 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3880 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3881 getF32Constant(DAG, 0x3f60d3e3, dl)); 3882 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3883 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3884 getF32Constant(DAG, 0x4011cdf0, dl)); 3885 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3886 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3887 getF32Constant(DAG, 0x406cfd1c, dl)); 3888 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3889 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3890 getF32Constant(DAG, 0x408797cb, dl)); 3891 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3892 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3893 getF32Constant(DAG, 0x4006dcab, dl)); 3894 } 3895 3896 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3897 } 3898 3899 // No special expansion. 3900 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3901 } 3902 3903 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3904 /// limited-precision mode. 3905 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3906 const TargetLowering &TLI) { 3907 3908 // TODO: What fast-math-flags should be set on the floating-point nodes? 3909 3910 if (Op.getValueType() == MVT::f32 && 3911 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3912 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3913 3914 // Get the exponent. 3915 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3916 3917 // Get the significand and build it into a floating-point number with 3918 // exponent of 1. 3919 SDValue X = GetSignificand(DAG, Op1, dl); 3920 3921 // Different possible minimax approximations of significand in 3922 // floating-point for various degrees of accuracy over [1,2]. 3923 SDValue Log2ofMantissa; 3924 if (LimitFloatPrecision <= 6) { 3925 // For floating-point precision of 6: 3926 // 3927 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3928 // 3929 // error 0.0049451742, which is more than 7 bits 3930 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3931 getF32Constant(DAG, 0xbeb08fe0, dl)); 3932 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3933 getF32Constant(DAG, 0x40019463, dl)); 3934 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3935 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3936 getF32Constant(DAG, 0x3fd6633d, dl)); 3937 } else if (LimitFloatPrecision <= 12) { 3938 // For floating-point precision of 12: 3939 // 3940 // Log2ofMantissa = 3941 // -2.51285454f + 3942 // (4.07009056f + 3943 // (-2.12067489f + 3944 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3945 // 3946 // error 0.0000876136000, which is better than 13 bits 3947 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3948 getF32Constant(DAG, 0xbda7262e, dl)); 3949 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3950 getF32Constant(DAG, 0x3f25280b, dl)); 3951 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3952 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3953 getF32Constant(DAG, 0x4007b923, dl)); 3954 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3955 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3956 getF32Constant(DAG, 0x40823e2f, dl)); 3957 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3958 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3959 getF32Constant(DAG, 0x4020d29c, dl)); 3960 } else { // LimitFloatPrecision <= 18 3961 // For floating-point precision of 18: 3962 // 3963 // Log2ofMantissa = 3964 // -3.0400495f + 3965 // (6.1129976f + 3966 // (-5.3420409f + 3967 // (3.2865683f + 3968 // (-1.2669343f + 3969 // (0.27515199f - 3970 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3971 // 3972 // error 0.0000018516, which is better than 18 bits 3973 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3974 getF32Constant(DAG, 0xbcd2769e, dl)); 3975 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3976 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3977 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3978 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3979 getF32Constant(DAG, 0x3fa22ae7, dl)); 3980 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3981 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3982 getF32Constant(DAG, 0x40525723, dl)); 3983 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3984 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3985 getF32Constant(DAG, 0x40aaf200, dl)); 3986 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3987 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3988 getF32Constant(DAG, 0x40c39dad, dl)); 3989 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3990 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3991 getF32Constant(DAG, 0x4042902c, dl)); 3992 } 3993 3994 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3995 } 3996 3997 // No special expansion. 3998 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3999 } 4000 4001 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4002 /// limited-precision mode. 4003 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4004 const TargetLowering &TLI) { 4005 4006 // TODO: What fast-math-flags should be set on the floating-point nodes? 4007 4008 if (Op.getValueType() == MVT::f32 && 4009 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4010 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4011 4012 // Scale the exponent by log10(2) [0.30102999f]. 4013 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4014 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4015 getF32Constant(DAG, 0x3e9a209a, dl)); 4016 4017 // Get the significand and build it into a floating-point number with 4018 // exponent of 1. 4019 SDValue X = GetSignificand(DAG, Op1, dl); 4020 4021 SDValue Log10ofMantissa; 4022 if (LimitFloatPrecision <= 6) { 4023 // For floating-point precision of 6: 4024 // 4025 // Log10ofMantissa = 4026 // -0.50419619f + 4027 // (0.60948995f - 0.10380950f * x) * x; 4028 // 4029 // error 0.0014886165, which is 6 bits 4030 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4031 getF32Constant(DAG, 0xbdd49a13, dl)); 4032 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4033 getF32Constant(DAG, 0x3f1c0789, dl)); 4034 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4035 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4036 getF32Constant(DAG, 0x3f011300, dl)); 4037 } else if (LimitFloatPrecision <= 12) { 4038 // For floating-point precision of 12: 4039 // 4040 // Log10ofMantissa = 4041 // -0.64831180f + 4042 // (0.91751397f + 4043 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4044 // 4045 // error 0.00019228036, which is better than 12 bits 4046 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4047 getF32Constant(DAG, 0x3d431f31, dl)); 4048 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4049 getF32Constant(DAG, 0x3ea21fb2, dl)); 4050 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4051 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4052 getF32Constant(DAG, 0x3f6ae232, dl)); 4053 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4054 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4055 getF32Constant(DAG, 0x3f25f7c3, dl)); 4056 } else { // LimitFloatPrecision <= 18 4057 // For floating-point precision of 18: 4058 // 4059 // Log10ofMantissa = 4060 // -0.84299375f + 4061 // (1.5327582f + 4062 // (-1.0688956f + 4063 // (0.49102474f + 4064 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4065 // 4066 // error 0.0000037995730, which is better than 18 bits 4067 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4068 getF32Constant(DAG, 0x3c5d51ce, dl)); 4069 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4070 getF32Constant(DAG, 0x3e00685a, dl)); 4071 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4072 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4073 getF32Constant(DAG, 0x3efb6798, dl)); 4074 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4075 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4076 getF32Constant(DAG, 0x3f88d192, dl)); 4077 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4078 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4079 getF32Constant(DAG, 0x3fc4316c, dl)); 4080 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4081 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4082 getF32Constant(DAG, 0x3f57ce70, dl)); 4083 } 4084 4085 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4086 } 4087 4088 // No special expansion. 4089 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4090 } 4091 4092 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4093 /// limited-precision mode. 4094 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4095 const TargetLowering &TLI) { 4096 if (Op.getValueType() == MVT::f32 && 4097 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4098 return getLimitedPrecisionExp2(Op, dl, DAG); 4099 4100 // No special expansion. 4101 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4102 } 4103 4104 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4105 /// limited-precision mode with x == 10.0f. 4106 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4107 SelectionDAG &DAG, const TargetLowering &TLI) { 4108 bool IsExp10 = false; 4109 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4110 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4111 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4112 APFloat Ten(10.0f); 4113 IsExp10 = LHSC->isExactlyValue(Ten); 4114 } 4115 } 4116 4117 // TODO: What fast-math-flags should be set on the FMUL node? 4118 if (IsExp10) { 4119 // Put the exponent in the right bit position for later addition to the 4120 // final result: 4121 // 4122 // #define LOG2OF10 3.3219281f 4123 // t0 = Op * LOG2OF10; 4124 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4125 getF32Constant(DAG, 0x40549a78, dl)); 4126 return getLimitedPrecisionExp2(t0, dl, DAG); 4127 } 4128 4129 // No special expansion. 4130 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4131 } 4132 4133 4134 /// ExpandPowI - Expand a llvm.powi intrinsic. 4135 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4136 SelectionDAG &DAG) { 4137 // If RHS is a constant, we can expand this out to a multiplication tree, 4138 // otherwise we end up lowering to a call to __powidf2 (for example). When 4139 // optimizing for size, we only want to do this if the expansion would produce 4140 // a small number of multiplies, otherwise we do the full expansion. 4141 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4142 // Get the exponent as a positive value. 4143 unsigned Val = RHSC->getSExtValue(); 4144 if ((int)Val < 0) Val = -Val; 4145 4146 // powi(x, 0) -> 1.0 4147 if (Val == 0) 4148 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4149 4150 const Function *F = DAG.getMachineFunction().getFunction(); 4151 if (!F->optForSize() || 4152 // If optimizing for size, don't insert too many multiplies. 4153 // This inserts up to 5 multiplies. 4154 countPopulation(Val) + Log2_32(Val) < 7) { 4155 // We use the simple binary decomposition method to generate the multiply 4156 // sequence. There are more optimal ways to do this (for example, 4157 // powi(x,15) generates one more multiply than it should), but this has 4158 // the benefit of being both really simple and much better than a libcall. 4159 SDValue Res; // Logically starts equal to 1.0 4160 SDValue CurSquare = LHS; 4161 // TODO: Intrinsics should have fast-math-flags that propagate to these 4162 // nodes. 4163 while (Val) { 4164 if (Val & 1) { 4165 if (Res.getNode()) 4166 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4167 else 4168 Res = CurSquare; // 1.0*CurSquare. 4169 } 4170 4171 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4172 CurSquare, CurSquare); 4173 Val >>= 1; 4174 } 4175 4176 // If the original was negative, invert the result, producing 1/(x*x*x). 4177 if (RHSC->getSExtValue() < 0) 4178 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4179 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4180 return Res; 4181 } 4182 } 4183 4184 // Otherwise, expand to a libcall. 4185 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4186 } 4187 4188 // getTruncatedArgReg - Find underlying register used for an truncated 4189 // argument. 4190 static unsigned getTruncatedArgReg(const SDValue &N) { 4191 if (N.getOpcode() != ISD::TRUNCATE) 4192 return 0; 4193 4194 const SDValue &Ext = N.getOperand(0); 4195 if (Ext.getOpcode() == ISD::AssertZext || 4196 Ext.getOpcode() == ISD::AssertSext) { 4197 const SDValue &CFR = Ext.getOperand(0); 4198 if (CFR.getOpcode() == ISD::CopyFromReg) 4199 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4200 if (CFR.getOpcode() == ISD::TRUNCATE) 4201 return getTruncatedArgReg(CFR); 4202 } 4203 return 0; 4204 } 4205 4206 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4207 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4208 /// At the end of instruction selection, they will be inserted to the entry BB. 4209 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4210 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4211 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4212 const Argument *Arg = dyn_cast<Argument>(V); 4213 if (!Arg) 4214 return false; 4215 4216 MachineFunction &MF = DAG.getMachineFunction(); 4217 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4218 4219 // Ignore inlined function arguments here. 4220 // 4221 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4222 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4223 return false; 4224 4225 Optional<MachineOperand> Op; 4226 // Some arguments' frame index is recorded during argument lowering. 4227 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4228 Op = MachineOperand::CreateFI(FI); 4229 4230 if (!Op && N.getNode()) { 4231 unsigned Reg; 4232 if (N.getOpcode() == ISD::CopyFromReg) 4233 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4234 else 4235 Reg = getTruncatedArgReg(N); 4236 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4237 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4238 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4239 if (PR) 4240 Reg = PR; 4241 } 4242 if (Reg) 4243 Op = MachineOperand::CreateReg(Reg, false); 4244 } 4245 4246 if (!Op) { 4247 // Check if ValueMap has reg number. 4248 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4249 if (VMI != FuncInfo.ValueMap.end()) 4250 Op = MachineOperand::CreateReg(VMI->second, false); 4251 } 4252 4253 if (!Op && N.getNode()) 4254 // Check if frame index is available. 4255 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4256 if (FrameIndexSDNode *FINode = 4257 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4258 Op = MachineOperand::CreateFI(FINode->getIndex()); 4259 4260 if (!Op) 4261 return false; 4262 4263 assert(Variable->isValidLocationForIntrinsic(DL) && 4264 "Expected inlined-at fields to agree"); 4265 if (Op->isReg()) 4266 FuncInfo.ArgDbgValues.push_back( 4267 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4268 Op->getReg(), Offset, Variable, Expr)); 4269 else 4270 FuncInfo.ArgDbgValues.push_back( 4271 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4272 .addOperand(*Op) 4273 .addImm(Offset) 4274 .addMetadata(Variable) 4275 .addMetadata(Expr)); 4276 4277 return true; 4278 } 4279 4280 // VisualStudio defines setjmp as _setjmp 4281 #if defined(_MSC_VER) && defined(setjmp) && \ 4282 !defined(setjmp_undefined_for_msvc) 4283 # pragma push_macro("setjmp") 4284 # undef setjmp 4285 # define setjmp_undefined_for_msvc 4286 #endif 4287 4288 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4289 /// we want to emit this as a call to a named external function, return the name 4290 /// otherwise lower it and return null. 4291 const char * 4292 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4293 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4294 SDLoc sdl = getCurSDLoc(); 4295 DebugLoc dl = getCurDebugLoc(); 4296 SDValue Res; 4297 4298 switch (Intrinsic) { 4299 default: 4300 // By default, turn this into a target intrinsic node. 4301 visitTargetIntrinsic(I, Intrinsic); 4302 return nullptr; 4303 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4304 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4305 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4306 case Intrinsic::returnaddress: 4307 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4308 TLI.getPointerTy(DAG.getDataLayout()), 4309 getValue(I.getArgOperand(0)))); 4310 return nullptr; 4311 case Intrinsic::frameaddress: 4312 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4313 TLI.getPointerTy(DAG.getDataLayout()), 4314 getValue(I.getArgOperand(0)))); 4315 return nullptr; 4316 case Intrinsic::read_register: { 4317 Value *Reg = I.getArgOperand(0); 4318 SDValue Chain = getRoot(); 4319 SDValue RegName = 4320 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4321 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4322 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4323 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4324 setValue(&I, Res); 4325 DAG.setRoot(Res.getValue(1)); 4326 return nullptr; 4327 } 4328 case Intrinsic::write_register: { 4329 Value *Reg = I.getArgOperand(0); 4330 Value *RegValue = I.getArgOperand(1); 4331 SDValue Chain = getRoot(); 4332 SDValue RegName = 4333 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4334 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4335 RegName, getValue(RegValue))); 4336 return nullptr; 4337 } 4338 case Intrinsic::setjmp: 4339 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4340 case Intrinsic::longjmp: 4341 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4342 case Intrinsic::memcpy: { 4343 // FIXME: this definition of "user defined address space" is x86-specific 4344 // Assert for address < 256 since we support only user defined address 4345 // spaces. 4346 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4347 < 256 && 4348 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4349 < 256 && 4350 "Unknown address space"); 4351 SDValue Op1 = getValue(I.getArgOperand(0)); 4352 SDValue Op2 = getValue(I.getArgOperand(1)); 4353 SDValue Op3 = getValue(I.getArgOperand(2)); 4354 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4355 if (!Align) 4356 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4357 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4358 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4359 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4360 false, isTC, 4361 MachinePointerInfo(I.getArgOperand(0)), 4362 MachinePointerInfo(I.getArgOperand(1))); 4363 updateDAGForMaybeTailCall(MC); 4364 return nullptr; 4365 } 4366 case Intrinsic::memset: { 4367 // FIXME: this definition of "user defined address space" is x86-specific 4368 // Assert for address < 256 since we support only user defined address 4369 // spaces. 4370 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4371 < 256 && 4372 "Unknown address space"); 4373 SDValue Op1 = getValue(I.getArgOperand(0)); 4374 SDValue Op2 = getValue(I.getArgOperand(1)); 4375 SDValue Op3 = getValue(I.getArgOperand(2)); 4376 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4377 if (!Align) 4378 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4379 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4380 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4381 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4382 isTC, MachinePointerInfo(I.getArgOperand(0))); 4383 updateDAGForMaybeTailCall(MS); 4384 return nullptr; 4385 } 4386 case Intrinsic::memmove: { 4387 // FIXME: this definition of "user defined address space" is x86-specific 4388 // Assert for address < 256 since we support only user defined address 4389 // spaces. 4390 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4391 < 256 && 4392 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4393 < 256 && 4394 "Unknown address space"); 4395 SDValue Op1 = getValue(I.getArgOperand(0)); 4396 SDValue Op2 = getValue(I.getArgOperand(1)); 4397 SDValue Op3 = getValue(I.getArgOperand(2)); 4398 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4399 if (!Align) 4400 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4401 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4402 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4403 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4404 isTC, MachinePointerInfo(I.getArgOperand(0)), 4405 MachinePointerInfo(I.getArgOperand(1))); 4406 updateDAGForMaybeTailCall(MM); 4407 return nullptr; 4408 } 4409 case Intrinsic::dbg_declare: { 4410 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4411 DILocalVariable *Variable = DI.getVariable(); 4412 DIExpression *Expression = DI.getExpression(); 4413 const Value *Address = DI.getAddress(); 4414 assert(Variable && "Missing variable"); 4415 if (!Address) { 4416 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4417 return nullptr; 4418 } 4419 4420 // Check if address has undef value. 4421 if (isa<UndefValue>(Address) || 4422 (Address->use_empty() && !isa<Argument>(Address))) { 4423 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4424 return nullptr; 4425 } 4426 4427 SDValue &N = NodeMap[Address]; 4428 if (!N.getNode() && isa<Argument>(Address)) 4429 // Check unused arguments map. 4430 N = UnusedArgNodeMap[Address]; 4431 SDDbgValue *SDV; 4432 if (N.getNode()) { 4433 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4434 Address = BCI->getOperand(0); 4435 // Parameters are handled specially. 4436 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4437 4438 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4439 4440 if (isParameter && !AI) { 4441 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4442 if (FINode) 4443 // Byval parameter. We have a frame index at this point. 4444 SDV = DAG.getFrameIndexDbgValue( 4445 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4446 else { 4447 // Address is an argument, so try to emit its dbg value using 4448 // virtual register info from the FuncInfo.ValueMap. 4449 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4450 N); 4451 return nullptr; 4452 } 4453 } else { 4454 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4455 true, 0, dl, SDNodeOrder); 4456 } 4457 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4458 } else { 4459 // If Address is an argument then try to emit its dbg value using 4460 // virtual register info from the FuncInfo.ValueMap. 4461 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4462 N)) { 4463 // If variable is pinned by a alloca in dominating bb then 4464 // use StaticAllocaMap. 4465 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4466 if (AI->getParent() != DI.getParent()) { 4467 DenseMap<const AllocaInst*, int>::iterator SI = 4468 FuncInfo.StaticAllocaMap.find(AI); 4469 if (SI != FuncInfo.StaticAllocaMap.end()) { 4470 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4471 0, dl, SDNodeOrder); 4472 DAG.AddDbgValue(SDV, nullptr, false); 4473 return nullptr; 4474 } 4475 } 4476 } 4477 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4478 } 4479 } 4480 return nullptr; 4481 } 4482 case Intrinsic::dbg_value: { 4483 const DbgValueInst &DI = cast<DbgValueInst>(I); 4484 assert(DI.getVariable() && "Missing variable"); 4485 4486 DILocalVariable *Variable = DI.getVariable(); 4487 DIExpression *Expression = DI.getExpression(); 4488 uint64_t Offset = DI.getOffset(); 4489 const Value *V = DI.getValue(); 4490 if (!V) 4491 return nullptr; 4492 4493 SDDbgValue *SDV; 4494 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4495 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4496 SDNodeOrder); 4497 DAG.AddDbgValue(SDV, nullptr, false); 4498 } else { 4499 // Do not use getValue() in here; we don't want to generate code at 4500 // this point if it hasn't been done yet. 4501 SDValue N = NodeMap[V]; 4502 if (!N.getNode() && isa<Argument>(V)) 4503 // Check unused arguments map. 4504 N = UnusedArgNodeMap[V]; 4505 if (N.getNode()) { 4506 // A dbg.value for an alloca is always indirect. 4507 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4508 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4509 IsIndirect, N)) { 4510 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4511 IsIndirect, Offset, dl, SDNodeOrder); 4512 DAG.AddDbgValue(SDV, N.getNode(), false); 4513 } 4514 } else if (!V->use_empty() ) { 4515 // Do not call getValue(V) yet, as we don't want to generate code. 4516 // Remember it for later. 4517 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4518 DanglingDebugInfoMap[V] = DDI; 4519 } else { 4520 // We may expand this to cover more cases. One case where we have no 4521 // data available is an unreferenced parameter. 4522 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4523 } 4524 } 4525 4526 // Build a debug info table entry. 4527 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4528 V = BCI->getOperand(0); 4529 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4530 // Don't handle byval struct arguments or VLAs, for example. 4531 if (!AI) { 4532 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4533 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4534 return nullptr; 4535 } 4536 DenseMap<const AllocaInst*, int>::iterator SI = 4537 FuncInfo.StaticAllocaMap.find(AI); 4538 if (SI == FuncInfo.StaticAllocaMap.end()) 4539 return nullptr; // VLAs. 4540 return nullptr; 4541 } 4542 4543 case Intrinsic::eh_typeid_for: { 4544 // Find the type id for the given typeinfo. 4545 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4546 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4547 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4548 setValue(&I, Res); 4549 return nullptr; 4550 } 4551 4552 case Intrinsic::eh_return_i32: 4553 case Intrinsic::eh_return_i64: 4554 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4555 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4556 MVT::Other, 4557 getControlRoot(), 4558 getValue(I.getArgOperand(0)), 4559 getValue(I.getArgOperand(1)))); 4560 return nullptr; 4561 case Intrinsic::eh_unwind_init: 4562 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4563 return nullptr; 4564 case Intrinsic::eh_dwarf_cfa: { 4565 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4566 TLI.getPointerTy(DAG.getDataLayout())); 4567 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4568 CfaArg.getValueType(), 4569 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4570 CfaArg.getValueType()), 4571 CfaArg); 4572 SDValue FA = DAG.getNode( 4573 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4574 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4575 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4576 FA, Offset)); 4577 return nullptr; 4578 } 4579 case Intrinsic::eh_sjlj_callsite: { 4580 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4581 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4582 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4583 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4584 4585 MMI.setCurrentCallSite(CI->getZExtValue()); 4586 return nullptr; 4587 } 4588 case Intrinsic::eh_sjlj_functioncontext: { 4589 // Get and store the index of the function context. 4590 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4591 AllocaInst *FnCtx = 4592 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4593 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4594 MFI->setFunctionContextIndex(FI); 4595 return nullptr; 4596 } 4597 case Intrinsic::eh_sjlj_setjmp: { 4598 SDValue Ops[2]; 4599 Ops[0] = getRoot(); 4600 Ops[1] = getValue(I.getArgOperand(0)); 4601 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4602 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4603 setValue(&I, Op.getValue(0)); 4604 DAG.setRoot(Op.getValue(1)); 4605 return nullptr; 4606 } 4607 case Intrinsic::eh_sjlj_longjmp: { 4608 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4609 getRoot(), getValue(I.getArgOperand(0)))); 4610 return nullptr; 4611 } 4612 case Intrinsic::eh_sjlj_setup_dispatch: { 4613 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4614 getRoot())); 4615 return nullptr; 4616 } 4617 4618 case Intrinsic::masked_gather: 4619 visitMaskedGather(I); 4620 return nullptr; 4621 case Intrinsic::masked_load: 4622 visitMaskedLoad(I); 4623 return nullptr; 4624 case Intrinsic::masked_scatter: 4625 visitMaskedScatter(I); 4626 return nullptr; 4627 case Intrinsic::masked_store: 4628 visitMaskedStore(I); 4629 return nullptr; 4630 case Intrinsic::x86_mmx_pslli_w: 4631 case Intrinsic::x86_mmx_pslli_d: 4632 case Intrinsic::x86_mmx_pslli_q: 4633 case Intrinsic::x86_mmx_psrli_w: 4634 case Intrinsic::x86_mmx_psrli_d: 4635 case Intrinsic::x86_mmx_psrli_q: 4636 case Intrinsic::x86_mmx_psrai_w: 4637 case Intrinsic::x86_mmx_psrai_d: { 4638 SDValue ShAmt = getValue(I.getArgOperand(1)); 4639 if (isa<ConstantSDNode>(ShAmt)) { 4640 visitTargetIntrinsic(I, Intrinsic); 4641 return nullptr; 4642 } 4643 unsigned NewIntrinsic = 0; 4644 EVT ShAmtVT = MVT::v2i32; 4645 switch (Intrinsic) { 4646 case Intrinsic::x86_mmx_pslli_w: 4647 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4648 break; 4649 case Intrinsic::x86_mmx_pslli_d: 4650 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4651 break; 4652 case Intrinsic::x86_mmx_pslli_q: 4653 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4654 break; 4655 case Intrinsic::x86_mmx_psrli_w: 4656 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4657 break; 4658 case Intrinsic::x86_mmx_psrli_d: 4659 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4660 break; 4661 case Intrinsic::x86_mmx_psrli_q: 4662 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4663 break; 4664 case Intrinsic::x86_mmx_psrai_w: 4665 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4666 break; 4667 case Intrinsic::x86_mmx_psrai_d: 4668 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4669 break; 4670 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4671 } 4672 4673 // The vector shift intrinsics with scalars uses 32b shift amounts but 4674 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4675 // to be zero. 4676 // We must do this early because v2i32 is not a legal type. 4677 SDValue ShOps[2]; 4678 ShOps[0] = ShAmt; 4679 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4680 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4681 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4682 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4683 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4684 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4685 getValue(I.getArgOperand(0)), ShAmt); 4686 setValue(&I, Res); 4687 return nullptr; 4688 } 4689 case Intrinsic::convertff: 4690 case Intrinsic::convertfsi: 4691 case Intrinsic::convertfui: 4692 case Intrinsic::convertsif: 4693 case Intrinsic::convertuif: 4694 case Intrinsic::convertss: 4695 case Intrinsic::convertsu: 4696 case Intrinsic::convertus: 4697 case Intrinsic::convertuu: { 4698 ISD::CvtCode Code = ISD::CVT_INVALID; 4699 switch (Intrinsic) { 4700 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4701 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4702 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4703 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4704 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4705 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4706 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4707 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4708 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4709 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4710 } 4711 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4712 const Value *Op1 = I.getArgOperand(0); 4713 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4714 DAG.getValueType(DestVT), 4715 DAG.getValueType(getValue(Op1).getValueType()), 4716 getValue(I.getArgOperand(1)), 4717 getValue(I.getArgOperand(2)), 4718 Code); 4719 setValue(&I, Res); 4720 return nullptr; 4721 } 4722 case Intrinsic::powi: 4723 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4724 getValue(I.getArgOperand(1)), DAG)); 4725 return nullptr; 4726 case Intrinsic::log: 4727 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4728 return nullptr; 4729 case Intrinsic::log2: 4730 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4731 return nullptr; 4732 case Intrinsic::log10: 4733 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4734 return nullptr; 4735 case Intrinsic::exp: 4736 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4737 return nullptr; 4738 case Intrinsic::exp2: 4739 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4740 return nullptr; 4741 case Intrinsic::pow: 4742 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4743 getValue(I.getArgOperand(1)), DAG, TLI)); 4744 return nullptr; 4745 case Intrinsic::sqrt: 4746 case Intrinsic::fabs: 4747 case Intrinsic::sin: 4748 case Intrinsic::cos: 4749 case Intrinsic::floor: 4750 case Intrinsic::ceil: 4751 case Intrinsic::trunc: 4752 case Intrinsic::rint: 4753 case Intrinsic::nearbyint: 4754 case Intrinsic::round: { 4755 unsigned Opcode; 4756 switch (Intrinsic) { 4757 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4758 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4759 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4760 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4761 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4762 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4763 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4764 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4765 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4766 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4767 case Intrinsic::round: Opcode = ISD::FROUND; break; 4768 } 4769 4770 setValue(&I, DAG.getNode(Opcode, sdl, 4771 getValue(I.getArgOperand(0)).getValueType(), 4772 getValue(I.getArgOperand(0)))); 4773 return nullptr; 4774 } 4775 case Intrinsic::minnum: 4776 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4777 getValue(I.getArgOperand(0)).getValueType(), 4778 getValue(I.getArgOperand(0)), 4779 getValue(I.getArgOperand(1)))); 4780 return nullptr; 4781 case Intrinsic::maxnum: 4782 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4783 getValue(I.getArgOperand(0)).getValueType(), 4784 getValue(I.getArgOperand(0)), 4785 getValue(I.getArgOperand(1)))); 4786 return nullptr; 4787 case Intrinsic::copysign: 4788 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4789 getValue(I.getArgOperand(0)).getValueType(), 4790 getValue(I.getArgOperand(0)), 4791 getValue(I.getArgOperand(1)))); 4792 return nullptr; 4793 case Intrinsic::fma: 4794 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4795 getValue(I.getArgOperand(0)).getValueType(), 4796 getValue(I.getArgOperand(0)), 4797 getValue(I.getArgOperand(1)), 4798 getValue(I.getArgOperand(2)))); 4799 return nullptr; 4800 case Intrinsic::fmuladd: { 4801 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4802 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4803 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4804 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4805 getValue(I.getArgOperand(0)).getValueType(), 4806 getValue(I.getArgOperand(0)), 4807 getValue(I.getArgOperand(1)), 4808 getValue(I.getArgOperand(2)))); 4809 } else { 4810 // TODO: Intrinsic calls should have fast-math-flags. 4811 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4812 getValue(I.getArgOperand(0)).getValueType(), 4813 getValue(I.getArgOperand(0)), 4814 getValue(I.getArgOperand(1))); 4815 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4816 getValue(I.getArgOperand(0)).getValueType(), 4817 Mul, 4818 getValue(I.getArgOperand(2))); 4819 setValue(&I, Add); 4820 } 4821 return nullptr; 4822 } 4823 case Intrinsic::convert_to_fp16: 4824 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4825 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4826 getValue(I.getArgOperand(0)), 4827 DAG.getTargetConstant(0, sdl, 4828 MVT::i32)))); 4829 return nullptr; 4830 case Intrinsic::convert_from_fp16: 4831 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4832 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4833 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4834 getValue(I.getArgOperand(0))))); 4835 return nullptr; 4836 case Intrinsic::pcmarker: { 4837 SDValue Tmp = getValue(I.getArgOperand(0)); 4838 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4839 return nullptr; 4840 } 4841 case Intrinsic::readcyclecounter: { 4842 SDValue Op = getRoot(); 4843 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4844 DAG.getVTList(MVT::i64, MVT::Other), Op); 4845 setValue(&I, Res); 4846 DAG.setRoot(Res.getValue(1)); 4847 return nullptr; 4848 } 4849 case Intrinsic::bswap: 4850 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4851 getValue(I.getArgOperand(0)).getValueType(), 4852 getValue(I.getArgOperand(0)))); 4853 return nullptr; 4854 case Intrinsic::uabsdiff: 4855 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4856 getValue(I.getArgOperand(0)).getValueType(), 4857 getValue(I.getArgOperand(0)), 4858 getValue(I.getArgOperand(1)))); 4859 return nullptr; 4860 case Intrinsic::sabsdiff: 4861 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4862 getValue(I.getArgOperand(0)).getValueType(), 4863 getValue(I.getArgOperand(0)), 4864 getValue(I.getArgOperand(1)))); 4865 return nullptr; 4866 case Intrinsic::cttz: { 4867 SDValue Arg = getValue(I.getArgOperand(0)); 4868 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4869 EVT Ty = Arg.getValueType(); 4870 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4871 sdl, Ty, Arg)); 4872 return nullptr; 4873 } 4874 case Intrinsic::ctlz: { 4875 SDValue Arg = getValue(I.getArgOperand(0)); 4876 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4877 EVT Ty = Arg.getValueType(); 4878 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4879 sdl, Ty, Arg)); 4880 return nullptr; 4881 } 4882 case Intrinsic::ctpop: { 4883 SDValue Arg = getValue(I.getArgOperand(0)); 4884 EVT Ty = Arg.getValueType(); 4885 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4886 return nullptr; 4887 } 4888 case Intrinsic::stacksave: { 4889 SDValue Op = getRoot(); 4890 Res = DAG.getNode( 4891 ISD::STACKSAVE, sdl, 4892 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4893 setValue(&I, Res); 4894 DAG.setRoot(Res.getValue(1)); 4895 return nullptr; 4896 } 4897 case Intrinsic::stackrestore: { 4898 Res = getValue(I.getArgOperand(0)); 4899 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4900 return nullptr; 4901 } 4902 case Intrinsic::stackprotector: { 4903 // Emit code into the DAG to store the stack guard onto the stack. 4904 MachineFunction &MF = DAG.getMachineFunction(); 4905 MachineFrameInfo *MFI = MF.getFrameInfo(); 4906 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4907 SDValue Src, Chain = getRoot(); 4908 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4909 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4910 4911 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4912 // global variable __stack_chk_guard. 4913 if (!GV) 4914 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4915 if (BC->getOpcode() == Instruction::BitCast) 4916 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4917 4918 if (GV && TLI.useLoadStackGuardNode()) { 4919 // Emit a LOAD_STACK_GUARD node. 4920 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4921 sdl, PtrTy, Chain); 4922 MachinePointerInfo MPInfo(GV); 4923 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4924 unsigned Flags = MachineMemOperand::MOLoad | 4925 MachineMemOperand::MOInvariant; 4926 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4927 PtrTy.getSizeInBits() / 8, 4928 DAG.getEVTAlignment(PtrTy)); 4929 Node->setMemRefs(MemRefs, MemRefs + 1); 4930 4931 // Copy the guard value to a virtual register so that it can be 4932 // retrieved in the epilogue. 4933 Src = SDValue(Node, 0); 4934 const TargetRegisterClass *RC = 4935 TLI.getRegClassFor(Src.getSimpleValueType()); 4936 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4937 4938 SPDescriptor.setGuardReg(Reg); 4939 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4940 } else { 4941 Src = getValue(I.getArgOperand(0)); // The guard's value. 4942 } 4943 4944 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4945 4946 int FI = FuncInfo.StaticAllocaMap[Slot]; 4947 MFI->setStackProtectorIndex(FI); 4948 4949 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4950 4951 // Store the stack protector onto the stack. 4952 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4953 DAG.getMachineFunction(), FI), 4954 true, false, 0); 4955 setValue(&I, Res); 4956 DAG.setRoot(Res); 4957 return nullptr; 4958 } 4959 case Intrinsic::objectsize: { 4960 // If we don't know by now, we're never going to know. 4961 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4962 4963 assert(CI && "Non-constant type in __builtin_object_size?"); 4964 4965 SDValue Arg = getValue(I.getCalledValue()); 4966 EVT Ty = Arg.getValueType(); 4967 4968 if (CI->isZero()) 4969 Res = DAG.getConstant(-1ULL, sdl, Ty); 4970 else 4971 Res = DAG.getConstant(0, sdl, Ty); 4972 4973 setValue(&I, Res); 4974 return nullptr; 4975 } 4976 case Intrinsic::annotation: 4977 case Intrinsic::ptr_annotation: 4978 // Drop the intrinsic, but forward the value 4979 setValue(&I, getValue(I.getOperand(0))); 4980 return nullptr; 4981 case Intrinsic::assume: 4982 case Intrinsic::var_annotation: 4983 // Discard annotate attributes and assumptions 4984 return nullptr; 4985 4986 case Intrinsic::init_trampoline: { 4987 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4988 4989 SDValue Ops[6]; 4990 Ops[0] = getRoot(); 4991 Ops[1] = getValue(I.getArgOperand(0)); 4992 Ops[2] = getValue(I.getArgOperand(1)); 4993 Ops[3] = getValue(I.getArgOperand(2)); 4994 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4995 Ops[5] = DAG.getSrcValue(F); 4996 4997 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4998 4999 DAG.setRoot(Res); 5000 return nullptr; 5001 } 5002 case Intrinsic::adjust_trampoline: { 5003 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5004 TLI.getPointerTy(DAG.getDataLayout()), 5005 getValue(I.getArgOperand(0)))); 5006 return nullptr; 5007 } 5008 case Intrinsic::gcroot: 5009 if (GFI) { 5010 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5011 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5012 5013 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5014 GFI->addStackRoot(FI->getIndex(), TypeMap); 5015 } 5016 return nullptr; 5017 case Intrinsic::gcread: 5018 case Intrinsic::gcwrite: 5019 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5020 case Intrinsic::flt_rounds: 5021 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5022 return nullptr; 5023 5024 case Intrinsic::expect: { 5025 // Just replace __builtin_expect(exp, c) with EXP. 5026 setValue(&I, getValue(I.getArgOperand(0))); 5027 return nullptr; 5028 } 5029 5030 case Intrinsic::debugtrap: 5031 case Intrinsic::trap: { 5032 StringRef TrapFuncName = 5033 I.getAttributes() 5034 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5035 .getValueAsString(); 5036 if (TrapFuncName.empty()) { 5037 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5038 ISD::TRAP : ISD::DEBUGTRAP; 5039 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5040 return nullptr; 5041 } 5042 TargetLowering::ArgListTy Args; 5043 5044 TargetLowering::CallLoweringInfo CLI(DAG); 5045 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5046 CallingConv::C, I.getType(), 5047 DAG.getExternalSymbol(TrapFuncName.data(), 5048 TLI.getPointerTy(DAG.getDataLayout())), 5049 std::move(Args), 0); 5050 5051 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5052 DAG.setRoot(Result.second); 5053 return nullptr; 5054 } 5055 5056 case Intrinsic::uadd_with_overflow: 5057 case Intrinsic::sadd_with_overflow: 5058 case Intrinsic::usub_with_overflow: 5059 case Intrinsic::ssub_with_overflow: 5060 case Intrinsic::umul_with_overflow: 5061 case Intrinsic::smul_with_overflow: { 5062 ISD::NodeType Op; 5063 switch (Intrinsic) { 5064 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5065 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5066 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5067 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5068 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5069 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5070 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5071 } 5072 SDValue Op1 = getValue(I.getArgOperand(0)); 5073 SDValue Op2 = getValue(I.getArgOperand(1)); 5074 5075 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5076 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5077 return nullptr; 5078 } 5079 case Intrinsic::prefetch: { 5080 SDValue Ops[5]; 5081 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5082 Ops[0] = getRoot(); 5083 Ops[1] = getValue(I.getArgOperand(0)); 5084 Ops[2] = getValue(I.getArgOperand(1)); 5085 Ops[3] = getValue(I.getArgOperand(2)); 5086 Ops[4] = getValue(I.getArgOperand(3)); 5087 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5088 DAG.getVTList(MVT::Other), Ops, 5089 EVT::getIntegerVT(*Context, 8), 5090 MachinePointerInfo(I.getArgOperand(0)), 5091 0, /* align */ 5092 false, /* volatile */ 5093 rw==0, /* read */ 5094 rw==1)); /* write */ 5095 return nullptr; 5096 } 5097 case Intrinsic::lifetime_start: 5098 case Intrinsic::lifetime_end: { 5099 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5100 // Stack coloring is not enabled in O0, discard region information. 5101 if (TM.getOptLevel() == CodeGenOpt::None) 5102 return nullptr; 5103 5104 SmallVector<Value *, 4> Allocas; 5105 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5106 5107 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5108 E = Allocas.end(); Object != E; ++Object) { 5109 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5110 5111 // Could not find an Alloca. 5112 if (!LifetimeObject) 5113 continue; 5114 5115 // First check that the Alloca is static, otherwise it won't have a 5116 // valid frame index. 5117 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5118 if (SI == FuncInfo.StaticAllocaMap.end()) 5119 return nullptr; 5120 5121 int FI = SI->second; 5122 5123 SDValue Ops[2]; 5124 Ops[0] = getRoot(); 5125 Ops[1] = 5126 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5127 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5128 5129 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5130 DAG.setRoot(Res); 5131 } 5132 return nullptr; 5133 } 5134 case Intrinsic::invariant_start: 5135 // Discard region information. 5136 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5137 return nullptr; 5138 case Intrinsic::invariant_end: 5139 // Discard region information. 5140 return nullptr; 5141 case Intrinsic::stackprotectorcheck: { 5142 // Do not actually emit anything for this basic block. Instead we initialize 5143 // the stack protector descriptor and export the guard variable so we can 5144 // access it in FinishBasicBlock. 5145 const BasicBlock *BB = I.getParent(); 5146 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5147 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5148 5149 // Flush our exports since we are going to process a terminator. 5150 (void)getControlRoot(); 5151 return nullptr; 5152 } 5153 case Intrinsic::clear_cache: 5154 return TLI.getClearCacheBuiltinName(); 5155 case Intrinsic::eh_actions: 5156 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5157 return nullptr; 5158 case Intrinsic::donothing: 5159 // ignore 5160 return nullptr; 5161 case Intrinsic::experimental_stackmap: { 5162 visitStackmap(I); 5163 return nullptr; 5164 } 5165 case Intrinsic::experimental_patchpoint_void: 5166 case Intrinsic::experimental_patchpoint_i64: { 5167 visitPatchpoint(&I); 5168 return nullptr; 5169 } 5170 case Intrinsic::experimental_gc_statepoint: { 5171 visitStatepoint(I); 5172 return nullptr; 5173 } 5174 case Intrinsic::experimental_gc_result_int: 5175 case Intrinsic::experimental_gc_result_float: 5176 case Intrinsic::experimental_gc_result_ptr: 5177 case Intrinsic::experimental_gc_result: { 5178 visitGCResult(I); 5179 return nullptr; 5180 } 5181 case Intrinsic::experimental_gc_relocate: { 5182 visitGCRelocate(I); 5183 return nullptr; 5184 } 5185 case Intrinsic::instrprof_increment: 5186 llvm_unreachable("instrprof failed to lower an increment"); 5187 5188 case Intrinsic::localescape: { 5189 MachineFunction &MF = DAG.getMachineFunction(); 5190 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5191 5192 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5193 // is the same on all targets. 5194 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5195 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5196 if (isa<ConstantPointerNull>(Arg)) 5197 continue; // Skip null pointers. They represent a hole in index space. 5198 AllocaInst *Slot = cast<AllocaInst>(Arg); 5199 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5200 "can only escape static allocas"); 5201 int FI = FuncInfo.StaticAllocaMap[Slot]; 5202 MCSymbol *FrameAllocSym = 5203 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5204 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5205 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5206 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5207 .addSym(FrameAllocSym) 5208 .addFrameIndex(FI); 5209 } 5210 5211 return nullptr; 5212 } 5213 5214 case Intrinsic::localrecover: { 5215 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5216 MachineFunction &MF = DAG.getMachineFunction(); 5217 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5218 5219 // Get the symbol that defines the frame offset. 5220 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5221 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5222 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5223 MCSymbol *FrameAllocSym = 5224 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5225 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5226 5227 // Create a MCSymbol for the label to avoid any target lowering 5228 // that would make this PC relative. 5229 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5230 SDValue OffsetVal = 5231 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5232 5233 // Add the offset to the FP. 5234 Value *FP = I.getArgOperand(1); 5235 SDValue FPVal = getValue(FP); 5236 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5237 setValue(&I, Add); 5238 5239 return nullptr; 5240 } 5241 case Intrinsic::eh_begincatch: 5242 case Intrinsic::eh_endcatch: 5243 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5244 case Intrinsic::eh_exceptioncode_old: { 5245 unsigned Reg = TLI.getExceptionPointerRegister(); 5246 assert(Reg && "cannot get exception code on this platform"); 5247 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5248 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5249 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5250 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5251 SDValue N = 5252 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5253 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5254 setValue(&I, N); 5255 return nullptr; 5256 } 5257 5258 case Intrinsic::eh_exceptionpointer: 5259 case Intrinsic::eh_exceptioncode: { 5260 // Get the exception pointer vreg, copy from it, and resize it to fit. 5261 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5262 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5263 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5264 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5265 SDValue N = 5266 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5267 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5268 setValue(&I, N); 5269 return nullptr; 5270 } 5271 } 5272 } 5273 5274 std::pair<SDValue, SDValue> 5275 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5276 const BasicBlock *EHPadBB) { 5277 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5278 MCSymbol *BeginLabel = nullptr; 5279 5280 if (EHPadBB) { 5281 // Insert a label before the invoke call to mark the try range. This can be 5282 // used to detect deletion of the invoke via the MachineModuleInfo. 5283 BeginLabel = MMI.getContext().createTempSymbol(); 5284 5285 // For SjLj, keep track of which landing pads go with which invokes 5286 // so as to maintain the ordering of pads in the LSDA. 5287 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5288 if (CallSiteIndex) { 5289 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5290 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5291 5292 // Now that the call site is handled, stop tracking it. 5293 MMI.setCurrentCallSite(0); 5294 } 5295 5296 // Both PendingLoads and PendingExports must be flushed here; 5297 // this call might not return. 5298 (void)getRoot(); 5299 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5300 5301 CLI.setChain(getRoot()); 5302 } 5303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5304 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5305 5306 assert((CLI.IsTailCall || Result.second.getNode()) && 5307 "Non-null chain expected with non-tail call!"); 5308 assert((Result.second.getNode() || !Result.first.getNode()) && 5309 "Null value expected with tail call!"); 5310 5311 if (!Result.second.getNode()) { 5312 // As a special case, a null chain means that a tail call has been emitted 5313 // and the DAG root is already updated. 5314 HasTailCall = true; 5315 5316 // Since there's no actual continuation from this block, nothing can be 5317 // relying on us setting vregs for them. 5318 PendingExports.clear(); 5319 } else { 5320 DAG.setRoot(Result.second); 5321 } 5322 5323 if (EHPadBB) { 5324 // Insert a label at the end of the invoke call to mark the try range. This 5325 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5326 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5327 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5328 5329 // Inform MachineModuleInfo of range. 5330 if (MMI.hasEHFunclets()) { 5331 WinEHFuncInfo &EHInfo = 5332 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5333 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5334 } else { 5335 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5336 } 5337 } 5338 5339 return Result; 5340 } 5341 5342 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5343 bool isTailCall, 5344 const BasicBlock *EHPadBB) { 5345 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5346 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5347 Type *RetTy = FTy->getReturnType(); 5348 5349 TargetLowering::ArgListTy Args; 5350 TargetLowering::ArgListEntry Entry; 5351 Args.reserve(CS.arg_size()); 5352 5353 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5354 i != e; ++i) { 5355 const Value *V = *i; 5356 5357 // Skip empty types 5358 if (V->getType()->isEmptyTy()) 5359 continue; 5360 5361 SDValue ArgNode = getValue(V); 5362 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5363 5364 // Skip the first return-type Attribute to get to params. 5365 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5366 Args.push_back(Entry); 5367 5368 // If we have an explicit sret argument that is an Instruction, (i.e., it 5369 // might point to function-local memory), we can't meaningfully tail-call. 5370 if (Entry.isSRet && isa<Instruction>(V)) 5371 isTailCall = false; 5372 } 5373 5374 // Check if target-independent constraints permit a tail call here. 5375 // Target-dependent constraints are checked within TLI->LowerCallTo. 5376 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5377 isTailCall = false; 5378 5379 TargetLowering::CallLoweringInfo CLI(DAG); 5380 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5381 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5382 .setTailCall(isTailCall); 5383 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5384 5385 if (Result.first.getNode()) 5386 setValue(CS.getInstruction(), Result.first); 5387 } 5388 5389 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5390 /// value is equal or not-equal to zero. 5391 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5392 for (const User *U : V->users()) { 5393 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5394 if (IC->isEquality()) 5395 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5396 if (C->isNullValue()) 5397 continue; 5398 // Unknown instruction. 5399 return false; 5400 } 5401 return true; 5402 } 5403 5404 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5405 Type *LoadTy, 5406 SelectionDAGBuilder &Builder) { 5407 5408 // Check to see if this load can be trivially constant folded, e.g. if the 5409 // input is from a string literal. 5410 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5411 // Cast pointer to the type we really want to load. 5412 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5413 PointerType::getUnqual(LoadTy)); 5414 5415 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5416 const_cast<Constant *>(LoadInput), *Builder.DL)) 5417 return Builder.getValue(LoadCst); 5418 } 5419 5420 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5421 // still constant memory, the input chain can be the entry node. 5422 SDValue Root; 5423 bool ConstantMemory = false; 5424 5425 // Do not serialize (non-volatile) loads of constant memory with anything. 5426 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5427 Root = Builder.DAG.getEntryNode(); 5428 ConstantMemory = true; 5429 } else { 5430 // Do not serialize non-volatile loads against each other. 5431 Root = Builder.DAG.getRoot(); 5432 } 5433 5434 SDValue Ptr = Builder.getValue(PtrVal); 5435 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5436 Ptr, MachinePointerInfo(PtrVal), 5437 false /*volatile*/, 5438 false /*nontemporal*/, 5439 false /*isinvariant*/, 1 /* align=1 */); 5440 5441 if (!ConstantMemory) 5442 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5443 return LoadVal; 5444 } 5445 5446 /// processIntegerCallValue - Record the value for an instruction that 5447 /// produces an integer result, converting the type where necessary. 5448 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5449 SDValue Value, 5450 bool IsSigned) { 5451 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5452 I.getType(), true); 5453 if (IsSigned) 5454 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5455 else 5456 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5457 setValue(&I, Value); 5458 } 5459 5460 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5461 /// If so, return true and lower it, otherwise return false and it will be 5462 /// lowered like a normal call. 5463 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5464 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5465 if (I.getNumArgOperands() != 3) 5466 return false; 5467 5468 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5469 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5470 !I.getArgOperand(2)->getType()->isIntegerTy() || 5471 !I.getType()->isIntegerTy()) 5472 return false; 5473 5474 const Value *Size = I.getArgOperand(2); 5475 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5476 if (CSize && CSize->getZExtValue() == 0) { 5477 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5478 I.getType(), true); 5479 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5480 return true; 5481 } 5482 5483 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5484 std::pair<SDValue, SDValue> Res = 5485 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5486 getValue(LHS), getValue(RHS), getValue(Size), 5487 MachinePointerInfo(LHS), 5488 MachinePointerInfo(RHS)); 5489 if (Res.first.getNode()) { 5490 processIntegerCallValue(I, Res.first, true); 5491 PendingLoads.push_back(Res.second); 5492 return true; 5493 } 5494 5495 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5496 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5497 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5498 bool ActuallyDoIt = true; 5499 MVT LoadVT; 5500 Type *LoadTy; 5501 switch (CSize->getZExtValue()) { 5502 default: 5503 LoadVT = MVT::Other; 5504 LoadTy = nullptr; 5505 ActuallyDoIt = false; 5506 break; 5507 case 2: 5508 LoadVT = MVT::i16; 5509 LoadTy = Type::getInt16Ty(CSize->getContext()); 5510 break; 5511 case 4: 5512 LoadVT = MVT::i32; 5513 LoadTy = Type::getInt32Ty(CSize->getContext()); 5514 break; 5515 case 8: 5516 LoadVT = MVT::i64; 5517 LoadTy = Type::getInt64Ty(CSize->getContext()); 5518 break; 5519 /* 5520 case 16: 5521 LoadVT = MVT::v4i32; 5522 LoadTy = Type::getInt32Ty(CSize->getContext()); 5523 LoadTy = VectorType::get(LoadTy, 4); 5524 break; 5525 */ 5526 } 5527 5528 // This turns into unaligned loads. We only do this if the target natively 5529 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5530 // we'll only produce a small number of byte loads. 5531 5532 // Require that we can find a legal MVT, and only do this if the target 5533 // supports unaligned loads of that type. Expanding into byte loads would 5534 // bloat the code. 5535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5536 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5537 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5538 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5539 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5540 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5541 // TODO: Check alignment of src and dest ptrs. 5542 if (!TLI.isTypeLegal(LoadVT) || 5543 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5544 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5545 ActuallyDoIt = false; 5546 } 5547 5548 if (ActuallyDoIt) { 5549 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5550 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5551 5552 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5553 ISD::SETNE); 5554 processIntegerCallValue(I, Res, false); 5555 return true; 5556 } 5557 } 5558 5559 5560 return false; 5561 } 5562 5563 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5564 /// form. If so, return true and lower it, otherwise return false and it 5565 /// will be lowered like a normal call. 5566 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5567 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5568 if (I.getNumArgOperands() != 3) 5569 return false; 5570 5571 const Value *Src = I.getArgOperand(0); 5572 const Value *Char = I.getArgOperand(1); 5573 const Value *Length = I.getArgOperand(2); 5574 if (!Src->getType()->isPointerTy() || 5575 !Char->getType()->isIntegerTy() || 5576 !Length->getType()->isIntegerTy() || 5577 !I.getType()->isPointerTy()) 5578 return false; 5579 5580 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5581 std::pair<SDValue, SDValue> Res = 5582 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5583 getValue(Src), getValue(Char), getValue(Length), 5584 MachinePointerInfo(Src)); 5585 if (Res.first.getNode()) { 5586 setValue(&I, Res.first); 5587 PendingLoads.push_back(Res.second); 5588 return true; 5589 } 5590 5591 return false; 5592 } 5593 5594 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5595 /// optimized form. If so, return true and lower it, otherwise return false 5596 /// and it will be lowered like a normal call. 5597 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5598 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5599 if (I.getNumArgOperands() != 2) 5600 return false; 5601 5602 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5603 if (!Arg0->getType()->isPointerTy() || 5604 !Arg1->getType()->isPointerTy() || 5605 !I.getType()->isPointerTy()) 5606 return false; 5607 5608 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5609 std::pair<SDValue, SDValue> Res = 5610 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5611 getValue(Arg0), getValue(Arg1), 5612 MachinePointerInfo(Arg0), 5613 MachinePointerInfo(Arg1), isStpcpy); 5614 if (Res.first.getNode()) { 5615 setValue(&I, Res.first); 5616 DAG.setRoot(Res.second); 5617 return true; 5618 } 5619 5620 return false; 5621 } 5622 5623 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5624 /// If so, return true and lower it, otherwise return false and it will be 5625 /// lowered like a normal call. 5626 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5627 // Verify that the prototype makes sense. int strcmp(void*,void*) 5628 if (I.getNumArgOperands() != 2) 5629 return false; 5630 5631 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5632 if (!Arg0->getType()->isPointerTy() || 5633 !Arg1->getType()->isPointerTy() || 5634 !I.getType()->isIntegerTy()) 5635 return false; 5636 5637 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5638 std::pair<SDValue, SDValue> Res = 5639 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5640 getValue(Arg0), getValue(Arg1), 5641 MachinePointerInfo(Arg0), 5642 MachinePointerInfo(Arg1)); 5643 if (Res.first.getNode()) { 5644 processIntegerCallValue(I, Res.first, true); 5645 PendingLoads.push_back(Res.second); 5646 return true; 5647 } 5648 5649 return false; 5650 } 5651 5652 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5653 /// form. If so, return true and lower it, otherwise return false and it 5654 /// will be lowered like a normal call. 5655 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5656 // Verify that the prototype makes sense. size_t strlen(char *) 5657 if (I.getNumArgOperands() != 1) 5658 return false; 5659 5660 const Value *Arg0 = I.getArgOperand(0); 5661 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5662 return false; 5663 5664 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5665 std::pair<SDValue, SDValue> Res = 5666 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5667 getValue(Arg0), MachinePointerInfo(Arg0)); 5668 if (Res.first.getNode()) { 5669 processIntegerCallValue(I, Res.first, false); 5670 PendingLoads.push_back(Res.second); 5671 return true; 5672 } 5673 5674 return false; 5675 } 5676 5677 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5678 /// form. If so, return true and lower it, otherwise return false and it 5679 /// will be lowered like a normal call. 5680 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5681 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5682 if (I.getNumArgOperands() != 2) 5683 return false; 5684 5685 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5686 if (!Arg0->getType()->isPointerTy() || 5687 !Arg1->getType()->isIntegerTy() || 5688 !I.getType()->isIntegerTy()) 5689 return false; 5690 5691 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5692 std::pair<SDValue, SDValue> Res = 5693 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5694 getValue(Arg0), getValue(Arg1), 5695 MachinePointerInfo(Arg0)); 5696 if (Res.first.getNode()) { 5697 processIntegerCallValue(I, Res.first, false); 5698 PendingLoads.push_back(Res.second); 5699 return true; 5700 } 5701 5702 return false; 5703 } 5704 5705 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5706 /// operation (as expected), translate it to an SDNode with the specified opcode 5707 /// and return true. 5708 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5709 unsigned Opcode) { 5710 // Sanity check that it really is a unary floating-point call. 5711 if (I.getNumArgOperands() != 1 || 5712 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5713 I.getType() != I.getArgOperand(0)->getType() || 5714 !I.onlyReadsMemory()) 5715 return false; 5716 5717 SDValue Tmp = getValue(I.getArgOperand(0)); 5718 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5719 return true; 5720 } 5721 5722 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5723 /// operation (as expected), translate it to an SDNode with the specified opcode 5724 /// and return true. 5725 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5726 unsigned Opcode) { 5727 // Sanity check that it really is a binary floating-point call. 5728 if (I.getNumArgOperands() != 2 || 5729 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5730 I.getType() != I.getArgOperand(0)->getType() || 5731 I.getType() != I.getArgOperand(1)->getType() || 5732 !I.onlyReadsMemory()) 5733 return false; 5734 5735 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5736 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5737 EVT VT = Tmp0.getValueType(); 5738 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5739 return true; 5740 } 5741 5742 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5743 // Handle inline assembly differently. 5744 if (isa<InlineAsm>(I.getCalledValue())) { 5745 visitInlineAsm(&I); 5746 return; 5747 } 5748 5749 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5750 ComputeUsesVAFloatArgument(I, &MMI); 5751 5752 const char *RenameFn = nullptr; 5753 if (Function *F = I.getCalledFunction()) { 5754 if (F->isDeclaration()) { 5755 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5756 if (unsigned IID = II->getIntrinsicID(F)) { 5757 RenameFn = visitIntrinsicCall(I, IID); 5758 if (!RenameFn) 5759 return; 5760 } 5761 } 5762 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5763 RenameFn = visitIntrinsicCall(I, IID); 5764 if (!RenameFn) 5765 return; 5766 } 5767 } 5768 5769 // Check for well-known libc/libm calls. If the function is internal, it 5770 // can't be a library call. 5771 LibFunc::Func Func; 5772 if (!F->hasLocalLinkage() && F->hasName() && 5773 LibInfo->getLibFunc(F->getName(), Func) && 5774 LibInfo->hasOptimizedCodeGen(Func)) { 5775 switch (Func) { 5776 default: break; 5777 case LibFunc::copysign: 5778 case LibFunc::copysignf: 5779 case LibFunc::copysignl: 5780 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5781 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5782 I.getType() == I.getArgOperand(0)->getType() && 5783 I.getType() == I.getArgOperand(1)->getType() && 5784 I.onlyReadsMemory()) { 5785 SDValue LHS = getValue(I.getArgOperand(0)); 5786 SDValue RHS = getValue(I.getArgOperand(1)); 5787 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5788 LHS.getValueType(), LHS, RHS)); 5789 return; 5790 } 5791 break; 5792 case LibFunc::fabs: 5793 case LibFunc::fabsf: 5794 case LibFunc::fabsl: 5795 if (visitUnaryFloatCall(I, ISD::FABS)) 5796 return; 5797 break; 5798 case LibFunc::fmin: 5799 case LibFunc::fminf: 5800 case LibFunc::fminl: 5801 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5802 return; 5803 break; 5804 case LibFunc::fmax: 5805 case LibFunc::fmaxf: 5806 case LibFunc::fmaxl: 5807 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5808 return; 5809 break; 5810 case LibFunc::sin: 5811 case LibFunc::sinf: 5812 case LibFunc::sinl: 5813 if (visitUnaryFloatCall(I, ISD::FSIN)) 5814 return; 5815 break; 5816 case LibFunc::cos: 5817 case LibFunc::cosf: 5818 case LibFunc::cosl: 5819 if (visitUnaryFloatCall(I, ISD::FCOS)) 5820 return; 5821 break; 5822 case LibFunc::sqrt: 5823 case LibFunc::sqrtf: 5824 case LibFunc::sqrtl: 5825 case LibFunc::sqrt_finite: 5826 case LibFunc::sqrtf_finite: 5827 case LibFunc::sqrtl_finite: 5828 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5829 return; 5830 break; 5831 case LibFunc::floor: 5832 case LibFunc::floorf: 5833 case LibFunc::floorl: 5834 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5835 return; 5836 break; 5837 case LibFunc::nearbyint: 5838 case LibFunc::nearbyintf: 5839 case LibFunc::nearbyintl: 5840 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5841 return; 5842 break; 5843 case LibFunc::ceil: 5844 case LibFunc::ceilf: 5845 case LibFunc::ceill: 5846 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5847 return; 5848 break; 5849 case LibFunc::rint: 5850 case LibFunc::rintf: 5851 case LibFunc::rintl: 5852 if (visitUnaryFloatCall(I, ISD::FRINT)) 5853 return; 5854 break; 5855 case LibFunc::round: 5856 case LibFunc::roundf: 5857 case LibFunc::roundl: 5858 if (visitUnaryFloatCall(I, ISD::FROUND)) 5859 return; 5860 break; 5861 case LibFunc::trunc: 5862 case LibFunc::truncf: 5863 case LibFunc::truncl: 5864 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5865 return; 5866 break; 5867 case LibFunc::log2: 5868 case LibFunc::log2f: 5869 case LibFunc::log2l: 5870 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5871 return; 5872 break; 5873 case LibFunc::exp2: 5874 case LibFunc::exp2f: 5875 case LibFunc::exp2l: 5876 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5877 return; 5878 break; 5879 case LibFunc::memcmp: 5880 if (visitMemCmpCall(I)) 5881 return; 5882 break; 5883 case LibFunc::memchr: 5884 if (visitMemChrCall(I)) 5885 return; 5886 break; 5887 case LibFunc::strcpy: 5888 if (visitStrCpyCall(I, false)) 5889 return; 5890 break; 5891 case LibFunc::stpcpy: 5892 if (visitStrCpyCall(I, true)) 5893 return; 5894 break; 5895 case LibFunc::strcmp: 5896 if (visitStrCmpCall(I)) 5897 return; 5898 break; 5899 case LibFunc::strlen: 5900 if (visitStrLenCall(I)) 5901 return; 5902 break; 5903 case LibFunc::strnlen: 5904 if (visitStrNLenCall(I)) 5905 return; 5906 break; 5907 } 5908 } 5909 } 5910 5911 SDValue Callee; 5912 if (!RenameFn) 5913 Callee = getValue(I.getCalledValue()); 5914 else 5915 Callee = DAG.getExternalSymbol( 5916 RenameFn, 5917 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5918 5919 // Check if we can potentially perform a tail call. More detailed checking is 5920 // be done within LowerCallTo, after more information about the call is known. 5921 LowerCallTo(&I, Callee, I.isTailCall()); 5922 } 5923 5924 namespace { 5925 5926 /// AsmOperandInfo - This contains information for each constraint that we are 5927 /// lowering. 5928 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5929 public: 5930 /// CallOperand - If this is the result output operand or a clobber 5931 /// this is null, otherwise it is the incoming operand to the CallInst. 5932 /// This gets modified as the asm is processed. 5933 SDValue CallOperand; 5934 5935 /// AssignedRegs - If this is a register or register class operand, this 5936 /// contains the set of register corresponding to the operand. 5937 RegsForValue AssignedRegs; 5938 5939 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5940 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5941 } 5942 5943 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5944 /// corresponds to. If there is no Value* for this operand, it returns 5945 /// MVT::Other. 5946 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5947 const DataLayout &DL) const { 5948 if (!CallOperandVal) return MVT::Other; 5949 5950 if (isa<BasicBlock>(CallOperandVal)) 5951 return TLI.getPointerTy(DL); 5952 5953 llvm::Type *OpTy = CallOperandVal->getType(); 5954 5955 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5956 // If this is an indirect operand, the operand is a pointer to the 5957 // accessed type. 5958 if (isIndirect) { 5959 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5960 if (!PtrTy) 5961 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5962 OpTy = PtrTy->getElementType(); 5963 } 5964 5965 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5966 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5967 if (STy->getNumElements() == 1) 5968 OpTy = STy->getElementType(0); 5969 5970 // If OpTy is not a single value, it may be a struct/union that we 5971 // can tile with integers. 5972 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5973 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5974 switch (BitSize) { 5975 default: break; 5976 case 1: 5977 case 8: 5978 case 16: 5979 case 32: 5980 case 64: 5981 case 128: 5982 OpTy = IntegerType::get(Context, BitSize); 5983 break; 5984 } 5985 } 5986 5987 return TLI.getValueType(DL, OpTy, true); 5988 } 5989 }; 5990 5991 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5992 5993 } // end anonymous namespace 5994 5995 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5996 /// specified operand. We prefer to assign virtual registers, to allow the 5997 /// register allocator to handle the assignment process. However, if the asm 5998 /// uses features that we can't model on machineinstrs, we have SDISel do the 5999 /// allocation. This produces generally horrible, but correct, code. 6000 /// 6001 /// OpInfo describes the operand. 6002 /// 6003 static void GetRegistersForValue(SelectionDAG &DAG, 6004 const TargetLowering &TLI, 6005 SDLoc DL, 6006 SDISelAsmOperandInfo &OpInfo) { 6007 LLVMContext &Context = *DAG.getContext(); 6008 6009 MachineFunction &MF = DAG.getMachineFunction(); 6010 SmallVector<unsigned, 4> Regs; 6011 6012 // If this is a constraint for a single physreg, or a constraint for a 6013 // register class, find it. 6014 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6015 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6016 OpInfo.ConstraintCode, 6017 OpInfo.ConstraintVT); 6018 6019 unsigned NumRegs = 1; 6020 if (OpInfo.ConstraintVT != MVT::Other) { 6021 // If this is a FP input in an integer register (or visa versa) insert a bit 6022 // cast of the input value. More generally, handle any case where the input 6023 // value disagrees with the register class we plan to stick this in. 6024 if (OpInfo.Type == InlineAsm::isInput && 6025 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6026 // Try to convert to the first EVT that the reg class contains. If the 6027 // types are identical size, use a bitcast to convert (e.g. two differing 6028 // vector types). 6029 MVT RegVT = *PhysReg.second->vt_begin(); 6030 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6031 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6032 RegVT, OpInfo.CallOperand); 6033 OpInfo.ConstraintVT = RegVT; 6034 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6035 // If the input is a FP value and we want it in FP registers, do a 6036 // bitcast to the corresponding integer type. This turns an f64 value 6037 // into i64, which can be passed with two i32 values on a 32-bit 6038 // machine. 6039 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6040 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6041 RegVT, OpInfo.CallOperand); 6042 OpInfo.ConstraintVT = RegVT; 6043 } 6044 } 6045 6046 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6047 } 6048 6049 MVT RegVT; 6050 EVT ValueVT = OpInfo.ConstraintVT; 6051 6052 // If this is a constraint for a specific physical register, like {r17}, 6053 // assign it now. 6054 if (unsigned AssignedReg = PhysReg.first) { 6055 const TargetRegisterClass *RC = PhysReg.second; 6056 if (OpInfo.ConstraintVT == MVT::Other) 6057 ValueVT = *RC->vt_begin(); 6058 6059 // Get the actual register value type. This is important, because the user 6060 // may have asked for (e.g.) the AX register in i32 type. We need to 6061 // remember that AX is actually i16 to get the right extension. 6062 RegVT = *RC->vt_begin(); 6063 6064 // This is a explicit reference to a physical register. 6065 Regs.push_back(AssignedReg); 6066 6067 // If this is an expanded reference, add the rest of the regs to Regs. 6068 if (NumRegs != 1) { 6069 TargetRegisterClass::iterator I = RC->begin(); 6070 for (; *I != AssignedReg; ++I) 6071 assert(I != RC->end() && "Didn't find reg!"); 6072 6073 // Already added the first reg. 6074 --NumRegs; ++I; 6075 for (; NumRegs; --NumRegs, ++I) { 6076 assert(I != RC->end() && "Ran out of registers to allocate!"); 6077 Regs.push_back(*I); 6078 } 6079 } 6080 6081 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6082 return; 6083 } 6084 6085 // Otherwise, if this was a reference to an LLVM register class, create vregs 6086 // for this reference. 6087 if (const TargetRegisterClass *RC = PhysReg.second) { 6088 RegVT = *RC->vt_begin(); 6089 if (OpInfo.ConstraintVT == MVT::Other) 6090 ValueVT = RegVT; 6091 6092 // Create the appropriate number of virtual registers. 6093 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6094 for (; NumRegs; --NumRegs) 6095 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6096 6097 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6098 return; 6099 } 6100 6101 // Otherwise, we couldn't allocate enough registers for this. 6102 } 6103 6104 /// visitInlineAsm - Handle a call to an InlineAsm object. 6105 /// 6106 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6107 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6108 6109 /// ConstraintOperands - Information about all of the constraints. 6110 SDISelAsmOperandInfoVector ConstraintOperands; 6111 6112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6113 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6114 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6115 6116 bool hasMemory = false; 6117 6118 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6119 unsigned ResNo = 0; // ResNo - The result number of the next output. 6120 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6121 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6122 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6123 6124 MVT OpVT = MVT::Other; 6125 6126 // Compute the value type for each operand. 6127 switch (OpInfo.Type) { 6128 case InlineAsm::isOutput: 6129 // Indirect outputs just consume an argument. 6130 if (OpInfo.isIndirect) { 6131 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6132 break; 6133 } 6134 6135 // The return value of the call is this value. As such, there is no 6136 // corresponding argument. 6137 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6138 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6139 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6140 STy->getElementType(ResNo)); 6141 } else { 6142 assert(ResNo == 0 && "Asm only has one result!"); 6143 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6144 } 6145 ++ResNo; 6146 break; 6147 case InlineAsm::isInput: 6148 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6149 break; 6150 case InlineAsm::isClobber: 6151 // Nothing to do. 6152 break; 6153 } 6154 6155 // If this is an input or an indirect output, process the call argument. 6156 // BasicBlocks are labels, currently appearing only in asm's. 6157 if (OpInfo.CallOperandVal) { 6158 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6159 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6160 } else { 6161 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6162 } 6163 6164 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6165 DAG.getDataLayout()).getSimpleVT(); 6166 } 6167 6168 OpInfo.ConstraintVT = OpVT; 6169 6170 // Indirect operand accesses access memory. 6171 if (OpInfo.isIndirect) 6172 hasMemory = true; 6173 else { 6174 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6175 TargetLowering::ConstraintType 6176 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6177 if (CType == TargetLowering::C_Memory) { 6178 hasMemory = true; 6179 break; 6180 } 6181 } 6182 } 6183 } 6184 6185 SDValue Chain, Flag; 6186 6187 // We won't need to flush pending loads if this asm doesn't touch 6188 // memory and is nonvolatile. 6189 if (hasMemory || IA->hasSideEffects()) 6190 Chain = getRoot(); 6191 else 6192 Chain = DAG.getRoot(); 6193 6194 // Second pass over the constraints: compute which constraint option to use 6195 // and assign registers to constraints that want a specific physreg. 6196 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6197 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6198 6199 // If this is an output operand with a matching input operand, look up the 6200 // matching input. If their types mismatch, e.g. one is an integer, the 6201 // other is floating point, or their sizes are different, flag it as an 6202 // error. 6203 if (OpInfo.hasMatchingInput()) { 6204 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6205 6206 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6207 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6208 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6209 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6210 OpInfo.ConstraintVT); 6211 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6212 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6213 Input.ConstraintVT); 6214 if ((OpInfo.ConstraintVT.isInteger() != 6215 Input.ConstraintVT.isInteger()) || 6216 (MatchRC.second != InputRC.second)) { 6217 report_fatal_error("Unsupported asm: input constraint" 6218 " with a matching output constraint of" 6219 " incompatible type!"); 6220 } 6221 Input.ConstraintVT = OpInfo.ConstraintVT; 6222 } 6223 } 6224 6225 // Compute the constraint code and ConstraintType to use. 6226 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6227 6228 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6229 OpInfo.Type == InlineAsm::isClobber) 6230 continue; 6231 6232 // If this is a memory input, and if the operand is not indirect, do what we 6233 // need to to provide an address for the memory input. 6234 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6235 !OpInfo.isIndirect) { 6236 assert((OpInfo.isMultipleAlternative || 6237 (OpInfo.Type == InlineAsm::isInput)) && 6238 "Can only indirectify direct input operands!"); 6239 6240 // Memory operands really want the address of the value. If we don't have 6241 // an indirect input, put it in the constpool if we can, otherwise spill 6242 // it to a stack slot. 6243 // TODO: This isn't quite right. We need to handle these according to 6244 // the addressing mode that the constraint wants. Also, this may take 6245 // an additional register for the computation and we don't want that 6246 // either. 6247 6248 // If the operand is a float, integer, or vector constant, spill to a 6249 // constant pool entry to get its address. 6250 const Value *OpVal = OpInfo.CallOperandVal; 6251 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6252 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6253 OpInfo.CallOperand = DAG.getConstantPool( 6254 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6255 } else { 6256 // Otherwise, create a stack slot and emit a store to it before the 6257 // asm. 6258 Type *Ty = OpVal->getType(); 6259 auto &DL = DAG.getDataLayout(); 6260 uint64_t TySize = DL.getTypeAllocSize(Ty); 6261 unsigned Align = DL.getPrefTypeAlignment(Ty); 6262 MachineFunction &MF = DAG.getMachineFunction(); 6263 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6264 SDValue StackSlot = 6265 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6266 Chain = DAG.getStore( 6267 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6268 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6269 false, false, 0); 6270 OpInfo.CallOperand = StackSlot; 6271 } 6272 6273 // There is no longer a Value* corresponding to this operand. 6274 OpInfo.CallOperandVal = nullptr; 6275 6276 // It is now an indirect operand. 6277 OpInfo.isIndirect = true; 6278 } 6279 6280 // If this constraint is for a specific register, allocate it before 6281 // anything else. 6282 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6283 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6284 } 6285 6286 // Second pass - Loop over all of the operands, assigning virtual or physregs 6287 // to register class operands. 6288 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6289 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6290 6291 // C_Register operands have already been allocated, Other/Memory don't need 6292 // to be. 6293 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6294 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6295 } 6296 6297 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6298 std::vector<SDValue> AsmNodeOperands; 6299 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6300 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6301 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6302 6303 // If we have a !srcloc metadata node associated with it, we want to attach 6304 // this to the ultimately generated inline asm machineinstr. To do this, we 6305 // pass in the third operand as this (potentially null) inline asm MDNode. 6306 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6307 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6308 6309 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6310 // bits as operand 3. 6311 unsigned ExtraInfo = 0; 6312 if (IA->hasSideEffects()) 6313 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6314 if (IA->isAlignStack()) 6315 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6316 // Set the asm dialect. 6317 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6318 6319 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6320 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6321 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6322 6323 // Compute the constraint code and ConstraintType to use. 6324 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6325 6326 // Ideally, we would only check against memory constraints. However, the 6327 // meaning of an other constraint can be target-specific and we can't easily 6328 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6329 // for other constriants as well. 6330 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6331 OpInfo.ConstraintType == TargetLowering::C_Other) { 6332 if (OpInfo.Type == InlineAsm::isInput) 6333 ExtraInfo |= InlineAsm::Extra_MayLoad; 6334 else if (OpInfo.Type == InlineAsm::isOutput) 6335 ExtraInfo |= InlineAsm::Extra_MayStore; 6336 else if (OpInfo.Type == InlineAsm::isClobber) 6337 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6338 } 6339 } 6340 6341 AsmNodeOperands.push_back(DAG.getTargetConstant( 6342 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6343 6344 // Loop over all of the inputs, copying the operand values into the 6345 // appropriate registers and processing the output regs. 6346 RegsForValue RetValRegs; 6347 6348 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6349 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6350 6351 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6352 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6353 6354 switch (OpInfo.Type) { 6355 case InlineAsm::isOutput: { 6356 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6357 OpInfo.ConstraintType != TargetLowering::C_Register) { 6358 // Memory output, or 'other' output (e.g. 'X' constraint). 6359 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6360 6361 unsigned ConstraintID = 6362 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6363 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6364 "Failed to convert memory constraint code to constraint id."); 6365 6366 // Add information to the INLINEASM node to know about this output. 6367 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6368 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6369 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6370 MVT::i32)); 6371 AsmNodeOperands.push_back(OpInfo.CallOperand); 6372 break; 6373 } 6374 6375 // Otherwise, this is a register or register class output. 6376 6377 // Copy the output from the appropriate register. Find a register that 6378 // we can use. 6379 if (OpInfo.AssignedRegs.Regs.empty()) { 6380 LLVMContext &Ctx = *DAG.getContext(); 6381 Ctx.emitError(CS.getInstruction(), 6382 "couldn't allocate output register for constraint '" + 6383 Twine(OpInfo.ConstraintCode) + "'"); 6384 return; 6385 } 6386 6387 // If this is an indirect operand, store through the pointer after the 6388 // asm. 6389 if (OpInfo.isIndirect) { 6390 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6391 OpInfo.CallOperandVal)); 6392 } else { 6393 // This is the result value of the call. 6394 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6395 // Concatenate this output onto the outputs list. 6396 RetValRegs.append(OpInfo.AssignedRegs); 6397 } 6398 6399 // Add information to the INLINEASM node to know that this register is 6400 // set. 6401 OpInfo.AssignedRegs 6402 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6403 ? InlineAsm::Kind_RegDefEarlyClobber 6404 : InlineAsm::Kind_RegDef, 6405 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6406 break; 6407 } 6408 case InlineAsm::isInput: { 6409 SDValue InOperandVal = OpInfo.CallOperand; 6410 6411 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6412 // If this is required to match an output register we have already set, 6413 // just use its register. 6414 unsigned OperandNo = OpInfo.getMatchedOperand(); 6415 6416 // Scan until we find the definition we already emitted of this operand. 6417 // When we find it, create a RegsForValue operand. 6418 unsigned CurOp = InlineAsm::Op_FirstOperand; 6419 for (; OperandNo; --OperandNo) { 6420 // Advance to the next operand. 6421 unsigned OpFlag = 6422 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6423 assert((InlineAsm::isRegDefKind(OpFlag) || 6424 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6425 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6426 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6427 } 6428 6429 unsigned OpFlag = 6430 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6431 if (InlineAsm::isRegDefKind(OpFlag) || 6432 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6433 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6434 if (OpInfo.isIndirect) { 6435 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6436 LLVMContext &Ctx = *DAG.getContext(); 6437 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6438 " don't know how to handle tied " 6439 "indirect register inputs"); 6440 return; 6441 } 6442 6443 RegsForValue MatchedRegs; 6444 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6445 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6446 MatchedRegs.RegVTs.push_back(RegVT); 6447 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6448 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6449 i != e; ++i) { 6450 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6451 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6452 else { 6453 LLVMContext &Ctx = *DAG.getContext(); 6454 Ctx.emitError(CS.getInstruction(), 6455 "inline asm error: This value" 6456 " type register class is not natively supported!"); 6457 return; 6458 } 6459 } 6460 SDLoc dl = getCurSDLoc(); 6461 // Use the produced MatchedRegs object to 6462 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6463 Chain, &Flag, CS.getInstruction()); 6464 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6465 true, OpInfo.getMatchedOperand(), dl, 6466 DAG, AsmNodeOperands); 6467 break; 6468 } 6469 6470 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6471 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6472 "Unexpected number of operands"); 6473 // Add information to the INLINEASM node to know about this input. 6474 // See InlineAsm.h isUseOperandTiedToDef. 6475 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6476 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6477 OpInfo.getMatchedOperand()); 6478 AsmNodeOperands.push_back(DAG.getTargetConstant( 6479 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6480 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6481 break; 6482 } 6483 6484 // Treat indirect 'X' constraint as memory. 6485 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6486 OpInfo.isIndirect) 6487 OpInfo.ConstraintType = TargetLowering::C_Memory; 6488 6489 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6490 std::vector<SDValue> Ops; 6491 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6492 Ops, DAG); 6493 if (Ops.empty()) { 6494 LLVMContext &Ctx = *DAG.getContext(); 6495 Ctx.emitError(CS.getInstruction(), 6496 "invalid operand for inline asm constraint '" + 6497 Twine(OpInfo.ConstraintCode) + "'"); 6498 return; 6499 } 6500 6501 // Add information to the INLINEASM node to know about this input. 6502 unsigned ResOpType = 6503 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6504 AsmNodeOperands.push_back(DAG.getTargetConstant( 6505 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6506 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6507 break; 6508 } 6509 6510 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6511 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6512 assert(InOperandVal.getValueType() == 6513 TLI.getPointerTy(DAG.getDataLayout()) && 6514 "Memory operands expect pointer values"); 6515 6516 unsigned ConstraintID = 6517 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6518 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6519 "Failed to convert memory constraint code to constraint id."); 6520 6521 // Add information to the INLINEASM node to know about this input. 6522 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6523 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6524 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6525 getCurSDLoc(), 6526 MVT::i32)); 6527 AsmNodeOperands.push_back(InOperandVal); 6528 break; 6529 } 6530 6531 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6532 OpInfo.ConstraintType == TargetLowering::C_Register) && 6533 "Unknown constraint type!"); 6534 6535 // TODO: Support this. 6536 if (OpInfo.isIndirect) { 6537 LLVMContext &Ctx = *DAG.getContext(); 6538 Ctx.emitError(CS.getInstruction(), 6539 "Don't know how to handle indirect register inputs yet " 6540 "for constraint '" + 6541 Twine(OpInfo.ConstraintCode) + "'"); 6542 return; 6543 } 6544 6545 // Copy the input into the appropriate registers. 6546 if (OpInfo.AssignedRegs.Regs.empty()) { 6547 LLVMContext &Ctx = *DAG.getContext(); 6548 Ctx.emitError(CS.getInstruction(), 6549 "couldn't allocate input reg for constraint '" + 6550 Twine(OpInfo.ConstraintCode) + "'"); 6551 return; 6552 } 6553 6554 SDLoc dl = getCurSDLoc(); 6555 6556 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6557 Chain, &Flag, CS.getInstruction()); 6558 6559 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6560 dl, DAG, AsmNodeOperands); 6561 break; 6562 } 6563 case InlineAsm::isClobber: { 6564 // Add the clobbered value to the operand list, so that the register 6565 // allocator is aware that the physreg got clobbered. 6566 if (!OpInfo.AssignedRegs.Regs.empty()) 6567 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6568 false, 0, getCurSDLoc(), DAG, 6569 AsmNodeOperands); 6570 break; 6571 } 6572 } 6573 } 6574 6575 // Finish up input operands. Set the input chain and add the flag last. 6576 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6577 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6578 6579 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6580 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6581 Flag = Chain.getValue(1); 6582 6583 // If this asm returns a register value, copy the result from that register 6584 // and set it as the value of the call. 6585 if (!RetValRegs.Regs.empty()) { 6586 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6587 Chain, &Flag, CS.getInstruction()); 6588 6589 // FIXME: Why don't we do this for inline asms with MRVs? 6590 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6591 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6592 6593 // If any of the results of the inline asm is a vector, it may have the 6594 // wrong width/num elts. This can happen for register classes that can 6595 // contain multiple different value types. The preg or vreg allocated may 6596 // not have the same VT as was expected. Convert it to the right type 6597 // with bit_convert. 6598 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6599 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6600 ResultType, Val); 6601 6602 } else if (ResultType != Val.getValueType() && 6603 ResultType.isInteger() && Val.getValueType().isInteger()) { 6604 // If a result value was tied to an input value, the computed result may 6605 // have a wider width than the expected result. Extract the relevant 6606 // portion. 6607 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6608 } 6609 6610 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6611 } 6612 6613 setValue(CS.getInstruction(), Val); 6614 // Don't need to use this as a chain in this case. 6615 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6616 return; 6617 } 6618 6619 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6620 6621 // Process indirect outputs, first output all of the flagged copies out of 6622 // physregs. 6623 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6624 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6625 const Value *Ptr = IndirectStoresToEmit[i].second; 6626 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6627 Chain, &Flag, IA); 6628 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6629 } 6630 6631 // Emit the non-flagged stores from the physregs. 6632 SmallVector<SDValue, 8> OutChains; 6633 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6634 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6635 StoresToEmit[i].first, 6636 getValue(StoresToEmit[i].second), 6637 MachinePointerInfo(StoresToEmit[i].second), 6638 false, false, 0); 6639 OutChains.push_back(Val); 6640 } 6641 6642 if (!OutChains.empty()) 6643 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6644 6645 DAG.setRoot(Chain); 6646 } 6647 6648 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6649 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6650 MVT::Other, getRoot(), 6651 getValue(I.getArgOperand(0)), 6652 DAG.getSrcValue(I.getArgOperand(0)))); 6653 } 6654 6655 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6657 const DataLayout &DL = DAG.getDataLayout(); 6658 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6659 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6660 DAG.getSrcValue(I.getOperand(0)), 6661 DL.getABITypeAlignment(I.getType())); 6662 setValue(&I, V); 6663 DAG.setRoot(V.getValue(1)); 6664 } 6665 6666 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6667 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6668 MVT::Other, getRoot(), 6669 getValue(I.getArgOperand(0)), 6670 DAG.getSrcValue(I.getArgOperand(0)))); 6671 } 6672 6673 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6674 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6675 MVT::Other, getRoot(), 6676 getValue(I.getArgOperand(0)), 6677 getValue(I.getArgOperand(1)), 6678 DAG.getSrcValue(I.getArgOperand(0)), 6679 DAG.getSrcValue(I.getArgOperand(1)))); 6680 } 6681 6682 /// \brief Lower an argument list according to the target calling convention. 6683 /// 6684 /// \return A tuple of <return-value, token-chain> 6685 /// 6686 /// This is a helper for lowering intrinsics that follow a target calling 6687 /// convention or require stack pointer adjustment. Only a subset of the 6688 /// intrinsic's operands need to participate in the calling convention. 6689 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6690 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6691 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6692 TargetLowering::ArgListTy Args; 6693 Args.reserve(NumArgs); 6694 6695 // Populate the argument list. 6696 // Attributes for args start at offset 1, after the return attribute. 6697 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6698 ArgI != ArgE; ++ArgI) { 6699 const Value *V = CS->getOperand(ArgI); 6700 6701 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6702 6703 TargetLowering::ArgListEntry Entry; 6704 Entry.Node = getValue(V); 6705 Entry.Ty = V->getType(); 6706 Entry.setAttributes(&CS, AttrI); 6707 Args.push_back(Entry); 6708 } 6709 6710 TargetLowering::CallLoweringInfo CLI(DAG); 6711 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6712 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6713 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6714 6715 return lowerInvokable(CLI, EHPadBB); 6716 } 6717 6718 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6719 /// or patchpoint target node's operand list. 6720 /// 6721 /// Constants are converted to TargetConstants purely as an optimization to 6722 /// avoid constant materialization and register allocation. 6723 /// 6724 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6725 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6726 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6727 /// address materialization and register allocation, but may also be required 6728 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6729 /// alloca in the entry block, then the runtime may assume that the alloca's 6730 /// StackMap location can be read immediately after compilation and that the 6731 /// location is valid at any point during execution (this is similar to the 6732 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6733 /// only available in a register, then the runtime would need to trap when 6734 /// execution reaches the StackMap in order to read the alloca's location. 6735 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6736 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6737 SelectionDAGBuilder &Builder) { 6738 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6739 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6740 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6741 Ops.push_back( 6742 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6743 Ops.push_back( 6744 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6745 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6746 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6747 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6748 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6749 } else 6750 Ops.push_back(OpVal); 6751 } 6752 } 6753 6754 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6755 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6756 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6757 // [live variables...]) 6758 6759 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6760 6761 SDValue Chain, InFlag, Callee, NullPtr; 6762 SmallVector<SDValue, 32> Ops; 6763 6764 SDLoc DL = getCurSDLoc(); 6765 Callee = getValue(CI.getCalledValue()); 6766 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6767 6768 // The stackmap intrinsic only records the live variables (the arguemnts 6769 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6770 // intrinsic, this won't be lowered to a function call. This means we don't 6771 // have to worry about calling conventions and target specific lowering code. 6772 // Instead we perform the call lowering right here. 6773 // 6774 // chain, flag = CALLSEQ_START(chain, 0) 6775 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6776 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6777 // 6778 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6779 InFlag = Chain.getValue(1); 6780 6781 // Add the <id> and <numBytes> constants. 6782 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6783 Ops.push_back(DAG.getTargetConstant( 6784 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6785 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6786 Ops.push_back(DAG.getTargetConstant( 6787 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6788 MVT::i32)); 6789 6790 // Push live variables for the stack map. 6791 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6792 6793 // We are not pushing any register mask info here on the operands list, 6794 // because the stackmap doesn't clobber anything. 6795 6796 // Push the chain and the glue flag. 6797 Ops.push_back(Chain); 6798 Ops.push_back(InFlag); 6799 6800 // Create the STACKMAP node. 6801 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6802 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6803 Chain = SDValue(SM, 0); 6804 InFlag = Chain.getValue(1); 6805 6806 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6807 6808 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6809 6810 // Set the root to the target-lowered call chain. 6811 DAG.setRoot(Chain); 6812 6813 // Inform the Frame Information that we have a stackmap in this function. 6814 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6815 } 6816 6817 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6818 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6819 const BasicBlock *EHPadBB) { 6820 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6821 // i32 <numBytes>, 6822 // i8* <target>, 6823 // i32 <numArgs>, 6824 // [Args...], 6825 // [live variables...]) 6826 6827 CallingConv::ID CC = CS.getCallingConv(); 6828 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6829 bool HasDef = !CS->getType()->isVoidTy(); 6830 SDLoc dl = getCurSDLoc(); 6831 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6832 6833 // Handle immediate and symbolic callees. 6834 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6835 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6836 /*isTarget=*/true); 6837 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6838 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6839 SDLoc(SymbolicCallee), 6840 SymbolicCallee->getValueType(0)); 6841 6842 // Get the real number of arguments participating in the call <numArgs> 6843 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6844 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6845 6846 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6847 // Intrinsics include all meta-operands up to but not including CC. 6848 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6849 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6850 "Not enough arguments provided to the patchpoint intrinsic"); 6851 6852 // For AnyRegCC the arguments are lowered later on manually. 6853 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6854 Type *ReturnTy = 6855 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6856 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6857 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6858 6859 SDNode *CallEnd = Result.second.getNode(); 6860 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6861 CallEnd = CallEnd->getOperand(0).getNode(); 6862 6863 /// Get a call instruction from the call sequence chain. 6864 /// Tail calls are not allowed. 6865 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6866 "Expected a callseq node."); 6867 SDNode *Call = CallEnd->getOperand(0).getNode(); 6868 bool HasGlue = Call->getGluedNode(); 6869 6870 // Replace the target specific call node with the patchable intrinsic. 6871 SmallVector<SDValue, 8> Ops; 6872 6873 // Add the <id> and <numBytes> constants. 6874 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6875 Ops.push_back(DAG.getTargetConstant( 6876 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6877 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6878 Ops.push_back(DAG.getTargetConstant( 6879 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6880 MVT::i32)); 6881 6882 // Add the callee. 6883 Ops.push_back(Callee); 6884 6885 // Adjust <numArgs> to account for any arguments that have been passed on the 6886 // stack instead. 6887 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6888 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6889 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6890 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6891 6892 // Add the calling convention 6893 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6894 6895 // Add the arguments we omitted previously. The register allocator should 6896 // place these in any free register. 6897 if (IsAnyRegCC) 6898 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6899 Ops.push_back(getValue(CS.getArgument(i))); 6900 6901 // Push the arguments from the call instruction up to the register mask. 6902 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6903 Ops.append(Call->op_begin() + 2, e); 6904 6905 // Push live variables for the stack map. 6906 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6907 6908 // Push the register mask info. 6909 if (HasGlue) 6910 Ops.push_back(*(Call->op_end()-2)); 6911 else 6912 Ops.push_back(*(Call->op_end()-1)); 6913 6914 // Push the chain (this is originally the first operand of the call, but 6915 // becomes now the last or second to last operand). 6916 Ops.push_back(*(Call->op_begin())); 6917 6918 // Push the glue flag (last operand). 6919 if (HasGlue) 6920 Ops.push_back(*(Call->op_end()-1)); 6921 6922 SDVTList NodeTys; 6923 if (IsAnyRegCC && HasDef) { 6924 // Create the return types based on the intrinsic definition 6925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6926 SmallVector<EVT, 3> ValueVTs; 6927 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6928 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6929 6930 // There is always a chain and a glue type at the end 6931 ValueVTs.push_back(MVT::Other); 6932 ValueVTs.push_back(MVT::Glue); 6933 NodeTys = DAG.getVTList(ValueVTs); 6934 } else 6935 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6936 6937 // Replace the target specific call node with a PATCHPOINT node. 6938 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6939 dl, NodeTys, Ops); 6940 6941 // Update the NodeMap. 6942 if (HasDef) { 6943 if (IsAnyRegCC) 6944 setValue(CS.getInstruction(), SDValue(MN, 0)); 6945 else 6946 setValue(CS.getInstruction(), Result.first); 6947 } 6948 6949 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6950 // call sequence. Furthermore the location of the chain and glue can change 6951 // when the AnyReg calling convention is used and the intrinsic returns a 6952 // value. 6953 if (IsAnyRegCC && HasDef) { 6954 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6955 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6956 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6957 } else 6958 DAG.ReplaceAllUsesWith(Call, MN); 6959 DAG.DeleteNode(Call); 6960 6961 // Inform the Frame Information that we have a patchpoint in this function. 6962 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6963 } 6964 6965 /// Returns an AttributeSet representing the attributes applied to the return 6966 /// value of the given call. 6967 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6968 SmallVector<Attribute::AttrKind, 2> Attrs; 6969 if (CLI.RetSExt) 6970 Attrs.push_back(Attribute::SExt); 6971 if (CLI.RetZExt) 6972 Attrs.push_back(Attribute::ZExt); 6973 if (CLI.IsInReg) 6974 Attrs.push_back(Attribute::InReg); 6975 6976 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6977 Attrs); 6978 } 6979 6980 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6981 /// implementation, which just calls LowerCall. 6982 /// FIXME: When all targets are 6983 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6984 std::pair<SDValue, SDValue> 6985 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6986 // Handle the incoming return values from the call. 6987 CLI.Ins.clear(); 6988 Type *OrigRetTy = CLI.RetTy; 6989 SmallVector<EVT, 4> RetTys; 6990 SmallVector<uint64_t, 4> Offsets; 6991 auto &DL = CLI.DAG.getDataLayout(); 6992 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6993 6994 SmallVector<ISD::OutputArg, 4> Outs; 6995 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6996 6997 bool CanLowerReturn = 6998 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6999 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7000 7001 SDValue DemoteStackSlot; 7002 int DemoteStackIdx = -100; 7003 if (!CanLowerReturn) { 7004 // FIXME: equivalent assert? 7005 // assert(!CS.hasInAllocaArgument() && 7006 // "sret demotion is incompatible with inalloca"); 7007 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7008 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7009 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7010 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7011 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7012 7013 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7014 ArgListEntry Entry; 7015 Entry.Node = DemoteStackSlot; 7016 Entry.Ty = StackSlotPtrType; 7017 Entry.isSExt = false; 7018 Entry.isZExt = false; 7019 Entry.isInReg = false; 7020 Entry.isSRet = true; 7021 Entry.isNest = false; 7022 Entry.isByVal = false; 7023 Entry.isReturned = false; 7024 Entry.Alignment = Align; 7025 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7026 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7027 7028 // sret demotion isn't compatible with tail-calls, since the sret argument 7029 // points into the callers stack frame. 7030 CLI.IsTailCall = false; 7031 } else { 7032 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7033 EVT VT = RetTys[I]; 7034 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7035 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7036 for (unsigned i = 0; i != NumRegs; ++i) { 7037 ISD::InputArg MyFlags; 7038 MyFlags.VT = RegisterVT; 7039 MyFlags.ArgVT = VT; 7040 MyFlags.Used = CLI.IsReturnValueUsed; 7041 if (CLI.RetSExt) 7042 MyFlags.Flags.setSExt(); 7043 if (CLI.RetZExt) 7044 MyFlags.Flags.setZExt(); 7045 if (CLI.IsInReg) 7046 MyFlags.Flags.setInReg(); 7047 CLI.Ins.push_back(MyFlags); 7048 } 7049 } 7050 } 7051 7052 // Handle all of the outgoing arguments. 7053 CLI.Outs.clear(); 7054 CLI.OutVals.clear(); 7055 ArgListTy &Args = CLI.getArgs(); 7056 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7057 SmallVector<EVT, 4> ValueVTs; 7058 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7059 Type *FinalType = Args[i].Ty; 7060 if (Args[i].isByVal) 7061 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7062 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7063 FinalType, CLI.CallConv, CLI.IsVarArg); 7064 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7065 ++Value) { 7066 EVT VT = ValueVTs[Value]; 7067 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7068 SDValue Op = SDValue(Args[i].Node.getNode(), 7069 Args[i].Node.getResNo() + Value); 7070 ISD::ArgFlagsTy Flags; 7071 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7072 7073 if (Args[i].isZExt) 7074 Flags.setZExt(); 7075 if (Args[i].isSExt) 7076 Flags.setSExt(); 7077 if (Args[i].isInReg) 7078 Flags.setInReg(); 7079 if (Args[i].isSRet) 7080 Flags.setSRet(); 7081 if (Args[i].isByVal) 7082 Flags.setByVal(); 7083 if (Args[i].isInAlloca) { 7084 Flags.setInAlloca(); 7085 // Set the byval flag for CCAssignFn callbacks that don't know about 7086 // inalloca. This way we can know how many bytes we should've allocated 7087 // and how many bytes a callee cleanup function will pop. If we port 7088 // inalloca to more targets, we'll have to add custom inalloca handling 7089 // in the various CC lowering callbacks. 7090 Flags.setByVal(); 7091 } 7092 if (Args[i].isByVal || Args[i].isInAlloca) { 7093 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7094 Type *ElementTy = Ty->getElementType(); 7095 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7096 // For ByVal, alignment should come from FE. BE will guess if this 7097 // info is not there but there are cases it cannot get right. 7098 unsigned FrameAlign; 7099 if (Args[i].Alignment) 7100 FrameAlign = Args[i].Alignment; 7101 else 7102 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7103 Flags.setByValAlign(FrameAlign); 7104 } 7105 if (Args[i].isNest) 7106 Flags.setNest(); 7107 if (NeedsRegBlock) 7108 Flags.setInConsecutiveRegs(); 7109 Flags.setOrigAlign(OriginalAlignment); 7110 7111 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7112 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7113 SmallVector<SDValue, 4> Parts(NumParts); 7114 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7115 7116 if (Args[i].isSExt) 7117 ExtendKind = ISD::SIGN_EXTEND; 7118 else if (Args[i].isZExt) 7119 ExtendKind = ISD::ZERO_EXTEND; 7120 7121 // Conservatively only handle 'returned' on non-vectors for now 7122 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7123 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7124 "unexpected use of 'returned'"); 7125 // Before passing 'returned' to the target lowering code, ensure that 7126 // either the register MVT and the actual EVT are the same size or that 7127 // the return value and argument are extended in the same way; in these 7128 // cases it's safe to pass the argument register value unchanged as the 7129 // return register value (although it's at the target's option whether 7130 // to do so) 7131 // TODO: allow code generation to take advantage of partially preserved 7132 // registers rather than clobbering the entire register when the 7133 // parameter extension method is not compatible with the return 7134 // extension method 7135 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7136 (ExtendKind != ISD::ANY_EXTEND && 7137 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7138 Flags.setReturned(); 7139 } 7140 7141 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7142 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7143 7144 for (unsigned j = 0; j != NumParts; ++j) { 7145 // if it isn't first piece, alignment must be 1 7146 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7147 i < CLI.NumFixedArgs, 7148 i, j*Parts[j].getValueType().getStoreSize()); 7149 if (NumParts > 1 && j == 0) 7150 MyFlags.Flags.setSplit(); 7151 else if (j != 0) 7152 MyFlags.Flags.setOrigAlign(1); 7153 7154 CLI.Outs.push_back(MyFlags); 7155 CLI.OutVals.push_back(Parts[j]); 7156 } 7157 7158 if (NeedsRegBlock && Value == NumValues - 1) 7159 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7160 } 7161 } 7162 7163 SmallVector<SDValue, 4> InVals; 7164 CLI.Chain = LowerCall(CLI, InVals); 7165 7166 // Verify that the target's LowerCall behaved as expected. 7167 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7168 "LowerCall didn't return a valid chain!"); 7169 assert((!CLI.IsTailCall || InVals.empty()) && 7170 "LowerCall emitted a return value for a tail call!"); 7171 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7172 "LowerCall didn't emit the correct number of values!"); 7173 7174 // For a tail call, the return value is merely live-out and there aren't 7175 // any nodes in the DAG representing it. Return a special value to 7176 // indicate that a tail call has been emitted and no more Instructions 7177 // should be processed in the current block. 7178 if (CLI.IsTailCall) { 7179 CLI.DAG.setRoot(CLI.Chain); 7180 return std::make_pair(SDValue(), SDValue()); 7181 } 7182 7183 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7184 assert(InVals[i].getNode() && 7185 "LowerCall emitted a null value!"); 7186 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7187 "LowerCall emitted a value with the wrong type!"); 7188 }); 7189 7190 SmallVector<SDValue, 4> ReturnValues; 7191 if (!CanLowerReturn) { 7192 // The instruction result is the result of loading from the 7193 // hidden sret parameter. 7194 SmallVector<EVT, 1> PVTs; 7195 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7196 7197 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7198 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7199 EVT PtrVT = PVTs[0]; 7200 7201 unsigned NumValues = RetTys.size(); 7202 ReturnValues.resize(NumValues); 7203 SmallVector<SDValue, 4> Chains(NumValues); 7204 7205 for (unsigned i = 0; i < NumValues; ++i) { 7206 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7207 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7208 PtrVT)); 7209 SDValue L = CLI.DAG.getLoad( 7210 RetTys[i], CLI.DL, CLI.Chain, Add, 7211 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7212 DemoteStackIdx, Offsets[i]), 7213 false, false, false, 1); 7214 ReturnValues[i] = L; 7215 Chains[i] = L.getValue(1); 7216 } 7217 7218 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7219 } else { 7220 // Collect the legal value parts into potentially illegal values 7221 // that correspond to the original function's return values. 7222 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7223 if (CLI.RetSExt) 7224 AssertOp = ISD::AssertSext; 7225 else if (CLI.RetZExt) 7226 AssertOp = ISD::AssertZext; 7227 unsigned CurReg = 0; 7228 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7229 EVT VT = RetTys[I]; 7230 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7231 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7232 7233 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7234 NumRegs, RegisterVT, VT, nullptr, 7235 AssertOp)); 7236 CurReg += NumRegs; 7237 } 7238 7239 // For a function returning void, there is no return value. We can't create 7240 // such a node, so we just return a null return value in that case. In 7241 // that case, nothing will actually look at the value. 7242 if (ReturnValues.empty()) 7243 return std::make_pair(SDValue(), CLI.Chain); 7244 } 7245 7246 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7247 CLI.DAG.getVTList(RetTys), ReturnValues); 7248 return std::make_pair(Res, CLI.Chain); 7249 } 7250 7251 void TargetLowering::LowerOperationWrapper(SDNode *N, 7252 SmallVectorImpl<SDValue> &Results, 7253 SelectionDAG &DAG) const { 7254 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7255 if (Res.getNode()) 7256 Results.push_back(Res); 7257 } 7258 7259 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7260 llvm_unreachable("LowerOperation not implemented for this target!"); 7261 } 7262 7263 void 7264 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7265 SDValue Op = getNonRegisterValue(V); 7266 assert((Op.getOpcode() != ISD::CopyFromReg || 7267 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7268 "Copy from a reg to the same reg!"); 7269 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7270 7271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7272 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7273 V->getType()); 7274 SDValue Chain = DAG.getEntryNode(); 7275 7276 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7277 FuncInfo.PreferredExtendType.end()) 7278 ? ISD::ANY_EXTEND 7279 : FuncInfo.PreferredExtendType[V]; 7280 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7281 PendingExports.push_back(Chain); 7282 } 7283 7284 #include "llvm/CodeGen/SelectionDAGISel.h" 7285 7286 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7287 /// entry block, return true. This includes arguments used by switches, since 7288 /// the switch may expand into multiple basic blocks. 7289 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7290 // With FastISel active, we may be splitting blocks, so force creation 7291 // of virtual registers for all non-dead arguments. 7292 if (FastISel) 7293 return A->use_empty(); 7294 7295 const BasicBlock *Entry = A->getParent()->begin(); 7296 for (const User *U : A->users()) 7297 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7298 return false; // Use not in entry block. 7299 7300 return true; 7301 } 7302 7303 void SelectionDAGISel::LowerArguments(const Function &F) { 7304 SelectionDAG &DAG = SDB->DAG; 7305 SDLoc dl = SDB->getCurSDLoc(); 7306 const DataLayout &DL = DAG.getDataLayout(); 7307 SmallVector<ISD::InputArg, 16> Ins; 7308 7309 if (!FuncInfo->CanLowerReturn) { 7310 // Put in an sret pointer parameter before all the other parameters. 7311 SmallVector<EVT, 1> ValueVTs; 7312 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7313 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7314 7315 // NOTE: Assuming that a pointer will never break down to more than one VT 7316 // or one register. 7317 ISD::ArgFlagsTy Flags; 7318 Flags.setSRet(); 7319 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7320 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7321 ISD::InputArg::NoArgIndex, 0); 7322 Ins.push_back(RetArg); 7323 } 7324 7325 // Set up the incoming argument description vector. 7326 unsigned Idx = 1; 7327 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7328 I != E; ++I, ++Idx) { 7329 SmallVector<EVT, 4> ValueVTs; 7330 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7331 bool isArgValueUsed = !I->use_empty(); 7332 unsigned PartBase = 0; 7333 Type *FinalType = I->getType(); 7334 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7335 FinalType = cast<PointerType>(FinalType)->getElementType(); 7336 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7337 FinalType, F.getCallingConv(), F.isVarArg()); 7338 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7339 Value != NumValues; ++Value) { 7340 EVT VT = ValueVTs[Value]; 7341 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7342 ISD::ArgFlagsTy Flags; 7343 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7344 7345 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7346 Flags.setZExt(); 7347 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7348 Flags.setSExt(); 7349 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7350 Flags.setInReg(); 7351 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7352 Flags.setSRet(); 7353 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7354 Flags.setByVal(); 7355 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7356 Flags.setInAlloca(); 7357 // Set the byval flag for CCAssignFn callbacks that don't know about 7358 // inalloca. This way we can know how many bytes we should've allocated 7359 // and how many bytes a callee cleanup function will pop. If we port 7360 // inalloca to more targets, we'll have to add custom inalloca handling 7361 // in the various CC lowering callbacks. 7362 Flags.setByVal(); 7363 } 7364 if (Flags.isByVal() || Flags.isInAlloca()) { 7365 PointerType *Ty = cast<PointerType>(I->getType()); 7366 Type *ElementTy = Ty->getElementType(); 7367 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7368 // For ByVal, alignment should be passed from FE. BE will guess if 7369 // this info is not there but there are cases it cannot get right. 7370 unsigned FrameAlign; 7371 if (F.getParamAlignment(Idx)) 7372 FrameAlign = F.getParamAlignment(Idx); 7373 else 7374 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7375 Flags.setByValAlign(FrameAlign); 7376 } 7377 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7378 Flags.setNest(); 7379 if (NeedsRegBlock) 7380 Flags.setInConsecutiveRegs(); 7381 Flags.setOrigAlign(OriginalAlignment); 7382 7383 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7384 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7385 for (unsigned i = 0; i != NumRegs; ++i) { 7386 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7387 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7388 if (NumRegs > 1 && i == 0) 7389 MyFlags.Flags.setSplit(); 7390 // if it isn't first piece, alignment must be 1 7391 else if (i > 0) 7392 MyFlags.Flags.setOrigAlign(1); 7393 Ins.push_back(MyFlags); 7394 } 7395 if (NeedsRegBlock && Value == NumValues - 1) 7396 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7397 PartBase += VT.getStoreSize(); 7398 } 7399 } 7400 7401 // Call the target to set up the argument values. 7402 SmallVector<SDValue, 8> InVals; 7403 SDValue NewRoot = TLI->LowerFormalArguments( 7404 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7405 7406 // Verify that the target's LowerFormalArguments behaved as expected. 7407 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7408 "LowerFormalArguments didn't return a valid chain!"); 7409 assert(InVals.size() == Ins.size() && 7410 "LowerFormalArguments didn't emit the correct number of values!"); 7411 DEBUG({ 7412 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7413 assert(InVals[i].getNode() && 7414 "LowerFormalArguments emitted a null value!"); 7415 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7416 "LowerFormalArguments emitted a value with the wrong type!"); 7417 } 7418 }); 7419 7420 // Update the DAG with the new chain value resulting from argument lowering. 7421 DAG.setRoot(NewRoot); 7422 7423 // Set up the argument values. 7424 unsigned i = 0; 7425 Idx = 1; 7426 if (!FuncInfo->CanLowerReturn) { 7427 // Create a virtual register for the sret pointer, and put in a copy 7428 // from the sret argument into it. 7429 SmallVector<EVT, 1> ValueVTs; 7430 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7431 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7432 MVT VT = ValueVTs[0].getSimpleVT(); 7433 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7434 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7435 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7436 RegVT, VT, nullptr, AssertOp); 7437 7438 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7439 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7440 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7441 FuncInfo->DemoteRegister = SRetReg; 7442 NewRoot = 7443 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7444 DAG.setRoot(NewRoot); 7445 7446 // i indexes lowered arguments. Bump it past the hidden sret argument. 7447 // Idx indexes LLVM arguments. Don't touch it. 7448 ++i; 7449 } 7450 7451 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7452 ++I, ++Idx) { 7453 SmallVector<SDValue, 4> ArgValues; 7454 SmallVector<EVT, 4> ValueVTs; 7455 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7456 unsigned NumValues = ValueVTs.size(); 7457 7458 // If this argument is unused then remember its value. It is used to generate 7459 // debugging information. 7460 if (I->use_empty() && NumValues) { 7461 SDB->setUnusedArgValue(I, InVals[i]); 7462 7463 // Also remember any frame index for use in FastISel. 7464 if (FrameIndexSDNode *FI = 7465 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7466 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7467 } 7468 7469 for (unsigned Val = 0; Val != NumValues; ++Val) { 7470 EVT VT = ValueVTs[Val]; 7471 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7472 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7473 7474 if (!I->use_empty()) { 7475 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7476 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7477 AssertOp = ISD::AssertSext; 7478 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7479 AssertOp = ISD::AssertZext; 7480 7481 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7482 NumParts, PartVT, VT, 7483 nullptr, AssertOp)); 7484 } 7485 7486 i += NumParts; 7487 } 7488 7489 // We don't need to do anything else for unused arguments. 7490 if (ArgValues.empty()) 7491 continue; 7492 7493 // Note down frame index. 7494 if (FrameIndexSDNode *FI = 7495 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7496 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7497 7498 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7499 SDB->getCurSDLoc()); 7500 7501 SDB->setValue(I, Res); 7502 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7503 if (LoadSDNode *LNode = 7504 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7505 if (FrameIndexSDNode *FI = 7506 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7507 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7508 } 7509 7510 // If this argument is live outside of the entry block, insert a copy from 7511 // wherever we got it to the vreg that other BB's will reference it as. 7512 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7513 // If we can, though, try to skip creating an unnecessary vreg. 7514 // FIXME: This isn't very clean... it would be nice to make this more 7515 // general. It's also subtly incompatible with the hacks FastISel 7516 // uses with vregs. 7517 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7518 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7519 FuncInfo->ValueMap[I] = Reg; 7520 continue; 7521 } 7522 } 7523 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7524 FuncInfo->InitializeRegForValue(I); 7525 SDB->CopyToExportRegsIfNeeded(I); 7526 } 7527 } 7528 7529 assert(i == InVals.size() && "Argument register count mismatch!"); 7530 7531 // Finally, if the target has anything special to do, allow it to do so. 7532 EmitFunctionEntryCode(); 7533 } 7534 7535 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7536 /// ensure constants are generated when needed. Remember the virtual registers 7537 /// that need to be added to the Machine PHI nodes as input. We cannot just 7538 /// directly add them, because expansion might result in multiple MBB's for one 7539 /// BB. As such, the start of the BB might correspond to a different MBB than 7540 /// the end. 7541 /// 7542 void 7543 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7544 const TerminatorInst *TI = LLVMBB->getTerminator(); 7545 7546 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7547 7548 // Check PHI nodes in successors that expect a value to be available from this 7549 // block. 7550 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7551 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7552 if (!isa<PHINode>(SuccBB->begin())) continue; 7553 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7554 7555 // If this terminator has multiple identical successors (common for 7556 // switches), only handle each succ once. 7557 if (!SuccsHandled.insert(SuccMBB).second) 7558 continue; 7559 7560 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7561 7562 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7563 // nodes and Machine PHI nodes, but the incoming operands have not been 7564 // emitted yet. 7565 for (BasicBlock::const_iterator I = SuccBB->begin(); 7566 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7567 // Ignore dead phi's. 7568 if (PN->use_empty()) continue; 7569 7570 // Skip empty types 7571 if (PN->getType()->isEmptyTy()) 7572 continue; 7573 7574 unsigned Reg; 7575 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7576 7577 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7578 unsigned &RegOut = ConstantsOut[C]; 7579 if (RegOut == 0) { 7580 RegOut = FuncInfo.CreateRegs(C->getType()); 7581 CopyValueToVirtualRegister(C, RegOut); 7582 } 7583 Reg = RegOut; 7584 } else { 7585 DenseMap<const Value *, unsigned>::iterator I = 7586 FuncInfo.ValueMap.find(PHIOp); 7587 if (I != FuncInfo.ValueMap.end()) 7588 Reg = I->second; 7589 else { 7590 assert(isa<AllocaInst>(PHIOp) && 7591 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7592 "Didn't codegen value into a register!??"); 7593 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7594 CopyValueToVirtualRegister(PHIOp, Reg); 7595 } 7596 } 7597 7598 // Remember that this register needs to added to the machine PHI node as 7599 // the input for this MBB. 7600 SmallVector<EVT, 4> ValueVTs; 7601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7602 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7603 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7604 EVT VT = ValueVTs[vti]; 7605 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7606 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7607 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7608 Reg += NumRegisters; 7609 } 7610 } 7611 } 7612 7613 ConstantsOut.clear(); 7614 } 7615 7616 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7617 /// is 0. 7618 MachineBasicBlock * 7619 SelectionDAGBuilder::StackProtectorDescriptor:: 7620 AddSuccessorMBB(const BasicBlock *BB, 7621 MachineBasicBlock *ParentMBB, 7622 bool IsLikely, 7623 MachineBasicBlock *SuccMBB) { 7624 // If SuccBB has not been created yet, create it. 7625 if (!SuccMBB) { 7626 MachineFunction *MF = ParentMBB->getParent(); 7627 MachineFunction::iterator BBI = ParentMBB; 7628 SuccMBB = MF->CreateMachineBasicBlock(BB); 7629 MF->insert(++BBI, SuccMBB); 7630 } 7631 // Add it as a successor of ParentMBB. 7632 ParentMBB->addSuccessor( 7633 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7634 return SuccMBB; 7635 } 7636 7637 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7638 MachineFunction::iterator I = MBB; 7639 if (++I == FuncInfo.MF->end()) 7640 return nullptr; 7641 return I; 7642 } 7643 7644 /// During lowering new call nodes can be created (such as memset, etc.). 7645 /// Those will become new roots of the current DAG, but complications arise 7646 /// when they are tail calls. In such cases, the call lowering will update 7647 /// the root, but the builder still needs to know that a tail call has been 7648 /// lowered in order to avoid generating an additional return. 7649 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7650 // If the node is null, we do have a tail call. 7651 if (MaybeTC.getNode() != nullptr) 7652 DAG.setRoot(MaybeTC); 7653 else 7654 HasTailCall = true; 7655 } 7656 7657 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7658 unsigned *TotalCases, unsigned First, 7659 unsigned Last) { 7660 assert(Last >= First); 7661 assert(TotalCases[Last] >= TotalCases[First]); 7662 7663 APInt LowCase = Clusters[First].Low->getValue(); 7664 APInt HighCase = Clusters[Last].High->getValue(); 7665 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7666 7667 // FIXME: A range of consecutive cases has 100% density, but only requires one 7668 // comparison to lower. We should discriminate against such consecutive ranges 7669 // in jump tables. 7670 7671 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7672 uint64_t Range = Diff + 1; 7673 7674 uint64_t NumCases = 7675 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7676 7677 assert(NumCases < UINT64_MAX / 100); 7678 assert(Range >= NumCases); 7679 7680 return NumCases * 100 >= Range * MinJumpTableDensity; 7681 } 7682 7683 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7684 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7685 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7686 } 7687 7688 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7689 unsigned First, unsigned Last, 7690 const SwitchInst *SI, 7691 MachineBasicBlock *DefaultMBB, 7692 CaseCluster &JTCluster) { 7693 assert(First <= Last); 7694 7695 uint32_t Weight = 0; 7696 unsigned NumCmps = 0; 7697 std::vector<MachineBasicBlock*> Table; 7698 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7699 for (unsigned I = First; I <= Last; ++I) { 7700 assert(Clusters[I].Kind == CC_Range); 7701 Weight += Clusters[I].Weight; 7702 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7703 APInt Low = Clusters[I].Low->getValue(); 7704 APInt High = Clusters[I].High->getValue(); 7705 NumCmps += (Low == High) ? 1 : 2; 7706 if (I != First) { 7707 // Fill the gap between this and the previous cluster. 7708 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7709 assert(PreviousHigh.slt(Low)); 7710 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7711 for (uint64_t J = 0; J < Gap; J++) 7712 Table.push_back(DefaultMBB); 7713 } 7714 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7715 for (uint64_t J = 0; J < ClusterSize; ++J) 7716 Table.push_back(Clusters[I].MBB); 7717 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7718 } 7719 7720 unsigned NumDests = JTWeights.size(); 7721 if (isSuitableForBitTests(NumDests, NumCmps, 7722 Clusters[First].Low->getValue(), 7723 Clusters[Last].High->getValue())) { 7724 // Clusters[First..Last] should be lowered as bit tests instead. 7725 return false; 7726 } 7727 7728 // Create the MBB that will load from and jump through the table. 7729 // Note: We create it here, but it's not inserted into the function yet. 7730 MachineFunction *CurMF = FuncInfo.MF; 7731 MachineBasicBlock *JumpTableMBB = 7732 CurMF->CreateMachineBasicBlock(SI->getParent()); 7733 7734 // Add successors. Note: use table order for determinism. 7735 SmallPtrSet<MachineBasicBlock *, 8> Done; 7736 for (MachineBasicBlock *Succ : Table) { 7737 if (Done.count(Succ)) 7738 continue; 7739 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7740 Done.insert(Succ); 7741 } 7742 7743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7744 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7745 ->createJumpTableIndex(Table); 7746 7747 // Set up the jump table info. 7748 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7749 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7750 Clusters[Last].High->getValue(), SI->getCondition(), 7751 nullptr, false); 7752 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7753 7754 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7755 JTCases.size() - 1, Weight); 7756 return true; 7757 } 7758 7759 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7760 const SwitchInst *SI, 7761 MachineBasicBlock *DefaultMBB) { 7762 #ifndef NDEBUG 7763 // Clusters must be non-empty, sorted, and only contain Range clusters. 7764 assert(!Clusters.empty()); 7765 for (CaseCluster &C : Clusters) 7766 assert(C.Kind == CC_Range); 7767 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7768 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7769 #endif 7770 7771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7772 if (!areJTsAllowed(TLI)) 7773 return; 7774 7775 const int64_t N = Clusters.size(); 7776 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7777 7778 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7779 SmallVector<unsigned, 8> TotalCases(N); 7780 7781 for (unsigned i = 0; i < N; ++i) { 7782 APInt Hi = Clusters[i].High->getValue(); 7783 APInt Lo = Clusters[i].Low->getValue(); 7784 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7785 if (i != 0) 7786 TotalCases[i] += TotalCases[i - 1]; 7787 } 7788 7789 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7790 // Cheap case: the whole range might be suitable for jump table. 7791 CaseCluster JTCluster; 7792 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7793 Clusters[0] = JTCluster; 7794 Clusters.resize(1); 7795 return; 7796 } 7797 } 7798 7799 // The algorithm below is not suitable for -O0. 7800 if (TM.getOptLevel() == CodeGenOpt::None) 7801 return; 7802 7803 // Split Clusters into minimum number of dense partitions. The algorithm uses 7804 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7805 // for the Case Statement'" (1994), but builds the MinPartitions array in 7806 // reverse order to make it easier to reconstruct the partitions in ascending 7807 // order. In the choice between two optimal partitionings, it picks the one 7808 // which yields more jump tables. 7809 7810 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7811 SmallVector<unsigned, 8> MinPartitions(N); 7812 // LastElement[i] is the last element of the partition starting at i. 7813 SmallVector<unsigned, 8> LastElement(N); 7814 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7815 SmallVector<unsigned, 8> NumTables(N); 7816 7817 // Base case: There is only one way to partition Clusters[N-1]. 7818 MinPartitions[N - 1] = 1; 7819 LastElement[N - 1] = N - 1; 7820 assert(MinJumpTableSize > 1); 7821 NumTables[N - 1] = 0; 7822 7823 // Note: loop indexes are signed to avoid underflow. 7824 for (int64_t i = N - 2; i >= 0; i--) { 7825 // Find optimal partitioning of Clusters[i..N-1]. 7826 // Baseline: Put Clusters[i] into a partition on its own. 7827 MinPartitions[i] = MinPartitions[i + 1] + 1; 7828 LastElement[i] = i; 7829 NumTables[i] = NumTables[i + 1]; 7830 7831 // Search for a solution that results in fewer partitions. 7832 for (int64_t j = N - 1; j > i; j--) { 7833 // Try building a partition from Clusters[i..j]. 7834 if (isDense(Clusters, &TotalCases[0], i, j)) { 7835 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7836 bool IsTable = j - i + 1 >= MinJumpTableSize; 7837 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7838 7839 // If this j leads to fewer partitions, or same number of partitions 7840 // with more lookup tables, it is a better partitioning. 7841 if (NumPartitions < MinPartitions[i] || 7842 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7843 MinPartitions[i] = NumPartitions; 7844 LastElement[i] = j; 7845 NumTables[i] = Tables; 7846 } 7847 } 7848 } 7849 } 7850 7851 // Iterate over the partitions, replacing some with jump tables in-place. 7852 unsigned DstIndex = 0; 7853 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7854 Last = LastElement[First]; 7855 assert(Last >= First); 7856 assert(DstIndex <= First); 7857 unsigned NumClusters = Last - First + 1; 7858 7859 CaseCluster JTCluster; 7860 if (NumClusters >= MinJumpTableSize && 7861 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7862 Clusters[DstIndex++] = JTCluster; 7863 } else { 7864 for (unsigned I = First; I <= Last; ++I) 7865 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7866 } 7867 } 7868 Clusters.resize(DstIndex); 7869 } 7870 7871 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7872 // FIXME: Using the pointer type doesn't seem ideal. 7873 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7874 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7875 return Range <= BW; 7876 } 7877 7878 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7879 unsigned NumCmps, 7880 const APInt &Low, 7881 const APInt &High) { 7882 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7883 // range of cases both require only one branch to lower. Just looking at the 7884 // number of clusters and destinations should be enough to decide whether to 7885 // build bit tests. 7886 7887 // To lower a range with bit tests, the range must fit the bitwidth of a 7888 // machine word. 7889 if (!rangeFitsInWord(Low, High)) 7890 return false; 7891 7892 // Decide whether it's profitable to lower this range with bit tests. Each 7893 // destination requires a bit test and branch, and there is an overall range 7894 // check branch. For a small number of clusters, separate comparisons might be 7895 // cheaper, and for many destinations, splitting the range might be better. 7896 return (NumDests == 1 && NumCmps >= 3) || 7897 (NumDests == 2 && NumCmps >= 5) || 7898 (NumDests == 3 && NumCmps >= 6); 7899 } 7900 7901 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7902 unsigned First, unsigned Last, 7903 const SwitchInst *SI, 7904 CaseCluster &BTCluster) { 7905 assert(First <= Last); 7906 if (First == Last) 7907 return false; 7908 7909 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7910 unsigned NumCmps = 0; 7911 for (int64_t I = First; I <= Last; ++I) { 7912 assert(Clusters[I].Kind == CC_Range); 7913 Dests.set(Clusters[I].MBB->getNumber()); 7914 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7915 } 7916 unsigned NumDests = Dests.count(); 7917 7918 APInt Low = Clusters[First].Low->getValue(); 7919 APInt High = Clusters[Last].High->getValue(); 7920 assert(Low.slt(High)); 7921 7922 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7923 return false; 7924 7925 APInt LowBound; 7926 APInt CmpRange; 7927 7928 const int BitWidth = DAG.getTargetLoweringInfo() 7929 .getPointerTy(DAG.getDataLayout()) 7930 .getSizeInBits(); 7931 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7932 7933 // Check if the clusters cover a contiguous range such that no value in the 7934 // range will jump to the default statement. 7935 bool ContiguousRange = true; 7936 for (int64_t I = First + 1; I <= Last; ++I) { 7937 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7938 ContiguousRange = false; 7939 break; 7940 } 7941 } 7942 7943 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7944 // Optimize the case where all the case values fit in a word without having 7945 // to subtract minValue. In this case, we can optimize away the subtraction. 7946 LowBound = APInt::getNullValue(Low.getBitWidth()); 7947 CmpRange = High; 7948 ContiguousRange = false; 7949 } else { 7950 LowBound = Low; 7951 CmpRange = High - Low; 7952 } 7953 7954 CaseBitsVector CBV; 7955 uint32_t TotalWeight = 0; 7956 for (unsigned i = First; i <= Last; ++i) { 7957 // Find the CaseBits for this destination. 7958 unsigned j; 7959 for (j = 0; j < CBV.size(); ++j) 7960 if (CBV[j].BB == Clusters[i].MBB) 7961 break; 7962 if (j == CBV.size()) 7963 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7964 CaseBits *CB = &CBV[j]; 7965 7966 // Update Mask, Bits and ExtraWeight. 7967 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7968 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7969 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7970 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7971 CB->Bits += Hi - Lo + 1; 7972 CB->ExtraWeight += Clusters[i].Weight; 7973 TotalWeight += Clusters[i].Weight; 7974 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7975 } 7976 7977 BitTestInfo BTI; 7978 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7979 // Sort by weight first, number of bits second. 7980 if (a.ExtraWeight != b.ExtraWeight) 7981 return a.ExtraWeight > b.ExtraWeight; 7982 return a.Bits > b.Bits; 7983 }); 7984 7985 for (auto &CB : CBV) { 7986 MachineBasicBlock *BitTestBB = 7987 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7988 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7989 } 7990 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7991 SI->getCondition(), -1U, MVT::Other, false, 7992 ContiguousRange, nullptr, nullptr, std::move(BTI), 7993 TotalWeight); 7994 7995 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7996 BitTestCases.size() - 1, TotalWeight); 7997 return true; 7998 } 7999 8000 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8001 const SwitchInst *SI) { 8002 // Partition Clusters into as few subsets as possible, where each subset has a 8003 // range that fits in a machine word and has <= 3 unique destinations. 8004 8005 #ifndef NDEBUG 8006 // Clusters must be sorted and contain Range or JumpTable clusters. 8007 assert(!Clusters.empty()); 8008 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8009 for (const CaseCluster &C : Clusters) 8010 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8011 for (unsigned i = 1; i < Clusters.size(); ++i) 8012 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8013 #endif 8014 8015 // The algorithm below is not suitable for -O0. 8016 if (TM.getOptLevel() == CodeGenOpt::None) 8017 return; 8018 8019 // If target does not have legal shift left, do not emit bit tests at all. 8020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8021 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8022 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8023 return; 8024 8025 int BitWidth = PTy.getSizeInBits(); 8026 const int64_t N = Clusters.size(); 8027 8028 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8029 SmallVector<unsigned, 8> MinPartitions(N); 8030 // LastElement[i] is the last element of the partition starting at i. 8031 SmallVector<unsigned, 8> LastElement(N); 8032 8033 // FIXME: This might not be the best algorithm for finding bit test clusters. 8034 8035 // Base case: There is only one way to partition Clusters[N-1]. 8036 MinPartitions[N - 1] = 1; 8037 LastElement[N - 1] = N - 1; 8038 8039 // Note: loop indexes are signed to avoid underflow. 8040 for (int64_t i = N - 2; i >= 0; --i) { 8041 // Find optimal partitioning of Clusters[i..N-1]. 8042 // Baseline: Put Clusters[i] into a partition on its own. 8043 MinPartitions[i] = MinPartitions[i + 1] + 1; 8044 LastElement[i] = i; 8045 8046 // Search for a solution that results in fewer partitions. 8047 // Note: the search is limited by BitWidth, reducing time complexity. 8048 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8049 // Try building a partition from Clusters[i..j]. 8050 8051 // Check the range. 8052 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8053 Clusters[j].High->getValue())) 8054 continue; 8055 8056 // Check nbr of destinations and cluster types. 8057 // FIXME: This works, but doesn't seem very efficient. 8058 bool RangesOnly = true; 8059 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8060 for (int64_t k = i; k <= j; k++) { 8061 if (Clusters[k].Kind != CC_Range) { 8062 RangesOnly = false; 8063 break; 8064 } 8065 Dests.set(Clusters[k].MBB->getNumber()); 8066 } 8067 if (!RangesOnly || Dests.count() > 3) 8068 break; 8069 8070 // Check if it's a better partition. 8071 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8072 if (NumPartitions < MinPartitions[i]) { 8073 // Found a better partition. 8074 MinPartitions[i] = NumPartitions; 8075 LastElement[i] = j; 8076 } 8077 } 8078 } 8079 8080 // Iterate over the partitions, replacing with bit-test clusters in-place. 8081 unsigned DstIndex = 0; 8082 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8083 Last = LastElement[First]; 8084 assert(First <= Last); 8085 assert(DstIndex <= First); 8086 8087 CaseCluster BitTestCluster; 8088 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8089 Clusters[DstIndex++] = BitTestCluster; 8090 } else { 8091 size_t NumClusters = Last - First + 1; 8092 std::memmove(&Clusters[DstIndex], &Clusters[First], 8093 sizeof(Clusters[0]) * NumClusters); 8094 DstIndex += NumClusters; 8095 } 8096 } 8097 Clusters.resize(DstIndex); 8098 } 8099 8100 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8101 MachineBasicBlock *SwitchMBB, 8102 MachineBasicBlock *DefaultMBB) { 8103 MachineFunction *CurMF = FuncInfo.MF; 8104 MachineBasicBlock *NextMBB = nullptr; 8105 MachineFunction::iterator BBI = W.MBB; 8106 if (++BBI != FuncInfo.MF->end()) 8107 NextMBB = BBI; 8108 8109 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8110 8111 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8112 8113 if (Size == 2 && W.MBB == SwitchMBB) { 8114 // If any two of the cases has the same destination, and if one value 8115 // is the same as the other, but has one bit unset that the other has set, 8116 // use bit manipulation to do two compares at once. For example: 8117 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8118 // TODO: This could be extended to merge any 2 cases in switches with 3 8119 // cases. 8120 // TODO: Handle cases where W.CaseBB != SwitchBB. 8121 CaseCluster &Small = *W.FirstCluster; 8122 CaseCluster &Big = *W.LastCluster; 8123 8124 if (Small.Low == Small.High && Big.Low == Big.High && 8125 Small.MBB == Big.MBB) { 8126 const APInt &SmallValue = Small.Low->getValue(); 8127 const APInt &BigValue = Big.Low->getValue(); 8128 8129 // Check that there is only one bit different. 8130 APInt CommonBit = BigValue ^ SmallValue; 8131 if (CommonBit.isPowerOf2()) { 8132 SDValue CondLHS = getValue(Cond); 8133 EVT VT = CondLHS.getValueType(); 8134 SDLoc DL = getCurSDLoc(); 8135 8136 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8137 DAG.getConstant(CommonBit, DL, VT)); 8138 SDValue Cond = DAG.getSetCC( 8139 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8140 ISD::SETEQ); 8141 8142 // Update successor info. 8143 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8144 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8145 addSuccessorWithWeight( 8146 SwitchMBB, DefaultMBB, 8147 // The default destination is the first successor in IR. 8148 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8149 : 0); 8150 8151 // Insert the true branch. 8152 SDValue BrCond = 8153 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8154 DAG.getBasicBlock(Small.MBB)); 8155 // Insert the false branch. 8156 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8157 DAG.getBasicBlock(DefaultMBB)); 8158 8159 DAG.setRoot(BrCond); 8160 return; 8161 } 8162 } 8163 } 8164 8165 if (TM.getOptLevel() != CodeGenOpt::None) { 8166 // Order cases by weight so the most likely case will be checked first. 8167 std::sort(W.FirstCluster, W.LastCluster + 1, 8168 [](const CaseCluster &a, const CaseCluster &b) { 8169 return a.Weight > b.Weight; 8170 }); 8171 8172 // Rearrange the case blocks so that the last one falls through if possible 8173 // without without changing the order of weights. 8174 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8175 --I; 8176 if (I->Weight > W.LastCluster->Weight) 8177 break; 8178 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8179 std::swap(*I, *W.LastCluster); 8180 break; 8181 } 8182 } 8183 } 8184 8185 // Compute total weight. 8186 uint32_t DefaultWeight = W.DefaultWeight; 8187 uint32_t UnhandledWeights = DefaultWeight; 8188 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8189 UnhandledWeights += I->Weight; 8190 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8191 } 8192 8193 MachineBasicBlock *CurMBB = W.MBB; 8194 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8195 MachineBasicBlock *Fallthrough; 8196 if (I == W.LastCluster) { 8197 // For the last cluster, fall through to the default destination. 8198 Fallthrough = DefaultMBB; 8199 } else { 8200 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8201 CurMF->insert(BBI, Fallthrough); 8202 // Put Cond in a virtual register to make it available from the new blocks. 8203 ExportFromCurrentBlock(Cond); 8204 } 8205 UnhandledWeights -= I->Weight; 8206 8207 switch (I->Kind) { 8208 case CC_JumpTable: { 8209 // FIXME: Optimize away range check based on pivot comparisons. 8210 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8211 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8212 8213 // The jump block hasn't been inserted yet; insert it here. 8214 MachineBasicBlock *JumpMBB = JT->MBB; 8215 CurMF->insert(BBI, JumpMBB); 8216 8217 uint32_t JumpWeight = I->Weight; 8218 uint32_t FallthroughWeight = UnhandledWeights; 8219 8220 // If the default statement is a target of the jump table, we evenly 8221 // distribute the default weight to successors of CurMBB. Also update 8222 // the weight on the edge from JumpMBB to Fallthrough. 8223 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8224 SE = JumpMBB->succ_end(); 8225 SI != SE; ++SI) { 8226 if (*SI == DefaultMBB) { 8227 JumpWeight += DefaultWeight / 2; 8228 FallthroughWeight -= DefaultWeight / 2; 8229 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8230 break; 8231 } 8232 } 8233 8234 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8235 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8236 8237 // The jump table header will be inserted in our current block, do the 8238 // range check, and fall through to our fallthrough block. 8239 JTH->HeaderBB = CurMBB; 8240 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8241 8242 // If we're in the right place, emit the jump table header right now. 8243 if (CurMBB == SwitchMBB) { 8244 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8245 JTH->Emitted = true; 8246 } 8247 break; 8248 } 8249 case CC_BitTests: { 8250 // FIXME: Optimize away range check based on pivot comparisons. 8251 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8252 8253 // The bit test blocks haven't been inserted yet; insert them here. 8254 for (BitTestCase &BTC : BTB->Cases) 8255 CurMF->insert(BBI, BTC.ThisBB); 8256 8257 // Fill in fields of the BitTestBlock. 8258 BTB->Parent = CurMBB; 8259 BTB->Default = Fallthrough; 8260 8261 BTB->DefaultWeight = UnhandledWeights; 8262 // If the cases in bit test don't form a contiguous range, we evenly 8263 // distribute the weight on the edge to Fallthrough to two successors 8264 // of CurMBB. 8265 if (!BTB->ContiguousRange) { 8266 BTB->Weight += DefaultWeight / 2; 8267 BTB->DefaultWeight -= DefaultWeight / 2; 8268 } 8269 8270 // If we're in the right place, emit the bit test header right now. 8271 if (CurMBB == SwitchMBB) { 8272 visitBitTestHeader(*BTB, SwitchMBB); 8273 BTB->Emitted = true; 8274 } 8275 break; 8276 } 8277 case CC_Range: { 8278 const Value *RHS, *LHS, *MHS; 8279 ISD::CondCode CC; 8280 if (I->Low == I->High) { 8281 // Check Cond == I->Low. 8282 CC = ISD::SETEQ; 8283 LHS = Cond; 8284 RHS=I->Low; 8285 MHS = nullptr; 8286 } else { 8287 // Check I->Low <= Cond <= I->High. 8288 CC = ISD::SETLE; 8289 LHS = I->Low; 8290 MHS = Cond; 8291 RHS = I->High; 8292 } 8293 8294 // The false weight is the sum of all unhandled cases. 8295 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8296 UnhandledWeights); 8297 8298 if (CurMBB == SwitchMBB) 8299 visitSwitchCase(CB, SwitchMBB); 8300 else 8301 SwitchCases.push_back(CB); 8302 8303 break; 8304 } 8305 } 8306 CurMBB = Fallthrough; 8307 } 8308 } 8309 8310 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8311 CaseClusterIt First, 8312 CaseClusterIt Last) { 8313 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8314 if (X.Weight != CC.Weight) 8315 return X.Weight > CC.Weight; 8316 8317 // Ties are broken by comparing the case value. 8318 return X.Low->getValue().slt(CC.Low->getValue()); 8319 }); 8320 } 8321 8322 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8323 const SwitchWorkListItem &W, 8324 Value *Cond, 8325 MachineBasicBlock *SwitchMBB) { 8326 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8327 "Clusters not sorted?"); 8328 8329 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8330 8331 // Balance the tree based on branch weights to create a near-optimal (in terms 8332 // of search time given key frequency) binary search tree. See e.g. Kurt 8333 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8334 CaseClusterIt LastLeft = W.FirstCluster; 8335 CaseClusterIt FirstRight = W.LastCluster; 8336 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8337 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8338 8339 // Move LastLeft and FirstRight towards each other from opposite directions to 8340 // find a partitioning of the clusters which balances the weight on both 8341 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8342 // taken to ensure 0-weight nodes are distributed evenly. 8343 unsigned I = 0; 8344 while (LastLeft + 1 < FirstRight) { 8345 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8346 LeftWeight += (++LastLeft)->Weight; 8347 else 8348 RightWeight += (--FirstRight)->Weight; 8349 I++; 8350 } 8351 8352 for (;;) { 8353 // Our binary search tree differs from a typical BST in that ours can have up 8354 // to three values in each leaf. The pivot selection above doesn't take that 8355 // into account, which means the tree might require more nodes and be less 8356 // efficient. We compensate for this here. 8357 8358 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8359 unsigned NumRight = W.LastCluster - FirstRight + 1; 8360 8361 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8362 // If one side has less than 3 clusters, and the other has more than 3, 8363 // consider taking a cluster from the other side. 8364 8365 if (NumLeft < NumRight) { 8366 // Consider moving the first cluster on the right to the left side. 8367 CaseCluster &CC = *FirstRight; 8368 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8369 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8370 if (LeftSideRank <= RightSideRank) { 8371 // Moving the cluster to the left does not demote it. 8372 ++LastLeft; 8373 ++FirstRight; 8374 continue; 8375 } 8376 } else { 8377 assert(NumRight < NumLeft); 8378 // Consider moving the last element on the left to the right side. 8379 CaseCluster &CC = *LastLeft; 8380 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8381 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8382 if (RightSideRank <= LeftSideRank) { 8383 // Moving the cluster to the right does not demot it. 8384 --LastLeft; 8385 --FirstRight; 8386 continue; 8387 } 8388 } 8389 } 8390 break; 8391 } 8392 8393 assert(LastLeft + 1 == FirstRight); 8394 assert(LastLeft >= W.FirstCluster); 8395 assert(FirstRight <= W.LastCluster); 8396 8397 // Use the first element on the right as pivot since we will make less-than 8398 // comparisons against it. 8399 CaseClusterIt PivotCluster = FirstRight; 8400 assert(PivotCluster > W.FirstCluster); 8401 assert(PivotCluster <= W.LastCluster); 8402 8403 CaseClusterIt FirstLeft = W.FirstCluster; 8404 CaseClusterIt LastRight = W.LastCluster; 8405 8406 const ConstantInt *Pivot = PivotCluster->Low; 8407 8408 // New blocks will be inserted immediately after the current one. 8409 MachineFunction::iterator BBI = W.MBB; 8410 ++BBI; 8411 8412 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8413 // we can branch to its destination directly if it's squeezed exactly in 8414 // between the known lower bound and Pivot - 1. 8415 MachineBasicBlock *LeftMBB; 8416 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8417 FirstLeft->Low == W.GE && 8418 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8419 LeftMBB = FirstLeft->MBB; 8420 } else { 8421 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8422 FuncInfo.MF->insert(BBI, LeftMBB); 8423 WorkList.push_back( 8424 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8425 // Put Cond in a virtual register to make it available from the new blocks. 8426 ExportFromCurrentBlock(Cond); 8427 } 8428 8429 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8430 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8431 // directly if RHS.High equals the current upper bound. 8432 MachineBasicBlock *RightMBB; 8433 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8434 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8435 RightMBB = FirstRight->MBB; 8436 } else { 8437 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8438 FuncInfo.MF->insert(BBI, RightMBB); 8439 WorkList.push_back( 8440 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8441 // Put Cond in a virtual register to make it available from the new blocks. 8442 ExportFromCurrentBlock(Cond); 8443 } 8444 8445 // Create the CaseBlock record that will be used to lower the branch. 8446 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8447 LeftWeight, RightWeight); 8448 8449 if (W.MBB == SwitchMBB) 8450 visitSwitchCase(CB, SwitchMBB); 8451 else 8452 SwitchCases.push_back(CB); 8453 } 8454 8455 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8456 // Extract cases from the switch. 8457 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8458 CaseClusterVector Clusters; 8459 Clusters.reserve(SI.getNumCases()); 8460 for (auto I : SI.cases()) { 8461 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8462 const ConstantInt *CaseVal = I.getCaseValue(); 8463 uint32_t Weight = 8464 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8465 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8466 } 8467 8468 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8469 8470 // Cluster adjacent cases with the same destination. We do this at all 8471 // optimization levels because it's cheap to do and will make codegen faster 8472 // if there are many clusters. 8473 sortAndRangeify(Clusters); 8474 8475 if (TM.getOptLevel() != CodeGenOpt::None) { 8476 // Replace an unreachable default with the most popular destination. 8477 // FIXME: Exploit unreachable default more aggressively. 8478 bool UnreachableDefault = 8479 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8480 if (UnreachableDefault && !Clusters.empty()) { 8481 DenseMap<const BasicBlock *, unsigned> Popularity; 8482 unsigned MaxPop = 0; 8483 const BasicBlock *MaxBB = nullptr; 8484 for (auto I : SI.cases()) { 8485 const BasicBlock *BB = I.getCaseSuccessor(); 8486 if (++Popularity[BB] > MaxPop) { 8487 MaxPop = Popularity[BB]; 8488 MaxBB = BB; 8489 } 8490 } 8491 // Set new default. 8492 assert(MaxPop > 0 && MaxBB); 8493 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8494 8495 // Remove cases that were pointing to the destination that is now the 8496 // default. 8497 CaseClusterVector New; 8498 New.reserve(Clusters.size()); 8499 for (CaseCluster &CC : Clusters) { 8500 if (CC.MBB != DefaultMBB) 8501 New.push_back(CC); 8502 } 8503 Clusters = std::move(New); 8504 } 8505 } 8506 8507 // If there is only the default destination, jump there directly. 8508 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8509 if (Clusters.empty()) { 8510 SwitchMBB->addSuccessor(DefaultMBB); 8511 if (DefaultMBB != NextBlock(SwitchMBB)) { 8512 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8513 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8514 } 8515 return; 8516 } 8517 8518 findJumpTables(Clusters, &SI, DefaultMBB); 8519 findBitTestClusters(Clusters, &SI); 8520 8521 DEBUG({ 8522 dbgs() << "Case clusters: "; 8523 for (const CaseCluster &C : Clusters) { 8524 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8525 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8526 8527 C.Low->getValue().print(dbgs(), true); 8528 if (C.Low != C.High) { 8529 dbgs() << '-'; 8530 C.High->getValue().print(dbgs(), true); 8531 } 8532 dbgs() << ' '; 8533 } 8534 dbgs() << '\n'; 8535 }); 8536 8537 assert(!Clusters.empty()); 8538 SwitchWorkList WorkList; 8539 CaseClusterIt First = Clusters.begin(); 8540 CaseClusterIt Last = Clusters.end() - 1; 8541 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8542 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8543 8544 while (!WorkList.empty()) { 8545 SwitchWorkListItem W = WorkList.back(); 8546 WorkList.pop_back(); 8547 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8548 8549 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8550 // For optimized builds, lower large range as a balanced binary tree. 8551 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8552 continue; 8553 } 8554 8555 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8556 } 8557 } 8558